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Abstract  

Linear and nonlinear multivariate statistical analyses are applied to determine how the 
types of accidents that occur on heavily used freeways in Southern California are 
related both to the flow of traffic and to weather and ambient lighting conditions.  Traffic 
flow is measured in terms of time series of 30-second observations from inductive loop 
detectors in the vicinity of the accident prior to the time of its occurrence.  Results 
indicate that the type of collision is strongly related to median traffic speed and to 
temporal variations in speed in the left and interior lanes.  Hit-object collisions and 
collisions involving multiple vehicles that are associated with lane-change maneuvers 
are more likely to occur on wet roads, while rear-end collisions are more likely to occur 
on dry roads during daylight.  Controlling for weather and lighting conditions, there is 
evidence that accident severity is influenced more by volume than by speed. 
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Introduction 

Our objective is to quantify relationships between the type of traffic accidents (crashes) 
that occur on urban freeways and the configuration of the traffic flow, while taking into 
account weather and lighting conditions.  We have data on approximately 1200 crashes 
that occurred on six freeway routes in Southern California during in 1998.  These 
crashes are characterized by: (a) the type and location of the primary collision, (b) the 
movement of the involved vehicles prior to collision, the number of vehicles involved, 
and (c) the accident severity (in terms of injury versus property damage only).  Traffic 
flow is measured in terms of time series of 30-second observations from inductive loop 
detectors in the vicinity of the accident prior to the time of its occurrence. 
 
There is strong empirical evidence of functional relationships between accident rates 
and traffic flow, conditional upon roadway characteristics (e.g., Aljanahi, et al., 1999, 
Cedar and Livneh, 1982, Frantzeskakis and Iordanis, 1987, Garber and Gadiraju, 1990, 
Gwynn, 1967, Hall and Pendleton, 1989, Maher and Summersgill, 1996, Sandhu and 
Al-Kazily, 1996, Stokes and Mutabazi, 1996, Sullivan, 1990, Sullivan and Hsu, 1988, 
and Zhou and Sisiopiku, 1997).  A series of studies have also dealt with quantification of 
the safety component of the marginal costs of roadway use, as a function of traffic 
speed, flow and density (Dickerson, Peirson and Vickerman, 2000, Jansson, 1994, 
Johansson, 1996, Jones-Lee, 1990, Newberry, 1988, O’Reilly, et al., 1994, Shefer and 
Rietveld, 1997, Vickery, 1969, and Vitaliano and Held, 1991).  In situations of congested 
flow, most studies have shown that both accident risk and the cost per accident 
(however defined) are nonlinearly related to traffic speed and density.   
 
Previous studies typically used such aggregate traffic flow data as daily or hourly traffic 
counts and volume to capacity measures.  Types of collisions are generally not 
distinguished, except in terms of severity.  Specification of a functional relationship 
between accident probabilities and the ambient traffic flow at the time of the accidents, 
as measured by commonly available traffic monitoring devices, has remained elusive.  
Mensah and Hauer (1998) cite two key problems of averaging associated with using 
aggregated data – argument averaging and function averaging.  Argument averaging 
relates to the use of average traffic flow data, rather than data measuring traffic 
conditions at the time of the accident.  The second problem, function averaging, is 
caused by using the same functional relationship for all types of collisions under all 
conditions (e.g., day or night, dry or wet weather).  By using traffic flow data prevailing 
just prior to the time of each accident and by including the conditions of the accident in 
the analysis, we are able to avoid these two problems. 
 
Our analysis method involves several steps.  First, to reduce collinearity in the traffic 
data, principal components analysis (PCA) is performed to identify relatively 
independent measurements of flow conditions.  Nonlinear (nonparametric) canonical 
correlation analysis (NLCCA) is then conducted with three sets variables.  The first set 
is comprised of a seven-category segmentation variable defining lighting and weather 
conditions; the second set is made up of accident characteristics (collision type, location 
and severity; and the third set made up of the traffic flow variables identified using PCA.  
NLCCA is a form of canonical correlation analysis in which categorical variables are 
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optimally scaled as an integral component in finding linear combinations of variables 
with the highest correlations between them.  These analyses show clear patterns 
relating accident characteristics and prevailing flow conditions. 
 
 
 
Data Description 

Fusion of Accident and Traffic Flow Data 

The accident data were obtained from the Traffic Accident Surveillance and Analysis 
System (TASAS) maintained by the California Department of Transportation (Caltrans, 
1993).  The database contains those collisions that occur on the California State 
Highway System for which there are police reports.  Most of the collisions included in 
the TASAS database were investigated in the field, but some were reported after the 
fact, usually for insurance reasons.  The database does not cover collisions for which 
there are no police reports.  Since the focus is on collisions that involved vehicles 
traveling on the main lanes of urban freeways, we were concerned only with what are 
defined as “highway” collisions in the TASAS database.  For calendar year 1998, 9341 
such collisions are recorded in the database for six major freeway routes in Orange 
County, California: Interstate Route 5, State Route 22, State Route 55, State Route 57, 
State Route 91, and Interstate Route 405. 
 
Data on traffic flow during the time period leading up to each accident was matched to 
the accident.  These data come from an archived database of 30-second observations 
from inductance loop detectors buried at intervals along the freeways.  These detectors 
provide information on two variables for each thirty-second interval: the number of 
vehicles that pass over the loop (count) and the proportion of time that the loop is 
covered by a vehicle (occupancy).  Although these two variables can be used (under 
very restrictive assumptions of uniform speed and average vehicle length, and taking 
into account the physical installation of each loop) to infer estimates of space mean 
speeds at a point, we avoid making any such assumptions, and use only these direct 
measurements in our analyses.  We assume only that the ratio of count to occupancy 
has a monotonic relationship to space mean speed.  After testing different lengths of 
time for monitoring of traffic conditions, we determined that we needed approximately 
30 minutes of 30-second observations at the loop detector station closest to the location 
of the accident to establish stable measures of traffic conditions prior to the accident.   
 
The time of each accident is not known with precision.  An inspection of the accident 
times, presumably obtained from eyewitness accounts documented in police reports, 
reveals that 85.6% of the 9,341 collisions have reported times in minutes that fall 
precisely on the twelve five-minute intervals that comprise an hour.  Because of this 
obvious reporting bias, reported accident times are treated as likely being rounded to 
the nearest five-minute interval.  Since it is important in this study that the traffic data 
represent pre-accident conditions (rather than conditions arising from the accident 
itself), the period of observations used in the analysis is cut off 2.5 minutes before the 
“nominal” accident time to help remove any “cause and effect” ambiguities associated 
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with the apparent round-off of reported times.  Consequently, for each accident, pre-
accident traffic conditions are measured by up to 55 sequential thirty-second loop-
detector observations, beginning 30 minutes before the nominal accident time. 
 
At each mainline loop detector station, data typically are collected for each freeway 
lane; the minimum number of lanes at any mainline freeway section in Orange County 
in 1998 was three.  To standardize traffic flow data for all collisions independent of the 
number of freeway lanes involved, data were compiled for three lane designations: (a) 
the left lane, always being the lane designated as the number one lane according to 
standard nomenclature of numbering lanes in succession from the median to the right 
shoulder; (b) an interior lane, being lane two on three- and four-lane freeway sections 
and lane three on five- and six-lane sections; and (c) the right lane, always being the 
highest numbered (right-most) lane. 
  
Missing data proved a major problem in dealing with the loop detector data used in this 
study.  Complete data for all 55 intervals (a 27.5-minute period) was available for 24.5% 
of the stations; another 11.4% of the stations had missing data for one or more of the 55 
time slices.  The remaining 64.1% of the loop detector stations reported no data at all 
for the entire 27.5-minute period.  Presumably these latter stations were inoperative at 
that time, or there was some other problem in retrieving the data.   
 
Filtering of observations by content was still necessary for the loop detector stations 
with either full or partial data.  We reviewed all data sequences based on time series 
deviations, deviations across lanes, and logical rules derived from feasible volume and 
occupancy relationships (i.e., from properties of plausible fundamental traffic flow 
diagrams).  Based on these tests, approximately 16% of the available 30-second loop-
detector observations were identified as being potentially invalid.  In situations where 
one 30-second observation was missing or out-of-bounds but where the data for the 
adjacent time slices were valid, the data for the missing time slice were interpolated 
from the adjacent observations.   
 
Implementation of the filtering and interpolation operations resulted in a sample of 1,191 
collisions with a full 27.5 minutes of ostensibly valid loop detector data for the 
designated three lanes at the closet detector station.  This represents 12.8% of the 
9,341 highway collisions on the six major Orange County freeways that are recorded in 
the TASAS database for 1998.  For this final sample, the average distance from the 
accident location to the closest detector station is 270 meters and the median distance 
is 190 meters.  Fully 78% of the 1,191 collisions were located within 400 meters (0.25 
miles) of the detector station, 95% were located within 800 meters, and 99% within 
1200 meters. 
 

Accident Characteristics 

Available information regarding the characteristics of each collision included: (a) the 
number of parties (usually vehicles) involved, (b) movements of each vehicle prior to 
collision, (c) the location of the collision involving each party, (d) the object(s) struck by 
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each vehicle, and (e) the severity, as represented by the numbers of injured and fatally 
injured parties in each involved vehicle.  No information was available to us concerning 
drivers or vehicle makes and models.  The characteristics used here are listed in Table 
1.  For each of these characteristics, contingency table chi-squared tests revealed that 
there is no statistically significant difference (at the 95% confidence level) between the 
subset of 1,191 accidents for which we have traffic flow data and the complementary 
subset of 8,150 accidents on Orange County freeways for which we have no traffic data.    
 
 
 
Table 1. Accident Characteristics Used in the Analyses (N = 1192). 

Variable and category Percent of 
sample 

Collision type  
Single vehicle hit object or overturn 14.2 
Multiple vehicle hit object or overturn 5.9 
Two-vehicle weaving accident a 19.3 
Three-or-more-vehicle weaving accident a 5.5 
Two-vehicle straight-on rear end 33.8 
Three-or-more-vehicle straight-on rear end 21.3 

Collision Location  
Off-road, driver’s left 13.8 
Left lane 25.8 
Interior lane(s) 32.7 
Right lane 19.3 
Off road, driver’s right 8.3 

Severity  
Property damage only 71.9 
Injury or fatality b 28.1 

a Sideswipe or rear end accident involving lane change or other turning 
maneuver 
b There were only five fatal accidents  

 
 
 
 
Weather and Lighting Conditions 

Included in the documentation of each collision is information on lighting, weather, and 
pavement conditions.  Only 13% of all freeway accidents in Orange County in 1998 
occurred during conditions of wet roads.  A breakdown of the accidents by these 
environmental conditions is displayed in Table 2.  With the exception of (three) dusk-
dawn accidents on wet roads, there are at least 30 accidents for each combination of 
weather and lighting, a number judged to be a sufficient cell size for analyses.  The 
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three wet dusk-dawn accidents were dropped from the analyses, leaving seven 
segments defined by the cross-tabulation of Table 2.   
 
 
 
Table 2.  Breakdown of Sample by Weather and Ambient Lighting Conditions. 

Weather a  
Lighting 

Dry Wet 
Total by 
lighting 

Daylight  789 101 890 
Dusk or dawn 30 3 b 33 
Dark – street lights 95 32 127 
Dark – no street lights 121 20 141 

Total by weather condition 1035 156 1191 
a Based on condition of the roadway surface (wet or dry) 
b Eliminated from further analyses  

 
 
 
 
Traffic Flow Characteristics 

Twelve variables were computed from the loop detector data.  These were organized 
into four blocks of three variables each (one variable for each of the three lane type 
designations: left, interior, and right).  The four blocks are as follows: 
• The first of these blocks is an indicator of prevailing traffic speed.  These three 

variables measure the central tendency of the ratio of volume to occupancy.  This 
ratio is typically assumed to be proportional to the space mean speed.  For example, 
under assumptions of stationary flow, and an average vehicle length of 5.49 meters 
(18 feet), a V/O ratio of 90 would translate to a space mean speed estimate of 49.2 
km/h (30.6 mph).  Median, rather than mean, is used in order to avoid the influence 
of outlying observations that can be due to failure of the loop detectors 

• The second block represents the temporal variation of the prevailing speed.  
Because we wish to minimize the influence of potentially invalid observations and 
the effects of outliers, we use the difference of the 90th percentile and 50th percentile 
of the distribution of volume over occupancy to capture variation.   

• The third block measures the central tendency of traffic volume over the period.  
Volume alone is not as sensitive to outliers as is the ratio of volume to occupancy, 
so mean is used rather than median.  Mean and median values are quite similar for 
these data, so either can be used without affecting results. 

• The fourth and final block measures variation in volume over the period.  Here we 
use standard deviation, but the difference between the 90th percentile and 50th 
percentiles can be used without affecting the results. 



Golob and Recker Urban Freeway Accidents, Traffic Flow, Weather and Lighting Page 5 

 

Our objective is to relate these traffic flow variables to accident characteristics.  
However, we recognize that the three variables in each of the four blocks might be 
highly correlated if the flow characteristic being measured is consistent across the three 
freeway lanes; yet, it is not known how well speed and volume variances in different 
lanes are linked.  To better understand the correlation structure of these twelve 
variables, and to remove unnecessary redundancy from this set of twelve variables so 
that we can interpret results accurately, principal components analysis (PCA) was 
performed.  The objective was to extract a relatively large number of factors in order to 
identify independent traffic flow variables while simultaneously discarding as little of the 
information in the original variables as possible.  Six factors were found to account for 
87.5% of the variance in the original twelve variables, and Varimax rotation was 
performed to aid in interpreting the factors.  The factor loadings, which are the 
correlations between the original variables and the rotated factors, are listed in Table 3, 
together with the variances accounted for by each rotated factor.  One variable was 
then selected to represent each factor in the subsequent stages of the analysis. 
 
 
 
Table 3.  Factor Loadings and Explained Variances for Six Principal Components of the 

Twelve Traffic Flow Variables (showing only loadings with absolute value 
greater than 3.0; factor loadings for variables selected to represent each factor 
are shown in bold and underlined). 

Principal component 
Traffic flow variable 1 2 3 4 5 6 

Percentage of original variance accounted for 21.6% 19.8% 14.5% 14.2% 8.7% 8.7% 

Median vol./occupancy (V/O) left lane 0.896      
Median vol./occupancy (V/O) interior lane 0.907      

B
lo

ck
 1

 

Median vol./occupancy (V/O) right lane 0.909       

       
Variation in V/O left lane    0.836   
Variation in V/O interior lane    0.875   

B
lo

ck
 2

 

Variation in V/O right lane    0.308 0.929   

       
Mean volume left lane  0.928     
Mean volume interior lane  0.941     

B
lo

ck
 3

 

Mean volume right lane  0.742   -0.315 0.394  

       Variation in volume left lane   0.924    

Variation in volume interior lane   0.839   0.312 

B
lo

ck
 4

 

Variation in volume right lane   0.366   0.883 
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Factor 1:  The factor loadings show that the central tendency of speed (Variable Block 
1) is highly correlated across all three lanes.  The variable chosen to represent this 
central tendency of speed factor is “median volume/occupancy in the interior lane”.   
 
Factor 2:  A single factor encompasses the central tendency of volume (Variable Block 
3) in all three lanes, but the factor is more representative of volumes in the left and 
interior lanes than in the right lane, as witnessed by the lower correlation between this 
factor and right lane mean volume (0.742).    Although the factor loading for “mean 
volume in the interior lane” is greater, “mean volume in the left lane” is chosen to 
represent this factor in all further analyses based on its consistently strong loadings on 
both this factor and Factor 3 (see below). 
   
Factor 3:  The third factor represents the temporal variation in volume in the left and 
interior lanes.  Variation in volume in the right lane, which has a relatively low correlation 
of 0.366 with this factor, is captured by a separate factor (see Factor 6, below).  Our 
interpretation is that the rightmost lane volume is influenced significantly by freeway on- 
and off-ramps, while traffic in the left and interior lanes is principally comprised of 
vehicles that are less impacted by weaving traffic in the vicinity of the ramps.  “Variation 
in volume in the left lane” is chosen to represent temporal variations in volumes on the 
left and interior lanes. 
 
Factor 4:  As in the case of the temporal variation in volumes, the PCA results show that 
temporal variation in speed in the three lanes also is partitioned into two factors.  Here 
again, the implication is that speed in the rightmost lane, which has a direct influence on 
the level of service in the vicinity of freeway on- and off-ramps, varies over relatively 
short periods of time in a different way than does mainline freeway speeds.  “Variation 
in volume in the interior lane” is chosen to represent Factor 4.   
 
Factor 5:  “Variations in volume to occupancy ratio in the right lane” is relatively 
uncorrelated with any other factor, and by deduction relatively uncorrelated with any of 
the variables chosen to represent the other factors.  There is a minor negative 
correlation between the Factor 5 and mean volume in the right lane, indicating that a 
high variation in speed in the right lane is associated with a lower traffic volume in that 
lane.     
 
Factor 6:  The final factor is comprised mostly of “variation in volume in the right lane.”  
The distinction between Factors 4 and 6 shows that flow on a section of freeway 
encompassing a series of ramp junctions may score high on Factor 6 during a weekend 
period during which there is substantial short-distance, discretionary travel that makes 
intensive use of freeway exits and entrances.  Weekday peak-period traffic, on the other 
hand, will be characterized by longer trip lengths, thus scoring low on this factor. 
 
The PCA results, summarized in Table 4, show that both the central tendencies of the 
traffic volumes and speeds, and their temporal variances, play separate roles in the 
traffic flow conditions present during collisions.  For variances, we need to distinguish 
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between right lane effects and effects of the other lanes.  Thus, six variables (two 
central tendency and four variances) can represent these factors in subsequent 
nonlinear statistical models.  The correlations among these six variables are relatively 
small, allowing a more clear understanding of their separate contributions in later 
analyses.  
 
 
 
Table 4.  Interpretation of Principal Components Results and Variable Selection. 

Factor Interpretation Represented by 

1 Central tendency of Speed Median V/O interior lane 

2 Central tendency of Volume Mean volume left lane 

3 Variation in Volume – Left & Interior Lanes Variation in volume left lane 

4 Variation in Speed – Left & Interior Lanes Variation in V/O interior lane 

5 Variation in Speed – Right Lane Variation in V/O right lane 

6 Variation in Volume – Right Lane Variation in volume right lane 

   
 
 
 
 
Nonlinear Canonical Correlation Analysis with Three Variable Sets 
 
Methodology 

The objective of this step in the analysis is to find the best explanation of patterns in the 
three accident characteristics listed in Table 1 as a function of the six flow 
characteristics representing the factors listed in Table 4, controlling for the seven 
categories of lighting and weather conditions defined by the cross-tabulation shown in 
Table 2.  If all of the variables were numerical (measured on a scale with equal 
intervals), and all functional forms expected to be linear, this could be accomplished 
using canonical correlation analysis (CCA).  In CCA, which is an expansion of 
regression analysis to more than one dependent variable, the objective is to find a linear 
combination of the variables in each of two or more sets, so that the correlations among 
the linear combinations in each set are as high as possible.  Depending on the number 
of sets and the number of variables in each set, multiple linear combinations (called 
canonical variates) can be found that have maximum correlations subject to the 
conditions that all canonical variates are mutually orthogonal (uncorrelated).  
 
The present CCA problem involves nonparametric (nonlinear), rather than numerical 
variables.  The variable defining the seven segments of weather and lighting conditions 
and the two accident characteristics with more than two categories are nominal 
(categorical) by definition.  Because we expect to find nonlinear relationships involving 
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the traffic flow variables, they are also considered nonlinear (either nominal or ordinal) 
in order to determine the optimal functional forms.  The nonparametric CCA problem is 
more complex than its linear counterpart, because the optimal linear combination of the 
variables is undefined until the categories of each accident characteristic are quantified 
and the most effective nonlinear transformations of the traffic flow variables are 
determined.  The variable categories must be optimally quantified (scaled) while 
simultaneously solving the traditional linear CCA problem of finding variable weights 
(van de Geer, 1986, van Buren and Heiser, 1989, ver Boon, 1996).   
 
An elegant solution to the nonparametric (nonlinear) CCA problem was first proposed 
by researchers at the Department of Data Theory, Leiden University, Netherlands.  The 
Leiden team developed a suite of nonparametric methods for conducting canonical 
correlation analysis (CCA), principal components analysis, and homogeneity analysis 
with variables of mixed scale types: nominal, ordinal, and interval.  Their nonlinear CCA 
(NLCCA) method was operationalized in a program called CANALS (Canonical Analysis 
by Alternating Least Squares), later extended to generalized canonical analysis with 
more than two sets of variables in a program called OVERALS.  The Leiden method for 
nonlinear CCA is described in van der Burg and de Leeuw (1983), Israëls (1987), 
Michailidis and de Leeuw (1998), and (most extensively) in Gifi (1990).  The method 
simultaneously determines both (1) optimal re-scaling of the nominal and ordinal 
variables and (2) variable weights (coefficients), such that the linear combinations of the 
weighted re-scaled variables in all sets are maximally correlated.  The variable weights 
and optimal category scores are determined as an eigenvalue problem related to 
minimizing a loss function derived from the concept of “meet” in lattice theory.    
 
 
 
Model Specification 

A NLCCA was specified with three sets variables, as described in Table 5.  The first set 
is comprised solely of the seven-category segmentation variable defining the 
environmental conditions.  This variable was treated as being “multiple nominal” in 
NLCCA parlance.  That is, it was allowed to have different optimal category 
quantifications for each dimension in the solution.  The second set is made up of the 
three accident characteristics (collision type, location and severity), each treated as 
being nominally scaled with a single optimal quantification for all dimensions.  The third 
set was made up of the six traffic flow variables that were selected to represent the 
respective factors identified in Table 3.  These were all treated as being ordinal, in that 
each was constrained to have a single optimal scaling that was monotonically 
increasing or decreasing across ten deciles.  Tests of the effects of releasing these 
constraints (single versus multiple quantification, in the case of the accident 
characteristics; and nominal versus ordinal, in the case of the traffic flow characteristics) 
revealed that the simplifications are justified in that no major improvement in model fit is 
obtainable by complicating the variable treatments.  The model results are described in 
the remainder of the paper.   
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Table 5.  Variables in the Nonlinear Canonical Correlation Analysis 

Set Variable Scale type Categories 

1 Segmentation by lighting and weather Nominal 7 

2 Collision type Nominal 6 
 Collision location Nominal 5 
 Severity of the Collision Nominal 2 

3 Median V/O interior lane  Ordinal 10 
 Variation in V/O interior lane  Ordinal 10 
 Variation in V/O right lane  Ordinal 10 

 Mean volume left lane  Ordinal 10 
 Variation in volume left lane  Ordinal 10 
 Variation in volume right lane  Ordinal 10 

 
 
 
 
Model Fit 

A two-dimensional NLCCA solution was chosen.  Table 6 lists the fit of this two-
dimensional solution in terms of the variance accounted for within each set of variables 
by each of the two dimensions (canonical variates).  The fit is greatest for the traffic flow 
variables on both dimensions.  The first dimension is generally more effective than the 
second in explaining each of the segmentations. 
 
 
 
Table 6.  Proportions of Variance Accounted for by the Canonical Variates 

Dimension Set 
1 2 

1. Segmentation by lighting and weather 0.57 0.34 

2. Accident characteristics 0.50 0.39 
3. Traffic flow characteristics 0.77 0.60 

 
 
 
The weights defining the two dimensions in terms of the optimally scaled variables are 
listed in Table 7.  These weights are unique only for the variables that are constrained 
to have unique category quantifications.  The contribution of the segmentation variable 
(i.e., weather and lighting) to the canonical variates is allowed to be different for each 
variate, and the results are described in terms of the category scores on each 
dimension (discussed later in the Section).  In terms of the variables of sets two and 



Golob and Recker Urban Freeway Accidents, Traffic Flow, Weather and Lighting Page 10 

 

three, the first canonical variate primarily relates collision type, and secondarily collision 
location, to mean volume and median speed, with some contribution of variance in right-
lane volume.  The second variate relates both collision type and location to variations in 
volume and speed in the left and interior lanes.  Accident severity is poorly explained, 
and its explanation is solely in terms of the first dimension. 
  
 
 
Table 7.  Weights of the Variables Comprising the Canonical Variates 

Dimension Set Variable 1 2 R2 

1 Segmentation by lighting and weather - a - a  

2 Collision type 0.513 -0.694 0.746 
 Collision location -0.257 -0.471 0.288 

 Severity of the Collision -0.183 0.020 0.034 

3 Median V/O interior lane  -0.397 0.257 0.224 
 Variation in V/O interior lane  0.074 -0.418 0.180 
 Variation in V/O right lane  -0.009 0.151 0.023 
 Mean volume left lane  0.593 0.011 0.351 
 Variation in volume left lane  0.082 0.482 0.239 
 Variation in volume right lane  0.256 0.041 0.067 

 Canonical Correlation 0.424 0.165  
a Weights are not unique for variables treated as multiple nominal 

 
 
 
The canonical correlation for each of the two orthogonal dimensions is a measure of the 
correlations among the three sets of variables.  The first dimension is approximately 2.5 
times more effective than the second at capturing the relationships among the three 
sets.  The component loadings of each variable are measures of the correlations 
between the optimally scaled variables and the two orthogonal canonical variates.  
These are similar to factor loadings in PCA.  The loadings for all variables are plotted in 
Figure 1, in which the first dimension is measured along the abscissa, the second along 
the ordinate.  The length of the vector from the origin to the coordinates of each variable 
(shown by the solid markers) indicates the extent to which the variable is explained by 
the two canonical variates (the square of the length being equal to the percent of 
variance explained by all the other variables).  Each vector is also projected through the 
origin to a phantom coordinate (shown by the empty markers) of equal magnitude but 
rotated 180 degrees from the variable coordinates in order to visualize negative 
correlations.  The lighting and weather segmentation variable has two locations in the 
canonical space because it is allowed to have a different quantification for each 
dimension.  The scalar (dot) product between any two variable vectors is indicative of 
the correlation between the two optimally scaled variables.   
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Figure 1.  Component Loadings Plot (Triangle markers designate coordinate 

locations for variables in the first set, squares for the second set, 
and circles for the third set) 

 
 
 
The components loadings plot shows that mean volume and variation-of-volume in the 
right lane are highly related to differences among one of the lighting and weather 
segments (that most closely aligned with the first, and most powerful canonical 
dimension), while the variation-of-volume in the left and interior lanes is correlated with 
the other (less powerful) dimension.  Collision location is also related to mean volume 
and right-lane variation in volume, as well as to the weather and lighting segmentation 
variable aligned with the first dimension.  Collision severity is also aligned with these 
variables (and the first dimension), but is the least well-explained accident characteristic 
by the two canonical variates.  Collision type, on the other hand, is the best-explained 
accident characteristic and is related to median speed, and to left- and interior-lane 
variations in speed; contributions to its explanation are derived almost equally from 
each of the two canonical deviates.  The model does poorly at capturing variation in 
right-lane speed.  
 
The centroids of the optimally scaled categories of the segmentation variable are 
located in the canonical space in Figure 2.  The pattern among these segments is 
clearly defined.  The contrast between dry and wet weather conditions is consistently in 
the 120- versus 300-degree polar orientation (compass directions ESE vs. WNW).  The 
contrast between daylight and darkness is consistently in the 45 vs. 225-degree rotation 
(NE vs. SW).  The (almost) parallel relationships evident in Figure 2 indicate that the 
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relative effects of lighting conditions (in terms of their explanations by the two canonical 
variates) are invariant with respect to road surface condition, as are the corresponding 
effects of road surface condition to lighting.  The first canonical variate (abscissa in 
Figure 2) is aligned with the difference between accident and traffic conditions on dry 
freeways in daylight as opposed to conditions on wet freeways in darkness.  The 
second canonical variate (ordinate in Figure 2) is aligned with the difference between 
accident and traffic conditions on wet freeways in daylight as opposed to conditions on 
dry freeways in darkness.  Dry dusk-dawn conditions are most similar to dry daylight 
conditions (rather than dry dark conditions).  Finally, minor differences between 
unlighted and lighted conditions are similar on both wet and dry roads, and are captured 
mostly by the second canonical variate. 
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Figure 2.  Category Centroids of the Segmentation Variable 

 
 
 
 
Accident Typology and Lighting and Weather Conditions  

Controlling for traffic flow differences (the third set of variables in the model), the 
relationships between weather and lighting conditions and collision type are revealed by 
the plot of category centroids of Figure 3.  Hit object collisions and collisions involving 
multiple vehicles that are precipitated by weaving maneuvers are more likely on wet 
roads; this finding is consistent with the degradation of vehicle performance 
characteristics associated with wet road conditions (e.g., braking distance and skidding 
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resistance).  That all of these accident types, and particularly multiple vehicle collisions 
caused by weaving maneuvers, are more likely to occur on wet roads during daylight 
than on either dry or wet roads during darkness may be indicative of drivers’ 
overconfidence in both their own and their vehicles’ performance capabilities – a 
confidence that is superceded by the visual limitations imposed by darkness.  
Conversely, rear-end collisions are more likely to occur on dry roads during daylight, 
again perhaps reflecting the notion of a general driver overconfidence that succumbs to 
cautions dictated by adverse weather.   
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Figure 3.  Category Centroids of the Collision Type and Segmentation Variables 

 
 
 
The category centroids of the segmentation and collision type variables are plotted in 
Figure 4.  As shown in Figure 4, off-road to drivers’ right and left-lane collision locations 
are most associated with the first canonical variate (abscissa), which is also associated 
with the difference between dry freeways in daylight as opposed to wet freeways in 
darkness.  Conversely, right-lane collisions are more closely aligned with the second 
variate (ordinate), separating wet daylight conditions from dry darkness conditions.  
Based on the optimal scaling of the categories of the collision location variable, this 
means that collisions off-road to drivers’ right are associated with wet roads at night.  
Left-lane collisions are more associated with dry roads during daylight.  There is also a 
moderate tendency for off-road-left collisions on wet roads during daylight.   
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Figure 4.  Category Centroids of the Collision Location and Segmentation Variables  

 
 
 
Finally, category centroids of the segmentation and collision severity variables are 
plotted in Figure 5.  Both of these category centroids fall directly on the axis defined by 
the first canonical variate, with the tendency toward increasing severity associated with 
wet road conditions under darkness.  
 
 
 
Accident Typology and Traffic Flow Conditions 

Controlling for lighting and weather conditions (the first set of variables in the model), 
the relationships between traffic flow characteristics and collision type are shown by the 
plot of category centroids of Figure 6.  In case of the six traffic flow variables, for which 
the optimal scaling was restricted to be ordinal (monotonically increasing or 
decreasing), the centroids for the deciles are projected onto the coordinates of the 
variable.  For clarity, the two traffic flow variables with the weakest relationships to the 
collision type variables (variation in speed right lane, and variation in volume left and 
interior lanes) are not included in the figures. 
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Figure 5.  Category Centroids of the Severity and Segmentation Variables 
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Figure 6.  Category Centroids of the Collision Type Variable and Projections of the 

Category Centroids of the Four Most Effective Traffic Flow Variables 
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The results indicate that differences in both the mean traffic volume and its variance are 
aligned with the first canonical deviate, while the second deviate is more closely 
associated with variance in speed effects.  As expected, rear end collisions are 
generally associated with high variations in relatively low speeds – a condition 
commonly observed under heavily congested “stop-and-go” traffic.  Conversely, hit-
object and weaving collisions are predominately associated with relatively stable traffic 
characterized by low volumes and high steady speeds. 
 
In terms of collision location, the results shown in Figure 7 identify off-road accidents 
with low volume conditions and relatively high speeds, with off-road right accidents 
more likely associated with the extremely light volumes of late night traffic (see Figure 
4), while off-road left accidents more likely associated with light traffic coupled with high 
speed effects during daylight hours.  Left lane collisions are more likely induced by 
volume effects, while right lane collisions are more closely tied to speed variances in 
adjacent lanes. 
 
 

off road left

off road right interior lanes
right lanes

left lanes

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

variation in V/O
interior lanes

median V/O
interior lanes

mean volume
left lane

variation in volume
right lane

highhigh

high

high

low

low

low

low

 
Figure 7.  Category Centroids of the Collision Location Variable and 

Projections of the Category Centroids of the Four Most Effective 
Traffic Flow Variables  

 
 
 
As expected, Figure 8 confirms that severity of accident generally tracks the inverse of 
the traffic volume.  However, controlling for weather and lighting conditions, we find that 
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severity of accidents on urban freeways is influenced more by volume than by speed.  
One explanation for this is that, while relatively minor accidents are a direct byproduct of 
the low speed associated with congested traffic, it is the combination of moderate 
volumes with the relatively constant, speeds associated with the high levels of service 
categories that produce conditions conducive to increased severity. 
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Figure 8.  Category Centroids of the Severity Variable and Projections of the 

Category Centroids of the Four Most Effective Traffic Flow Variables 

 
 
 
 
 
Traffic Flow Conditions and Lighting and Weather Conditions 

The third set of relationships captured by the nonlinear canonical correlation model is 
between traffic flow and lighting and weather conditions (Figure 9).  The more adverse 
conditions (in terms of visibility and road surface) are associated with the lowest 
volumes and variations in flow, while dry-daylight (or dusk-dawn) conditions are 
associated with high mean volumes and high variations in volumes.  In terms of speed 
considerations, wet-daylight conditions are associated with low variations in speed on 
the left and interior lanes, while dry dark conditions are associated with high variations 
in speed.  
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Figure 9.  Category Centroids of the Segmentation Variable and Projections 

of the Category Centroids of the Traffic Flow Variables 

 
 
 
 
Conclusions 
The objective of this research is to find the best explanation of patterns in accident 
characteristics as a function of traffic flow characteristics, controlling for lighting and 
weather conditions.  NLCCA results revealed that two independent dimensions 
(canonical variates), comprised of multiple linear combinations of the original accident, 
traffic flow and environmental conditions, effectively explained these relationships.  The 
first canonical variate, which is approximately 2.5 times more effective than the second 
at capturing the relationships, primarily relates collision type, (and secondarily collision 
location) to mean volume and median speed.  The second variate relates both collision 
type and location to variations in volume and speed in the left and interior lanes. 
 
The results indicate that differences in certain aspects of lighting and weather (those 
aligned with the first canonical variate) are closely related to the mean volume and 
variation-of-volume in the right lane under accident conditions, which in turn influence 
the locations of the collisions.  These conditions highlight the difference between 
accident and traffic conditions on dry freeways in daylight as opposed to conditions on 
wet freeways in darkness.  Generally, off-road to drivers’ right and left-lane collision 
locations are most associated with such differences (i.e., between dry freeways in 
daylight as opposed to wet freeways in darkness); collisions off-road to drivers’ right are 
associated with wet roads at night, while left-lane collisions are more associated with 
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dry roads during daylight.  There is also a moderate tendency for off-road to drivers’ left 
collisions on wet roads during daylight.  Off-road accidents generally are identified with 
low volume conditions and relatively high speeds, with off-road to drivers’ right 
accidents more likely associated with the extremely light volumes of late night traffic, 
while off-road to drivers’ left accidents more likely associated with light traffic coupled 
with high speed effects during daylight hours. 
 
The second canonical variate is aligned with the difference between accident and traffic 
conditions on wet freeways in daylight as opposed to conditions on dry freeways in 
darkness, and captures influences of the variation-of-volume in the left and interior 
lanes principally on right-lane collisions, separating wet daylight conditions from dry 
darkness conditions.  Whereas left lane collisions are more likely induced by volume 
effects, right lane collisions are more closely tied to speed variances in adjacent lanes. 
 
Collision type, the best-explained accident characteristic, is related to median speed, 
and to left-lane and interior-lane variations in speed.  Hit object collisions and collisions 
involving multiple vehicles that are precipitated by weaving maneuvers are more likely 
on wet roads; rear-end collisions are more likely to occur on dry roads during daylight, 
and are generally associated with high variations in relatively low speeds – a condition 
commonly observed under heavily congested “stop-and-go” traffic.  Conversely, hit-
object and weaving collisions are predominately associated with relatively stable traffic 
characterized by low volumes and high steady speeds 
 
Finally, severity of accident generally tracks the inverse of the traffic volume.  However, 
controlling for weather and lighting conditions, there is evidence that severity is 
influenced more by volume than by speed, an indication that the combination of 
moderate volumes with the relatively constant, speeds associated with the high levels of 
service categories, produce conditions conducive to increased severity. 
 
The results of this investigation can begin to shed light on the complex relationships 
between traffic flow and traffic accidents (crashes).  Although it is generally recognized 
that improved flow should lead to reductions in travel time, vehicle emissions, fuel 
usage, psychological stress on drivers, and improved safety, understanding the manner 
in which safety may be improved by smoothing traffic flow is not well understood.  With 
such understanding, the potential safety benefits of improved traffic flow could be 
included, together with more traditional measures related to reduced congestion, in the 
assessment of investments in infrastructure or traffic management and control. The 
statistical procedures that have been developed can be used in conjunction with a data 
stream of 30-second observations from single inductive loop detectors to forecast the 
types of crashes that are most likely to occur for the flow conditions being monitored.  
Because the historical traffic flow data were not sufficiently representative of Orange 
County for an entire year (owing to systematic patterns in missing data as a function of 
freeway route, location along each route, day of week, and week of the year) we were 
unable to accurately calculate the rates, in terms of vehicle miles of travel, for crashes 
that happened to vehicles that were exposed to different traffic flow conditions.  
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Consequently, the current analysis provides information as to which types of crashes 
are more likely under different types of traffic flow, but does not forecast crash rates.   
 
In spite of these limitations, we believe that we have demonstrated that procedures 
developed here can be used to gain insight into how changing traffic flow conditions 
affect traffic safety.  To the extent that changed conditions are due to ATMS operations, 
or other projects that influence traffic operations, they can be used in evaluating the 
effectiveness of such projects.  Or, as a forecasting tool combined with simulation 
studies of the likely future conditions, the relationships can be used to evaluate the 
safety conditions of alternative scenarios of operations with different ATMS or 
infrastructure treatments.  The enhancement of these procedures in this direction, 
together with recalibration with more recent accident and traffic flow data, is necessary 
before any large-scale deployment of this tool, and is an important subject for future 
research. 
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