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13 ABSTRACT: At an electrode, ions and solvent accumulate to
14 screen charge, leading to a nanometer-scale electric double
15 layer (EDL). The EDL guides electrode passivation in
16 batteries, while in (super)capacitors, it determines charge
17 storage capacity. Despite its importance, quantification of the
18 nanometer-scale and potential-dependent EDL remains a
19 challenging problem. Here, we directly probe changes in the
20 EDL composition with potential using in situ vibrational
21 spectroscopy and molecular dynamics simulations for a Li-ion
22 battery electrolyte (LiClO4 in dimethyl carbonate). The
23 accumulation rate of Li+ ions at the negative surface and
24 ClO4

− ions at the positive surface from vibrational spectros-
25 copy compares well to that predicted by simulations using a
26 polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the
27 bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in
28 terms of bulk ion solvation should be applied with caution.

29

30

Batteries and electric double-layer capacitors (EDLCs), also 
called supercapacitors, are commonly utilized as

31 efficient and flexible energy supplies in multiple applica-
32 tions.1−5 Batteries are well suited for longer-time and steady
33 energy supply while the EDLCs are ideal for short and high
34 bursts of power.6 Both critical energy storage technologies
35 involve the ubiquitous electric double layer (EDL): a
36 structured, potential-dependent, and nanometer-thin electro-
37 lyte layer that screens the electrode charge.
38 In batteries, the formation of the solid electrolyte interphase
39 (SEI)7,8 on the negative electrode and the cathode electrolyte
40 interphase (CEI) on the positive electrode9,10 passivate the
41 electrode surfaces, providing kinetic protection from further
42 electrolyte decomposition. Due to the inherent electrochemical
43 instability of many electrolytes at the lithium, graphite, or
44 silicon anode surfaces, the SEI protective layer enables
45 chemical stability at working voltages beyond the electrolyte’s
46 thermodynamic stability at a bare electrode surface. The
47 structure of the initially formed EDL, e.g., in the first battery
48 cycle, impacts the formation of SEI/CEI layers11−14 because
49 the electrochemical reactions leading to such protective layers

50depend on the availability of specific species at the surface and
51their partitioning within the EDL.
52Previous simulations15−17 and experiments18−22 revealed
53strongly modulated electrolyte compositions next to the
54electrode, which influence many ion-related processes,
55including ion transport, desolvation, charge transfer, and
56insertion into the electrode. For example, areas within the
57EDL of increased local ion density will alter interfacial
58desolvation rates. Further, during the initial steps of SEI
59formation at the graphite−electrolyte interface, Li ions will
60either intercalate with a partial solvation shell or shed their
61solvation shell completely.23 Both processes are strongly
62influenced by the ion density and the Li+ solvation shell
63composition within the EDL. At the cathode−electrolyte
64interface, preferential ion and solvent adsorption/desorption
65were suggested as one of the factors responsible for the



66 extended electrolyte stability window24,25 and diminished Al
67 corrosion.25,26

68 Despite the importance of the EDL structure to battery and
69 EDLC operations, progress in its understanding has been
70 limited due to challenges associated with probing a nanometer-
71 scale structure and composition in situ. Previous experiments
72 with atomic force microscopy20,27 and X-ray reflectivity21,22

73 found an EDL structure consisting of several electrolyte layers,
74 while experiments with sum frequency generation spectroscopy
75 identified a pronounced28,29 innermost Helmholtz-like layer
76 next to the surface. In Li-ion battery electrolytes, the focus of
77 these experiments was largely on the solvent structure within
78 the EDL30 or the specific adsorption of ions at the surface.31

79 Electrochemical quartz crystal microbalance, in situ NMR, and
80 a combination of X-ray scattering and MD simulations yielded
81 the rates of cation and anion adsorption within porous carbon
82 electrodes;32−34 however, obtaining a detailed EDL composi-
83 tion for open structures has proven difficult. Therefore, despite
84 this significant progress, a quantitative characterization of the
85 individual ions in the EDL has remained a challenging
86 experimental problem, leaving simulations of the strongly
87 modulated electrolyte composition near the electrode without
88 clear corroboration and validation.
89 Here, we demonstrate that it is possible to advance
90 knowledge of the potential-dependent EDL structure of a
91 battery electrolyte, LiClO4 in dimethyl carbonate (DMC,
92 C3H6O3) solution, by counting the cations (Li+) and anions
93 (ClO4

−) through their associated vibrational spectra. Using
94 attenuated total reflection (ATR) FTIR spectroscopy, an
95 evanescent, interfacial infrared wave probes the vibrations as a
96 function of applied voltage on the electrode. While the
97 evanescent wave penetrates microns into the solution through
98 the thin film electrode and the EDL is nanometer-scale, a
99 difference spectrum with potential accounts for the changes
100 within the EDL that screen the electrode.35 We show that this
101 in situ vibrational spectroscopy of the EDL can detect the
102 accumulation of Li+ ions at negative voltages and ClO4

− ions at
103 positive voltages in agreement with predictions from atomistic
104 simulations in the experimentally available potential range.
105 Further, with their validation against (ATR) FTIR exper-
106 imental results, MD simulations provide important insights
107 into the potential-dependent EDL structure. These insights
108 involve the ion solvation shell structure and the extent of ion-
109 pairing, along with the strongly modulated ion density in the
110 inner Helmholtz layer.
111 In order to monitor the distribution of Li+ and ClO4

− near
112 the electrode surfaces by a vibrational probe under applied
113 potential, vibrations associated with the DMC/Li+ complexes
114 and ClO4

− ions in the bulk electrolyte had to first be identified
115 and quantified for their molar extinction coefficients. Figure 1
116 shows distinct vibrational stretches of free DMC solvent
117 molecules, DMC coordinated to Li+ ions, and ClO4

− ions,
118 whose absorption spectra change with LiClO4 concentration.
119 When coordinating to DMC, Li+ weakens the CO bond of
120 DMC, red-shifting it (Figure 1a) from 1754 to 1723 cm−1 in
121 agreement with previous reports.36,37 However, Li+ coordina-
122 tion of DMC strengthens the νOCO asymmetric bend of DMC,
123 blue-shifting it from 1278 to 1323 cm−1 and the peak grows
124 with increasing LiClO4 concentration (Figure 1b). With
125 increasing LiClO4 concentration, the Li+−DMC peak grows
126 at the expense of free-DMC. DFT calculations described in the
127 Supporting Information (Table S1, Figures S1 and S2) also
128 yield a red shift of the CO stretch and a blue shift of the

129OCO asymmetric bend of DMC upon Li+ binding to carbonyl
130oxygen of DMC. The calculated shift magnitudes are similar to
131 t1experiment, as shown in Table 1, further confirming the

132assignments. Furthermore, DFT calculations show that Li+

133binding to DMC noncarbonyl oxygens yield shifts in the
134opposite direction from the carbonyl oxygen (Figure S1). The
135former are not observed in IR measurements with increasing
136salt concentration, confirming that most Li+ bind to the
137carbonyl oxygen atoms of DMC.
138In order to quantify the absorption associated purely with
139Li+−DMC, the spectra in Figure 1a,b were fit with two
140Gaussians, representing separately free-DMC and Li+−DMC.
141In comparison, the vibrational stretches associated with ClO4

−

142occur over a broad frequency range between 1160 and 1040
143cm−1, where the spectrum is a combination of free ClO4

− and
144Li+−ClO4

− contact-ion pairs (CIP) of various geometries. The
145absorption over the entire spectral range increases with LiClO4
146concentration and accounts for a given number density of

Figure 1. Vibrational stretches associated with Li+ and ClO4
− ions as

a function of [LiClO4] (M) in CO3−(CH3)2 (DMC) solvent: (a)
CO symmetric stretch in free-DMC (1754 cm−1) and Li+

coordinated DMC (1723 cm−1), (b) CO3−R2 symmetric bend in
free-DMC (1278 cm−1) and Li+ coordinated DMC (1323 cm−1), and
(c) ClO4

− symmetric stretches, with the two primary frequencies
related to ClO4

− within a CIP. (d) Integrated absorption change
associated with [Li+], using the Li+−DMC frequencies of (a) and (b),
and [ClO4

−], using the total line shape in (c). The absorption changes
scale linearly with [LiClO4] (M), with the reported molar extinction
coefficients given in the text.

Table 1. Frequencies of Vibrations Associated with Li+ and
ClO4

− Ions in CO3−CH3)2 (DMC) Solvent and Pictured in
Figure 1, from FTIR Experiments and DFT Calculationsa

vibration ions and solvent exp (cm−1) DFT (cm−1)

νC=O stretch Li+−DMC/free-DMC
(shift)

1723/1754
(31)

(35/37)b

νOCO (asym) Li+ −DMC/free-DMC
(shift)

1323/1278
(−45)

(−32/−31)b

ClO4
− sym

stretch
ClO4

− in CIP 1098 and 1128 25−29

aFor ClO4
−, only the primary stretches associated with the CIP are

shown. bShifts of DMC frequencies are from PBE/6-31+G(d,p) DFT
calculations using DMC(cc)3/LiClO4 and DMC(cc)2DMC(ct)/
LiClO4 CIP complexes immersed in implicit solvent.

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.9b00879/suppl_file/jz9b00879_si_001.pdf
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147 ClO4
− ions (Figure 1c). We do not attempt to separate the

148 spectra into the different geometries of CIP, or for the
149 presence of free ClO4

−, due to both the difficulty in
150 interpreting the broad spectrum and changes to its shape
151 with potential, as will be discussed below.
152 Nonetheless, DFT calculations showed that the Li+ binding
153 to ClO4

− results in the ClO4
− band being split into two closely

154 positioned blue-shifted peaks and one red-shifted peak as
155 shown in Figure S2 and in agreement with the experimental
156 spectra of Figure 1c. Importantly, the shifts are sensitive to the
157 Li+ location around the ClO4

− anion. Thus, we utilized the
158 DMC(cc)3−LiClO4 and DMC(cc)2DMC(ct)−LiClO4 com-
159 plexes with an explicit description of the Li+ first solvation shell
160 and packing representative of the condensed phase in order to
161 accurately predict shifts of the ClO4

− bands upon Li+

162 complexation, as shown in Figure S1d,e. The two LiClO4

163 peaks are 25−29 cm−1 apart in the DFT calculations, in good
164 agreement with the experimental value of 30 cm−1 (see Table
165 1), which confirms the interpretation of vibrational spectra and
166 suggests that most ClO4

− anions are bound to a Li+ as the free
167 ClO4

− peak at ∼1100 cm−1 is very weak, especially at >0.5 M
168 salt concentrations.
169 The dependence of the absorption changes on [LiClO4] is
170 used to define three molar extinction coefficients (ε), as shown
171 in Figure 1d, using Beer’s law, A = εcl, where c is the
172 concentration of the species and l is the path length. The
173 evanescent wave produced by an attenuated total reflection
174 (ATR) cell at the ATR crystal/electrolyte interface probes the
175 vibrational spectrum of the electrolyte. For an ATR cell, the
176 path length is defined by deffN where deff is the penetration
177 depth of the evanescent wave and N (=8 for ZnSe cell) is the
178 number of times the wave penetrates from the ATR crystal into
179 the electrolyte (see cartoon in Figure 2). The penetration
180 depth of each bounce, deff, is calculated for the ATR (Ge or
181 ZnSe) crystal/DMC interface (∼1 μm for ZnSe, ∼0.5 μm for
182 Ge, further details are in the Supporting Information). As
183 expected for Beer’s law, the integrated absorption spectrum for
184 each species linearly depends on its concentration (Figure 1d).
185 Extinction coefficients are determined by ε = m/deffN, where m
186 is the slope of the integrated absorption spectrum as a function
187 of [LiClO4]. Two extinction coefficients are thus obtained for
188 Li+−DMC, from the CO stretch (ε1723 = 0.00230 M−1

189 nm−1) and the CO3(CH3)2 (ε1323 = 0.00376 M−1 nm−1)

190bend, respectively. However, one extinction coefficient is
191obtained for ClO4

− (ε1160−1040 = 0.00341 M−1 nm−1), which
192represents a cumulative absorption of the different coordina-
193tion geometries of ClO4

−. The full experimental fit procedure
194used for Figure 1 is described in the Supporting Information,
195along with Figure S3.
196With distinct vibrations and molar extinction coefficients
197associated with free-DMC, Li+−MC, and ClO4

−, we now turn
198to the potential dependence of the Li+ and ClO4

− ion count at
199an electrode surface. Shown in Figure 2 is the ATR cell used
200for the in situ electrochemical measurements of the EDL,
201where a thin film of Au (20 nm) was evaporated on a ZnSe
202ATR crystal. The working electrode of a three-electrode
203potentiostat controls the voltage on the Au film with respect to
204a wound Ni wire and referenced to a custom Ag/AgCl
205electrode (see Supporting Information). The Au layer had to
206be thin enough for the evanescent wave to penetrate into the
207electrolyte, and its thickness was monitored (see Supporting
208Information for details and Figure S4). The films were
209composed of nanospheres leading to a 10−20 nm roughness,
210as seen by SEM, XRD, and AFM (Figure S5 and S6). The
211differential spectra shown in Figure 2b are obtained by
212subtracting the spectra at the open circuit (OC) voltage from
213the spectra with an applied potential. The OC voltage is
214measured when the Au film is in contact with the electrolyte in
215a closed cell, but the working electrode is not in direct
216electrical contact with the counter electrode. To obtain the OC
217spectra without fluctuations in the environment influencing the
218data collection, we apply the measured OC voltage (V =
219−0.024 ± 0.04 V vs SHE) to the working electrode.
220Absorption changes were obtained for voltages between −0.8
221and +0.5 V, chosen to avoid irreversible reactions such as SEI
222formation. The full experimental procedure is discussed in the
223Supporting Information (Figure S7−S9). The potential-
224dependent spectra shown are representative of four trials
225involving two different Au depositions (Figure S7). The three
226spectral regions identified in Figure 1 are subject to analysis,
227with a fourth range left out due to the lack of reproducibility
228(Figure S9). The frequencies of the vibrations in the potential-
229dependent spectra are within 5 cm−1 of the vibrations of bulk
230free-DMC and Li+−DMC spectra (Figure S9, Supplemental
231Fitting procedure). For ClO4

−, the vibrations of the potential-
232dependent spectra occur in the same broad frequency range as

Figure 2. (Left) Attenuated total reflection cell combined with electrochemical control, with an Au thin film working electrode (WE), a wound Ni
wire counter electrode (CE), and an Ag/AgCl reference electrode (RE). The number of bounces N in the actual cell is equal to 8. (Right)
Absorption change measured for an applied voltage either positive or negative of the open circuit potential (VOC). In this setup, the electrode
potential, defined as the potential drop within EDL relative to the potential of zero charge (VRPZC), is the applied voltage V relative to the potential
VOC, i.e., φelectrode = VRPZC = V − VOC. The black bars indicate the three frequency ranges used to extract the [Li+ ] and [ClO4

−] changes as a
function of VRPZC.

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.9b00879/suppl_file/jz9b00879_si_001.pdf
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233 bulk ClO4
−, although the shape of the broad spectrum differs

234 significantly (Figure 1), which implies changing coordination
235 geometries of ClO4

− within the EDL. Since the peak
236 frequencies for Li+−DMC and the frequency range of ClO4

−

237 agree with the bulk spectra, the potential-dependent changes in
238 these spectral ranges are associated with similar species as in
239 the bulk. We do observe absorption changes not seen in the
240 bulk spectra, and possibly related to chemically adsorbed
241 contaminants; the spectrally broad features of lower intensity
242 seen throughout Figure 2 change for the different trials and in
243 certain cases exhibit distinct Stark effects (Figure S7) where
244 difference spectra are characteristic of electric field induced
245 vibrational frequency shifts. The distinct Stark effects observed
246 correspond to rigid red or blue shifts of the spectrum with
247 potential, which implies they are species that cannot rotate or
248 are fixed to the surface.38

249 The potential dependence of the absorption change (ΔA)
250 describes a redistribution in the EDL due to gain or loss of
251 Li+−DMC and ClO4

− near the electrode surface. For voltages
252 negative of OC, ΔA of Li+−DMC (1723 cm−1, 1323 cm−1)
253 grows more positive, demonstrating an accumulation of Li+

254 ions. The opposite occurs for voltages positive of OC,
255 demonstrating a reduction in the number of Li+ ions. In the
256 ClO4

− stretch region (1160−1040 cm−1), ΔA markedly
257 increases with voltages positive of OC, demonstrating an
258 accumulation of ClO4

− ions, while it becomes slightly negative
259 at negative voltages, demonstrating a reduction of ClO4

− ions.
260 For negative voltages, ΔA of free-DMC grows more negative
261 (1754 cm−1, 1278 cm−1), as Li+−DMC replaces free-DMC.
262 The positive voltages do not necessarily show the comparable
263 trend of accumulation when free-DMC replaces Li+−DMC,
264 with varying results between the trials (Figure S7) in this
265 respect.
266 We quantify the redistribution of Li+ and ClO4

− using the
267 molar extinction coefficients identified above. Relating ΔA to
268 ε: A(V) − A(OC) = ε[c(V) − c(OC)]deffN = εΔcdeffN, where
269 c represents the ion volume density. Rearranging, deff = (1/
270 ε)ΔA/N, where ΔA is the integrated absorption change of the
271 relevant ε cross-section (see Figure S7 for individual fits of the
272 potential-dependent ΔA). Δcdeff is the change in the potential-
273 dependent surface ion density (Δn(φ)/cm2) because deff
274 accounts for the length of the EDL surface being probed in
275 every bounce (N). Δ(φ)/nm2 is reported as a function of
276 VRPZC = Vapplied − VOC, where the open circuit voltage (VOC) is
277 taken as the potential of the uncharged surface. VRPZC is
278 therefore the potential difference relative to the potential of
279 zero charge (RPZC). The results, shown in Figure 3, quantify
280 the accumulation of ClO4

− and reduction of Li+ with positive
281 voltages, and the reduction of ClO4

− and accumulation of Li+

282 with negative voltages, seen in the raw data.
283 We now turn to the MD simulations, which examined the
284 EDL structure of electrolyte sandwiched between polarizable
285 graphite electrolytes using the setup shown Figure S10. The
286 electrode atoms are treated as polarizable utilizing the
287 Siepmann and Reed charge equilibration scheme.39,40 As in
288 previous work,40−42 the charges on electrode atoms were
289 Gaussian distributed with widths η−1 = 0.5 Å, which were
290 tuned to reproduce39,40 the classical electrostatic interactions
291 of charges next to conductor surfaces in vacuum. The
292 electrolyte was modeled with a revised APPLE&P43 polarizable
293 force-field, having the polarizabilities represented via induced
294 point dipoles dampened with the Thole44 method. The dialed
295 potential between two electrodes ΔU was varied between 0

296and 3 V. To closely mimic experiments, the electrode potential
297was calculated relative to bulk electrolyte with a subsequent
298subtraction of PZC: VRPZC = Velectrode − Vbulk − PZC, where
299PZC is −0.22 V. Simulation details are summarized in the
300Supporting Information. During MD simulations, an interfacial
301structure develops, resulting in formation of several alternating
302locally rich and depleted layers of ions or solvent, which are
303most pronounced within ≈10 Å from the surface. The changes
304 f4in potential of this EDL structure are shown in Figure 4. The
305laterally averaged density profiles ⟨ρ(z)⟩ for ClO4

− show two
306pronounced centers of mass peaks centered at 3.7 and 7.2 Å
307from the surface, which correspond to ClO4

− populations in
308the inner Helmholtz and diffuse parts of the EDL respectively.
309The ClO4

− population in the inner Helmholtz layer decreases
310monotonically with negative electrode polarization due to
311electrostatic repulsion, pushing ClO4

− anions into the diffuse
312part of the EDL. The second layer of ClO4

−, representing the
313diffuse part of EDL, shows a weak dependence vs voltage
314(Figure 4a and Figure S11), likely due to strong screening of
315the electrode charge by the inner layer.
316In contrast to the profiles for the center of mass of the
317ClO4

− anion, the density profiles for Li+ tend to be broader
318(i.e., the first peak is a broad distribution between 4 and 6 Å),
319and they show less pronounced minima/maxima and depend-
320encies on voltage (Figure 4b). Such behavior of the Li+ density
321profiles indicates that in addition to screening electrode charge,
322the Li+ cations are also found between layers bridging anions
323and solvent.45 It is likely a generic feature because similar
324broad distributions for the interfacial Li+ were previously
325reported for other dilute electrolytes such as LiPF6 in
326EC:DMC16 and sulfolane.46

327Next, we examine changes of the cumulative densities n(φ)
328of the inner Helmholtz layer located within 6 Å from the
329surface. To compare with experiments, we subtracted the
330corresponding layer density at the uncharged surface, i.e.,
331Δn(φ) = n(φ) − n(φ = VRPZC).

Figure 3. Comparison of MD simulations vs experimentally
determined changes in ion number (dotted, Li+ and line, ClO4

−) as
a function of applied potential for a bulk concentration of 0.8 M. The
lines show the fitted interfacial layer densities obtained from MD by
integrating the ions density profiles ρ(z) over an interfacial widths of
6 Å from electrode surface. The experimental values for Li+ (purple
squares) and for ClO4

− (blue circles) are determined by an average of
the two Li+−DMC peaks and the total ClO4

− line shape, respectively.
The Li+ (open purple squares, NC) are the extracted ion densities
considering the calculated changes in the interfacial coordination
number of Li+−DMC. The experimental points were all scaled by s =
1/5.6, due to surface enhancement described in the text. The error
bars are a standard error over four trials, with only one trial available
for voltages lower than −0.5 V. In this region, the two Li+ were taken
as separate trials.

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.9b00879/suppl_file/jz9b00879_si_001.pdf
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332 Shown in Figure 3 are the theoretical curves for the Li+ and
333 ClO4

− ion count (Δn(φ)/nm2) (solid and dashed lines) on
334 top of the experimental points. In this potential window
335 (≈−0.8 to +0.4 V), both theory and experiments detected a
336 co-ion accumulation and counterion deaccumulation as the
337 surface potential increases. Furthermore, the rate of ion
338 accumulation/deaccumulation is monotonic with potential
339 and agreement between theory and experiment is good. Note
340 that only changes in the innermost interfacial layer (<6 Å) are
341 considered in MD simulations in Figure 3, posing a question
342 regarding the contributions from the second and third
343 interfacial layers and beyond. Figure S12 and S13 show that
344 inclusion of the second and third interfacial layers results in a
345 minor change of the relative interfacial densities, thus
346 indicating that the inner layer adequately represents overall
347 changes of the changes of ion density with potential.
348 In order to quantitatively assess the simulation results for
349 n(φ), comparison with previous work is in order. The extent of
350 charge accumulation vs voltage is often quantified by the half-
351 cell (or electrode) capacitances, i.e., C = σ/φ, where σ is the
352 electrode charge density. Note that the electrolyte excess

353 counter-charge Δn = (nLi+ − nClO4
−) within the EDL is easily

354 available from C or σ, i.e., σ = −ΔnEDL = −[nLi+ − nClO4
−]EDL =

355 −[ΔnLi+ − ΔnClO4
−]EDL. We calculated an average capacitance

356 Cavg = σ/φ (or |Δn|/Δφ) over a voltage range from ≈−0.8 to
357 +0.4 V where the change in interfacial composition was
358 monotonic. The half-cell Cavg from MD was ≈4.6 μF/cm2 (or |
359 nLi+ − nClO4

−|/Δφ = 0.262 (ions/nm2)/V). The innermost layer

360 had a rate (vs voltage) of charge accumulation |nLi+ − nClO4
−|/φ

361 equal to 0.32 (ions/nm2)/V, or 5.2 μF/cm2 in units of
362 capacitance. In other words, the innermost layer carries about
363 20−25% (on average) more charge than the electrode surface
364 (or the entire EDL). Such an overscreening of the innermost
365 layer at these relatively moderate surface voltages is expected
366 from basic classical-DFT theory47,48 and MD simulations.49−51

367 A value for electrode Cavg ≈ 4.6 μF/cm2 is in good quantitative
368 agreement with previous simulations of diluted16,52,53 and
369 superconcentrated54−56 battery electrolytes. A similar extent of
370 charge increase vs voltage was reported by multiple

371simulations48,57,58 and experiments59−61 for room temperature
372ionic liquids.
373We now assess the quantitative agreement between
374experimental and theoretical results. A direct extraction of
375ion densities Δn(φ)/nm2 from the voltage-dependent spectra
376yielded values 5−6 times greater than those found by
377calculation (Figure 3). Experimental capacitances were also
378found to be 4−9 times greater than those of the modeled
379system (Figure S8). One possible explanation for the observed
380enhancement of both ion densities and capacitance is much
381higher actual surface area of the sputtered Au due to roughness
382compared to the nominal cross-section used for normalization
383of experimental data (Figures S4−6). A second possibility is
384surface-enhanced infrared absorption. The vibrational cross-
385section of molecules at a nanometer-scale distance from a
386rough metal surface can be enhanced, affecting the
387determination of the ion count. For example, when probing
388molecules with a mid-infrared ATR evanescent wave through
389vacuum evaporated metal surfaces of 5−10 nm thickness, the
390gain can be up to a factor of 10 for nonadsorbed species near
391the electrode compared to the bulk.62,63 The origin of the
392enhancement for nonchemically adsorbed species is under-
393stood as an electromagnetic one, of the incident photon
394exciting the metal surface in concert with the molecules to
395produce a larger electric field that vibrates them. Since we use
396the lower, bulk ATR cross-section of the vibrational transitions
397to extract the ion number densities, Δn(φ)/nm2 near the
398electrode is overestimated experimentally. Since the electric-
399field enhancement occurs as a result of the incident photon
400exciting the Au surface, it should be agnostic to the species and
401independent of the electric field within the double layer. While
402we cannot quantify the relative contributions of these two
403effects here, their magnitudes align well with our observed
404enhancement. We should note that differences purely in the
405ATR evanescent wave intensity, due to changes in the crystal
406surface or metal coating, could also affect the enhancement
407factor, though in a more minor way. None of these effects
408should preferentially enhance one absorber over another, a
409linear scaling is reasonable. With a scale factor of 1/5.6, a
410comparison of the resulting experimental ion densities Δn(φ)/

Figure 4. MD simulations of EDL at various electrode potentials. (a) Density profiles of ClO4
− ions at r distance from the electrode surface. (b)

Density profiles of Li+ ions from the electrode surface. (c) Li+ coordination numbers. (d) Images of ion densities near the surface.
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411 nm2 with calculation generated good agreement for the rates of
412 ion accumulation with potential (Δn(φ)/Δφ) (Figure 3) and,
413 as detailed above, these charging rates are in accord with
414 previous theoretical work.
415 During extraction of the Li+ accumulation curves from
416 vibrational spectra it was assumed that accumulation of the
417 DMC complexed by Li+ is proportional to accumulation of Li+.
418 This assumption, however, might not hold if the number of
419 DMC coordinating Li+ at the electrode surfaces changes with
420 potential. Therefore, we examined changes of the interfacial Li+

421 coordination numbers, as shown in Figure 4c. At the most
422 negatively polarized electrode, the Li+ cations are the most
423 dissociated from anions and are mostly coordinated by DMC.
424 As the electrode becomes positively polarized up to 0.5 V, the
425 number of anions coordinating a Li+ cation increases with a
426 corresponding decrease in the number of DMC molecules
427 coordinating Li+. We note that such a potential-dependent
428 coordination number only slightly modifies the ion count, as
429 shown in Figure 3; the curve Li+ (NC) extracts the ion
430 densities from experiment considering the changes the
431 interfacial Li+ coordination numbers imply for the extinction
432 coefficient. However, Figure 4c provides an important
433 observation because the Li+ coordination number is commonly
434 probed in bulk electrolytes and yet is often related to interfacial
435 processes.64,65 Our MD simulations, verified by their good
436 agreement with the potential dependence of the experimental
437 ion count, suggest that this approach should be applied with
438 caution due to differences between the interfacial and bulk
439 solvation.
440 Finally, one needs to consider that the DMC vibrational
441 band νOCO (asym) decreases in intensity while the νCO band
442 increases in intensity when DMC is complexed to Li+ and this
443 effect is somewhat dependent on the DMC conformation (see
444 Table S1 in the Supporting Information). Since the average
445 values of Δn(φ)/nm2 reported by these two modes are utilized
446 to extract the final Li+ ion count, the errors due to increased/
447 decreased IR intensities resulting from changes in DMC
448 conformation should be partially canceled.
449 We showed that in situ attenuated total reflection vibrational
450 spectroscopy of a battery electrolyte can count the ion density
451 within the EDL. This information is important for under-
452 standing energy storage in EDLCs and provides additional
453 insight for critical processes in batteries, such as desolvation or
454 formation of the SEI and CEI. More generally, the results show
455 that a true molecular description of reactants, solvent, and ions
456 near an electrode surface can be obtained by the combination
457 of in situ vibrational spectroscopy and MD simulations, which
458 is relevant not only to batteries but also to any electrochemical
459 process utilized for fuel generation or chemical synthesis.

460 ■ EXPERIMENTAL METHODS
461 The spectroelectrochemical cell was designed and built in
462 house with polyether ether ketone (PEEK) plastic and sealed
463 vacuum-tight with polytetrafluoroethylene (PTFE) O-rings. A
464 high surface-area counter electrode (CE) was constructed of
465 wound Ni wire. The reference electrode (RE) was a Ag/
466 AgClO4 redox couple in propylene carbonate (20 mM
467 AgClO4, 1.0 M LiClO4). The potential of the RE was
468 measured to be 3.666 V with respect to lithium metal (0.626 vs
469 SHE) in 1.0 M LiClO4/PC and was stable to ±1 mV over a 33
470 h period.
471 The working electrode (WE) was prepared by thermal
472 evaporation of gold (5 × 10−6 Torr, 0.1 nm/s) onto a ZnSe

473ATR crystal (20 × 50 mm, 45°, Spectral Systems). The
474evaporated Au is vulnerable to physical abrasion at the O-ring
475seals of the electrochemical cell. We therefore evaporated an
476additional binding layer of 1−2 nm of Cr at the crystal edges.
477No Cr was used in the region in contact with the electrolyte.
478The thickness of the gold film was measured by UV−vis
479(Shimadzu UV-2600) to be 39 ± 2 nm (with the exception of
480the first trial, which had a thickness of 26 nm). Scanning
481electron microscopy (JEOL JSM 634OF) showed the gold to
482have a nanoparticle-like surface layer. X-ray diffraction
483(Siemens D500 Diffractometer, Cu Kα emission) revealed
484these to be Au(111) crystallites with a diameter of 14 ± 1 nm.
485Atomic force microscopy confirmed a smooth (RMS ∼ 1 nm)
486surface layer comprised of nanoparticle-like gold with
487diameters of 10−20 nm.
488The electrolytes were prepared and the spectroelectrochem-
489ical cell assembled under a nitrogen atmosphere. All chemicals
490were anhydrous and purchased at the highest purity available.
491IR spectra were taken in an ATR geometry at 2 cm−1

492resolution under a continuously purged nitrogen atmosphere
493using a Bruker Vertex 70 V spectrometer with an external,
494LN2-cooled, mercury cadmium telluride detector. Electro-
495chemical methods were conducted with a CH Instruments
4961140B potentiostat. The spectrometer and potentiostat were
497controlled and coordinated using software created in Lab-
498VIEW.
499The general structure of the experiment was as follows. First,
500a voltage of 0 V with respect to the open circuit potential
501(∼0.1 V vs SHE) was applied. The current was allowed to
502stabilize over a wait period of 15 s, after which 15 scans were
503taken over a period of 31 s. Next, the voltage was switched to
504some target voltage V, and the same wait and scan parameters
505were applied. Finally, the initial voltage was reapplied and the
506cycle repeated until enough spectra were collected to satisfy
507signal-to-noise constraints. The spectra were then subtractively
508normalized and averaged. This method of rapid voltage
509switching helped to eliminate experimental artifacts and drifts.
510A concentration calibration (0−2.0 M LiClO4/DMC) was
511performed using a bare Ge crystal in an ATR geometry.
512Spectra were fit with Gaussian peaks (Igor Pro), and molar
513extinction coefficients were calculated. Voltage-dependent
514SNIFTIRS peaks were subsequently fit in the same way and
515EDL concentrations were calculated using the extinction
516coefficients. The wavelengths in the SNFITIRS spectra were
517allowed to vary slightly from those in the bulk (±5 cm−1 for
518Li+---DMC peaks and ±11 cm−1 for ClO4

−). A surface
519enhancement factor of 5× was incorporated into the data to
520bring the results into agreement with theory.
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