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Abstract

African Americans (AA) have lower prevalence of alcohol dependence and higher sub-

jective response to alcohol than European Americans. Genome-wide association

studies (GWAS) have identified genes/variants associated with alcohol dependence

specifically in AA; however, the sample sizes are still not large enough to detect vari-

ants with small effects. Admixture mapping is an alternative way to identify alcohol

dependence genes/variants that may be unique to AA. In this study, we performed

the first admixture mapping of DSM-IV alcohol dependence diagnosis, DSM-IV alco-

hol dependence criterion count, and two scores from the self-rating of effects of eth-

anol (SRE) as measures of response to alcohol: the first five times of using alcohol

(SRE-5) and average of SRE across three times (SRE-T). Findings revealed a region

on chromosome 4 that was genome-wide significant for SRE-5 (p value = 4.18E-05).

Fine mapping did not identify a single causal variant to be associated with SRE-5;

instead, conditional analysis concluded that multiple variants collectively explained
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the admixture mapping signal. PPARGC1A, a gene that has been linked to alcohol con-

sumption in previous studies, is located in this region. Our finding suggests that

admixture mapping is a useful tool to identify genes/variants that may have been mis-

sed by current GWAS approaches in admixed populations.

K E YWORD S

admixture mapping, African American, criterion count, DSM-IV alcohol dependence, response to

ethanol

1 | INTRODUCTION

Alcohol dependence is one of the most common and costly diseases

worldwide. In the United States, 12.5% of the population meets

criteria for alcohol dependence during their lifetime (Hasin & Grant,

2015), and about 88,000 deaths and 2.5 million years of potential life

lost annually are attributable to excessive alcohol use (Stahre, Roeber,

Kanny, Brewer, & Zhang, 2014). The estimated economic cost attrib-

utable to excessive drinking is almost $250 billion (Sacks, Gonzales,

Bouchery, Tomedi, & Brewer, 2015).

It has been long observed that drinking behavior and drinking-

related problems differ among ethnic groups (Chartier &

Caetano, 2010; Delker, Brown, & Hasin, 2016; Gibbs et al., 2013;

Hasin, Stinson, Ogburn, & Grant, 2007; Vaeth, Wang-Schweig, &

Caetano, 2017; Witbrodt, Mulia, Zemore, & Kerr, 2014; Zapolski,

Pedersen, McCarthy, & Smith, 2014). Compared to European Ameri-

cans (EA), African Americans (AA) drink less frequently; are more likely

to stop drinking; have fewer heavy drinking episodes, later onset of

drinking, and slower progression to alcohol dependence (Alvanzo

et al., 2011; Dawson, Goldstein, & Grant, 2013; Klima, Skinner,

Haggerty, Crutchfield, & Catalano, 2014). As a result, AA have signifi-

cantly lower prevalence of alcohol dependence (Hasin & Grant, 2015).

Notably, this is despite the increased exposure to stressful experi-

ences in AA, which is an important factor associated with progression

to alcohol dependence (Gibbs et al., 2013; Ransome & Gilman, 2016).

However, when alcohol dependence occurs, AA have higher rates

of recurrent and persistent alcohol dependence than EA (Breslau,

Kendler, Su, Gaxiola-Aguilar, & Kessler, 2005; Chartier & Caetano,

2010; Dawson et al., 2005). In addition, AA reported a sharper

increase in stimulation in an alcohol administration study (Pedersen &

McCarthy, 2013), and experienced different neuroendocrine and inflam-

mation responses due to alcohol misuse (Ransome, Slopen, Karlsson, &

Williams, 2017, 2018). Furthermore, rates of alcohol-related diseases,

mortality, and consequences are higher in AA (Chartier & Caetano,

2010; Flores et al., 2008; Polednak, 2007; Russo, Purohit, Foudin, &

Salin, 2004; Sempos, Rehm, Wu, Crespo, & Trevisan, 2003; Shield

et al., 2013; Yang, Vadhavkar, Singh, & Omary, 2008).

The reasons for the disparities in drinking and alcohol-related

problems between AA and EA are not fully understood (Hasin &

Grant, 2015; Zapolski et al., 2014). Studies have suggested that both

environmental and genetic factors contribute to these differences

(Chartier et al., 2014). Relevant to the current study, there is evidence

for differential heritability of problem drinking in EA and AA (Sartor

et al., 2013). Genome-wide association studies (GWAS) of alcohol-

related phenotypes have also identified variants that are only signifi-

cant in AA or EA (Kranzler et al., 2019; Lai, Wetherill, Bertelsen,

et al., 2019; Lai, Wetherill, Kapoor, et al., 2019; Walters et al., 2018).

For example, different functional single nucleotide polymorphisms

(SNP) in ADH1B, the gene encoding the main alcohol-metabolizing

enzyme in liver, have been linked to alcohol dependence in various

populations partially due to their population specific allele frequen-

cies: rs2066702 in AA and rs1229984 in EA (Bierut et al., 2012;

Edenberg & McClintick, 2018; Walters et al., 2018). Polimanti and col-

leagues studied functional variants in 24 genes related to alcohol

dependence and found frequencies of these variants to vary between

AA and EA (Polimanti, Yang, Zhao, & Gelernter, 2015).

There is a great need for identifying genes/variants specifically

related to AA drinking behavior and problems (Zemore et al., 2018). The

identification of population specific genes/variants can advance our

knowledge of the etiology of alcohol dependence in AA and contribute to

the development of novel prevention and therapeutic strategies. How-

ever, there are several methodological challenges specific to conducting

genetic studies in AA. First, there are fewer and smaller studies of AA

compared to EA. Of the 32 GWAS of alcohol dependence and related

phenotypes in the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/

gwas/home), only 11 include AA and sample sizes are much smaller com-

pared to other populations. Recently, in the largest GWAS of alcohol

dependence, only 6,280 AA were included in an analysis of >52,000 indi-

viduals (Walters et al., 2018). In another recent GWAS using the Alcohol

Use Disorders Identification Test (AUDIT) in the Million Veteran Project

(MVP), there were about 57,000 AA samples, however, the EA population

consisted of >209,000 participants (Kranzler et al., 2019). Second, people

of African ancestry have more genetic variants and a faster decay of

linkage disequilibrium (LD) with an increase in physical distance (Altshuler

et al., 2015). Therefore, more independent tagging variants are needed to

fully cover the entire genome in AA as compared with other populations.

As a result, the traditional genome-wide threshold, 5 × 10E-8, may not be

appropriate. Third, the proportion of African and European ancestries dif-

fer among AA populations in the United States (Dick, Barr, Guy, Nasim, &

Scott, 2017). In genetic studies, this admixture is usually modeled by
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including ancestral principal components (PCs) as covariates in analysis.

However, these PCs are a genome-wide adjustment and may result in

over- or under- adjustment in some chromosomal regions due to different

proportions of local (i.e., region-specific) admixture.

Admixture mapping might provide novel insights into one potential

source of the differential prevalence of alcohol dependence between

EA and AA (Seldin, Pasaniuc, & Price, 2011). One study found that

the degree of African admixture is correlated with alcohol dependence;

and those with alcohol dependence have less African ancestry (Zuo

et al., 2009). Since admixture in AA occurred relatively recently (usually

<10 generations), only a small number of recombination events have

likely occurred and the size of ancestry-specific regions is expected to

be large. That is, the average size of an African ancestry block in AA is

about 17 centimorgans (Patterson et al., 2004). Thus, a much smaller

number of genetic markers would be needed to tag such regions than is

required in a typical GWAS. Admixture mapping has been successfully

applied to other traits, for example, blood pressure, obstructive sleep

apnea, systemic lupus erythematosus, and so forth, (Molineros et al.,

2013; Sofer et al., 2017; Wang et al., 2019; Winkler, Nelson, &

Smith, 2010); however, to our knowledge, it has not been applied to the

study of alcohol dependence and related phenotypes in AA.

In this study, we performed admixture mapping using AA individ-

uals from the Collaborative study on the Genetics of Alcoholism

(COGA) (Reich et al., 1998), Study of Addiction: Genetics and Environ-

ment (SAGE) (Bierut et al., 2010), Alcohol Dependence GWAS in

European and African Americans (Yale-Penn) (Gelernter et al., 2014),

and an African American cohort from the National Institute on Alcohol

Abuse and Alcoholism (NIAAA). Duplicate individuals among those

studies were removed. We focused on four phenotypes: DSM-IV

(American Psychiatric Association, 1994) alcohol dependence diagno-

sis; DSM-IV alcohol dependence criterion count as a measure of

alcohol dependence severity (Lai, Wetherill, Bertelsen, et al., 2019),

and two scores from the self-rating of effects of ethanol (SRE) ques-

tionnaire (Schuckit, Smith, & Tipp, 1997) as measures of response to

alcohol. In genome-wide significant (GWS) regions, we conducted

fine mapping using genotyped and imputed data to identify potentially

causal variants. Last, we performed conditional analyses to test

whether the variants identified during fine mapping could explain the

admixture mapping association signal.

2 | MATERIALS AND METHODS

2.1 | Samples

COGA recruited alcohol dependent probands and their family members

from inpatient and outpatient AD treatment facilities in seven sites, and

community comparison families were also recruited from a variety of

sources in the same areas (Nurnberger et al., 2004; Reich et al., 1998).

Institutional review boards from all sites approved the study and every

participant provided informed consent or assent. The Semi-Structured

Assessment for the Genetics of Alcoholism (SSAGA) and the child ver-

sion of the SSAGA (Bucholz et al., 1994; Hesselbrock, Easton, Bucholz,

Schuckit, & Hesselbrock, 1999) were administered to individuals age

18 or over and younger than 18, respectively. SAGE (phs000092.v1.p1,

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=

phs000092.v1.p1) and Yale-Penn (phs000425.v1.p1, https://www.ncbi.

nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000425.v1.p1)

were downloaded from the database of Genotypes and Phenotypes

(dbGaP). For the NIAAA cohort, participants were recruited using the

NIH Institutional Review Board-approved screening and assessment

protocols conducted at the National Institutes of Health Clinical Center

(Bethesda, MD) from 2005 to 2015. All participants provided written

informed consent.

2.2 | Phenotypes

Individuals who endorsed three or more of the seven DSM-IV criteria

occurring within a 12-month period were diagnosed with DSM-IV

alcohol dependence. Affected individuals were age 15 or older and

met criteria for DSM-IV alcohol dependence. Unaffected individuals

were defined as those who had consumed at least one full drink

of alcohol, were ≥21 years old, endorsed <2 criteria for DSM-IV

dependence, and did not meet criteria for abuse of alcohol, cocaine,

opioids, marijuana, sedatives, and stimulants (Lai, Wetherill, Bertelsen,

et al., 2019). For SAGE and Yale-Penn datasets, DSM-IV alcohol

dependence diagnoses were downloaded from dbGaP; and unaffected

individuals with alcohol abuse, or other substance dependence were

excluded.

The seven DSM-IV alcohol dependence criteria were summed to

create a criterion count. Individuals with comorbid use and misuse of

other drugs were not excluded.

The SRE questionnaire is a retrospective, self-report instrument

to measure the numbers of standard drinks required to produce four

effects of ethanol (Schuckit, Tipp, Smith, Wiesbeck, & Kalmijn, 1997):

(a) “how many (standard) drinks did it take for you to begin to feel an

effect?”; (b) “how many drinks did it take for you to feel a bit dizzy or

begin to slur your speech?”; (c) “how many drinks did it take you to

begin to stumble or walk in an uncoordinated manner?”; (d) “how

many drinks did it take you to pass out or fall asleep when you did not

want to?”. The SRE queries drinking at three time points: the first five

times using alcohol (SRE-5); the period of heaviest drinking; and the

most recent 3 months of consumption (Schuckit, Tipp, et al., 1997). In

this study, we used SRE-5 as well as the average scores across the

three time points (SRE-T). Individuals who drank ≥2 drinks on one

occasion were included in the analysis with extreme observations

winsorized at the mean plus 2 SDs. The natural logarithm of SRE-5

and square root of SRE-T were used in analyses based on their distri-

butions (Lai, Wetherill, Kapoor, et al., 2019).

2.3 | Genotyping, ancestry and imputation

Detailed information about data processing and QC applied in each

study was reported previously (Lai, Wetherill, Bertelsen, et al., 2019;
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Lai, Wetherill, Kapoor, et al., 2019). To identify duplicate samples

among studies, confirm the reported pedigree structure, and calculate

PCs representing population stratification, all available data from

COGA, SAGE, Yale-Penn, and NIAAA were combined. Then, variants

meeting the following criteria: common (defined as minor allele fre-

quency [MAF] >10% in the combined sample), independent (defined

as r2 < .5), high quality (missing rate <2% and Hardy–Weinberg Equi-

librium [HWE] p values > .001), were used to identify duplicate sam-

ples and confirm the reported pedigree structure using PLINK (Chang

et al., 2015; Purcell et al., 2007). To remove the same individual

included in multiple datasets, (i.e., between COGA and SAGE), dupli-

cate samples were removed from the study with less phenotypic

information and fewer family members (e.g., SAGE). Family structures

were updated, as needed. Using genetically-confirmed pedigrees, Ped-

check (O'Connell & Weeks, 1998) was used to identify Mendelian

errors and inconsistencies were removed. The same set of variants

were used to estimate PCs using Eigenstrat (Price et al., 2006) with

1,000 Genomes data serving as the reference (Phase 3, version 5).

Only AA samples, designated based on the first two PCs (COGA

N = 2,939; SAGE N = 959; Yale–Penn N = 2,044; NIAAA N = 169),

were included in analyses (Lai, Wetherill, Bertelsen, et al., 2019; Lai,

Wetherill, Kapoor, et al., 2019). For the purposes of fine mapping,

all samples were imputed to 1,000 Genomes (Phase 3, version

5, hg19) separately by cohort using SHAPEIT2 (Delaneau, Howie, Cox,

Zagury, & Marchini, 2013) followed by Minimac3 (Das et al., 2016).

Only variants with non A/T or C/G alleles, missing rates <5%, MAF

>3%, and HWE p values > .0001 were used for imputation. Imputed

variants with imputation quality score r2 < .30 were excluded.

2.4 | Inference of African ancestry

Due to differences in genotyping arrays, RFMix (V1.5.4) (Maples,

Gravel, Kenny, & Bustamante, 2013) was used to estimate local African

ancestry in each cohort separately. RFMix is a discriminative modeling

approach that uses random forests trained on reference samples.

Ninety-nine CEU and 99 YRI samples from 1,000 Genomes Phase

3 were used as European and African reference samples, respectively,

as recommended by RFMix. Only genotyped, high quality variants

(defined as missing rate <0.05, Hardy–Weinberg p values > .001, and

MAF >3%) were included to improve inference accuracy. SHAPEIT2

(Delaneau et al., 2013) was used for haplotype phasing, then RFMix

was used to estimate the number of African alleles at each locus

(i.e., 0, 1 or 2 copies of African alleles, referred as local African ances-

try). For each individual, global African ancestry was also calculated as

the average percentage of African ancestry across the entire genome.

2.5 | Admixture mapping

We used RVTESTS (Zhan, Hu, Li, Abecasis, & Liu, 2016) to perform

admixture mapping within each dataset. For each phenotype, the

association with the number of African alleles at each locus was

tested after adjusting for study specific covariates and a kinship matrix

estimated by RVTESTS. For COGA and SAGE, sex and birth cohort

were significantly associated with alcohol dependence, and were

therefore used as covariates (Lai, Wetherill, Bertelsen, et al., 2019; Lai,

Wetherill, Kapoor, et al., 2019). For Yale-Penn and NIAAA, birth

cohort was not available, therefore, sex and age were included, as in

previous studies (Lai, Wetherill, Bertelsen, et al., 2019; Lai, Wetherill,

Kapoor, et al., 2019). Global African ancestry was included as a covari-

ate in all tests, as suggested (Molineros et al., 2013; Parra et al., 2017).

Results from each dataset were meta-analyzed with the effect size

weighted by the inverse of the estimated SE using METAL (Willer,

Li, & Abecasis, 2010). Since the block sizes were different for each

cohort, only the overlapping part of the blocks from each cohort were

included in meta-analysis.

The following procedure was used to determine the GWS thresh-

old. First, matSpD was used to account for correlations across the

four phenotypes by spectral decomposition of the correlation matrix

(Li & Ji, 2005; Nyholt, 2004), resulting in 2.52 effective independent

tests. Second, using the autocorrelation function of the R package

CODA (Plummer, Best, Cowles, & Vines, 2005), 273.82 effective

African ancestry blocks were estimated across the entire genome

using a combined sample from all cohorts. Therefore, the GWS

threshold was determined as 0.05/(2.52 × 273.82) = 7.25E-05.

2.6 | Fine mapping and conditional analysis

For GWS regions that were identified, all genotyped and imputed vari-

ants within that region that had a missing rate <0.05, Hardy–Weinberg

p values > .0001, and MAF >3% were tested using the same model as

in the admixture mapping, except the global African ancestry index

was replaced by PCs (the first four PCs in COGA and the first three

PCs in other samples as in the original studies (Lai, Wetherill, Bertelsen,

et al., 2019; Lai, Wetherill, Kapoor, et al., 2019) to adjust for population

stratification among AA. RVTESTS (Zhan et al., 2016) was used to per-

form association tests within each cohort separately, then results from

each cohort were meta-analyzed using METAL (Willer et al., 2010).

The significance threshold was determined by the estimated effective

number of tests using the R package matSpDlite (Li & Ji, 2005;

Nyholt, 2004), which decomposes the LD between variants to arrive at

the approximate number of independent variants.

Conditional analysis was performed by including variants identi-

fied in fine mapping with the lowest p values as covariates in another

round of admixture mapping in GWS regions. A conditional analysis

p value > .01 indicated that the variants included as covariates in

admixture mapping were the driving factors of an admixture mapping

association signal. We first tested each variant individually. If single

variants did not explain the admixture mapping signal, then we tested

multiple variants following the framework proposed by Molineros

et al. (2013). Starting with the variant with the lowest p value, we

added the variant having the next lowest p value and not in LD

(defined as r2 < .5) with variants that were already in the model, one

at a time, until the conditional p value was greater than .01.
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3 | RESULTS

Table 1 summarizes the study samples. COGA, SAGE, and Yale-Penn

were used in the analysis of DSM-IV alcohol dependence diagnosis and

DSM-IV alcohol dependence criterion count. In total, there were 2,872

alcohol dependence cases and 1,672 controls. A total of 5,942 individ-

uals had data on DSM-IV criterion count. COGA and NIAAA datasets

were used for SRE analysis; SRE-5 and SRE-T analyses included data

on 1,546 individuals in total. In terms of variants, 632,882, 601,545,

637,753, and 580,705 SNPs were included in the COGA, SAGE, Yale-

Penn, and NIAAA data respectively (Table 1). RFMix estimated 14,376,

14,958, 15,336, and 14,118 African ancestry blocks for COGA, SAGE,

Yale-Penn, and NIAAA respectively (Table 1). Using the R package

CODA (Plummer et al., 2005), 273.82 effective African ancestry blocks

were estimated across these four cohorts.

One region on chromosome 4 reached genome-wide significance

for SRE-5 (p value = 4.18E-05) (Table 2; Figure 1). The most significant

blocks in this region were between 24,377,777 bp and 24,512,590 bp

and were supported by both the COGA and NIAAA cohorts. The

estimate of effect size is larger in NIAAA than in COGA due to the

proportion of study participants with higher SRE scores and larger

variation in the NIAAA sample. Individuals carrying African ancestry

blocks in this region had higher SRE scores (BETA = 0.21, SE = 0.05),

that is, lower the response to alcohol. No other region reached

genome-wide significance for other phenotypes (Figure S1a–c).

There were 298 genotyped and imputed variants located in the

SRE-5 chromosome 4 GWS region. Using matSpDlite (Li & Ji, 2005;

Nyholt, 2004), the estimated number of effective tests was 132;

therefore, the significance threshold for the fine mapping analysis was

determined as p value <3.79E-04. None of the variants tested individ-

ually reached this significance threshold. Table 3 lists all variants with

p values <.01 in fine mapping; some, for instance, had p values <.01

in COGA but p values > .05 in NIAAA, possibly due to the much

smaller sample size of the NIAAA cohort. These variants from both

COGA and NIAAA had similar allele frequencies as the African

sample in the genome aggregation database (genomAD, http://

gnomad.broadinstitute.org/). However, they had dramatically different

allele frequencies from the gnomAD non-Finnish European sample,

indicating that they were ancestry informative, as expected. Carrying

an effective allele increased SRE-5 scores (Table 3) and the effective

allele frequencies were higher in Africans than in non-Finnish

Europeans for all of these variants, except rs79462764. This was con-

sistent with the results of admixture mapping. All variants in Table 3

individually had conditional p values <.01, indicating that they did not

individually explain the admixture mapping association signal. When

conditioned collectively on rs76004436, rs3966916, rs11931595,

and rs10018808 (four independent variants with the lowest p values),

the conditional analysis had p value > .01, demonstrating that these

four variants (or variants in LD with them) were driving the admixture

mapping association signal. Figure S2 shows the regional association

plots that those four variants were index variants. Variants that were

in LD with those index variants were all located in a small region

between 24.37 Mbp and 24.52 Mbp. Figure S3 depicts the proportion

of African ancestry on chromosome 4 for all cohorts. As can be seen,

the proportion of African ancestry differed dramatically at different

locations for all four cohorts.

4 | DISCUSSION

In this study, we performed admixture mapping of DSM-IV alcohol

dependence diagnosis, DSM-IV alcohol dependence criterion count,

and two SRE scores in four cohorts of AA. To our knowledge, this is

the first genome-wide admixture mapping analysis of any of those

four alcohol-related phenotypes in AA. One region on chromosome

4 was genome-wide significant (i.e., p value <7.25E-05) for SRE-5.

For the chromosome 4 locus, carrying an African ancestry allele in

this region increased the SRE-5 score, indicating a lower response to

alcohol during the first five times the individual used alcohol. This

might initially appear counterintuitive, because AA typically report

faster rates of stimulation in response to alcohol compared to EA

(Pedersen & McCarthy, 2013). Recent studies suggested that findings

from admixture mapping need not conform to expectations regarding

the direction of disease prevalence; that is, even though a disorder

is more common in one ancestral group, admixture mapping may

result in identification of variants of protective effect (Molineros et al.,

2013; Sofer et al., 2017; Wang et al., 2019). As long as the disease-

causing variants have different allele frequencies between different

ancestries, these variants will be detected by admixture mapping

(Patterson et al., 2004), regardless of their directions of effect on the

phenotype. Other variants that cannot be detected in our current

analysis might be responsible for the population-specific effect.

TABLE 1 Summary of study samples

Cohort
DSM-IV alcohol
dependence (#cs/#ctl)

# DSM-IV alcohol
dependence criterion count # SRE-5 # SRE-T # Variants

# African ancestry
blocks

COGA 875/840 2,939 1,377 1,377 632,882 14,376

SAGE 400/341 959 NA NA 601,545 14,958

Yale-Penn 1,552/491 2,044 NA NA 637,753 15,336

NIAAA NA NA 169 169 580,705 14,118

Total 2,827/1,672 5,942 1,546 1,546

Abbreviations: COGA, Collaborative study on the Genetics of Alcoholism; NIAAA, National Institute on Alcohol Abuse and Alcoholism; SAGE, Study of

Addiction: Genetics and Environment.
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Multiple genes are located in the chromosome 4 GWS region.

One of them is PPARGC1A (PPARG coactivator 1 alpha). Among the

15 variants that have p values <.01 in fine mapping (Table 3), 13 are in

introns of PPARGC1A. This gene is broadly expressed in multiple tis-

sues including liver and brain. The protein product of this gene inter-

acts with cAMP response element binding protein (CREB) and nuclear

respiratory factors (NRFs). Studies have found that the expression of

the protein product of PPARGC1A was altered in post-mortem brain

tissue from alcohol dependent individuals (Blednov et al., 2015;

Ponomarev, Wang, Zhang, Harris, & Mayfield, 2012). Chronic alcohol

exposure has also been shown to dramatically reduce cellular cAMP

levels via a pathway involving PPARGC1A (Avila et al., 2016). In cul-

tured neuronal cells, Liu et al. (2014) found that ethanol suppressed

PPARGC1A expression, causing impaired mitochondrial functioning

and increased cellular toxicity; while over-expression of PPARGC1A

alleviated the alcohol-induced cellular toxicity (Liu et al., 2014).

In a Spanish Mediterranean sample, PPARGC1A was found to be

associated with alcohol consumption (Frances et al., 2008). Animal

studies have reported that chronic alcohol treatment increased

liver PPARGC1A expression levels in rats and this was reversed with

an anti-oxidant N-acetylcysteine (Caro et al., 2014). In addition,

PPARGC1A was related to reduced alcohol intake in mice (Blednov

et al., 2015). Finally, while not studying SRE-5 as an outcome,

one association study found that interactions between variants in

PPARGC1A and alcohol consumption were significantly associated

with obesity in AA but not EA (Edwards et al., 2012). Thus, there is

persuasive evidence for a potential ancestry specific effect of thisT
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gene on alcohol-related response. Other genes such as DHX15

(DEATH-box helicase 15), SOD3 (superoxide dismutase 3), CCDC149

(coiled-coil domain containing 149), and LGI2 (leucine rich repeat LDI

family member 2) are also located within or near the chromosome

4 GWS region; however, none of them have previously been associ-

ated with alcohol dependence or related phenotypes.

The samples included in this study for SRE scores were also

utilized in a previous GWAS (Lai, Wetherill, Kapoor, et al., 2019). In

that study, no variant was genome-wide significant in meta-analysis

of COGA and NIAAA cohorts, and that null finding was attributed to

the relatively small sample size (N = 1,546) (Lai, Wetherill, Kapoor,

et al., 2019). In contrast, the current admixture mapping approach suc-

cessfully identified a region on chromosome 4. Consistent with other

studies, these findings corroborate the importance of applying admix-

ture mapping for variant discovery in recently admixed samples, includ-

ing those that might have been underpowered for detection using

standard approaches. In that previous GWAS study of SRE, one variant

(rs4770359, p value = 2.92E-08, Beta = 0.16; SE = 0.03; effective

allele: A) on chromosome 13 was genome-wide significant for SRE-5

in COGA only but not replicated in the NIAAA cohort (p value = .82),

and meta-analysis has a p value of 6.33E-08 (Lai, Wetherill, Kapoor,

et al., 2019). In the current admixture mapping analysis, this region was

marginally associated with SRE-5 (p value = .08), with African ancestry

increasing SRE-5 scores, which is in agreement with the prior GWAS

result. This much higher p value could be due to the large size of the

inferred African ancestry block: it is about twice the size of the identi-

fied region in previous GWAS, and included only one association sig-

nal; therefore, the regional effect size might have been too small to be

detected by admixture mapping.

For DSM-IV alcohol dependence diagnosis and DSM-IV alcohol

dependence criterion count, we did not find any genome-wide signifi-

cant blocks. Most samples in this study were included in a GWAS

meta-analysis of alcohol dependence in AA and the significant associ-

ation of rs2066702 in ADH1B was identified (Walters et al., 2018).

The protective role of rs2066702 was confirmed in a GWAS of alco-

hol dependence from the MVP (Kranzler et al., 2019). However, other

variants in this gene, for example, rs1229984, also have protective

effects in other ancestries, including EA. In the current admixture

mapping, the inferred African ancestry block around this gene was

large and included all known variants with protective effects; there-

fore, admixture mapping does not have sufficiently high resolution to

detect association. We also examined the other AA-only finding from

the MVP (rs72900220) (Kranzler et al., 2019) and found no evidence

of association using the current admixture mapping approach. One

possible explanation could be the low MAF of this variant (3.9%);

therefore, even with admixture mapping, a much larger sample size

may be required to detect the association with this variant.

Although admixture mapping can detect genes/variants that may

not have been identified by current GWAS, it has several limitations.

First, as shown in the ADH1B gene, multiple ancestry-specific disease-

causing variants could be located in the same ancestry block, which

limits the ability of admixture mapping to detect them. Second, ancestry

blocks are determined by relatively common variants. If disease-causing

variants have low MAF, for example, rs72900220 identified by

Kranzler et al. (2019), then larger sample sizes and much smaller

blocks are needed to detect them in admixture mapping. Third, we

performed a power analysis using QuantoV1.2.4 (Gauderman, 2002),

assuming a MAF of 30% and the same sample size as in this study.

We estimate 80% power to detect an odds ratio > 1.3 and change

of score > 0.4 for binary and continuous traits, respectively. To detect

variants with smaller effect, a larger sample size would be needed.

Fourth, due to the design of admixture mapping and the complex

LD patterns in admixed populations, no gene- or set-based tests could

be performed. While large-scale GWAS will still be the major tool

for genes/variants discovery, admixture mapping is a great comple-

ment to these mainstay methods. As shown in our chromosome

4 GWS region, all single variants had p values > .001. In GWAS, these

variants would likely have been discounted; however, collectively

these variants were associated with SRE-5 and explained the admix-

ture mapping signal. Continued recruitment of participants from

underrepresented and admixed populations are essential (Peterson

et al., 2019) and we suggest that admixture mapping should also be

performed to detect ancestry-specific disease genes/variants that

may be missed by GWAS.
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