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The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research

planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field,

researchers routinely use approaches and information from a variety of areas in neuroscience and other biology fields.

Additionally, the multilevel integration process characteristic of this field involves the establishment of experimental con-

nections between molecular, electrophysiological, behavioral, and even cognitive data. This multidisciplinary integration

process requires strategies and approaches that originate in several different fields, which greatly increases the complexity

and demands of this process. Although causal assertions, where phenomenon A is thought to contribute or relate to B, are

at the center of this integration process and key to research in biology, there are currently no tools to help scientists keep

track of the increasingly more complex network of causal connections they use when making research decisions. Here, we

propose the development of semiautomated graphical and interactive tools to help neuroscientists and other biologists, in-

cluding those working in molecular and cellular cognition, to track, map, and weight causal evidence in research papers.

There is a great need for a concerted effort by biologists, computer scientists, and funding institutions to develop maps

of causal information that would aid in integration of research findings and in experiment planning.

Information in biology, including neuroscience, is growing at an
unprecedented pace that demands new tools and new approaches
(Lok 2010; Silva et al. 2014). Because of the ever-growing number,
complexity, and interconnectedness of research publications and
biological concepts, it is simply no longer possible for individual
biologists to be aware of even a fraction of the published findings
potentially pertinent to their work. The library of medicine, for
example, now includes more than 25 million research papers re-
porting the results of at least 100 million experiments. Even a
young field like Molecular and Cellular Cognition includes tens
of thousands of research papers reporting millions of experi-
ments. When the implications of what has already been published
remain buried in the never-ending avalanche of published infor-
mation, how can scientists reasonably optimize future research
plans? Although there is a great deal of work on-going to tackle
different components of this problem, from annotation of the lit-
erature, to curation of databases and automated reasoning, much
remains to be done. Here, we address the need for graphical and
interactive tools that track and map causal evidence in research
papers (i.e., research maps). Although causal assertions are the
very fabric of biology, there are currently no tools to help bio-
logists keep track of the increasingly more complex network of
causal connections derived from published findings. A causal con-
nection is defined by evidence (see below) that phenomenon A
contributes to the occurrence or state of phenomenon B. Maps
of causal information derived from research papers would help bi-
ologists plan experiments, as well as track and gage the success
(both prospectively and retrospectively) of different experiment

planning strategies. Maps of causal information could also con-
tribute to how science is reviewed and funded by providing an ob-
jective and inclusive tool for helping to evaluate the content of
research papers and grant proposals.

Molecular and cellular cognition in the age

of information

In the last two decades, information technology (Akil et al. 2011)
has slowly transformed biological fields as diverse as molecular ge-
netics and cognitive neuroscience. Using powerful computer sci-
ence approaches, biologists have developed methods to both
organize and explore the content of complex petabyte-scale
data sets (Dai et al. 2012), such as those generated by whole-
genome sequencing, brain imaging, and drug effects. For exam-
ple, network analyses based on the US Food and Drug Administra-
tion’s Adverse Event Reporting System allowed investigators to
find beneficial drug combinations that were then tested in animal
models (Zhao et al. 2013). Innovative natural language processing
methods have been developed to automatically find and abstract
specific content from large bodies of text, as well as identify latent
relations among biological entities as diverse as genes, signaling
pathways and anatomical structures. Increasingly more complex
and sophisticated hierarchical ontologies have considerably facil-
itated these automated processes. With the rising complexity of
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biological assertions, researchers have also sought to derive meta-
analytical approaches to mine and synthesize large bodies of pub-
lished information on specific topics (Akil et al. 2011).

These and other efforts to tackle the problem of information
overload in the biological sciences, helped to highlight another
problem in this discipline: the need for developing new approach-
es to generate theoretical frameworks that accommodate the diz-
zying growth and diversity of discovery in biology. Historically,
these frameworks have emerged from causal insights, such as
those inspired by evolution and the structure of DNA. The result-
ing frameworks were essential from an information perspective,
since they allowed biologists to synthesize and, more important,
simplify large bodies of otherwise complex information. The cur-
rent immensity of the published record provides an unprecedent-
ed challenge for this integrative process, since potentially
pertinent causal information could be spread through millions
(not tens or even hundreds!) of published research papers.

This problem is especially acute in molecular and cellular cog-
nition because in this field researchers routinely integrate findings
and use methods from widely different areas of neuroscience and
biology, from molecular and cellular biology, to neurophysiology,
systems neuroscience, behavioral neuroscience, and cognitive
neuroscience. The sheer breadth of concepts and literature base
that span these different disciplines is a true obstacle for optimal
progress in highly integrative and multidisciplinary fields like mo-
lecular and cellular cognition. Until we
develop methods to automatically ab-
stract, integrate and easily interact with
this buried treasure throve of causal infor-
mation, we can only wonder about the
number of potentially transforming in-
sights that will remain just beyond our
reach. The research maps we introduce
next, provide a conceptual solution to
this problem, one that is built on princi-
ples used by experimentalists in evaluat-
ing the strength and reliability of causal
information in biology. But, how exactly
could causal information be represented
in a map?

Research maps for molecular

and cellular cognition

It is important to note that although re-
search maps share a superficial re-
semblance to Concept Maps (Novak
1990), a tool used for science education
(Novak and Musonda 1991), we will
show below that the two types of maps
are very different conceptually, structur-
ally, and in organization. Like concept
maps, research maps have nodes and edg-
es, but the resemblance stops there.
Concept maps are hierarchical struc-
tures that represent information that ad-
dresses a specific question or topic, with
the most general information at the top
of the hierarchy, and the increasingly
specific information below. Nodes are
linked by edges (signal directionality)
with words that define a proposition in-
volving both nodes.

Knowledge Engineering from Exper-
imental Design (KEfED) provides a pow-

erful computational framework for representing, and publishing
experiments (Russ et al. 2011). KEfED elements can be derived
from a flow diagram of an experimental protocol. Although
KEfED and research maps are both based on scientific evidence
rather than interpretations (Russ et al. 2011), the goals, structure,
and conceptual framework of KEfED are distinct from the research
maps proposed here.

At the highest zoom levels, maps of causal information (re-
search maps) would be simply networks where biological phe-
nomena (their identity and properties; the nodes in the map)
are linked by weighted causal connections (the edges in this net-
work; Fig. 1). These edges would represent one of three possible
types of causal connections between two phenomena: excitatory,
where one phenomenon promotes the other, inhibitory where
one inhibits another, or simply that one phenomenon has no
measurable effect on the other. A score assigned to each edge
would give users a sense for the strength and consistency of evi-
dence represented by each connection among the phenomena
represented. Additionally, symbols would inform users of the
types of experiments represented in each edge.

Although there are tens of millions of experiments testing
causal relations in biology, they fall into a small number of classes
(Landreth and Silva 2013). For example, in molecular and cellular
cognition, researchers commonly use at least four major types of
experiments to test a possible causal connection between two

Figure 1. Research map representing results in a published paper (Costa et al. 2002). Each node in
the graph has three items that describe the name of the item (top), as well as spatial (middle) and tem-
poral (bottom) information that defines it. Nodes are connected by edges that characterize the nature of
the causal relations represented, including excitatory (sharp edges), inhibitory (dull edge), and no re-
lation (dotted line). Each edge also has a score that reflects the amount of evidence represented, and
symbols that reflect the types of experiments carried out, including upward arrow for Positive
Manipulations, downward arrow for Negative Manipulations, and triangle for Mediation Experiments
(see text for definitions). Edges representing key hypothetical information mentioned in the article
are represented as thick gray lines; since these edges are hypothetical, they have no weights or exper-
imental symbols. The weights or scores of the edges in the map were determined according to the fol-
lowing simple rules; any one of the four types of experiments described in the text was given a score of
0.125. Additional experiments of the same type were scored according to a geometric progression with
a start term of 0.125 and r factor of 0.5. For example, the first negative manipulation and mediation
experiments supporting a causal connection between NF1 and LTP (long-term potentiation) in the
graph contributed each 0.125 weight. The second negative manipulation contributed 0.125 × 0.51
or 0.6025. Thus, adding the scores of these three experiments, we derived the rounded up score of
0.313 shown above the NF1-LTP edge. Contradictory evidence, when available, would detract from
the score of that edge.
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entities A and B, where A is manipulated or simply tracked and the
results are measured in B: positive Manipulations where A’s levels
or activity are increased, Negative Manipulations when A’s levels
or activity are decreased, Non-Interventions whose goal is to track
how A covaries with B, and Mediation experiments, designed to
determine whether C is part of the mechanism by which A con-
tributes to B. B’s levels or probability increases or decreases with
changes in A will determine whether the possible causal connec-
tion is excitatory, inhibitory or absent. Any one of these four types
of experiments can contribute to testing whether A causes B. For
example, if the levels of A and B are both increased, this would
be evidence for an excitatory connection; If B’s levels are de-
creased instead, the connection would likely be inhibitory, and
if B’s levels do not change, this would be evidence that there is
no causal connection between A and B.

Accordingly, no one single experiment can establish causali-
ty. Instead, biologists use convergency (different experiments
with a single interpretation) and consistency (similar experiments
yielding similar results) among these different types of experi-
ments to judge the strength of any causal assertion. Therefore,
in research maps convergency and consistency among results in-
creases the score (from 0 to 1) assigned to each edge, while contra-
dictions have the opposite effect. By selecting any one edge in the
map, users could be directed to the exact research papers and ex-
periments represented by that edge, and therefore explore how
that score was computed. In addition, hypothetical connections
(those representing causal hypothetical statements) could help
keep track of key postulates in hypotheses or ideas that organize
sets of research information. Hypothesis guide experimentation
and in research maps hypothetical connections (connections
that were not tested by experiments) help to structure research
maps representing those experiments. At the lowest zoom levels,
the maps would guide users to different biological sub-disciplines,
while intermediate-zoom levels would reveal topics and domains
represented in the maps.

It is unlikely that maps of causal information, for any major
biological subject such as learning and memory, will be complete
any time in the foreseeable future. Indeed, the very goal of the re-
search maps proposed here is to provide a tool to help individual
researchers evaluate available information so that they can decide
what do next (e.g., how to best complement existing informa-
tion). In this respect, it is important to stress that the concepts
used to build research maps should reflect principles and practices
routinely used in many areas of biology, such as in molecular and
cellular cognition. Otherwise, the maps would be little more than
intellectual curiosities, destined to be ignored by the very people
that they were designed for.

It is important to note that the research map shown in Figure
1 represents a relatively small set of experiments published in a
single research paper. We chose to use a relatively simple research
map so that we could more effectively illustrate the purpose and
content of these maps. In practice, users of research maps will
be able to interact dynamically with far more complex maps rep-
resenting thousands if not millions of experiments. Just as a read-
er opens a specific section of a textbook, users of research maps
will be able to direct their searches to specific sets and combina-
tions of nodes in the map (e.g., specific molecules, types of phys-
iology, particular behaviors, etc.), thus reducing the complexity of
the maps and focusing their analyses on the components that in-
terest them.

How would these maps be assembled?

Graduate students, post-doctoral fellows, principal investigators,
and other biologists would initially extract from published re-

search papers findings that describe the identity of biological phe-
nomena (the nodes in the map), as well as those experiments that
test causal connections between these phenomena (the edges in
the maps). This would be routinely done as part of reading and an-
alyzing research papers critical for their work. With a little prac-
tice, the process of entering these data into a suitable interface
should take only a little longer than simply reading the paper.
In our experience this adds only another 20%–30% of the time
it takes to carefully read a research paper. Part of the additional
time required by the manual curation of a research map is not sim-
ply due to the process of entering the required data. Instead, the
additional time is needed to understand the research well enough
to derive a map. In our experience, the rigor required to derive a
research map adds to the understanding of the research being
mapped.

Using manually entered examples, eventually, machine-
learning routines (Bishop 2006; Mohri et al. 2012) could system-
atically populate the maps with similar and related experiments
by trawling multiple resources of published information, such as
the Library of Medicine. Even though at this point only some re-
search papers in biology are available for data mining, this could
change in the near future, as journals recognize the importance
of changing current business models. We implore the science pub-
lishing houses to open their resources to big data projects, such as
the one proposed here. In the future, authors could also include a
research map of their findings with their manuscript submissions,
thus facilitating the incorporation of new results into an overall
research map.

The process of generating manual maps of causal informa-
tion provides scientists with the opportunity to analyze in detail
published experiments important to their work. This process
can be generative because it requires close attention to the exper-
iments being mapped. In an age of information overload, it is all
too easy to gloss over content, and miss crucial details that may
have otherwise led to important insights. This is especially true
in areas of biology, such as molecular and cellular cognition,
where interdisciplinary studies have become the norm, and where
biologists struggle to master knowledge and approaches from sev-
eral very different disciplines.

In the immediate future, manual entry will be key to accom-
modate the needs of individual scientists, and the considerable
complexity of mapping causal information that involves new
concepts and experimental paradigms. Thus, we expect that
initially research maps will be a personalized tool that individual
investigators use to track published work and plan future experi-
ments. Therefore, individual investigators will be able to control
the quality and standards of the experiments represented in the
maps they use for planning their own work. However, as machine-
learning routines get better, with more experience and feedback
from biologists, manual entry could become an increasingly
smaller component of updating research maps. In the distant fu-
ture, we imagine that these maps will be updated automatically
every time a new article or any other research resource is made
public.

With such a map, scientists could instantly evaluate the
amount and type of evidence available for any one causal connec-
tion of interest. Research maps would be machine readable, and
therefore users would be able to interact with these maps dynam-
ically: for example, they could query them for possible connec-
tions between any two phenomena in the maps, mine them for
hitherto unsuspected relations and for micro and macro trends.
Moreover, to facilitate research planning, users could also gener-
ate personalized private maps with their own unpublished results.
These private maps of unpublished information are a real help in
deciding how to best complement existing experiments before
submitting a manuscript for publication. Although there is a
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freely available web-driven interface for assembling and interact-
ing with research maps (www.researchmaps.org), users can draw
their own maps with nothing more than pen and paper
(Landreth and Silva 2013; Silva et al. 2014).

Beyond representations of published experiments, research
maps could also be linked to the growing number of biological
resources that curate large bodies of information about genes, pro-
teins, cells, biological systems, clinical resources, etc. These re-
sources would be not only accessible from research maps, they
would also be appropriately integrated with the nodes and edges
of these maps. For example, by selecting any one node in the
map, a user would get instant access to the resources that reference
phenomena related to that node, whether this information was
originally reported in a research paper or in one of the numerous
databases that curate the ever growing and increasingly sophisti-
cated collections of biological phenomena (Wren and Bateman
2008).

With maps of causal research statements, the size and com-
plexity of the biological corpus would be less overwhelming dur-
ing research planning. These maps would provide versatile visual
interactive depictions of critical causal findings that could poten-
tially reveal links between experiments that would otherwise be
lost within the immensity of the published record. While plan-
ning the next series of experiments, biologists could use the
maps to scan relevant findings (even in unfamiliar areas), get an
immediate sense for the amount of evidence and types of experi-
ments already published in that topic, and quickly judge whether
further work, if any, should be carried out next. Scientists could
also use such an interactive system to add to their intuitions,
and thus better estimate the relative merits of alternative experi-
mental plans. Sophisticated machine-learning routines could
conceivably learn from how scientists use this resource, and
then aid in its use as research maps grow in size and complexity.
The ease and clarity afforded by such causal maps would facilitate
creative exploration of ideas that may otherwise lie buried by the
crashing size of the literature.

Research maps at work

Figure 1 shows a research map for a molecular and cellular cogni-
tion article that includes 14 different causal experiments explor-
ing the role of the NF1 gene on key physiological (e.g., paired
pulse facilitation or PPF; long-term potentiation or LTP) and
behavioral phenomena (e.g., hippocampal learning) (Costa et al.
2002). Reading and understanding the causal content of this arti-
cle would take a considerable amount of time. However, even a
brief inspection of the map of the article (Fig. 1), gives trained neu-
roscientists a fairly comprehensible view of the results in that pa-
per (Costa et al. 2002). More important, since the results in that
paper would be part of a larger database with other related infor-
mation, it would be possible to quickly explore connections be-
tween those findings and other findings. It is easy to see how
this same approach could be scaled and used to integrate vast
amounts of causal information while allowing users to interact
with chosen subsets of these data without being overwhelmed
by the cheer quantity of the overall information. The problem
with information is not quantity but usability. Research maps
get around the quantity problem by placing causal information
in a format that biologist can easily use.

A science of experiment planning

Every scientist works hard to optimize experiment planning.
Beyond methods that advise scientists on sample size and other
statistical parameters (Fisher 1935; Winer et al. 1962; Quinn and

Keough 2002) experiment planning is mostly intuitive and de-
pends on insights and wisdom gained from experience, as well
as advice from colleagues and mentors. These factors are impor-
tant and will undoubtedly continue to be key to how scientists
make research choices. However, we imagine a future where we
would more easily and efficiently learn from the collective count-
less research choices made by scientists world-wide. An accurate
and objective record of how scientists interact with research
maps and the research choices they make (recorded in the exper-
iments they publish), could lead to studies designed to both learn
from this collective experience and eventually optimize experi-
ment planning. Machine learning could also potentially have a
role in this optimization process by finding hidden patterns
among successful cases. We caution, however, that principles of
experiment planning derived from these studies should never
play a restrictive role in research planning: we are strong believers
in serendipity and the extraordinary power of human creativity
and intuition! Instead, insights gained from studying our collec-
tive scientific choices would simply help scientists use their intu-
ition and creativity to address the unprecedented complexity of
the ever-growing published record. In another 20 yr the library
of medicine will have an estimated half a billion published exper-
iments. How will we address this complexity without new tools
and new methods?

Next steps

The semiautomated research maps of causal information that we
propose could be built in the next 5 yr. However, meanwhile
biologists could use the concepts and tools we mentioned here
to keep track of research findings and resources critical for their
work. One of the ironies of the problems biologists face is that
the vast majority of the informatics resources that have been de-
veloped to address specific needs in this community are under
used (Akil et al. 2011). There are many reasons for this, but there
is no doubt that the current training divide between informatics
and biology is a key contributor (Akil et al. 2011). Beyond the
urgent need for a greater effort to provide students with basic
training in informatics, biologists and computer scientists need
to form collaborations to continue to find solutions to the infor-
mation problem. Additionally, funding sources both public
(e.g., National Institutes of Health in the USA) and private (e.g.,
foundations) should expand their efforts to promote and support
these collaborations so that we stimulate much needed growth
in this area. Publishers also need to remove the restrictions
that currently hamper access to published research, so that data
mining efforts can flourish (Neylon 2012). It will also be critical
that experimental findings, including causal statements, are re-
ported in a machine-readable format (e.g., nano-publication;
Groth et al. 2010) to facilitate access and mining of this resource.
The process of submitting an article to publication could easily in-
clude a summary of experimental findings in a machine-readable
format. This will require a little training and some extra work for
biologists, but it is not an unreasonable demand considering the
potential benefits.

Biology and computer science students should be made
aware of the challenges discussed here, because we need their en-
ergy, imagination and creativity to solve this growing problem.
What we need is nothing short of reinventing how we integrate,
plan, and report research findings. It is an enormous but incredi-
bly exciting challenge with far reaching impact that is clearly not
restricted to the biological sciences, but that will affect sister dis-
ciplines, such as chemistry and the social sciences, and potentially
all of science. One thing, we are certain: with the current vertigi-
nous growth of the scientific literature, the status quo is no longer
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tenable. We need to dramatically expand current computation ef-
forts, and we need to do this now!
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