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Abstract

Large-scale whole genome sequencing (WGS) studies have enabled the analysis of rare variants
(RVs) associated with complex phenotypes. Commonly used RV association tests (RVATS) have
limited scope to leverage variant functions. We propose STAAR (variant-Set Test for Association
using Annotation infoRmation), a scalable and powerful RVAT method that effectively
incorporates both variant categories and multiple complementary annotations using a dynamic
weighting scheme. For the latter, we introduce “annotation Principal Components”, multi-
dimensional summaries of /n silico variant annotations. STAAR accounts for population structure
and relatedness, and is scalable for analyzing very large cohort and biobank WGS studies of
continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid
traits in 12,316 discovery samples and 17,822 replication samples from the Trans-Omics for
Precision Medicine program. We discovered and replicated novel RV associations, including
disruptive missense RVs of ANPCIL 1 and an intergenic region near APOCIPI associated with low-
density lipoprotein cholesterol.

An increasing number of whole genome/exome sequencing (WGS/WES) studies are being
conducted to investigate the genetic bases of human diseases and traits, including the Trans-
Omics for Precision Medicine Program (TOPMed) of the National Heart, Lung and Blood
Institute (NHLBI) and the Genome Sequencing Program (GSP) of the National Human
Genome Research Institute (NHGRI). Such studies enable assessment of associations
between complex traits and both coding and non-coding rare variants (RVs; minor allele
frequency (MAF) < 1%) across the genome. However, single-variant analyses typically have
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low power to identify associations with rare variants—3. To improve power, variant-set tests
have been proposed to jointly test the effects of given sets of multiple rare variants. These
methods include the burden test*~’, Sequence Kernel Association Test (SKAT)8, and their
various combinations®-12. In parallel, external biological information provided by functional
annotations, such as conservation scores and predicted enhancer status, has been
successfully used for prioritizing plausibly causal common variants in fine-mapping studies,
partitioning heritability in GWAS, and predicting genetic risk13-17. It is of substantial
interest to incorporate variant functional annotations effectively, to boost the power of RV
analysis of WGS association studies8:19,

Variant functional annotations take two forms: (i) qualitative functional groupings into
genomic elements, such as Variant Effect Predictor (VEP) categories??21, and (ii)
quantitative functional scores available for variants across the genome, including protein
functional scores?2:23, evolutionary conservation scores?42°, epigenetic measures?%, and
integrative functional scores?’. Different annotation scores capture diverse aspects of variant
function?8:29, Given the diversity of available annotations, efforts have been made to
aggregate the evidence they provide on genomic function3C. Simultaneous use of multiple,
varied functional annotation scores in variant-set tests could improve rare variant association
study (RVAS) power, for example, by optimally selecting and weighting plausibly-causal
rare variants3l.

To boost power for variant-set tests in WGS RVAS, we propose the variant-Set Test for
Association using Annotation infoRmation (STAAR), a general framework that dynamically
incorporates both qualitative functional categories and quantitative complementary
annotation scores using a unified omnibus multi-dimensional weighting scheme. For the
latter, to effectively capture the multi-faceted biological impact of a variant, we introduce
annotation Principal Components (aPCs), multi-dimensional summaries of annotation scores
that can be leveraged in the STAAR framework.

Recent methods32-34 have incorporated functional annotations in genetic association studies.
However, these methods are not scalable to analyze large-scale WGS studies while
accounting for relatedness and population structure. Large scale WGS and WES studies,
such as TOPMed and GSP, include a considerable fraction of related and ancestrally diverse
samples. STAAR accounts for both relatedness and population structure, as well as
longitudinal follow-up designs, for both quantitative and dichotomous traits, using a
Generalized Linear Mixed Models (GLMM) framework3® that includes linear and logistic
mixed models36:37. Using sparse Genetic Relatedness Matrices (GRMs)38, STAAR is
computationally scalable for very large WGS studies and biobanks of hundreds of thousands
of samples.

We perform herein extensive simulation studies to demonstrate that STAAR can achieve
substantially greater power compared to conventional variant-set tests, while maintaining
accurate type | error rates for both quantitative and dichotomous phenotypes. We then apply
STAAR to perform WGS gene-centric and sliding window-based genetic region analysis of
12,316 discovery samples and 17,822 replication samples with four quantitative lipid traits:
low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C),
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triglycerides (TG), and total cholesterol (TC) from the NHLBI TOPMed program. We show
that STAAR outperforms existing methods and identifies novel and replicated associations,
including with LDL-C in disruptive missense RVs of ANPC1L 1, and in an intergenic region
near APOCIP1.

Overview of methods.

STAAR is a general framework for analyzing WGS RVAS at scale by using both qualitative
functional categories as well as multiple /n silico variant annotation scores within a variant-
set, while accounting for population structure and relatedness by fitting linear and logistic
mixed models for quantitative and dichotomous traits using fast and scalable algorithms. For
each variant-set, there are two main components of the STAAR framework: (i) using
annotation PCs to capture and prioritize multi-dimensional variant biological functions, and
(i) testing the association between each variant-set and phenotypes by incorporating these
annotation PCs as well as other integrative functional scores and MAFs in the STAAR test
statistics using an omnibus weighting scheme (Fig. 1).

Variants often influence genes and gene products through multiple mechanisms. We extract
a broad set of variant functional annotations (Supplementary Table 1), including both
individual and ensemble functional scores, from various databases, such as ENCODE?25,
Roadmap Epigenomics3?, and other evolutionary and protein annotation databases?’4041, A
correlation heatmap across variants in the genome (Fig. 2) shows that the correlation
structure among all individual annotations is approximately block-diagonal, with highly
correlated blocks representing different classes of variant function, e.g., epigenetic function,
evolutionary conservation, protein function, local nucleotide diversity. We introduce
annotation Principal Components defined as the first PCs calculated from the set of
individual functional annotation scores in each functional block (Supplementary Table 1 and
Online Methods). Annotation PCs effectively reduce the dimensionality of the large number
of individual annotations and summarize multiple aspects of variant function.

The STAAR framework first calculates a set of multiple candidate test statistics using
different annotation weights under a particular testing approach (Fig. 1d). For each type of
RV test, STAAR then uses ACAT (aggregated Cauchy association test) method to combine
the resulting P-values calculated using different weights in order to effectively and
powerfully aggregate the association strength from all annotations in a data-adaptive manner
(Fig. 1d and Online Methods). The ACAT method for combining P-values is accurate and
computationally efficient, while accounting for arbitrary correlation structure between
tests42, To leverage the advantages of different types of tests, we propose an omnibus test
in the STAAR framework (STAAR-O) by combining P-values across different types of
multiple-annotation-weighted variant-set tests using the ACAT method (Fig. 1d and Online
Methods).
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Simulation studies.

To evaluate the type | error and power of STAAR compared to conventional variant-set tests,
we performed simulation studies under a variety of configurations. We followed the steps
described in the Data simulation section of the Online Methods to generate both continuous
and dichotomous phenotypes. We generated genotypes by simulating 20,000 sequences for
100 different regions with each spanning 1 Mb. The data were generated to mimic the
linkage disequilibrium (LD) structure of an African American population by using the
calibration coalescent model (COSI)*3. We randomly selected 5-kb regions from these 1-Mb
regions and considered sample sizes of 2,500, 5,000, and 10,000 for each replicate. The
simulation studies focused on aggregating uncommon variants with MAF < 5%.

Type | error simulations.

The empirical type | error rates for STAAR-O were evaluated based on 10° simulations at
a=107>,10"° 1077 for continuous and dichotomous traits (Supplementary Table 2). The
results show that the type | error rate for STAAR-O appeared to be well controlled for both
continuous and dichotomous traits at all « levels. For continuous traits, STAAR-O delivered
accurate empirical type | error rates. For dichotomous traits and the smallest « level
considered of 1077, STAAR-O was slightly conservative for moderate sample sizes (2,500
individuals); however, its type | error rate came close to the nominal level with larger sample
sizes.

Empirical power simulations.

Association

Next, we evaluated the power of STAAR empirically by incorporating MAF and 10
annotations into its analysis and comparing results with conventional variant-set tests in a
variety of configurations. Power was estimated as the proportion of P-values less than

a =10 based on 10* replicates. Causality of variants was allowed to be dependent on
different sets of annotations through a logistic model (Online Methods). We considered
different proportions of causal variants (5%, 15%, 35% on average) in the signal region. For
both continuous and dichotomous traits, STAAR-O incorporating all 10 annotations had
higher power than the conventional variant-set tests in terms of signal region detection
(Supplementary Figs. 1-4). Power simulation results of STAAR-O for different magnitudes
of effect sizes and different proportions of effect size directions yielded the same conclusion
(Supplementary Figs. 1, 5, and 6). Overall, our simulation studies showed that STAAR-O
could provide considerably higher power than conventional variant-set tests.

analysis of lipid traits in the TOPMed WGS data.

We applied STAAR to identify RV-sets associated with four quantitative lipid traits (LDL-C,
HDL-C, TG and TC) using TOPMed WGS data**45. LDL-C and TC were adjusted for the
presence of medications as before*4. DNA samples were sequenced at >30X target coverage.
The discovery phase consists of four study cohorts of TOPMed Freeze 3. The replication
phase consists of ten different study cohorts in TOPMed Freeze 5 that were not in Freeze 3
(Supplementary Note and Supplementary Table 3).
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Sample-level and variant-level quality control (QC) were performed#44°, There were 12,316
discovery samples, which had 155 million single nucleotide variants (SNVs), and 17,822
replication samples, which had 188 million SNVs. The TOPMed data consist of ancestrally
diverse and multi-ethnic related samples. Race/ethnicity was defined using a combination of
self-reported race/ethnicity and study recruitment information. The discovery cohorts consist
of 4,580 (37.2%) Black or African American, 6,266 (50.9%) White, 543 (4.4%) Asian
American, and 927 (7.5%) Hispanic/Latino American. Among all samples in discovery
phase, 3,577 (29.0%) had first-degree relatedness, 491 (4.0%) had second-degree
relatedness, and 273 (2.2%) had third-degree relatedness (Supplementary Fig. 7). Among all
SNVs observed in the discovery samples, there were 6.5 million (4.2%) common variants
(MAF > 5%), 5.3 million (3.4%) low frequency variants (1% < MAF < 5%), and 143.2
million (92.4%) rare variants (MAF < 1%). The race/ethnicity distribution, related sample
distribution, and variant number distribution for replication phase and pooled samples
(samples from both discovery phase and replication phase) are given in Supplementary Table
4,

Our study used the proposed STAAR-O method to perform (i) gene-centric analysis using
RV-sets based on functional categories, and (ii) genetic region analysis using variant-sets
defined by 2-kb sliding windows with 1-kb skip length across the genome. We adjusted for
age, age?, sex, race/ethnicity, study, and the first 10 ancestral PCs, while controlling for
relatedness using linear mixed models, with inverse-rank normal transformation applied to
phenotypes (Online Methods). Race/ethnicity was included as a covariate to adjust for
sociocultural and environmental factors, while genetic ancestry differences were captured by
the inclusion of the ancestral PCs. In addition to the two MAF weights?, we incorporated 13
aggregated functional annotation scores in STAAR-O: 3 integrative scores (CADD?7,
LINSIGHT#6, and FATHMM-XF#7) and 10 aPCs. Figure 2 summarizes the correlation
among all functional annotations, including 60 individual scores, 3 integrative scores, and 10
aPCs.

Gene-centric association analysis of coding and non-coding rare variants.

We performed gene-centric analysis to identify whether rare variants in coding, promoter,
and enhancer regions of genes are associated with lipid traits using STAAR-O. For each of
the four lipid traits, we analyzed five functional categories (masks) of coding and non-
coding variants: (i) pLoF (stop gain, stop loss and splice) RVs, (ii) missense RVs, (iii)
synonymous RVs, (iv) promoter RVs, and (v) enhancer RVs. The pLoF, missense, and
synonymous RVs were defined by GENCODE VEP categories2?-21, The promoter RVs were
defined as RVs in the +/- 3-kb window of transcription starting site (TSS) with overlap of
Cap Analysis of Gene Expression (CAGE) sites. The enhancer RVs were defined as RVs in
GeneHancer predicted regions with overlap of CAGE sites#*®-50, Within each gene functional
category, we tested for an association between rare variants (MAF < 1%) in the functional
category and lipid traits using STAAR-O with the 13 aggregated functional annotations
described above. For missense RVs, we incorporated an additional annotation functional
category predicting functionally “disruptive” variants determined by MetaSVM®1, which
measures the deleteriousness of missense mutations. The overall distributions of STAAR-O
P-values were well calibrated for all four lipid phenotypes (Supplementary Fig. 8). We
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considered in unconditional analysis a Bonferroni-corrected genome-wide significance
threshold of a = 0.05/(20,000 x 5) = 5.00 x 10~/ accounting for five different masks across
protein-coding genes.

STAAR-O identified 21 genome-wide significant associations with four lipid phenotypes
using unconditional analysis of the discovery samples (Supplementary Table 5 and
Supplementary Fig. 9). After conditioning on known lipids-associated variants*452-67 11
out of the 21 associations remained significant at the Bonferroni correction level

0.05/21 =238 x 1073 using the discovery samples. These included associations with LDL-C
(pLoF RVs in PCSK9and APOB, missense RVs in PCSK9, NPC1L 1, and APOE),
association with HDL-C (pLoF RVs in APOCJ3), association with TG (pLoF RVs in
APOC?3), and associations with TC (pLoF RVs in PCSK9and APOB, missense RVs in
PCSK9and LIPG) (Table 1). Of these 11 associations, 10 were replicated at the Bonferroni-
corrected level 0.05/11 = 4.55 x 10> after adjusting for known lipid-associated variants. The
association between APOC3 pLoF RVs and HDL-C was unreported in a previous study
using the same TOPMed Freeze 3 data*.

The association between missense RVs in NPC1L 1 and LDL-C was not detected by the
conventional variant-set tests and has not been observed in previous studies#455:68.69 |n the
discovery phase, its unconditional STAAR-O P-value was 1.29 x 10, while the most
significant conventional variant-set test was the burden test with P = 7.04 x 1076 This
association was not driven by any single RV (minimum single RV P-value > 10‘3) but was
due to the aggregated effects of multiple missense RVs. The P-value of the burden test
additionally weighted by MetaSVM was the smallest of all annotations (P = 3.15 x 10™),
highlighting the significant association between disruptive missense RVs in NPC1L 1 and
LDL-C (Supplementary Fig. 10). Among all 174 missense RVs in NPC1L1 from the
discovery samples, the disruptive missense RVs as predicted by MetaSVM were enriched
among variants with higher aPC-Conservation scores (Supplementary Table 6). This
contributed to the test weighted by aPC-Conservation being the most significant across all
quantitative annotation-weighted tests included in STAAR-O (burden P =3.12 x 10‘7). As
aPC-Conservation summarizes variants’ evolutionary conservation scores, it is informative
in predicting whether or not variants are deleterious and thus functional /%71, Conditioning
on the ten known common variants in MPCI1L 1 associated with LDL-C (Supplementary
Table 7)°7-61.65-67 the association between disruptive missense RVs in NPCIL1and LDL-
C remained significant after Bonferroni correction with the conditional analysis

P =927x 1077 in discovery phase.

This association was validated in replication phase with P = 2.59 x 10~* and with

P =4.02x 10" in pooled samples in conditional analysis. This significant association was
also validated using whole exome sequencing data from the UK Biobank’2 (n = 40, 519) with

P =249 x 10~*in conditional analysis.
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Genetic region analysis of rare variants.

We performed genetic region analysis to determine whether RVs within sliding windows are
associated with lipid traits. The sliding windows were defined to be 2 kb in length, start at
position 0 bp for each chromosome, and have a skip length of 1 kb. Windows with a total
minor allele count less than 10 were excluded from the analysis, resulting in a total of 2.66
million 2-kb overlapping windows, with a median of 104 RVs in each sliding window
among discovery samples. For each 2-kb window, we tested for an association between the
RVs in the window and each lipid trait using STAAR-O by incorporating 13 aggregated
quantitative annotations. The overall distributions of STAAR-O P-values were well
calibrated for all four lipid phenotypes (Fig. 3b and Supplementary Figs. 11b, 12b, and 13b).
Using the Bonferroni correction, we set the genome-wide significance threshold at

a = 0.05/(2.66 x 10% = 1.88 x 10~ 8 across sliding windows (Fig. 3a and Supplementary Figs.
11a, 123, and 13a). Supplementary Table 8 summarizes the significant 2-kb sliding windows
identified using STAAR-O. Overall, by dynamically incorporating multiple functional
annotations capturing different aspects of variant function, STAAR-O was able to detect
more significant sliding windows, and showed consistently smaller P-values for top sliding
windows compared with conventional variant-set tests weighted using MAFs (Fig. 3c,d and
Supplementary Figs. 11c—f, 12c, and 14). Burden tests were not able to detect any window
that reached significance.

Among the 59 genome-wide significant sliding windows detected by STAAR-O in
unconditional analysis, 17 remained significant at the Bonferroni correction level

0.05/59 = 8.47 x 10~ * after conditioning on known lipids-associated variants using the
discovery samples (Table 2). For LDL-C, the significant sliding windows were located in
gene PCSK9or in a 50-kb region on chromosome 19 including the APOE cluster. For TC,
all of the significant sliding windows were located in the same areas as for LDL-C. For TG,
STAAR-O detected two consecutive significant sliding windows within APOC3, whereas no
significant sliding windows were detected for HDL-C. Of these 17 associations, six were
replicated at level 0.05 /17 = 2.94 x 10~ after Bonferroni correction and another four were

replicated at level 0.05/9 = 5.56 x 10~ after Bonferroni correction for nine non-overlapping
sliding windows in conditional analysis of replication samples!’, including a sliding window
located downstream of APOCIPI (Chr 19: 44,931,528 bp - 44,933,527 bp), which was
significantly associated with LDL-C but undetected by the burden test, SKAT, and ACAT-V
(Table 2 and Fig. 3c).

The top variant of the significant sliding window located downstream of APOC1P1 was
rs370625306 (MAF = 0.005, P = 8.71 x 10~ %), which was not significant at a Bonferroni-
corrected threshold (a = 0.05/(1.51 x 107) = 3.31 x 10™°) in individual variant analysis. This
rare variant and the second top variant in these windows

(159749443, MAF = 0.009, P = 2.46 x 10~>) were upweighted by aPC-Epigenetic in STAAR-O
(Supplementary Fig. 15). Specifically, the aPC-Epigenetic scores of rs370625306 and
rs9749443 ranked in the top 10% and top 30% among all RVs, respectively, in each sliding
window. Conditioning on the two known common variants rs7412 and rs429358 in APOE
associated with LDL-C5®, the strength of association of both sliding windows was reduced
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but remained significant (Table 2). Similar results were found after further conditioning on
APOE haplotypes using these two SNPs (Supplementary Table 8). This suggests that the
effects of RVs in this sliding window are not fully captured by the two known common
LDL-associated variants. STAAR-O also identified and replicated two highly significant
windows in APOC3associated with TG in conditional analysis that were undetected by
SKAT and burden test3.

STAAR identifies more associations using relevant tissue functional annotations.

To evaluate the effect of tissue specificity, we compared the performance of STAAR-O in
both gene-centric and genetic region analysis by incorporating liver (a central hub for lipid
metabolism), heart, and brain annotations. For each tissue, we calculated a tissue-specific
aPC from tissue-specific DNase, H3K4me3, H3K27ac and H3K27me3 from ENCODE
(Supplementary Table 9)26.74, We used tissue-specific CAGE sites with overlap of RVs in
the +/- 3-kb window of TSS and GeneHancers to define promoter and enhancer RV masks
in gene-centric analysis. To make a fair comparison between tissues, we calculated STAAR-
O P-values based solely on the tissue-specific aPC and without incorporating the MAF and
other annotations.

Overall, the use of liver annotation resulted in more significant levels of association than
heart and brain annotations, as would be expected for lipid traits, although no additional
replicated conditionally significant association was detected by using tissue-specific
annotations. STAAR-O identified 9 and 8 replicated conditionally significant associations by
using liver annotation in gene-centric and genetic region analysis, respectively
(Supplementary Tables 10 and 11). Among these 17 significant associations, two were not
seen when heart annotation was used and two were not seen when brain annotation was
used, and no additional associations were detected by using heart and brain annotations
(Supplementary Tables 10 and 11). Furthermore, more suggestive significant associations
were detected when using liver annotation than the other two tissues at various levels of
unconditional ~P-value thresholds in the discovery phase (Supplementary Figs. 16 and 17).

Computation cost.

We developed an R package, STAAR, to perform scalable variant-set association tests
incorporating multiple variant annotations for WGS RVAS. Using sparse GRMs38, STAAR
scales well both in terms of computation time and memory for very large-scale WGS
association studies, such as sample sizes in TOPMed, GSP, and UK Biobank. The
computation time for STAAR-O to perform WGS gene-centric and genetic region analysis
on 30,000 related samples using the TOPMed data requires 15 hours for 100 2.10 GHz
computing cores with 6 GB memory for each lipid trait. Analyzing 500,000 simulated
related samples mimicking the UK Biobank sample size requires 26 hours for WGS analysis
using the same approach and computational resources (Online Methods).

Discussion

We propose STAAR as a general, computationally scalable framework that effectively
incorporates multiple qualitative and quantitative variant functional annotations to boost
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power for variant-set tests for continuous and binary traits in WGS RVAS, while accounting
for both population structure and relatedness using GLMMs.

We highlighted STAAR-O, the omnibus test that aggregates multiple annotation-weighted
tests in the STAAR framework. We focused on two types of WGS RV association analyses
using STAAR-O: gene-centric analyses by grouping coding and non-coding variants into
functional categories for each protein-coding gene, and agnostic genetic region analyses
using sliding windows. In extensive simulation studies, we demonstrated that STAAR-O
achieves substantial power gain compared with conventional variant-set tests weighted by
MAF, while maintaining accurate type | error rates for both quantitative and dichotomous
phenotypes.

In a WGS RV analysis of lipid traits using the TOPMed data, STAAR-O identified several
conditionally significant functional categories associated with lipid traits in gene-centric
analysis (including NPCI1L 1 missense RVs and LDL-C; APOC3pLoF RVs and HDL-C; and
L /PG missense RVs and TC) that were missed by the previous study using the same
TOPMed data**. Earlier studies reported marginal association between inactivating
mutations (pLoF RVs and frameshift indels) in MPCIL1and LDL-C with P = 0.045%, which
was replicated using the pooled TOPMed samples (P = 0.02), no significant association
between pLoF RVs and LDL-C was found (P = 0.15). STAAR-O identified much more
significant novel association, which replicated, between missense RVs in NPCIL1and LDL-

C, which was driven by disruptive missense RVs (conditional P = 4.02 x 10~ !! in pooled
samples). None of these disruptive missense RVs was reported in ClinVar’®, suggesting that
the findings from emerging WGS studies can help guide the expansion of the ClinVar
database. NPCIL 1 is the direct molecular target of the lipid-lowering drug ezetimibe, which
reduces the absorption of cholesterol by binding to NPCIL178. STAAR-O also suggested
several conditional associations in the discovery phase that were validated in our replication
phase and achieved significance in pooled samples (Supplementary Table 12).

In agnostic sliding-window based genetic region analysis, STAAR-O detected and replicated
10 sliding windows after conditioning on known variants, including association between an
intergenic region located downstream of APOC1PI and LDL-C, that were not detected using
conventional tests. This detected APOCIPI region is located in the hepatic control region 2
(HCR-2) that regulates hepatic expression of apolipoproteins. By further conditioning on the
APOE haplotypes and rs35136575, a common variant previously found in the downstream
HCR-2 associated with LDL-C”’, the strength of association was reduced but remained
significant (Supplementary Table 8). This discovery is due to upweighting several plausibly
causal rare variants that have regulatory functions using aPC-Epigenetic scores in STAAR-O
(Supplementary Fig. 15 and Supplementary Table 13). These results highlight that
incorporating multiple functional annotations using STAAR can effectively boost power for
WGS RVAS.

To capture multiple aspects of variant functionality, we introduced annotation PCs by
performing dimension reduction of a large number of diverse individual annotations from
various external databases. See Online Methods for an example demonstrating that aPCs
explain diverse and complementary functionality of known LDL-associated functional rare
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variants, and STAAR provides greater power for RV association tests by upweighting these
variants using aPCs.

In practice, STAAR is very flexible and users can determine the set of individual annotations
to calculate aPCs and the number of aPCs and integrative functional scores and other
qualitative scores to be used, as well as tissue, cell-type and phenotype-specific variant
annotations’8-80, In this paper, we group the individual annotations based on biological
knowledge; users can also apply data-driven approaches, such as clustering, to group
annotations for aPC calculation. We also demonstrate that STAAR detects more associations
using relevant tissue functional annotations. It will be of interest, in future research, to
incorporate improved rare variant effect size models in the weights to further improve power
for RVAS®1.82

The STAAR procedure is fast and scalable for very large WGS studies and biobanks of
hundreds of thousands to millions of samples for both quantitative and dichotomous
phenotypes as it uses estimated sparse GRMs38 to fit the null GLMM and to scan the
genome. Besides using sliding windows of a pre-specified fixed window length, STAAR
could be extended to flexibly detect the sizes and locations of coding and non-coding rare
variant association regions using the dynamic window analysis method SCANG®3. In
addition, STAAR could be extended to settings with survival, unbalanced case-control, and
multiple phenotypes, and hence could provide a comprehensive framework for WGS RVAS.
Thus, STAAR provides a powerful and flexible tool for variant association discovery in
many settings to explore the molecular basis of common diseases.

Online Methods

Notations and model.

Suppose there are » subjects with M total variants sequenced across the whole genome.
Given a genetic set of p variants, for subject / let Y; denote a continuous or dichotomous

trait with mean u;; X; = (X1, ...,X,q)T denote g covariates, such as age, gender, ancestral

principal components; and G; = (Gjy, ..., Gip)T denote the genotype information of the p
genetic variants in a variant-set.

When the data consist of unrelated samples, we consider the following Generalized Linear
Model (GLM)

g(u) = o+ X] a + GI B, @)

Where g(u) = u for a continuous normally distributed trait, g(u) = logit() for a dichotomous
trait, o is an intercept, a = (oy, ..., aq)T is a vector of regression coefficients for X;, and

B=,..., ﬁp)T is a vector of regression coefficients for G;.

When the data consist of related samples, we consider the following Generalized Linear
Mixed Model (GLMM)35-37
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g(u) = ag+ X] a+ Gl B+ b, 2

where the random effects »; account for remaining population structure unaccounted by
ancestral PCs, relatedness, and other between-observation correlation. We assume that
b=(by,..., bn)T~N(0, yE 19,(1),) with variance components 6, and known covariance
matrices @;. The random effects b can be decomposed into a sum of multiple random effects

to account for different sources of relatedness and correlation as b = ¥ 7_ | b; with

b~N(0, ;@) . For example, b; accounts for population structure and family relatedness by
using the Genetic Relatedness Matrices (GRMs) as its covariance matrix @,8485, A sparse
GRM can be used to scale up computation3®. Additional random effects b,, -+, b; can be

used to account for complex sampling designs, such as correlation between repeated
measures from longitudinal studies using subject-specific random intercepts and slopes and
hierarchical designs. The remaining variables are defined in the same way as those in the
GLM (1). Under both the GLM and the GLMM, we are interested in testing the null
hypothesis of whether the variant-set is associated with the phenotype, adjusting for
covariates and relatedness, which corresponds to Hy: g = 0, that is, p; = fp = - = p, = 0.

Conventional variant-set tests.

Conventional score-based aggregation methods allow for jointly testing the association
between variants in the genetic set and phenotype. In particular, burden tests*~7 assume that
B = w;p, where g is a constant for all variants, such that the corresponding burden test

statistic to test Hy: g = 0 < Hy:p = 0 is given by

OQBurden = (Z;= 1 ijj)Z,

where S; = ¥/’ 1 G;;(Y; — i;) is the score statistic of the marginal model for variant j and 7;
is the estimated mean of Y; under the null GLM g(y;) = ap + X,-Ta or the null GLMM

g(ui) = ag+ XT o + b;. Qpurden aSymptotically follows a chi-square distribution with 1 degree

of freedom under the null hypothesis, and its P-value can be obtained analytically while
accounting for linkage disequilibrium (LD) between variants3-37,

For SKATS, the p;’s are assumed to be independent and identically distributed (i.i.d.)
following an arbitrary distribution, with E(g;) = 0 and Var(p)) = wjz-r. The null hypothesis of
no variant-set effect Hy: p = 0 is equivalent to Hy:z = 0, and the corresponding SKAT test
statistic is given by

522
OSKAT = Z wjSy.
i=1
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Osk a1 asymptotically follows a mixture of chi-square distributions under the null

hypothesis, and its P-value can be obtained analytically while accounting for LD between
variants337.

Further, the recently proposed ACAT-V test uses a combination of transformed variant ~-
values rather than operating on the test statistics directly®. The ACAT-V test statistic is given

by

OQACAT — v = wMAF(1 — MAPF)tan((0.5 — pg)7)

+ ) wszAF 1 = MAF )tan((05 = pj)x).
=1

where p’ is the number of variants with minor allele count (MAC) greater than 10 and p; is
the association AP-value of individual variant j corresponding the individual variant score
statistics .S; for those variants with MAC > 10. p is the burden test ~-value of extremely rare
variants with MAC < 10 and W—MAF) is the average of the weights

wJZMAF (1 — MAF;) among the extremely rare variants with MAC < 10. Q47 — v can be

well approximated by a Cauchy distribution under the null hypothesis, and its A-value can be
obtained analytically while accounting for LD between variants®. For binary traits in highly
unbalanced designs, one can improve individual P-value calculations using Saddlepoint
approximation86:87,

These conventional approaches consider a weight w; defined as a threshold indicator or a

function of minor allele frequency (MAF) for variant j, i.e. w; = Beta(MAF; aj, a2)3.
Common choices of the parameters are a; = 1 and a = 25 which upweights rarer variants, or
a; = 1 and ap = 1, Which corresponds to equal weights for all variants. In WGS studies, the

vast majority of rare variants across the genome are not causal. Thus, choosing their weights
according to MAF will incorrectly upweight many such “noise” variants in a variant-set and
result in a loss of statistical power. Weighting using multiple variant functional annotations
will help overcome this deficiency.

Calculation of annotation principal components using individual functional annotations.

To effectively capture the multi-faceted biological impact of a variant while reducing
dimensionality, we propose variant annotation Principal Components (aPCs) as the PC
summary of the functional annotation data by incorporating individual scores extracted from
various functional databases26:27:39-41.88 \\ke first group the individual scores into 10 major
functional categories based on a priori knowledge, each capturing a specific aspect of variant
biological function, including epigenetics, conservation, protein function, local nucleotide
diversity, distance to coding, mutation density, transcription factors, mappability, distance to
TSSITES, and micro RNA (Fig. 2). For each category, we then center and standardize all
individual scores within the category, such that higher value of each individual score
indicates increased functionality of that annotation, and calculate aPC as the first PC from
the standardized individual scores (Supplementary Table 1). To facilitate better

Nat Genet. Author manuscript; available in PMC 2021 February 24.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Lietal.

Page 13

interpretation, these aPCs are then transformed into the PHRED-scaled scores for each
variant across the genome, defined as —10 x logo(rank( — score)/ M), where M is total

number of variants sequenced across the whole genome.

Unlike ancestral PCs that are subject-specific and are calculated using genotypes across the
genome to control for population structure, annotation PCs are variant-specific and are
calculated using functional annotations for individual variants and are used to summarize
multi-facet functions of individual variants. Complementary to other existing single-
dimension integrative functional scores, annotation PCs summarize multiple aspects of
variant function, with different blocks captured by different annotation PCs in the heatmap

(Fig. 2).

STAAR incorporating multiple functional annotations.

STAAR constructs the weights by modeling the probability of a variant being causal using
its functional annotation information via qualitative annotations (e.g. functional categories)
and quantitative annotations (e.g. annotation PCs and integrative annotations), as well as
modeling the effect sizes of causal variants. Specifically, we consider the effect of variant ;
on a phenotype can be written as

Bj=cjrj,

where ¢; is the latent binary indicator of whether variant j is causal, and y; is the effect size

of variant j if it is causal. The burden test, SKAT, and ACAT-V make direct assumptions on
the variance of g; using MAF information. This newly proposed variant effect model is

expected to increase association power since a variant’s causal status can be prioritized using
its functional annotations!314. Let z; = E(c;) denote the probability of variant  being causal,

then the effect of variant j given above is equivalent to

pj=(1~-mj)50+ ;.

where & is the Dirac delta function indicating that with probability 1 — z;, variant j has no

association with the phenotype.

Define 7 ;. as the estimated probability of jth variant being causal using the kth annotation
(k=0,-,K), e.9., 7j; measures the estimated probability that the jth variant is causal using
epigenetic annotation, aPC-Epigenetic. We estimate z ;. using the empirical CDF of the kth
annotation for variant j using its rank among all variants as

rank(Ajk)

Zjk = ECDFi(Aji) = i

where Ay is the kth annotation for the jth variant. For k = 0, we set Ay = 1 as the intercept,
which gives 7 = 1. For a quantitative annotation, A represents its numeric value, e.g., the
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kth annotation PC. The quantitative A;;, we consider in this paper include 10 aPCs

(Supplementary Table 1) and existing integrative scores, including CADD?7, LINSIGHT46,
and FATHMM-XF47. For a qualitative annotation, we define Ajj = 1 for variants in the

functional group (yes) and A, = 0 for variants otherwise (no). For example, A denotes
whether a variant is a disruptive missense variant using MetaSVM®1. Hence, zjx =1for
variants in the functional group and z ;. = 0 otherwise, e.g., disruptive missense variants
(yes/no). This corresponds to the RV tests using variants of this functional group.

In the STAAR framework, we model the effect sizes of causal variants y; in the same way as
that used in conventional variant-set tests. Specifically, we assume |y;| « w;, where w; is
assumed as a function of MAFs. For simplicity, we model w; using

Beta(MAF;; aj, ap) and set (aj. ) to be (1, 1) or (1,25). Then, the burden test statistic using kth
variant functional annotation as the weight, e.g., aPC-Epigenetic, is given by

OBurden,k = (X = l?rjkszj)z, whose A-value is denoted by pgyrden, k(k = 0, -, K). Under the
assumption of SKAT, by estimating the probability of jth variant being causal using the kth
annotation (k = 0, ---, K), we have E(g;) = 0 and Var(p;) = Var(c;7;) = zjxw?z,. Hence, the

SKAT test statistic using kth variant functional annotation as the weight is given by

& 22
OSKAT, k= Z Zjwy Sy,
j=1

whose P-value is denoted by psk a7 k(k =0, -, K). In the ACAT-V test, the test statistic
using kth variant functional annotation as the weight is given by

QACAT — V. k = 7 . kqw?MAF(1 — MAB)tan((0.5 — po, )7)

+ Y 7 jkazMAF (1 = MAF j)tan((0.5 — pj)a).
=1

where 7 . ,w?MAF(1 — MAF) is the average of the weights 7 jkaZ-MAF /(1 - MAF;) among the
extremely rare variants with MAC < 10. The P-value of Q4car — v & IS denoted by

PACAT -V, k(k =0, K).

We denote by ppyrden. k» PSKAT. k» PACAT — v, k the P-values of burden, SKAT, and ACAT-V

tests, respectively calculated using the kth annotation as the weight. For each type of RV
tests, to robustly aggregate information from multiple annotations to boost power RV
association tests in a data-adaptive manner, we propose to use the STAAR framework to
combine individual annotation weighted tests using the ACAT P-value combination
method®42, Specifically, we define STAAR-Burden (STAAR-B), STAAR-SKAT (STAAR-
S), and STAAR-ACAT-V (STAAR-A) as
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K tani(0.5—p .
TSTAAR—-B= ), { Kfulrden,k) },

k=0

S 1an{(05~ psK AT, k)"
TSTAAR-S= . { ISk ,)}’

L'=o0

K tan{(0.5 — PACAT — .
TSTAAR-A= Y, ( Ki1T ) }.

k=0

The P-value of Tg7aaRr— 5. TSTAAR — B and TsTAAR — A Can be approximated by

1 f{arctan(TSTAAR - B)}

PSTAAR—- B~ 75 ~ ,, ;

1 Aarctan(TSTAAR - §))

PSTAAR- S~ 75~ ps .

1 f{arctan(TSTAAR - A)}
PSTAAR—- AR 5~ :

T

To further aggregate information from different types tests and different weights, we propose
an omnibus test in the STAAR framework (STAAR-O) by combining STAAR-B, STAAR-S
and STAAR-A using the ACAT method®42, We define the STAAR-O test statistic as

TSTAAR-0O= % g M[tan[(0-5 ~ PSTAAR — By, ap))7) +1an{(0.5 = pSTAAR — S(aq, ay))7}
a) e

| (a1,
+ tan[(0.5 ~PSTAAR — A(aq, 02))7[}]’

WhEre pSTAAR - B(aj. ap)s PSTAAR — S(aj.,ap)» a0 PSTAAR — A(a;. ap) denote the P-values of
STAAR-B, STAAR-S, and STAAR-A using w; = Beta(MAF; a}, a), o is the set of specified
values of (ay, ), and | & | is the size of set &. In practice, we set of = {(1,25),(1,1)}. The P-
value of Tsr4 4R — o could then be accurately approximated by

1 {arctan(TSTAAR - 0)}

PSTAAR-O® 5~ ps :

By combining different types of tests into an omnibus test, STAAR-O has a robust power
with respect to the sparsity of causal variants and the directionality of effects of causal
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variants in a variant-set, as well as variant multi-facet functions and MAFs. Specifically, by
including the burden test, STAAR-O is powerful when majority of variants in a variant-set
are causal and have effects in the same direction; by including SKAT, STAAR-O is powerful
when not a small number of variants in a variant-set are causal with effects in different
directions, or when variants in a variant-set are in high LD; by including ACAT-V, STAAR-
O is powerful when a small number of variants in a variant-set are causal or a good number
of extremely rare variants are causal; by weighting each type of tests using multiple
annotation PCs and other integrative functional scores and qualitative annotations, STAAR-
O is powerful when any of these variant functional annotations can pinpoint causal variants
and help boost power.

Data simulation.

Type | error simulations.—We performed extensive simulation studies to evaluate
whether the proposed STAAR framework preserves the desired type | error rate. We
generated continuous traits from a linear model defined as

Y;=05X1;+05Xp; +¢j,

where X;~N(0, 1), X;~ Bernoulli (0.5), and ¢~N(0, 1). Dichotomous traits were generated
from a logistic model defined as

logit P(Y; =1) = ag+0.5X71; + 0.5X7;,

where X; and X,; were defined the same as continuous traits and «y was determined to set

the prevalence to 1%. In this setting, we used a balanced case-control design. We generated
genotypes by simulating 20,000 sequences for 100 different regions each spanning 1 Mb.
The data were generated to mimic the LD structure of an African American population by
using the calibration coalescent model (COSI)*3. In each simulation replicate, 10
annotations were generated as Ay, ..., Ajg i.i.d. N(0,1) for each variant, and we randomly

selected 5-kb regions from these 1-Mb regions for type | error simulations. We applied
STAAR-B, STAAR-S, STAAR-A, and STAAR-O by incorporating MAFs and the 10
annotations and repeated the procedure with 10° replicates to examine the type | error rate at
a=107>,10"° 1077 levels. Total sample sizes considered were 2,500, 5,000, and 10,000.

Empirical power simulations.—Next, we carried out simulation study under a variety of
configurations to assess the power gain by incorporating multiple functional annotations
using STAAR compared to conventional variant-set tests that use MAFs as weights. In each
simulation replicate, we randomly selected 5-kb regions from these 1-Mb regions for power
simulations. For each selected 5-kb region, we generated causal variants according to a
logistic model defined as

logit P(cj = 1) =80 + 8k Aj, ky + ko Aj, ky + k3 Aj, k3 + OkgAj. ky + OksAj, ks
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where {ky, -, ks} c {1,---,10} were randomly sampled for each region. For different regions,
causality of variants was allowed to be dependent on different sets of annotations. We set
8k, = log(5) for all annotations and varied the proportions of causal variants in the signal
region by setting &y = logit(0.0015), logit(0.015), and logit(0.18) for averaging 5%, 15% and

35% causal variants in the signal region, respectively.

We generated continuous traits from a linear model given by

Y; =05X1;+0.5Xp; + P1G1j+ - + BsGsj + i,

where X1;, Xo;, ¢; were defined the same as the type I error simulations, Gy, ..., Gy; were the
genotypes of the scausal variants in the signal region, and g, ..., f; were the corresponding

effect sizes of causal variants. Dichotomous traits were generated from a logistic model
given by

logit P(Y; = 1) = 0.5X; + 0.5X2; + f1G1 j + -+ + fsGy,

where ag, X1;, X»; were defined the same as the type | error simulations, Gy, ..., Gy; were the
genotypes of the s causal variants in the signal region, and g, ..., f; were the corresponding

log ORs of the s causal variants.

Under both settings, we model the effect sizes of causal variants using
Bj=v; = co|logioM AF ;| . The effect size of causal variant was therefore a decreasing function

of MAF. For continuous traits, ¢, was set to be 0.13. For dichotomous traits, ¢y was set to be

0.255, which gives an odds ratio of 3 for a variant with MAF of 5 x 1072, For each setting,
we additionally varied the proportions of causal variant effect size directions by setting
100%, 80%, and 50% variants to have positive effects. Finally, we performed simulations
using different magnitudes of effect sizes by varying the values of ¢y across a wide range.
We applied STAAR-B, STAAR-S, STAAR-A, and STAAR-O using MAFs and all 10
annotations in the weighting scheme, and repeated the procedure with 104 replicates to

examine the powers at « = 10~/ level. Total sample sizes considered were 10,000 across all
settings.

Computation cost.—To test the computation time of 500,000 related samples, we
simulated 1,000 genomic regions, each with 100 variants, for 1 million haplotypes of
125,000 families with 2 parents and 2 children per family. The computation time for WGS
RVAS was estimated by analyzing 2.5 million variant-sets with on average 100 variants in
each set using STAAR.

Statistical analysis of lipid traits in the TOPMed data.

The TOPMed WGS data consist of ancestrally diverse and multi-ethnic related samples*®.
Race/ethnicity was defined using a combination of self-reported race/ethnicity and study
recruitment information. The discovery cohorts consist of 4,580 (37.2%) Black or African
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American, 6,266 (50.9%) White, 543 (4.4%) Asian American, and 927 (7.5%) Hispanic/
Latino American. The replication cohorts consist of 3,534 (19.8%) Black or African
American, 11,662 (65.4%) White, 132 (0.7%) Asian American, and 2,494 (14.0%) others.
The “others” category in the replication cohort includes many Hispanic/Latino American as
well as a cohort of Samoans.

We applied STAAR-O to identify RV-sets associated with four quantitative lipid traits (LDL,
HDL, TG and TC) using the TOPMed WGS data. LDL-C and TC were adjusted for the
presence of medications as before?. Linear regression model adjusting for age, age?, sex
was first fit for each study-race/ethnicity-specific group. In addition, for Old Order Amish
(OOA), we also adjusted for APOB p.R3527Q in LDL-C and TC analyses and adjusted for
APOC3p.R19Ter in TG and HDL-C analyses*. The residuals were rank-based inverse
normal transformed and rescaled by the standard deviation of the original phenotype within
each group. We then fit a heteroscedastic linear mixed model (HLMM) for the rank
normalized residuals, adjusting for 10 ancestral PCs, study-ethnicity group indicators, and a
variance component for empirically derived kinship matrix plus separate group-specific
residual variance components to account for population structure and relatedness. The output
of HLMM was then used to perform following variant set analyses for rare variants (MAF <
1%) by scanning the genome, including gene-centric analysis using five variant categories
(pLoF RVs, missense RVs, synonymous RVs, promoter RVs, and enhancer RVs) for each
protein coded gene, and agnostic genetic region analysis using 2-kb sliding windows across
the genome with a 1-kb skip length. The WGS RVAS analysis was performed using the R
package STAAR (version 0.9.5).

The aPCs provide diverse and complementary information on variant functionality, and are
incorporated in rare variant association tests using an omnibus weighting scheme via the
proposed STAAR method. We demonstrate using the following example that STAAR boosts
the rare variant association test power by properly upweighting known LDL-associated
functional rare variants. For example, the association between a 2-kb sliding window located
at 55,038,498 bp - 55,040,497 bp on chromosome 1 and LDL-C using STAAR-O is more
significant than conventional tests in unconditional analysis (Supplementary Table 14). This
power gain of STAAR-O is due to upweighting functional variants, e.g., the known tolerated
missense variant rs11591147 within the sliding window through incorporating multiple
aPCs®9, Specifically, the aPC-Epigenetic, aPC-Protein, and aPC-Mappability PHRED scores
are greater than 20 (top 1% across the genome), and the aPC-MutationDensity, aPC-TF, and
CADD PHRED scores are greater than 10 (top 10% across the genome) for this variant,
highlighting the multi-dimensional functionality of this variant. The aPC-Protein and aPC-

Mappability weighted SKAT A-values are 6.69 x 10~ 13 and 3.78 x 10~ 2, which are more
significant than SKAT (P = 1.12 x 10~°) and burden test (P = 4.68 x 10™%).

Statistical analysis of LDL-C in the UK Biobank data.

We used UK Biobank whole exome sequences (WES) from the functionally equivalent (FE)
pipeline. Sample and variant quality control measures were previously described’289, In
brief, samples with mismatch between genetically inferred and reported sex, high rates of
heterozygosity or contamination (D-stat > 0.4), low sequence coverage (less than 85% of
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targeted bases achieving 20X coverage), duplicates, and WES variants discordant with
genotyping chip were removed. A total of 43,243 individuals with genetically inferred
European ancestry were included; 40,519 of those had data on LDL cholesterol. Total
cholesterol was adjusted by dividing the value by 0.8 among individuals reporting lipid
lowering medication use after 1994 or statin use at any time point. LDL cholesterol was
calculated from adjusted total cholesterol levels by the Friedewald equation for individuals
with triglyceride levels < 400 mg/dl. If LDL cholesterol levels were directly measured, then
their values were divided by 0.7 among reporting lipid lowering medication use after 1994
or statin use at any time point. Residuals were created after adjustment for age, age?, sex,
and the first 10 ancestral principal components. Residuals were then rank-based inverse-
normal transformed and multiplied by the standard deviation. Analyses were restricted to
missense variants in the MPCIL 1 gene predicted to be damaging according to the MetaSVM
prediction algorithm and conditioned on ten known common variants in NPC1L 1 associated
with LDL-C (rs10234070, rs73107473, rs2072183, rs41279633, rs17725246, rs2073547,
rs10260606, rs217386, rs7791240, rs2300414) obtained from the UK Biobank imputed
genotype data. We performed a burden test for the association between disruptive missense
RVsin NPC1L1and LDL-C.

Reporting summary.

Further information on research design is available in the Nature Research Reporting
Summary linked to this technical report.

Genome build.

All genome coordinates are given in NCBI GRCh38/UCSC hg38.

Code availability.

STAAR is implemented as an open source R package available at https://github.com/xihaoli/
STAAR and https://content.sph.harvard.edu/xlin/software.html.

Data availability.

This paper used the TOPMed Freeze 5 Whole Genome Sequencing data and lipids
phenotype data. The genotype and phenotype data are both available in dbGAP. The
discovery phase used the data from the following four study cohorts, where the accession
numbers are provided in parenthesis: Framingham Heart Study (phs000974.v1.p1), Old
Order Amish (phs000956.v1.p1), Jackson Heart Study (phs000964.v1.p1), and Multi-Ethnic
Study of Atherosclerosis (phs001416.v1.p1). The replication phase used the data from the
following ten study cohorts: Atherosclerosis Risk in Communities Study (phs001211),
Cleveland Family Study (phs000954), Cardiovascular Health Study (phs001368), Diabetes
Heart Study (phs001412), Genetic Study of Atherosclerosis Risk (phs001218), Genetic
Epidemiology Network of Arteriopathy (phs001345), Genetics of Lipid Lowering Drugs and
Diet Network (phs001359), San Antonio Family Heart Study (phs001215), Genome-wide
Association Study of Adiposity in Samoans (phs000972) and Women’s Health Initiative
(phs001237). The sample sizes, ethnicity and phenotype summary statistics of these cohorts
are given in Supplementary Table 3.
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The functional annotation data are publicly available and were downloaded from the
following links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/download),
ANNOVAR dbNSFP v3.3a (https://annovar.openbioinformatics.org/en/latest/user-guide/
download), LINSIGHT (https://github.com/CshlSiepelLab/LINSIGHT), FATHMM-XF
(http://fathmm.biocompute.org.uk/fathmm-xf), CAGE (https://fantom.gsc.riken.jp/5/data),
GeneHancer (https://www.genecards.org), and Umap/Bismap (https://
bismap.hoffmanlab.org). In addition, recombination rate and nucleotide diversity were
obtained from Gazal et al. The tissue-specific functional annotations were downloaded
from ENCODE (https://www.encodeproject.org/report/?type=Experiment).
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Figure1|. STAAR wor kflow.

a, Prepare the input data of STAAR, including genotypes, phenotypes, covariates, and
(sparse) genetic relatedness matrix. b, Annotate all variants in the genome and calculate the
annotation principal components for different classes of variant function. ¢, Define two types
of variant-sets: gene-centric analysis by grouping variants into functional genomic elements
for each protein-coding gene; genetic region analysis using agnostic sliding windows. d,
Estimate STAAR statistics for each variant-set. e, Obtain STAAR-O P-values for all variants

sets that are defined in ¢ and report significant findings.
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Figure 2 |. Correlation heatmap of functional annotation scores.
The figure shows pairwise correlations between 76 individual and integrative functional

annotations using variants from the pooled samples of lipid traits in the TOPMed data. The
cells in the visualization are colored by Pearson’s correlation coefficient values with deeper
colors indicating higher positive (red) or negative (blue) correlations. Each annotation
principal component (aPC) is the first PC calculated from the set of individual functional

annotations that measure similar biological function. These aPCs are then transformed into
the PHRED-scaled scores for each variant across the genome (Online Methods).
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Figure 3|. Genetic region (2-kb sliding window) unconditional analysisresultsof LDL-C in
discovery phase using the TOPMed cohort.

a, Manhattan plot showing the associations of 2.66 million 2-kb sliding windows for LDL-C
versus —logo(P value) of STAAR-O. The horizontal line indicates a genome-wide P-value

threshold of 1.88 x 10~ (7= 12,316). b, Quantile-quantile plot of 2-kb sliding window
STAAR-O P-values for LDL-C (n=12,316). ¢, Genetic landscape of the windows
significantly associated with LDL-C that are located in the 150-kb region on chromosome
19. Four statistical tests were compared: Burden, SKAT, ACAT-V and STAAR-O. A dot
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indicates that the sliding window at this location is significant using the statistical test that
the color of the dot represents (1= 12,316). d, Scatterplot of ~values for the 2-kb sliding
windows comparing STAAR-O with Burden, SKAT and ACAT-V tests. Each dot represents
a sliding window with x-axis label being the —logo(P value) of the conventional test and y-

axis label being the —logo(P value) of STAAR-O (n=12,316).
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