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CONDITIONAL LOGIT ANALYSIS OF QUALITATIVE CHOICE BEHAVIOR

by

Daniel McFadden
University of California, Berkeley

A fundamental concern of economics is understanding human choice be-
havior. Models or hypotheses are formed on the nature of decision proc-
esses, and are evaluated in the light of observed behavior. This task is
complicated because the econometrician cannot observe or control all the
factors influencing behavior, and because the process of observation itself
influences acts of the decision-maker through the vehicle of experience.

It becomes necessary to make statistical inferences on a model of indivi-
dual choice behavior from data obtained by sampling from a population

of individuals (or sampling from a population of "experience levels"

for

a single individual). When the model of choice behavior under examination
depends on unobserved characteristics in the population, the testable
implications of the individual choice model are obscured. However, it is
possible to deduce from the individual choice model properties of population
choice behavior which can be subjected to empirical test.

The link between models of individual behavior and data on population
choices is most critical when the decision-maker's alternatives are quali-
tative, or "lumpy". In conventional consumer analysis with a continuum
of alternatives, one can often plausibly assume that all individuals in a
population have a common behavior rule, except for purely random "optimi-

zation" errors, and that systematic variations in aggregate choice reflect

common variations in individual choice at the intensive margin. By contrast,



systematic variations in aggregate choice among lumpy alternatives must
reflect shifts in individual choice at the extensive margin, resulting

from a distribution of decision rules in the population.

This paper outlines a general procedure for formulating econometric
models of population choice behavior from distributions of individual
decision rules. A concrete case with useful empirical properties, condi-
tional logit analysis, is developed in detail. The relevance of these
methods to economic analysis can be indicated by a list of the consumer
choice problems to which conditional logit analysis has been applied:
choice of college attended, choice of occupation, labor force participa-
tion, choice of geographical location and migration, choice of number of
children, housing choice, choice of number and brand of automobiles owned,
choice of shopping travel mode and destination.

Section I of this paper derives the relation between individual
behavioral models and the distribution of population choices, and discusses
the behavioral axiom which leads to the conditional logit model. Section II
discusses estimation of the conditional logit model, and Section IITI dis-
cusses its statistical properties. Section IV summarizes an application

of the method to the problem of shopping travel mode and destination choice.

I. Preferences and Selection Probabilities

A study of choice behavior is described by (1) the objects of choice
and sets of alternatives available to decision-meakers, (2) the observed
attributes of decision-mekers, and (3) the model of individual choice be-
havior and distribution of behavior patterns in the population. Observed
data are assumed to be generated by the trial of drawing an individual

randomly from the population and recording his attributes, set of available



alternatives, and actual choice. A sample is obtained by a sequence of

independent trials, with or without replications in which a sequence of

choices are observed for individuals with the same measured attributes and
alternative sets.

We let X denote the universe of objects of choice, S the universe
of vectors of measured attributes of decision-makers. An individual drawn
at random from the population will have some attribute vector s ¢ S and
will face some set of available alternatives, which we now assume to be
finite and denote by B < X . Let P(x|s,B) denote the conditional prob-
ability that an individual drawn at random from the population will choose
alternative x , given that he has measured attributes s and faces the
alternative set B . The observed choice in a trial with attributes s
and alternatives B can then be viewed as a drawing from a multinomial
distribution with selection probabilities P(x|s,B) for x ¢ B .

An individual behavior rule is a function h which maps each vector
of measured attributes s and possible alternative set B into a chosen
member of B . A model of individual behavior is a set of behavior rules
H . TFor example, h may be a demand function resulting from maximization
of a specific utility function, and H may be the set of demand functions
which result from meximization of some utility function. With unmeasured
attributes varying across the population, a model H can contain many
behavior rules.

If a model H truly describes a population, then there exists a
probability w defined on the (measurable) subsets of H specifying the

1
distribution of behavior rules in the population. The selection probability

1. To be precise, each trial represents a drawing of a triple (s,B,w)



that an individual drawn at random from the population will choose x ,
given measured attributes s and alternative set B , equals the probab-
ility of occurence of a decision rule yielding this choice, or
(1) P(x|s,B) = n({h ¢ H|h(s,B) = x}) .
An econometric model of qualitative choice behavior can be constructed for
a specified model of individual behavior by assuming w to be a member of
a parametric family of probability distributions and using the fact that
the observed choices are multinomially distributed with the probabilities
(1) to obtain estimators of the underlying parameters. The following
paragraphs carry through this program for the classical model of the
utility-meximizing economic consumer.

Suppose an individual in the population has a vector of measured

attributes s , and faces J alternatives, indexed j=1,...,J and described

by vectors of attributes x, . The individual has a utility function which

J

from an underlying universe, where s 1is a vector of measured attributes,

B 1is an alternative set, and w determines a unique decision rule hw ,

with hw(x',B') ¢ B' for all possible arguments (s',B') . A probability
defined on the underlying universe induces a probability m on the set of

h, > conditioned on values of (s,B) . When the pair (s,B) and w are
statistically independent (e.g., the underlying probability is a product of

a probability defined on the universe of (s,B) and a probability defined

on the universe of w), the probability = 1is independent of the conditioning
values (s,B) . We confine our attention to this case, noting that satis-
faction of this condition is one of the criteria for a carefully designed

laboratory experiment or sample survey.



can be written in the form

U= V(s,x) + e(s,x) ,
where V 1is non-stochastic and reflects the "representative" tastes of
the population, and € 1is stochastic and reflects the idiosyncracies of
this individual in tastes for the alternative with attributes x . The
individual chooses the alternative which maximizes utility; let he denote
his behavior rule, and B = {xl,...,xJ} . The probability that an indivi-
dual drawn randomly from the population, with attributes s and alternative
set B , will choose X, equals

P,
i

P(xils,B) = n({h_ e the(s,B) = x})

(2) P[e(s,xj) - e(s,xi) < V(s,xi) - V(s,x,) for all j # i] .

J

The probability = induces a joint cumulative distribution function

F(e S E over the values ey = e(s,xj) for j=1,...,d ; i.e.,

7)
) = 1T({hE € H|e(s,xj) é:ej for j=1,...,J}) . Let F. denote

1200

F(el,...,eJ
the partial derivative of F with respect to its i-th argument, and let

v, = V(s,xi) . Then equation (2) can be written

400

(3) P, = f Fi(e V= Vieee v V- ) de

J

We may proceed by specifying a joint distribution, such as joint normal, which
will yield a family of probabilities depending on the unknown parameters
of the distribution. It will generally be necessary to impose rather
stringent maintained hypotheses on the unknown parameters to make them
identifiable in a choice experiment, particularly in the absence of
repetitions.

In practice, it is difficult to define joint distributions F which
allow the computation of econometrically useful formulae for the Pi in

equation (3). An alternative approach is to specify formulae for the



selection probabilities and then examine the question of whether these
formulae could be obtained via equation (3) from some distribution of
utility-maximizing consumers. This problem is the population analogue of
the conventional theory of revealed preference for individual consumers.
The author and Professor Marcel K. Richter have elsewhere (1971) charac-
terized the necessary and sufficient condition on selection probabilities
for satisfaction of equation (3). We shall follow this method, using a
particular specification of the selection probabilities which allows
direct verification of condition (3).

We consider a powerful axiom on selection probabilities introduced by
D. Luce (1959) which states that the relative odds of one alternative being
chosen over a second should be independent of the presence or absence of
unchosen third alternatives. Formally, we assume

Axiom 1 (Independence of Irrelevant Alternatives). For all possible
alternative sets B , measured attributes s , and members x and y of B,
(4) P(x|s,{x,y})P(y|s,B) = P(y|s,{x,y})P(x|s,B) .
We show below that this axiom is consistent with condition (3) and leads to
a simple econometric specification of the selection probabilities. Luce
has presented evidence that the axiom is consistent with behavior in some
choice experiments; we shall point out later some of its limitations.

When P(x|s,B) is positive, equation (k) implies P(x|s,{x,y})

positive, and

(5) P(y|s,{x,y}) _ _P(y|s,B)
P(x[s, {x,y}) P(x|s,B) :

This condition states that the odds of y Dbeing chosen over Xx in a

multiple choice situation B where both are available equals the odds of



a binary choice of y over x .

Since empirically a zero probability is indistinguishable from one
that is extremely small, there is little loss of generality in assuming
that the selection probabilities are all positive for the possible alter-
native sets in an experiment:

Axiom 2 (Positivity). P(x|s,B) > 0 for all possible alternative sets
B , vectors of measured attributes s , and x ¢ B .

Consider a choice set B containing alternatives x,y,z , and let

Pyy = P(x|s,{x,y}) . Define P, = 1/2 . From (4),
b
(6) P(y|s,B) = —L* P(x|s,B) ,
1Y
Xy
and
Pyx
(1) 1=7 P(yls,8) = | ] —L-] Px|s,B) .
yeB €B ny

Hence, the multiple choice selection probabilities can be written in terms

of binary odds,

(8) P(x|s,B) = l/yzB (pyx/pxy) .

Permuting the indices x,y,z in (6) and multiplying yields the condition

(9) pyx/ny = (pyz/pzy) / (pxz/pzx) .

Taking 2z to be a "benchmark" member of the alternative set B and
defining V(s,x,z) = log(pxz/pzx) , equation (8) can be written

(10) P(x|s,B) = eV(s,x,z) /X eV(s,y,z)
yeB

In the function V(s,x,z) , one may think of the argument s as giving a
"measured taste effect", the argument x as giving a "choice alternative

effect", and the argument 2z as giving an "alternative set effect". In an



experiment with sufficient variation in measured attributes s and the
alternative set B , and replications for each (s,B) pair, one can
normally identify each of these effects. In the absence of replications,
it is impossible to identify the "alternative set effect", and an identify-
ing restriction is necessary to isolate the 'choice alternative effect";
we shall assume the following:2

Axiom 3 (Irrelevance of Alternative Set Effect). The function
V(s,x,2z) determining the selection probabilities in equation (10) has the
additively separable form
(11) V(s,x,z) = v(s,x) - v(s,z) .

Then, equation (10) becomes

(12) P(x|s,B) = ev(s,x) ¥ eV(SsY)
yeB

and the function v can be interpreted as a "utility indicator" of
"representative" tastes. The following result justifies this terminology
in terms of the behavior of a population of consumers.

Lemms, 1. Suppose each member of a population of utility-maximizing
consumers has a utility function U(s,x) = v(s,x) + e(s,x) , where v is

a non-stochastic function reflecting "representative" tastes and e(s,x)

2. Axiom 3 follows from Axioms 1 and 2 if there exists some "universal
benchmark" alternative 2z such that if B is a possible alternative set,
then B u {z} is also. This follows by noting that (9) holds for =z ¢ B ,
provided Axioms 1 and 2 hold for B u {z} . Then, taking 2z to be the
universal benchmark in (10) and defining v(s,x) = V(s,x,z) for all

alternative sets yields the result.



is a function which varies randomly in the population with the property

that in each possible alternative set B = {x ,X.} , the values e(s,xj)

13Xy

are independently identically distributed with the Weibull (Gnedenko,
3

extreme value) distribution

(13) P(e(s,xj) <e)=e .

Then the selection probabilities given by equation (3) satisfy equation (12).

Proof: From (13), letting Vi = v(s,xi) .

—e J —E+Vi—VJ
Fo(e#V, =V, etV V) = e T e
J=1
J
—e( ) ViV
= e % I .
Substituting this expression in (3) yields the result. Q.E.D.

3. Monotone increasing transformations of the utility function U(s,x) do
not affect utility maximization or the selection probabilities, but trans-
form the distribution of the random component. In particular,

eU(s,x) = ev(s’x)n(s,x) has n distributed with the reciprocal exponential

distribution P(n <y) = e-l/y (y 20) 3 _e—U(s,x) = e_v(s’x)n(s,x) has
n distributed with the negative exponential distribution P(n <vy) = ey
_Be'U(S’X) V(s,x)
(y <0) ; and e = n(s,x) ? has n distributed with the power
1/8

distribution P(n <y) =y (0 <y £1) . These examples demonstrate that
the moments of the distribution of utility in the population (or their exist-
ence) do not provide a useful guide to the degree of dispersion of tastes.

We note for later reference that the Weibull distribution (13) has the

characteristic function T©'(1 + it) which is non-zero for real t , and has

all positive moments finite.
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A non-constructive proof of this result was first given by J. Marschak
(196%8); the argument above appears in D. Luce and P. Suppes (i97/), and is
attributed to E. Holman and A. Marley. The next lemma establishes that
under mild conditions the distribution (13) characterizes the population
choice models whose selection probabilities satisfy (12). A random variable

€ 1s said to be translation complete if for a function h of bounded

absolute variation with h(+») = 0 , the condition Eh(e + a) = 0 for all
real a implies h = 0 (except possibly on a set of measure zero). Most
common distributions have this property; in particular, the Weibull distri-
bution above is translation complete.q

Lemms, 2. Suppose selection probsbilities are given by equation (12)
for all finite alternative sets B in a universe X , and suppose that
for each vector of measured attributes s , the values of v(s,x) range
over the real line; i.e., v(s,X) = (~=,+») . Suppose the selection probab-

ilities satisfy equation (3) with independently identically distributed

e(s,xi) having a translation complete cumulative distribution function G .

-€
Then, G(e) = e ¢ , where a is an arbitrary positive parameter. Fixing

the parameter o by specifying G(0) = et yields the distribution (13).
Proof: Consider the choice between an alternative yielding "utility"
v, = v(s,x) and K alternatives, each yielding vy Equations (3) and

(12) imply that the probability P_ of choosing x is

“+c0

= J Gle +v_ - v
X y

E:_m

(14) P =e /(e X+ Ke & da(e)

4L, A distribution whose characteristic function is non-zero for real
arguments is translation complete [apply Feller (1966), p. 4791; the Weibull

distribution satisfies this condition.
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On the other hand, consider a binary choice between x and an alternative

z ylelding v = v(s,z) = vy + log K , implying

+oo
vZ

v
= e x/(evx +e )= f Gle + v. = v ) dc(e) .
X z

£ =m0

(15)

ae)

Xz

The construction of v, makes (14) and (15) equal, implying

+00

f [G(e + v, - vy - log K) - G(e + v, - vy)K]dG(e)

]|
o
.

€=_oo
But this can be true for all values of v, € (==,+®) only if the term in

brackets is zero, since G is translation complete, implying

o

G(vx ~ log K) = G(vx

Teking v, =0 implies G(-log K) = ook , where a = -log G(0) > 0 ,
and taking v, = log K - log L implies G(-log L) = G(log k/n)k
-aL/K

. Hence,

G(log K/L) = e for all positive integers K,L . Since G is monotone,

it follows in the limit that G(log k) = e~/

=€
ae

for all positive real k
Then G(e) = e Q.E.D.
We summarize the advantages, and then the limitations, of the axioms
leading to the formula (12) for the selection probabilities. First, this
formula allows a ready interpretation of the selection probebilities in
terms of the relative representative utilities of alternatives, and is
relatively amenable to computation. Second, the formula mekes it simple to
ascertain the effect of introducing a new alternative to an alternative set;
the proportional decrease in the selection probability of each old alter-
native equals the selection probability of the new alternative. This also

points out a weakness of the model in that one cannot postulate a pattern

of differential substitutability and complementarity between alternatives.
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Third, the axioms provide the identifying restrictions necessary to estimate
choice alternative effects without replications, and to predict choice
behavior resulting from extrapolation of observed alternative sets. Any set
of identifying restrictions meeting these conditions will require powerful
axioms on behavior, and care must be exercised in avoiding application of
these models in situations where the axioms are implausible. The model
gbove is subject to this general caveat.

The primary limitation of the model is that the independence of irrele-
vant alternatives axiom is implausible for alternative sets containing choices
which are close substitutes. An example illustrates this point. Suppose
a population faces the alternatives of travel by auto and by bus, and two-
thirds choose to use auto. Suppose now a second "brand" of bus travel is
introduced which is in all essential respects the same as the first.
Intuitively, two-thirds of the population will still choose auto, and the
remainder will split between the bus alternatives. However, if the selec-
tion probabilities satisfy Axiom 1, only half the population will use auto
when the second bus is introduced. The reason this is counter-intuitive
is that we expect individuals to lump the two bus alternatives together in
making the auto-bus choice. This example suggests that application of the
model should be limited to situations where the alternatives can plausibly
be assumed to be distinct and weighed independently in the eyes of each

decision-maker.

II. Conditional Logit Estimation

Formula (12) for the selection probabilities, obtained from Axioms 1-3,

can be adapted for empirical analysis by specifying the functional form of
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"representative" utility v(s,x) . A particularly convenient assumption is
that v 1is linear in unknown parameters:
Axiom 4. The function +v(s,x) has the form

v(s,x) = elvl(s,x) + ...+ GKVK(s,x) R

where the vk(s,x) are specified numerical functions and the ek are

unknown parameters.

A choice experiment yields observations on N distinect trials (sn’Bn) s

where sn is a vector of measured attributes of an individual and B is

n
an alternative set. Let B contain J alternatives, indexed Jj =1, ,Jn ,
with vectors of attributes x . Define zk = v (s ,X. ) and
Jn Jn n’ jn
Zip = (Zin""’zﬁn) . From equation (12), the selection probabilities then
satisfy
a8 [0 g
(16) P P(xlnlsn’Bn) = e ] e R
J=1
5
where 6' = (81,...,6K) . The experiment provides Rn repetitions of

5. The generality and limits of this form deserve emphasis. A variable

zk = vk(s,x) may be a component of x , a function specifying a non-linear
transformation or interaction between components of x , or a function
specifying an interaction between x and s variables. It cannot be a compo-
nent of s (or x) which is invariant over each alternative set, as this

shifts the origin of the "representative" utility function leaving all the
selection probabilities unchanged, and the associated ek is non-identified.

In general, the alternatives xjn have no natural ranking, and the indexing
j is arbitrary. We would then say the attributes of the alternative are

generic, or "hedonic". However, in some applications the alternatives are

ranked, and the rank J 1is a component of the vector of attributes of



1k,

trial n , and the i-th alternative is observed to be chosen Sin times.

Of particular interest is the case without repetition,

R = ) s, =1 .

We term this the conditional logit model. Note that it is an immediate

generalization to the case of unequal, possibly unranked, alternatives of
6
the multinomial logit model appearing in the literature. The derivation

of this model from a theory of population choice behavior appears to be new.

alternative x, summarizing the "unique" characteristics of this position.

J
k . k k .
Then 2z may be a variable such that zJn =1 and Zon 0 for L #j,
yielding a "specific j-th alternative" effect ek .  Further, the inter-

action of such a variable with other components of x can give variable
alternative-specific interaction effects. An extreme case is that in which

the specific alternative effect is the only attribute varying across the

alternative set, and all variables are as an example of the form zgn = si
J
s 1
Jd _ . . - 1
and zan =0 for & # 3, implying v(sn,xjn) le S, ej where only
the parameters BJ vary in J . Since translation of all Sj leaves
the selection probabilities unchanged, identification requires a normal-
ization, say 61 =0 .

6. Binomial logit analysis was popularized by Berkson (1951), (1955) and has
been analyzed extensively in the statistical literature (Antle (1970), Cox (1958,
1966, 1970), Gart (1967), Gilbert (1968), Grizzle (1962,1971), Gupta ( ),
Harter (1967), Walker (1967). Multinomial logit was developed for a special

case by Gurland (1960), and more generally by Bloch (1967), Boch (1969), Rassom

(1971), McFadden (1968), Stopher (1969), and Theil (1969,1970). An analogous



1kha.

Footnote 6. (continued)

development has occurred for probit analysis, in which the cumulative normal
rather than logistic distribution is used to determine the selection probab-
ilities (Aitchison (1957, 1970), Amemiya (1972)).

The notion of a distribution of tastes in a population of consumers as
a source of stochastic components of demand has been implicit in much of the
literature on consumer demand theory, particularly in random coefficients
models of demand. The use of this concept in analyzing qualitative choice
has been made explicit in the work of Quandt (1966, 1968, 1969, 1970), where
selection probabilities are assumed to result from maximizsation of a log-
linear utility function with random parameters. The relationship of logit
models to distributions of utility functions was worked out in the context
of models of stochastic choice behavior by Marschak (1960) and Block (1960),
and explored further by Luce (1965); the econometric implications of this
work were apparently first noted by the author (1968). The foundations of
the theory of testing hypotheses on individual behavior from population data
were developed in a later paper by the author (1971).

Binomial logit and probit analysis have been used in a number of economic
applications (Allouche (1972), Amemiya and Boskin (1972), Fisher (1962), Korbel
(1966), Lave (1968), Lee (1963), Lisco (1967), McGillivray (1970), Moses (1967),
Reichman (1971), Stopher (1969, 1970), Talvitie (1972), Thomas (1971),

Uhler (1968), Walker (1968), Warner (1967), Zellner (1965).

END FOOTNQOTE 6
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The vector (S, ,...,S_ ) can be viewed as the result of R indepen-
In Jnn n

dent drawings from a multinomial distribution with probabilities given by

(16) for i = 1,...,J . Hence, the likelihood of the given sample is a
function L = L(8) = L((Sjn,zjn);e) satisfying
L N R ! Jn S.
(17) e'= I S 1 P .
n=l “In' *°°°" Py n  i=1 M

N J Jn (Zjn - z.n)e
(18) L=C- ) z 8;, 108 ] e *
n=1 i=1 " J=1
N Jn z.ne
=Cc+ ) z Syn%yn| © = Ry 108 y e ,
n=1 J=1
where
) Jn
C= ] |logR!- ) logs, ! .
n=1 S 5 J

An estimator for 6 with good large sample properties under very general
conditions is obtained by & vector 6 , depending on the observations, which
maximizes the likelihood (18) of the given sample. We discuss the computation
and statistical properties of the maximum likelihood estimator. Several
alternative estimation methods are discussed at the end of this section.

Differentiation of (18) with respect to 6 yields the formulae

N n
(19) oL/26 = nzl jzl (SJn B RnPJn) Zjn ’
) N ’n _ -
(20) 9°L/2636" = -nzl R jzl (zJn -z) Pjn(zjn -z)



16.

where

ZinPin

Since (20) is the negative of a weighted moment matrix of the independent
variables, it is negative semidefinite and the log likelihood function is
concave in 6 . Then L is maximized at any critical point 6 where
9L/96 = 0 . If, further, the matrix 32L/3636' is non-singular, L has a
unique maximum in 6 (provided oreexists). A necessary and sufficient

condition for BQL/QOBS' to be negative definite is the following:

N
Axiom 5 (Full rank). The ) J x K matrix vhose rows are
n=1

(zin - En) for i=1,...,J and n = 1,...,8 is of rank K .
Since N linear dependency conditions are present in this matrix due to
the subtraction of weighted means, a necessary order condition is
nzl Jn > K+ N . This will hold in particular if N > K since Jn 22,
but may also hold for N < K if the Jn are large. Analogously to the
hypothesis of full rank in the linear statistical model, we can expect
Axiom 5 to hold when the order condition is satisfied provided the data vary
across alternative sets and are not colinear.

We next introduce/?lequalities condition which guarantees the existence
of a vector 6 maximizing L.

Axiom 6. There exists no non-zero K-vector vy satisfying

(

Zyp " Zin) y<0 for i,J =1,...,J and n= 1,...,N .

S.
in

Note that there is a positive probability that Axiom 6 may fail in a finite
sample since the Sin are random. We show later that this probability is

negligible in samples of reasonable size and approaches zero asymptotically.

The following result establishes the existence of a 6 maximizing L.



17,

Lemma 3. Suppose Axioms 1-5 hold. Then Axiom 6 is necessary and
sufficient for the existence of a vector 6 maximizing L .

Proof: We first show Axiom 6 to be necessary. Suppose L has a

maximum at @ » but Axiom 6 fails for some y # O . Recall that
Jn (zjn - zin)e

= - . S,

log P, (6) log le e If S, >0, then

- 8 + - 8 0 + 8) .
(Zjn zin) (6 + v) ;(zjn Zin) § and log Pin(e Y) > log Pin(e)
Then L(6 + v) ;:L(é) . Since L 1is strictly concave, L(é + y/2) > L(é) ,

~

contradicting the definition of 6 . Hence, Axiom 6 is necessary.

Next suppose that Axiom 6 holds. Define A = {y|y'y = 1} . For each

Yy € A, there exists J,i,n such that Sin(zjn - zin)y > 0 . Define
(21) b(y) = Max _ Max in ajn - Zin) Y
n=1,...,N i,J=1,...,J

n
Then b 1is a positive continuous function on the compact set A , and has a

positive lower bound b¥* on this set. Let |6] = (6'6)]‘/2

and define
D={8]| |e] < (-L(0) + C)/p*}

Consider any 6 # O , and let y = 6/|6| . Then y ¢ A and there exist

. . . - S _ .
indices i,j,n such that b(y) in(zjn zin) Y From (18),
J
3 (an - Zin) y|9]
L(6) = C <S5, logP, =-S5, log ) e
= "in in in &
- - - - 8
< Sin(zjn z. ) vlel = -v(y)]e]
< -b*|g| .

For 6 ¢ D, L(8) - C < -b*|8| < L(0) - C . Hence, L can be maximized on

the compact set D , and an optimal 6 exists. Q.E.D.
The following lemma establishes that Axiom 6 can be tested by solving

a quadratic programming problem. This can be done by using a finite computa-

tional algorithm such as Lemke's method. In practice it is unnecessary to



18.

carry out this computation for sample sizes N exceeding the number of
parameters K , as the probability of non-existence rapidly becomes
negligible.

Lemma 4. Suppose Axioms 1-5 hold. Then Axiom 6 holds if and only if

the minimum in the following quadratic programming problem is zero:

Min y'y subject to
AL
%
(22) y' = ., S, (2, -2, ) and a,, >1
n=1 1i,4=1 ijn"in Y jn in ijn

Proof: Suppose the program has a zero minimum, achieved at some

y' =0 , but that Axiom 6 fails. Then there exists vy # 0 such that

Sin(zjn - zin) Y £ 0 , with at least one inequality strict by Axiom 5.
N Jn
= ' = - i 1
Then 0 = y'y nZl . g_laijnsin(zjn zin)Y< 0 , a contradiction. Thus,
= e

if the program has a zero minimum, Axiom 6 holds.

Let K denote the convex cone generated by the vectors S, (z - 2,
in' Jn in
for n=1,...,N and 1i,j = l,...,Jn . If the origin is in the interior of
. PRI ':? S - =
K , then there exist positive scalars aijn such that y n=1aijn in(zJn Zin) 0,

and the quadratic program achieves a minimum of zero. If the origin is not
in the interior of K , then there exists a separating hyperplane with normal

vy # 0 such that Sin(z'

Jn-zin)\(;o for all n=1,...,N and i,j = 1,...,J

0

Hence, Axiom 6 fails. This proves the lemma. Q.E.D.
Computation of the maximum likelihood estimator can be carried out

using a variety of standard programs for unconstrained non-linear optimization.

Since the likelihood function is strictly concave, any algorithm which con-

verges will attain the maximum. Experience has shown that a standard

Newton-Raphson algorithm may converge slowly for this problem; we have
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found that one efficient procedure is to use Davidon's variable metric
method to determine direction of search and a one-dimensional procedure
employing a cubic approximation to determine the optimal step size.7

The maximum likelihood procedure has proved practical for problems
of up to 20 variables and 2000 observations, but is relatively costly for
large samples. A quick procedure which can be used for screening models
is to make a linear expansion of the gradient of the likelihood function

(19) in © about some initial vector 6 , and then solve for the value of

6 equating this approximate gradient to zero, or

g Lot P sb :
(23) 6 =78 + R (z, -z )'P, (z, -2_) (z, -2 )'(s, -R P, )
n=1 nJ=l Jn n Jn' " jn n n=1 j=1 Jn n jJn 'n Jn—
where P = P, (8) and z = E 7z, P, . Note that 8 is the result of
Jn Jn n 3=1 Jn jn

one iteration of a Newton-Raphson procedure for maximizing the likelihood
function, and can also be interpreted as the ordinary least squares estimator
in the linear model (with Rn observations for each n )

= =1/ = _ (s Ll/2
(24) (P, ) 2((an/Rn)—P )= (P (z

Jn jn jn) Jjn - Zn)(e -8) +e

Jn

Equation (2L4) is termed the linear probability model, and is sometimes taken

as a specification of selection probabilities P, = E(Sjn/Rn) . The estimator

Jn
§ is not a consistent estimate of the true parameter vector 6 when the
specification of Axioms 1-6 is valid; however, as a practical matter it
usually agrees in magnitude and sign with the maximum likelihood estimator
provided the terms |(zjn - En)(e - 8)| are less than one. Equation (24)

for use in forecasting selection probabilities .
is inappropriate /because the requiremegt that the gorecasts lie in the unit

7. The author is indebted to H. Wills and H. Varian for work on the numerical

methods and programming of this problem.
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interval is not met.
When the number of repetitions for each trial is large, a method of
estimation developed by Berkson (1951) and generalized to the multinomial

8
case by Theil (1968) can be employed. When 8. ,S are large , log(sin/sln)

in’"1ln
is a close approximation to the left-hand side of

(25) log(Pin/Pln) = (zin - )6,

%1n
and an estimate of 6 can be obtained by applying ordinary or weighted least

squares to the model

(26) log(Sin/sln) - (Zin - Zln) o+ in ?

taking into account linear restrictions across equations.9 This procedure
is asymptotically equivalent to maximum likelihood estimation as the Sin
approach infinity (for appropriate weights in the regression), and is to
be preferred to the maximum likelihood procedure on computational grounds.
It should be noted however, that grouping observations which are not exact
replications in order to achieve the cell frequencies required for appli-
cation of the Berkson-Theil method introduces an "errors in variables"
component which makes the estimator inconsistent and may meke it seriously

biased. In such cases the maximum likelihood procedure should be more

reliable.

8. A rule-of-thumb is Sin > 5.
9. Some improvement in the statistical properties of the unweighted Berkson-

Theil estimator can be obtained by replacing (26) with the regression equation

Sln +1/2
e 5 a7 ) T (Bin m i) 0T Em (262)

This modification, suggested by Haldane ( ) for the binomial logit model,
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ITI. Statistical Properties

Maximum likelihood estimation of the conditional logit model can be
shown under very general conditions to provide estimators that are efficient
and normally distributed in asymptotically large samples. Examples suggest
that the approximation is reasonably good even in quite small samples.

These results can be used to construct approximate large-sample confidence
bounds and tests of hypotheses for the parameters.

We have noted that for finite sample sizes, there will be a positive
probability that a maximum of the likelihood function cannot be attained.
This corresponds to the case where the system of inequalities in Axiom 6 has
a non-trivial solution and the sample is "explained" by maximization of this
linear combination of the independent variables. We first show that when the
sample is in fact generated by probabilities satisfying Axioms 1-5, then the
probability that the likelihood function has a maximum approaches one as the
sample size increases. We impose the following condition on the data.

Axiom 7. The numbers of alternatives Jn are uniformly bounded by an

integer J, . The independent variables z;, are uniformly bounded by a
N
10
scalar M. The limit of the weighted moment matrix as Z R =+ o |
n=1

P.

equal to log (igﬁl) up to a term of order l/Ri s
In

rather than of order l/Rn , as Rn approaches infinity. This improves the
speed of convergence of the estimators to their large-sample values. Minor
modifications of the Haldane argument establish its validity in the multi-
nomial case.

10. TI.e., Izinl < M, where the norm |[A| of any array A is the sum of

the absolute values of its elements.
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N -1 N n
(27) lim ( y Rn> ! R ) (z, -2 )'P (2, -3 )=9 ,
n=1 n=1 = i=

exists and is positive definite.

The last part of this axiom strenthens the full-rank condition assumed
earlier, implying that an infinite number of blocks of K trials can be
found satisfying Axiom 5.11 One can expect Axiom 7 to hold provided the
data are not multicolinear and do not tend to become explosive or degenerate
as the sample size increases. The following results are proved in the
appendix.

Lemme. 5. Suppose Axioms 1-4 and 7 hold. Then the probability that

Axiom 6 holds and the maximum likelihood estimator exists approaches one as

N
Z Rn approaches infinity.
n=1

0
Lemma 6. Suppose Axioms 1-4 and 7 hold, 6 is the true parameter

vector, and éM is the maximum likelihood estimator for a sample of size

~

N
M= z Rn . Then eM is consistent and asymptotically normeal, with
n=1

N 1/2
(28) < y Rn> 2" - 6%
n=1

tending to a multivariate normal distribution with mean zero and a covariance
matrix equal to the identity matrix.

This lemma implies that éN tends to be distributed normally with mean
N -1
1

0 -
)™

0 and covariance matrix (
n

N
ad™) = () Rn) (8 - 60yt (8" - 69) . tends to be chi-square distributed
n=1

, and that the quadratic form

11. Otherwise, all but a finite number of vectors zin - En can be written
as linear combinations of less than K 1linearly independent vectors. Then,

Q2 must also have this property, contradicting the hypothesis that it is

non-singular.
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with K degrees of freedom. These statistics can be used to carry out
large sample tests of hypotheses on 60. In particular, diagonal elements
of the inverse of the information matrix 2 R ) provide estimates
of the variances of the estimatorsf2 To tezzla hypothesis that the true
parameter vector 90 lies in a (K - Kl) dimensional manifold, calculate

the maximum likelihood estimator éH under the null hypothesis and the

unconstrained maximum likelihood estimator ® . Then the statistic
J
AH A - A ] - 1 - "H ~
(29) -2[L(8%) - L(8)] = (8" - §) Z R ] (z;, -2)P (2, -2)(6 -8),

n= i=1
with Pin evaluated at 8 , is distributed approximately chi-square with Kl
‘degrees of freedom. If the null hypothesis is that 60 is zero, or that it
is zero except for pure alternative effects, then this statistic provides a
test of the significance of an estimation equation, indicating respectively
the "mean square error" explained or the "variance" explained. Noting that
the extreme case is L(8) & O , we can define a coefficient of determination
that is analogous to the multiple correlation coefficient in the linear

statistical model,

(30) 02 =1 -1(d) / L(s% .

If 6H is zero, or if éH is zero except for pure alternative effects and
the model contains such effects, then p2 lies in the unit interval. If,

in the latter case, the model has no pure alternative effects, it is possible

for p2 to be negative.

12. Some improvement in the speed of convergence can be attained by multi-

plying these estimates by a correction factor for degrees of freedom,

(nlian —1))/(ZR(J-1)-K)
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A second measure of goodness of fit is based on deviations of observed
from fitted relative frequencies. Define the weighted residuals
(31) Din = (Sin - RnPin) / /§;§;;. ?
for i = 1,...,Jn and n=1,...,N , where Pin is evaluated at the max-

imum likelihood estimate. These residuals satisfy the first-order conditions

for maximization of the likelihood function,
J

N n
(32) y /& ) D, #. (2, -2 )=0 |,
n . in "in in n
n=1 i=1
where
N
(33) rn=Rn/Z R >
m=1
and the conditions
J
n
(3L) } /&, p,_=0 |,
121 in “in

for n=1,...,N , a total of N + K restrictions. Now suppose ? Rn
approaches infinity, with each r approaching a limit. We show gglthe
appendix that the Din are distributed asymptotically with mean zero and
covariances

= ED

A, . D, =6 [5..-\/@ 20
in,jm in " jm nm- 1] in " Jjn
(35) B A S A CT A I e CORE A

mn in " jm " in n Jjm m

Consider the case in which N remains finite and the Rn approach

N
infinity. Then A is an idempotent matrix of rank N¥ = X Jn ~-N-K,
n=1
and the asymptotic distritribution of the Din is multivariate normal. Hence,
N Jn o
(36) G = X z D; H
. in
n=1 i=1

13
has an asymptotic chi-square distribution with N¥* degrees of freedom.

13. Treating G as a function of 6 and minimizing it at a value 6 provides
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The statistics Din and G can be used to carry out large-sample tests of
the model specification. For example, regression of the Din on potential
independent variables provides evidence on the validity of their exclusion
from the model. A test of the significance of G provides evidence on the
validity of the logit specification of the selection probabilities and the
absefdice of "alternative set" effects. Further, one can define an analogue
of the multiple correlation coefficient,
(37) R =1-6/c ,
where G is given by (36) and ' is given by the same equation when the
residuals are evaluated under the hypothesis that the parameter vector is
zero, or is zero except for pure alternative choice effects.

In evaluating the results of regressions of the Din on potential
independent variables, on should adjust for the non-independence and hetero-

scedasticity of the Din . This can be achieved in part by using the linearly

transformed residuals

(38) Yin = Pin - Dln“ﬁzg-(l - JEI;) /(1 - Pln) :

defined for 1i = 2,...,Jn and n=1,...,N . The Yin are asymptotically

4 minimum chi-square estimator of the parameter vector. The first order

conditions for this minimization coincide with (32) except for a term,
reflecting the effect of changing 6 on the weights in the denominator of
(31), which has probability limit zero when the Rn + +o , Thus, the maximum
likelihood and minimum chi-square estimators are asymptotically equivalent
under these limiting conditions. On the other hand, the minimum chi-square
procedure is not consistent under the limiting conditions that N - +e and

Rrl remain finite.
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multivariate normal with mean zero and covariances

= - - L]

(39) I‘in,jm = E YinY,jm Gnmaij qinqjm ’

where
{O

P -
/ 0 - ln 1n - -1/2
1 = - -

(ko) %y rnPin [(Zin Zn) * 1 - P0 (Zln Zn)] = :

1n

The matrix T is idempotent of rank N¥*. When the r =~ are small, the matrix
I' is nearly diagonal, and the regression of any subset of N¥ of the Yin

on potential independent variables can, as a good approximation, be treated

as independent and homoscedastic with unit variance.

We next consider the case in which N approaches infinity and the
limiting values of the r, are zero. Then, the residuals Din have an
asymptotic multinomial distribution with mean zero and covariances given by
(35), with the second term in this expression vanishing. The D, ~and the
transformed residuals Y, defined in (38) are independent across n , and

the Yin have zero mean, unit variance, and zero covariances. Suppose

M
integers N satisfy ) N =N and N > +» . Then the statistics
n=1 m m
1] )
o Nm+l Jn Nm+l 1/2
(41) v Ly UL T -y ’
n=Né+l J=2 n=Né+l

where Né = Nl + ... + Nm—l , are asymptotically independent standard normal,
and can be used to test the specification of the absence of alternative set
effects. When the Rn remain small, the distributions of the Din and

Yin depart substantially from asymptotic normality. The statistics G and
R2 defined in (36) and (37) remain useful summary measures, although the
robustness of the asymptotic distributions obtained in the previous case

has not been investigated. Since the Yin satisfy the Gauss-Markov assump-

tions when the model is specified correctly, the usual asymptotic theory for
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the linear statistical model can be applied to test the validity of
excluding potential independent variables.

The small sample properties of the maximum likelihood estimator of
the conditional logit model are unknown except for a few special cases.
Monte Carlo studies of related models suggest that maximum likelihood,
minimum chi-square, and Berkson-Theil estimators are all reasonably well-
behaved in small samples, even when the number of repetitions is small.lq
We next consider several simple examples in which the maximum likelihood
estimator can be calculated analytically. These examples suggest that the
maximum likelihood estimator is well-behaved in samples of sizes likely to
be encountered in applications, fifty and greater, but may be inferior to
the linear probability model estimator in very small samples provided the
range of the data is not too large.

Example 1. Suppose N observations are taken of a binary choice with

-0
a selection probability P, = 1/(1 + e l) for the first alternative, and

1
suppose this alternative is chosen S times. The maximum likelihood estim-

ator exists if 0 < S < N , and equals él = log(ﬁgg) . Figure 1 1s a graph

of the logistic curve specifying Pl as a function of 91 . Figure 2 gives

~

the actual expectation and variance of Sl , conditioned on existence, and
the large sample calculated variance from the information matrix. The last
columns give the linear probability model approximation (23) to the logit
model from starting value zero. For sample sizes exceeding 20, the maximum
likelihood estimator and its calculated variance have expectations which are
within ten percent of true values except for extreme selection probabilities
(e.g., 6, = 2.0 yields P, = .88). The linear probability model approxi-

1

mation is quite accurate for small parameter values, even for small sample

14, Berkson (1955), Gart (1967), Gilbert (1968), Talvitie (1972).
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Logistic Function
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FIGURE 2

Sampling Properties of the Maximum Likelihood Estimator, Example 1

PARAMETER | SAMPILE || PROBABILITY CONDITICHAL | YERCENT || CONDITIONAL | CALCULATED |PERCEWYT LIUEAR PERCERT

VALUE SIZE OF EXISTENCE | EXPECTATION | BIAS VARIAIICE OF | VARIANCE BIAS PROBABILITY| BIAS
: OF MAXIMIM | OF MAXTMINY MAKIMUL | OF MANIMUM MODEL
0 LIKELIHOND | LIXSLIHOGD LIKELIHOOD { LIKELIHOOD ECT1MATOR
1 ESTIMATOR FSPIMATOR ESTIMATOR ESTIMATOR
.01 5 .93748 .00828 -17.2 . 75018 1.21529 62.90 01000 *
10 .9980L .01103 12.3 .k9o88 .50943 1.9 .C1000 *
20 1.0 .01057 5.7 .22422 .22314 - .5 .01000 *
30 1.0 .01036 3.6 .1433h .14308 * .01000 *
50 1.0 .01021 2.1 .08343 .08338 ¥ .01000 *
75 1.0 .01014 i.b .05L82 .05L81 * .01000 *
100 1.0 .01010 1.0 .04083 .o4082 * .01000 *
1 5 .9356k .08272 -17.3 .Th726 1.21643 67.0 .09992 - .1
10 .G9782 .11023 10.2 .500hk .51128 2.2 .09992 - .1
20 1.0 .10575 5.8 .22503 22387 -~ .5 .09992 - .1
30 1.0 .103€h 3.6 .14379 .1k3k9 * ,09992 - 1
50 1.0 .10211 2.1 .08366 .08360 * .09992 - .1
75 1.0 - .10138 1.k .05497 .05495 * .09992 - .1
100 1.0 .10103 1.0 .04093 .0k093 * .0G9G2 - 1
.5 5 .69688 B Melel3N -2C.0 L6316 1.24250 83.0 . L8934 - 2.0
10 .99121 .54433 8.9 .50916 .55h72 8.9 .L8ysh - 2.0
20 .99992 .53020 6.0 .2453€ 2215 - 1.3 1898k - 2.0
30 1.0 .51912 3.8 .15515 .15391 - .8 1898l - 2.0
50 1.0 .51101 2.2 .08955 .08922 ® L4898k - 2.0
75 1.0 .50720 1.k .05865 05852 * 4898k - 2.0
100 1.0 .5053% 1.1 0361 .0k35h * .LE98Y - 2.0
1.0 5 .78978 .7323h -25.8 .52531 1.30757 146.0 .92423 - 1.6
10 .95639 1.040k0 4.0 .hoL3s .67376 36.5 .92423 - 7.6
20 .99510 1.656h3 6.6 . 30950 .30826 - . .92423 - 7.6
30 .99992 1.0uk437 L.k .19662 .191h6 - 2.6 .92423 - 7.6
=0 1.0 1.02525 2.5 .110b1 .10881 - 1.5 .92423 - 7.6
75 1.0 1.01641 1.6 .071L5 .07083 - .8 .92423 - 7.6
100 1.0 1.012156 1.2 .05235 . .05252 - .6 .02423 - 7.6
2.0 5 .46885 1.1282% ik 5 .23655 1.44030 510.0 1.5232 -23.8
10 . 71897 1.71841 -14.1 .30827 .95333 209.0 1.5232 -23.8
20 .92102 2.04023 2.0 .37726 .60123 59.% 1.5232 -23.8
30 Le7780 2.09760 4.9 .35232 RINRSRE 7.6 1.5232 -23.8
5 .99825 2.08151 4.0 .23948 .23167 - 3.3 1.5232 -232.8
75 59993 2.0538L 2.2 .15052 L4352 - 4.7 1.5232 -23.8
100 1.0 2.03925 2.0 1075k .10383 - 3.5 1.5232 -23.8
3.0 5 .21568 1.28953 -57.2 .00262 1.51321 1655.6 1.8103 -39.7
10 L3808k ©.01670 -32.8 .13505 1.11987 330.0 1.8103 -39.7
20 62158 2.59215 -13.6 .21638 .68161 207.0 1.8103 -39.7
3C LT6721 2.84h86 - 5.2 .27726 .74378 162.0 1.8105 -39.7
I 50 L9119 3.046%3 1.5 .33L52 .5hGo7 6.l 1.81e5 ~-36.7
! 5 .97385 3.10kGz 3.5 .32Lk3 . 28745 19. 4 1.61C3 -39.7
l 100 L2922} 3.10337 2.0 L2177k .28Lks9 2.5 1,616 -39.7

*Negligidbie
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sizes. The bias is severe however for extreme selection probabilities, and
is independent of sample size. The probability of existence of the maximum
likelihood estimator rises rapidly with sample size, even for extreme selec-
tion probabilities.

Example 2. Suppose N = 2R observations are taken of a binary choice

—el-e2xn
with selection probabilities P. = 1/(1 + e )

1n , where xn =0 for

n=1,...,R and x = 1 for n=R+l,...,N . Suppose the first alternative

is chosen Sl times in the first R observations and 82 times in the

second R observations. The maximum likelihood estimator exists if 0 < Sl < R

R Sl . 82 Sl
and 0 <S., <R, and equals 6. = log = and 6, = log - log .
2 1 R—Sl 2 5 R—Sl

Figure 3 gives the conditional expectations of these estimators and the expecta-

tions of the calculated variances from the information matrix for selected
parameter values. The pattern of the biases generally conforms to that of the
previous example. For a sample size of ten, the estimator and its calculated
variance are substantially biased, the former downward and the latter upward.
As sample size increases, the bias in the estimator swings positive, but

never more than ten percent, and then approaches zero. The calculated vari-
ances show similar behavior with reversed sign, their bias going from positive
to negative as sample size increases and then approaching zero. As the para-
meter values and selection probabilties become more extreme, there is an
increase in the sample size at which the maximum positive bias in the estimator
occurs. The linear probability model approximation provides an accurate
estimator for small sample sizes and parameter values, and indicates correctly
signs and orders of magnitude of parameters even for extreme values, but with
substantial biases. In samples of size 100 or 200 the biases and probabilities

of non-existence of the the maximum likelihood estimator are acceptably small



FIGURE 3

Sampling Properties of the Maximum Likelihood Estimator, Example 2

SAMPLE SIZE
10 20 40 80 140 200

First Parameter
True value .10000 ,10000 .10000 .10000 .10000 .10000
Expect. of M.L. estimate .08272 .11023 .10575 .10267 .101L48 .10103
Per cent bias of est. -17.28364| 10.22808 5.74896 ) 2.66732| 1.48170 1.02609
True variance of M.L. est. .TL726 .500kkL .22503 .10576 .05902 .0L409k
Calc. variance of M.L. est. .80200 .40100 .20050 .10025 .05729 .0ko1o
Per cent bias of var. est. 7.32580| -19.87098 | -10.90107 | -5.21060 | -2.93154 | -2.0k4035
Linear prob. model est. .09992 .09992 .09992 .09992 .09992 .09992
Per cent bias of linear est. -.08325 -.08325 -.08325| -.08325| -.08325 -.08325
Second Parameter
True value ~.50000 -.50000 -.50000| =-.50000| -.50000| =-.50000
Expect. of M.L. estimate -.40695 -.54780 -.52948 | -.51365| -.50757 | -.5052k
Per cent bias of est. -18.60931 9.5609k4 5.89654 | 2.72972 | 1.51k02 { 1.04790
True variance of M.L. est. 1.45241 1.007k0 . 46265 .21631 .120k9 .08353
Calc. variance of M.L. ext. 1.63443 .81722 . 40861 .20430 .11675 .08172
Per cent bias of var. est. 12.53225| -18.87888 | -11.68067 | -5.5493k4 | -3.11136 | -2.16302
Linear prob. model est. -.4hokeT -.Lok6T - ok | -.hok6T | -.hok6T | -.LhoL6T
Per cent bias of linear est. | -1.06652| -1.06652| -1.06652| -1.06652 | -1.06652 | -1.06652
Prob. of existence of M.L. .85421 .99181 .99996 | 1.00000|{ 1.00000 | 1.00000

est.
First Parameter
True value .10000 .10000 .10000 .10000 .10000 .10000
Expect. of M.L. estimate .08272 .11023 .10575 .10267 .101L48 .10103
Per cent bias of est. -17.28364| 10.22808 5.74896 | 2.66723 | 1.L8170 | 1.02609
True variance of M.L. est. .Th726 . 500k .22503 .10576 .05902 .okogk
Calc. variance of M.L. est. .80200 . 40100 .20050 .10025 .05729 .0ko10
Per cent bias of var. est. 7.32580| -19.87098 | -10.90107 | -5.21060 | -2.9315k | -2.04035
Linear prob. model est. .09992 .09992 .09992 .09992 .09992 .09992
Per cent bias of linear est. -.08325 -.08325 -.08325| -.08325| -.08325| -.08325
Second Parameter
True value .10000 .10000 .10000 .10000 .10000 .10000
Expect. of M.L. estimate .08204 .10990 .10582 .10270 .10150 .10104
Per cent bias of est. -17.96158 9.90456 5.82398 | 2.69820| 1.49773| 1.03691
True variance of M.L. est. 1.48579 1.00250 .L4s525) 21246 .11852 .08220
Calc. variance of M.L. ext. 1.61003 .80501 .ho2s1 .20125 .11500 .08050
Per cent bias of var. est. 8.36201| -19.69933| -11.05610| -5.27618 | -2.96650 | -2.06423
Linear prob. model est. .09942 .09942 .09942 .09942 .09942 .09942
Per cent bias of linear est. -.58076 -.58076 -.58076| -.58076| -.58076| -.58076
Prob. of existence of M.L. .87160 .99496 .99999 | 1.00000{ 1.00000{ 1.00000

est.

Continued on next page




FIGURE 3 (continued)

SAMPLE SIZE
10 20 L0 80 140 200

First Parameter
True value .10000 .10000 .10000 .10000 .10000 .10000
Expect. of M.L. estimate .08272 .11023 .10575 .10267 .10148 .10103
Per cent bias of est. -17.2836L 10.22808] 5.74896) 2.66732f 1.48170] 1.02609
True variance of M.L. est. .Th726 .500L4 .22503 .10576 .05902 .0Lk09k
Calc. variance of M.L. est. .80200 .140100 .20050 .10025 .05729 .0k010
Per cent bias of var. est. 7.32580 | -19.87098|-10.90107| -5.21060f -2.9315L4| -2.04035
Linear prob. model est. .09992 . 09992 . 09992 . 09992 .09992 . 09992
Per cent bias of linear est. -.08325 -.08325¢ -.08325} -.08325 -.08325 -.08325
Second Parameter
True value 1.00000 1.00000| 1.00000{ 1.00000f 1.00000{ 1.00000
Expect. of M.L. estimate LToWTh 1.01873} 1.06783| 1.03421] 1.01864] 1.01282
Per cent bias of est. -29.52618 1.87276] 6.78330| 3.h42109| 1.86L412] 1.282h41
True variance of M.L. est. 1.23857 .98412 .55049 .25613 .14019 .09663
Calc. variance of M.L. ext. 1.86941 .93470 LU6735 .23368 .13353 .093L7
Per cent bias of var. est. 50.93327 -5.02084| -15.10210} -8.76667] -4.75197| -3.266k42
Linear prob. model est. .90112 .90112 .90112 .90112 .90112 .90112
Per cent bias of linear est. -9.88763 -9.88763] -9.88763| -9.88763] -9.88763] -9.88763
Prob. of existence of M.L. .T1254 .9hakk .99680 .99999 1.00000{ 1.00000

est.
First Parameter
True value 1.00000 1.00000/ 1.00000} 1.00000| 1.00000| 1.00000
Expect. of M,L. estimate .73234 1.04040] 1.06643| 1.03222] 1.0176L4{ 1.01216
Per cent bias of est. -26.76589 Lh.oko22| 6.6L4324] 3.222h2f 1.76425| 1.21578
True variance of M.L. est. .52531 .gl3s . 30950 .1hake .07686 .05285
Calc. variance of M.L. est. 1.01723 .50862 .25431 .12715 .07266 .05086
Per cent bias of var. est. 93.64346 2.88570] ~17.83370|-10.08782| -5.L46810| -3.T76027
Linear prob. model est. .92423 .92423 .92423 .92423 .92423 .92423
Per cent bias of linear est. | -7.57657 | -7.57657| -7.57657| -7.5765T7| -7.57657| -T.57657
Second Parameter
True value -.50000 -.50000{ -.50000} -.50000{ -.50000| -.50000
Expect. of M.L. estimate -.33180 -.496071 -.53624| -.51826] -.50991| -.50681
Per cent bias of est. -33.64020 -.78652| T.2h721] 3.65173] 1.98177| 1.36160
True variance of M.L. est. 1.20695 1.00351 .55487 .25493 .13986 .09646
Calc. variance of M.L. ext. 1.86828 .93414 L6707 .2335h .13345 ,093L41
Per cent bias of var. est. 5h. 79349 -6.91277| -15.82285| -8.39383| -4.58190f -3.15818
Linear prob. model est. ~.u34ko -.43kbo] -.bh3bkbho| -.43hho| -.L3kkOl -.L3LLO
Per cent bias of linear est.| -13.12060 | -13.12060| ~13.12060{-13.13060] ~13.12060| ~13.12060
Prob. of existence of M.L. . 70992 .94799 .99802( 1.00000] 1.00000{ 1.00000

est.

Continued on next page




FIGURE 3 (continued)

SAMPLE SIZE
10 20 Lo 80 140 200

First Parameter

True value 1.00000 1.00000 1.00000| 1.00000] 1.00000} 1.00000
Expect. of M.L. estimate . 7323k 1.04k0ko 1.066L43| 1.03222] 1.01764| 1.01216
Per cent bias of est. -26.76589 4.oko22 6.64324| 3.22242] 1.76k425% 1.21578
True variance of M.L. est. .52531 .4oL3s5 . 30950 R/SR .07686 .05285
Calc. variance of M.L. est. 1.01723 .50862 .25431 .12715 .07266 .05086
Per cent bias of var. est. 93.6L346 2.88570| -17.83370]-10.08782| -5.46810| -3.76027
Linear prob. model est. .92423 .92423 .92423 .92423 .92423 .92423
Per cent bias of linear est.|| -7.57657| -7.57657| -7.5765T7| -7.57657| -7.57657} -7.57657
Second Parameter

True value .10000 .10000 .10000 .10000 .10000 .10000
Expect. of M.L. estimate .05511 .08855 .10715 .10k465 .10248 .10169
Per cent bias of est. -44, 88654 | -11.44656 7.1497h] L4.65396] 2.48035| 1.69241
True variance of M.L. est. 1.01662 .97802 .63496 .29179 .15804 .10854
Calc. variance of M.L. ext. 2.08L6kL 1.04k232 .52116 .26058 .14890 .10k423
Per cent bias of var. est. 105.05601 6.57ho6 | -17.9224L]-10.69591| -5.78006 | -3.96928
Linear prob. model est. .07681 .07681 .07681 .07681 .07681 .07681
Per cent bias of linear est.|| -23.19389 | -23.19389| -23.19389]-23.19389]-23.19389 |-23.19389
Prob. of existence of M.L. .60127 .90235 .99k91 .99999 1.00000 1.00000

est.

First Parameter

True value 1.00000 1.00000 1.00000| 1.00000| 1.00000| 1.00000
Expect. of M.L. estimate . 73234 1.040L0O 1.06643) 1.03222| 1.01764] 1.01216
Per cent bias of est. -26.76589 4.0k022 6.6h324}1 3.22242| 1.76425] 1.21578
True variance of M.L. est. .52531 .4okL3s . 30950 J1bh1k2 .07686 .05285
Calc. variance of M.L. est. 1.01723 .50862 .25431 .12715 .07266 .05086
Per cent bias of var. est. 93.643L46 2.88570| -17.83370(|-10.08782] -5.46810| -3.76027
Linear prob. model est. .92k423 .92423 .92423 .92423 .92423 .92423
Per cent bias of linear est.|| =-7.5765T( =7.57657| =T.5765T| -7.57657| -T7.57657 | -7.57657
Second Parameter

True value 1.00000 1.00000 1.00000} 1.00000{ 1.00000| 1.00000
Expect. of M.L. estimate .39590 .67801 .973801 1.06299] 1.0LoL43| 1.02706
Per cent bias of est. -60.40966 | -12.19939| -2.62020| 6.29931} L.oLk250]| 2.70572
True variance of M.L. est. . 76186 . 80262 .68676 .13638 .2kho22 . 16047
Calc. variance of M,L. ext. 2.92211 1.46106 . 73053 .36526 .20872 .1k611
Per cent bias of var. est. 283.54796 | 82.03L495 6.37315|-16.29632(-13.11233 | -8.94k926
tinear prob. model est. .59895 . 59895 . 59895 .59895 .59895 .59895
Per cent bias of linear est.|| -40.10460| -40.10460} -40.10L460|-40.10460]-L0.10460 [-40.10460
Prob. of existence of M.L. .37108 .68762 .91927 .99376 .99986 1 1.00000

est.
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even for extreme selection probabilities.

One must be cautious in generalizing too far the conclusions drawn from
these examples. 1In particular, we have not explored the behavior of the
estimators in samples in which the observations are generated by mixtures
of extreme and non-extreme selection probabilties. On the other hand, we
anticipate that the qualitative structure of biases will be unchanged by
the addition of independent variables or of multiple choice alternatives,
as the estimator is analogous to a linear statistical estimator except for

the non-linear dependence of the selection probabilities on the parameters.

IV. An Empirical Application

The theory of qualitative choice behavior outlined above has been applied
to several areas of consumer choice. The author (1968) has investigated the
criteria employed by a state highway department in selecting urban freeway
routes. The determinants of college choice have been studied by Professors
L. Miller and R. Radner (1970), and the results have been used to forecast
the effects of changing educational policy on college enrollment. Professor
M. Boskin (1972) has applied the model to the problem of occupational choice.
Studies in progress are investigating urban trip generation, distribution,
and modal choice; labor force participation and job search decisions; housing
location and type; recidivism; child-bearing decisions and the implications
of population control pélicy; choice of consumer durables; and rural-urban
migration decisions. To illustrate the method, we reproduce here selected
results on shopping trip mode and destination decisions obtained in a study

15
of travel demand models by Charles River Associates (1972).°

15. The results below are reproduced with the permission of Charles River

Associates and the Federal Highway Administration, U.S. Dept. of Transportation.
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The objective of this study is to develop disaggregated, policy-
oriented, behavioral models of urban trip generation, distribution, and
mode. The behavioral unit studied is the individual trip-maker, faced with
decisions on whether to take a trip, mode, and destination. The empirical
analysis is based on a household survey in Pittsburgh conducted by the
Southwestern Pennsylvania Regional Planning Commission in 1967, supplemented
with time and cost data collected by the study authors. A detailed descrip-
tion of the sample frame and variables collected is given in the study.

The analysis of shopping travel behavior is separated into three decisions,
(1) choice of mode for trips actually made at the observed time and to the
observed destination, (2) choice of destination for trips made at an observed
time by preferred mode, and (3) choice of whether or not to make a trip,
given a preferred time, mode, and destina.tion.16 The results of each
analysis are summarized in turn.

Shopping choice of mode. Choice between public transit and auto mode

is examined for a sample of 140 individual shopping trips. For each obser-
vation, walk access to transit is available. The sample is drawn from a
southern suburban corridor of Pittsburgh and a central city corridor running
from downtown to the east. A number of alternative models were fitted; those
giving the most satisfactory results in terms of fitting the base data are
described in Figure 4. All coefficients in these models are of the expected
sign. The coefficients of transit walk time, auto in-vehicle less transit

station-to-station time, and auto operating costs less transit fares imply

16. The separation of these decisions is justified in the study by postu-

lating a "tree" utility structure; we shall not repeat the argument here.



FIGURE L

Conditional Logit Model of Shopping Mode Choice

Dependent Variable = Log odds of choice of auto mode

Binary Logit Maximum likelihood estimates; standard errors in parentheses

Independent Variable Model 1 Model 2 Model 3 Model L
Pure auto mode preference effect | -6.7TT -6.20 -6.65 -6.37
(constant )* (1.66) (2.10) (1.54) (1.82)
Transit walk time (minutes) 0.37h 0.398 0.30 0.27h
(0.328) (0.410) (0.351) (0.612)
Transit wait plus transfer time —-—— —_— 0.0647 ———=
(minutes) (0.0403)
Transit station-to-station time ———— —— ——— 0.0532
(minutes) (0.0k455)
Auto in-vehicle time (minutes) —_—— ——— —_—— -0.0486
(0.0956)
Auto in-vehicle time less transit | -0.065L -0.0636 ——— —_—
station-to-station time (minutes)| (0.0320) (0.0398)
Auto in-vehicle time less transit| ——-—- —_— -0.0287 —_——
line-haul time (minutes) (0.0715)
Auto operating cost less transit | -4.11 -4.66 -4.10 -L.06
fares (dollars) (1.67) (2.06) (2.13) (1.74)
Ratio of number of autos to num- 2.24 2.26 2.01 1.89
ber of workers in the household (1.11) (1.14) (1.0L) (0.76)
Race of respondent (0 if white, —_— -2.18 —_— -——
1 if non-white) (1.26)
Occupation of head of household ——— -1.53 ——— —_——
(0 if blue-collar, 1 if white (1.10)
collar)

¥ Because of the sample selection procedure and the presence of the last three
variables giving socioeconomic - auto mode interaction effects, this constant
cannot be interpreted as a "transit'" bias which would be replicated in a random

sample of the population.
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a value of walk time of $5.46 per hour and a value of in-vehicle time of

$ .95 per hour in Model 1. These values are in close accord with shopping
trip value of time studies. Thus, the estimates seem quite stable despite
the relatively large standard errors. The models provide excellent fits
of the base-line data; in Model 1, the probability of selecting the actual
mode is greater than one-half for 133 of the 140 observations, and greater
than 0.9 for 116 of the 140 observations.

Shopping choice of destination. The choice of shopping destination

is analyzed for 63 auto-mode trips starting from the southern suburban
corridor. The possible alternative destinations for each observation are
selected by dividing the city into zones and choosing all destination zones
to which there is a trip in the sample from the origin zone. The number of
alternatives varies from three to five in this sample.

This model is estimated using only three explanatory variables, an
inclusive index of the "price" of a trip in terms of time and cost, an index
of the "attractiveness" of each shopping destination, and an interaction of
the inclusive price index and a socioeconomic variable, the number of pre-
school children. The inclusive price is defined from the shopping mode
choice Model 1 to be
[Inclusive Pricel = 0.0654[Auto in-vehicle time] + L4.11[Auto operating cost] .
The measure of destination attractiveness is taken to be the retail employ-
ment in the zone as a percentage of total retail employment in the region.
Because the alternative destinations are unranked and vary from one observ-
ation to the next, the explanatory variables enter generically. In particular,
it is assumed that there are no "specific destination" effects. The results

of the estimation are given in Figure 5. The two independent variables above



FIGURE 5

Conditional Logit Model of Shopping Destination Choice

Dependent Variable = Log odds that one destination zone is chosen over a second

Multinomial logit maximum likelihood estimates; standard errors in parentheses

Independent Variable Model 5 Model 6
Inclusive price of trip (weighted -1.06 -0.602
time and cost using Model 1 weights) | (0.28) (0.159)
Index of attractiveness of 0.844 0.832
destination (0.227) (0.224)
Interaction effect = inclusive ——— -0.521
price of trip times number of (0.343)
pre~school children
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are both found to be highly significant. Model 6 yields calculated selec-
tion probebilities which are maximum for the actual destination in 29 cases,
as opposed to a match for 16 cases which would be expected by chance.

Shopping trip frequency. The decision of whether to take a shopping

trip on a given day is analyzed for a sample of 80 households in the southern
suburban corridor, of whom 59 recorded a shopping trip on the survey day.
An inclusive price of a trip for non-trip tekers is calculated by assuming
that the distribution of destination preferences is that determined in
Model 6, and that utility has a separable form implying this distribution
is independent of the distribution of tastes for taking auto trips. The
independent variables in the model are the preference-distribution-weighted
inclusive price, the measure of attractiveness of shopping zone used above,
similarly weighted, and a household income-shopping trip interaction vari-
able. The estimates are given in Figure 6. Model 7 predicts the actual
decision with probability .5 or better for 60 of the 80 observations.

The models above of shopping mode, destination, and frequency decisions
can be combined with distributions of the independent variables in an urban

16
area to produce trip generation and distribution tables by mode. These

16. Such tables could also be generated by aggregating over individuals for
a random sample of the population, a procedure which requires a smaller
sample than that necessary to obtain accurate cell frequencies for a detailed
classification of multiple independent variables. In particular, the sample
used to calibrate the models may be utilized to produce trip tables. On the
other hand, when samples of sufficient size are available to obtain cell
frequencies, it may be possible to calibrate the model using the Berkson-

Theil estimation procedure.



FIGURE 6

Conditional Logit Model of Shopping Trip Frequency

Dependent Variable = Log odds of making a shopping trip on sampled day

Binomial logit maximum likelihood estimates; standard errors in parentheses

Independent Variable Model T Model 8
Inclusive price of trip (weighted -1.72 -2.25
time and cost of using Model 6 (0.5L4) (0.68)
weights)

Index of attractiveness of 3.90 2.85

destination (1.08) (1.19)

Family income —_—— ~0.199
(0.195)
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tables are functions of policy variables such as transit fares and wait
times, and can be recalculated to forecast the effects of policy changes on
the transportation system. Because the parameters are estimated from data

at the level of the individual decision, they do not suffer from the "fallacy
of composition" whieh could occur in attempting to infer response elas-
ticities from data on behavior of heterogeneous groups. Thus, this model-
ling approach has the potential of providing accurate forecasts of the re-
sponse of shopping travel demand to policy variables, in a framework which
exploits the common thread of utility maximization and taste distribution

in a variety of choice situations.

The empirical study summarized above represents a typical application
of the theory of qualitative choice behavior of populations of consumers,
with the conditional logit specification of the distribution of tastes. For
applications in which the independence of irrelevant alternatives is plaus-
ible, this statistical procedure provides an analogue for qualitative

dependent variables of the conventional linear statistical model.
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APPENDIX

Proofs of Statistical Properties

This section outlines proofs of Lemmas 5 and 6, and the properties of
statistics based on weighted residuals.
Lemma 5. Suppose Axioms 1-4 and 7 hold. Then the probability that the

maximum likelihood estimator exists approaches one as Rn approaches

Il o~

n=1

infinity.

Proof: As noted in the text, Axiom 7 implies that Axiom 5 holds when
N
Z Rn is large. We next show that Axiom 7 implies a second linear indepen-
n=1
dence condition. ILet m be a serial index of trials and repetition; e.g.,

m 1identifies the rm-th repetition of trial noo. We shall show that there

exists an infinite subset M of the indices m , and integers im,jm

satisfying 1 §=im’3m ;=Jn such that each sequence of K successive vectors
m

Zipy Zj 0 for m € M are linearly independent. We proceed by induction.
mm mm

Axiom 7 implies there is some m,i,j such that Zin " zjn # 0 ; set
m m

Ml = {m} , il =1 , and jl = j . Suppose that we have constructed a set
MQ'_1 containing £ - 1 indices which satisfy the required property. Suppose

there does not exist an index m, such that Ml = Mz—l U {mz} has the

desired property. Then, for all m > m and 1 < i,J ;:Jn , the vector

m
Z, - 2 can be written as a linear combingtion of vectors =z, - 2z,
in Jn in J
m PP PP

for the last K - 1 or fewer elements p of M2 1 - But then

J -

S
z, - Z = P, Z. -z
in n. j=1 Jn " in jnm

2-1

) also has this property, implying that the

limiting matrix Q in Axiom 7 is singular, for a contradiction. Hence,

by induction, the set M =
L

M2 has the desired property.
1

i 8
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s . . 1.2
Partition the set M into successive subsets M ,M ,..., each

containing K elements. Let Wq denote the matrix with rows

Zion T Z:j n for m e M3 . Then, wd s non-singular and the linear

mm mm
. q-1 a\-1 . .
transformation (W* ~)(W%) is continuous. Hence, for even q one can
define a strictly positive vector aq—l and a vector a® with no zero
elements such that a%wd = o3 1yd 1 |
For q even, consider the event in which alternative im is chosen
for m e Mq-'l ; alternative im is chosen for m e MY if a; is negative;

and alternative jm is chosen for m € My if ai is positive. Suppose

this event occurs, but Axiom 6 fails, and let Yy # 0 be such that

_ . q-1 . a .
Sin(zjn zin)Y <0 for all i,j,n . Then, W= "y 1is a non-negative
vector. Since Wq_l is non-singular, it has at least one component positive.
Hence, atwly = aq_lwq_ly >0 . But z% and Wly have opposite signs in

each component, contradicting the last inequality. Therefore, when this

event occurs, Axiom 6 holds and the maximum likelihood estimator exists.
The selection probabilities are bounded below by

aMle| _ o

(42) P, > 1/3,e

>0
in #

where J, and M are the bounds given by Axiom'T. Hence, the probability

that the event above occurs for an even q 1is at least PiK , and the

probability that this event occurs for some even gq < 2q' is at least
2K.\q' . s .

1-- (1 - Py ) . This last probability approaches one as q' > +» ,
proving the lemma. Q.E.D.
Lemma 6. Suppose Axioms 1l-4 and T hold, 8° is the true parameter

vector, and ém is the maximum likelihood estimator for a sample of size

N
m = Z Rn . Then o™ is consistent and asymptotically normal as m > +e
n=1

with
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A at/? (6" - 6%

’
tending to a multivariate normal distribution with mean zero and identity
covariance matrix.

Proof: We shall first establish that 6™ is a consistent estimator of
60 . From Axiom T, |Zin| <M for a positive scalar M . Differentiation
of equation (16) yields the bounds

|9 log Pin/ael <M

(43) 0% 10g P, /0030"| < MM®

3 3

4
|37 1og P, /3630036, | < 8M ,

|
uniform in 6 .

Let m be a serial index of trials and repetitions, and let Sim equal

one if alternative i 1s chosen at this observation and zero otherwise, for

11 é=Jn . Define a sequence of independent random variables
m J
n
- m
(4k) x(e) = iZ s, log P, (8) .
Then

(45) 1i(e)

Cy+ % o),

m=1
with Cq a constant independent of 6 , is the log likelihood function.

From (L43), the derivatives of A™ , denoted 9\"/30 = Ag , etc., satisfy the

uniform bounds [Ag| <24 , |nge,| < We , and |%gg 1o | < 81 . Further,
Iy k
m, . O m
(L46) EXg(0)=1| ] 9P, /38| =0
.2 in
i=1 m 0
-p
Define
_ m 0
g = -E xee,(e )
Jl’l
(1) zm ( z_ ) ( Z_ )
= Z -z ''P, Z - 2
i=1 1nm nm 1nm 1nm nm
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Then by Axiom T,

1 ¢
(48) lim= ) 9 =@
m
g m=1

Let B denote the smallest characteristic value of Q@ . Then there

exists g such that for q > QY > the smallest characteristic value of
q

LV o isat least 8/2 .
a4 m=1 m

Given a small positive scalar € , choose & = min {e,B/4(1 + hKM3)}
The weak law of large numbers [Feller (1966), Vol. I, p. 238] implies that
there exists q, > q. such that for q > q, , Lq(eo) = % A (60) satis-

1="0 = -1 ] ¢]
m=1

fies

1l .q,,0 2
(49) | 3 Le(e )| <6 ,

with probability at least 1 - ¢

A second-order Taylor's expansion of Lg about 60 yields
k
1 0 0
(50) —L% (6) ——l-Lg o(0 )(0=0")
a O a Yy
- 1.a ,,0 11 O0yy ;a o) (a_n®
=5 L (e)+2q(ee) Ly ggr(8)(6-67)
k k
where 6 lies between 6 and eo . Consider aq ;=q1 and 6 satisfying

(6—60)'(9-90) = §° , and suppose (49) holds. Then

(51) %Lgk(e) - -}!—Lgke(eo)(e-eo)l < 62(1 + W) < 68/b
Hence,

(52) %I(e-eo)'Lg(e) - (e-eo)'Lee,(eo)(e-eO)l < 528/k
But %(e—eo)'Lee.(eo)(e-eo) < -8°g/2 , implying

(53) H0-07) 113 () < -678/

Hence, at each point in the sphere (9—90)'(6—60) = §° , the gradient

Lg(e) is directed inward. Since L% is concave in 6 , this implies that
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a maximum 63 of LY is achieved inside this sphere. Since this event
occurs with probability at least 1 - € , we have proved the estimator to
be consistent.
Ja 1/2 ~q .0 . . .
We next show that q (6*-6") 1is asymptotically standard multi-
variate normal. Evaluating the Taylor's expansion (50) at the maximum

likelihood estimator yields

_ 14,0y, 1lq ,,0 0 314240 40
(5k4) 0 = ELek(e ) + qLeke(e )(6-8") + WM>|6%-0"| ak(e 6°)

where ay is a 1 x K vector depending on 6% which satisfies Iakl 1.

Letting A denote the matrix with rows ay and defining

-1/2;1 31aqa 0 -1/2
D = = Q - LIM -6 Al @ .
(55) . (5 mzl » [6%-67[A]

equation (54) can be written

(56) L o2 (/g ot /2(5%e0) = 1rd(e%)
s a q
Then,
(5 plim D = T - W30 1/2pq71/2 Sim 169260 = 1
T) a

Q@ Qe
Hence, VE'Ql/e(éq—eo) has the same asymptotic distribution as

1 -1/2 0 1 -1/2 0
(58) 79 / Lg(e ) == % ot/ xg(e )

4 m=1
. . -1/2.m, 0 . .
But the independent random variables Ae(e ) satisfy the Lindeberg-
Levy theorem [Feller (1966), Vol. II, pp. 256-258], implying that (58) is
asymptotic standard normal. This proves the lemma. Q.E.D.
Since /5'91/2(6q—60) is asymptotically standard multivariate normal,

it follows that q(éq—eo)'ﬂ(éq-eo) is asymptotically chi-square with K
degrees of freedom. Further, a second order Taylor's expansion of the log

R - ~q .0
likelihood function about 6% can be used to establish that q(eq-eo)'n(eq-e )
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and 2[L(60) - L(8)] converge in probability, and hence have the same
asymptotic distribution. This argument Justifies use of the statistic
(29). Details of the proof can be found in Theil (1971 , p. 396), Rao
(1968 , pp. 347-351), and Kendall and Stuart (1967 , Vol. II, p. 230-236).

Rao gives several asymptotically equivalent forms for the test.

Consider the weighted residuals D. in equation (31). Define

0
(59) D, = (s, - R P ) / vé

in in

J
N m ———
(60) Din - Z Z “nFw Sn Om (Zin - En)Q_l(sz N 2m)'ng i
m=1 j=1 J
where Pgn = Pin(eo) . Then D?n has a multivariate distribution with
0 _ 0 0 _ éo 0 . . 1 _

ED/ =0 and ED Djm = anm(sij - inPjn) » implying ED; =0,

0.1 _ / 0 O - -1 -
(61) £ DinDjm - rnrm 1n Jm (Zin zn) L (ij zm) ?

and asymptotically

(62) EDr Dt =v/rr PP (2 -z)e Nz, -Z) .

in jm nmin jm "Tin n Jm m
Making Taylor's expansions, one can show that the random variables
N 1/2
A@ b, )/ A% ana PO (2 -7 ) } R) (80 - 8) aiffer
n " in in in n in "“in n’o2yn

from —Din by terms with probability limits zero. It then follows, since
N

¥ Rn)l/2(6 - 8) 1is asymptotic normal with mean zero and covariance
n=1
matrix © , that these three random variables have a common asymptotic
0 1

normal distribution. Hence, Din - Din has an asymptotic distribution with

mean zero and covariance

_ 0 0
in,jm ~ Gnm[ iy = inij ]
/ 0 .0 = -1 =
(63) N rnrmPinij (Zin N Zn) & (ij - Zm)

Write



ho.

S. -RP9 /R (P(.) - P, )

(6’4) D. = in n in + n in in
in r—
n in VPin

The first term differs from Dgn ,» and the second from —Din s by factors

with probability limits zero. Hence, Din has the same asymptotic distri-

. 0 1 AP 0 .
bution as Din - Din . When the Rn approach infinity, Din is asymptot-

ically normal, implying Din asymptotically normel. The covariance matrix

can be written

N
(65) A=T1 - z qmqi ,
m=0
where
(qO)in - rnP(i)n (Zin - En) 9-1/2 ?
(), = 6.0 5  m=1,..N .

The vectors q, are orthonormal, implying A idempotent of rank
N N n
N¥* = Z J -N-K. Then, G = z Z D? has an asymptotic chi-square
n in
n=1 n=1 j=1
distribution with N¥* degrees of freedom (Rao, 1968, p. 149).

Next consider the linear transformations

(66) Y. =D, P, a , i=2,...,7 R

- D .
in in In "in n n

where o = (1 -/ )/(1-pP

1n ln) - Then, Y, = has the same asymptotic

distribution as the random variable an formed by replacing Pin with Pgn

in (66), and the latter random variable has asymptotic moments E an = 0 and

r. = F Y? YO =ED., D - VEO o ED, D
in, jm in" jm in" jm Jm m TinT1m
- Vgo o ED D + Vgg Pg o _a D, D
in n In" jm in"jm nm In 1m
— _ 1
0 0
P - yé
with q' = /r PQ [(z. -2 ) + In 1n (z. -z)] % 1/2 Then,
n in in n 1 - PO in n
J In
N n
v = fe s *
Z Z qinqin IK and T is idempotent of rank N¥* ., Hence,



ha.

N Jn N Jn

z E Y? = Z z Din has an asymptotic chi-square distribution

n=1 i=2 T  p=1 i=1

with N¥* degrees of freedom.
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