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ABSTRACT OF THE DISSERTATION

Speed and Path Control for Conflict-Free Flight in
High Air Traffic Demand in Terminal Airspace

by

Ali Rezaei

Doctor of Philosophy in Mechanical Engineering
University of California, Los Angeles, 2013
Professor Jason L. Speyer, Chair

To accommodate the growing air traffic demand, flights will need to be planned and navigated
with a much higher level of precision than today’s aircraft flight path. The Next Generation
Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency
from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO)
relying on such precision—the Precision Air Traffic Operations or PATO-are the foundation of
high throughput capacity envisioned for the future airports. In PATO, the preferred method
is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a
given airspace (in practice known as speed control). In this research, an algorithm has been
developed, set in the context of a Hybrid Control System (HCS) model, that determines
whether a speed control solution exists for a given fleet of aircraft in a given airspace and
if so, computes this solution as a collective speed profile that assures separation if executed
without deviation. Uncertainties such as weather are not considered but the algorithm can be
modified to include uncertainties. The algorithm first computes all feasible sequences (i.e.,
all sequences that allow the given fleet of aircraft to reach destinations without violating
the FAA’s separation requirement) by looking at all pairs of aircraft. Then, the most likely
sequence is determined and the speed control solution is constructed by a backward trajectory
generation, starting with the aircraft last out and proceeds to the first out. This computation
can be done for different sequences in parallel which helps to reduce the computation time.

If such a solution does not exist, then the algorithm calculates a minimal path modification

i



(known as path control) that will allow separation-compliance speed control. We will also
prove that the algorithm will modify the path without creating a new separation violation.
The new path will be generated by adding new waypoints in the airspace. As a byproduct,
instead of minimal path modification, one can use the aircraft arrival time schedule to

generate the sequence in which the aircraft reach their destinations.
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CHAPTER 1

Introduction

In today’s Air Traffic Operations (ATO), the FAA [2] requires that each aircraft pair is
separated by a distance no smaller than the prescribed minimum (the minimum separation
requirement) and each aircraft reaches its destination at a time as close as possible to the
Scheduled Time of Arrival (STA). The responsibility for enforcing such separation (separation
assurance) today lies on the human Air Traffic Control (ATC). To fulfill this responsibility,
controllers issue clearances that not only instruct an aircraft to assume a certain speed (in
practice known as speed control), but also modify an aircraft’s flight path from the original
plan (path control). However, during the periods of peak air traffic, the task of navigating
a fleet of IV aircraft to destinations and providing separation assurance is a problem whose
running time can be as high as order N! [24], as it requires a choice of an orthant® in an
N-dimensional Euclidean space. Therefore, the forecast increase in traffic demand will result
in a rapid growth of workload for the AT'C[18], hindering NextGen. To afford the growing air
traffic demand, flights need to be planned and navigated with much higher level of precision
than they are under current operations. In the NextGen aircraft move along precisely defined
paths. Also, these paths are parameterized by time so as to assure the required separation
distances between pairs of aircraft, in the airspace. Therefore, speed control is the preferred

method, as path control is likely to entail having to readdress separation assurance.

In this paragraph, the recent research in ATM will be reviewed. They have been catego-
rized based on the speed control and the path control in ATM. In speed control, the recent

research effort [16] in ATM gives a strategy for managing the aircraft flow in order to main-

'In geometry, an orthant is the analogue in N-dimensional Euclidean space of a quadrant in the plane or
an octant in three dimensions. In general an orthant in IV dimensions can be considered the intersection of
N mutually orthogonal half-space. a closed orthant in R¥ is a subset defined by constraining cach Cartesian
coordinate to be nonnegative or nonpositive.



tain the predefine sector capacity. The research used different methods to model the airspace.
A directed graph model of airspace has been used in [14, 1] to estimate a time of arrival at
waypoints for each aircraft. Hybrid system 2 has been used in [22, 11, 3| to address other
aerospace problems. A neural network has been used in [9] to estimate the landing speed in
order to maintain the minimum spacing of the leading and trailing aircraft. The authors of
Ref. [13] used the similar model as this research to predict conflicts in a given airspace. Refs.
[24, 25, 23, 12] contain propositions to automate the process of computing a speed profile
for cach aircraft in a given fleet. In path control Refs. [26, 5, 17, 15, 7] used path control in
ATM to avoid severe weather. Another major research trend involving path control is the
“free flight” operational concept. Under this concept, researchers try to determine a path

for each aircraft in a way that maintains separation assurance [10, 19, 4, 28, 6].

A detailed flight path, parameterized by time in a way that assures separation for the
entire fleet at all times, is aimed at designing automated decision support tools for the ATC.
The goal is to alleviate the aforementioned workload increase. This research relies on the
modeling framework of Hybrid Control Systems (HCS) [27]. In this framework, the arc length
coordinate of each aircraft is mapped to one of state space axes (for more explanation see
Chapter 2). Hence, a solution for a fleet of N aircraft, each with a precise path prescribed,
is ultimately a pair X(¢), V(¢) of time-dependent functions that take N-dimensional vector

values, where
X(t) = (z1(t), xo(t), ..., xn(1)) (1.1)
and

V(t) = Vi(0), Va(t), ..., V(1)) (1.2)

of time-dependent, N-dimensional vectors, where x;(t) is the arc length coordinate of aircraft

1 along its prescribed path at time ¢, and

Remark 1.1. In what follows, the coordinates x; correspond to the standard orthogonal basis

(1,0,...), (0,1,0,...),... of the Euclidean space of the appropriate dimension (N ), and all

2Hybrid model is used to model a system with discrete and continuous nature.
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projections that appear in this research are orthogonal projections onto a subspace spanned
by a subset of this basis. Furthermore, all matrices that represent linear transformations in

the state space refer to this basis.

The problem of finding such a solution for N aircraft in a given airspace can be defined

as follow:

Problem 1.1. Given is an airspace modeled as a directed graph G = (V, IJ) embedded in a
Euclidean space of dimension 2 or 3, and a fleet of N aircraft, each assigned to move along

a specific path in the airspace, with the following data prescribed:

o the permissible speed range of each aircraft, Vi € [V;™" V] where V; is the speed of

1

aireraft 1,

o the minimal required separation distance assumed here to be the same for all pairs of

aireraft,

e the airspace just contain merge points between two paths (no diverge point or crossing

point exist in the airspace).

One seeks a speed profile Vi(t) for each aircraft, i, such that the corresponding motion X(t)
of the fleet along the assigned paths satisfies the initial condition

1

and meet the minimum separation requirement during the flight until exits the airspace. The

vector V(1) is called a speed control solution..

Ref. [24] gives an algorithm to search for speed control solutions, but no guarantee of
finding a solution even if one exists. Whether or not it is found, the algorithm will exit after

a number of steps that is polynomial in the number of aircraft.
3



The contribution of this research is an algorithm, defining a N-dimensional coordinate
state space by using the above HCS model (explained in Chapter 2 in more detail) to find a
speed profile which satisfies the permissible speed range for each aircraft 2 such that each air-
craft flies on its preassigned path from the initial point to the destination without violating
the minimal required separation (Problem 1.1), if such a solution exists (Chapter 3). If speed
profile V(¢) does not exist, then the algorithm will find a minimal path modification and
determine a permissible speed range for each aircraft to fly on assigned path, satisfy separa-
tion requirement and exit the airspace (Chapter 4). Using the state space (See Chapter 2 or
Ref. [24] for a detailed exposition), problem 1.1 will be formulated as one in control theory
with states (1.1) and controls (1.2). The constraint of permissible speed range defines the
set of admissible controls and, consequently, defines in the state space the reachable set that,
in absence of wind, turns out to be a pointed polyhedral cone (called the attainable cone).
The algorithm will be described in detail in Chapter 3. The algorithm allows substantial
parallelization, which promises to reduce the physical run time. In Chapter 4, an extension

of the algorithm to include path control will be presented.



CHAPTER 2

HCS model in ATM problems

In Problem 1.1, there are N aircraft in a given airspace. The airspace is modeled as a directed
graph. A simple form of a directed graph is depicted in Figure 2.1a. Each aircraft has been
assigned to a path in this directed graph, and each path has been parameterized by an arc
length coordinate, z;(t). This model captures the simultaneous positions of all N aircraft by
specifying one point in the N-dimensional coordinate space, X(t). A 2-dimensional Euclidean
coordinate space is depicted in Figure 2.9 (this plane will henceforth be called the pairwise
position state space of the two aircraft). The following subsections introduce some subsets

of this coordinate space that will be used in chapters 3 and 4.

2.1 State space in a Euclidean coordinate

Consider two aircraft, denoted ¢ and j, each flying on its own route. In this example, their
routes, chosen to be polygonal paths for simpilicity, merge at point . This situation is
depicted in Figure 2.1a. The path assigned to aircraft ¢ consists of segments 1 and 3; the
path assigned to aircraft j consists of segments 2 and 3. The variable z;(t) is an arc length
coordinate on the path of aircraft i; the variable z;(¢), an arc length coordinate on the path
of aircraft j. A simultaneous position of the two aircraft at time ¢ will be depicted as a
point (z;(t),z;(t)) in the x;z;-coordinate space, depicted in Figure 2.1b. The lines in the
x;z;-coordinate space that consist of the states in which at least one aircraft has reached the
end of edge 3 are called distal edges and are denoted in Figure 2.1b. If a parametrized curve
(@i(t),z;(t)) for tg < t < ¢t representing the movement of two aircraft ¢ and j, reaches

one of the distal edges, it means that the corresponding aircraft has reached its destination



i route (z;) dlstal‘ edges
9IS “
L/
3 wi(t),5(t))

2
- = i route ()
(a)  Merge point (b) The position state space coordinate for
of aircraft ¢ and j two aircraft ¢ and j.

routes.

Figure 2.1: The position state space for two aircraft.

(which may or may not be an airport). The arc length of aircraft i varies between ™" = ()
and 2™ where the ™" corresponds to the beginning of the current route segment of aircraft

i i
v and ™ corresponds to the point where aircraft ¢ reaches its destination.

Definition 2.1. The pairwise position state space is the set of all points (x;(t),x;(t)) where
z;i(t) € [0, 2] and x;(t) € [0, x7*].

Definition 2.2. The position state space is a set of all points

{(1’1,3:2,--- ,TN) :x?’méxigxz’m,lgigN}.

Definition 2.3. A point in the position state space is called a state.

Definition 2.4. When a parameterized curve, X(t) representing the movement of N aircraft,
reaches hyperplane x = x** it means aircraft i has reached its destination. Hyperplane

x = " s called distal hyperplane.

(3

Definition 2.5. The intersection of all distal hyperplanes is the point where all aircraft have



reached destination and is called the distal state and denoted by X™**

max

Ty

Xty =X = | .|, (2.1)

max
| TN

Definition 2.6. A trajectory is a continuous, piecewise differentiable curve

X(t) = {aa(t), -+ an ()}

that starts from X° and ends at X™a*,

2.2 The attainable cone

Let X(¢) be a trajectory in a N-dimensional state space, at the point of differentiability
of X(t), the permissible speed range constraint stated in problem 1.1 translates, for each

aircraft pair 4, j, into the mathematical statement that the minimal and maximal slopes of

32: = Zﬁjﬁf, denoted s;; and 3;;, respectively, are given by
Si5 = “//5:27:7 (2‘2)
Sy = o 23)
Definition 2.7. In all pairwise position state space of aircraft i and j (i,j =1,...,N and
i < j), the slope of the trajectory X(t) for all t at which X(t) is differentiable must be
day/db (2.4)

Sii X X Sij-
YT da/dt !

This condition hereafter called slope condition.

Definition 2.8. In the pairwise position state space of aircraft i and j,the pairwise attainable
cone with initial state (2, 2}) is a set of all states X such that the slope of line segment X°X

is in the range of [s;;, 5] and is denoted by

A (X9).
7



The two bounds (2.2) and (2.3) can be described as half-planes (depicted by the shaded

regions in Figure 2.2), defined by

L xy—a) > s, (v — ) (2.5)
and

U = ay— ) <555 (2 — ) . (2.6)
The pairwise attainable cone for aircraft pair i, j with initial state (2, 27) is the intersection

of these two half-planes ,

.Aij(XO) = UZ N C;lj = {X ’AZ]X < Bij},

where
Aij _ 0 _gij 0 1 0 ’ Bij _ l’? —gijﬂ?? ’
0 s; 0 —-10 —af + 5,27
T
X: x|y Tog - x; - 333 . e mN:| s

and 0 is a row of zeros of an appropriate dimension. The pairwise attainable cone of pair 4,
is illustrated in Figure 2.3. The boundary lines of two half-planes (2.5) and (2.6) are given
by:

Mt o ay =5y (o - 0)) + a5 27)

la . —

T H%a
x] A~ (
ro
i >~ % Z/{Zaj
Ve N
la
x| i & > i
> T

Figure 2.2: The half-planes associated with the minimal and maximal slopes.

Imposing constraints (2.5) and (2.6), we define the attainable cone for N aircraft with

initial state X° (N arbitrary).



Pairwise attainable cone, A;;(X?)
L

A

H;Lja //\

% | Hla

XO N~ ] (]

> g
Figure 2.3: The pairwise attainable cone set of two aircraft ¢ and j.

Definition 2.9. The attainable cone for N aircraft with initial state X° is the set of inter-
section of all pairwise attainable cones
N
AX) = (] Ay(XO). (2.9)
ij=1
i<j
The attainable cone, being an intersection of closed half-planes, is a closed polyhedron
and can be shown to be a pointed convex polyhedral cone with vertex X°. This attainable

cone can also be written as
AX") = {X|AX < B}. (2.10)
Definition 2.10. The state X is said to be attainable from X° if
X € A(XY)

w unordered pairs of distinct indices (7,7) and in each pair there are two

There are
N-dimensional half-spaces (2.5) and (2.6). Therefore, A is an N(N — 1) x N matrix and B
is an N(N — 1) vector. For example, the attainable cone in the case of two aircraft, indexed

1 and 2, is given by

- 0_ = .0
—S190 1 Ty — S1207

0 0
s —1 —T + 8197



2.3 Separation-loss and separation-compliant state Sets

The constraints on control V(¢) in state space are discussed in the previous section. In this
section, the separation constraint between aircraft which is a constraint on the state X(¥)

will be explained.

Definition 2.11. The set of all states X that violate the separation requirement is called the

separation-loss set.

Separation-loss set

/
ES /
/

3 .
I‘/I:l

Figure 2.4: The separation-loss set for two aircraft ¢ and j.

The separation-loss set for the configuration shown in Figure 2.1a is depicted in Figure

2.4 and is computed by considering the following four cases.

Case 1. Aircraft i is on segment 1 and aircraft j is on segment 2 and they are flying toward the
waypoint.
When both aircraft are near the end of their current route segments, they lose separa-

tion. This situation is illustrated in Figure 2.5.

The set of all states where separation is lost.

1.
\/:Z 3 o
5 J :

Figure 2.5: Separation-loss set in case 1
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Case 2. Aircraft © is on segment 1 and aircraft j is on segment 3.
In this case the separation loss occurs if aircraft ¢ is near the end of its current route
segment while aircraft j is at the beginning of its current route segment. This situation

is illustrated in Figure 2.6.

Figure 2.6: Separation-loss set in case 2

Case 3. Aircraft © is on segment 3 and aircraft j is on segment 2.
In this case the separation loss occurs if aircraft ¢ is near the beginning of its current
route segment and aircraft j is at the end of its current route segment. This situation

is illustrated in Figure 2.7.

1
>z'3j

Ta
5 J

Figure 2.7: Separation-loss set in case 3

Case 4. Both aircraft are flying on the segment 3.
In this case the separation loss occurs if the distance between the two aircraft is less

than the minimum required separation r. This situation is illustrated in Figure 2.8.

Figure 2.8: Separation-loss set in case 4

11



The pairwise position state space of aircraft i and j is constructed as depicted in Figure
2.9. The route of aircraft i is segment 1 followed by segment 3 and for aircraft j is segment

2 followed by segment 3. Next, the associated position state space of cases 1 through 4 are

Lj

N

AN .
I‘/'EZ

Figure 2.9: The pairwise position state space for a merge point

glued into the pairwise position state space as shown in Figure 2.10. The separation-loss set

:

Separation-loss set

uc
He

Figure 2.10: The separation-loss set between two airplanes in a merge point

will be approximated with a polyhedral set. This approximation is depicted in Figure 2.10:
the hyperplane H; is the set of all states where the distance between aircraft j and i is
equal to the minimum required separation overestimated by the approximation and aircraft
j is closer to its distal edge. Similarly, the hyperplane Hﬁ; is the set of all states where the

distance between two aircraft is equal to the minimum required separation overestimated

12



by the approximation but aircraft ¢ is closer to its distal edge. In both cases, in order to
keep the overestimated minimum required separation distance, both aircraft must fly with
the same speed. Therefore, the slope of the orthogonal projection of these two hyperplanes

onto x;x;-coordinate is equal to 1,

V.
S,;j:vj'zl.

Hence, the slope of the projection of hyperplane Hf]c which is perpendicular to projections

of H;i and Hi; and tangent to separation-loss set is equal to -1. The region bounded by

uc

hyperplanes H;, Hfj and Hg’f will be called the pairwise separation-loss set for aircraft pair

i, j, where Hff , Hif and Hﬁj are hyperplanes defined as follows:
H?JC = {X ‘"LJ =T+ dbcij } ) (211)
Hif = {X|oj = 2i + duc, } (2.12)

where dy. ., d.,. and dj., are appropriate constants in line equations which are boundaries
177 %] 1]

of polyhedral region. See Appendix for more detail.

Definition 2.12. A state is said to be infeasible if it lies in the interior of the separation

loss set, and is said to be feasible otherwise.

Definition 2.13. A trajectory

1. is said to be feasible if all states X on the trajectory are feasible.

2. is said to be attainable from state X if in all pairwise position state space of aircraft
iandj (i,7=1,...,N and i < j), the slope of the trajectory at all X(t) satisfies the

slope condition.

Definition 2.14. There is a set of feasible states that can not serve as initial state for any

trajectory which is feasible and attainable. The set of these points is called the roof set.

The roof set for 2-dimensional subspace is illustrated in Figure 2.11. Any line from any
point in the roof set needs to have slope smaller than s;; or greater than s;; to avoid inter-

section with the separation-loss set. The pairwise roof set is in part bounded by hyperplanes
13



separation-loss set

.I'j }
—
3
ur |
o %
1 Ir
roof set - HE
T
X > g
1 3

Figure 2.11: The separation-loss set and the roof set between aircraft ¢ and 7 in a merge point

”HZ (defined in equation (2.11)), K} and H!", defined as:

150
HZI? = {X ‘(17]' = gijxi + du"‘ij } ) (214)

where d,,,, and dj,,, are appropriate constants of line equations (see Appendix for more

detail). The intersection of hyperplanes H;; and H!" will be called the roof apex and denoted

T
J

X,

Definition 2.15. The union of the pairwise separation-loss set and the roof set is exactly the
set of states through which no feasible trajectory passes. This set will be called the pairwise

infeasible state set for aircraft pair (i,j) and is denoted by C;;.

In mathematical notation, the pairwise infeasible state set is defined as the intersection
(shown shaded gray, part light and part dark, in Figure 2.11) of the four open half-planes
(individually depicted and shaded gray in Figure 2.12)

U = {X |aj < 2+ duey, b
L5 ={X|z; > zi+dp, }
U = {X |y <Syai+du, b
L ={X|z; > s;zi+d, }

To determine the infeasible state set for an N-dimensional state space, one needs first to

14



4 x]
LE.
c K \_/
> T
> L
(a) zj < x; + ducy; - (b) z; > z; + dic;;
Zj
N xj
)
\/
> T
> Ly
(C) T < ST + dU7’ij' (d) Tj > 84T + dlmj-

Figure 2.12: Three half-planes of the pairwise separation-loss set.

compute the pairwise infeasible state sets

where Cj; is a 4-by-N matrix and D;; is a 4-dimensional vector. The pairwise infeasible state
set C;; is an intersection of four open half-planes, hence is an open set. The infeasible state
set for N aircraft will now be defined as the union of all pairwise infeasible state sets:
N
ij=1
i<j

Since, each C;; is open, so is C.

15



Definition 2.16. The separation-compliant state set is defined as the complement of C in

the position state space and, in what follows, is denoted C'.
The separation-compliant state set is a closed set. In set-theoretic notation, we have

N
¢'=(¢% (2.20)
ij=1
1<)

where,

2.4 Trajectory

Z

2
Al > T
1 3
(a) Merge point. (b) pairwise position state space

between aircraft ¢ and j

Figure 2.13: (a) Two aircraft, i and j, in an airspace. Paths (1,3) and (2,3) merge at point
C. (b) The corresponding pairwise position state space, with arc length coordinates z;, x;.
The separation-loss set is shaded in the darker gray. The light-gray cone is the set of states

attainable, for the permissible speed ranges of ¢ and j, from the initial state X°.

For simplicity, the solution states of problem 1.1 is restricted to consist only of polygonal
trajectories!. This restriction simplifies the computation procedure of verifying a trajectory

for feasibility and attainability. Each rectilinear piece of the trajectory will be called a

LContinuous and piecewise linear.
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distal state

Figure 2.14: A trajectory which is feasible and attainable from initial state X°

segment® hereafter. As noted before, if the trajectory reaches one of the distal hyperplanes,

then it means the corresponding aircraft has reached destination.

In Figure 2.14, a trajectory for a 2-dimensional position state space is shown as a dashed
polygonal curve. When the trajectory reaches point a, the aircraft j has reached destination.
After that aircraft 7 is the only aircraft still traveling toward destination until reaching the

distal state X™ax,

Definition 2.17. A speed control solution is a feasible-attainable trajectory starts from

initial state (1.8) and ends at final state (2.1).

A speed control solution for a 2-dimensional position state space is depicted in Figure
2.14. The algorithm introduced in Chapter 3 looks for such a solution and generates a

polygonal trajectory in the suitable N-dimensional position state space (See definition2.2).

2.5 Guiding hyperplanes

Each segment of the polygonal trajectory lies in a 1-dimensional submanifold of the N-
dimensional state space. The algorithm in chapter 3 will compute this submanifold by

intersecting of N — 1 hyperplane suitably chosen from among boundaries of the attainable

2Note that the route segment is referring to the route in physical airspace while segment is refer to the
N-dimensional position state space
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cone set (M} and H}%) and the pairwise infeasible state set (Y, His, H{ and H7). These
N —1 hyperplane are called guiding hyperplane hereafter. The trajectory will be constructed

starting from distal state to the initial state .

2.5.1 Permanent guiding hyperplanes; the hyperplanes that bound the attain-

able cone

When the trajectory intersects with one of the hyperplanes H} or ’Hﬁ‘;, the next segment (in
time reverse) must stay on the intersected hyperplane in order to satisfy the slope condition
(See equation 2.4). This situation is depicted for hyperplane Hj{* in Figure 2.15. In this
figure the trajectory intersects the hyperplane H;%" at point b. The slope of the next segment
must also satisfy the slope condition, s;; < s;; <7;;, but the only segment that satisfies the
slope condition and lies inside the attainable cone is the one with the slope of 5;; which is on
the hyperplane H{?. After point b, the trajectory must stay on this hyperplane and cannot
leave this hyperplane. Therefore, hyperplanes H;{* and Hﬁ‘j will be called permanent guiding

hyperplanes.

Not acceptable <]

ua
17

Figure 2.15: The trajectory must stay on the hyperplane H;i" of the attainable cone after

the intersection point b.
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Figure 2.16: After the intersection point a, the trajectory can stay on the hyperplane Hj

or leave it.

2.5.2 Temporary guiding hyperplanes; boundaries that bound the separation-

loss set

le
i)

uc

When the trajectory intersects one of the hyperplanes H}¢ or H

)

the slope of the next

segment (in time reverse) can be in the range of s;; € [s;;,1] or sy € [1,5], respectively.
Therefore, the next segment of the trajectory can either stay on the intersected hyperplane
or leave it. The intersection with hyperplane H} is depicted in Figure 2.16. In addition,
these hyperplanes generally end before trajectory reaches initial state X°. The hyperplanes

M and Hﬁ; will be called temporary guiding hyperplanes.

2.5.3 Boundaries of the roof set

In the merge point, configuration depicted in Figure 2.1a, the two hyperplanes, H;% and ’HZ,
do not constrain the trajectory in the time-reversed trajectory generation method. As it has
been shown in equations (2.14) and (2.15), the slopes of the boundaries of the roof set are
sij and s;;. In time-reverse trajectory generation method, if the trajectory reaches to the
intersection of Hj’¢ and H;7 then the next segment of the trajectory must continues on H;
or away from it to comply slope condition. This is depicted in Figure 2.17. Similarly, when
the trajectory reaches to the intersection of Hﬁ; and HZ, then the trajectory can either stay
on HZ or move away from it. Therefore, the hyperplanes H} and Hf’; do not impose any

19



Figure 2.17: The hyperplane H;]" does not impose any constraint on the trajectory.

restriction on the trajectory slope and are not considered as constraints.

In summary, among the six hyperplanes defined, four of them can be used as guiding
hyperplanes to generate the polygonal trajectory. If the trajectory intersects one of the
boundaries of the attainable cone set, H;* or ’HZL, then the trajectory must stays on them in
order to satisfy the slope condition until it reaches the initial point (X°). Therefore, M and
Hﬁ;‘ are called permanent guiding hyperplanes. In other hand, the boundaries of separation-
loss set, Hj¥ and Hfj just limit the slope of the next segment of the trajectory. Hence, the
trajectory can leave or stay on these boundaries. In addition, in the merge point case (Figure
2.1a) these two boundaries generally ends before trajectory reaches to the initial point, X°.
Therefore, these two constraint, H; and Hﬁ; are called temporary guiding hyperplanes. In
the merge point case, the boundaries of the roof set do not impose any restriction on the
slope of the trajectory and they are not considered as constraint. Note that, in diverge case
these are hard constraint like the boundaries of attainable cone and the trajectory must
continue on these boundaries until they be come inactive (i.e. intersection of Hjf and H;.).
A diverge configuration and the corresponding state space for two aircraft is depicted in
Figure 2.18. A sample trajectory is depicted in Figure 2.18b. In the time-reverse, when
the trajectory intersects one of the boundaries of the roof set it must stay on the boundary

until it becomes inactive. In this research, airspace that only contains the merge point is

considered (See Problem 1.1).
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(a) Diverge point of air- (b) The state space coordinate for two

craft ¢ and j routes. aircraft 7 and j.

Figure 2.18: The state space for two aircraft in a diverge configuration.

2.6 Effect of path modification on state space of 2 aircraft

In previous sections, the arc length positions of the two aircraft along their respective paths
have been defined. In this section, the geometric machinery needed when a speed control
solution does not exist is introduced. When there is no speed control solution, then path
control is required. To obtain a path control solution, one has to deform the existing paths
of the aircraft, and it is preferable, from the operational point of view, to keep such defor-
mations minimal in a sense defined later. If the path of one or more aircraft is deformed
slightly, the resulting new arc length coordinate space will be similar to the original one.
The geometric relationship between two state spaces that differ by such a small deformation

is now examined.

Consider modifying one or both of the edges 1 and 2 in Figure 2.13 by inserting new length
in front of the aircraft without decreasing the merge angle and without bringing any parts
of the two paths closer together than the allowed minimal separation. These modifications
effect such parallel translations of the separation-loss set that move it away from X°. As a
result, more of the rays that generate the attainable cone become clear of (in set-theoretic

language, disjoint from) the separation-loss set; this is a precise geometric statement that
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can be proved. One such modification of the setting shown in Figure 2.13 is illustrated in

Figures 2.19 and 2.20.

Ty
3
2
XO
1

(a) Modified path of air-

3

> T

(b) Modified pairwise position state

craft i space between aircraft ¢ and j

Figure 2.19: Effect of path modification of aircraft ¢ on pairwise position state space between

aircraft ¢ and j.

Ty
3
2
XO
1

(a) Modified path of air-

3

> Ty

(b) Modified pairwise position

craft j state space between aircraft i

and j

Figure 2.20: Effect of path modification of aircraft j on pairwise position state space between

aircraft 7 and j.
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CHAPTER 3

Time-Reversed Trajectory Synthesis: a speed control

algorithm

In this chapter, an algorithm to find a speed control solution (See Definition 2.17) will be
constructed. Before, introducing the algorithm, the conditions for existence of a solution
needs to be studied. In the 2-aircraft case of the state space defined in Section 2.4, there
are two possible sequences for aircraft to exit the airspace: 1) first aircraft ¢ exit then j, See

Figure 3.1a, II) first aircraft j exit then i, See Figure 3.1b.

Definition 3.1. In a 2-dimensional state space, a sequence is called pairwise separation-
promising sequence if there exist a speed control solution (feasible-attainable trajectory) that

satisfies the sequence of existing the aircraft.

In Figures 3.1a and 3.1b, the feasible-attainable trajectories that satisfy the pairwise

separation-promising sequences between aircraft ¢ and j are shown.

J
.0 > i )
(a) Aircraft i leaves the (b) Aircraft j leaves the
airspace before aircraft airspace before aircraft
] i

Figure 3.1: separation-promising sequences in 2-dimensional airspace
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b
XO

XY | > 7 y T

(a) If the roof apex lies inside the

(b) Having the initial point inside

attainable cone both sequences are the separation-compliant state set

separation-promising . is the necessary and sufficient con-

dition for the existence of a solu-

tion in the two aircraft case.

XO

| > Ly

(c) Sample subspace when there is

no speed control solution.

Figure 3.2: Pairwise position state space

If the roof apex, X"(See Section 2.3, Figure 2.11), lies in the pairwise attainable cone,
X" € A;j, then both sequences are separation-promising (see Figure 3.2a), otherwise, if
X% ¢ C,;, then depending on the position of the initial point, X° with respect to the
separation-loss set, one of the two sequences is separation-promising. For instance, in Figure

3.2b there is one separation-promising sequence in which aircraft 7 must exit the airspace
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before aircraft i. If X € C;; then none of the sequences is separation-promising. This is
depicted in Figure 3.2c. In general, for the N-dimensional state space (N > 2), there are
at most N! sequences. Therefore, by looking at all pairwise position state spaces one can
find all separation-promising sequences. ! For instance, if just one of the pairwise position
state spaces allows one separation-promising sequence, i.e. in subspace (z;,z;) aircraft j
must exit the airspace before aircraft ¢, then all sequences that have aircraft 7 exit before j
are not Separation—promis}i\fng1 and the number of separation-promising sequences among all
N aircraft will reduce by Zz = N(WV=1)

2
i=0
In the 2-aircraft case, the existence of a separation-promising sequence is a necessary and

sufficient condition for existence of a speed control solution.

Lemma 3.1. In the 2-aircraft case, if the permissible speed range [V;™", V"] of the aircraft

it has an overlap with the permissible speed range [ijm, Viraz] of the aircraft j, i.e. if
[V;min’ ‘/imaw] N [‘/jmin7 V;ma:v] 7& @7 (31)

then, the necessary and sufficient condition for the existence of a speed control solution is that
the initial point X° lies in the interior of the separation-compliant state set (see Definition

2.16), i.e.
X% e (3:2)
Proof. Equation (3.1), implies,

243

If X° does not lie in the interior of the separation-compliant state set (and, therefore, lies
inside the pairwise infeasible state set), then no feasible-attainable trajectory can be initiated
from X°. This situation is depicted in Figure 3.2c. From equations (2.14) and (2.15), in
2-aircraft case, the lines H,,,, and H,,,; are parallel to Hyq,, and Hy,,,, respectively and

the slopes of the lines H,.,, and H.,, are equal to one (see equations (2.12) and (2.12)).

!The method of calculating the separation-promising sequences for all N aircraft by using all pairwise
separation-promising sequences is described in detail in Chapter 4
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Therefore, if X° lies inside the separation-compliant state set, from equation (3.3) one obtains
that at least one of the lines H,.,; or H.,; entirely lies inside the pairwise attainable cone.
Therefore, there exists at least one ray from the initial point X° to the distal edge with no
intersection with the pairwise infeasible state set. This situation is depicted in Figures 3.2a

and 3.2b. O O

Corollary 3.1. In the 2-aircraft case, a speed control solution exists if and only if one of
points

Xy =My NHY
and

Xy =H5OH

ij0

1s attainable.

In the N-dimensional case, condition (3.2) is necessary but not sufficient for the existence
of a speed control solution. This can be shown by an example. Consider three aircraft,
numbered 1,2 and 3, positioned as shown in Figure 3.3a. The speed range for each aircraft

is as follow

The minimum required separation distance is 5 nmi.

There are 3 pairwise position state spaces for this example shown in Figure 3.3: one
can find a speed control solution in each pairwise position state space. In the 3-dimensional
state space of this problem, however, the feasible state set dose not contain any of the distal
edges or the distal point. Therefore, there is no speed control solution (feasible-attainable
trajectory) in 3-dimensional state space. The 3-dimensional state space is depicted in Figure
3.4. Hence, condition (3.2) is necessary but not sufficient condition for existence of a solution
in N-dimensional case (N > 2). In the N-dimensional case, if a feasible-attainable trajectory

exists for a sequence, then this trajectory is a speed control solution.
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Figure 3.3: The configuration of three aircraft in a given airspace and pairwise position state

spaces.

Remark 3.1. In N-dimensional case, existence of a separation-promising sequence of arrival
at destination among N aircraft grantees the existence of speed control solution in all pairwise

position state spaces (necessary condition) but it does not imply the existence of a speed
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distal edges

feasible state set ——

Figure 3.4: 3-dimensional position state space of three aircraft example.

control solution in N -dimensional position state space.

The algorithm first generates all the separation-promising sequences, then looks for the
existence of a polygonal feasible-attainable trajectory in each separation-promising sequence.
After finding all the separation-promising sequences, searching for a feasible-attainable tra-
jectory over all the separation-promising sequences can be done in parallel. This parallelism
will reduce the computation time. If there are N —1 linearly independent equality constraints
for each segment, then there is just one 1-dimensional intersection to satisfy all constraints
and the polygonal trajectory is a 1-dimensional subspace of the N-dimensional feasible state
set. The case with multidimensional intersection results multi-solution for speed profile and

will be discussed in Section 3.3.

Assume all N aircraft in the Problem 1.1 have reached the destination. Then, the state
vector is represented by equation (2.1). Also assume one of the separation-promising se-
quences is:

(g by kom). (3.4)

Then aircraft m is the first one to reach its destination and aircraft 7 is the last one. Note

that, the likelihood of the existence of a speed control solution in a separation-promising
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sequence (3.4) is higher than the other separation-promising sequences if
Li>L;>...>L;>...> Ly > Ly,

where L; = x> — ¥ is the total arc length of the path assigned to the aircraft i. Hence,
aircraft ¢ is the furthest and aircraft m is the closet one to the destination point. Similarly,
the likelihood of the existence of a speed control solution in separation-promising sequence

(3.4) is lower than the other separation-promising sequences if

Li<Lj<...<Ly<...<Lp<Ly.

Therefore, the algorithm starts from the separation-promising sequence with higher like-

lihood of the existence of a speed control solution.

3.1 The algorithm: how it works

3.1.1 The setting of the algorithm and notation

Henceforth, we assume that the aircraft have been numbered 1,2,..., N in the order of
the separation-promising sequence found above. Thus, aircraft 1 is the first to reach its
destination (whether an airport or not) and exit the model; aircraft 2, the second; aircraft
N, the last. As before, the initial time of the model will be denoted ty. The time at which
the n-th aircraft (n = 1,..., N) exits the model will be denoted . It follows from the

accepted numeration of the aircraft that

g < et =2, N.

n—1 —="n >
The sought speed control solution will be constructed in the form of a collective trajectory

X(t) = [a1(t), a(t), ..., an)]",

where z,(t) (n = 1,..., N), while defined on the entire interval [to,¢%"], stops playing a
role in the model after time £ by remaining constant and being no longer subject to any

constraints (e.g., separation).
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The algorithm will construct first the portion of the trajectory defined for the latter time
interval [t5% |, ¢%*] (with only aircraft N remaining in the model), then the portion defined
for the earlier interval [¢5,,¢%",] (with only aircraft N and (N — 1) in the model), and
so on, from the later intervals to the earlier ones. For this reason, the algorithm is called

Time-Reversed Feasible-attainable Trajectory Synthesis.

The trajectory portion on [ AR t?\’}“] is a rectilinear segment. For n < N, the trajectory

portion on [t;"i_‘l, t;"“] is a polygonal path that can consist of one or more rectilinear segments.

The following notation will be used for brevity:
Xy =X, n=1,...,N.

The algorithm first finds the polygonal paths X,,_;X,, without a time parameterization. The

found trajectory is then parameterized by time.

Remark 3.2. The coordinates are chosen so that the lower bound of each arc length coor-
dinate x,, is 0, ™™ = 0 and the upper bound is distal hyperplane z,, = x™* (see Definition
2.4). The hyperplanes x, = z™" and z,, = ™ (n = 1,...,N.) bound a parallelotope. The

intersection of this parallelotope, the attainable cone with initial state X° and the separation-

compliant state set C' is called feasible state set.

3.1.2 The steps of the algorithm
1. Find all separation-promising sequences

(a) Generate all pairwise position state spaces and determine pairwise separation-

promising sequences.

(b) Find all separation-promising sequences among N aircraft, sorted in descending
order of aircraft path length. If no separation-promising sequence exist then there

is no speed control solution.

2. Define X to be the distal point, X™#* in the feasible state set specified in remark
3.2.
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3. The trajectory portion X,,_1 X, for 1 < n < N will be sought in the form of a polygonal
curve with the vertices (their total number will be denoted M,,) that are indexed as
follows:

Xp =Y YL Y'=X,.
The trajectory portion X,,_1X,, is illustrated in Figure 3.5. Each segment YY" !

.
’

’
’,
4
Y / M
A . X'n = YTL "
m+1 ’ YMn—l
Y" / n
2 .
lYn ,—'Ym
Yn n
4
— VO
" X.n_l —_— Yn
> 1

Figure 3.5: Portion X,,_1X,, of the trajectory plotted verses time.

(0 < m < M, —1) will be constructed as a segment on the line obtained by intersecting
(N — 1) suitable hyperplanes. Therefore, the segment YV will be found in the
parameterized form
Y=Yy,

where " is a scalar parameter and d* is a director (whose Euclidean product with
the vector X°X™* is positive). The line containing the director d? will be found by
intersecting a system (denoted by H") of suitably chosen (/N —1) hyperplanes, hereafter
called the guiding hyperplanes for segment YY" 1. Since, in segment Y™V ™1 (n—1)
of the aircraft have reached their destinations, but the others have not, (n—1) of guiding

hyperplanes are given by
xp=ap, k=1,...,n—1. (3.5)

The remaining (N — n) guiding hyperplanes will be chosen from among Hua,;, Hia,;,

Hue,; and Hye,, where 4,7 =mn,..., N and i < j.
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Suppose Y, is the most recently computed vertex, and suppose H" has also been com-

puted. (For n = N, the system H}, consists of the distal hyperplanes z;, = z***, k=
L...,N—1)

)

e The intersection of the guiding hyperplanes in H" gives a line, oriented by a

director d™

which we chose to have a positive scalar product with the vector

n

XOXmax'

e To compute p" and H”™ | we consider these two different cases: (a) m = M,, —1,

and (b) m < M, — 1.

(a) m = M, — 1. (This is the case Y™ =X,,_;.)

At state Y = X,,_y, there are p = (N — n + 1) aircraft that have not

p(p—1)

reached their destinations. Hence, there are =5

pairwise position state
spaces between these aircraft and there are 2p(p — 1) hyperplanes that can be
considered as guiding hyperplanes (see Equations (2.7), (2.8), (2.12), (2.13)

and Section 2.5). The ray

Y™ —Ad™, A >0,

intersects one or more of the hyperplanes in the @ pairwise position state
spaces. Every such intersection is a single point (intersection of N — 1 guid-
ing hyperplanes and the new hyperplane). Consider only such points that,
regarded as states, are attainable from X and feasible. Each of these states
corresponds to a specific value of X. Let p;" be the smallest of these values,
and let G denotes the corresponding hyperplane.

The system H™ " is now obtained by replacing the distal hyperplane x,_; =
2™ in H™ with G™.

m < M, — 1.

In this case, at state Y™, there are p = (N — n) aircraft that have not

reached their destinations. The ray

Y™ - Ad™, A >0,
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intersects one or more of the hyperplanes in the @ pairwise position state
spaces. Every such intersection is a single point. Consider only such points
that, regarded as states, are attainable from X" and feasible. Each of these
states corresponds to a specific value of A. Let p;" be the smallest of these

values, and let G" denotes the corresponding hyperplane, and let
Yy =Y -y

The system H™"! is now obtained as follows. The hyperplane G™ replaces
exactly one of hyperplanes Hff, Hij' in H}' in the following order
i. If there exist one in the pairwise position state space (i, j) corresponding
to G

ii. If there exist one that imposes a constraint which is inactive at Y.

iii. If none of cases above is true, choose one with the largest value of (i + 7).

4. If 1" not found, report, “No speed control solution found for separation-promising se-
quence {1, 2, ..., N}”. If X° has been reached, parametrized the computed trajectory

by time and report the speed profile of each aircraft.

The steps of the algorithm is depicted in a flow chart in Figure 3.6.

Remark 3.3. Since, the guiding hyperplanes in the system H* forn =1,...,N and m =
0,..., M, are chosen from different 2-dimensional subspaces then they are independent and
there is a 1-dimensional intersection for each segment. Except for cases when some temporary

gquiding hyperplane become inactive. This case will be discussed later.

In summery, the following lemma can be defined for the existence of a speed control

solution for N aircraft,

Lemma 3.2. In N aircraft case, the speed control solution exists if and only if there exists
at least a separation-promising sequence for all N-aircraft and o feasible-attainable trajectory

for the separation-promising sequence.
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Figure 3.6: Flow chart of the algorithm.
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The algorithm is exhaustive, it checks the existence of a speed control solution in all
separation-promising sequences and in each sequence looks for the feasible-attainable trajec-
tory that provides minimum possible spacing between all pairs of aircraft (minimum positive
A for p"). A criterion, i.e. minimum delay with respect to the flight schedule, can be defined
to choose the solution among all separation-promising sequences with feasible-attainable tra-
jectory. Therefore, if such a solution does not exist in any separation-promising sequence,

then there is no speed control solution.

Definition 3.2. Each separation-promising sequence corresponds to one safe wedge *> which
n all 2-dimensional subspaces there exist feasible-attainable trajectory that satisfy the se-
quence (see Definition 3.1). The safe wedge corresponds to a separation-promising sequence

1s called separation-promising safe wedge.

Remark 3.4. If there exists an attainable state on the separation-compliant part of the
bounding hyperplane of the roof set then from that state one can construct a feasible-attainable

trajectory that enters a safe wedge.

The algorithm first generates all separation-promising sequences among N aircraft. Then,
it looks for a feasible-attainable trajectory in separation-promising sequences. Therefore, al-
gorithm finds all separation-promising safe wedges and then it looks for a feasible-attainable
trajectory in these safe wedges. Given Remark 3.4, there exist a feasible-attainable trajec-
tory, if there exist at least one attainable state on the intersection between the separation-
compliant portion of bounding hyperplanes of the roof set and the bounding hyperplanes of

the separation-loss set associated with a separation-promising safe wedge,

(Xurc U Xlrc) N0 A(XO) ?é @7

where
N N
xre=o |l |Jus | nol Ju |, (3.6)
ij=1 ij=1
i<j i<j

2In N-dimensional state space (N > 1, the intersections between attainable cone and separation-complaint
state set are convex polyhedrons called safe wedges [24]
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N N

xre=ol lJcLg|nol ULy, (3.7)
i,j=1 i,j=1
1<j 1<J

and U, LS

Gy L5, Ul and L, are half-planes defined in equations (2.16)-(2.19) and Uj; or UJ; is
associated with a separation-promising safe wedge. The faces of the separation-loss set are
the set of the innermost feasible states including states in X*™¢ and X' (see equations (3.6)
and (3.7)). The algorithm generates a feasible-attainable trajectory which lies on this faces
associated with a separation-promising safe wedge (Definition 3.2) by choosing the smallest
positive A for the value of p". Therefore, if there exits at least an attainable state in A"
or X' associated with a separation-promising safe wedge then the algorithm can generate a

feasible-attainable trajectory. Hence, the algorithm guarantees to find the feasible-attainable

trajectory in a separation-promising sequence if such a trajectory exists.

3.2 Numerical example

As an example a portion of LAX routes has been used as a sample airspace. In this example
28 aircraft are flying in the airspace. The initial positions of those aircraft are shown in
Figure 3.7. The radii of the circles are equal to half of the minimum required separation,
and aircraft are at the center of circles. In this simulation, the minimum required separation
is 5 nmi and the speed range is [110, 250] nmi/hr for all aircraft. Figures 3.8-3.12 are depicting
the position of aircraft after every 30.5 sec. The computation time of the algorithm for this
example in a computer with 2.2 GHz, Xeon(R) processor is about 17 seconds in MATLAB.

This computation time can be reduced by using lower level languages, such as C*+.

3.3 Multiple solution case

In segment Y™Y™ " the director d™ can be calculated from the following equation

VT =0, (3.8)
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Figure 3.7: Initial positions of aircraft in LAX airspace.
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Figure 3.8: Positions of aircraft in LAX airspace at t=30.5 s.
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Figure 3.9: Positions of aircraft in LAX airspace at t=61 s.
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Figure 3.10: Positions of aircraft in LAX airspace at t=91.5 s.
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Figure 3.11: Positions of aircraft in LAX airspace at t=122 s.
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Figure 3.12: Positions of aircraft in LAX airspace at t=152.5 s.
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where V7" is an (N — 1) x N matrix where rows of V' are normal vectors of guiding

hyperplanes in H”. If there are (N — 1) independent guiding hyperplane then the null space

n

of matrix V" has dimension one. therefore, director d;" is unique. If there exist any inactive
guiding hyperplanes in H" and one removes them from the set of guiding hyperplanes, then

the dimension of the null space of matrix V" is more one. Hence, director d]* is not unique.

Assume the dimension of null space of VI is M > 1. Then, the null space of VI is

spanned by M independent unit vectors,

E:{e1 ey - eM},

where

T
ei:[t’u Coi vt CNi] )

The vector d”" in equation (3.8) can be expressed as,

T
dy = [Ch dy --- dN} = o1€e1 + g€y + - - - + ey,

di = are + ageip + - +apeipy, i=1,...,N, (3.9)

where ay, (k= 1,---, M) are scalars and not all zero. The vector d}I' define the direction

and slope of the trajectory, where the components of d* must satisfy the slope condition in
each pairwise position state space,
d;  _ . o
§ij<f<3ija 5,7=1,--- N and <.
to obtain a general form for a’s, substitute for d; and d; from equation (3.9), then
a1 (ej1 — Bijei1) + g (ejo — Sijeia) + - + an (ejm — Sijeinr) <0, (3.10)
or (s;5e0 — €1) + aa (s;€00 — €2) + -+ + o (sy;€im — €jr) < 0. (3.11)
For each pairwise position state space the above two inequalities must be satisfied. Assume

there are p aircraft that have not reached their destination. Therefore, there are p(p — 1)

inequalities which can be represented in matrix form.

Fa <0, (3.12)
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where,

€21 — S12€11 €22 — S12€12 e €ap — S12€1M
S192€11 — €21 S12€12 — €22 Tt S19€1M — €2Mm
F = ,
EN1 — S(N-1)NE(N-1)1 EN2 — S(N-)NE(N-1)2 *** ENM — S(N—1)NE(N—1)M
| S(N-1)NE(N-1)1 — EN1  S(N—1)NE(N-1)2 — EN2 *** S(N-1)NE(N-1)M — ENM |
- T
o = al &2 oo O[]\f:|

In this case an optimization problem can be defined to look for a specific solution, i.e. mini-
mizing the fuel consumption. Solving an optimization problem will increase the computation

time.
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CHAPTER 4

Extension of the algorithm to path control

The algorithm developed in Chapter 3 guarantees a speed control solution for a given fleet
of aircraft in a given airspace whenever such a solution exists at all. The modeling frame-
work in which this algorithm is set also indicates the aircraft that need path modification.
Furthermore, this model enables one to define a new path for the aircraft and then to use
the speed control solution to define the speed profile for each aircraft. This ability of the

algorithm will be discussed and used in this chapter.

In the present chapter, the speed control algorithm developed in Chapter 3 is extended
to address cases in which the separation-compliance can not be achieved by speed control
alone and, consequently, in which path control is required. From the Lemma 3.2, the nec-
essary and sufficient conditions of existence of a speed control solution imply that there is
a separation-promising sequence among all N aircraft and a feasible-attainable trajectory
in the separation-promising sequence. Thus, if one or both of the necessary and sufficient
conditions is violated, then new paths must be sought for some (or, possibly, all) of the
aircraft. The new path of an aircraft can be shorter or longer than the original path. If
the assigned path between two waypoints is the shortest possible path (straight line), then a
shorter path cannot be generated for path control, but it is always possible, in all situations,
to find a longer path. Therefore, the path control algorithm presented here is designed to

modify a path only toward elongation, never toward shortening.

The effect of path modification in the modeling framework is analyzed in Section 2.6.
As mentioned above, according to the lemma 3.2, there are two situations where the speed
control does not exist. If the necessary condition for speed control is not met, the path

control for a particular aircraft will be developed. This case is discussed in Section 4.1. In
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Section 4.2, path control when the sufficient condition for speed control is not satisfied will
be constructed for a particular set of aircraft. In Section 4.3, the approximate shape of the

new path will be discussed.

4.1 Failure of the necessary condition: no separation-promising

sequence

The algorithm in Chapter 3 (also presented in [20, 21]) begins by constructing all separation-
promising sequence for all N aircraft by looking at all pairwise separation-promising se-
quences of all pairwise position state spaces. In each pairwise position state space, there are
two possible sequences; 7) aircraft j exits the airspace before aircraft ¢ which is denoted by
{i,j}, and ii) aircraft i exits the airspace before aircraft j, {j,4}. All possible scenarios in a
2-dimensional subspace are depicted in Figure 4.1 where the attainable cone intersects the

infeasible set.

(N
L4
3
?

] .- 4 .- -0 - R

? 1 ? 1 ? 1 'Z’

(a) Both possible se- (b) Just sequence {3, j} (c) Just sequence {j,i} (d) No sequence is
quences are separation- is separation-promising is separation-promising separation-promising

promising

Figure 4.1: All possible scenarios in the pairwise position state space of aircraft ¢ and j.

In order to discuss the method of finding the set of aircraft with minimum path modi-
fications, it is necessary to understand the algorithm given in Chapter 3 of generating the
separation-promising sequence. The algorithm generates the sequence by first finding the
last aircraft that reaches its destination and continues until finding the first aircraft that

reaches its destination. Consider constructing a N-by-N matrix S, where N is the number
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of aircraft in the airspace. In each 2-dimensional subspace pick the aircraft that reaches
its destination last. Assign the index of this aircraft to the (i,7) and (j,i) components of
the matrix S. If both sequences are separation-promising sequence, Figure 4.1a, then assign
zero and if no sequence is separation-promising sequence, Figure 4.1d, assign N + 1 to the
(7,7) and (j,7) components. Therefore, matrix S is a symmetric matrix with zeros on diag-
onal components where 7" column (row) of this matrix represent the last aircraft that are

reaching their destination in all pairwise position state spaces associating with aircraft i.

The assumption in the first step is that all aircraft have reached their destinations. Then,
if the i column (row) just contains 0 or i then one obtains aircraft i satisfies all pairwise
separation-promising sequences and can be the last aircraft in the sequence of N aircraft to
reach its destination (or first aircraft in the time-reverse to enter the airspace). Now, the
aircraft ¢ is considered to be inside the airspace and all other aircraft are at their destinations.
Hence, all components of 7" row and column must turn to zero. Also, the i column (row)
can not be picked again in proceeding steps. Now, consider an N-dimensional vector O,
where the component o; is one if aircraft ¢ has reached its destination and is zero if aircraft
7 is inside the airspace and consider set [ which contains all the indices of aircraft that have
reached their destinations. In order to switch the rows and columns associated with aircraft
inside the airspace to zero, the matrix S can be post multiplied by diag(O). Where diag(.)
is called the diag function [8]. Now, aircraft j is the next aircraft if the ;% column (row) of

matrix diag(O) * S contains 0 or j. This can be simplified by using the following equation
s'; = diag(O) x s; — j * sign (diag(O) * s;), (4.1)
where

1 ifz>0
sign(z) =40 ifz=0
-1 ifz<0

and s; is the j* column of matrix S and j € I. If the vector s'; = 0, then aircraft j is the

next aircraft in the sequence. After finding each aircraft in the sequence, the vector O and
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the set / must be updated by setting o; = 0 and removing j from the set /. If there are

multiple aircraft with s’; = 0, then there is more than one separation-promising sequence.

In order to make the above procedure clear, an example of four aircraft is considered.
There are six pairwise position state spaces for 4 aircraft. The pairwise position state spaces

of this example are depicted in Figure 4.2. Therefore, the matrix S for this example is as

)

Ha
i > 11
(a) 2-dimensional subspace of (b) 2-dimensional subspace of (¢) 2-dimensional subspace of
aircraft 1 and 2. Both sequences aircraft 1 and 3. Aircraft 3 is aircraft 1 and 4. Aircraft 1 is
are separation-promising. reaching its destination last. reaching its destination last.

z3

S

Ha
| > L2
(d) 2-dimensional subspace of (e) 2-dimensional subspace of (f) 2-dimensional subspace of
aircraft 2 and 3. Aircraft 2 is aircraft 2 and 4. Aircraft 2 is aircraft 3 and 4. Aircraft 3 is
reaching its destination last. reaching its destination last. reaching its destination last.

Figure 4.2: All pairwise position state spaces of 4 aircraft example
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follows:

0 0 3 1]
002 2
S =
320 3
1230

The algorithm generates the sequence backward. Therefore, at the first step assume all the

aircraft have reached their destinations. Hence, the vector O and the set I are as follows;
o' = [1 11 1} ,
I=4{1,2,3,4}.

To find the first aircraft in the separation-promising sequence, use equation (4.1) to calculate

s';j for j =1,2,3,4. Then

0 0 0 -3

0 0 -1 -2
S/1 = ) 5/2 = ; 5/3 = ) s'4 =

2 0 0 —1

_0_ _O_ i 0 ] i 0 ]

Only s’y = 0. Therefore, the first aircraft to reach its destination is the aircraft 2,
Seq. = {2}. (4.2)

Before, using equation (4.1) to find the second aircraft, the vector O and the set I must be

updated as follow
o' = [1 01 1} :
I =1{1,3,4}.

Then, in the next step j =1, 3,4. Then,

S N O O

0
w
|
o o o o
n
'S
|
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Since, the next aircraft is the aircraft 3, then the sequence (4.2) is updated to
Seq. = {2, 3},
and the update of the vector O and the set I are

OT={1 0 0 1},

I ={1,4}.
In the next step j = 1,4. Then,
_0_ __3_
0 , 0
51 = ) S4 =
0 0
_0_ . 0 -

The third aircraft to reach its destination is the aircraft 1, then
Seq. = {2,3,1}.
Therefore, the separation-promising sequence for this example is:
Seq. ={2,3,1,4},

where aircraft 2 is the last aircraft that reaches its destination and aircraft 4 is the first one.
If in one of the steps of finding the feasible sequence, all s’; are nonzero, then there is no

separation-promising sequence. In this case, the algorithm must use the path control.

The first step in the path control algorithm is to find the set of aircraft for path mod-
ification. The aircraft can be identified by looking at the nonzero components of vector
s;. The nonzero components are associated with the pairwise position state spaces where
aircraft j can not be the last aircraft to reach its destination. Then, in each of these pairwise
position state spaces, the minimum path elongation needed for aircraft j to be the last air-
craft to reach its destination must be calculated. The maximum along these minimum path

elongations is the minimum required path elongation for aircraft j to be the last aircraft

in all pairwise position state spaces associated with aircraft j. In order to find the aircraft
47



with minimum required path modification, the path modification of all aircraft j € I must

be calculated and then the one with minimum path modification is the candidate for path

control.

To illustrate the above discussion, consider a set of four aircraft. The pairwise position

state spaces of this example are depicted in Figure 4.3.

(a) 2-dimensional subspace of
aircraft 1 and 2. No sequence
is separation-promising.

z3

S

> T2

|
(d) 2-dimensional subspace of
aircraft 2 and 3. Aircraft 2 is

reaching its destination last.

(b) 2-dimensional subspace of
aircraft 1 and 3. Aircraft 3 is

reaching its destination last.

(e) 2-dimensional subspace of
aircraft 2 and 4. Aircraft 4 is

reaching its destination last.

(¢) 2-dimensional subspace of

aircraft 1 and 4. Aircraft 1 is

reaching its destination last.

(f) 2-dimensional subspace of

aircraft 3 and 4. Aircraft 3 is

reaching its destination last.

Figure 4.3: All pairwise position state spaces in example 2
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The matrix S in this example is

05 31
5 0 2 4
S —
3 2 0 3
_1 4 3 O_

The vector O and the set I are as follows;

OT:[l 11 1},

I=1{1,2,3,4)}.

s'js in the first step of generating the separation-promising sequence are,

0] 3] [0 | 3]

4 0 1 0
S/1 = ) Slz = s S/3 = ) S/4 =

2 0 0 1

0] 2] 0| 0|

There is no s’; = 0. Therefore, no separation-promising sequence exists and the algorithm
must use the path modification. The path modification associated with each aircraft j € I

must be determined.

e Path modification associated with aircraft 1;
The second and the third components of s’y are nonzero. Therefore, the 2-dimensional
subspace of aircraft 1 and aircraft 2 and subspace of aircraft 1 and 3 must be modified
such that the aircraft 1 reaches its destination after aircraft 2 and 3. The maximum
minimum modification that satisfies both subspaces is the minimum modification of

the path of aircraft 1, denoted by A/;.

e Path modification of the aircraft 2;
The first and the forth components of 8’5 are nonzero. Like the previous scenario, the
maximum minimum modification that lets aircraft 2 reach its destination after aircraft

1 and 4 is the minimum modification, denoted by A/,.
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e Path modification of aircraft 3;
Only the second component of s’s is nonzero. Then, the minimum path modification
associated with pairwise position state space of aircraft 3 and aircraft 2 is the the

minimum modification of the path of aircraft 3 and is denoted by A/ls.

e Path modification of aircraft 4;
The minimum modification is equal to maximum minimum modification of the path of

aircraft 4 that lets aircraft 4 reach its destination after aircraft 1 and 3, and is denoted

The minimum modification along Ay, ..., Ay will be picked. The aircraft associated to the

minimum modification is the one that is chosen for path modification.

Instead of minimum path modification, one can choose any criteria, i.e. schedule of arrival
could be used to pick the aircraft j € I for path modification. For instance, in the previous
example, if according to the schedule, aircraft 4 is the last aircraft to reach its destination,
then the algorithm will pick aircraft 4 as the first one in the sequence and find the minimum

required path modification for it.

Assume the minimum path modification in the above example is A¢;. Therefore, aircraft
4 is the first aircraft in the sequence. The modified 2-dimensional subspaces are depicted in

Figure 4.4.
Seq. = {4}.

Before, using equation (4.1) to find the second aircraft, the vector O and the set I must be

updated as follow

OT:[l 11 0},

I=1{1,2,3}.

50



> L1 > T3

(a) Modified 2-dimensional sub- (b) Modified 2-dimensional sub-
space of aircraft 1 and 4. Air- space of aircraft 3 and 4. Air-
craft 4 is leaving last. craft 4 is leaving last.

Figure 4.4: Modified 2-dimensional subspaces in second example, the boundaries of

separation-loss set and attainable cone are coincidence.

Then, in the next step 7 = 1,2,3. Hence,

o O O W
o

0

e
1
2

_0_

There is no s’; = 0. Then, a second aircraft is chosen for path modification. Then, path
modifications Af;, Afly and Af3 associated with aircraft 1,2 and 3, respectively must be
calculated. Aircraft associated with the minimum path modification will be chosen for path
modification, i.e. this is found to be Afy. Therefore, the 2-dimensional subspace of aircraft 1
and 2 must be modified such that aircraft 2 leaves the airspace after aircraft 1. The modified

subspace is depicted in Figure 4.5.

The next aircraft is aircraft 2,

Seq. = {4,2},
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Figure 4.5: Modified 2-dimensional subspace of aircraft 1 and 2, the boundaries of separation-

loss set and attainable set are coincidence.

and the update of the vector O and the set [ are

OT:[l 0 1 0],

I={1,3).

In the next step j = 1,3, then

Sll =

o v o o
%)
w
Il

o o o o

s’s = 0, then no path modification is needed and the next aircraft is aircraft 3,
Seq. = {4, 2,3}.
Therefore, the separation-promising sequence for this example is:
Seq. ={4,2,3,1},

where aircraft 4 is the last aircraft that reaches its destination and aircraft 1 is the first one.
To make this sequence separation-promising sequence, the paths of aircraft 2 and 4 must be

modified by Afy and Aly, respectively.
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4.2 Failure of the sufficiency condition:no trajectory exists in a

separation-promising sequence

After generating a separation-promising sequence, renumber all aircraft based on the se-
quence. Then, the algorithm in Chapter 3 will generate a polygonal trajectory, if one exists.

Each segment Y™Y™*! of the trajectory can be described by the line equation,
Y, — Ad), (4.3)

where Y" is the last point of the previous segment, the d* is the director of current segment
and A > 0 is a scalar variable (See Section 3.1.2). The director d/”" is the vector obtains by
intersecting all N — 1 guiding hyperplanes in H". There are p aircraft inside the airspace

(see step 3.(a) and step 3.(b) in Section 3.1.2). The line equation (4.3) intersects all the

p(p—1)
2

hyperplanes in subspaces and the current segment ends at the closet feasible-attainable
intersection, denoted by Y* hereafter. Therefore, the feasible-attainable trajectory does not

exist if no director can be found or no feasible-attainable intersection between equation (4.3)

p(p—1)
2

and hyperplanes in subspaces exists. In Section 4.2.1, path modification is considered
for the case where no director exists. In Section 4.2.2, the case where no feasible-attainable

intersection exists is considered.

4.2.1 No director exists

In the case, where no new aircraft has reached its destination (Step 3.(b) in Section 3.1.2).
One of the existing inactive or temporary guiding hyperplanes must be replaced with the new
guiding hyperplane. If no inactive or temporary guiding hyperplane exists, i.e. all existing
guiding hyperplanes are permanent guiding hyperplanes, then by adding the new guiding
hyperplane, the number of guiding hyperplane increases to /N and the null space of matrix
V7 become empty. Therefore, no director exists. Depends on the new guiding hyperplane,

there are two solutions.

e If the new guiding hyperplane is temporary guiding hyperplane;

The pairwise position state space associated with the new guiding hyperplane must be
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modified such that the intersection point Y* moves to the point where the new guiding

hyperplane become inactive.

e If the new guiding hyperplane is permanent guiding hyperplane;

— If all aircraft are inside the airspace;
The pairwise position state space associated with the new guiding hyperplane

must be modified such that the intersection point move to initial point X°.

— If there exist aircraft that has reached its destination;

No path control solution can be found.

4.2.2 No feasible-attainable intersection exists

The intersection Y* is feasible and attainable if,
Y e AnC

The new segment (equation (4.3)) starts from Y* (A=0) and moves along —d* as scalar A
increases and intersect with hyperplanes in all 2-dimensional subspaces. If Y lies in the
interior of ANC’, then there exists at least one intersection with the boundary of the feasible
set. So if Y lies in the interior of feasible set this condition can not be violated. If Y"
lies on the boundary of the feasible set, then it is possible to have all the intersections, Y*

outside the feasible set.
Y*¢ ANC
By using the De morgan’s law, this can happen in one of the following cases,
e Y'¢d Aand Y* €,
e Y'cAand Y* ¢ (',

e Y'¢d Aand Y* ¢ C'.
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4221 Y*¢Aand Y e('

In this case, the state space must be modified such that the new intersection lies inside
the attainable cone. In order to understand the method of modifying the attainable cone,
a 2-dimensional subspace will be considered. A sample situation is depicted in Figure 4.6.

The intersection Y* is not inside the attainable cone. The path control must be used to

L(n-1)
1 Xmax
=
|
&
:] e
|
E
) = :
| R
= XOI: X0
)
< > T
A s gn "
!
‘en
—

Figure 4.6: 2-dimensional subspace example of Y* ¢ A and Y* € C'.

modify the attainable cone. The algorithm picks the aircraft that extends the path beyond
the original path by modifying the attainable cone. i.e. aircraft n in Figure 4.6. In N-
dimensional state space, in order to modify the attainable cone by just elongating the path

of some aircraft, the initial point X° must move to X% such that
AX? = X" - X’ <0.
The original N-dimensional attainable cone was defined with an inequality
A ={X]AX < B},

when X = XY,

[
=

AX°
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Similarly, the modified attainable cone can be defined as

A = {X|AX < B},
AXY =B

Note that, the matrix A just contains the normal vectors of boundaries of the attainable

cone. Therefore, the matrix A does not change in the modified attainable cone.

In order to find the aircraft with minimum path modifications, the norm of vector AX°

must be minimized. Therefore, the following optimization problem can be defined

minimize  ||XY — XY
b O

subject to X* < XO, (4.4)
AY* < B/
where Y* is the intersection of the current segment of the trajectory with a hyperplane. The
optimization problem (4.4) can also be written as
minimize (AX°)"(AX?)
axY”
0 (4.5)
—A | —A (Y- X9

I
subject to M Aax0<

The solution to the optimization problem, AX" is the minimum modification of the vertex
of the attainability cone. The aircraft corresponding to the nonzero components of AX°
are the ones that need to move out from their assigned path. The new path length of these

aircraft can be calculated from
0 =l, — A2},

where ¢/, is the new arc length of the path of aircraft n, ¢, is the arc length of the original

assigned path of aircraft i and Az? is the n'* component of vector AX°.

4222 Y*e€eAand Y*¢C(C

This situation can happen in two cases,
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i) when a new aircraft reaches its destination (Step 3.(a) in Section 3.1.2). This case is

depicted in Figure 4.7a. Aircraft j is the new aircraft.

i1) when the previous intersection Y lies on the boundary of the separation-loss set and
this boundary is not in the guiding hyperplane set H”"!, of the next segment. This

case is depicted in Figure 4.7b.

T(n—1)
4 Y X max

| ?

(a) The intersection Y* may lie in-
side the separation-loss set when
aircraft (n—1) has reached its des-

tination.

(b) The intersection Y* may lie in-
side the separation-loss set when
the previous intersection Y lies

on the boundary of the separation-

loss set and the boundary is not in

the guiding hyperplane set H™*1L.

Figure 4.7: Two cases when the new intersection lies inside the separation-loss set.

In both cases, the state space must be modified such that the new intersection Y* lies inside
the separation-compliant state set. The N-dimensional separation-compliant state set is
defined as
N
=%
ij=1
i<j

where,

In order to modify the state space, the algorithm must find the pairwise position state

space where the intersection lies inside the separation-loss set. Then, identify the suitable
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boundary of the pairwise separation-loss set. In the first case, when an aircraft has reached
its destination, the intersected boundary of the pairwise separation-loss set associated with
the smallest positive A is the suitable boundary. In the second case, when the previous
intersection Y," is on the boundary of the separation-loss set, then this boundary is the
suitable boundary. After picking the suitable boundary, the pairwise separation-loss set
must be modified such that the last intersection Y* lies on the suitable boundary. The
modified pairwise separation-loss set in Figure 4.7a is depicted in Figure 4.8. For instance,
in this state space the aircraft n needs path modification and the arc length of the new path

must be

0 =0, + AL,

| ?

Figure 4.8: Modified pairwise separation-loss set when new aircraft is added to the airspace

In Figure 4.9, the modification of pairwise separation-loss set in both cases when the Y

is on the hyperplane H?Tf_l)m or Hl(c are depicted. If Y," is on H}° (Figure 4.9a),

n—1),n (n—1).n

then the path of aircraft n needs to be modified such that the intersection Y* be on ?s—l),n
. The slope of H?ﬁ_n,n is one. Therefore the equation of H?ﬁ_n,m after modification is,

Ln—1) = Tn = Y + Y(u- 1) (4.6)

where y; and y(,_, are the nt" and (n—1)" components of intersection point Y*, respectively.

Since the separation-loss set moves to the right, then the z(,_;) components of all points
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T(n-1)

S

() When Y is on the #!_) | (b) When Y is on the H(5,_,, ,

Figure 4.9: Modification of separation-loss set when the previous intersection is on one of

the boundaries of separation-loss set.

on the boundary stay constant and the z, components shift for A¢,,. i.e. intersection point

between E‘j{’_l)’n and Hé%_l)’n, denoted X, moves to X!, , see Figure 4.9a. Then,

Al =z, — Ty, (4.7)
/ (4.8)

UT (n—1) = x“’"(n—l)'
X!, is on the modified infeasible state set boundary, equation (4.6), hence,

’ o * *
UP(n—1) Lyr, = Tn + L(n-1)

using equations (4.7) and (4.8), Al,, can be written as
Aen = Zur,

* *
~1) +T, — Lin—1) =~ Lury-

The new arc length of the path of aircraft n is

0 =0, + AL,

If Y™ ison Hé?x—l),n (Figure 4.9b), then the path of aircraft (n — 1) needs to be modified.

The new arc length of the path of aircraft (n — 1) is
Cin1y = Lin-1y + Al
and similarly,

AE(n—l) = Tur, — L+ f(kn—l) = Lur(y_1)-
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Based on the argument at the beginning of Section 4.2.2; this case can happen if the be-
ginning point of the current segment, Y" is at the intersection of the boundaries of the
attainable cone and the separation-loss set. This intersection happens in a non-separation-
promising sequence. The configuration is shown in Figure 4.10. The algorithm first generate
separation-promising sequences and then the feasible-attainable trajectory generates based

on a separation-promising sequence. Therefore, this case never can happen.

T(n—1)
A | Xmax

Xl

Figure 4.10: The intersection of boundaries of the attainable cone and separation-loss set

happens in the non-separation-promising sequence

4.3 Path modification

The algorithm uses triangular path as the new path. The new path will add some new
waypoints to the airspace which hereafter are called auziliary waypoints. The aircraft leaves
the nominal path and comes back to it before the merge point. The size of separation-loss
set depends on the angle between two merging path segments. This angle, depicted in Figure
4.11a, is denoted by ¢. In order to keep the angle ¢ constant, the modified path must come
back to the original path at or before the point where the separation-loss set starts. This
is depicted in Figure 4.12. Therefore, three auxiliary waypoints will be added per path

modification, i.e. in Figure 4.12, these auxiliary waypoints are denoted by a, b and c.
In order to avoid a new violation of separation between the aircraft with the modified
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4 Separation-loss set
C
¢
XO
(n—1) > Tn
(a) Merging of two path seg- (b) pairwise position state space between aircraft n
ments. and (n—1)

Figure 4.11: Merging of two path segments and the corresponding 2-dimensional subspace

between aircraft n and (n — 1).

Figure 4.12: The modified path must back to the original path at or before the point where

the separation-loss set starts.

path and other aircraft in the airspace and simplify the constraints, two boundaries will be
considered around each route segment of the original paths. The distance between original
route segment and each boundary is equal to the minimum separation requirement, r. In
order to avoid a new violation, the auxiliary waypoint b must lie outside of the boundaries
of all route segments. This is depicted in Figure 4.13. In Figure 4.13a the distance between
waypoint b and the closest route segment is larger than the minimum separation required,
also in Figure 4.13b the distance between waypoint b and the closet route segment is equal
to minimum separation required. Therefore, both path modifications are acceptable and
satisfy the minimum separation requirement. In Figure 4.13c, the waypoint b is in inside the

safety boundary of closet route segment and the distance between waypoint b and the route
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segment is less than the minimum separation requirement. In this case, there is a potential
separation loss between two aircraft and algorithm does not accept this solution as a safe

path modification.

(n—1) (n—1) (n—1)

a a a

(a) Safe path modification. (b) Safe path modification. (c) Potential separation viola-

tion.

Figure 4.13: Different possible triangular path modification

4.4 Numerical example

Consider three aircraft in a given airspace. The configuration of these aircraft is shown in
Figure 4.14. The minimum separation requirement between all pairs of aircraft is r = 5 nmi,

¢ = 40° and the speed range for aircraft are as follow,

V1 € [300,400] (nmi/hr),
V5 € [300,400] (nmi/hr),

V3 € [300,350] (nmi/hr).

Also, this example is the counter example where the existence of a solution for each indi-
vidual pairwise position state space, i.e. there is a separation-promising sequence, does not
guarantee the existence of a speed control solution for all IV aircraft, i.e., there is no feasible-
attainable trajectory. There are three pairwise position state spaces which are depicted in

Figure 4.14. In this example, the following two sequences are separation-promising for all
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(a) Configuration of three aircraft in airspace (b) pairwise position state space of aircraft 1
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Figure 4.14: The configuration of three aircraft in a given airspace and pairwise position

state spaces.

three aircraft, but as will be shown no feasible-attainable trajectory exists in them.
SBQI = {17 27 3}7

Seqs = {2,1,3}.
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Therefore, there is no speed control solution and the path control along with the speed
control solution must be considered. The algorithm picks the sequence with the higher
likelihood of existence of a speed control solution. In this example, since the arc length
of aircraft 1 is equal to the arc length of aircraft 2, both separation-promising sequences
have the same likelihood. Here the first sequence has been chosen for path modification.
In this sequence, by using the time-reversed trajectory generation method, the last aircraft
to reach its destination is aircraft 1 (note, the aircraft are not renumbered based on the

separation-promising sequence). The equation of the first segment is,
XM — Ady, (4.9)
where
T T
X=Xy = [40 40 40} , di = [1 0 0} -
The feasible-attainable intersection associated with smallest positive A is at,
T
Xy = {34.92 40 40] .

The first segment of the trajectory is depicted in Figure 4.15. The intersected hyperplane at
X2 X max

35-

o
=
T

N
(2]
T

airplane (2)
- — [\ %]
=B -

[2)]

| s
i | H

0 10 20 30 40

airplane (1)

Figure 4.15: The first segment of the trajectory.
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point X, is H}§, aircraft 2 reaches its destination at this state. The director of the second

segment is

d; = [1 1 O]T.

The equation of the second segment can be written as

X, — Ad,. (4.10)

In order to find the end point of the second segment, two cases must be considered, 7)

when a new aircraft reaches its destination (Step 3.(a)), 7¢) when no new aircraft reaches its

destination (Step 3.(b)).

Case i:

Case 7i:

New aircraft reaches its destination:
In this case, aircraft 3 reaches its destination. Then, in order to find the end point of
the second segment all three pairwise position state spaces must be considered. Hence,

the intersection associated with the smallest positive A is,

T
Y* = [30 35.08 40] .

The intersection Y* in all pairwise position state spaces are depicted in Figure 4.16.
At Y* aircraft 1 has traveled 10 nmi and aircraft 2 has traveled 4.92 nmi. Therefore,
aircraft 3 can not reach to its destination and must wait until aircraft 2 travel at least
5 nmi. This conflict can be seen in pairwise position state space between aircraft 2
and 3. In this pairwise position state space, the intersection point Y* lies inside the

separation-loss set. Hence, this case does not have solution.

No new aircraft reaches its destination.
In this case, there are two aircraft in the airspace, then, there is only one pairwise

subspace and the intersection is

Y= [15.23 20.3 40}T»

which lies inside the intersection of the attainable cone and the separation compliance
state set, See Figure 4.17. Then, by considering aircraft 3 this point will lie outside of

the attainable cone. This is depicted in Figure 4.18.
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Figure 4.16: The intersection point Y* in all pairwise position state spaces.

Therefore, no feasible-attainable intersection exists and the path control must be considered.
The path control will be considered for the Case 7, when the third aircraft reaches its des-
tination. As it is illustrated in Figure 4.16, the intersection point lies inside the attainable
cone but not the separation compliance state set. Hence, the method described in Section
4.2.2.2 is used. The path of aircraft 1 must be elongated by Af; = 0.0771 nmi. After modi-
fying the path of the aircraft 1, the pairwise position state spaces associated with aircraft 1

are changed. The modified pairwise position state spaces are depicted in Figure 4.19. After
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Figure 4.17: Position of intersection Y* when no new aircraft reaches its destination.
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Figure 4.18: Position of intersection Y*, after considering aircraft 3.

modifying the pairwise position state spaces, the process of generating the feasible-attainable
trajectory must start all over. Then, the first segment of the trajectory can be describe by

equation (4.9) and ends at the intersection,

Xy = [35 40 40}T. (4.11)
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Figure 4.19: The intersection point Y* in all pairwise position state spaces.

The second segment of the trajectory is described by equation (4.10), where X, is given in
equation (4.11). The second segment intersects the hyperplane HY5 and hyperplane H§ at

point
X3 = [30 35 4O}T7

which is associated with the smallest positive A. Therefore, two new guiding hyperplanes
must be added to the guiding hyperplane set, H,. Aircraft 3 reached its destination, so there
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are 3 aircraft in the airspace. Then, 2 independent guiding hyperplanes are required while 3
guiding hyperplanes exist, the old one, H{§ and two new guiding hyperplanes H{§ and H45.

This case can be resolved in three different perspectives.

1) If both new guiding hyperplanes are added to the guiding hyperplane set, Hs, then the

normal vectors of these guiding hyperplanes form matrix Vs.

—1.1667 0 1
V3 = 0 -1 1
—1 1 0

The null space of matrix V3 is empty. Therefore, no director can be found for the
third segment. This is the case described in Section 4.2.1. Then, segment 2 must be

extended until the current temporary guiding hyperplane (H}5) becomes inactive.
2 ) If just one of the new guiding hyperplanes is added to the guiding hyperplane set:

2a) if HYS is added to the guiding hyperplane set, then matrix V3 and director d; are

-1 0 1 T
Vi3 = :>d3={1 1 1] .
-1 10
Then, the intersection point,
T
Y= [15.3023 20.3023 25.3023} ; (4.12)

will lie outside the attainable cone of aircraft 1 and 3. That is, the intersection
lies inside the separation compliance state set, but not inside the attainable cone.

This is described in Section 4.2.2.1. This is depicted in Figure 4.19.

2b) if H}$ is added to the guiding hyperplane set, then matrix V3 and director dj

has the following forms

—1.1667 0 1 T
Vi = =ds=11 1 1.1667} :
-1 10
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Then, the intersection point,

T
Y* = [15.3023 20.3023 22.8522} .

will lie inside the separation-loss of aircraft 2 and 3. In other words, the intersec-
tion lies inside the attainable cone and not inside the separation compliant state

set. This is the case described in Section 4.2.2.2. This situation is depicted in

Figure 4.20.
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Figure 4.20: The intersection point Y* in all pairwise position state spaces.
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The goal of this algorithm is to find the trajectory which provides minimum possible spacing
between all pairs of aircraft. This goal will be obtained in (2a). In (2a), the third segment lies
on the boundary of separation-loss set which means the corresponding pair of aircraft have
distance equal to the over estimated minimum separation requirement. The third segment
ends at the intersection associated to the smallest positive A which is given in equation (4.12).
By using the method described in Section 4.2.2.1, the path of aircraft 1 must be elongated by
Afl; = 2.0997 nmi. Then, all pairwise position state spaces associated with aircraft 1 must
be updated and the trajectory must be generated all over. The updated pairwise position
state spaces are depicted in Figure 4.21. After modifying the pairwise position state spaces,
a feasible-attainable trajectory can be generated. The speed for each aircraft is given in

table 4.1. Therefore, to get the feasible-attainable trajectory, the path of aircraft 1 must be

A t]208.82 | 151.18 | 51.43 | 52.22

Vi 300 350 350 | 350
Vs 350 350 350
Vs 350 350

Table 4.1: Speed profile for each aircraft, times are in seconds and velocities in nmi/hr.

elongated by Af; = 2.1768 nmi. By using method described in Section 4.3, the new path
can be assigned to aircraft 1. The new path is depicted in Figure 4.22. The radius of circles
are equal to half of the minimum separation requirement. The Figures 4.22 -4.27 show the

positions of aircraft from ¢ = 0 to ¢ = 5 min.
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Figure 4.21: Feasible trajectory.
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Figure 4.22: New path of aircraft 1 and positions of aircraft at ¢t = 0.
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Figure 4.23: Positions of aircraft at £ = 1 min.
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Figure 4.24: Positions of aircraft at £ = 2 min.
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Figure 4.25: Positions of aircraft at ¢t = 3 min.
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Figure 4.27: Positions of aircraft at £ = 5 min.
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CHAPTER 5

Conclusion and future research

The algorithm developed in Chapter 3 is searching for a feasible-attainable trajectory in all
separation-promising sequences. Therefore, it is guaranteed to find a speed control solution,
if such a solution exists. We have shown that the computation time is finite and can be
done in parallel for each separation-promising sequence. The parallelism helps make it
computationally practical. By increasing the number of aircraft, the number of separation-
promising sequences will increase. But as it is discussed before, the likelihood of existence of
a speed control solution in each sequence depends on the order of total arc length of assigned
path to aircraft in the sequence. Therefore, for further reduction in computation time, a
likelihood function can be defined for each separation-promising sequence and then look for

speed control solution in the sequences with the higher probability.

The algorithm developed in Chapter 3 is extended in Chapter 4 to use the path control,
when the speed control solution does not exist. If no separation-promising sequence exist, the
algorithm will generate a new path, which will have the highest likelihood of the existence
of a speed control solution. It has been shown that the schedule of aircraft arrival can
be imposed to generate the separation-promising sequence. If more than one separation-
promising sequence exist but there is no speed control solution, similar to speed control
algorithm in Chapter 3, the path modification for each one can be done in parallel. The
algorithm finds the set of aircraft that need path modification and is able to calculate the
minimum elongation for each aircraft’s path. The new path has a triangular shape and it

will be defined by adding some auxiliary waypoints in the given airspace.
This algorithm can be used in Flight deck Interval Management (FIM). In flight deck

operation ATC issues an interval management clearance and flight crews manage spacing

75



through speed adjustments generated by on-board FIM equipment until reaching a planned
termination point. The interval management clearance issued by ATC is the minimum
separation required, given the permissible speed range of the aircraft on the flight deck, the
infeasible state set and the attainable cone set can be defined. Therefore, this algorithm can

be used to generate the aircraft speed profile.

There are some areas for further research and extension of this algorithm;

e This algorithm generates a discontinuous speed profile for each aircraft which implies
infinite acceleration at those discontinuities. In order to get a continuous speed and
acceleration profile for each aircraft, the aircraft dynamics must be considered. Also,
the current algorithm picks some auxiliary waypoints which guarantee the separation
requirement, but does not suggest the exact shape of the new route. The shape of the

new route must be generated by considering the aircraft dynamics.

e If there are time constraints at waypoints, then the velocity must be varied. These
additional constraints need to be incorporated into the speed and path control algo-

rithm.

e Current scheme assumes constant permissible speed intervals for each aircraft among
its assigned route and identical minimal separation requirement between aircraft pairs.

However, minimal separation and permissible speed intervals may depend upon;

— Aircraft weight and size in the terminal area.

— It may be a restriction that one aircraft leads another, i.e. based on size and the
vortex that may be generated.
— Permissible speed interval narrows at landing. The effect of this narrowing may

or may not be a cone velocity, but the attainable set most likely will be convex.
These considerations can be included in the speed and path control algorithm.

e Robustness of the speed and path control scheme can be added by considering velocity

and possibly position uncertainties due to environmental effects, such as weather.

76



e Currently, the speed control algorithm is guaranteed to find the speed control solution
in a finite time, if such a solution exists. Also, after modifying the algorithm to consider
the aircraft dynamics and environmental uncertainties, the algorithm must guarantee
the computation time to be applicable to real-time air traffic management. An analytic
solution for conflict resolution is sufficient to predict computation time. All addition
constraints, such as uncertainties, time constraints at waypoints and path modification
to retard or advance the aircraft along the nominal path, can be formulated such that

the algorithms retain the property of convergence in polynomial time.

e The dimension of the geometric model introduced in Chapter 2 is equal to the number
of aircraft in the given airspace. The dimension of the state space increases by one
when a new aircraft is added to the airspace. Currently, the algorithm assumes a
fixed number of aircraft. In the real-time situation aircraft are continuously adding
and leaving the airspace. Therefore, the algorithm must be able to calculate the speed
or path control in real-time situation. Two approaches can be considered to find the
speed control solution in the real time. If the computation time is small enough, after
the arrival of new aircraft the algorithm can be run again to find the new speed control
solution for all aircraft in the airspace. Otherwise, the algorithm needs to be modified
to calculate the speed profile for the new aircraft while the speed profiles of the existing

aircraft are assume to be known.
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APPENDIX A

Calculation of pairwise separation-loss set

In the algorithm the N-dimensional separation-loss set is constructed by taking the union of
all pairwise separation-loss sets. The pairwise infeasible state set is the union of separation-
loss set and the roof set. In the following sections, the separation-loss set will be constructed
and then the approximated separation-loss set and the pairwise infeasible state set will be
formulated. The most common case to violate the separation is the merge points. Hence,
calculation of the pairwise separation-loss set for a simple merge point is the most practical

case to be considered.

A.1 Pairwise separation-loss set

To calculate the pairwise separation-loss set, consider two aircraft flying on their own paths
which they are merging at point C. The configuration and the corresponding separation-loss
set are depicted in Figure A.1. The points on the boundaries of the pairwise separation-loss
are representing the configurations where the distance between two aircraft is equal to the
minimum required separation. All different cases of this configuration must be considered.
Five different possible configuration between aircraft ¢ and j where the distance between two

aircraft is equal to the minimum required separation are as follows,

1) aircraft ¢ and j are flying on segments 1 and 2, respectively, but aircraft ¢ is closer to

the merge point,

2) aircraft i and j are flying on segments 1 and 2, respectively, but aircraft j is closer to

the merge point,
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(a) The configuration of merging of air- (b) The pairwise separation-loss set
craft ¢ and aircraft j paths. for two aircraft ¢ and j.

Figure A.1: The simple merge problem and the corresponding 2-dimensional state space.

3) aircraft i and j are flying on segments 1 and 3, respectively,
4) aircraft i and j are flying on segments 3 and 2, respectively,

5) both are flying on segment 3.

All of these cases are considered in the following sections.

A.1.1 Aircraft ¢ and j are flying on segments 1 and 2, respectively, but aircraft

i is closer to the merge point

In order to drive the equation for this case, define a local coordinate such that the z axis of
the coordinate is aligned with the segment 1 and the y axis is perpendicular to segment 1.
The local coordinate is depicted in Figure A.2. The separation-loss region for aircraft i is
shown by a dotted circle, where the radius of the circle is equal to the minimum separation

requirement r. The equation of this circle in the local coordinate can be written as,

(v — a0 +oF = 1%, (A1)
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Figure A.2: The configuration of the first case. The radius of the circle around aircraft ¢ is

equal to the minimum sepqration requirement.

where z;, is the arc position of aircraft 7 on segment 1. Aircraft j is flying on segment 2,

which the equation of this segment in the local coordinate is,

y = tan(¢) (z — (1), (A.2)

where (; is the total arc length of segment 1. Since, the distance between aircraft ¢ and j
is equal to r, then aircraft j is on the intersection of the safety circle and segment 2. Note

that, in this scenario the separation can be violated if
0 < ¢ <90°. (A.3)

From equations (A.1) and (A.2), the z-component of aircraft j position with respect to local

coordinate is

¥ = 11, cos® ¢ + £, sin® ¢ + cos @\/7'2 — (4 — :L'li)2 sin? ¢. (A.4)

Since, aircraft j is further from the merge point than aircraft ¢, then the minus sign in

equation (A.4) is acceptable. This equation valid after the point where first intersection
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occurs. The first intersection occurs at,

r

(A.5)

Ty, =0 — ——.
Li ! sin ¢

In order to find the boundary of separation-loss set in pairwise subspace, the equation (A.4)
must be written as a function of arc length positions of aircraft ¢ and j, «; and z;, respectively.

In this case, the arc length position of aircraft 7 is equal to the position of aircraft 7 in segment

1,

Ty = Tq,.

k3

(A.6)

In equation (A.4), x is the x-component of aircraft j position with respect to the local

coordinate. x can be written as the arc length position of aircraft j

T = 61 — (62 — Z'Qj) COS Qb, (A?)
(A.8)

Ty = .I'Q]..

The suitable equation to use in 2-dimensional state space can be obtain by substituting

equations (A.6), (A.7) and (A.8) into equation (A.4).

x; =l — [(51 — ;) cos ¢ + \/7‘2 —(y — 2;)*sin? ¢| . (A.9)
According to equations (A.3) and (A.5), equation (A.9) is valid when,

0< ¢ <90°,

l — <x; <t

sin ¢

The boundary of separation-loss set corresponding to the first case is depicted in Figure A.3.

A.1.2 Aircraft i and j are flying on segments 1 and 2, respectively, but aircraft

j is closer to the merge point

This is similar to the first case. The configuration and the local coordinate for this case is
depicted in Figure A.4. Similarly, the separation can be violated if
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Figure A.3: The boundary of separation-loss set corresponding to the first case.

Figure A.4: The configuration of the second case. The radius of the circle around aircraft 4

is equal to the minimum separation requirement.

0<¢<90° (A.10)

Then, the equation for separation region of aircraft j with respect to the local coordinate is

(3: — ZL‘Q]-)Z +y2 = r2,

and the equation of segment 1 in the local coordinate is

y = —tan(¢) (x — o).
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Then, the z-component of aircraft 7 position with respect to local coordinate can be found
as the z-component of the intersection point between the separation region of aircraft j and

segment 1 that is given as

T = @y, cos” ¢ + Ly sin® ¢ =+ cos (b\/r? — (b — :L'Qj)z sin? ¢. (A.11)

Similar to the previous case, in equation (A.11) the minus sign is acceptable. This equation
valid after the point where the first intersection between the separation region and segment

1 occurs. Then

r
To, =l — . A12
2 ? sin ¢ ( )

The arc length position of each aircraft is given by,
Ty = T1;, (A13)
T = Ty, (A.14)

Equation (A.11) gives the z-component of aircraft ¢ position with respect to the local coor-
dinate, which also can be expressed as a function of the arc position of aircraft ¢ on segment

1.
x =Ly — ({1 — x1,) cos . (A.15)

Substitute equations (A.13), (A.14) and (A.15) into equation (A.11) to solve for z; as a

function of x;.

=1Ll — |(ly — ;) cos p+ \/7‘2 — (ly — x;)*sin® ¢ . (A.16)
From equations (A.10) and (A.12), equation (A.16) is valid if

0 < ¢ <90°,
ly —

sin ¢

The boundary of the separation-loss set corresponding to the second case is depicted in

Figure A.5.
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Figure A.5: The boundary of the separation-loss set corresponding to the second case.

A.1.3 Aircraft j is flying on segment 3 while aircraft i is flying on segments 1

In this case, aircraft j is flying on segment 3 while aircraft ¢ is flying on segment 1. The
z-component of the local coordinate is set to be aligned with segment 1. Therefore, the

separation region of aircraft ¢ and the equation of segment 3 can be express as:

Figure A.6: The configuration of the third case. The radius of the circle around aircraft j is

equal to the minimum separation requirement.

($ - xli)z + 3/2 =7’
y = tan(¢y) (x — (1)
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Therefore, the z-component of the intersection points are

T = I, cos® 1 + 0y sin? ¢y £ cos iy \/7”2 — (6 — :L’li)Q sin? . (A.17)

Since, aircraft j is ahead of aircraft i, in equation (A.17), the answer associated with the

positive sign is the z-component of aircraft j position. The equation (A.17) is valid when

b —r <xq, </,

—90° < ¢y < 4907,

where angle v, is measured from segment 1. The z-component of aircraft j position can be

written as a function of arc position of aircraft j on segment 3,
x = {y + 13, cos ;. (A.18)
The arc length positions of aircraft ¢ and j can be written as:

Ty = T1,, (Alg)

IL’j = 52 -+ 56‘3].., (A20)

The equation of the corresponding piece of the separation-loss boundary can be determined

by substituting equations (A.18), (A.19) and (A.20) into equation (A.17).

T = 62 — (61 — I’Z) COS 1/)1 + \/7"2 — (61 — 1)1)2 Silfl2 ¢1. (A21)

The corresponding separation-loss boundary for the third case is depicted in Figure A.7.

A.1.4 Aircraft i is flying on segment 3 while aircraft j is flying on segments 2

This case is similar to the previous one. In this case, aircraft ¢ is flying on segment 3 while
aircraft j is flying on segment 2. The z-component of the local coordinate is set to be aligned
with segment 2. Therefore, the separation region of aircraft j and the equation of segment

3 can be express as:

(z — 332]-)2 +y’ =1
y = —tan(ys) (z — £3)
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Figure A.7: The boundary of separation-loss set corresponding to the third case.

Figure A.8: The configuration of the fourth case. The radius of the circle around aircraft j

is equal to the minimum separation requirement.

Therefore, the z-component of the intersection points are

T = Iy, cos® 1y + Uy sin® 1)y £ cos 1y \/r2 - (52 - $2j)2 sin? 1s. (A.22)

In equation (A.22), the answer associated with the positive sign is the z-component of aircraft

i position. The equation (A.22) is valid when

by —r <y, < Ly,

_900 S ¢2 S +9007
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where angle 15 is measured from segment 2. The z-component of aircraft i position can be

written as a function of arc position of aircraft ¢ on segment 3,
x = ly + T3, COS Po. (A.23)
The arc length positions of aircraft ¢ and j can be written as:

T, = (1 + .’L'3i, (A24)
(A.25)

T; = .ng.

The equation of the corresponding piece of the separation-loss boundary can be determined

by substituting equations (A.23), (A.24) and (A.25) into equation (A.22).

xr; = El — (EQ — .I'j) COS 1/}2 + \/T2 — (62 — fI)j)2 sin2 ¢2. (A26)

The corresponding separation-loss boundary for the fourth case is depicted in Figure A.9.

Lj

N

> Ly

Figure A.9: The boundary of separation-loss set corresponding to the fourth case.

A.1.5 Both are flying on segment 3

In this case, there are two configurations, 1) when aircraft ¢ is trailing aircraft j 2) when

aircraft j is trailing aircraft . Both configurations are depicted in Figure A.10.

In this case, in order to keep both aircraft at the minimum separation requirement dis-

tance, both must fly with the same speed. Therefore, the slope of the corresponding bound-
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(a) When aircraft ¢ is trailing aircraft j. (b) When aircraft j is trailing aircraft .

Figure A.10: Two configurations of aircraft ¢ and 7 when both are flying on segment 3.

aries are equal to one. The first configuration (shown in Figure A.10a) can happen when,
T3, — T3, =T, (A.27)
and the arc length position of aircraft 7 and j can be written as

T; = 41 + T3;, (A28)

Tj = 52 + CC3].. (A29)
Substitute equations (A.28) and (A.29) into (A.27)
ZTj :CE1+(€2 —61)4—7’.

This boundary is depicted in Figure A.1la. Similarly, the second configuration (shown in

Figure A.10b) happens when,
T3, — X3, =T, (A.30)
Substitute equations (A.28) and (A.29) into (A.30)
rj=x;+ (b —{y) — .

This boundary is depicted in Figure A.11b.
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3 3
2 2
> T > T
1 3 ! 1 3 !
(a) The boundary of separation-loss (b) The boundary of separation-loss
set when aircraft ¢ is trailing aircraft set when aircraft j is trailing aircraft
] i

Figure A.11: The boundary of separation-loss set corresponding to the fifth case.

A.2 Approximated pairwise separation-loss set

The separation-loss set is complicated to use. So a polyhedral approximation of this set is
considered as the separation-loss set. The approximated separation-loss set is depicted in
Figure A.12a. The algorithm uses the union of the separation-loss and the roof sets as the
infeasible state set. The infeasible state set is depicted in Figure A.12b The boundaries of
infeasible state set are tangent to the boundaries of the original separation-loss set at points

a and b with the slope one and at points ¢ and d with the slope 5;; and s,;, respectively. In

ijo
the following, equation of each boundary of the infeasible state set will be calculated. At
Point a, the slop is equal to one, so point a can be found by setting the slope of the equation
of the third case equal to one. From equation A.21.

dz; (6y — x;) sin® 1y

dx; \/7“2 — (6 — ;)2 sin® ¢y B

a __ _ r 1—cos 1
Ty = gl siney '/ 2 )
=
a r 1—cos Yy
‘LJ' - 62 + sin 1 \/ 2 ’

where ' and z} are the corresponding arc length position of aircraft ¢ and j at point a,

= cos iy +

respectively. The equation of the boundary of the infeasible state set that is tangent to the
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> T > T
1 3 ! 1 3 !

(a) Approximated separation-loss set. (b) Infeasible state set.

Figure A.12: Approximated separation-loss and infeasible state set.
original set at point a is
r; =z + (2§ — xf).

Also, at point b, the slope of the boundary is one. Therefore, from equation (A.26),

d.Ij _ \/7”2 — (62 — J?j)QSiIlz 1/)2
(63 — z) sin? 1y + cos Yo /12 — (lg — ;)2 sin? 1y

dxi
b __ r 1—cos 2
Y Ay JE Y
sin 2 ?
- b2
b_p r 1—cos Yo
xj - EQ sin ¢ \/ 2 ’

where 20 and x? are the corresponding arc length position of aircraft ¢+ and j at point b,

=1,

respectively. The equation of the boundary of the infeasible state set that is tangent to the

original set at point b is
x; = x; + (2} — af).
The slope of the boundary of infeasible state set at point c is equal to 5;;. Point ¢ can

be on the boundary corresponding to the third case or the boundary corresponding to the

second case.
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e If point ¢ is on the boundary corresponding to the third case, then from equation

(A.21)
dﬂj‘j ’L[) + (El - 331') Sin2 1/}1 _
= COS Yy - = Sij,
dz; V2 — (6 — x;)%sin iy
2 — {0, — (5 —cos 1)
N ¢ ! sinz/}l\/sinz Y1+ (5i;—cos )2
2¢ — f T—738;; COs Y1
J 2+ sin'z/,)l\/sin2 1+(55—cos wl)z,

where z{ and x§ are the corresponding arc length position of aircraft ¢ and j at point

¢, respectively.

e If point ¢ is on the boundary corresponding to the second case, then from equa-

tion(A.16)

dr; V12— (b — 1;)?sin” ¢ o
dr;  cos /12 — (b — x;)?sin® ¢ — (fy — ;) sin® ¢ v

7[3;; cos ¢—1| cos p+73;; sin? ¢

fIJf = ‘€1 - . — 2.2 .2
N smqﬁ\/(sij cos p—1) +5;, sin” ¢
26 — fo — r|5;; cos p—1|

J 2 sin ¢\/(§ij cos ¢—1)2+§?j sin2 ¢
The equation of the boundary of the infeasible state set that is tangent to the original set

at point c is

The slope of the boundary of infeasible state set at point d is equal to s,;. Point d can

be on the boundary of the fourth case or on the boundary of the first case.

e If point d is on the boundary of the fourth scenario then from equation (A.26)

i _ N N
dv;  (ly — ;) sin® 1)y + cos wQ\/TQ — (by — x7)? sin® oy -
r(si;—cos )
sin 2/, sin? o+ (13, cos )

d_ g _ r(1-s;; cost)
T int /2 sin? et (s, costn) |

29

where ¢ and x? are the corresponding arc length position of aircraft 7 and j at point

d, respectively.
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e If point d is on the boundary of the first case then from equation (A.9)

dIL’j . COSgﬁ _ (fl — I‘Z) Sil’l2 qb —
- 2 52 =
T V2 — (6 — z;)%sin ¢

d_ g rlesssyl
. Ti = gl sin </>\/s'1n2 ¢+(cos ‘/)7‘51'3')27

rsin? ¢+r| cos ¢_§z’j| cos ¢

sin ¢>\/sin2 ¢+(cos p—s;,;)? ’

The equation of the boundary of the approximated infeasible state set that is tangent to the

original set at point d is

r; = s,m;+ (2 — 5,00, (A.32)

ij J —ij( 7
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