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Abstract 

We examine the effect of variability in model parameters on 

the predictions of expected utility theory and cumulative 

prospect theory, two of the most influential choice models in 

decision making research. We find that zero-mean and 

symmetrically distributed noise in the underlying parameters 

of these models can systematically distort choice 

probabilities, leading to false conclusions. Likewise, 

differences in choice proportions across decision makers 

might be due to differences in the amount of noise affecting 

underlying parameters rather than to differences in actual 

parameter values. Our results suggest that care and caution 

are needed when trying to infer the underlying preferences of 

decision makers, or the effects of psychological, biological, 

economic, and demographic variables on these preferences.  

Keywords: Decision making; Random utility; Random 

preference; Risky choice; Prospect theory 

Introduction 

 Research on risky choice has relied heavily on the use of 

deterministic models. Perhaps the two most widely used 

models today are expected utility theory (EUT) (von 

Neumann & Morgenstern, 1947) and cumulative prospect 

theory (CPT) (Kahneman & Tversky, 1979; Tversky & 

Kahneman, 1992). When their functional forms are 

specified and parameterized, deterministic models can make 

precise quantitative predictions. However, such models fail 

to capture an important aspect of choice behavior: namely, 

that choice is stochastic, and decision makers may respond 

differently when given exactly the same choice problem on 

more than one occasion within a short space of time (see 

Rieskamp et al., 2006 for a discussion). 

 Modelling stochastic risky choice requires a 

representation of each individual’s preferences as 

probability distributions. From an early stage in the 

development of the literature, there were two ways in which 

this type of modelling was accomplished. One approach 

involved adding some ‘error’ specification to each 

individual’s deterministic ‘core’ preferences (e.g. Luce, 

1959). We shall refer to this approach as Fechnerian – a 

broad term which covers a number of ways in which some 

form of ‘add-on’ term might be specified. Another approach 

allowed the parameters of an individual’s preference 

function to vary from one moment to another, thereby 

opening up the possibility that if the same choice were 

presented at different times in the course of an experiment, 

it might be resolved differently on each occasion (Becker et 

al. 1963). We shall refer to this way of modelling noise as 

the random preference or random parameter (RP) approach.  

To the extent that preferences can be seen as being 

constructed, influenced either by contextual and 

environmental cues, imperfect recall, or momentary 

fluctuation of attention, it might seem that the RP approach 

is conceptually more appropriate, as it permits variability in 

preference through variability in the parameters of the 

individual’s preference functions. However, people may 

also vary in the way they record their decisions, due to 

varying degrees of complexity of the stimuli, varying 

degrees of motivation or engagement, ‘interference’ from 

previous decisions within the session or from some other 

unobservable features of the stimuli or task. Since these 

factors are largely outside the core structure of people’s 

preferences, they may be better modelled by some 

Fechnerian noise term that operates in addition to, but 

independently of, the intrinsic variability in preference (see 

Birnbaum, 2011, for a discussion). 

So it seems plausible that the observed variability in 

individuals’ repeated choices may arise from a number of 

sources which are not mutually exclusive. Despite this, the 

great majority of studies inferring preference functions from 

choice data use specifications which operate as if some form 

of Fechnerian noise is the only stochastic component of the 

decision process: very few consider the possibility of 

variability in terms of interactions between an RP core and 

Fechnerian factors. Yet if observed choices actually entail 

multiple sources of variability, there may be serious 

consequences for theoretical inference if we try to force data 

into a conceptually inadequate specification. 

Risky Decision Models 

We can write the gambles in the choices studied in this 

paper as X  = (x1, p1; x2, p2), so that X can be seen as offering 

rewards x1 and x2 with probabilities p1 and p2. Both EUT 

and CPT describe decision makers’ preferences between 

pairs of such gambles using utility functions. Using a simple 

power value function formulation for the utility of any 

payoff x, the utility of a particular gamble under EUT is 

given as: U(X|α) = p1∙x1
α 

 + p2∙x2
α
. The utility for X according 

to the power value function formulation of CPT, with 

Prelec’s one-parameter probability weighting function, is 

similarly: U(X|α,γ) = π(p1)∙x1
α 

 + (1- π(p1))∙x2
α 

where x1 ≥ x2 ≥ 

0 and π(p1) = . 

α captures the shape of the subjective value function for 

payoffs, with α < 1 describing concave value functions that 
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correspond to risk averse preferences under EUT, and α > 1 

describing convex value functions that correspond to risk 

seeking. γ captures the shape of the probability weighting 

function, with γ < 1 generating an overweighting 

(underweighting) of small (large) probabilities, and γ > 1 

generating the opposite. Typically, decision makers behave 

as if they have both α < 1 and γ < 1 when the above gambles 

are explicitly presented to them. 

In binary choice, these models predict that X is chosen 

over Y whenever U(X|α,γ) > U(Y|α,γ). As these models are 

deterministic, they need to be modified in order to capture 

probabilistic choice data. The most common approach to 

doing this has been to assume that the utilities for the two 

gambles are each subject to Fechnerian noise ε, with E[ε] = 

0, so that X is chosen over Y whenever [U(X|α,γ) + εX] – 

[U(Y|α,γ) + εY] > 0. Supposing further that εX  and εY are 

independent of each other, we can define ε = εX – εY. Then 

the probability of choosing X is the probability that U(X|α,γ) 

– U(Y|α,γ) + ε > 0.  When ε is distributed according to the 

Gumbel distribution, this leads to the logit choice rule 

specified by Luce (1959): Pr[X chosen] = f(θ∙U(X|α,γ) – 

θ∙U(Y|α,γ)), where f is the logistic function. This error 

specification, when applied by itself, predicts that the modal 

choice will always be the option with the higher utility 

according to the deterministic core.  

Now let us consider separately the effect of noise in the 

decision maker’s parameters, as represented in the RP 

approach. With a simple additive formulation for parameter 

noise, the above equations can be rewritten with α = α* + ηα 

and γ = γ* + ηγ, where ηα and ηγ are noise terms with E[ηα] = 

E[ηγ] =  0 (Becker et al., 1963; Loomes & Sugden, 1995). ηα 

and ηγ are liable to vary from trial to trial, and thus α and γ, 

and subsequently U(X|α,γ) and U(Y|α,γ), also tend to vary 

from trial to trial. However, since the expected values of α 

and γ
 
are E[α] = α*

 
and E[γ] = γ*, α*

 
and γ*

 
characterize the 

central tendency of a decision maker’s underlying 

preferences. If variability came only from sources 

represented by noisy parameters, the probability of X being 

chosen would be determined by the proportion of cases 

where U(X|α,γ) - U(Y|α,γ) > 0 over the range of feasible 

values of ηα and ηγ, weighted by their probabilities.   

However, we now suppose that RP variability is 

combined with other sources of variability captured by a 

Fechnerian specification of the kind proposed by Luce 

(1959), we have, for each α and γ pair: Pr[X chosen] = 

Pr[U(X|α,γ) - U(Y|α,γ) + ε > 0]. Now on those occasions 

where the α and γ drawn from the distributions of 

parameters are such that U(X|α,γ) - U(Y|α,γ) is small, there is 

a relatively high chance (though still less than 0.5, of 

course) that Fechnerian variability will result in choosing 

the option with the lower U(.), whereas there is a smaller 

chance of that happening when RP variability produces a 

larger U(X|α,γ) - U(Y|α,γ) difference. 

A combination of Fechnerian and RP specifications offer 

a more adequate account of choice data involving 

dominated gambles than each of these approaches alone. 

Models with only standard Fechnerian noise predict much 

higher frequencies of violations of transparent dominance 

than are generally observed, while RP-only models predict 

that dominance is never violated at all, contrary to the 

evidence (Loomes, 2005; see also Busemeyer & Townsend, 

1993). Scholars have also found that allowing for both types 

of noise is necessary to provide a good quantitative account 

of behavior (Blavatskyy & Pogrebna, 2010; Loomes, 2005).  

Effects of Noisy Parameters 

 Fechnerian noise and random parameters are necessary 

to characterize probabilistic choice. Yet despite this, much 

empirical decision research neglects the effect of RP when 

deriving predictions from deterministic models. Such 

neglect is no doubt due to convenience. Luce’s choice rule 

has an analytical representation, which greatly facilitates 

model fits and related analyses.  

This neglect may also reflect the intuition that 

unsystematic variability in parameter values, independent of 

Fechnerian noise, has no systematic effect on choice, so that 

modal choices can be used to make qualitative inferences 

about how underlying preferences rank the available 

options, regardless of the randomness in underlying 

parameters. This paper tests this intuition and finds that it is 

incorrect. Unlike the Fechnerian noise term ε, the parameter 

noise terms ηα and ηγ affect utility non-linearly. Even if they 

have a zero mean and are symmetric, changing their 

variance can alter both absolute choice probabilities and the 

ordering of relative choice probabilities. Thus it is possible 

that we observe X being chosen more frequently than Y, 

with Pr[X chosen] = Pr[U(X|α,γ) - U(Y|α,γ) + ε > 0] > 0.5, 

but the central tendency of the decision maker’s underlying 

preferences more frequently favours Y over X, with 

U(Y|α*,γ*) > U(X|α*,γ*) and Pr[U(Y|α,γ) > U(X|α,γ)] > 0.5.  

 

Risk Attitudes 

As an illustration of this, let us now consider the choice 

between a risky gamble X offering a 50% chance of 

obtaining $10 and a 50% chance of obtaining $0, and its 

safe expected value equivalent Y offering $5 with certainty. 

We assume that a decision maker’s central tendency is 

described by the power form of EUT and that his choices 

display both Fechnerian and RP noise. Keeping things 

simple, we suppose that the Fechnerian noise is modelled 

via a Luce choice function (with θ = 1) while the RP 

component involves α*
 
= 0.9 with ηα being distributed 

uniformly in the interval [-0.5, 0.5]. Supposing α*
 
< 1 

implies that the decision maker’s underlying preferences 

more often than not entail risk aversion. However, when 

each of the possible realizations of [U(X|α,γ), U(Y|α,γ)] are 

embedded in the Luce formulation, the above assumptions 

give Pr[X chosen] = 0.53 > 0.5. Thus, despite underlying 

preferences predominantly supporting Y, the decision maker 

chooses X more frequently than Y.  

This happens due to the nonlinearity of utility difference 

in α. In the Luce choice rule assumed above, the probability 

of choosing X is an increasing function of f(α) =
 
U(X|α,1) – 

U(Y|α,1) = 0.5∙10
α 

- 5
α
. f is convex in α for the range of α we 
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are considering. This implies that the expected value of f is 

greater than f applied to the expected value of α, i.e. 

E[U(X|α,1) – U(Y|α,1)] > U(X|α*,1) – U(Y| α*,1).  In this 

case we obtain E[U(X|α,1) – U(Y|α,1)] > 0, resulting in a 

higher choice probability of X. This is despite E[α] = α*
 
< 1, 

and that subsequently U(X|α*,1) – U(Y|α*,1) < 0.  

The point is expanded upon in Figure 1, where we plot 

the probability of choosing X = ($10, 0.5; $0, 0.5) over Y = 

($5, 1) according to power function EUT with only 

Fechnerian noise (using a Luce rule with θ = 1) and 

compare that with a specification where RP (with ηα 

distributed uniformly in the interval [-0.5,0.5]) interacts 

with Fechnerian noise. The Fechnerian-only model entails 

Pr[X chosen] less than, equal to or greater than 0.5 

according to whether α* is less than, equal to or greater than 

1, as shown by the solid line in Figure 1. However, this is 

not the case when α is noisy. As shown by the broken line in 

Figure 1, there are a range of values of α* between 0.87 and 

1 where Pr[X chosen] > 0.5. Over this range, the decision 

maker’s expected modal choice suggests risk seeking 

whereas the central tendency of his preferences, as 

represented by α*, represents risk aversion or risk neutrality. 

 

 
Figure 1. The probability of choosing a risky gamble X over its expected 

value Y for varying values of α*, plotted with only Fechnerian noise (solid 

line) and with both Fechnerian and RP noise (dashed line). Here we can 
observe a higher choice probability of X over Y for some values of α* < 1 

in the presence of RP noise.   

  

The important point of this illustration is to show that 

when there is both Fechnerian and RP noise, we cannot 

make reliable inferences about the decision maker’s risk 

attitude using only modal choice frequencies, even if we 

assume independence between the different sources of 

noise. Moreover, as we show in the next two sections, the 

co-existence of Fechnerian and RP noise in conjunction 

with EUT core preferences can generate patterns of choice 

that have been interpreted as providing support for non-EU 

models such as CPT. In related work (not reported here) we 

also illustrate the pernicious effect of RP noise on parameter 

recovery and quantitative model fitting. 

 

Probability Weighting: The Four-Fold Pattern 

We now turn to cases where probabilities may be 

transformed nonlinearly as with CPT using the single 

parameter Prelec formulation given earlier. When γ < 1, this 

function overweights low probabilities and underweights 

high probabilities. Typically the crossover point is around 

0.37, with π(p) > p for p < 0.37 and π(p) < p for p > 0.37. 

Such an ‘inverse-S’ function is crucial in capturing the 

famous four-fold pattern of risky choice (Tversky & 

Kahneman, 1992). 

In the positive domain considered here, this pattern 

corresponds to modal choices favouring a risky gamble that 

offers a high payoff with a small probability relative to a 

sure option with the same expected value (which looks like 

risk-seeking), while at the same time generating modal 

choices favouring a sure option over a risky gamble with the 

same expected value that offers a large probability of a 

slightly higher payoff and a small probability of a 

considerably lower payoff (which looks like risk aversion). 

Thus in the choice between a  risky gamble X
I
 offering a 1% 

chance of obtaining $10 and a 99% chance of obtaining $0, 

and its safe expected value equivalent Y
I
 offering $0.10 with 

certainty, decision makers typically choose X
I
. In contrast, 

in the choice between a  risky gamble X
II
 offering a 99% 

chance of obtaining $10 and a 1% chance of obtaining $0, 

and its safe expected value equivalent Y
II
 offering $9.90 

with certainty, decision makers typically choose Y
II
.  

This pattern cannot be generated by deterministic EUT or 

EUT with only standard Fechnerian noise. But let us 

consider a setting with both Fechnerian and RP noise. For 

simplicity, we fix α = 1 so the utility function is linear, and 

we allow RP noise only in the γ parameter, with ηγ being 

distributed uniformly in the interval [-0.5, 0.5]. For 

Fechnerian noise, we use the Luce function with θ = 1, as in 

the previous section.  

 

 
 

Figures 2a and 2b. The probability of choosing a low-probability risky 
gamble XI over its expected value YI  (left) and the probability of choosing 

a high-probability risky gamble XII over its expected value YII (right), for 

varying values of γ*. These figures are plotted with only Fechnerian noise 

(solid line) and with both Fechnerian and RP noise (dashed line).  

 

Figure 2a shows the probability of choosing X
I
 over Y

I
 

and Figure 2b shows the probability of choosing X
II
 over Y

II
. 

As expected, a model with Luce noise but without noisy 

parameters and with γ
*
 = 1 entails for both pairs a 0.5 

chance of choosing each option. For all γ
*
  < 1, the risky 

option is the modal choice in Figure 2a while the sure 

amount is the modal choice in Figure 2b. However, when γ 

itself exhibits symmetric noise and when this source of 

variability interacts with Fechnerian noise, the effect – as 

shown by the broken line – is to shift the transformation 
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path up in Figure 2a and down in Figure 2b: that is, the 

interaction increases the choice probability of X
I
 over Y

I
 and 

for Y
II
 over X

II
 for all γ*

 
considered. One implication of this 

is that at the point where α = 1 and γ* = 1 – that is, in the 

case where the deterministic model entails a risk neutral 

expected utility maximizer – the modal choices exhibit the 

‘mixed attitude to risk’ typical of the data and widely 

viewed as supportive of CPT with γ < 1.  Indeed, there is a 

range of  γ*  between 1 and 1.15 for which the decision 

maker’s expected modal choice generates a preference for 

X
I
 over Y

I
 and for Y

II
 over X

II
,  a behavioral pattern 

associated with the overweighting of small probabilities, 

whereas the central tendency of his preferences represents 

an underweighting of small probabilities.  

 

Probability Weighting: Common Ratio Effect 

The probability weighting biases assumed by Prospect 

Theory are also necessary for it to account for the common-

ratio effect (Kahneman & Tversky, 1979). The classic 

common-ratio case involves choices between two pairs of 

lotteries. One pair offers a gamble X
III

 = (x, p; 0, 1-p) versus 

Y
III

 = (y, 1) where p is typically around 0.8 and where y is 

equal to, or a little below, the expected value of X
III

. In the 

example we consider in this section, our scaled-up pair is a 

choice between a  risky gamble X
III

 offering an 80% chance 

of obtaining $10 and a 20% chance of obtaining $0, and its 

safe expected value equivalent Y
III

 offering $8 with 

certainty. Here decision makers typically choose Y
III

.  

The second pair involves scaling down the probabilities 

of the positive payoffs in the first pair by some factor and 

correspondingly increasing the probabilities of 0 in both 

options to give a choice between X
IV

 = (x, λp; 0, 1-λp) and 

Y
IV

 = (y, λ; 0, 1-λ). Scaling down X
III

 and Y
III

 by a typical 

factor – letting λ = 0.25 – gives X
IV

 offering a 20% chance 

of obtaining $10 and an 80% chance of obtaining $0 versus 

its relatively safe expected value equivalent Y
IV

, a 25% 

chance of obtaining $8 and a 75% chance of obtaining $0. 

In such scaled-down pairs, decision makers typically choose 

X
IV

 much more frequently: indeed, it is quite common for a 

sample of experimental participants to make Y
III

 the modal 

choice in the first pair but make X
IV

 the modal choice in the 

second pair. This is inconsistent with EUT, which assumes 

that individuals’ preferences are linear in probabilities. 

Thus, scaling down the probabilities in this way reduces the 

EU of each option but leaves the ordering unchanged: a risk 

averse individual will prefer the Y option in both pairs, 

while a risk seeking individual will consistently choose the 

X options. In a deterministic world of EU maximizers, 

whatever proportion of the sample chooses X
III

 in the scaled-

up pair should also choose X
IV

 in the scaled-down pair.    

As with the four-fold pattern described above, the 

observed change in modal choices can be accommodated by 

CPT with γ < 1, leading to the overweighting of low 

probabilities and the underweighting of high probabilities. 

This is illustrated by the solid lines in Figures 3a and 3b in 

which we fix α = 1, assume a Luce noise term with θ = 1, 

and let γ range between 0.5 and 1.5. Here a model with 

Fechnerian noise but without RP noise and with γ
*
 < 1, 

entails that Y
III

 is the modal choice in Figure 3a while X
IV

 is 

the modal choice in Figure 3b.  

But now suppose we allow both Fechnerian noise and RP 

noise to co-exist and interact. As above, to allow for noise 

in the γ parameter, we suppose ηγ is distributed uniformly in 

the interval [-0.5, 0.5]. Under these assumptions, we have a 

shift in the choice probabilities so that the interaction 

increases the choice probability of Y
III 

over X
III

 and of X
IV

 

over Y
IV

 for γ*
 
in the neighbourhood of 1. Again, one 

implication of this is that at the point where α = 1 and γ* = 1 

– that is, in the case where the deterministic model entails a 

risk neutral expected utility maximizer – the modal choices 

exhibit the reversal in choice probability observed in 

behavioral experiments, with a preference for Y
III 

in the 

scaled-up pair, but a preference for X
IV

 in the scaled-down 

pair. Thus we see that even though the central tendency 

values of the parameters entail not just EUT but expected 

value maximization, modal choices display a mixture of risk 

aversion and risk seeking in a manner resembling CPT with 

γ < 1. Indeed, as above, there is a range of γ* between 1 and 

1.02 for which the central tendency of the decision maker’s 

underlying preferences, as represented by γ*, represents an 

underweighting of small probabilities, whereas the 

behavioral pattern generated by these γ* is commonly 

associated with the overweighting of small probabilities.  

 

 
 
Figures 3a and 3b. The probability of choosing a scaled-up risky gamble 

XIII over its expected value YIII (left) and the probability of choosing a 

scaled-down risky gamble XIV over its expected value YVI (right), for 
varying values of γ*. These probabilities are plotted with only Fechnerian 

noise (solid line) and with both Fechnerian and RP noise (dashed line).  

Discussion 

Differences between Decision Makers 

We have seen that it is unsafe to infer an individual’s 

underlying preferences from modal choice patterns, if we 

expect both RP noise and Fechnerian noise to play a role in 

the choice process. What is true for individuals may also be 

true for studies which draw conclusions about differences in  

preferences between different groups of people based either 

on differences in choice proportions or else on the basis of 

‘representative agent’ assumptions. Between them, the 

disciplines of psychology, neuroscience, marketing, and 

economics have produced a large number of studies 

examining the relationship between risk preference and a 

wide variety of demographic, social, biological, cognitive, 
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emotional and neural variables. Much of this work makes 

the implicit or explicit assumption that differences in choice 

probabilities between different groups reflect differences in 

underlying utility/value functions and/or probability 

weighting preferences. 

For example, based on choice proportions, men are 

considered to be more risk seeking than women (Charness 

& Gneezy, 2012); Chinese are considered more risk seeking 

than Americans (Hsee & Weber, 1999); the nucleus 

accumbens is seen as influencing risk seeking choices 

whereas the anterior insula is seen as influencing riskless 

choices (Kuhnen & Knutson, 2005); high incentives are 

associated with more risk aversion than low incentives (Holt 

& Laury, 2002); and decision makers under high time 

pressure are seen as being more risk averse than decision 

makers under low time pressure (Zur & Breznitz, 1981). 

Likewise stress is seen as affecting the amount of 

probability weighting in gains and losses (Porcelli & 

Delgado, 2009), the degree of striatal activity is assumed to 

influence the overweighting of small probabilities (Hsu et 

al., 2009), framing the decision as involving precaution is 

assumed to lead to the overweighting of small and medium-

sized probabilities (Kusev et al., 2009), and decision 

feedback is considered to lead to objective probability 

weighting (Jessup et al., 2008). Finally, based on one of the 

most striking findings in contemporary decision making 

research, it is often assumed that decision makers tend to 

weigh probabilities differently when gamble payoffs and 

probabilities are described compared to when these payoffs 

and probabilities are experienced (Hertwig, 2015).  

However, as we have shown, differences in choice 

proportions may be due not to differences in central 

tendency parameter values but rather to differences in the 

amount of variability in those underlying parameters. To 

illustrate, let us return to Figure 1. The horizontal axis in 

that Figure represents varying values of α* under EUT and 

the vertical axis represents the choice probability for the 

gamble X corresponding with those different values of α*. 

The two lines reflect varying levels of parameter noise in 

the model. Suppose that a male decision maker chooses X 

with frequency 0.52 while a female decision maker chooses 

X with frequency 0.48. If the degree of parameter noise 

were the same for both individuals, such a difference could 

reasonably be attributed to differences in underlying α*, 

with the male having an increased propensity for risk 

seeking. But if the male’s underlying preferences involve 

more parameter noise (the dotted line) than the female’s (the 

solid line), then the opposite would be the case: the male’s 

α* would be approximately 0.9 as compared with the 

female’s α* of about 0.95. The same holds for inferences 

regarding probability weighting, as in Figure 2a and 2b.  

It might be argued that there is no reason to suppose that 

males’ parameter values are noisier than females’ values. 

But until comparisons of choice frequencies were made, 

there was no strong a priori reason to suppose that gender 

systematically affected risk preferences. Why should it be 

preferences that are affected by gender (or age or time 

pressure, etc.) rather than the variability in parameter noise? 

Of course, this is not to imply that the conclusions drawn in 

the above papers are necessarily wrong. Nonetheless, many 

of those conclusions rely critically on the claim that it is 

preferences that are driving observed behavioral differences. 

To our knowledge none of this work explicitly considers the 

possibility that the changes in choice proportions observed 

across decision makers may be attributed to noise rather 

than to underlying preference. Indeed, in some of the 

settings considered above, a change to the amount of noise 

displayed by decision makers might be a more compelling 

explanation for observed behavioral differences, as 

compared with a change in the underlying parameter values.  

 

Other Domains 

Our analysis has focused upon binary risky choice, a 

domain in which within-person variability of choice has 

been widely observed. However, the potential confounding 

effects of interactions between sources of noise are not 

limited to risky choice: such effects are liable to distort 

inferences regarding underlying preferences in all non-linear 

utility-based models.  

Consider, for example, the exponential discounting 

model (Frederick et al., 2002), which is commonly used to 

model choices between rewards occurring at differing 

periods of time. One of the most frequent criticisms of this 

model is that it cannot account for an increased preference 

for a proximate reward over a delayed reward as the lengths 

of the delay diminish by some common amount. For 

example a decision maker may prefer $10 in five weeks to 

$5 in four weeks, but also prefer $5 immediately to $10 in 

one week. This is typically attributed to hyperbolic 

discounting and present-bias. However, the findings in this 

paper suggest it may be possible to explain these reversals 

using only Fechnerian and RP noise without assumptions of 

present bias. If this is the case then it means that observed 

differences in these types of decisions that have been 

ascribed to demographic, biological, neural, cognitive, 

emotion, social, and task-based factors, may not necessarily 

reflect the impact of those factors on discount rates but 

might to some extent reflect differences in the effects of 

noise. Similar results may also hold for multi-attribute 

choice, altruistic choice, and strategic decision making. 

 

Beyond Deterministic Models 

Models such as expected utility theory and cumulative 

prospect theory are deterministic, and their predictions 

depend heavily on experimenter assumptions regarding their 

stochastic specifications. Many researchers have already 

argued that it is as important to choose the right type of 

noise as it is to choose the right core model, in order to 

accurately fit choice data (see e.g. Loomes, 2005). It has 

even been shown that the relationship between these 

deterministic models and their stochastic implementations is 

so great that it is possible to alter the relative fits of these 
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models by altering assumptions regarding their underlying 

sources of noise (Blavatskyy & Pogrebna, 2010). 

In this paper we take this point further: the predictions of 

deterministic utility-based models are so dependent on their 

stochastic specifications that psychologically desirable 

assumptions about these specifications (such as noise in 

preferences) can alter the modal choice predictions 

associated with these models. These effects pose a strong 

challenge for utility models of preferential choice. How 

useful are models like EUT and CPT if their key predictions 

can be reversed by introducing some noise into the 

deliberation process?  

This problem is ultimately endemic to deterministic 

models of choice, and cannot be remedied by the application 

of more rigorous methodological tools. In our opinion it 

suggests that theoretical research on decision making should 

attempt to move beyond these types of models when 

attempting to describe choice. There have already been a 

number of advances in modelling the cognitive basis of the 

stochastic choice process (see Rieskamp et al., 2006 and 

Oppenheimer & Kelso, 2015). Cognitive models of 

stochastic choice make explicit assumptions about how 

noise enters into deliberation, and how it interacts with 

preference, choice, and even decision time and confidence. 

In allowing stochasticity to play a central role in choice, 

these models are naturally able to capture a large range of 

behavioral effects that currently lie outside the descriptive 

scope of deterministic models. Indeed some of these models 

even try to explain key decision making anomalies using 

only unsystematic noise, rather than specific restrictions on 

value functions or probability weighting (Bhatia, 2014). 

Most importantly, however, the predictions of cognitive 

stochastic choice models are clearly defined. Additional 

assumptions about the sources of variability in choice are 

not necessary, and thus do not have the potential to reverse 

the key predictions of these models. Future research should 

consider using these types of psychologically-grounded 

stochastic choice models to understand the behavior of 

decision makers.  
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