UC Irvine UC Irvine Previously Published Works

Title

Pressure emergence of magnetic ordering in UBe13

Permalink

<https://escholarship.org/uc/item/61m3k5s2>

Journal

Journal of Magnetism and Magnetic Materials, 76(C)

ISSN 0304-8853

Authors

Mao, SY Jaccard, D Sierro, J [et al.](https://escholarship.org/uc/item/61m3k5s2#author)

Publication Date 1988-12-01

DOI

10.1016/0304-8853(88)90380-0

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at<https://creativecommons.org/licenses/by/4.0/>

Peer reviewed

PRESSURE EMERGENCE OF MAGNETIC ORDERING IN UBe₁₃

S.Y. MAO a , D. JACCARD a , J. SIERRO a , Z. FISK b and J.L. SMITH b

" DPMC, Section de Physique, CH-1211 Genkve 4, Switzerland

t, Los Alamos Laboratory, Los Alamos, NM 87545, USA

The electrical resistivity and the thermopower of UBe₁₃ have been measured between 1.2 and 300 K at pressures up to 67 kbar and in magnetic fields up to 6 T. While the resistivity reflects the partial delocalization of the f resonance, the marked oscillation of the low temperature thermopower strongly suggests that pressure drives a magnetic order well above T_c .

1. Introduction

Usually the transport properties of heavy fermion compounds (HFC) are described by independent Kondo like scattering at high temperature $(T \gg T_K)$ and in terms of a coherence effect at low temperature ($T \le T_K$). In UBe₁₃, unlike other heavy electron superconductors, coherence scattering is still not developed when superconductivity arises at $T_c \sim 0.9$ K.

Indeed the resistivity ρ is still very large just above T_c , and the thermopower Q has not even reached its negative peaks [1]. To observe the low T excitations of the normal phase, high pressure transport experiments under magnetic field were performed. Pressure was generated by a pair of opposed Bridgman anvils made of non-magnetic tungsten carbide.

2. Resistivity

Low temperature results of resistivity ρ are presented in fig. 1. The pressure delocalization of the f resonance induces the strong depression of ρ and the increase of the temperature T_{max}^{ρ} of its maximum value, in good agreement with refs. [2] and [3]. A resistivity behavior rather similar to UPt_3 , i.e. without resistivity maximum, is expected at about 200 kbar.

At low pressure, the large and negative magnetoresistance $\Delta \rho / \rho$ is characteristic for the presence of local magnetic moments. At intermediate pressure ($P = 45$ kbar) $\Delta \rho / \rho$ is still negative but weaker and at high pressure ($P = 67$ kbar) $\Delta \rho / \rho$ is slightly positive below 4 K. Such a positive magnetoresistance has been observed in moderate HFC like UPt₃, CeRu₂Si₂ or CeAl₃ under pressure [4].

Fig. 1. Resistivity of UBe_{13} at different pressures in magnetic fields of 0 and 6 T.

At 67 kbar, preliminary data do not show any superconducting transition down to 0.1 K and above 1.2 K, the T^2 law of ρ is still not recovered.

At $P = 0$, for a sample from the same batch, a residual resistivity $\rho_0 \sim 12 ~\mu \Omega \text{cm}$ has been measured at $B = 12$ T [5]. Our results then suggest a maximum of ρ_0 near 45 kbar.

3. Thermopower

As often observed in HFC, the thermopower Q of UBe_{13} is positive at high temperature and takes large negative values at low temperature. Fig. 2 shows that the negative peak of Q , centered at T_{min}^Q , emerges above T_c under pressure. The clear correlation of T_{min}^Q with T_{max}^P asserts the same physical origin. The pressure independence of the magnitude of $Q(T_{\text{min}}^Q)$ agrees with a P increase of the width of the f resonance.

Fig. 2. Absolute thermopower of $UBe_{\psi3}$ at different pressures in magnetic fields of 0 and 6 T.

The most interesting feature in fig. 2 is the low T positive contribution of Q which is clearly resolved at 67 kbar. We claim that such a peak is the signature of an antiferromagnetic order. If a magnetic gap opens only in parts of the Fermi surface, it may be possible that no corresponding anomaly occurs in the resistivity. Large positive peaks of Q have been observed for well characterized antiferromagnets like UCu, $[6]$, TmSe or TmS [7]. In these cases the change of sign of Q corresponds to the ordering temperature T_N . The recently discovered antiferromagnet UPt₃ (T_N ~ 5 K) with a very low ordered moment also shows a positive peak of Q at \sim 8 K and a change of sign at \sim 24 K [8]. This thermoelectric behavior is

expected for UBe_{13} at roughly 200 kbar, i.e. the same pressure estimated from the resistivity.

From our previous study at $P = 0$ [1], a positive peak of Q can be extrapolated at $T \sim 150$ mK. A specific heat anomaly was recently discovered at the same temperature [5]. So it appears that the magnetic ordering sets in above T_c under pressure.

The highly magnetic field dependence of the low T thermopower is another evidence of its magnetic origin (fig. 2). As P increases, increasing fields are needed to destroy the positive contribution.

4. **Conclusion**

As pressure certainly induces the decrease of the low temperature electronic specific heat coefficient per unit volume γ_{v} , our results illustrate the correlation which has been found at zero pressure between γ , and the ground state configuration of uranium based HFC [9]. It is not so surprising that at high pressure UBe_{13} behaves rather like the antiferromagnetically ordered HFC $UCu₅$ or UPt_3 .

References

- [1] D. Jaccard, J. Flouquet, Z. Fisk, J.L. Smith and H.R. Ott, J. Phys. Left. 46 (1985) L811.
- [2] J.D. Thompson, M.W. McElfresh, J.O. Willis, Z. Fisk, J.L. Smith and M.B. Maple, Phys. Rev. B 35 (1987) 48.
- [3] Z. Fisk et al., Intern. Conf. HTSC, Interlaken (1988).
- [4] Ch. Fierz, D. Jaccard, J. Sierro and J. Flouquet, J. Appl. Phys. 63 (1988) 3899.
- [5] J.P. Brison, to be published.
- [6] H.J. van Daal, K.H.J. Buschow, P.P. van Aken and M.H. van Maaren, Phys. Rev. Lett. 34 (1975) 1457.
- [7] D. Jaccard and J. Sierro, Solid State Commun. 31 (1979) 713.
- [81 J.J.M. Franse et al., Z. Phys. B 59 (1985) 15.
- [9] Z. Fisk et al., Science 239 (1988) 33.