
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Not seeing the forest for the points: Novel LiDAR metrics elucidate forest structure and 
increase LiDAR usability by managers

Permalink
https://escholarship.org/uc/item/61k3g08v

Author
Kramer, Heather Anuhea

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/61k3g08v
https://escholarship.org
http://www.cdlib.org/


 
 

Not seeing the forest for the points: 
Novel LiDAR metrics elucidate forest structure and increase LiDAR usability by managers 

 
 

By 
 

Heather Anuhea Kramer 
 
 
 
 

A dissertation submitted in partial satisfaction of the requirements for the degree of 
 

Doctor of Philosophy 
 

in 
 

Environmental Science, Policy, and Management 
 

in the  
 

Graduate Division 
 

of the 
 

University of California, Berkeley 
 
 
 
 

Committee in charge: 
 

Professor Scott L. Stephens, Co-Chair 
Professor Nina Maggi Kelly, Co-Chair 

Professor John D. Radke 
Dr. Brandon Collins 

 
 

Spring 2016 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

Abstract 
 

Not seeing the forest for the points: Novel LiDAR metrics elucidate forest structure and increase 
LiDAR usability by managers 

 
By 

 
Heather Anuhea Kramer 

 
Doctor of Philosophy in Environmental Science, Policy, and Management 

 
University of California, Berkeley 

 
Professor Scott Stephens, Co-Chair 

Professor Nina Maggi Kelly, Co-Chair 
 

Forest and fire ecology have long utilized remote sensing datasets to learn more about 
landscapes. Advances in gps spatial accuracy, GIS software capabilities, computing power, and 
remote sensing technology and software, as well as increases in the spatial and temporal 
resolution of remote sensing products, have made remote sensing a critical component of 
forest and fire ecology. Aerial light detection and ranging (LiDAR) is a fast-growing active 
remote-sensing technology that can be mined for detailed structural information about forests. 
These data are utilized in the fields of hydrology, forest ecology, silviculture, wildland fire 
ecology, wildlife ecology, and habitat modeling. LiDAR coverage has also become increasingly 
common, yet still contains much untapped potential.  

Despite widespread research that derived copious valuable metrics from aerial LiDAR, 
few of these metrics are available to managers due to a significant knowledge and software 
barrier for LiDAR processing. Even when LiDAR is utilized to derive more complex metrics by 
scientists and LiDAR experts, metrics are often predictions of plot-based data across the 
landscape. While these metrics are useful, LiDAR can offer so much more. Because it holds 
information about forest structure in 3 dimensions, new metrics can be derived that capture 
the full complexity of forest structure. 

I explore ways in which managers can use the plot network and data layers already 
available to them to derive large tree density, a metric that is critical for habitat modeling for 
many species, including the California spotted owl. I also explore the utility of LiDAR for 
estimating ladder fuels that carry fire from the ground into the canopy. Because there was no 
reliable method for quantifying these fuels, I also developed a plot-based methodology to 
collect these data. My dissertation work aims to increase LiDAR accessibility to managers and to 
develop new ways to use LiDAR to solve old problems. While there is much more work to be 
done, I am excited to share my work with LiDAR experts and forest managers, and hope that my 
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findings improve the way we use LiDAR, the way we manage forests, and the way that we 
model and manage for wildland fire. 
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Chapter 1: Introduction 
  
 Many areas of forest and fire ecology have begun to utilize LiDAR datasets to determine 
more about areas at the landscape scale (Bergen et al. 2009). With advances in gps spatial 
accuracy, GIS software capabilities, and computing power, these data are becoming a critical 
component of forest and fire ecology (Kelly and Di Tommaso 2015).  

Aerial light detection and ranging (LiDAR) is an increasingly important, active remote-
sensing technology that uses near infrared light to map the location of object “returns” in three 
dimensions (Lefsky et al. 2002). As a laser pulse is shot toward the ground from an aircraft, it 
travels down until it reflects off of an object, be it a tree, shrub, or the ground. The reflected 
pulse returns to the aircraft, and is recorded by instrumentation. The length of time between 
pulse emission and detection is used to calculate the distance traveled, using the speed of light. 
An inertial measurement unit in the airplane tracks the angle at which the pulse was shot, and 
high-accuracy gps is used in the aircraft to measure its location.  All of these measures are used 
to calculate the positon, in three dimensions, where the reflection occurred. Because hundreds 
of thousands of pulses are shot every second, combined with multiple returns recorded for 
each pulse in multi-layered systems such as forests, a cloud of point returns can quickly be 
collected, often amounting to terabytes of data.  

These clouds of points can then be mined for ecological information in forests (Kelly and 
Di Tommaso 2015), including: 1) ground elevation, from which a digital terrain model can be 
calculated (Lefsky et al. 2002), 2) canopy surface elevation, from which a model of canopy 
height can be calculated (Dubayah and Drake 2000), 3) canopy cover (Andersen et al. 2005), 
and 4) stand structure (Hall et al. 2005; Hudak et al. 2008; Kane et al. 2010). Other metrics can 
also be calculated with reasonable accuracy, including: 1) tree density (Næsset and Bjerknes 
2001), 2) basal area (Hudak et al. 2006), 3) ladder fuels, i.e., canopy base height (Popescu and 
Zhao 2008) and surface fuels, i.e., surface fuel model (García et al. 2011b; Jakubowski et al. 
2013b; Mutlu et al. 2008) used for fire modeling (González-Olabarria et al. 2012; Riaño 2003), 4) 
fuel bulk density (Erdody and Moskal 2010; Riaño et al. 2004a), 5) biomass (Popescu 2007), 6) 
carbon yields (Hyyppa et al. 2001), 7) forest productivity (Jensen et al. 2008; Morsdorf et al. 
2006; Riaño et al. 2004b), and 8) shrub characteristics (Martinuzzi et al. 2009; Riaño et al. 2007; 
Wing et al. 2012). Work has also been done to segment the point cloud into individual trees to 
calculate specific metrics (Jakubowski et al. 2013a; Li et al. 2012; Popescu et al. 2003). With so 
many uses for these data, including hydrology, forest ecology, silviculture, wildland fire ecology, 
wildlife ecology, and habitat modeling, it is no surprise that interest in this remote sensing data 
source has grown significantly in the past two decades. Figure 1 shows the number of scientific 
publications that contain the words “LiDAR” and “forest” for each year since 1995. 
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Figure 1. Bar graph showing the number of publications listed on Google Scholar 
that have “LiDAR” and “forest” in their bodies for each year since 1995. 

 
LiDAR has become increasingly important to forest science in the past two decades. 

LiDAR coverage has also become increasingly common (Figure 1). For instance, many countries 
in Europe have flown wall-to-wall LiDAR coverage such as Denmark, Finland, the Netherlands, 
Slovenia, and Switzerland, and much of these data are made freely available for public 
download, representing an amazing public resource. In the US, many states now have complete 
LiDAR coverage, including CT, DE, IN, IA, LA, MN, NC, OH, and PA (Department of Commerce 
(DOC) et al. 2015). 

There are also numerous websites that compile publicly available LiDAR data into an 
easily searchable online database that streamlines the downloading process (Department of 
Commerce (DOC) et al. 2015; OpenTopography 2016; U.S. Department of the Interior 2016).  

Despite widespread research that derives copious valuable metrics from the aerial 
LiDAR point cloud, few products can be utilized by forest managers without a source of LiDAR 
expertise (Keane 2015; Thompkins 2013). Even when LiDAR is utilized to derive more complex 
metrics by scientists and LiDAR experts, metrics are often predictions of plot-based data across 
the landscape. While this use is admirable, LiDAR can offer so much more. Because it holds 
information about forest structure in three dimensions, new metrics can be derived that 
capture the full complexity of forest structure, which is a daunting task for a field crew to 
undertake on the ground, and therefore provides an entirely new perspective. 
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The contribution of my research is to: 
1) Make LiDAR more accessible to managers by using creative metrics that do not rely 

on LiDAR processing beyond that completed by the vendor; 
2) Utilize LiDAR to derive new metrics that elucidate forest structure in ways not 

possible with other forms of remote sensing. 
 
Chapter 2: Accessible LiDAR: estimating large tree density for habitat identification 

In my second chapter, I demonstrate a method whereby managers with only 
rudimentary knowledge of GIS software can derive a model predicting the density of large 
diameter trees. This is a simple metric to derive for those with LiDAR processing expertise, but 
has been inaccessible to managers, who do not have access to these tools or the knowledge to 
use them. Furthermore, areas with high numbers of large trees comprise critical habitat for 
many rare and endangered species, including the California spotted owl (Strix occidentalis 
occidentalis). I compare two predictive models of large tree density: 1) one derived from a suite 
of metrics derived from the LiDAR point cloud with proprietary, command-line software, and 2) 
another derived from only the canopy height model raster that is often delivered alongside the 
raw LiDAR data. I show that, in the case of my study area in Meadow Valley, CA, these two 
models are equivalent, suggesting that managers can make use of LiDAR data using only the 
canopy height model, a common raster deliverable. 
 There have also been multiple publications discussing the ideal setup for LiDAR ground-
validation. While I do not dispute these guidelines, I show that the desired LiDAR-based 
products dictate the design of plots, and that a one-size-fits-all methodology is a dangerous 
one. Furthermore, I show that for metrics such as large tree density, managers may be able to 
utilize pre-established plot networks (strongly advised against by many LiDAR experts) to 
ground truth older LiDAR if their objectives are appropriate. This includes the acceptability of 
lower-precision plot centers if plots are large and forest data are not expected to be highly 
variable. While I do not advocate using less accurate gps technology for measuring new plots, it 
is important to acknowledge the usefulness historic plots could provide managers, especially to 
compare against historic LiDAR acquisitions where no new data are available. 
 Finally, I show that the large tree density calculated from the canopy height model is 
significantly higher around California spotted owl nest sites than randomly chosen sites. This 
metric is currently being utilized in the development of a California spotted owl habitat model 
that will be published within the year. 
 In my second chapter I explore ways to make LiDAR more accessible to managers, and 
evaluate methods of using LiDAR and ground-truthing data that are more likely to be available 
to managers. It is a shame that there is such an amazing source of information, but that few are 
able to utilize it on the ground for forest management. 
 
Chapter 3: Quantifying Ladder Fuels: A New Approach Using LiDAR 
 In my third chapter (Kramer et al. 2014), I use LiDAR to explore a misrepresented 
variable in the world of fire ecology. Ladder fuels that form a bridge to carry fire from the 
surface of the ground into the forest canopy are critical for modeling wildland fire. However, 
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the norm has been to use a surrogate of canopy base height, and has been this way for 
decades. Despite the insensitivities of canopy base height to shrubs, small trees, and tree 
density, it remains a primary estimator of ladder fuels. Fuel model is also an indication of ladder 
fuels, but this metric is determined by expert opinion in the field, and has its own levels of 
inaccuracy. Because fire models use these and other challenging variables, they often employ 
adjustment factors to change the model prediction to something more reasonable, in the eyes 
of the modeler. This system is rife with problems, but continues to be the norm, even as new 
technologies arise. 
 LiDAR provides an excellent opportunity to explore new ways of measuring ladder fuels 
more quantitatively, yet few have pursued it. Many, however, have used LiDAR to predict 
canopy base height and fuel model, but with low success in natural systems. My third chapter 
explores whether LiDAR is able to differentiate between areas with low and high ladder fuels in 
Meadow Valley, CA. First I use fuel reduction as a surrogate for sparse ladder fuels and 
determine the best LiDAR-derived variable for differentiating between treated and untreated 
areas. Then I test whether this metric, relative 2-4 m cover, is significantly different between 
plots identified as having low or high levels of ladder fuel. I find that there is a significant 
difference, but am not able to develop a more quantitative relationship because the only 
established methodology that directly measures ladder fuels in the field is categorical. 
 
Chapter 4: Estimating ladder fuels: a new approach by land and by air via LiDAR 
 In my fourth chapter, I develop a new, quantitative methodology for estimating the 
density of ladder fuels on the ground. This method utilizes multiple photographs per plot, and is 
useful not only for ladder fuel estimation, but also for monitoring plot change over time and 
establishing a visual for each plot. I pioneer this method in the Klamath mountains of CA, where 
there is a wide range of ladder fuel densities across the landscape. I derive a robust predictive 
model of ladder fuel density across the study area using LiDAR. Using these predictions, I 
identify areas with uncharacteristically dense patches of ladder fuels. Working with managers in 
the area, this map will help identify areas where fuel reduction is needed to reduce hazard from 
wildland fire, especially near communities and along evacuation corridors. It also shows areas 
near cultural sites that may pose a danger to site integrity due to an increased likelihood of 
crown fire. These data may also be used to identify areas near large legacy oaks, which are an 
important cultural resource in this area. Oaks in this area are already suppressed by dense 
conifers and threatened by Sudden Oak Death that is approaching the area. 
  

Through my chapters, my goals have been to increase LiDAR accessibility to managers 
and to develop new ways to use LiDAR to solve old problems. While there is much more work 
to be done, I am excited to share my work with LiDAR experts and forest managers, and hope 
that my findings improve the way we use LiDAR, the way we manage forests, and the way that 
we model and manage for wildland fire. 
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Chapter 2: Accessible LiDAR: estimating large tree density for habitat 
identification 

 
Abstract 
 Large trees are important to a wide variety of wildlife, including many species of 
conservation concern, such as the California spotted owl (Strix occidentalis occidentalis). Light 
detection and ranging (LiDAR) has been successfully utilized to identify the density of large 
diameter trees, either by segmenting the LiDAR point cloud into individual trees, or by building 
regression models between sometimes abstract variables extracted from the LiDAR point cloud 
and field data. Neither of these methods is easily accessible for the majority of land managers, 
and much available LiDAR data are being underutilized due to the steep learning curve required 
for advanced processing. This study derives a simple, yet effective method for estimating the 
density of large-stemmed trees from the LiDAR canopy height model, a standard raster product 
derived from the LiDAR point cloud that is often delivered with the LiDAR and is easy to process 
by personnel trained in geographic information systems (GIS). Ground plots needed to be large 
(1 ha) to build a robust model, but the spatial accuracy of plot center was less crucial to model 
accuracy. I also show that predicted large tree density is positively linked to California spotted 
owl nest sites. 
 
1. Introduction 

Large trees are critical components of many temperate forest ecosystems (Franklin et al. 
2002). Large trees have features that directly provide habitat for wildlife (e.g., broken tops and 
cavities), in addition to indirectly providing habitat by contributing to greater complexity in 
forest structure. Both aspects of large trees have been shown to be important for wildlife 
species of conservation concern. Numerous studies have shown the California spotted owl’s 
(Strix occidentalis occidentalis) (CSO) association with large, old-growth trees and structurally-
complex stands used for nesting and roosting (Bias and Gutiérrez 1992; Gutiérrez et al. 1992; 
Keane 2014; Moen and Gutiérrez 1997). CSO populations are declining in the Sierra Nevada and 
they are currently under review for potential listing under the Endangered Species Act. Thus, 
information on the distribution and abundance of important large tree habitat elements and 
structurally-complex forest stands is needed to inform assessment and development of 
conservation strategies for CSOs, and more broadly, Sierra Nevada forest landscapes. In 
addition to CSOs, large tree habitat is important for numerous wildlife species including fishers 
(Martes pennanti), northern goshawks (Accipiter gentilis), woodpeckers, and others (Beier and 
Drennan 1997; Greenwald et al. 2005; Hollenbeck et al. 2011; Seavy et al. 2009; Zielinski 2014). 

In the past, imagery from passive remote sensors, such as LANDSAT, was widely used to 
estimate the structure of forests (Forsman 1995; Hunter et al. 1995; McDermid et al. 2005; 
Moen and Gutiérrez 1997). LiDAR is a form of active remote sensing that is better able to detect 
the height of vegetation than passive remote sensing, and therefore may be a very useful tool 
for identifying wildlife habitat (Kelly and Di Tommaso 2015; Lefsky et al. 2002; Martinuzzi et al. 
2009; Selvarajan et al. 2009; Vierling et al. 2008). This is particularly true in areas with tall (and 
likely large diameter) trees (Ackers et al. 2015; Bergen et al. 2009; García-Feced et al. 2011; 
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Wing et al. 2010). Ackers et al. (2015) found that LiDAR was a better predictor than LANDSAT of 
Spotted Owl habitat, which depended heavily on large tree density and overall canopy height 
(Ackers et al. 2015). Methods for estimating large tree density from LiDAR include individual 
tree segmentation and statistical modeling that utilizes one to many LiDAR-derived 
independent variables. 

Tree segmentation algorithms segment the canopies of individual tree crowns from the 
LiDAR point cloud (Chen et al. 2006; Jakubowski et al. 2013a; Li et al. 2012; Popescu et al. 
2003). This makes it possible to calculate the location of stems and accurately predict the 
number of large trees in a given area. Tree segmentation has been successfully implemented in 
some wildlife studies (García-Feced et al. 2011), and while it requires fairly simple LiDAR input, 
it necessitates complex algorithms to segment the crowns of all trees, calculate each stem’s 
location and maximize crown height, back-calculate the diameter, and then calculate the 
density. Furthermore, this analysis also requires training data where all stems are mapped, 
which can be very labor intensive, especially for larger plots (>0.1 ha). Unfortunately, this 
workflow is not possible for most land managers due to the limited availability of a number of 
factors, including: 1) LiDAR with high point densities (due to funding limitations or age of LiDAR 
acquisition), 2) equipment, 3) personnel for fieldwork, 3) training in and access to tree 
segmentation software, and 4) time to carry out complex processing tasks. 

Statistical models using LiDAR can be more abstract, and also accurately predict tree 
density (Hudak et al. 2006; Jakubowski et al. 2013c; Lee and Lucas 2007). While these models 
do not require the complex algorithms and high-density LiDAR needed by tree detection 
algorithms, they often utilize a suite of LiDAR-derived variables. These variables are not 
standard deliverables from LiDAR acquisitions, and typically require expertise of a LiDAR 
specialist. Furthermore, once a model is created, it can be hard to understand the ecological 
underpinnings, and the model must be re-evaluated when moving between different areas or 
forest types. Simpler models (e.g., fewer variables, less intensive statistics) are uncommon in 
LiDAR applications for natural resources. 

In this study I explore regression-based approaches for accurately quantifying the 
density of large trees. While tree segmentation would be a more quantitative approach, I 
intentionally avoided it to investigate less demanding approaches in terms of LiDAR point 
density, field plots, processing hardware and software, and expertise of processing personnel. 
My specific research questions were: (1) When estimating large tree density from LiDAR, what 
is the difference in predictive accuracy between A) a multiple regression model comprised of 
many LiDAR-derived variables and B) a simple linear regression model derived from the canopy 
height model (CHM)? (2) Does plot size or plot center accuracy influence the strength of this 
relationship? and 3) Can the LiDAR-derived large tree density estimates be used to identify 
important structural habitat characteristics of California spotted owl (CSO) nest sites? 

 
2. Methods 
2.1 Study area 
 The study was conducted in the Meadow Valley area of the Plumas National Forest, 
which is in the northern Sierra Nevada of California (centered at 39°55′ North, 121°03′ West) 
(Figure 2). With a Mediterranean climate, most of its 1050 mm per year of precipitation falls 
during the winter (Ansley and Battles 1998). The 22,510 ha (55,623 ac) landscape is made up of 
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forest, montane chaparral, and meadows, and falls between 1050 m and 2150 m in elevation 
(Collins et al. 2013; Kramer et al. 2014). Mixed conifer tree species predominate, including 
ponderosa pine (Pinus ponderosa), Jeffrey pine (Pinus jeffreyi), sugar pine (Pinus lambertiana), 
Douglas-fir (Pseudotsuga menziesii), white fir (Abies concolor), incense-cedar (Calocedrus 
decurrens), and California black oak (Quercus kelloggii) (Barbour and Major 1995; Schoenherr 
1992). At higher elevations, smaller pockets of red fir (Abies magnifica) and western white pine 
(Pinus monticola) can be found. Lower densities of lodgepole pine (Pinus contorta), western 
juniper (Juniperus occidentalis), California hazelnut (Corylus cornuta), dogwood (Cornus spp.), 
and willow (Salix spp.) also occur. Before fire suppression began in the early 1900s, the historic 
fire regime consisted of primarily low to moderate severity fires burning at 7–19-year intervals 
(Moody et al. 2006). 
 

 
Figure 2. Meadow Valley study area on the Plumas National Forest, CA, 
measuring 22,510 ha.
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Many different fuel reduction treatments were implemented across this 

landscape between 1999 and 2008 as part of the Herger-Feinstein Quincy Library Group 
Pilot Project (Herger and Feinstein 1998). The fuel treatments occurred across 
approximately 20% of the landscape and were intended to mitigate potential for 
uncharacteristically large and severe wildfire while conserving critical habitat for CSO 
and other species (Moghaddas et al. 2010). Multiple nesting sites of CSO have also been 
located and monitored across this study area (Stephens et al. 2014). 
 
2.2 Field Data 

The entire Meadow Valley study area was systematically surveyed for CSO 
nesting sites between 2002-2012 using standardized survey protocols to determine 
occupancy and reproductive status (Blakesley et al. 2010; Stephens et al. 2014). As part 
of these protocols efforts were made to locate the specific nest tree used by breeding 
owl pairs each year. A total of 13 CSO nest tree locations were documented and 
sampled using the standard FIA protocol described above. Field plots were sampled 
between 2004 and 2009. Plots were centered on all 13 known CSO nest trees within the 
study area, and at 132 CSO foraging locations. Foraging locations were estimated from 
10 owls using standard radio-telemetry techniques (Kenward 2000; White and Garrott 
1990); I conducted vegetation plots at a random subsample from 436 total foraging 
locations, with each owl sampled equally. In addition, any foraging location within a 
fuels treatment also received a vegetation plot. Error ellipses for radio-telemetry 
locations are dependent on distance to the animal, change in angle between bearings, 
and elapsed time between bearings; I sampled vegetation only at foraging locations in 
which the error ellipse was less than 1 ha, the size of the largest vegetation subplot 
(Gallagher 2010). A total of 145 plots were sampled (of which 134 were used for the 
study due to incomplete coverage by the LiDAR point cloud or inaccuracies between 
spatial and non-spatial datasets). Plot centers were recorded with a Trimble 
GeoExplorer3, with a reported accuracy of 2-5 m (actual accuracies for each plot were 
not recorded). 

Standard FIA (Forest Inventory and Analysis) plot layout was implemented to 
collect plot and subplot data, but only a single subplot of each size was utilized to 
maintain subplot independence and control for slight inaccuracies in plot center 
coordinates due to lower accuracy GPS. These plots measured 1 ha (2.47 ac), 1/10th ha 
(0.247 ac), and 1/60th ha (0.041 ac), with plot radii of 56.41, 17.95, and 7.31 m (185.1, 
58.9, and 24.0 ft), respectively, laid out concentrically around the recorded plot center. 
The plot and subplot arrangement that I used is illustrated in Figure 3. FIA protocol was 
used, but slightly modified for the largest, 1 ha plot size, to include the measurement of 
trees over 76 cm (30 in) in diameter at breast height (DBH), as opposed to the standard 
81 cm (32 in) threshold. This change was implemented to reflect the harvesting 
regulations described in the US Forest Service 2001 Framework and the 2004 Sierra 
Nevada Forest Plan Amendment (US Forest Service 2001, 2004). 



 

9 
 

 

 
Figure 3. Layout of the 3 concentric plot sizes that were used for this 
study. Note that all standard FIA plots were collected, but only a single 
plot of each size was used to minimize spatial autocorrelation between 
macro- and sub-plots. 

 
2.3 LiDAR Data and Processing 

Watershed Sciences, Inc. collected aerial LiDAR over the Plumas and Lassen 
National Forests between July 31 and August 11, 2009. A Leica ALS50 Phase II laser 
system was used to collect LiDAR points utilizing a scan angle of ± 14° from nadir. A 
Leica RCD-105 39 megapixel digital camera was used to capture orthophotos, which 
were processed with Leica’s Calibration Post Processing software v.1.0.4. IPASCO v.1.3 
and the Leica Photogrammetry Suite v.9.2 were used to spatially place the photos. The 
vendor reported that average vertical and horizontal accuracy were 2.6 cm (1.02 in) and 
7.2 cm (2.83 in), respectively, based on the mean divergence of points from ground 
survey point coordinates (3089 ground points were analyzed across four surveyed 
areas). An average point density of 4.68 points m-2 (0.43 points ft-2) was achieved. 
Although a variety of fuel reduction treatments were implemented on the landscape 
between field plot sampling and the LiDAR flight, no fuels were altered in the field plots. 

The LiDAR point cloud was normalized and variables were extracted for each 1 
ha plot using LasTools (Isenburg 2011). Variables included topography and forest 
structure (see Table A.1 in the appendix for detailed breakdown). The CHM was 
generated at 2 m resolution using Fusion(McGaughey 2012). ArcGIS was then used to 
clip the CHM to each plot area (1 ha, 1/10th ha, 1/60th ha) and analyze these for “% tall 
cover.” The “% tall cover” variable describes the proportion of the plot area with a 
canopy height over a given breakpoint. Breakpoints tested ranged from 26 to 38 m, at 2 
m intervals. Figure 4 shows the detailed work flow and illustrates how I used the LiDAR 
data to answer my key questions. 
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Figure 4. Project work flow used to analyze LiDAR and field data. 
 

2.4 Statistical analysis 
I used a combination of methods in the R software program (R Development 

Core Team 2008) to develop and evaluate linear models that estimated large diameter 
(> 76 cm (30 in) DBH) tree density from LiDAR, without the use of tree segmentation. I 
chose the threshold of > 76 cm (30 in) DBH to match the size threshold for trees 
collected in the largest, 1 ha plot size, as well as for both subplot sizes. This is also the 
maximum diameter limit guiding most forest management treatments specified in the 
2001 Framework and the 2004 Sierra Nevada Forest Plan Amendment (US Forest Service 
2001, 2004). 

To avoid a non-normal response variable distribution according to the Shapiro-
Wilk normality test (Shapiro and Wilk 1965), I transformed the field-based large tree 
count by taking its square root. I also used Q-Q plots to visually identify non-normal 
distributions of independent variables and bring their distributions closer to normality 
through transformation. A complete record of transformations is detailed in Table A.1. 
Applying these transformations increased the predictive ability of models and 
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eliminated model heteroscedasticity, tested with the Breusch-Pagan test in the car 
package of R (Breusch and Pagan 1979; Fox et al. 2009).  

Once variables were transformed, I calculated the best simple linear regression 
model (the model with the highest R-sqared value), as well as the best multiple 
regression model. Because LiDAR-derived independent variables were highly correlated, 
an iterative model building approach was taken: 1) The best simple linear regression 
model was chosen based on the lowest AIC score using the leaps package in R (Lumley 
and Miller 2009). 2) Variables that were strongly correlated with the chosen 
independent variable (correlation >0.6 in either Pearson or Spearman correlations) were 
removed. 3) The process was repeated to find the next best independent variable. The 
final model was that with the lowest AIC and with all independent variables significant 
at p<0.05. I recorded both AIC values and the 10-fold cross-validation error, calculated 
with the CVTools package in R (Alfons 2012). 

I also derived predictive models for large tree density for the 1/10th ha (1,012m2; 
0.247 ac) and 1/60th ha (168 m2, 0.041 ac) plots using the above methodology in order 
to test whether plot size influences the strength of the relationship. I wanted to 
evaluate whether the most reliable predictor changed and by how much the correlation 
coefficient degraded as plot size was reduced, especially since the plot size 
recommended for aerial LiDAR validation ranges between 300 and 600 m2 (0.074 and 
0.15 ac) (Laes et al. 2011; Ruiz et al. 2014). Because larger plots have proportionally less 
edge per unit area, and a number of factors at plot edge can influence the relationship 
between canopy structure and the number of stems within the plot area, I predict that 
model accuracy will be greatly decreased for smaller plots. Some of these factors are 
illustrated by Figure 5, where 2 nearly identical plots have very different stem counts 
due to leaning stems, stems near the plot edge, and trees with uneven crowns. 
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Figure 5. Plots 1 and 2 show 25% cover, but plot 1 contains 3 stems, while 
plot 2 contains none. Three tree characteristics that can lead to model 
inaccuracies, if they occur near the plot edge, are: A) stem lean, B) stem 
near plot boundary, C) uneven crown.  

 
Based on evaluation of model performance at the 1/60th ha, 1/10th ha, and 1 ha 

plot scales (see Results), I chose the simple linear regression model and the 1 ha plot for 
further analysis. This model was preferable since it had the highest adjusted R-squared 
value, uses the CHM (a commonly derived LiDAR product) as its base for prediction, and 
is simple enough to make logical sense for its predictions. 

To address whether plot center accuracy influences the strength of this 
relationship, I shifted all 1 ha plots in a random direction (illustrated in Figure 6) and 
recalculated the model coefficients, as well as the correlation coefficient. I repeated this 
shift and recalculation 100 times, and performed the analysis at shift distances of 2, 5, 
10, and 15 m. For each shift distance, I compared the distribution of values for the 
model coefficients and correlation coefficient. I chose these distances because they are 
common values for the horizontal accuracy of many mid-range GPS units that are 
commonly used by a non-LiDAR-specific field crew when recording plot centers.  
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Figure 6. Illustration of plot center shift of 2, 5, 10, and 15 m. The black 
dot and dark circle represent the original plot center and area, 
respectively, while the lighter dot and circle represent the location of the 
15 m shifted plot. Other shifts are shown as outlines. At 15 m, this shift 
represents a highly inaccurate GPS point, yet with the 1 ha plot size, over 
83% of the original plot is contained by the shifted plot. 

 
 Large tree density centered on CSO nest trees was examined at multiple scales to 
evaluate the potential utility of using this variable to quantify habitat associations. Large 
tree density across the Meadow Valley study area was estimated and mapped using a 
single-regression model. Large tree density was extracted from this layer for areas 
within 50, 100, 500, and 1000 m of nest trees and at 100 randomly chosen points on the 
landscape for comparison. T-tests were used to compare large tree density between owl 
and random sites at each spatial scale.  
 
3. Results 
3.1 Large diameter tree density 

Due to high collinearity between independent variables, combined with these 
variables quickly becoming insignificant to the model at the p<0.05 level, the multiple 
linear regression only contained two independent variables and was only slightly better 
able to predict large tree density, as shown in Table 1. Equation 1 shows the best single 
regression linear model, where the independent variable was the percent of the plot 
area where the CHM was over 32 m (CHM32). Equation 2 shows the best multiple linear 
regression model, where the independent variables included CHM32 and the variance of 
point heights above 2 m (VAR).  

 
Sqrt(Trees ha-1) = 1.10+0.817*sqrt(CHM32 meters)    Eqn. 1 
 
Sqrt(Trees ha-1) = 2.37+0.786*sqrt(CHM32)-0.909*(log(VAR)+1)  Eqn. 2 
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Variables included in 
model 

AIC 10-fold cross-
validation error * 

Adjusted R-
squared 

CHM32 347 0.88 0. 77 
CHM32, VAR 344 0.87 0. 77 

 
Table 1. Model statistics are reported for the best single and multiple 
linear regression models. These include the predictor variables, AIC score, 
cross-validation error, and adjusted R-squared value for each model. 
CHM32 refers to the relative percent of plot area where the CHM is over 
32 m; VAR refers to variance among point heights. *The cross-validation 
error is reported for the square root of trees ha-1. 
 
Both models had very similar AIC and cross-validated prediction error (Table 1). 

Both models had a cross-validation error below a single tree per ha, which is accurate 
enough to be highly useful for managers.  
 
3.2 Importance of plot size 

Of the three plot sizes evalauted, the 1 ha plot was the best predictor of large 
tree density, with a model adjusted R-squared of 0.77 (Table 1). Model prediction 
accuracy decreased as plot size shrank. Even plots 1/10th ha in size (considered large by 
most managers and field crews) were poor predictors of large tree density, with the best 
model producing an adjusted R-squared of only 0.54 compared with 0.77 for the 1 ha 
plot. Even so, large tree density in both the 1 ha and 1/10th ha plots was best predicted 
by a CHM-derived variable. The best independent variable for each plot size, as well as 
coefficient of determination for each model for 1/10th and 1/60th ha plots are reported 
in Table 2. Note that while multiple regression was attempted, no variables beyond the 
first were significant. 

 

  Plot area Explanatory 
variable 

Adjusted 
R-squared  

p-value 

Subplot 1/60th ha COV32-34 0.21 < 0.01 

Macroplot 1/10th ha CHM34 0.54 < 0.01 

 
Table 2. Each plot area is shown with its corresponding best linear model, 
showing the model variables, adjusted R-squared value, and p-value for that 
model. COV32-34 represents the relative percent cover of all LiDAR returns 
between 32 and 34 m. CHM34 refers to the relative percent of plot area where 
the CHM is over 34 m. 
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To help explain the difference in model accuracy, Table 3 details the average 
number of large diameter trees, as well as the proportional amount of edge to area, for 
the three plot sizes. These factors were likely both contributors to the poor predictive 
power of models built using smaller plot sizes. Table 3 shows that 1/60th and 1/10th ha 
plots had less than ½ and 2 large trees per plot, respectively, making prediction 
inherently difficult. Furthermore, the large ratio of plot edge to plot area likely 
contributed to model inaccuracy as well, with 1/60th ha plots having 8 times as much 
relative edge than 1 ha plots (Table 3). 

 

Plot area 
Average large 
trees per plot 

Radius 
(m) 

Circumference 
(m) 

Area 
(ha) 

Edge:Area 

1/60th ha 0.47 7.31 45 0.016 0.273 

1/10th ha 1.74 17.95 112 0.101 0.111 

1 ha 15.56 56.41 354 0.999 0.035 

 
Table 3. Each plot size is shown with the average number of large (>76 
cm (30 in) DBH) trees, as well as the radius, circumference, and area of 
each plot size and the ratio of edge to area. A lower edge to area ratio 
indicates less edge effect. Note that the 1/60th ha plot has almost 8 times 
as much relative edge as the 1 ha plot. 

 
3.3 Importance of plot center accuracy 
 Plot centers were shifted up to 15 m, but none of these shifts dramatically 
changed the linear model accuracy or coefficient values. Boxplots displaying the model 
fit and coefficients are shown in Figure 7. Adjusted R-squared ranged between 0.72 and 
0.78 for models built with shifted plot centers (the non-shifted model had an adjusted 
R-squared value of 0.77). Values for slope and intercept varied between 1.06 and 1.22, 
and 0.78 and 0.84, respectively (unshifted model values were 1.10 and 0.82, 
respectively). 
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Figure 7. The distribution of model values (R-squared, as well as the slope 
and intercept of the model), and how these changed on the 1 ha plot size 
as the coordinates of plot center were shifted 2, 5, 10, and 15 m in a 
random direction (n=100). Original model values are shown as a grey 
dashed line. 

 
3.4 Large trees around nest sites 
 Large diameter tree density was modeled for the entire study area and is shown 
with thirteen CSO nest sites in Figure 8. Smaller buffers around nest trees had a 
disproportionately high density of large trees, which dropped off gradually as the search 
radius from the nest tree increased, illustrated in Figure 9. Within 50 m of nest trees, 
compared to random locations, large tree densities were significantly different, with 31 
versus 12 trees ha-1, respectively. Area near nest sites remained significantly different 
from random at distances of 50, 100, and 500 m. Only at a buffer distance of 1 km was 
large tree density no longer significantly different between CSO nest sites and random 
locations.  
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Figure 8. Study area, showing large (over 76 cm (30 in) DBH) tree density 
and California spotted owl nest sites. Large tree density was derived from 
the canopy height model via single linear regression. 
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Figure 9. Large (over 76 cm (30 in) DBH) tree density near thirteen 
California spotted owl nest sites and 100 random sites over a range of 
search radii is shown. Plots with significantly different distributions (at p < 
0.01) of large tree density are indicated by “*”. Large tree density was 
derived from the canopy height model via single linear regression. 

 
4. Discussion  
 Large trees are a critical habitat component for several wildlife species of 
concern and are presently lacking in many western forests relative to historical forest 
conditions (Franklin and Johnson 2012). In the case of the CSO, reductions in the 
number of large trees and structurally-complex older forest stands due to past forest 
management may be a contributing factor to current CSO population declines. Further, 
recent studies have documented high rates of large tree mortality due to interacting 
effects of drought, climate change, wildfire and insect activity (Dolanc et al. 2014; Knapp 
et al. 2013; Lutz et al. 2009). Thus, estimating large tree distribution and abundance is 
important for identifying and managing large tree habitat elements and older-forest 
stands important to CSOs and other associated species. I show that aerial LiDAR can be 
successfully utilized to estimate the density of large trees. Both multiple and simple 
linear models accurately predicted the density of trees over 76 cm (30 in) DBH across 1 
ha plot areas. However, the strength of this relationship decreased as plot size shrank to 
1/10th ha and 1/60th ha, indicating that the plot size should be at least 1ha when using 
the CHM to predict the density of large trees. I suspect that much of this difference in 
model accuracy was due to edge effect, illustrated by Figure 5, and small sample size for 
smaller plots. Other factors that can decrease the accuracy of this estimate include trees 
that have non-standard crown:DBH relationships, including individuals with damaged 
crowns, sheared branches, or broken tops, and species with different ratios of crown 
area:stem diameter.  
 I also show that while the accuracy of plot center slightly decreases the model’s 
accuracy with 1 ha plots and marginally changes its coefficients, the model is still strong 
(adjusted R-squared never dropped below 0.72) with shifts in plot center of up to 15 m. 
This is likely due to the fact that with such a large plot size, much of the original plot 
area is included in the sampled LiDAR (83% of the original 1 ha plot is retained when the 
center is shifted 15 m). This indicates that for variables such as large tree density, which 
require large plots to accurately measure, a highly accurate (sub-meter) plot center may 
not be necessary. While most long-term plot networks do not utilize plot sizes as large 
as 1 ha, this study stands as a reminder that some datasets can still be useful to LiDAR 
validation, despite having less than ideal accuracy for plot centers.  

Recently, many researchers have focused on producing a standardized LiDAR 
plot protocol (Laes et al. 2011; Ruiz et al. 2014), where recommended plot sizes range 
between 300 and 600 m2 and nothing less than a mapping grade GPS is required. While 
this is an excellent step toward helping managers best prepare for maximizing the utility 
of new LiDAR acquisitions, it may also lead managers to assume that plots collected 
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outside of these standards are useless for LiDAR analysis. This study suggests that these 
protocols might be less rigid for a variable such as large diameter tree density, where 
much larger plots are necessary to develop a robust predictive model. I suspect that this 
would also be the case for forest attributes such as basal area and biomass, where 
accurately quantifying the density of large diameter trees at a broad scale is critical to 
forming an accurate relationship between LiDAR estimates (based on forest structure) 
and stem attributes. I advise managers and researchers to critically examine the scale of 
the variable in which they are interested before deciding on an ideal plot design. 
 This was an observational study based on one location, albeit a relatively large 
area, introducing the potential for locational bias in the analysis. Furthermore, because 
the study area is a single sample of the landscape, results from this study should be 
carefully applied to other areas, and may require additional ground-truth analysis based 
on large plots from the new area. Regarding the plots themselves, placement was 
designed and implemented to sample CSO use areas and may not be representative of 
the entire landscape. Furthermore, plot center accuracy was not high by current 
standards (likely below 2 m, but possibly up to 5 m). However, the analysis showed that 
slight shifts in plot center did not influence results, so model inaccuracy from this source 
should be minimal.  

Because this canopy-height derived variable identifies the area of tall canopy, it 
assumes a link between canopy area and tree density, as well as a link between stem 
diameter and tree height. This means that the statistical model likely is unable to 
capture large trees when a significant portion of the tree tops are broken. However, to 
the extent that broken-top trees are still emergent in the dominant tree canopy or these 
large broken-top trees are often found near other large-diameter individuals without 
broken tops, the model would be expected to predict an accurate large tree density. 
Because tree species differ in the relationship between canopy height, canopy volume, 
and stem diameter, this model will need to be evaluated and perhaps re-calibrated 
based on local knowledge of tree species and crown extents. However, for the purpose 
of a general prediction, this basic model performed surprisingly well, and is a simple and 
relatively accurate method for managers and researchers to evaluate large diameter 
stem density across the landscape in Sierra Nevada mixed conifer forests. 
 
4.1 Future Research 

Additional studies to augment this research include carrying out similar analyses 
in different forest types. I suspect that these results will perform best in forests where 
the majority of large trees are coniferous, since these are identified by the CHM. 
Because of the variable quality of LiDAR available to land managers, investigation of the 
necessary point density to make accurate predictions is also essential. 

My work indicates that estimation of large tree density via LiDAR-derived CHM 
could be a useful method for identifying CSO nesting habitat. I encourage wildlife 
researchers to investigate the usefulness or improvement of this variable for modeling 
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wildlife habitat for species associated with large tree habitat elements or forest stands 
with high densities of large trees, such as the CSO. 

My results show that older plots, which may not be ideal for traditional LiDAR-
based derivations due to imprecise data or inaccurate plot center coordinates, could still 
be useful for other variables. I encourage others to explore their plot data and think 
critically about what can be compared to available LiDAR data.  
 
4.2 Immediate implications for managers 

Forest managers are challenged by the need to identify and manage large tree 
habitat across the Sierra Nevada. Information needs may range from identifying 
individual large trees that function as an important nesting/den habitat element within 
an area of generally younger, smaller forest, to identifying forest stands or patches with 
high densities of large trees across a landscape. I encourage thoughtful implementation 
of my methods to identify large trees and assess large tree density across landscapes. 
Such information on distribution and abundance of large trees can be used to identify 
areas of importance to associated wildlife species, such as the CSO, and to inform forest 
management options. Further, little to no information exists on large tree densities 
across the Sierra Nevada, thus estimates of large tree density may be an important 
variable to incorporate into models of wildlife habitat. However, site productivity, 
dominant tree species composition, and management history are linked to the specific 
CHM threshold that is most appropriate, and I caution users to test multiple CHM 
cutoffs before finalizing their model. In other Sierra mixed conifer forests, I encourage 
managers with access to a LiDAR-derived CHM and a network of FIA plots that include 
the 1 ha plot size to derive a similar equation to predict the density of large trees. This 
would be a relatively simple project for anyone familiar with GIS and statistics, and 
could result in a highly useful layer for managers and wildlife ecologists .  
 
5. Conclusions 

Based on my method, managers can use the CHM, a common LiDAR deliverable, 
to accurately estimate large tree density, even when only lower density LiDAR 
(inappropriate for tree segmentation) is available. This can be accomplished without any 
specific LiDAR processing hardware, software, or expertise, and does not require any 
LiDAR-specific plot protocol. This method demonstrates an excellent method for 
managers to put their LiDAR to practical use, although there are a few caveats. 

I also show that older data traditionally labeled as “unusable” for LiDAR 
comparison, due to inaccurate plot center GPS coordinates, can provide valuable 
information for certain LiDAR-derived variables. For plots such as these to be 
successfully compared to LiDAR data, either 1) plots must be large enough to minimize 
GPS inaccuracy or 2) the variable must vary at a larger spatial scale than the potential 
inaccuracy of plot center. 

Estimates of large tree density across the Sierra Nevada are lacking. Such 
information is needed to inform development of conservation and restoration strategies 
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for CSOs and Sierra Nevada landscapes. My methods provide an approach for 
generating this information in areas where LiDAR data are available.  
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Chapter 3: Quantifying ladder fuels: A new approach using LiDAR 

Abstract 
I investigated the relationship between LiDAR and ladder fuels in the northern Sierra 

Nevada, California USA. Ladder fuels are often targeted in hazardous fuel reduction treatments 
due to their role in propagating fire from the forest floor to tree crowns. Despite their 
importance, ladder fuels are difficult to quantify. One common approach is to calculate canopy 
base height, but this has many potential sources of error. LiDAR is a candidate to better 
characterize ladder fuels, but has only been used to address this question peripherally and in 
only a few instances. After establishing that landscape fuel treatments reduced canopy and 
ladder fuels at the site, I tested which LiDAR-derived metrics best differentiated treated from 
untreated areas. The percent cover between 2 and 4 m had the most explanatory power to 
distinguish treated from untreated pixels across a range of spatial scales. When compared to 
independent plot-based measures of ladder fuel classes, this metric differentiated between 
high and low levels of ladder fuels. These findings point to several immediate applications for 
land managers and suggest numerous new avenues of study that could lead to possible 
improvements in the way that I model wildfire behavior across forested landscapes in the US. 

1. Introduction 
Past land management practices, including wildfire suppression, extensive timber 

harvesting, and grazing have left many dry western US forests prone to greater extents of high 
severity fire than occurred historically (Hessburg et al. 2005). In addition to being ecologically 
detrimental, the contemporary patterns of high severity fire put lives, property, and natural 
resources in danger (Husari et al. 2006a). Fuel reduction treatments are often used to mitigate 
fire hazards in strategic areas to help decrease the risk of harming these assets (Agee and 
Skinner 2005). These treatments have been shown to be effective in ameliorating fire behavior 
and reducing tree mortality through both modeled simulations (Johnson et al. 2011; Stephens 
et al. 2009) and when encountered by real wildfires (Agee and Skinner 2005; Ecological 
Restoration Institute 2013; Finney et al. 2005; Moghaddas and Craggs 2007; Pollet and Omi 
2002; Raymond and Peterson 2005; Safford et al. 2009; Safford et al. 2012; Strom and Fulé 
2007). Recent studies suggest the duration for reduction in potential fire behavior and effects, 
or treatment longevity, can exist for up to 8-15 years in the Sierra Nevada (Chiono et al. 2012; 
Stephens et al. 2012). Some have argued that fuel reduction treatments are the most cost-
effective solution in the face of our current fire suppression expenditures because treating the 
forest will keep fire in check more economically than suppression alone (Snider et al. 2006). 

Fuel reduction treatments in the Sierra Nevada have multiple effects on fuel structure, 
reducing surface fuels, ladder fuels, and canopy continuity while maintaining large, fire-
resistant trees (Agee and Skinner 2005; Stephens et al. 2009). Treatments utilize different 
methods to accomplish these changes: prescribed burning, hand-thinning (generally targets 
trees under 30 cm in diameter at breast height (dbh), mastication (targets understory trees and 
shrubs), mechanical harvesting (thin from below, targeting trees up to 76 cm dbh), and 



 

23 
 

sometimes a combination of these. Each treatment type addresses a different subset of these 
effects, but the one common outcome is reduced ladder fuels. The extent of many 
contemporary fires is forcing land managers to coordinate fuel reduction treatments across 
landscapes to collectively reduce fire spread and intensity (Collins and Stephens 2010). Knowing 
the current state of fuels across landscapes is critical for planning this type of fuel treatment 
network, which requires accurate maps of surface, ladder, and canopy fuels. 

Ladder fuels are difficult to measure in the field, and few studies have attempted to 
develop an explicit, field-based measurement procedure (but see (Menning and Stephens 2007; 
Prichard et al. 2013; Wright et al. 2007)). Instead, canopy base height (CBH) and a fuel model 
(sometimes with an adjustment of fire behavior) are used as a surrogate for ladder fuels (Scott 
and Reinhardt 2001). CBH is defined as the point above which there is a given mass of fuel per 
unit volume to carry the fire upward. In theory, CBH and the fuel model should account for 
ladder fuels, but in practice, CBH is poorly defined, hard to measure in the field, and is only 
complicated by ladder fuels that can be too small in diameter to include in the plot sample, but 
still contribute to the fire’s ability to crown (Hall and Burke 2006; Rebain 2010 (revised 
December 18, 2012); Scott and Reinhardt 2001). While the general definition of CBH is agreed 
upon, the threshold of fuel per unit volume is arbitrary; the most agreed-upon value is 0.012 kg 
m-3 (Reinhardt et al. 2006a), but other thresholds have been used (Fernandes 2009; 
Mitsopoulos and Dimitrakopoulos 2007; Ottmar et al. 1998; Sando and Wick 1972).  

CBH is often derived allometrically from plot tree lists, but has also been calculated 
through intensive sampling (Reinhardt et al. 2006b), introducing potential errors when moving 
from the plot to the scale of the landscape. Some allometric equations only require species and 
dbh, though most also include some combination of tree height, crown length (or height to live 
crown base), and crown ratio or width (Brown 1978; Brown and Johnston 1976; Cruz et al. 
2003; Sando and Wick 1972; Wilson and Baker 1998). Equations developed for northern boreal 
plantations only required stand height and density to predict the canopy base height (McAlpine 
and Hobbs 1994), while in the Aleppo pine (Pinus halepensis Mill.) forests of Greece, no 
satisfactory equation could be derived from basic stand measurements (Mitsopoulos and 
Dimitrakopoulos 2014). Other methods for calculating CBH have been implemented: Wilson 
and Baker (Wilson and Baker 1998) controlled for the variability of multilayered stands by 
taking the midpoint of minimum and average height to live crown base as the CBH. Cruz, 
Alexander, and Wakimoto (Cruz et al. 2004) introduced the concept of the fuel strata gap, 
which accounts for the vertical gap in fuels, as an alternative to CBH. CBH has been criticized for 
its arbitrary threshold and insensitivity to tree density when used to calculate a torching index 
for the “Fire and Fuels Extension” of the Forest Vegetation Simulator software (Rebain 2010 
(revised December 18, 2012)). Because of this concern, an alternative measurement was 
created that could estimate torching without being so dependent on CBH (Rebain 2010 (revised 
December 18, 2012)). Even so, CBH remains a highly influential variable in many wildfire models 
used today (Hall and Burke 2006). 

Terrestrial LiDAR has been used to estimate canopy height, canopy cover, CBH, and fuel 
strata gap on the plot scale (García et al. 2011a). Airborne LiDAR is already available to many 
National Forests and National Parks, and has been used to specifically derive fire model inputs 
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(Andersen et al. 2005; Erdody and Moskal 2010; Jakubowski et al. 2013b), but the concerns 
about using CBH in place of a more direct measure of ladder fuels remain. One study in the 
Pinelands of New Jersey that examined the link between airborne LiDAR and shrub biomass 
(Skowronski et al. 2007) suggests airborne LiDAR as a potential candidate for estimating 
shrubby ladder fuels, noting that normalized cover between 1 and 4 m can distinguish recently 
burned sites where biomass and cover are lower. Clark et al. (Clark et al. 2009) used this same 
metric to directly equate to ladder fuels. Wing et al. (Wing et al. 2012) derived relative 
understory vegetation cover in northern California using airborne LiDAR with calibrated return 
intensities. While these studies were carried out in a different forest type, they suggest a 
starting-point for estimating ladder fuels in mixed conifer stands. These studies indicate the 
potential for developing a LiDAR-derived metric to better account for ladder fuels. This would 
be a useful asset, especially because of the potential for high spatial resolution over large areas. 

The primary questions addressed by this study were (1) Can a LiDAR-derived metric (or 
set of metrics) differentiate between treated and untreated areas? and (2) Does this metric (or 
set of metrics) correspond with field observations of ladder hazard? I explored some metric 
assumptions, compared the metric(s) to plot-based ladder fuel measurements, and visually 
assessed the validity of my conclusions from transects showing LiDAR points, aerial images, and 
treatment boundaries. I seek to robustly estimate ladder fuels and provide an alternative to the 
much-criticized surrogate (CBH).  
 
2. Methods 
2.1 Study Area 

Meadow Valley is located in the northern Sierra Nevada of California in the Plumas 
National Forest (centered at 39o 55’ North, 121o 03’ West) (Figure 10). It has a Mediterranean 
climate with most of its 1,050 mm year-1 of precipitation falling in the winter months (Ansley 
and Battles 1998). The 22,500 ha landscape ranges from 1,050 m to 2,150 m in elevation and is 
made up of forest, montane chaparral, and meadows. Tree species are primarily mixed conifer, 
including ponderosa pine (Pinus ponderosa), Jeffrey pine (Pinus jeffreyi), sugar pine (Pinus 
lambertiana), Douglas-fir (Pseudotsuga menziesii), white fir (Abies concolor), incense-cedar 
(Calocedrus decurrens), and California black oak (Quercus kelloggii) (Barbour and Major 1995; 
Schoenherr 1992). Smaller pockets of red fir (Abies magnifica) and western white pine (Pinus 
monticola) are found at higher elevations, and lodgepole pine (Pinus contorta), western juniper 
(Juniperus occidentalis), California hazelnut (Corylus cornuta), dogwood (Cornus spp.), and 
willow (Salix spp.) also occur at lower densities. The historic fire regime before fire suppression 
began in the early 1900s consisted of low to moderate severity fires burning at 7-19 year 
intervals (Moody et al. 2006).  
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Figure 10. Meadow Valley study area, showing areas with fuel reduction (in 
yellow) between 1999 and 2008. 

 
Recent fire activity has caused a rising concern about community safety and forest 

conservation, which spurred enactment of the Herger-Feinstein Quincy Library Group Pilot 
Project. The goals of the project were to maintain forest health, reduce potential for high 
severity fire, and conserve wildlife habitat, while maintaining the local economy (USDA Forest 
Service Plumas National Forest 2003). To reduce fire risk, a major objective was to increase the 
CBH from 1.2-2.4 m (pre-treatment) to at least 7.6 m (post-treatment), necessitating the 
removal of many small and medium trees (ladder fuels) (USDA Forest Service Plumas National 
Forest 2003).  

The above project implemented a variety of treatment types across the landscape to 
address its goals, resulting in a network of treatments that span a range of treatment 
intensities, types, and ages. Treatments can be classified into five types: (1) hand-thinning 
(chainsaw) and pile-burning trees <30 cm dbh; (2) rotary drum mastication of shrubs and small 
trees, with shredded debris left on-site; (3) prescription burning under moderate weather 
conditions; (4) mechanical thinning of trees <51 cm dbh, or <76 cm dbh, depending on 
silvicultural prescription, which, for some areas, was followed by prescription burning; and (5) 
group selection silviculture that removed all conifers <76 cm dbh (USDA Forest Service Plumas 
National Forest 2003). Reported treatments covered 3,999 ha, or 17% of the total study area 
(see Figure 10 for spatial arrangement) and were implemented primarily between 2003 and 
2008 (10% of treatments were completed between 1999 and 2002). Treatment longevity has 
been estimated to be between 8 and 15 years in similar areas (Chiono et al. 2012; Stephens et 
al. 2012), so I was confident in including treatments up to 10 years old in the study sample. 

A treatment polygon layer was assembled by the Herger-Feinstein Quincy Library Group 
monitoring team (Team 2011), where treatments were represented spatially and described in 
detail. Areas were removed from analysis if they were unforested, had an incomplete 
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treatment as of August 2009, or were treated extremely lightly (treatments designed for stream 
corridors that created negligible visual change (Collins 2013) or heavily (as was the case for 
group selection cuts). A buffer of 30 m to either side of all treatment boundaries was also 
excluded to account for inaccurately mapped treatment edges. This decreased the area of 
analysis from 22,510 ha to 17,800 ha, with 11% of that area treated (Figure 10). 
 

2.2 Field Data 
I took advantage of two existing field datasets. One focused on treated areas, referred 

to as treatment plots; the other captured the range of vegetation/fuel conditions across the 
landscape, referred to as landscape plots. Treatment plots consisted of data collected prior to 
and following fuel reduction treatments, which were used to quantify change in ladder and 
canopy fuels. For this assessment, I relied on CBH to represent ladder fuels, and canopy cover 
and bulk density to represent canopy fuels. While these metrics, particularly CBH, are 
problematic for the reasons discussed above, they provided the best estimate feasible from the 
field. The intent was not to develop a direct relationship between CBH and LiDAR, but rather to 
confirm that the treatments did reduce ladder and canopy fuels. 

Treatment plots were established in areas planned for treatment, prior to treatment 
implementation, located across a range of topographic settings and treatment types. A total of 
72 plots were established; 26 were excluded because they were either located in areas never 
treated (16), had undergone group selection silviculture (3), or had poor consistency between 
measurements (abundant new large and small trees appearing in the plot after treatment) (7). 
Treatment plots were sampled 1-3 years before treatment (sampled between 2002 and 2007), 
and again 1 year after treatment (sampled between 2004 and 2009). Treatment plots measured 
50 m by 20 m (0.1 ha), and sampling involved measuring large trees (≥76.2 cm dbh) across the 
entire plot, medium-large trees (40.6-76.1 cm dbh) on the center half of the plot, medium-small 
trees (12.7-40.5 cm dbh) on the center quarter of the plot, and small trees (2.5-12.6 cm dbh) on 
5 subplots (each 16 m2) along the plot centerline. Tree measurements included height, crown 
base height, and dbh. The Forest Vegetation Simulator (FVS) (Dixon 2002) was used to calculate 
the stand-level metrics shown in Table 4 to quantify treatment change. This demonstrated that 
treatments were effective in reducing cover and density and increased canopy base height by 
removing mostly small and medium sized trees. 

 

  
Pre-treatment  

(St. error) 
Post-treatment  

(St. error) 
Percent of 

original 

Tree density (trees ha-1) 1045 (111) 412 (63) 40 
Basal area (m2 ha-1) 43 (3) 29 (3) 67 
Canopy base height (m) 3.0 (0.4) 6.7 (0.1) 223 
Canopy bulk density (kg m-3) 0.18 (.01) 0.09 (.01) 51 
Canopy cover (%) 58 (3) 41 (3) 71 
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Table 4. Forest characteristics before and after treatment in Meadow Valley. 
Plots (46) were measured before and after treatment, metrics were calculated 
with FVS (Dixon 2002), and the resultant change is shown. Ladder fuel reduction 
is indicated by 1) an increase in CBH and 2) a large reduction in trees ha-1 paired 
with a relatively smaller reduction in basal area (many trees were removed, but 
most were small). 
 
Landscape plots were a second field data collection effort, utilizing methodology 

outlined by Menning and Stephens (Menning and Stephens 2007). These data were used to 
independently validate that the LiDAR metric correlated with ladder fuels. Landscape plots 
were sampled within and outside the Meadow Valley study area between 2004 and 2006. Plot 
locations were chosen randomly from the stratified landscape. Stratifications encompassed 4 
categories (3 topographic and 1 biotic), each classified into 3-6 levels. Categories included slope 
(3 levels: >15%, 15-30%, >30%), elevation (3 levels: <1,400 m, 1,400-1,600 m, >1,600 m), aspect 
(4 levels: N, E, S, W), and dominant vegetation (6 levels based on the California Wildlife Habitat 
Relationship classes derived from interpreted aerial images) (VESTRA 2003). Plots were circular, 
with a fixed radius of 12.6 m, representing an area of 0.05 ha. Plot centers were recorded with 
Trimble’s GeoXT global positioning system (GPS) and differentially corrected. To calculate 
ladder fuels, each plot was divided into 4 equal quadrants, and the ladder fuel class (A, B, C, D, 
or E, described in Table 5) was assessed visually and recorded for each quadrant (see (Menning 
and Stephens 2007)). Fuel classes were determined by a combination of vertical fuel continuity 
(vertical gap greater than vs. less than 2 m) and the presence of low aerial fuels (e.g. high 
shrubs (>2m), small trees, and low branches). Canopy cover was also assessed at each plot 
using the number of hits from a sight-tube along two 12-m transects (1 sample m-1).  

 

Class Clumped low aerial fuels Vertical gaps <2m 

A yes yes 
B yes no 
C no yes 
D no no 
E no forest no forest 

Table 5. Ladder fuel hazard assessment classes (Menning and Stephens 2007). 
 

There were 140 plots within the study area that were forested and either untreated or 
completely treated when field work began in spring 2004. Variability among plots was high, 
with only 28 plots (20%) falling into clearly low (all quadrants were class D) or high (all 
quadrants were class A) levels of ladder fuels. I defined a more inclusive classification method 
to preserve sample size (73 plots; 52% of the original 140) while maintaining a robust 
designation of low and high ladder fuel plots. Because vertical fuel continuity corresponds more 
closely to the traditional definition of ladder fuels, I assigned a high ladder fuel class to plots 
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where there was high vertical continuity (gaps were small), regardless of the presence of low 
aerial fuel. However, I maintained the definition for low ladder fuels in its purest form: large 
gaps and no low aerial fuels. Each plot (of 4 subplots) was classified as having high ladder fuels 
if it had at least 2 subplots of class A or C (gaps <2 m), and no subplots of class D (no low fuel; 
gaps >2 m). Plots were classified as having low ladder fuels if at least 2 subplots were class D 
(no low fuel; gaps >2 m) and no subplots were class A or C (gaps <2 m). While I realize that this 
approach is somewhat subjective, I wanted to avoid an excessive reduction in sample size when 
classifying the plots. The majority of the plots did not intersect treatments, though 8 had been 
lightly treated between 1999 and 2004. For this delineation, only half of the plots were 
classified as having either low or high ladder fuels, demonstrating the high variability of ladder 
fuels within each plot, and to an even greater degree across the landscape. 
 
2.3 LiDAR Data and Processing  

LiDAR was flown between July 31 and August 11, 2009, by Watershed Sciences for the 
Plumas and Lassen National Forests. A Leica ALS50 Phase II laser system was used with a scan angle 
of ±14o from nadir to collect LiDAR points. Orthophotos were also taken with a Leica RCD-105 39 
megapixel digital camera and processed with Leica’s Calibration Post Processing software. Photos were 
spatially placed using IPASCO and the Leica Photogrammetry Suite. The average point density was 4.68 
points m-2. The vendor reported average vertical and horizontal accuracy were 2.6 cm and 7.2 cm, 
respectively, based on the mean divergence of points from ground survey point coordinates (3,089 
ground points were analyzed across 4 surveyed areas). 

Fusion software (McGaughey 2012) was used to extract LiDAR-derived metrics for 
analysis at a scale of 30 m to determine whether a metric (or set of metrics) could differentiate 
between treated and untreated areas. I chose this spatial scale because it is common for many 
datasets used by land managers, including Landsat and LANDFIRE. Fusion software was used to 
extract a total of 53 different metrics accounting for topography (5) and forest structure (48) 
(McGaughey 2012) (described in detail in table A.2 in the appendix). I also added 6 additional 
strata layers (2-4 m, 4-8 m, 8-16 m, 16-32 m, 32-48 m, and >48 m) that accounted for the 
relative cover in a layer based on hits within and below that layer, as described by Skowronski 
et al. (Skowronski et al. 2007) and Kane et al. (Kane et al. 2013). No points below 2 m were used 
as the primary metric due to the potential error in differentiating ground points from 
vegetation, following Kane et al. (Kane et al. 2013) (though point counts below 2 m were used 
to calibrate the strata layers described above). 

I clipped the LiDAR pointcloud to the plot boundaries (plot center with a 12.6 m radius) 
and calculated the average value of the LiDAR-derived metric(s) within that area to determine 
whether this metric (or set of metrics) corresponded with field observations of ladder hazard. 

 
2.4 Workflow 

My workflow, shown in Figure 11, illustrates how I used the 2 sets of field data, airborne 
LiDAR, and spatial data denoting fuel reduction treatment boundaries to address my research 
questions. 
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Figure 11. Project work flow, including all data sources and methods. Analysis 
products are shown in ovals. Data sources and intermediate steps are shown in 
rectangles. 

 
2.5 Statistical Analysis 

I used classification tree analysis to determine whether a LiDAR-derived metric (or set of 
metrics) could differentiate between treated and untreated areas. The classification trees 
identified LiDAR-derived metrics that helped explain the difference between treated and 
untreated pixels (Figure 12). Classification trees explain the variation of a categorical response 
variable by splitting the sample one or more times into relatively homogeneous groups with 
respect to the response variable. Each split breaks the data into 2 nodes based on an 
explanatory variable and a break point (if the value for the explanatory variable is greater than 
the breakpoint, that data point goes into one node, and if not, it goes to the other node). A 
model is chosen that fits the data, but also minimizes the number of splits. A classification tree 
approach was chosen rather than standard linear regression because the response variable was 
categorical (treated or untreated), and I was interested in considering all potential explanatory 
variables (many of which were correlated) but identifying only those important for 
differentiating between treated and untreated areas (De'ath and Fabricius 2000). I was not 
trying to build a predictive model (already pursued by many, with varying degrees of success 
(Andersen et al. 2005; Erdody and Moskal 2010; Jakubowski et al. 2013b)), but simply 
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identifying factors that would merit further investigation, and believed that exploring the data 
with classification trees was the most straightforward and understandable approach. 

 

 

Figure 12. An example classification tree differentiating between treated and 
untreated cells at a sampling density of every 10th cell is shown. Pruned nodes 
are greyed out. The only break metric in this classification was 2-4 m cover, with 
a break point of 4.4%. Misclassification for the pruned tree can be calculated as 
the number of samples wrongly classified (17+64) / the total number of samples 
(410) = 19%. Because there are an equal number of treated and untreated 
samples, the null model misclassification rate is 205/410 = 50%. 

 
To account for spatial autocorrelation and the robustness of the classification tree, 30 m 

cells were sampled at densities of every cell (0 m apart) and 5, 10, 15, and 20-cell spacing (120, 
270, 420, and 570 m apart). Because only 11% of the sample area was treated, untreated cells 
were resampled for even representation of treated and untreated area.  

For each cell density, the classification tree algorithm was implemented in R (R Core 
Team 2014) using the rpart algorithm to build a model that best differentiated between treated 
and untreated cells using the LiDAR-derived response variables. Each tree was pruned to the 
fewest nodes with cross-validation error within 1 standard deviation of the lowest cross-
validated error. The goal of this analysis was to reveal the metric or set of metrics best able to 
differentiate between the treated and untreated landscape. 

To determine whether this metric (or set of metrics) corresponded with field 
observations of ladder hazard, I tested the predictive power of the metric(s) revealed by part 1 
against the only established method for quantifying ladder fuels (known to us), developed by 
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Menning and Stephens (Menning and Stephens 2007). I ran an analysis of covariance between 
ladder fuel class (using the high vs. low designations described above), the metric value, the 
field-calculated canopy cover, and an interaction term between the metric and canopy cover. 
The purpose of this test was two-fold: 1) explore the potential bias of cover to the LiDAR-
derived measure of ladder fuels based on the possibility of differential point penetration; and 2) 
evaluate the relationship between the LiDAR-derived metric and the plot-based measure of 
ladder fuels. The potential bias (1) would be disproved if there was no significant contribution 
of either canopy cover or the interaction between canopy cover and the LiDAR metric to the 
estimation of ladder fuels. The relationship between ladder fuel and the metric (2) would be 
revealed through the significance of the LiDAR metric in the model. If significant, this test would 
show that the LiDAR-derived metric could predict at least some aspect of ladder fuels. 

To visually confirm the results, I created 8 transect images of the LiDAR where it crossed 
a treatment boundary, paired with the orthophoto collected with the LiDAR, as well as the 
reported treatment boundary. Transects were 300 m long and 10 m wide. Transect locations 
were chosen where the treatment boundary appeared to agree well with the metric estimate 
and where the metric changed as it crossed from treated to untreated. This was typical of most, 
but not all treatments. Although this test is not a random sample, I was interested in 
investigating the LiDAR point distribution in the cases identified by the statistical analysis where 
the metric changed. While this test was qualitative, it provided an opportunity to visually assess 
the results. 
 
3. Results 

Classification tree results at all spatial scales pointed to a single, most important 
variable: the relative percent cover between 2 and 4 m, referred to subsequently as “2-4 m 
cover” (Table 6). A sample classification tree is shown in Figure 12 to illustrate tree structure, 
pruning, and misclassification rate calculations. The misclassification rate at all spatial scales 
was low for models built with just a single split (between 17 and 21% misclassification 
compared to the null model’s 50%), showing that model fit was good. The classification tree 
analysis of the full landscape was the only model that had more than one split. Additional splits 
further defined treated pixels as having slope <22o and cover (percentage of point heights 
above 3 meters) <70%, yet only and improved the misclassification rate by 2%, pointing to 2-4 
m cover as the primary metric of interest for the second stage of the analysis. Figure 13 shows 
the levels of 2-4 m cover across the landscape and confirms that a low break point between 3% 
and 8% (the range suggested by the break points in Table 6) was a good indicator of treatment. 
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Figure 13. Meadow Valley study area, showing areas with fuel reduction and 
those with no treatment after 1999. Green to red color scale indicates the 
relative percentage of 2-4 m cover across the analyzed treated (left) and 
untreated (right) landscape. 

 

 Sampling method 
(sample size) 

Break metric 
Break 
point 

% misclassification 

Every cell*    (43,542) % 2-4 m cover 6.3 20 

Every 5th cell  (1,718) % 2-4 m cover 6.1 20  

Every 10th cell   (410) % 2-4 m cover 4.4 19 

Every 15th cell   (216) % 2-4 m cover 7.5 17 

Every 20th cell     (96) % 2-4 m cover 3.4 21 

 
Table 6. Results from classification tree analyses at a range of spatial sampling 
scales, describing the break point metric, the break point value, and the 
misclassification rate for the pruned tree (compared to 50% misclassification in 
the null model). *Only one pruned classification tree (every cell) had more than 
one break. In this case, the full model had 3 breaks (in order, these breaks were 
2-4 m cover, slope in degrees, and percentage of point heights above 3 meters, 
with breakpoints at 6.3%, 22o, and 70%, respectively), with a misclassification 
rate of 18% (compared to 20% using only the first break). 

 
To ensure that canopy cover was not biasing the LiDAR results (by not allowing enough 

pulse penetration through the canopy to obtain a robust estimate), I tested whether high vs. 
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low ladder fuels (measured on the ground) were affected by plot-derived canopy cover, 2-4 m 
cover, or the interaction between the two using an analysis of covariance. I found that ladder 
fuels were not significantly influenced by either canopy cover or the interaction between 
canopy cover and 2-4 m cover, while they were significantly influenced by 2-4 m cover alone (p 
<0.05, n=73). The distribution of 2-4 m cover across high and low levels of ladder fuels is shown 
in Figure 14. This model used only 2-4 m cover as a predictor for plot-derived ladder fuel and 
the split occurred at 5.3%, squarely within the range suggested by the break points in Table 6. 

 

 

Figure 14. Box and whisker plot of the distribution of LiDAR-derived relative 
percentage of 2-4 m cover within plots having low and high ladder fuel 
abundance as derived from field plots using the methods of Menning and 
Stephens (Menning and Stephens 2007) (n=73). Distributions were significantly 
different (p<0.001). Median 2-4 m cover in high ladder fuel plots was 13.0%, 
while it was 4.0% in low ladder fuel plots. *Outliers are not shown to simplify 
viewing. 

In the analysis, I came upon a few areas that appeared uncharacteristic of the general 
trend (identified as treated, but whose 2-4 m cover was an outlier among the treated 
polygons). While this brings into question the validity of the treatment boundaries I used to 
analyze the data, the area of these anomalies was small compared to the overall study area. I 
communicated with the Plumas National Forest (USFS) office and obtained specific details on 
these areas to determine the exact treatment history (Thompkins 2013). All cases revealed that 
the unit in question was either: 1) untreated at the time of the LiDAR flight (i.e. the date of 
completion was misreported in the database), 2) contained a riparian or other sensitive area 
(which, by law, could not be treated, but was included as treated in the dataset), 3) appeared to 
have poorly mapped boundaries beyond the 30 m buffer I created to mitigate for these, or 4) 



 

34 
 

had variable treatment effects throughout treatment units (as was the case with some burned 
units). Inaccurate treatment boundaries are an issue land managers must deal with on a regular 
basis, but this research shows a potential alternative method for checking treatment 
boundaries against those reported, and could prove to be a valuable asset. 
 
4. Discussion 

Fuel treatments are critical to mitigating fire risk and target surface, ladder, and 
sometimes canopy fuels. Ladder fuels are not directly measured in the field, however, and the 
derived proxy of CBH is used in place of a better metric. CBH is an extremely influential metric 
for crown fire initiation models (Hall and Burke 2006), yet represents ladder fuels poorly (Scott 
and Reinhardt 2001). Furthermore, since CBH is derived allometrically using tree lists, it is 
generally associated with a high degree of spatial error (Jakubowski et al. 2013b). The 
dependence on such a tenuous variable makes output from fire models more uncertain than 
would be desired. This uncertainty has even driven the development of more unconventional 
measures of fire behavior that depend on more direct plot-derived data rather than CBH (e.g., 
P-torch as used in the Fire and Fuels Extension to the Forest Vegetation Simulator; (Rebain 2010 
(revised December 18, 2012))).  

Methods to directly quantify ladder fuels using a key in the field are rare (Menning and 
Stephens 2007; Prichard et al. 2013; Wright et al. 2007). Menning and Stephens’ approach was 
semi-qualitative, and classified ladder fuels into one of 5 types, which proved to be highly 
variable even within the 4 adjacent subplots (Menning and Stephens 2007). Subplot variability 
suggests that upscaling plot-based measures to the stand scale (as done to populate a 
landscape from plots for a 2-dimensional fire model) may be inaccurate and points to the 
necessity for a remote-sensing derived, landscape-scale ladder fuel metric that quantifies 
heterogeneity within stands. My work demonstrates the potential application of LiDAR for 
quantifying ladder fuels, which has already been used to describe forest structure beneath the 
canopy (Kane et al. 2010; Kane et al. 2013; Kane et al.). Despite my fairly successful findings, 
questions concerning appropriate measurement scale and ladder fuel variability and clumpiness 
still need to be addressed. 
 
4.1 Relationship between treatments, LiDAR, and ladder fuels 

On a 17,800 ha landscape, 11% of which had undergone fuel reduction that effectively 
reduced ladder fuels and slightly reduced canopy fuels (Table 4), 2-4 m cover proved to be the 
LiDAR-derived metric with the most explanatory power to differentiate between treated and 
untreated areas (Figure 13). The model accurately predicted fuel treatment presence vs. 
absence for 79 – 83% of the analyzed pixels across a range of sampling densities, with break 
points ranging between 3.4% and 7.5% (Table 6). While this model was not a perfect fit, my 
objective was not to build a model that could determine the location of fuel reduction 
treatments, but rather, to select candidate variables for further testing. When compared to an 
independent, field-designated assessment of ladder fuel, the distribution of 2-4 m cover was 
significantly different between plots with high and low quantities of ladder fuel (Figure 14). The 
break point identified by this analysis was 5.3%, which falls squarely within the range suggested 
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by my first test. Images supported the conclusion that the ladder fuels that could not be seen 
from the air or easily extrapolated from plot-based measures could be estimated from LiDAR. 
Inasmuch as CBH can be compared with the 2-4 m cover LiDAR metric, average pre-treatment 
CBH in treatment plot tree lists was 3.0 m (Table 4), which is within the 2 to 4 m range. This 
convergence suggests this metric may be indicating a vital height range to monitor when 
considering ladder fuels. Furthermore, studies in the Pinelands of New Jersey have suggested a 
very similar metric that correlates with shrub biomass that has been equated to ladder fuels 
(Clark et al. 2009; Skowronski et al. 2007).  

Figure 15 shows two of the transect images that I created to visually assess the 
relationship between 2-4 m cover and fuel treatment. These images are representative of those 
I created, and were chosen to depict a range of conditions. Both images show a distinct 
difference in 2-4 m cover across the treatment boundary. The top image shows an area with 
heavy cover (LiDAR-derived cover varied from 48 to 78% along the transect) as well as a portion 
of dense shrubs on the far right. There is a potential instance of LiDAR hits not penetrating the 
canopy just to the right of the treatment boundary, but overall, the point penetration is 
adequate. The bottom image shows an area with lighter cover (cover varied between 18 and 
61% along the transect); the treatment is hard to discern from the aerial image alone, but quite 
apparent from the LiDAR’s 2-4 m point density. 

 

 

Figure 15. Two pairs of transect images, each showing a 300 m by 10 m transect 
of LiDAR points across a treatment boundary, paired with the corresponding 
aerial image. The LiDAR has been transformed to show an even ground elevation 
and points 2-4 m from the ground are shown in black. The aerial image shows 
the transect outlined in red and the treatment boundary in white. Transects 
were chosen to present different levels of canopy density (cover varied between 
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48 and 78% in the upper image pair and 18 and 61% in the lower pair) and the 
visual ambiguity of treatments in the aerial image (treatment is apparent in the 
aerial image of the upper transect, but difficult to discern from the aerial image 
of the lower transect). 

 
This study is exploratory, however, and has a number of limitations. This research was 

done post hoc, leaving a greater chance for type I error (finding a relationship where one does 
not actually exist). The study utilized a single study area, necessitating further work to validate 
the findings beyond this area before they should be used operationally. I also utilized a non-
conventional, two-step process to reach my conclusions, potentially introducing additional 
sources of error. I used fuel reduction treatment as a proxy for ladder fuels in order to narrow 
down the pool of LiDAR metrics to those that likely related to ladder fuels. The pool of LiDAR 
metrics did not include strata below 2m in height due to increased noise in the dataset (Kane et 
al. 2013) and fuels below 2 m generally being classified as surface fuel characteristics, leaving 
out this measure of fuel hazard. The analysis used only one statistical model (classification 
trees), which converged on a single metric: 2-4 m cover. Comparison with measurements of the 
fuel treatments themselves revealed that these treatments were targeting fuels in the 2-4 m 
range, suggesting that the classification tree analysis may have been biased toward the 2-4 m 
range. This metric does not include any information about fuels outside of the 2-4 m range, or 
describe the relative clumping of fuels within that range. The final test compared the single 
LiDAR-derived metric (2-4 m cover) to a simplified categorical classification (with its own 
inherent biases) of ladder fuels.  

Nevertheless, this study suggests that ladder fuels can be at least partially accounted for 
by LiDAR, opening many avenues of further study. For instance, some studies have shown the 
utility of voxels (or “volume elements” rather than “picture elements” or pixels) (Popescu and 
Zhao 2008; Wang et al. 2008) for modeling LiDAR density and forest structure, including canopy 
base height (e.g. (Popescu and Zhao 2008)). This newer data representation might lend itself 
well to the characterization of 18D forest structure, and in particular, ladder fuels. Additionally, 
there has been recent work examining tradeoffs between LiDAR point density and forest metric 
accuracy (e.g. (Jakubowski et al. 2013c)), but no work to date on this and other scaling 
questions with respect to ladder fuels. Finally, better characterization of ladder fuels could add 
new information and a new analytical dimension to fire behavior and effects models, 
particularly those that deal with three-dimensional fire behavior (e.g. FIRETEC-HIGRAD; (Linn et 
al. 2002)), and should be investigated.  
 
4.2 Immediate Management Implications 

On landscapes similar to Meadow Valley, with similar treatment types and ages, LiDAR-
derived 2-4 m cover could be used by managers as an aid in confirming and updating reported 
treatment boundaries. The analysis revealed a number of areas where treatment boundaries 
appeared inaccurate. Managers must deal with such errors, large and small, on a regular basis, 
as well as consider the impact of potentially inaccurate treatment boundaries on modeled fire 



 

37 
 

behavior and fire suppression planning. A raster layer describing 2-4 m cover differentiated 
between treated and untreated areas (Figure 12) and could inform managers of areas needing a 
follow-up visit to re-evaluate treatment boundaries. 

My research also suggests the utility of the 2-4 m cover metric for landscape 
assessment. While it was not my goal to create an absolute metric for ladder fuels, 2-4 m cover 
could be used as a proxy for the relative abundance of ladder fuel across a landscape. Managers 
could use this to identify areas with high levels of ladder fuels and potentially target them for 
treatment, especially when affected by other high-hazard conditions. Because most treatments 
target ladder fuels more than canopy fuels, this metric could also be extremely useful for 
highlighting areas where treatments could make the greatest positive change to ladder fuel 
levels (i.e., if an area with heavy ladder fuels is targeted for treatment, that treatment will likely 
reduce fuels more effectively than an area with lighter ladder fuels and similar surface fuel and 
topographic characteristics). Similarly, managers could deprioritize areas with relatively lower 
levels of ladder fuels or implement treatments that target other fuel pools (e.g. prescribed fire 
to reduce surface fuels). Planning prescribed burns in areas with lower ladder fuel hazard would 
be advantageous due to potentially reduced risk of escape. 
 
4.3 Long-term Uses of this Research to Managers 

With further research, perhaps a more quantitative LiDAR-derived measure of ladder 
fuels could be developed. Compared to CBH, this measure would be more direct and would 
likely be more spatially accurate across landscapes and applicable across forest types. 
Furthermore, because this measure would be derived from LiDAR, it could be estimated across 
the whole landscape, instead of being limited to the plot and then scaled up. This would not 
only yield a superior product, but would maintain the spatial heterogeneity of fuels, a factor 
that researchers recognize as increasingly important to consider when modeling fire (Stephens 
et al. 2008). 

If such a metric for ladder fuels was incorporated into fire models to replace CBH, crown 
fire predictive models could be improved (Cruz and Alexander 2010). CBH is difficult to both 
measure and use, yet it has remained a vital component of fire models because no alternative 
measure exists. This research demonstrates the potential of a LiDAR-derived measure of ladder 
fuels that would be a more direct metric and could account for finer scale spatial heterogeneity 
across the landscape. 
 
5. Conclusion 

LiDAR has great potential to characterize aspects of forest structure important to 
understanding fire behavior. As wildfire danger grows, we should better utilize LiDAR datasets, 
collected for public lands across the US, in support of fire management. This study suggests a 
simple metric that can be used to quantify the presence of ladder fuels in forests across large 
areas and demonstrates several valuable immediate uses of this metric for land managers: 1) 
confirm and update boundaries of fuel treatments similar to those examined; 2) estimate 
relative ladder fuel abundance across the landscape and target high ladder areas for treatment. 
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LiDAR data provides an opportunity to augment traditional measures of forest structure 
currently used as inputs to fire behavior models by offering spatially explicit quantification of 
fire-relevant canopy metrics. Previous studies have focused on extracting inputs for fire models 
from LiDAR (such as deriving CBH and canopy bulk density) (Andersen et al. 2005; Erdody and 
Moskal 2010; Jakubowski et al. 2013b), but perhaps future research could focus on LiDAR 
metrics that specifically target ladder fuels and more direct measures of structure that can be 
validated quantitatively, without the use of allometric equations. Rather than using LiDAR to 
predict an allometrically derived fire modeling input, this study presents an alternate 
perspective: to use LiDAR to directly quantify ladder fuels. Such new applications of LiDAR could 
fundamentally alter the way we assess crown fire potential across landscapes and apply fuel 
treatments to mitigate that risk. 
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Chapter 4: Estimating ladder fuels: a new approach combining field 
photography with LiDAR 

 
Abstract 

Forests historically associated with frequent fire have changed dramatically due to fire 
suppression and past harvesting over the last century. The buildup of ladder fuels, which carry 
fire from the surface of the forest floor to tree crowns, is one of the critical changes, and it has 
contributed to uncharacteristically large and severe fires. The abundance of ladder fuels makes 
it difficult to return these forests to their natural fire regime or to meet management 
objectives. Despite the importance of ladder fuels, methods for quantifying them are limited 
and imprecise. LiDAR (Light Detection and Ranging), a form of active remote sensing, is able to 
estimate many aspects of forest structure across a landscape. This study investigates a new 
method for quantifying ladder fuel density in the field (using photographs with a calibration 
banner) and remotely (using LiDAR data). I apply these new techniques in the Klamath 
Mountains of Northern California to predict ladder fuel levels across the study area. My results 
demonstrate a new utility of LiDAR data to identify fire hazard and areas in need of fuels 
reduction. 
 
1. Introduction 

Remote sensing has been key to many areas of environmental science, and wildland fire 
is no exception (Arroyo et al. 2008; Dubayah and Drake 2000; Hyyppa et al. 2000; Lefsky et al. 
2002). Wildland fires consume homes, endanger lives, and consume a large number of taxpayer 
dollars every year (Husari et al. 2006b; US Forest Service 2015). During the past century, many 
forests in the Western United States have undergone unprecedented change in forest structure 
and fire behavior due to forest and fire management practices, including resource extraction 
and fire suppression (Hessburg et al. 2005). One dramatic change in Western forests that 
historically experienced frequent, low- to moderate-severity fire has been the infilling of ladder 
fuels that help facilitate the movement of fire from the surface of the ground to tree canopies 
(Hessburg et al. 2005; Skinner et al. 2006).  

The Landsat program has informed the study of wildland fire severity, and analysis of 
Landsat imagery has shown that recent fires have produced a disproportionately large amount 
of high severity fire (where over 90% of trees are killed) (Miller et al. 2009). These altered 
contemporary fire patterns are due to a number of factors, but considerable increases in 
surface and ladder fuels play an important role (Agee and Skinner 2005). Increases in ladder 
fuels in particular allow fire to readily transition into overstory tree crowns by providing greater 
vertical fuel continuity and preheating canopy fuels that have not yet ignited (Menning and 
Stephens 2007). Additionally, dense ladder fuels can make suppression more difficult and 
increase wildland firefighter exposure to hazardous conditions by inhibiting escape to safety 
zones when fire behavior shifts unexpectedly (Hirsch and Martell 1996). In addition to the 
biophysical influences of ladder fuels on fire behavior and fire management, they can also 
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reduce habitat quality through decreasing accessibility and foraging efficiency for wildlife and 
tribal subsistence gathering (Norgaard 2014). 

Despite the importance of ladder fuels to fire behavior, effects, and firefighter safety, 
they have not been directly quantified except in a few cases (Menning and Stephens 2007; 
Prichard et al. 2013; Wright et al. 2007), all of which are sampled on the ground, with no 
remote sensing component. Because ladder fuels are below the canopy, passive remote sensing 
platforms are not able to capture their composition, except in very thin-canopied forests. In 
most cases, a surrogate for ladder fuels is used, which is comprised of a combination of canopy 
base height (CBH) and fuel model (sometimes with an adjustment of fire behavior) (Scott and 
Reinhardt 2001). CBH is the height above which there is enough fuel per unit volume to carry 
the fire upward. The most common value for this threshold is 0.012 kg m−3 (Reinhardt et al. 
2006a), but other thresholds have been suggested and used (Fernandes 2009; Mitsopoulos and 
Dimitrakopoulos 2007; Ottmar et al. 1998; Sando and Wick 1972).  

In addition to a variable fuel threshold, estimations for CBH are commonly based on 
allometric equations, moving them further from a reliable direct measurement. Although active 
remote sensing platforms have been used to estimate CBH in a number of studies, the 
allometric derivation makes CBH an inherently difficult measure to estimate from remote 
sensing (Andersen et al. 2005; Erdody and Moskal 2010; Jakubowski et al. 2013b). The 
allometric equations upon which CBH is derived use a combination of the following inputs: 
species, dbh, tree height, crown length (or height to live crown base), and crown ratio or width 
(Brown 1978; Brown and Johnston 1976; Cruz et al. 2003; Sando and Wick 1972; Wilson and 
Baker 1998). While these allometric equations are likely appropriate for plantations with 
uniform conditions (Andersen et al. 2005; Dean et al. 2009; McAlpine and Hobbs 1994), they 
are unlikely to maintain accuracy in more natural stands because they often ignore small-
diameter trees and shrubs that are critical components of ladder fuels (Hall et al. 2005; Rebain 
2010 (revised December 18, 2012); Scott and Reinhardt 2001). This was also the case in Greece, 
where no satisfactory equation for CBH in Aleppo pine (Pinus halepensis Mill.) forests could be 
derived from basic stand measurements (Mitsopoulos and Dimitrakopoulos 2014).  
Alternatives to the standard methods to measure CBH include Wilson and Baker (1998), who 
estimated the CBH as the midpoint of minimum and average height to live crown base in 
multilayered stands ; and Cruz, Alexander, and Wakimoto (2004) characterized the vertical gap 
in fuels as an alternative to CBH, and called their new metric the fuel strata gap. Due to CBH’s 
arbitrary threshold and insensitivity to tree density, an alternate method was developed to 
estimate the torching index in the Fire and Fuels Extension of the Forest Vegetation Simulator 
(Rebain 2010 (revised December 18, 2012)). Despite these inaccuracies, most wildland fire 
behavior and effects models still rely heavily on CBH (Hall and Burke 2006). 

Menning and Stephens (2007) recognized the need for a more robust measure of ladder 
fuels, and developed a categorical system for identifying ladder fuels in forested systems as one 
of four classes. Kramer et al. (2014) relate the ground plot measurements from Menning and 
Stephens (2007) to aerial light detection and ranging (LiDAR), showing that LiDAR is able to 
differentiate between areas with dense and sparse ladder fuels. However, because the 
categorical, ground-based measures only span four structural distributions to describe every 
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configuration of ladder fuels, relationships could not be built to more specifically estimate 
these fuels.  

Aerial LiDAR is an active remote sensing technology that has been used to accurately 
estimate multiple aspects of forest structure, and presents an excellent data source from which 
to derive ladder fuel density (Coops et al. 2007a; García et al. 2011a; Kane et al. 2010; Kelly and 
Di Tommaso 2015; Lefsky et al. 2002). LiDAR has even been used to calculate metrics similar to 
ladder fuels, such as understory vegetation cover (Wing et al. 2012) and shrub biomass 
(Skowronski et al. 2007), although both of these studies necessitated intense sampling efforts, 
and neither captured the density and vertical continuity of ladder fuels as a whole. 

Here I develop a ground-based methodology that provides more precise, quantitative 
estimates than the categorical system derived by Menning and Stephens (2007) , yet does not 
require the extensive field data collection efforts required by others (Menning and Stephens 
2007; Skowronski et al. 2007; Wing et al. 2012). I then investigate whether LiDAR can predict 
this metric. Specifically, my main research questions for this project are: 1) Does the photo-
banner methodology adequately sample ladder fuel density within each plot? And 2) How 
robustly can aerial LiDAR predict these estimates of ladder fuel density across a range of 
conditions? 

 
2. Methods 

This study is part of the Western Klamath Restoration Partnership, and utilizes the pre-
established focal areas identified by that project. This partnership includes federal, state, local, 
community, and indigenous groups, as well as non-profits. The objective of the partnership is, 
in part, “to develop collaborative fire management practices,” which necessitates an 
assessment of fuel conditions across the landscape (Harling and Tripp 2014). 

 
2.1 Study area 
 The Klamath River Basin is located in Northern California, and includes diverse land 
ownership and management. The 2,622 ha (6,480 ac) study area is located between Orleans, CA 
and Happy Camp, CA, centered at 41.5o North, 123.5o West (Figure 16). While LiDAR was 
collected over a 14,323 ha (35,394 ac) area, four focal areas are utilized by the overarching 
project, limiting the study area to 2,622 ha. Topography is steep and complex, with elevation in 
the study area ranging between 160 and 520 m. Canopy cover ranged between 0 and 100%, but 
was often quite dense, averaging 90% across the study area (derived from the proportion of 
LiDAR first returns over 1.37 m). 
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Figure 16. Klamath River study area between Orleans and Happy Camp, CA. 
Within the 14,323 ha LiDAR footprint, four focal areas, totaling 2,622 ha (6,480 
ac), were chosen to sample the forest. 

 
 The Klamath has a Mediterranean climate: hot, dry summers, and cool, wet winters, 
although there is substantial variability across the region (Skinner et al. 2006; Taylor and 
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Skinner 1998). Normal daily maximum and minimum temperatures range between 11 and 35 
degrees C, and between 1 and 11 degrees C, respectively (Skinner et al. 2006). The majority of 
precipitation falls during the winter months, with an average of 143 cm every year (Skinner et 
al. 2006). The Klamath includes the highest diversity of conifer forests in North America (Cheng 
2004). The study area contains areas of forest, shrub, and meadow, with the dominant tree 
species being tanoak (Notholithocarpus densiflorus) and Douglas-fir (Psedotsuga menziesii). It is 
also common to find pacific madrone (Arbutus menziesii) and canyon live oak (Quercus 
chrysolepis). The study area also includes rarer abundance of golden chinquapin (Chrysolepis 
chrysophylla), California black oak (Quercus kelloggi), California bay (Umbellularia californica), 
pacific dogwood (Cornus nuttallii), big-leaf maple (Acer macrophyllum), ponderosa pine (Pinus 
ponderosa), red alder (Alnus rubra), and sugar pine (Pinus lambertiana). Many of these tree 
species, such as California bay and multiple species of oak, are important sources for tribal 
gatherers, both historically and in the present (Davis and Hendryx 2004). The diversity of oaks 
present in this system also provide important habitat for many species (Skinner et al. 2006). 

Fire has long been an important part of the Klamath, with many ignitions coming from 
lightning strikes (Skinner et al. 2006) as well as the indigenous people (Lake 2013). Before the 
1900s, fires were ignited and managed by indigenous tribes, ranchers, and foresters, 
maintaining a frequent, mixed severity fire regime (Lake 2013; Skinner et al. 2006; Whittaker 
1960). In 1911, fires were discouraged by the Weeks Act, and by the 1920s, fires were actively 
suppressed in accessible areas, with remote fires remaining unchecked until 1945, with the 
advent of enhanced firefighting equipment (Skinner et al. 2006). Since the implementation of 
fire suppression, fire frequency decreased dramatically, resulting in a sharp decrease in annual 
area burned (Miller et al. 2012; Skinner et al. 2006; Taylor and Skinner 1998). 

The change in fire frequency also led to a change in forest structure, with oaks becoming 
overtopped, and meadows getting encroached upon by conifers. This resulted in a decrease in 
forest complexity, with denser, more homogenous forests, and smaller forest openings (Skinner 
1995; Taylor and Skinner 1998). 
 
2.3 Field Data 

Field plots were established and measured during the summer of 2015. Plot locations 
were chosen based on a stratified random sample, which sorted stands in the four focal areas 
by 1) management history - heavily managed plantations versus less managed or natural, 
identified by the CalVeg database (USDA Forest Service - Pacific Southwest Region - Remote 
Sensing Lab 2010); 2) insolation - high versus low, with a cutoff of 1,175,000 watt-hours per 
square meter; and 3) stand size – small and large for managed stands with a quadratic mean 
diameter break at 25 cm; small, medium, and large for less managed stands, with breakpoints 
at 30 cm and 61 cm, respectively. This yielded 10 different strata combinations, or stand types. 
More common stand types were assigned more plots, but rare types still contained at least 
three plots. Plot locations were limited to areas with <45% slope, between 25 m and 200 m 
from the nearest road, at least 25 m from all stand boundaries (where forest type changes), and 
with at least 100 m between plots. These limits were established to ensure the safety of the 
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field crew and reduce travel time to plots to maximize plots collected. Sixty plots were 
established and measured during the 2015 field season. 

Plot centers were recorded with a Trimble Geo 7X with a Tempest antenna. One 
thousand points per plot were collected, followed by differential correction with a PDOP filter 
of 4. This resulted in plot center coordinates with an average horizontal precision of 87 cm. 
While the positional accuracies of the differential GPS and of the LiDAR data are high (sub-
meter), their additive error creates an inconsistent misalignment between the two datasets. 
Because the accuracy of the predictive models relies heavily on the ground data lining up with 
LiDAR, I tested and adjusted plot center coordinates using mapped tall tree crowns. The 
distance and azimuth from plot center were measured to at least five tall, dominant conifers 
whose crowns reached above the main canopy and therefore would be apparent in the LiDAR 
canopy height model (CHM). Many of these identification trees fall outside the plot boundary. 
The distances to trees were measured using a TruPulse 360 laser rangefinder with an average 
error of +/- 30 cm, thus the local accuracy of the stem map’s geometry far exceeds the accuracy 
of the GPS or the LiDAR measurements. The stem maps—plot centers and locations of non-
leaning trees—were incorporated into a GIS based on the plot centers’ GPS positions, and then 
compared to the CHM generated by the LiDAR point cloud. All tree characteristics recorded in 
the field, including a unique ID number, tree height, species, DBH, and lean, were added to the 
GIS to help with the CHM comparison. The CHM was generated at 25 cm pixel resolution to 
correct for possible GPS-LiDAR misalignment. 

In general, the tree positions in the CHM were close to the tree positions derived from 
the GPS; however, in a number of instances, the tree configuration apparent in the CHM was 
clearly different than the ground data. Plot locations were only shifted if an improved location 
fit was apparent. The combination of individual plot center and trees associated with that plot 
were moved manually and as a unit. Only x-y shift was applied (no stretching or warping) until 
the new fit between GPS trees and the CHM was optimal. I cross-checked the alignment of the 
shifted plot using tree heights as measured on the ground vs. the local maxima of the LiDAR-
derived CHM. Table A.3 shows the horizontal precision reported for each plot, as well as the 
distance of plot shift. Of the 60 plots, 45 were shifted an average of 3.3 m. The average shift 
distance for all plots, including those that were unshifted, was 2.5 m. Figure 17 shows an 
example case of plot shifting. In this example, some trees and part of the unshifted plot fall on 
the road, whereas trees in the shifted plot line up with the LiDAR-derived canopy height model. 
Each plot center was intentionally located at least 25 m from roads, proving that the plot center 
as measured by the GPS does not line up with the LiDAR data. Had the unshifted plot been 
used, model accuracy would have been reduced due to the inclusion of road in the LiDAR point 
cloud. 
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Figure 17. The original plot location and new, shifted plot location are shown 
with the locations of mapped tall trees in relation to plot center. Tree heights are 
shown with the shifted tree locations.  

 
Plots used a 16.93 m radius to produce a plot area of 900 m2

. While a suite of 
measurements was taken at each plot, the only measures used by this study were a set of 4 
photographs. A banner, measuring 4 m tall x 0.5 m wide with 1 m vertical gradations, was 
placed at plot center and a photograph was taken from plot edge at each cardinal direction 
towards the center with a T70h Android Quadcore Rugged Tablet. The photos were taken from 
eye-level, so camera height varied between 1.5 and 2 m. Figure 18A shows an example of one 
of these photos in an area with low ladder fuel density. 
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Figure 18. Examples of photos used to analyze ladder fuel density (18A and 18B) 
and their respective analysis boundaries (18C and 18D, respectively). Areas left 
out of analysis are faded out in 18C and 18D, whereas areas included in analysis 
are outlined in black. Figures 18A and 18B both show plots with low ladder fuels. 
18A’s banner is unobstructed, while the banner in 18B is partially obscured by 
tanoak leaves close to the camera lens, leading to only part of the banner being 
used for analysis, shown in 18D. 

 
Ladder fuel density in each 1 m vertical segment of each photo was separately analyzed 

by four different technicians. I utilized a standard ocular estimation technique for estimating 
canopy cover as a proxy for estimating ladder fuel density. Cover estimates were binned into 6 
classes between 0 and 100%, shown in Figure 19. One cover class was assigned to each 1 m 
vertical segment of banner that best approximated ladder fuel density as shown by the photo 
for that 1 m tall x 0.5 m wide section of banner.  
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Figure 19. Binned cover estimates, used to approximate ladder fuel density. A 
canopy cover image series was adapted from Forest Inventory and Analysis (FIA) 
protocol (Schomaker et al. 2007), and binned into 6 cover classes. The cover 
estimates for each image set is shown at the bottom, and the average cover in 
each bin is shown at the top of each class. This was also the diagram used to 
assist technicians in assigning cover estimates. 

 
 To maintain consistency between estimates, photo-analysis periods were limited to 45 
minutes. At the start of each session, technicians had to pass a cover estimation calibration test 
– scoring 5 correct estimates in a row. Correct classifications for analysts’ tests were 
determined by an accurate assignment of a sample cover image, (one of the 30 shown in Figure 
19), to a class designation (the 6 classes shown in Figure 19). To assist technicians with their 
estimates, they were provided with a printout of Figure 19, which served as a reference for 
their analysis. 
 To maintain a focus on ladder fuels and eliminate the complications of perspective (a 
leaf near the camera lens sometimes covered an entire 1 m section of the banner), a 10% rule 
was established, whereby, if the banner area covered by a single object was more than 10% of a 
1 m banner section, that area was removed from analysis. This addressed potential error 
introduced by tree boles in front of the banner, as well as leaves and smaller branches that 
were close to the camera lens and thus took up a larger than appropriate area on the banner. 
One example of this rule is demonstrated by Figure 18B (the raw photo) and 18D (with 
unanalyzed area greyed out), where the banner is partially obscured by tanoak leaves close to 
the camera lens and the 10% rule was used. In this case, all large tanoak leaves were eliminated 
from analysis (shown in Figure 18D) because each leaf obscured over 10% of a banner 1 m 
segment. Ultimately, 18A was analyzed as having 5% cover (the lowest class) in all height bins; 
18B was analyzed as having 20% cover from 0-1 m, 33% cover from 1-2 m, too little banner to 
determine cover from 2-3 m, and 27% cover from 3-4 m. 

Because 4 independent technicians estimated the percent cover in each 1 m section of 
each photo, estimates often were not in perfect agreement. In cases where estimates differed 
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by more than 2 consecutive bins (15% of samples), photos were re-assessed by a pair of 
technicians, who added a 5th measure to the set of estimates. Estimates for each 1 m segment 
of each photo were then averaged and used for further analysis. 
 
2.3 LiDAR Data and Processing 

Quantum Spatial collected aerial LiDAR between May 23 and May 26, 2015. A Leica 
ALS70 laser system mounted on a Cessna was used to collect LiDAR points utilizing a scan angle 
of ± 15° from nadir. A pulse rate of 172 kHz, with unlimited returns per pulse (though often no 
more than 5) was used, averaging 8 pulses per m 2. IPAS TC v.3.1, ALS Post Processing Software 
v.2.75, Waypoint Inertial Explorer v.8.5, Leica Cloudpro v.1.2.1, and the TerraSolid software 
suite v.14&v.15 were used to calculate point positions, classify points, and test spatial accuracy 
of the point cloud by Quantum Spatial (Quantum Spatial 2015). The vendor reported that 
average vertical and horizontal accuracy were 5.7 cm and 0.9 cm, respectively, based on the 
mean divergence of points from ground survey point coordinates (60 ground survey points 
were collected and compared to measured LiDAR ground points across the study area).  

LiDAR metrics were extracted for each 900 m2 plot using LasTools (Isenburg 2011). 
Metrics included basic point statistics (9 metrics), percentile heights (8 metrics), and relative 
percent cover values (40 metrics), yielding a total of 57 LiDAR-derived metrics (see Appendix 
Table A.4 for a detailed breakdown). Relative percent cover values were calculated for a range 
of 20 strata each for first returns and all returns. A visual representation of this suite of values is 
shown in Figure 20. Rasters of each LiDAR-derived metric were also generated at a spatial 
resolution of 30 m to be used to make predictions across the landscape. 
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Figure 20. Relative percent cover strata are represented by each bar. For 
example, the most familiar metric is the percent cover, highlighted in the figure 
above. This metric is calculated as the number of LiDAR hits over breast height 
(1.37 m – 50 m) divided by the total number of LiDAR hits. These 20 metrics 
represent only a portion of LiDAR-derived metrics calculated, in addition to basic 
point statistics and percentile heights. These strata percent cover values were 
calculated for both first and all LiDAR returns (representing 40 of the 57 metrics 
calculated). 

 
2.5 Statistical analysis 

The workflow through plot and LiDAR processing is summarized in Figure 21. Average 
ladder fuel density was calculated for each 1 m height band in each photo by averaging the 
estimates of the four photo-interpretation technicians. To determine whether plots were 
sufficiently sampled, the R software program (R Development Core Team 2008) was used to 
calculate the standard error of ladder fuel density among the four photos for a given plot, for 
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each 1 m height stratum. This was done for a random sample of 2, 3, and 4 photo samples to 
examine whether repeated sampling per plot decreased standard error and increased the 
reliability of this measure.  

 

 
Figure 21. My detailed workflow illustrates how I used plots and LiDAR to answer 
my key questions. 

 
For all subsequent analyses, the four estimates for each 1 m height band (one from each 

cardinal direction) were averaged to produce a single estimate of ladder cover for each 1 m 
height band in each plot. These data were used to examine the distribution of ladder fuels in 
each 1 m height band across the study area. Ladder fuel estimates between 1 and 4 m were 
then averaged for each plot to produce a dependent variable, upon which to build a regression 
model using LiDAR. Cover below 1 m was left out of this measure since fuels in this range are 
commonly defined as surface fuels. LiDAR is also less precise at differentiating ground points 
from low points within 1 m of the ground, and these points are often removed from analysis, 
though many different thresholds have been used (Hudak et al. 2006; Hudak et al. 2012; Kane 
et al. 2013; McGaughey 2012). 

Because LiDAR-derived independent variables were highly correlated, an iterative model 
building approach was taken. 1) The best regression models using one to four independent 
variables were chosen using the leaps package in R (Lumley and Miller 2009). 2) Each model 
was evaluated for variable collinearity (correlation >0.6 in either Pearson or Spearman 
correlations was used to indicate collinear variables) and variable significance (p<0.05). Only 
models where all independent variables were significant and none were collinear with one 
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another were kept. 3) The leaps package was used to find the best non-collinear independent 
variable to add to each model. 4) The process was repeated for all potential models until 
independent variables were no longer all significant. 5) The model with the best adjusted R-
squared value was chosen from these models. 6) This model was tested for heteroscedasticity 
(where the variability across the range of a regression is not consistent across the range of 
values) using the Breusch–Pagan test (Breusch and Pagan 1979). R-squared, root mean squared 
error (RMSE), and a 10-fold cross-validation error using the CVTools package in R (Alfons 2012) 
were calculated to evaluate the fit of the final model.  
 After a model was created, LiDAR-derived rasters of each independent variable used by 
the model were generated at 30 m resolution. This spatial resolution was chosen to match the 
plot size of 900 m2. A new 30 m raster of predicted ladder fuel density was then generated for 
the entire study area. 
 
3. Results 
3.1 Assessment of photo-banner 
 To determine whether each plot had been sufficiently sampled, I calculated the 
standard error between 2, 3, and 4 photo-estimates of ladder fuels at the same height within a 
single plot. Table 7 shows the distribution of these standard error measures of increasing 
sampling density across all plots for each height band. 

 

 
2 photos 3 photos 4 photos 

Height bin Average Maximum Average Maximum Average Maximum 

0 to 1 m 8.24 30.00 9.09 24.73 8.10 19.51 
1 to 2 m 8.84 41.25 7.95 23.75 7.72 19.46 

2 to 3 m 9.34 32.50 7.54 21.79 6.44 15.72 
3 to 4 m 9.94 37.50 7.67 22.42 6.79 15.54 

 

Table 7. Average standard error between measures of ladder fuel density within 
a given plot and height bin are shown. I report the average standard error for 2, 
3, and 4 photo samples for each 1 m band in each plot. 
 

 The variability of samples in the lowest height class (0-1 m) did not change much with 
increased sampling. With the lowest sampling density of only 2 photos per plot, standard error 
was highest for the highest height class, at 9.94. However, for all but the height class within 1 m 
of the ground, standard error decreased with every subsequent photo-sample added. Since I do 
not have more than four photos per plot, it is difficult to speculate where standard errors level 
off. However, based on the decrease in standard error of less than 1% from 3 to 4 photos in all 
height strata above 1 m, it appears that four photos may be sufficient. Average standard error 
for plots over 1 m, with 4 photo samples per plot, was only 6.98%. Considering that the 
estimates of ladder fuel density were derived from 6 classes (shown in Figure 19), with most 
classes representing a range of 20%, the low standard error was encouraging. These low values 
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suggest reasonable consistency between measurements, even between only 2 samples per 
plot.  
 Average ladder fuel density is summarized in Figure 22 for each height class, as well as a 
combination of height classes from 1 to 4 m. Average 1-4 m ladder fuel density was used in 
subsequent analyses to build a predictive model from LiDAR-derived metrics. The majority of 
plots had 1-4 m ladder fuel density between 21 and 45%, with a maximum value of 91%, and 
minimum value of 7%, showing a good representation of sparse ladder fuels, and a weak, 
though still present, representation of dense ladder fuels. 
 

 
Figure 22. A box-and-whisker plot that displays the distribution of ladder fuel 
density within each 1 m class across all plots is shown. I also include the average 
ladder fuel density between 1 and 4 m in each plot. 

 
3.2 Linking LiDAR to ground-based measures 
 Using the iterative model-building approach described, I built a multiple regression, 
shown in Equation 3, where independent variables included the percentage of all points 
between 1 and 8 m (COV1_8), the standard deviation of point heights above 2 meters (STD), 
and the percentage of first return points between 8 and 16 m (FCOV8_16). All model variables, 
as well as the model as a whole, were significant at p<0.05, with an R-squared value of 0.73, 
root mean squared error of 9.92, and 10-fold cross-validation error of 10.57. Figure 23 shows a 
scatterplot of the predicted versus measured values of ladder fuel density, using Equation 3. 
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Ladder fuels = 20.41 + 0.873*(COV1_8) - 1.73*(STD) - 0.189*(FCOV8_16)                     Eqn. 3 

 

 
Figure 23. Ladder fuel density derived from the LiDAR point cloud is compared to 
ground-based measurements. This model is significant at the p<0.05 level, with 
an R-squared value of 0.73, root mean squared error of roughly 10%, and 10-fold 
cross-validation error of roughly 11%. The ground-based measurements range 
between 7% and 91% ladder fuel density. 
 
Equation 3 was used to predict ladder fuel density across the entire study area, and is 

shown in Figure 24. Predicted ladder fuel density ranged from -8 to 99% across the four focal 
areas, with an average of 36.6% and standard deviation of 15.9%. Although some areas had 
predicted ladder fuel density under 0%, these only represented 0.12% of the total study area. 
While most areas have moderate to low densities of ladder fuels, a few areas have pockets with 
very high ladder fuel densities. The top 10% of ladder fuels in the study area encompassed 
predicted densities between 58% and 100%, and were concentrated in focal areas C and D. 
Table 8 displays the average ladder fuel density for each focal area, and the proportion of each 
focal area with exceptionally dense ladder fuels (in the top 10% of predicted values for the 
study area). Average ladder fuel density ranged between 31% and 40% across the 4 focal areas, 
but area D had, by far, the greatest proportion of dense ladder fuels, having over 4 times as 
much as area A where ladder fuel density was over the 90th percentile. Since area D has the 
highest human population density, it is especially critical to identify these pockets of dense 
ladder fuels for fire planning and mitigation. 
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Figure 24. Ladder fuel density, as predicted from the LiDAR point cloud using 
Equation 3, is displayed across the study area. 
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Focal Area 
Average ladder 
fuel density (%) 

% area above 90th percentile 
ladder fuel density 

A 31.53 3.89 

B 36.27 6.59 

C 36.61 10.23 

D 40.99 16.02 

 
Table 8. Average ladder fuel density in the four focal areas, as well as the 
proportion of each focal area with ladder fuel density in the top 10% (58 - 100% 
ladder fuel density) for the entire study area, are shown. 

 
4. Discussion  

I developed an improved ground-based method for quantifying ladder fuels using an 
ocular estimate of ladder fuel density. Not only is this method a more quantitative approach to 
ladder fuels measurement than the 5-class system developed by Menning et al. (2007), but it is 
also a promising method for change detection. Because my estimation relied on calibrated field 
photographs, my methods could be repeated in plots over time or after treatment or fire. The 
resulting series of photos taken in field plots could be utilized to record a quantitative change in 
ladder fuels, but could also serve as a visual indication of change, with a consistent and 
apparent measure of scale. In the study area ladder fuels were fairly consistent within most 
plots, with low standard error between estimates. However, to minimize standard error in all 
plots in the study area, my results suggested collecting at least 3 samples per plot to bring the 
average standard error in plots (for 1 m bands over 1 m) below 8% and bring the maximum 
standard error near 20% (the size of most of the ladder fuel bins). 

Using the relative ladder fuel density derived from this ground-based measure, I built a 
robust model that predicted this value from the LiDAR point cloud with reasonable precision. 
This landscape-scale prediction also identified areas where there are pockets of 
uncharacteristically dense ladder fuels. Although it is out of the scope of this study to further 
investigate these areas, they indicate locations where efforts to mitigate ladder fuel hazard 
could be prioritized. While this measurement is not a direct input for current fire models, I 
believe that it holds much potential for landscape monitoring, fuels management, cultural 
resource identification and protection, and the evaluation of wildland fire risk. This method is 
robust, quantitative, repeatable, fairly inexpensive (10 person-minutes in the field plus 16 in the 
office per plot (assuming 4 independent assessments per photo)), and is based on direct 
observation (i.e., does not rely on allometry). 
 
4.3 Immediate implications for managers 

Managers can use these methods for ground-based ladder fuels characterization to 
establish a baseline for ladder fuels across their management area and return to these plots to 
remeasure ladder fuels after change, similar to photographic monitoring used for evaluating 
fuels treatment and wildland fire effects (Vaillant et al. 2013). Although these photographic 
methods require some analysis in the office, they are efficient to implement in the field, and 
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provide a visual reference for each plot for further analysis or evaluation of change over time. 
Mechanical and/or prescribed fire fuel reduction treatments are planned throughout this study 
area, likely including several areas that overlap the plots. Plot remeasurement is planned post-
treatment to assist in evaluating treatment effectiveness. Not only is this a quantitative 
measure of change, but also a visual indication, since plot photos, with consistent scale, are 
byproducts of plot measurement. This will allow for robust quantification of change in ladder 
fuel density at the plot scale, and if LiDAR data collection is repeated, at the landscape scale as 
well. 

Knowledge of the locations of areas with especially dense ladder fuels (such as those 
with ladder fuel density in the 90th percentile for the study area) can be invaluable for 
prioritizing fuel reduction to facilitate community safety and fire preparedness. If areas of 
dense ladder fuels are near communities or evacuation routes (especially along routes that 
represent the only evacuation corridor for residents), these areas of dense ladder fuels could be 
targeted for fuel reduction or flagged as potentially hazardous for crown fire if a wildland fire 
were to occur in the area. Making these high-risk areas known to residents and fire managers 
could improve safety on large fires that threaten these communities in the wildland urban 
interface. Information about dense pockets of ladder fuels can also be useful to firefighters on 
the ground, for risk assessment of crown fire, ease of cutting fireline, and accessibility to and 
mobility through these areas, especially if they are to be traversed to get to a safety zone. My 
results directly inform land management, including treatment prioritization at the landscape 
scale within the Western Klamath Restoration Partnership Zones of Agreement (Harling and 
Tripp 2014). 

For wildlife that require understory structural complexity such as fishers, these data 
could also be valuable (Zielinski et al. 2010). From a cultural perspective, which is especially 
important in the communities surrounding the study area, these results will be used to mitigate 
potential impacts from fire near valuable cultural resources, both historic and present (Hummel 
and Lake 2015; Lake 2013). These resources could include archaeological, heritage, and tribal 
sacred sites, as well as legacy oaks that provide a traditional food source, but are also critical 
habitat elements (Anderson 2005; Long et al. 2015). Thinning and prescribed fire treatments to 
enhance these cultural resources that are at elevated risk of intense wildland fire will be 
facilitated by my predictive map of ladder fuel density across the landscape. Because areas with 
lower densities of surface and ladder fuels facilitate enhanced accessibility, these areas are 
preferred by traditional gatherers, as suggested by Hummel and Lake (Hummel and Lake 2015). 
My work to predict the density of ladder fuels could be used to identify especially open 
understories that may be valuable for identifying gathering locations for (non-timber) forest 
products and associated ecological services for the community, tribes and public (Barbour et al. 
2007; Burger et al. 2008). 

Beyond the immediate implications of this work, this photographic technique, as well as 
the relationship I built between ground measures and the LiDAR point cloud, represents a new 
method to quantify an important fuel source that has been so elusive to previous fire behavior 
models that an allometric proxy was implemented in the place of a quantitative measure based 
on fuels actually present. Although Kane et al. (2015) were not able to find a significant 
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relationship between standard forest structure metrics and fire severity, I encourage further 
investigation into whether this estimation of ladder fuel density has any predictive power over 
fire behavior and effects. It will be particularly useful to test whether these methods for 
estimating ladder fuels can be used to explain observed fire severity in areas where pre-fire 
LiDAR data are available. 

 
4.4 Study Limitations 
 While photo interpretation methods were robust, I did not show that the estimate 
relates to any specific measure on the ground, such as ladder fuel bulk density. Therefore, this 
model was only useful for predicting the relative amount of ladder fuels, and should not be 
used to predict specific quantities of fuel. Photo interpretation methods also contained 
numerous inherent sources of error, including 1) slope distorting the apparent height of ladder 
fuels, 2) objects in the foreground appearing disproportionately large, 3) using standard focal 
length settings, which could alter relative object sizes in the photo (Hoiem et al. 2008), and 4) 
photo interpreter error. I also noticed a moderate degree of inaccuracy, averaging 2.5 m (up to 
15 m for some plots), between the LiDAR and the ground-based measures of tree locations. 
While I attempted to mitigate this error by shifting plot center GPS coordinates based on the 
mapped height of tall trees in relation to plot center, there are likely still inaccuracies between 
the plot measured on the ground and the LiDAR point cloud extracted from each plot 
perimeter. Furthermore, only a single study area was used, introducing the potential for 
locational bias in my analysis. Because my study area was a single sample of the landscape, 
results from this study should not be applied to other areas without first collecting ground 
reference data, testing the relationship, and adjusting where necessary to ensure accurate 
model estimates.  

This research also emphasizes the need for better accuracy assessment of plot center 
coordinates for LiDAR-based studies. LiDAR vertical accuracy was reported to be 5.7 cm. 
Despite the use of a high-accuracy GPS with antenna, collecting at least 1,000 estimates per 
plot, using differential correction, and receiving an average horizontal precision of 87 cm, plot 
centers were still mis-aligned with the LiDAR data by an average of over 2.5 m, and up to at 
least 15 m. I urge those that work with LiDAR to assess how well recorded plot centers line up 
with the LiDAR point cloud and take measures to better match the plot to the LiDAR before 
undertaking further analyses. This is especially important when plots are located in 
heterogeneous landscapes or near roads, and when plot sizes are small (so a small shift in plot 
center equates to a dramatically different area of the LiDAR point cloud). While some LiDAR-
derived metrics are not as sensitive to shifts in plot center location (Kramer et al. in review), 
many likely are, and plot accuracy should be better accounted for in all cases. 
 
4.5 Future Research 

This research demonstrated the importance of matching plot data to the LiDAR point 
cloud. I urge others to pursue further research into the best practices of measuring and 
addressing error when working with the LiDAR point cloud. 
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I am eager to further explore the ability of LiDAR to predict ladder fuel density, and plan 
to work more extensively with land managers and community members in this area to discuss 
ways to best utilize the products from these analyses. I urge others to experiment with these 
methods, not only as a way to estimate ladder fuels, which are important to the field of 
wildland fire, but also as a monitoring method for plot vegetation and fuel loading, as well as 
for the enhancement of access to and the quality of cultural resources. 

I encourage others to test this metric against fire behavior to determine its influence on 
the likelihood of crown fire, and hope that fire behavior models will incorporate some version 
of this metric to further refine future wildland fire behavior and effects models. 
 
5. Conclusions 

Ladder fuels are an important piece of fire behavior and effects modeling. However, 
because they are difficult to quantify in the field, ladder fuels are indirectly measured through 
allometric equations that estimate canopy base height, leaving out the shrubs and small trees 
that are a large component of ladder fuels in many forests. This work presents a new ground-
based method for estimating ladder fuels and establishes a strong predictive link with aerial 
LiDAR. I was able to predict the ground-based estimates of ladder fuel density from aerial LiDAR 
with an R-squared value of 0.73. I also demonstrate that plot center accuracy must be 
independently tested, and urge LiDAR users to critically compare their plot locations to the 
LiDAR point cloud. 
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Chapter 5: Conclusion 
 
 LiDAR is an important technology that is being utilized at an increasing rate by land 
managers and fire modelers. Despite this growth, there is still untapped potential in the 
LiDAR point cloud. My research explores some of these facets, making LiDAR-derived 
products more accessible to managers and exploring LiDAR’s potential to estimate ladder 
fuels that contribute to extreme fire behavior and effects. 
 
The contribution of my research is to: 

1) Make LiDAR more accessible to managers by using creative metrics that do not rely 
on LiDAR processing beyond that completed by the vendor; 

2) Utilize LiDAR to derive new metrics that elucidate forest structure in ways not 
possible with other forms of remote sensing. 

 
 To increase LiDAR accessibility for managers, my second chapter examines the 
utility of the canopy height model for calculating large tree density that is critical for 
mapping wildlife habitat, especially for species like the California spotted owl. The canopy 
height model is far more accessible to managers because it is a raster layer derived from 
LiDAR that is often derived by the LiDAR vendor and delivered alongside the raw point 
cloud data. This eliminates the need for LiDAR processing software and expertise, and 
allows managers with only basic GIS resources to derive valuable metrics from LiDAR-
derived products. While resources such as the Remote Sensing Lab for the US Forest 
Service exist that can complete LiDAR processing requests, my methods eliminate this 
step entirely, and simplify the process for managers interested in estimating large tree 
density.  
 My third and fourth chapters dig into the LiDAR data to examine how well it is able 
to predict ladder fuels that carry fire from the surface of the ground into the canopy. 
These fuels are critical for fire behavior models, yet are not directly measured, either on 
the ground, or through remote sensing. Instead, allometric equations are utilized to 
estimate canopy base height as a surrogate for ladder fuel density, which, in turn, lead to 
a number of inaccuracies in fire behavior modeling. I investigate whether LiDAR can 
provide a more quantitative estimate that could augment fire models in the future.  

My third chapter investigates the potential utility for LiDAR to differentiate 
between areas with high and low densities of ladder fuel. After showing this to be the 
case, my fourth chapter develops a field based method for quantifying ladder fuel density, 
then successfully relates those estimates with LiDAR. This work shows that LiDAR can be 
used to estimate ladder fuel density, which could improve the accuracy of fire models 
used in the US and abroad.  

Not only are fire models important for studying fire itself, but they are also critical 
for planning fire prevention and suppression activities to protect life and property from 
wildland fire. My predictions of ladder fuel density will be utilized by managers to aid in 
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the planning of fuels reduction treatments around communities in the Klamath. In 
addition to aiding with wildland fire prevention and suppression, predictions of fire 
behavior and effects help facilitate managed wildfire and prescribed fires, allowing fires 
to reenter the forests where they are so critically needed, especially in the face of climate 
change. 

My dissertation demonstrates some of the untapped potential of LiDAR. I show 
that metrics such as ladder fuel density can be successfully estimated across the 
landscape. I also show that an alternate (and much less technical) method for calculating 
large tree density from the canopy height model was equally accurate as a model built 
from a suite of LiDAR-derived metrics that require LiDAR software and expertise to 
extract.  

Besides deriving the density of large trees and ladder fuels, I have also demonstrated 
the strengths and limitations of LiDAR data use for land managers, and suggested some novel 
methods for using historic datasets to make more plots available to managers, depending on 
the LiDAR product in which they are interested. My second chapter shows that older plots, 
which may not be ideal for traditional LiDAR-based derivations due to imprecise data or 
inaccurate plot center coordinates, can still be useful for other variable derivations, such as 
large tree density. By utilizing this data source, I show that more information is available to the 
land manager than what strictly meets LiDAR best-practices protocol. Conversely, my fourth 
chapter demonstrates that conventional methods for obtaining an accurate plot center may not 
be sufficient. I show that conventional methods do not always grant an exact match with the 
LiDAR point cloud, and can add a large degree of error to subsequent LiDAR analyses when 
plots are located near human-altered areas such as roads. I stress the importance of keeping 
these factors in mind when approaching a LiDAR analysis, and I encourage others to explore 
their plot data and think critically about what can be compared to available LiDAR data.  

Moving forward, additional studies will be required to test these methods on different 
study areas and forest types. Because of the variable quality of LiDAR available to land 
managers, investigation of the necessary point density to make accurate predictions is also 
essential. For my work with both large tree density and ladder fuels, I encourage scientists and 
land managers to incorporate these methods and findings into habitat models for the California 
spotted owl (Strix occidentalis occidentalis) and other rare species for which large trees, low 
cover, mobility through the forest, and other factors associated with my derived metrics are 
important. For my work with ladder fuels, I urge others to experiment with my methods, not 
only as a way to estimate ladder fuels, which are important to the field of wildland fire, but also 
as a monitoring method for plot vegetation and fuel loading, as well as for the enhancement of 
access to and the quality of cultural resources. I hope that estimates of ladder fuels will be 
compared in burned areas to assess whether this metric could aid in fire modeling, and if so, it 
is my hope that wildland fire behavior and effects models will incorporate some version of this 
metric. LiDAR is a powerful technology that holds much promise, and I encourage future LiDAR 
users to explore this remotely sensed product to its fullest potential!  
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Appendices 

Table A.1. details of each transformation applied to dependent and independent variables to 
normalize their distributions. 
 

Variable group Individual variable description Transformation 

Basic point 
statistics 

Maximum point height none 

Average point height above 2 m none 

Skewness of point heights above 2 m (variable)^1/2 

Standard deviation of point heights above 2 m none 

Variance of point heights above 2 m log(variable+1) 

Percentile Heights 

Height of 5th percentile of points above 2 m 1/variable 

Height of 10th percentile of points above 2 m log(variable+1) 

Height of 25th percentile of points above 2 m log(variable+1) 

Height of 50th percentile of points above 2 m (variable)^1/2 

Height of 75th percentile of points above 2 m none 

Height of 90th percentile of points above 2 m none 

Height of 95th percentile of points above 2 m none 

Height of 99th percentile of points above 2 m none 

 
Height Strata 

 
 
 
 
 
 
 

Returns 0.5 to 1.37 m / returns below 1.37 m log(variable+1) 

Returns 1.37 to 2 m / returns below 2 m (variable)^1/3 

Returns 2 to 4 m / returns below 4 m (variable)^1/2 

Returns 4 to 8 m / returns below 8 m none 

Returns 8 to 16 m / returns below 16 m none 

Returns 16 to 32 m / returns below 32 m none 

Returns 32 to 48 m / returns below 48 m (variable)^1/2 

Returns above 48 m / total returns (variable)^1/2 

Canopy Height 
Derived Cover 

Percent area where CHM > 26 m (variable)^1/2 

Percent area where CHM > 28 m (variable)^1/2 

Percent area where CHM > 30 m (variable)^1/2 

Percent area where CHM > 32 m (variable)^1/2 

Percent area where CHM > 34 m (variable)^1/2 

Percent area where CHM > 36 m (variable)^1/2 

Percent area where CHM > 38 m (variable)^1/2 
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Table A.2. Description of the 53 LiDAR-derived metrics used as explanatory variables for the 
classification tree analysis. All metrics were calculated on a 30 m raster grid using 
FUSION(McGaughey 2012). 

 

Metric group Individual metric description 

Basic point statistics Maximum point height 
Minimum point height above 2 meters 
Average point height above 2 meters 
Mode of point heights above 2 meters 
Coefficient of variation of point heights above 2 meters 
Interquartile distance of point heights above 2 meters 
Skewness of point heights above 2 meters 
Standard deviation of point heights above 2 meters 
Variance of point heights above 2 meters 
Kurtosis of point heights above 2 meters 
Average Absolute Deviation of point heights above 2 meters 

Return ratios Percentage of first return point heights above the mean point height  
Percentage of first return point heights above the mode of point 
height  
Percentage of first return point heights above 3 meters 
Number of returns greater than the mean point height / total 
number of first returns 
Number of returns greater than the mode of point height / total 
number of first returns 
Number of returns greater than 3 meters / total number of first 
returns 
Percentage of point heights above the mean point height  
Percentage of point heights above the mode of point height  
Percentage of point heights above 3 meters 

L-moment statistics 1st L-moment of point heights above 2 meters 
2nd L-moment of point heights above 2 meters 
3rd L-moment of point heights above 2 meters 
4th L-moment of point heights above 2 meters 
Coefficient of variation of L-moments of point heights above 2 
meters 
Kurtosis of L-moments of point heights above 2 meters 
Skewness of L-moments of point heights above 2 meters 

Percentile Heights Height of 1st percentile of points above 2 meters 
Height of 5th percentile of points above 2 meters 
Height of 10th percentile of points above 2 meters 
Height of 20th percentile of points above 2 meters 
Height of 25th percentile of points above 2 meters 
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Height of 30th percentile of points above 2 meters 
Height of 40th percentile of points above 2 meters 
Height of 50th percentile of points above 2 meters 
Height of 60th percentile of points above 2 meters 
Height of 70th percentile of points above 2 meters 
Height of 75th percentile of points above 2 meters 
Height of 80th percentile of points above 2 meters 
Height of 90th percentile of points above 2 meters 
Height of 95th percentile of points above 2 meters 
Height of 99th percentile of points above 2 meters 

Height strata Number of points between 2 and 4 meters / number of points below 
4 meters 
Number of points between 4 and 8 meters / number of points below 
8 meters 
Number of points between 8 and 16 meters / number of points 
below 16 meters 
Number of points between 16 and 32 meters / number of points 
below 32 meters 
Number of points between 32 and 48 meters / number of points 
below 48 meters 
Number of points above 48 meters / total number of points 

Topography Aspect 
Slope in degrees 
Plan curvature 
Profile curvature 
Solar radiation index 
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Table A.3. Reported plot center precision and distance of plot shift when stem-mapped trees 
were compared to the LiDAR-derived canopy height model are presented for each plot. 
 

Plot ID 
Horizontal 

precision (m) 
Distance 

shifted (m) 

D001 0.7 3.2 

D104 0.2 0 

D105 0.6 0.9 

D011 1.1 0 

D116 0.8 1.6 

D117 0.8 2.9 

D118 0.6 0 

D124 2.2 5.1 

D126 0.8 0 

D133 0.2 1.9 

D136 1.3 26.4 

D015 1 3.0 

D151 1 0 

D018 0.9 2.9 

D204 1 0 

D234 0.8 0 

D235 1.3 2.7 

D250 0.9 3.1 

D255 0.9 2.6 

D027 0.7 1.0 

D039 2.5 2.5 

D040 0.7 0.6 

D005 0.9 0 

B002 1.2 10.8 

B020 1 3.3 

B021 0.3 0 

B022 0.9 1.7 

B024 0.9 0 

B026 0.8 0.8 

B029 0.9 2.1 

B034 1.1 3.3 

B004 0.7 1.9 

B041 0.9 1.5 

B042 0.8 1.9 
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B045 0.9 3.2 

B046 0.7 6.6 

B049 0.8 0 

B050 0.9 2.8 

C033 0.8 0 

C110 0.8 0 

C114 0.8 2.8 

C131 0.7 3.1 

C132 1 1.3 

C139 1 1.9 

C036 0.8 1.2 

C120 0.7 2.0 

C130 1 1.7 

C137 0.2 2.9 

C152 0.7 1.4 

A010 0.6 0.8 

A017 0.9 4.0 

A207 0.7 2.4 

A216 0.8 3.0 

A023 0.6 5.8 

A236 0.6 1.6 

A238 1 8.2 

A043 1 2.8 

A047 1.1 0 

A007 0.9 2.8 

A009 0.9 0 
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Table A.4. Each LiDAR-derived variable is described 
 

Variable group Individual variable description 

Basic point statistics 

Maximum point height 

Average of point height above 2 meters 

Quadratic average of point height above 2 meters 

Skewness of point heights above 2 meters 

Standard deviation of point heights above 2 meters 

Kurtosis of point heights above 2 meters 

Cover by vertical strata  
calculated for first and all returns 

 
=                 # points in strata        _ 
           # points in & below strata 

Percentage of points between 1-2 m 

Percentage of points between 2-3 m 

Percentage of points between 3-4 m 

Percentage of points between 2-4 m 

Percentage of points between 1-4 m 

Percentage of points between 1-8 m 

Percentage of points between 2-8 m 

Percentage of points between 4-8 m 

Percentage of points between 2-16 m 

Percentage of points between 4-16 m 

Percentage of points between 8-16 m 

Percentage of points between 2-32 m 

Percentage of points between 4-32 m 

Percentage of points between 8-32 m 

Percentage of points between 16-32 m 

Percentage of points over breast height (1.37 m) 

Percentage of points over 2 m 

Percentage of points over 8 m 

Percentage of points over 16 m 

Percentage of points over 32 m 

Percentile Heights 

Height of 5th percentile of points above 2 meters 

Height of 10th percentile of points above 2 meters 

Height of 25th percentile of points above 2 meters 

Height of 50th percentile of points above 2 meters 

Height of 75th percentile of points above 2 meters 

Height of 90th percentile of points above 2 meters 

Height of 95th percentile of points above 2 meters 

Height of 99th percentile of points above 2 meters 
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