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ABSTRACT OF THE DISSERTATION

Estimation and Forecasting in Time Series Models

by

Ru Zhang

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, December 2013

Professor Aman Ullah, Co-Chairperson
Professor Tae-Hwy Lee, Co-Chairperson

This dissertation covers several topics in estimation and forecasting in time series models.

Chapter one is about estimation and feasible conditional forecasts properties from the pre-

dictive regressions, which extends previous results of OLS estimation bias in the predictive

regression model by considering predictive regressions with possible zero intercepts, and also

allowing the regressor to follow either a stationary AR(1) process or unit root process. The

main thrust of this chapter is to develop an analytical bias reduced estimator and study

the mean squared error (MSE) efficiency of the estimator. Then we investigate whether

this estimation bias can lead to biased feasible forecasts conditional on the available sample

observations, in addition to the expression of the mean squared forecast error (MSFE). The

results from this chapter shed lights on the bias reduction estimator of the predictive regres-

sions and its MSE properties in finite samples, as well as the optimal forecasts efficiency.

We apply our analytical results to both simulated and financial data with financial return

prediction using variables such as dividend yield and short rate. Results show that our bias
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reduction works well in estimation even when the data are skewed and having fat tails, and

moreover, the bias reduced estimator improves out-of-sample forecasts. All of the results

highlight the importance of the bias reduction in estimation and forecasting.

Chapter two explores finite sample bias of the estimators in the first order autore-

gressive moving average model under a general error distribution. Since the quasi maximum

likelihood estimator (QMLE) of parameters in the first order autoregressive moving average

model (ARMA(1, 1)) can be biased in finite samples, this chapter discusses bias properties

of the QMLE of the ARMA(1,1) model up to order O(T−1) by applying the stochastic

expansion and the formula and sheds light on the bias correction for the parameter estima-

tion in applied works. The analytical bias expression of the QMLE suggests that the bias

is robust to nonnormality and the simulation results show that the bias corrected QML

estimators is better even when sample size increased to a moderate size.

Chapter three (joint with Yong Bao) examines estimation bias and feasible con-

ditional forecasts from the first-order moving average model. We develop the second-order

analytical bias of the QMLE and investigate whether this estimation bias can lead to biased

feasible optimal forecasts conditional on the available sample observations. We find that

the feasible multiple-step-ahead forecasts are unbiased under any nonnormal distribution

and the one-step-ahead forecast is unbiased under symmetric distributions.

Chapter four (joint with Tae-Hwy Lee and Zhou Xi) discusses using extreme learn-

ing machines for out-of-sample prediction. In this chapter, we apply the artificial neural

network (ANN) model to out-of-sample prediction of financial return using a set of covari-

ates. The main challenge in ANN model estimation is the multicolinearity between the large
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numbers of randomly generated hidden layers. We explore several methods to deal with the

large dimension regressors, such as general inverse, ridge, pretest and principal components,

which are also named extreme learning machines (ELM). We find that although the ELM

methods sometimes fit perfectly for in-sample data, it has very poor out-of-sample forecast

ability. We then introduce some modifications to the ELM method, which is a two step

algorithm, where the first step uses ELM methods with some modifications to get a set of

forecasts, and the second step combines the forecasts using principal components weighting

scheme. Empirical results show that our method gives best forecast for annually aggregated

equity premium among all the alternatives.

Chapter five (joint with Tae-Hwy Lee) considers mallows model averaging in the

presence of multicollinearity. A challenge with large dimensional data in regression is the

collinearity among covariates. A common solution to this problem is to apply principal

component analysis (PCA). Yet one needs to select the number of principal components.

Many studies have focused on finding the optimal number of principal components assuming

the linear factor model is correctly specified. In this chapter, we do not assume that the

data generating process (DGP) is a linear factor model and thus there is no true number of

factors. Under this circumstance, we can combine several principal component regressions

with different numbers of principal components through the Mallows criteria. Under cer-

tain conditions, the model averaging estimator is minimax such that the estimation risk is

smaller. We show that the Mallow model averaging estimator can improve the estimation

efficiency.
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Chapter 1

Estimation and Feasible

Conditional Forecasts Properties

from the Predictive Regressions

Predictive regression is one of the basic models in financial econometrics. How-

ever, the OLS estimator of this model will be biased in finite samples, since the regression

disturbance is correlated with regressors innovations. There have been concerns in the fi-

nancial econometrics literature about the issue of bias in such models. This paper extends

previous results by considering predictive regressions with possible zero intercepts, and also

allowing the regressor to follow either a stationary AR(1) process or unit root process. The

main thrust of this paper is to develop an analytical bias reduced estimator and study the

mean squared error (MSE) efficiency of the estimator. Then we investigate whether this

estimation bias can lead to biased feasible forecasts conditional on the available sample
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observations, in addition to the expression of the mean squared forecast error (MSFE). The

results from this paper shed lights on the bias reduction estimator of the predictive regres-

sions and its MSE properties in finite samples, as well as the optimal forecasts efficiency.

We apply our analytical results to both simulated and financial data with financial return

prediction using variables such as dividend yield and short rate. Results show that our bias

reduction works well in estimation even when the data are skewed and having fat tails, and

moreover, the bias reduced estimator improves out-of-sample forecasts. All of the results

highlight the importance of the bias reduction in estimation and forecasting.

1.1 Introduction

Predictive regression is one of the basic models in financial econometrics. However,

the OLS estimator of this model will be biased in finite samples, since the regression distur-

bance is correlated with regressor’s innovations. There has been concerns in the financial

econometrics literature about the issue of estimation bias in such models, for instance, S-

tambaugh (1999) gives the OLS estimator bias for the single regressor case, Zhu (2013) gives

a method to reduce estimation bias through the jackknife estimator, Amihud and Hurvich

(2004) used an augmented regression through adding a proxy for the errors in the AR(1)

process to reduce the estimation bias. However, most of current studies assumes the regres-

sor follows a stationary first-order autoregressive (AR(1)) process and considering the bias

property of the coefficient of covariate. Such assumption put limitations in the application

of the results that in some cases, the regressor may not be stationary, but rather has unit

root, in that case, previous studies of bias reduction based on AR(1) process of the regressor

2



will not give appropriate bias correction. And moreover, we find that the bias properties

are quite different for predictive regressions model with zero and nonzero intercept, which

has not been studied before. In addition, most studies before consider the bias properties

for the estimator only, yet the mean squared error efficiency as well as forecast properties

are still unclear.

This paper allows the regressor to follow either a stationary AR(1) process or

unit root process, and with possible zero intercept in the regressions. The main thrust of

this paper is to develop an analytical bias reduced estimator and study the mean squared

error (MSE) efficiency of the estimator and feasible optimal forecasts. We find that the

estimation bias and MSE of the predictive regression model relates closely to the dynamics

of the regressor and the magnitude of bias is different depending on whether the regressor is

stationary or unit root, and whether the process has zero or nonzero intercept. As a result,

we will study the estimation properties for each model. We derive the analytical bias and

mean squared error of the OLS estimator for both nonzero and zero intercept models, where

the regressor is allowed to be either a stationary AR(1) or unit root process.

Though the ultimate goal of the predictive regression model is to make prediction

or forecasts of the dependent variable, most studies before focus on the marginal effect

estimation of the regressor, rather that the forecasts properties of the model. In this paper,

we will fill this gap by studying whether estimation bias would lead to feasible optimal

forecast bias of the model, as well as the expression of the mean squared forecast error,

when the regressor is stationary. Interestingly, we find that although the OLS estimator is

biased, the feasible multiple-step-ahead forecasts based on the OLS estimators are unbiased

3



under any non-normal error distribution.

The results from this paper shed lights on the bias reduction estimator of the

predictive regressions and the MSE properties of the estimator in small samples, for both

stationary AR(1) and unit root regressors, as well as the optimal forecasts efficiency for

stationary AR(1) regressor. From simulated data, results show that the bias corrected esti-

mator works better than the OLS estimator and the bias correction will improve estimation

even if the error terms are asymmetric and have fat tails. We then apply the results to

explain stock return and equity premium using factors such as dividend yield ratio, divi-

dend price ratio, corporate issuing activity as well as short term rates. The results show

that if we ignore the estimation bias, the effects of the factors on stock return as well as

equity premium will be underestimated. Moreover, feasible forecasts using the bias cor-

rected estimators performs better than the OLS estimators. All of the results highlight the

importance of the bias reduction in estimation and forecasting.

The following sections are arranged as follows: section two discusses the estimation

and forecasts properties of predictive regression model without intercept, where xt could be

stationary or unit root in estimation, and stationary in forecasting. Section three discusses

the estimation and forecasts properties of predictive regression model with intercept, where

xt could be stationary or unit root in estimation, and stationary in forecasting. Section

four applies the analytical formula to simulated data and section five applies the formula

to financial data. Section six concludes.

4



1.2 Estimation and Forecasts of No Intercept Model

1.2.1 Estimator Bias and MSE

Since the estimation as well as forecasts properties are different depending on

whether the regressor is an AR(1) or unit root process, as well as whether the model

incorporates intercept or not, this paper examines the two models separately: no intercept

in both equations and with intercept in both equations. And for each model, we consider

the estimation properties allowing the regressor to be either stationary or unit root, and for

forecasts properties, we assume the regressor to be stationary. This section consider simple

case first were both equations contain no intercept. Next section considers the case where

both equations contain a nonzero intercept.

The predictive regression without intercept can be written as a set of two equations:

yt = βxt−1 + ut (1.1)

xt = ρxt−1 + vt

where |ρ| < 1 when xt is stationary, and ρ = 1 when xt is unit root, and (ut, vt)
′ is joint

normally distributed, independent across t, with mean zero and variance covariance matrix

Σ, where

Σ = cov((ut, vt)
′(ut, vt)) =









σ2u σuv

σuv σ2v









.

Without loss of generality, we assume x0 = 0. Our primary concern in this paper for the

estimator properties part is to get the estimation bias as well as its mean squared error

(MSE) for β̂, the coefficient in the predictive regression model. Since with the analytical
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bias of the coefficient, we are able to make efficient bias reduction in estimation even when

the sample size is limited, and such reduced bias in estimation not only reveals the true

marginal effect of the regressor on the dependent variable we are interested in, it will also

improves the optimal feasible forecasts of the model.

The OLS estimator for β is given by β̂ = (X ′X)−1X ′Y , where X = (x0, ..., xT−1)
′,

Y = (y1, ..., yT )
′, T is the sample size. The OLS estimator for ρ is ρ̂ = (X ′X)−1X ′XT , where

XT = (x1, ..., xT )
′. And the estimation error for β̂ and ρ̂ can then be written as: β̂ − β =

(X ′X)−1X ′u, ρ̂− ρ = (X ′X)−1X ′v, where u = (u1, ..., uT )
′, v = (v1, ..., vT )

′. Decompose u

as u = σuv
σ2
v
v + ε, we can verify that E(ε|v) = 0 followed by the i.i.d. assumption, and this

implies E(ε|X) = 0. Then substitute the decomposition of u into the estimation error for

β̂, we have:

β̂ − β = (X ′X)−1X ′u = (X ′X)−1X ′(
σuv
σ2v

v + ε)

=
σuv
σ2v

(X ′X)−1X ′v + (X ′X)−1X ′ε

=
σuv
σ2v

(ρ̂− ρ) + (X ′X)−1X ′ε (1.2)

Take expectation on both sides, the bias of β̂ is then given by:

B(β̂) = E(β̂ − β) =
σuv
σ2v

E(ρ̂− ρ) =
σuv
σ2v

B(ρ̂) (1.3)

where B(ρ̂) is the estimation bias for the stationary AR(1) or unit root process in the second

equation of the predictive regressions without intercept, depending on whether |ρ| < 1 or

ρ = 1. So the estimation bias from the predictive regressions model is proportional to the

estimation bias from the regression of the regressor.

Many studies give the results of the estimation bias for the stationary AR(1)

6



model, such as Kendall (1954), White (1961), Sawa (1978), Tanaka (1984), Nicholls and

Pope (1988), Pope (1990), Kiviet and Phillips (1993), among others. Most of these studies

assumes error term is normally distributed or a martingale difference process. Bao and Ullah

(2007) generalize the result and gives the bias of the OLS estimator ρ̂ up to order O(T−1)

under a general distributed error term, where no distributional assumptions are made other

than the same set of moment conditions of vt made in this paper. Bao (2007a) extends the

bias formula up to O(T−2) for both AR(1) process with and without intercept under the

general distributed error term. Apply this result to equation 1.3, the OLS estimation bias

for β̂ in the predictive regression model without intercept up to order O(T−2) is then given

by:

B(β̂) = −σuv
σ2v

2ρ

T
+
σuv
σ2v

4ρ

T 2
+ o(T−2) (1.4)

given |ρ| < 1. Interestingly, if xt is a stationary AR(1) process, the magnitude of the bias

of the OLS estimator β̂ up to O(T−1) depends positively on the value of ρ, covariance of

u and v, and depends negatively on the variance of v. And whether the bias is upward

or downward depends negatively on the sign of covariance between u and v, for a positive

ρ. While for the estimation bias up to O(T−2), the direction between the the bias and ρ

is reversed compared to the bias of order O(T−1), that the bias is upward or downward

depends positively on the sign of covariance between u and v, for a positive ρ. So that if

the error terms ut and vt are positively correlated, a more persistent process xt will lead to

smaller bias of order O(T−1), yet larger bias of order O(T−2), for a stationary process xt.

When xt is a unit root process, that is, when ρ = 1, Abadir (1993, 1995) gives

the exact bias of ρ̂ under normally distributed error term vt through rewriting the bias as:
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E(ρ̂−ρ) =
√
2

T E( T√
2
(ρ̂−ρ)) =

√
2

T E(ρ̂∗). Then the paper gives the bias approximation using

results from Evans and Savin (1981), that E(ρ̂− ρ) ≃ −1.78143(ρ/T )e−2.6138/T . Substitute

to the bias of β̂ in 1.3, we have, when xt is a unit root process and (ut, vt) are joint normally

distributed, the estimation bias of β̂ of the predictive regression model is:

B(β̂) = −1.78143
σuv
σ2v

ρ

T
e−2.6138/T + o(T−1) (1.5)

Besides the estimation bias, another interesting property of the estimator in pre-

diction regressions is the estimator mean squared error. We will examine both conditional

MSE and unconditional MSE in the following, where the condition is upon the information

set IT , given observed X and up to time T . Notice that the conditional bias of β̂ given ob-

served X is always equal to zero, since B(β̂|X) = E((β̂ − β)|X) = E((X ′X)−1X ′u|X) = 0.

Then the conditional mean squared error for β̂ is equal to its conditional variance, given

observed X, substitute the decomposition of β in 1.2, we have:

M(β̂|X) = V (β̂|X) = V ((β̂ − β)|X) = V

[

(
σuv
σ2v

(ρ̂− ρ) + (X ′X)−1X ′ε)|X
]

= (X ′X)−1(
σ2uv
σ2v

+ σ2ε) = (X ′X)−1σ2u =
σ2u

∑T−1
t=0 x

2
t

(1.6)

since by the decomposition of u where u = σuv
σ2
v
v + ε, we can verify that σ2u = σ2

uv
σ2
v
+ σ2ε .

Then consider the unconditional MSE of β̂. From equation 1.2, the unconditional

variance of β̂ can be written as:

V (β̂) = V (β̂ − β) = V

[

σuv
σ2v

(ρ̂− ρ) + (X ′X)−1X ′ε

]

=
σ2uv
σ4v

V (ρ̂− ρ) + σ2εE(X ′X)−1
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Then combine V (β̂) and B(β̂), the MSE of β̂ is then given by:

M(β̂) = B(β̂)2 + V (β̂) =
σ2uv
σ4v

(E(ρ̂− ρ))2 +
σ2uv
σ4v

V (ρ̂− ρ) + σ2εE(X ′X)−1

=
σ2uv
σ4v

M(ρ̂) + σ2εE(X ′X)−1

where M(ρ̂) is the MSE from the stationary AR(1) or unit root process of xt without

intercept.

To get E(X ′X)−1, we can use the Nagar-type expansion (Nagar, 1959). First

consider the case when xt is stationary AR(1). Denote D = X ′X =
∑T−1

t=0 x
2
t , then

E(X ′X)−1 = E( 1
D ), and note that E(D) = O(T ), D−ED

ED = O(T−1/2), then we have

the following Nagar-type expansion of 1
D :

1

D
=

1

D + ED − ED
=

1

ED
(1 +

D − ED

ED
)−1

=
1

ED
(1− D −ED

ED
+

(D − ED)2

(ED)2
) + oP (T

−2)

= a−1 + a−3/2 + a−2 + oP (T
−2)

where a−1 = 1
ED , a−3/2 = −D−ED

(ED)2 , a−2 = (D−ED)2

(ED)3 . Notice that E(a−3/2) = 0, and

a−i = O(T−), for i = 1, 2, 3, then we have:

E(X ′X)−1 = E(a−1) + E(a−2) + o(T−2)

Then followed by some calculation, we can verify the following when xt is stationary AR(1):

E(a−1) =
1

ED
=

1− ρ2

Tσ2v

E(a−2) =
E(D − ED)2

(ED)3
=

2(1 − ρ2)

T 2σ2v

The proof is in the appendix. Then up to orderO(T−1), we have E(X ′X)−1 = 1−ρ2

Tσ2
v
+2(1−ρ2)

T 2σ2
v

.
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The MSE for the AR(1) process,M(ρ̂), has been discussed in some studies. White

(1961), Shenton and Johnson (1965), Phillips (1977) has results for normally distributed

error terms. Bao and Ullah (2007) gives method to calculate it under general distributed

error terms. Bao (2007a) gives the analytical formula of MSE for ρ̂ of AR(1) process both

with and without intercept, up to order O(T−2), under general distributed error terms.

Applying this result and combine with the expression of E(X ′X)−1, the MSE for β̂ form

the predictive regressions when xt is stationary is:

M(β̂) =
(1− ρ2)

T

σ2u
σ2v

+
1

T 2

[

σ2uv
σ4v

(14ρ2 − 1) + 2
σ2ε
σ2v

(1− ρ2)

]

+ o(T−2) (1.7)

provided |ρ| < 1. Notice that again, we apply the relation that σ2u = σ2
uv
σ2
v
+ σ2ε .

It’s interesting to notice that up to order O(T−1), M(β̂) =M(ρ̂)λ, where λ = σ2
u

σ2
v
.

That is, the MSE of β̂ in the predictive regressions is proportional to the MSE of ρ̂ in the

AR(1) process, where their ratio is equal to the ratio of the variance of error terms in the

two equations. This property is similar to the estimation bias, which is also proportional

to the estimation bias of the AR(1) model.

When xt is a unit root process, Abadir (1993, 1995) gives the exact variance of

ρ̂ through rewriting it as: E(ρ̂ − ρ)2 = 2
T 2E(ρ̂∗ − E(ρ̂∗))2. Then apply similar method

as for the bias of ρ̂ for the unit root model, the MSE of ρ̂ can be written as: M(ρ̂) ≃

1
T 2 (3.1735e

−5.2276/T + 10.1124e−5.4462/T+14.519/T 2
), assuming vt is normally distributed.

To get E(X ′X)−1 for the unit root process, note that if xt has unit root, E(D) =

O(T 2), D−ED
ED = O(T−1/2), so the Nagar-type expansion for D = X ′X in this case is written
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as:

1

D
=

1

ED
− D − ED

(ED)2
+

(D − ED)2

(ED)3
+ oP (T

−3)

= a−2 + a−5/2 + a−3 + oP (T
−3)

Following similar method as stationary case (see appendix), we can check that up to order

O(T−2), for unit root xt, we have E(X ′X)−1 = (ED)−1 = 2
T 2σ2

v
+ o(T−2). So when xt has

unit root, the MSE of β̂ from the predictive regressions has the form:

M(β̂) =
σ2uv
σ4v

(
1

T 2
(3.1735e−5.2276/T + 10.1124e−5.4462/T+14.519/T 2

)) +
2σ2ε
T 2σ2v

+ o(T−2) (1.8)

1.2.2 Forecasts Bias and MSFE

For the forecasts properties of the predictive regressions both with and without

intercept, we will focus on two of them in this study: the h-step-ahead feasible conditional

forecasts bias given information set up to time T , and the h-step-ahead feasible conditional

mean squared forecast error (MSFE), for all h ≥ 1. And when discussing the forecasts

properties, we will focus on the case when xt is a stationary AR(1) process, since the

analytical forecasts properties for the unit root process is limited in literature, especially

when the error terms is not necessarily normal.

We first consider the simple case of one-step-ahead forecast. Since from model

1.1 we have: yT+1 = βxT + uT+1, then the one-step-ahead conditional forecast of yt+1

given observations of xt up to time T is given by: ŷT+1|T = E(yT+1|IT ) = β̂xT , where

IT denotes the information set at time T . Then the one-step-ahead forecast error is the

difference between the true realization of future yt+1 and its conditional forecasts made at
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T : eT+1|T = yT+1 − ŷT+1|T = (β − β̂)xT + uT+1, and the forecast bias is the expectation

of the forecast error, denoted by E(eT+1|T ). Substitute the decomposition of β̂ in 1.2, the

one-step-ahead forecast bias can be rewritten as:

E(eT+1|T ) = E((β − β̂)xT ) = E

[

(σuv
σ2v

(ρ− ρ̂)− (X ′X)−1X ′ε
)

xT

]

=
σuv
σ2v

E
[

(ρ− ρ̂)xT
]

=
σuv
σ2v

E(eAR
T+1|T )

where E(eAR
T+1|T ) is the one-step-ahead forecast bias for the stationary AR(1) or unit root

process without intercept, depending the value of ρ. When |ρ| < 1, that is, when xt is

stationary, Bao (2007b) studied the h-step-ahead forecast bias as well as its mean squared

forecast error for AR(1) model without intercept for any h ≥ 1, where the h-step-ahead

forecast bias is equal to zero up to order O(T−1) for any h ≥ 1. Substitute this result to

the above forecast bias equation, we can conclude that the one-step-ahead forecast bias for

the predictive regressions without intercept is unbiased up to order O(T−1), that is,

E(eT+1|T ) = 0 + oP (
1

T
) (1.9)

In general, consider the h-step-ahead forecast for h > 1 when |ρ| < 1. Since yT+h =

βxT+h−1 + uT+h, the conditional forecast for yT+h at time T is equal to its conditional

mean: ŷT+h|T = β̂x̂T+h−1|T , where x̂T+h−1|T = E(xT+h−1|It) is the h − 1 step ahead

forecast for xt+h−1 from the AR(1) process at time T . Then the h-step-ahead forecast error

is given by eT+h|T = yT+h − ŷT+h|T = βxT+h−1 − β̂x̂T+h−1|T + uT+h. Since xT+h−1 can be

written recursively as xT+h−1 = ρh−1xT+
∑h−1

t=1 vT+tρ
h−t−1, so x̂T+h−1|T = E(xT+h−1|It) =

ρ̂h−1xT . Notice that the forecast error can be rewritten as: eT+h|T = (β − β̂)xT+h−1 +

β̂(xT+h−1 − x̂T+h−1) + uT+h.
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Then the forecast bias is given by taking the expectation of the forecast error:

E(eT+h|T ) = E(yT+h − ŷT+h|T ) = E[(β − β̂)xT+h−1] + E[β̂(xT+h−1 − x̂T+h−1)]

Substitute the decomposition of β̂ in 1.2 to the above two terms, we have:

E[(β − β̂)xT+h−1] = E

[

(σuv
σ2v

(ρ− ρ̂)− (X ′X)−1X ′ε
)

xT+h−1

]

= E

[

σuv
σ2v

(ρ− ρ̂)xT+h−1

]

E[β̂(xT+h−1 − x̂T+h−1)] = E

[

(

β +
σuv
σ2v

(ρ̂− ρ) + (X ′X)−1X ′ε
)

(xT+h−1 − x̂T+h−1)

]

= βE(xT+h−1 − x̂T+h−1) + E

[

σuv
σ2v

(ρ̂− ρ)xT+h−1

]

−E
[

σuv
σ2v

(ρ̂− ρ)x̂T+h−1

]

Notice that E(xT+h−1 − x̂T+h−1) is just the h − 1-step-ahead forecast bias for the AR(1)

process with no intercept, which is equal to zero by Bao (2007b) up to order O(T−1).

Moreover, since x̂T+h−1 = ρ̂h−1xT , so E[(ρ̂ − ρ)x̂T+h−1] = E[(ρ̂ − ρ)ρ̂h−1xT ] = E(ρ̂hxT )−

ρE(ρ̂h−1xT ). Collect all the terms, the h-step-ahead forecast bias can be simplified to:

E(eT+h|T ) = −σuv
σ2v

(E(ρ̂hxT )− ρE(ρ̂h−1xT ))

To get the expectation involving ρ̂h, we use similar method as in Bao (2007b), by

applying the Nagar-type stochastic expansion of ρ̂h as:

ρ̂h = ρh + a
(h)
−1/2 + a

(h)
−1 + a

(h)
−3/2 + oP (T

−3/2) (1.10)

where

a
(h)
−1/2 = hρh−1a−1/2

13



a
(h)
−1 = hρh−1a−1 +

h(h− 1)

2
ρh−2a2−1/2

a
(h)
−3/2 = hρh−1a−3/2 + h(h− 1)ρh−2a−1/2a−1 +

h(h − 1)(h − 2)

6
ρh−3a3−1/2

and ρ 6= 0, h > 0. Also a−1/2, a−1, a−3/2 are functions of the parameter ρ, and are of order

O(T−1/2), O(T−1) and O(T−3/2), respectively. The exact forms of a−1/2, a−1, a−3/2 are in

the appendix. Substitute the above expansion into E(ρ̂hxT ), we have:

E(ρ̂hxT ) = ρhxT + hρh−1E(a−1/2xT ) + hρh−1E(a−1xT ) +
h(h− 1)

2
ρh−2E(a2−1/2xT )

+oP (T
−1)

After some calculation applying expectations of quadratic forms, it can be verified that

E(a−1/2xT ), E(a−1xT ) and E(a2−1/2xT ) are all of order o(T−1), so E(ρ̂hxT ) = ρhxT up to

order O(T−1). Similarly, we also have E(ρ̂h−1xT ) = ρh−1xT up to order O(T−1). Substitute

the results to the forecast bias above, we find that the h-step-ahead forecast bias for the

predictive regressions is also unbiased up to order O(T−1) for h > 1.

So to sum up, for stationary AR(1) process of xt without intercept, the h-step-

ahead forecast from the predictive regressions is unbiased up to order O(T−1) for all h ≥ 1,

that is:

E(eT+h|T ) = 0 + oP (
1

T
) (1.11)

Besides forecast bias, another property of conditional feasible forecasts that worth

studying is the mean squared forecast error. We first examine the MSFE for the one-step-

ahead feasible forecast. Given the one-step-ahead forecast error eT+1|T = yT+1 − ŷT+1|T =

(β − β̂)xT + uT+1, the MSFE is just equal to the expectation of the squared forecast error,

14



denoted by E(e2T+1|T ). Substitute the decomposition of β̂ in 1.2, we have,

E(e2T+1|T ) = E((β − β̂)2x2T ) + σ2u = E(
(σuv
σ2v

(ρ− ρ̂)− (X ′X)−1X ′ε
)2
x2T ) + σ2u

=
σ2uv
σ4v

E(ρ− ρ̂)2x2T + E((X ′X)−1X ′ε)2x2T + σ2u

=
σ2uv
σ4v

(ρ2E(x2T )− 2ρE(ρ̂x2T ) + E(ρ̂2x2T )) + E((X ′X)−1X ′ε)2x2T + σ2u

then substitute the Nagar decomposition of ρ̂ and ρ̂2 as in 1.10 for h = 1, 2, we have, up to

O(T−1),

E(ρ̂x2T ) = E(ρ+ a−1/2 + a−1)x
2
T = E(ρx2T ) +E(a−1/2x

2
T ) + E(a−1x

2
T )

E(ρ̂2x2T ) = E(ρ2 + a
(2)
−1/2 + a

(2)
−1)x

2
T = E(ρ2 + 2ρa−1/2 + 2ρa−1 + a2−1/2)x

2
T

= ρ2E(x2T ) + 2ρE(a−1/2x
2
T ) + 2ρE(a−1x

2
T ) + E(a2−1/2x

2
T )

substitute back, the MSFE is then given by:

E(e2T+1|T ) =
σ2uv
σ4v

E(a2−1/2x
2
T ) + E((X ′X)−1X ′ε)2x2T + σ2u

We can verify that E(a2−1/2x
2
T ) =

σ2
v
T , applying the vector form for each term and use the

expectation of quadratic forms. To get E((X ′X)−1X ′ε)2x2T , we can apply the Nagar-type

expansion again, since E((X ′X)−1X ′ε)2x2T = σ2εE(
(ι′TX)2

X′X ) = E(ND ), where N = (ι′TX)2,

D = X ′X, and ιT is a T dimension vector with the last element equal to 1 and others zero.

Then we have:

N

D
=

N

ED
(1 + (D − ED)ED−1)−1 = a−1 + a−3/2 + oP (T

−3/2)

where a−1 = N
ED , a−3/2 = − N

ED
D−ED
ED . Applying similar method as before, we can verify

that up to order O(T−1), E((X ′X)−1X ′ε)2x2T = EN
ED = σ2

ε (1−ρ2)
Tσ2

v

σ2
v

1−ρ2
= σ2

ε
T . Substitute to
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the above equation, the one-step-ahead MSFE from the predictive regressions is given by:

E(e2T+1|T ) =
σ2uv
σ2vT

+
σ2ε
T

+ σ2u + o(T−1) = σ2u(1 +
1

T
) + o(T−1) (1.12)

It’s interesting to notice that, the one-step-ahead MSFE depends only upon the variance

of the error term in the first equation ut up to order O(T−1), for any distribution of xt, as

long as xt is stationary.

In general, consider the h-step-ahead conditional MSFE for h > 1, which can be

written as: E(e2T+h|T ) = β2Ex2T+h−1+σ
2
u+Eβ̂

2x̂2T+h−1|T−2βEβ̂xT+h−1x̂T+h−1. Substitute

the decomposition of β̂ in 1.2, we get:

E(e2T+h|T ) = β2(Ex2T+h−1 + Ex̂2T+h−1|T − 2ExT+h−1x̂T+h−1|T ) + σ2u

+
σ2uv
σ4v

E(ρ̂− ρ)2x̂2T+h−1|T + E((X ′X)−1X ′ε)2x̂2T+h−1|T

+2β
σuv
σ2v

E(ρ̂− ρ)(x̂2T+h−1|T − xT+h−1x̂T+h−1|T )

Then substitute the recursive form xT+h−1 = ρh−1xT +
∑h−1

t=1 vT+tρ
h−t−1, x̂T+h−1|T =

ρ̂h−1xT , after simplification, we have:

E(e2T+h|T ) = σ2u + β2σ2v
1− ρ2(h−1)

1− ρ2
+
σ2ε
T
ρ2(h−1) + 2(h − 1)ρ2h−3σ

2
ε(1− ρ2)

σ2vT
(Ea−1/2x

2
T

+Ea−1x
2
T ) + Ea2−1/2x

2
T

[

σ2uv
σ4v

ρ2(h−1) + 2β
σuv
σ2v

(h− 1)ρ2h−3

+
σ2ε(1− ρ2)

σ2vT
(h− 1)(2h − 3)ρ2(h−2) + β2(h− 1)2ρ2(h−2)

]

Since we have verified that Ea2−1/2x
2
T = σ2

v
T from h = 1, in addition, Ea−1/2x

2
T , Ea−1x

2
T are

also of order O(T−1), substitute to the above equation, we have the h-step-ahead MSFE

for the predictive regressions when h > 1 up to order O(T−1) as:

E(e2T+h|T ) = σ2u(1 +
ρ2(h−1)

T
) + β2σ2v

1− ρ2(h−1)

1− ρ2
+ β2(h− 1)2ρ2(h−2)σ

2
v

T
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+2β
σuv
T

(h− 1)ρ2h−3 + o(T−1) (1.13)

Notice that when h = 1, the above equation simplifies to the one-step-ahead MSFE in

equation 1.12, so the above formula gives the analytical MSFE for all h ≥ 1. Notice

that when h > 1, the MSFE in h-step-ahead forecast up to order O(T−1) depends on the

parameter of β, ρ, the forecast horizon h as well as the variance of the error terms in both

equations and their covariance. However, if we only approximate the MSFE up to order

1, the expression is simplified to E(e2T+h|T ) = σ2u + β2σ2v
1−ρ2(h−1)

1−ρ2 , where the covariance

between ut and vt does not play a role.

1.3 Estimation and Forecasts of Model With Intercept

1.3.1 Estimation Bias and MSE

Then consider a more general case where the predictive regressions have nonzero

intercept in both equations. We will first study the estimation properties for the stationary

AR(1) process of xt and then consider the case where xt is a unit root process. The predictive

regressions model with intercept has the form:

yt = α+ βxt−1 + ut

xt = θ + ρxt−1 + vt

where |ρ| < 1 or ρ = 1. Similarly, we assume (ut, vt)
′ joint normally distributed, independent

across t, with mean zero and variance-covariance matrix Σ, which has the same form as the

case without intercept. Denote b1 = (α, β)′, b2 = (θ, ρ)′, then the OLS estimator for b1 is

b̂1 = (X ′X)−1X ′Y , where X = [ι,XT−1], ι is a vector of ones, XT−1 = (x0, ..., xT−1)
′, Y =
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(y1, ..., yT )
′. And the OLS estimator for b2 is b̂2 = (X ′X)−1X ′XT , where XT = (x1, ..., xT )

′.

Then the estimation error for b̂1 and b̂2 can be written as: b̂1− b1 = (X ′X)−1X ′u, b̂2− b2 =

(X ′X)−1X ′v, where u = (u1, ..., uT )
′, v = (v1, ..., vT )

′. Use the same decomposition of u,

where u = σuv

σ2
v
v + ε, which also implies E(ε|X) = 0. Then the estimation error for b̂1 can

be rewritten as:

b̂1 − b1 = (X ′X)−1X ′u = (X ′X)−1X ′(
σuv
σ2v

v + ε)

=
σuv
σ2v

(X ′X)−1X ′v + (X ′X)−1X ′ε

=
σuv
σ2v

(b̂2 − b2) + (X ′X)−1X ′ε (1.14)

Take expectation on both sides, the estimation bias of b̂1 is then given by:

B(b̂1) = E(b̂1 − b1) =
σuv
σ2v

E(b̂2 − b2) =
σuv
σ2v

B(b̂2) (1.15)

where B(b̂2) is the estimation bias in the AR(1) or unit root process.

When xt is stationary, many studies give the form of the estimation bias of the

AR(1) process with intercept assuming the error term to be normally distributed and up

to order O(T−1). Bao and Ullah (2007) gives the bias of ρ̂ up to order O(T−1), for the

stationary AR(1) model with intercept under a general distributed error term and Bao

(2007) extend the bias formula up to order O(T−2). Applying this result to the above

expression, the estimation bias in the predictive regressions for β̂ up to order O(T−2) can

be written as:

B(β̂) = E(β̂ − β) =
σuv
σ2v

E(ρ̂− ρ)

= −σuv
σ2v

1 + 3ρ

T
+
σuv
σ2v

1

T 2

3ρ− 9ρ2 − 1

1− ρ
+ o(T−2) (1.16)
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provided |ρ| < 1. From the formula we can see that the bias of the coefficient estimation

depends on the parameter of ρ, as well as the variance of the error term in the second

equation vt, and the covariance between the two equations. And up to order O(T−1), given

positively correlated ut and vt, a more persistent series of xt will have larger estimation bias

for stationary series.

Notice that although in the predictive regression model, our primary parameter of

interest is the coefficient of the covariate, β. However, it’s not hard to get the estimation

properties of the intercept form the coefficient estimation bias of β̂ by the decomposition of

1.14, where we have

B(α̂) = E(α̂ − α) =
σuv
σ2v

E(θ̂ − θ) = −σuv
σ2v

θ

1− ρ
E(ρ̂− ρ) = − θ

1− ρ
B(β̂) (1.17)

the third equation holds since θ̂ and ρ̂ are both the OLS estimator of the AR(1) process.

On the other hand, if xt follows a unit root process with intercept, that is, xt =

θ + xt−1 + vt, Kiviet and Phillips (2005) gives the formula for the bias of ρ̂ up to O(T−3)

under the assumption that vt is normally distributed. As a more general case, Bao, Ullah,

Zhang (2013) generalize the results assuming a generally distributed error term, where the

formula of the bias of ρ̂ incorporates the skewness of the error term vt. Apply their results,

we have the estimation bias of β̂ when xt is a unit root process is given by:

B(β̂) = −6
σuv
T 2θ2

+ 18
σuv
T 3θ2

− 84

5

σuvσ
2
v

T 3θ4
+ o(T−3) (1.18)

Notice the estimation bias of β̂ when xt is unit root process depend on the parameter of

the intercept in the unit root process, θ, as well as the covariance of the two equations up

to order O(T−2), and the estimation bias up to order O(T−3) also depends on the variance
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of the unit root model.

To get the conditional MSE of the predictive regressions, observe that from the

OLS estimation, the conditional bias for b̂1 is zero, similar as the no intercept case, that is,

E(b̂1|X) = 0, then the conditional variance of b̂1 is:

V (b̂1|X) = V ((b̂1 − b1)|X) = V

[

(
σuv
σ2v

(b̂2 − b2) + (X ′X)−1X ′ε)|X
]

=
σ2uv
σ4v

V ((b̂2 − b2)|X) + (X ′X)−1σ2ε = (X ′X)−1(
σ2uv
σ2v

+ σ2ε) = (X ′X)−1σ2u

Then the conditional MSE of b̂1 is equal to the conditional variance, and for α̂ and β̂

respectively, the formula are given by:

M(α̂|X) = V (α̂|X) =
σ2u

∑T−1
t=1 x

2
t

(T − 1)
∑T−1

t=1 x
2
t − (

∑T−1
t=1 xt)

2

M(β̂|X) = V (β̂|X) =
σ2u(T − 1)

(T − 1)
∑T−1

t=1 x
2
t − (

∑T−1
t=1 xt)

2

On the other hand, the unconditional variance of b̂1 can be written as:

V (b̂1) = V (b̂1 − b1) = V

[

σuv
σ2v

(b̂2 − b2) + (X ′X)−1X ′ε

]

=
σ2uv
σ4v

V (b̂2 − b2) + σ2εE(X ′X)−1

And the unconditional MSE for b̂1 is then given by M(b̂1) = B(b̂1)
2 + V (b̂1), and the MSE

for β̂ is followed by:

M(β̂) = B(β̂)2 + V (β̂) =
σ2uv
σ4v

E(ρ̂− ρ)2 +
σ2uv
σ4v

V (ρ̂− ρ) + σ2ε(E(X ′X))−1
(2,2)

=
σ2uv
σ4v

M(ρ̂) + σ2ε(E(X ′X))−1
(2,2)

where M(ρ̂) is the parameter estimation MSE for the AR(1) or unit root process with

intercept.
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First consider the case when xt is stationary. To get E(X ′X)−1, we again use

the Nagar-type expansion similar with the no intercept case. Denote D = X ′X, then

E(X ′X)−1 = E(D−1), where E(D) = O(T ), (ED)−1(D − ED) = O(T−1/2), then we have

the following expansion for the stationary model with intercept:

D−1 = (D − ED + ED)−1 = (ED)−1(I + (ED)−1(D − ED))−1

= (ED)−1(I − (ED)−1(D − ED) + (ED)−1(D − ED)(D − ED)′(ED′)−1) + o(T−2)

= a−1 + a−3/2 + a−2 + o(T−2)

where a−1 = (ED)−1, a−3/2 = −(ED)−1(ED)−1(D − ED), a−2 = (ED)−1(ED)−1(D −

ED)(D − ED)′(ED′)−1, and notice E(a−3/2) = 0, so we have: E(X ′X)−1 = ED−1 =

E(a−1) + E(a−2) + o(T−2). To get the MSE of β̂, we only need the (2, 2)th element

of E(X ′X)−1, denoted by E(X ′X)−1
(2,2), that means, we only need to get E(a−1(2,2)) and

E(a−2(2,2)). And apply similar method as the no intercept case, we can verify that:

E(a−1(2,2)) = (E(X ′X))−1
(2,2) =

1− ρ2

Tσ2v

E(a−2(2,2)) =
2(1 − ρ2)

T 2σ2v
− 2ρθ2

(1− ρ)T 2σ2v

the detailed proof is in the appendix.

As noted before, several researches considered the MSE for parameter estimation

of the stationary AR(1) model, yet most under the assumption of normally distributed error

terms. Bao (2007a) gave the exact formula of MSE of ρ̂ up to order of O(T−2) under a

generally distributed error term. Apply this result, and combine with the expression for

(E(X ′X))−1
(2,2), the MSE for β̂ for the predictive regressions with intercept and stationary

21



AR(1) xt is given by:

M(β̂) =
1− ρ2

T

σ2u
σ2v

+
σ2uv
σ4v

1

T 2
(23ρ2 + 10ρ) +

σ2ε
T 2

[

2(1 − ρ2)

T 2σ2v
− 2ρθ2

(1− ρ)T 2σ2v

]

+ o(T−2)(1.19)

Note that up to order O(T−1), the MSE of β̂ for the intercept model is exactly the same as

the simple model without intercept in the previous part. Yet for MSE up to order O(T−2),

the intercept model is very different from the model without intercept.

When xt is a unit root process with intercept, first we can verify using similar

method as the stationary case that E(X ′X)−1 = 1
ED + o(T−3) = 12

θ2T 3 + o(T−3), where

D = X ′X. For the MSE of ρ̂, Kiviet and Phillips (2005) give the formula under normally

distributed error terms for unit root xt with intercept. As a more general case, Bao, Ullah

and Zhang (2013) extends the formula to generally distributed error terms. Apply their

results, we have the MSE for β̂ of unit root xt with intercept as:

M(β̂) =
12σ2u
θ2T 3

+ o(T 3) (1.20)

Notice that the MSE of β̂ with unit root xt depends on the parameter of intercept in the

unit root process, θ, the variance the first equation, that a larger intercept for the unit root

process as well as smaller variance of the dependent variable will lead to smaller MSE of

order O(T−3).

1.3.2 Forecasts Bias and MSFE

Consider the one-step-ahead forecast for the predictive regressions with intercept

when xt is stationary, since yT+1 = α+βxT +uT+1, then the one-step-ahead forecast of yt+1

given information set at time T can be written as: ŷT+1|T = E(yT+1|IT ) = α̂+ β̂xT , where
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IT denotes the information set at time T . The one-step-ahead forecast error is then equal

to eT+1|T = yT+1 − ŷT+1|T = (α− α̂) + (β − β̂)xT + uT+1. And the one-step-ahead forecast

bias is just the expectation of the forecast error, E(eT+1|T ). Substitute the decomposition

of β̂ by (1.14), we have:

E(eT+1|T ) = E(α − α̂) + E((β − β̂)xT )

= E(α − α̂) + E

[

(σuv
σ2v

(ρ− ρ̂)− (X ′X)−1X ′ε(2)
)

xT

]

=
σuv
σ2v

E(θ − θ̂) +
σuv
σ2v

E
[

(ρ− ρ̂)xT
]

=
σuv
σ2v

E(θ − θ̂ + (ρ− ρ̂)xT ) =
σuv
σ2v

E[eAR
T+1|T ]

where E(eAR
T+1|T ) denotes the one-step-ahead forecast bias for the AR(1) process of xt with

intercept.

For the forecast bias of stationary AR(1) model, Bao (2007b) studied for the

case where the model does not contain intercept, where the results shows that the feasible

forecast is unbiased up to order O(T−1) for any forecast horizon h. In the appendix, we

show that for the AR(1) process with intercept, similar results follow, that the h-step-ahead

feasible forecast is unbiased up to order O(T−1), for all h ≥ 1. In this part, we need the

one-step-ahead forecast bias, E(eAR
T+1|T ). Substitute to the above equation, we have, the

one-step-ahead forecast bias for the predictive regressions with intercept is unbiased up to

order O(T−1), that is:

E(eT+1|T ) = 0 + oP (
1

T
) (1.21)

In general, consider the h-step-ahead forecast for h > 1, since yT+h = α +

βxT+h−1 + uT+h, the forecast for yT+h at time T is equal to ŷT+h|T = α̂ + β̂x̂T+h−1|T ,
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where x̂T+h−1|T is the h − 1 step ahead forecast from the AR(1) model with intercep-

t. And the h-step-ahead forecast error for yT+h is equal to eT+h|T = yT+h − ŷT+h|T =

(α − α̂) + βxT+h−1 − β̂x̂T+h−1|T + uT+h. Notice that xT+h−1 can be written recursively

as xT+h−1 = ρh−1xT +
∑h−1

t=1 θρ
t−1 +

∑h−1
t=1 vT+tρ

h−t−1, so x̂T+h−1|T = E(xT+h−1|It) =

ρ̂h−1xT +
∑h−1

t=1 θ̂ρ̂
t−1. And the forecast error can also be written as: eT+h|T = (α − α̂) +

(β − β̂)xT+h−1 + β̂(xT+h−1 − x̂T+h−1) + uT+h.

So the h-step-ahead forecast bias is given by taking the expectation of the forecast

error:

E(eT+h|T ) = E(yT+h − ŷT+h|T ) = E(α− α̂) + E[(β − β̂)xT+h−1]

+E[β̂(xT+h−1 − x̂T+h−1)] (1.22)

Substitute the decomposition of β̂ in 1.14 to the second and third term, we have:

E[(β − β̂)xT+h−1] = E

[

(σuv
σ2v

(ρ− ρ̂)− (X ′X)−1X ′ε(2)
)

xT+h−1

]

= E

[

σuv
σ2v

(ρ− ρ̂)xT+h−1

]

E[β̂(xT+h−1 − x̂T+h−1)] = E

[

(

β +
σuv
σ2v

(ρ̂− ρ) + (X ′X)−1X ′ε(2)
)

(xT+h−1 − x̂T+h−1)

]

= βE(xT+h−1 − x̂T+h−1) +
σuv
σ2v

E

[

(ρ̂− ρ)xT+h−1

]

−σuv
σ2v

E

[

(ρ̂− ρ)x̂T+h−1

]

Notice that E(xT+h−1 − x̂T+h−1) is just the h − 1 step ahead forecast bias for the AR(1)

model with intercept, substitute in to 1.22, the h-step-ahead forecast bias for h > 1 is then

given by:

E(eT+h|T ) = E(α− α̂) + βE(xT+h−1 − x̂T+h−1)−
σuv
σ2v

E[(ρ̂− ρ)(ρ̂h−1xT + θ̂
h−1
∑

t=1

ρ̂t−1)]
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Then apply the expansion of ρ̂h similar as the no intercept case as in 1.10, except

the expression for a−i/2, i = 1, 2, 3 are different, see the appendix for the expression of the

model with intercept. Also, since we have shown that the h-step-ahead forecast bias for

AR(1) model with intercept is unbiased up to order O(T−1), for any h ≥ 1, then we have

up to order O(T−1):

E(eT+h|T ) = −σuv
σ2v

[E(θ̂ − θ) +

h−1
∑

t=1

θρt−1Ea−1 + (

h−2
∑

t=1

hθρt−1 − θ

1− ρ

h−1
∑

t=1

ρt−1)Ea2−1/2]

+o(T−1)

where a−1 and a2−1/2 are the terms in the Nagar expansion for the OLS estimator ρ̂ in the

AR(1) process with intercept, also see appendix. Check Ea−1 = θ
1−ρ and Ea2−1/2 = 1−ρ2

T ,

substitute to the above equation, we can see that the h-step-ahead forecast for the predictive

regressions with intercept for h > 1 is also unbiased up to order O(T−1). So we can conclude

that the h-step-ahead forecast is unbiased up to order O(T−1) for all forecast horizon h,

that is,

E(eT+h|T ) = 0 + oP (T
−1) (1.23)

for all h ≥ 1.

Then consider the MSFE for the predictive regressions with intercept and station-

ary AR(1) process of xt. Since the one-step-ahead forecast error for yT+1 is eT+1|T , the

one-step-ahead MSFE is then E(e2T+1|T ), where

E(e2T+1|T ) = E(α − α̂)2 + E((β − β̂)2x2T ) + 2E((α − α̂)(β − β̂)xT ) + σ2u

=
σ2uv
σ4v

E(θ − θ̂)2 + E(
(σuv
σ2v

(ρ− ρ̂)− (X ′X)−1X ′ε
)2
x2T ) + σ2u
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+2
σ2uv
σ4v

E(θ − θ̂)(ρ− ρ̂)xT

=
σ2uv
σ4v

[E(θ − θ̂)2 + E(ρ− ρ̂)2x2T + 2E(θ − θ̂)(ρ− ρ̂)xT ]

+E((X ′X)−1X ′ε)2x2T + σ2u

For the first part, substitute θ − θ̂ = − θ
1−ρ(ρ− ρ̂) and we have:

E(θ − θ̂)2 + E(ρ− ρ̂)2x2T + 2E(θ − θ̂)(ρ− ρ̂)xT

=
θ2

(1− ρ)2
E(ρ̂− ρ)2 + (ρ2E(x2T )− 2ρE(ρ̂x2T ) +E(ρ̂2x2T ))− 2

θ

1− ρ
E(ρ̂− ρ)2xT )

to calculate, substitute for the decomposition of ρ̂ and ρ̂2 as in 1.10 except that the terms

of a−i/2 are for the intercept model case, we have, up to O(T−1),

E(ρ̂x2T ) = E(ρ+ a−1/2 + a−1)x
2
T = E(ρx2T ) +E(a−1/2x

2
T ) + E(a−1x

2
T )

E(ρ̂2x2T ) = E(ρ2 + a
(2)
−1/2 + a

(2)
−1)x

2
T = E(ρ2 + 2ρa−1/2 + 2ρa−1 + a2−1/2)x

2
T

= ρ2E(x2T ) + 2ρE(a−1/2x
2
T ) + 2ρE(a−1x

2
T ) + E(a2−1/2x

2
T )

and similar formula holds for E(ρ̂xT ) and E(ρ̂2xT ), when substitute xT to x2T respectively.

Then we have,

E(θ − θ̂)2 + E(ρ− ρ̂)2x2T + 2E(θ − θ̂)(ρ− ρ̂)xT

=
θ2

(1− ρ)2
E(ρ̂− ρ)2 + Ea2−1/2x

2
T − 2

θ

1− ρ
Ea2−1/2xT

and we can verify that E(a2−1/2x
2
T ) =

σ2
v
T , Ea2−1/2xT = o(T−1).

To get E((X ′X)−1X ′ε)2x2T , we apply the Negar-type expansion again similar as

before, where E((X ′X)−1X ′ε)2x2T = σ2εE(
(ι′TX)2

X′X ) = E(ND ), and up to order O(T−1), we

have, E((X ′X)−1X ′ε)2x2T = σ2ε
EN
ED = σ2

ε
T (1 + (1+ρ)θ2

σ2
v(1−ρ)

).
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Substitute all the items, then the one-step-ahead MSFE of the predictive regres-

sions up to order T−1 is given by:

E(e2T+1|T ) = σ2u[1 +
1

T
+

θ2(1 + ρ)

Tσ2v(1− ρ)
] + o(T−1) (1.24)

We can see that this result is more general that it nests the case for the one-step-ahead

MSFE for the no intercept model where E(e2T+1|T ) = σ2u(1 +
1
T ) + o(T−1) by substituting

θ = 0 to the above formula. Moreover, a lager magnitude of the coefficient in the AR(1)

process will lead to a larger value of MSFE.

Then consider the h-step-ahead forecast MSFE for h > 1. For the predictive

regressions with intercept, the h-step MSFE can be written as: E(e2T+h|T ) = E(α − α̂)2 +

β2Ex2T+h−1 + σ2u + Eβ̂2x̂2T+h−1|T − 2βEβ̂xT+h−1x̂T+h−1 + 2βE(α − α̂)xT+h−1 − 2E(α −

α̂)β̂x̂T+h−1|T . Substitute the decomposition of β̂ in 1.14 and the relation E(θ − θ̂) =

− θ
1−ρE(ρ− ρ̂), we get:

E(e2T+h|T ) = β2(Ex2T+h−1 + Ex̂2T+h−1|T − 2ExT+h−1x̂T+h−1|T ) + σ2u

+E((X ′X)−1X ′ε)2x̂2T+h−1|T +
σ2uv
σ4v

E(ρ̂− ρ)2x̂2T+h−1|T +
σ2uv
σ4v

E(θ − θ̂)2

−2
σuv
σ2v

E(θ − θ̂)
(

β +
σuv
σ2v

(ρ̂− ρ) + (X ′X)−1X ′ε(2)
)

x̂T+h−1|T

+2β
σuv
σ2v

E(θ − θ̂)xT+h−1 + 2β
σuv
σ2v

E(ρ̂− ρ)(x̂2T+h−1|T − xT+h−1x̂T+h−1|T )

= β2E(xT+h−1 − x̂T+h−1|T )
2 + σ2u +

σ2uv
σ4v

E(ρ̂− ρ)2x̂2T+h−1|T

+2β
σuv
σ2v

E(ρ̂− ρ)(x̂2T+h−1|T − xT+h−1x̂T+h−1|T ) +
σ2uv
σ4v

θ2

(1− ρ)2
E(ρ̂− ρ)2

+2β
σuv
σ2v

θ

1− ρ
E(ρ̂− ρ)(xT+h−1 − x̂T+h−1|T ) + E((X ′X)−1X ′ε)2x̂2T+h−1|T

−2
σ2uv
σ4v

θ

1− ρ
E(ρ̂− ρ)2x̂T+h−1|T
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Then substitute xT+h−1 = ρh−1xT +
∑h−1

t=1 vT+tρ
h−t−1, x̂T+h−1|T = ρ̂h−1xT , after simplifi-

cation, we have:

E(e2T+h|T ) = σ2u + β2σ2v
1− ρ2(h−1)

1− ρ2
+ 2(h − 1)ρ2h−3σ

2
ε(1− ρ2)

σ2vT
(Ea−1/2x

2
T + Ea−1x

2
T )

+Ea2−1/2x
2
T

[

σ2uv
σ4v

ρ2(h−1) + 2β
σuv
σ2v

(h− 1)ρ2h−3 + β2(h− 1)2ρ2(h−2)

+
σ2ε(1− ρ2)

σ2vT
(h− 1)(2h − 3)ρ2(h−2)

]

+ σ2u
θ2(1 + ρ)

Tσ2v(1− ρ)
+
σ2ε
T
ρ2(h−1)

Similarly we can check Ea2−1/2x
2
T = σ2

v
T , and Ea−1/2x

2
T , Ea−1x

2
T are of order O(T−1),

substitute to the above equation, we have the h-step-ahead MSFE for predictive regressions

with intercept up to order O(T−1):

E(e2T+h|T ) = σ2u(1 +
ρ2(h−1)

T
+

θ2(1 + ρ)

Tσ2v(1− ρ)
) + β2σ2v

1− ρ2(h−1)

1− ρ2
+ β2(h− 1)2ρ2(h−2)σ

2
v

T

+2β
σuv
T

(h− 1)ρ2h−3 + o(T−1) (1.25)

Notice that this is the general formula of the MSFE for any forecast horizon and for model

with and without intercept. If h = 1, the above equation simplifies to the one-step-ahead

MSFE in equation 1.24 for the predictive regression model with intercept. And if we sub-

stitute θ = 0, then the formula simplifies to the MSFE for the model without intercept in

1.13.

1.4 Monte Carlo Simulation

To see how the above analytical results of the estimation bias and MSE, forecast

bias and MSFE works in estimation bias correction as well as for inference, in this part,

we use Monte Carlo simulated data to verify our results, for both the model with and
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without intercept and for both stationary AR(1) and unit root process of xt. Although we

assumed the error terms to follow a joint normal distribution, we would like to see how the

bias reduction works under nonnormally distributed error terms for the robustness of the

bias correction as well as the forecast properties, since in empirical studies, most financial

data are asymmetric as well as fat tailed. We allow the error terms (ut, vt) have a joint

distribution of bivariate normal, bivariate student-t, and bivariate log Normal, respectively.

And we will verify the above results applying different values of parameters. Table 1 through

9 reports some of the simulated results. To save space, we only report results for certain

parameter values: for stationary AR(1) case, ρ = 0.2, 0.5, 0.8, β = 0.3, 0.6, 0.9, correlation

coefficient between ut and vt is set to 0.5 for no intercept model, and in addition, α = 0.5,

θ = 0.4 for the stationary intercept model and α = 0.5, θ = 2 for the unit root model

with intercept. For the unit root case, we only report the model with intercept case for

simplicity. We have a small sample size of 30 and moderate sample size of 100. For the case

of T = 100, we only report the results when ρ = 0.5, the results for the other values of ρ

follows similarly. The simulation is over 10,000 repeated samples.

For the parameter estimation part, in each table, we first report the OLS estima-

tors, denoted by ρ̂, β̂,θ̂, α̂. And then we report the bias corrected estimators, denoted by ρ̃,

β̃, θ̃ , α̃, where the bias corrected estimators are calculated using the OLS estimator minus

the estimation bias given by the formula, for example, β̃ = β̂−B(β̂). And depending on the

bias formula we use, the bias correction can be up to order either O(T−1) or O(T−2). And

since the bias formula given before is a function of the model parameters, we can substitute

the real value of the parameters in simulated data, yet we can only substitute the estimated
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values in real data, so we also try the feasible bias corrected estimator here. The feasible bias

corrected estimators are denoted by ρ̈, β̈, θ̈, α̈, where the feasible bias corrected estimators

are calculated by substituting the OLS estimators to the bias correction formula, B(β̂), for

example. Since for the predictive regression model, the estimation of the coefficient of β is

our primary interest, we will have another improved bias corrected estimator for it, which is

calculated by substituting the feasible bias corrected estimator of ρ, ρ̈, to the bias formula

of β̂, since if the feasible bias corrected estimator of ρ works better than the OLS estimator

ρ̂, we should expect that the improved bias correction of β works better than the feasible

bias corrected estimator of β. We will denote the improved bias corrected estimator for β

as β̌. Similarly, depending on whether we substitute the true parameter value, the OLS

estimator, or the feasible bias corrected estimator, we have different results for the MSE of

β, denoted by M(β̃), M(β̈) and M(β̌) respectively. Also, we compute the simulated MSE

of the OLS estimator of β, denoted by M(β̂).

To check whether the forecast is unbiased for any forecast step, as well as how the

MSFE works, we check the 1-step, 2-step and 5-step forecasts. We cut the data into equal

size of in-sample and pseudo out-of sample observations, and use the rolling window method

to get the forecasts with the fixed window size equal to the in-sample size. For each case, we

report the forecast bias, the MSFE based on the data, denoted by MSFE(h = 1, 2, 5), the

MSFE calculated applying the formula above applying the true parameter value or its OLS

estimator, as well as the MSFE for the forecasts based on two simple models: martingale

difference model and historical mean model as a comparison, where for the martingale

difference model, the optimal forecast is always equal to zero for any forecast horizon.
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Table 1 through 3 reports the estimation and forecast results for model without

intercept, when sample size is equal to 30, for different values of ρ. Table 4 gives one case

for sample size equal to 100 when ρ = 0.5. Table 5 through 8 gives the corresponding

results for model with intercept, and table 9 shows the case for unit root model with

intercept when sample size is equal to 30. From panel a of tables 1 through 8, we can

see that given any values of ρ and for both models, with or without intercept, the bias

corrected estimators are always better than the OLS estimators in the way that after bias

correction, all the estimators are closer to their corresponding true values. Moreover, the

feasible bias corrected estimator as well as the improved bias corrected estimator performs

similar to the bias corrected estimator where true parameter values are used, indicating

that the parameter estimation uncertainty does not affect the efficiency of bias reduction.

In addition, even for distribution with fat tails such t-distribution or with both asymmetry

and fat tails such as log Normal distribution, bias correction can reduce estimation bias

most of the time, indicating that the bias reduction is robust to the distribution of error

terms. Compare the MSE calculated from formula with simulated value, we can see that

substituting the bias corrected estimator to the analytical formula will give a even better

approximation to the simulated MSE than using the true value of the estimator, and the

formula gives a good approximation even when sample size is small (T=30). Panel b of

table 1 though 8 gives the forecasts results for different parameter values corresponding to

each model. First we can observe that the forecast bias is small for all cases, verified the

results that forecasts for all horizons are unbiased. For the MSFE, we can conclude from

the tables that the values calculated using formula is close to the simulated value most of
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the time, indicating that the formula gives a good approximation. However, due to model

estimation uncertainty, sometime the predictive regressions model may not produce better

forecasts compared to simple models such as historical mean model or martingale difference

model in terms of having a lower MSFE, especially when the forecast horizon is longer.

When X is unit root process, we have similar results that the bias corrected es-

timator works better than the OLS estimator where the bias is significantly reduced after

correction. Notice that for the unit root model, the value of intercept for the unit root pro-

cess is set as θ = 2, since when the ratio of θ/σ2v is small, in particular, smaller than 1, the

OLS estimation will suffer from series bias problem when sample size is small, as noted in

Kivet and Phillips (2005), while when the ratio is larger, the problem will be unnoticeable.

For the forecasts from unit root process, we compare the MSFE using OLS estimators with

the MSFE assuming a known unit root (i.e. ρ = 1), where there is no parameter estimation

uncertainty in ρ. Since when h = 1, the forecasts is not a function of ρ, so we can only

compare the two for h = 2, 5. From the result, we can see that when there is no parameter

estimation uncertainty in ρ, the MSFE is reduced compared with the case where the OLS

estimation of ρ is substituted. Notice that when X is a unit root process, historical mean

model and martingale difference model no long work, since forecasts based on these two

models ignores the trend and thus will have large bias.

1.5 Predictive Regressions of Financial Return

We apply the previous analytical estimation and forecasts properties of the pre-

dictive regressions to modeling financial return in this part. In particular, we will apply
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the estimation bias formula to do bias correction on the parameter estimation as well as

applying the bias reduced estimator in the feasible conditional forecasts. We will consider

the effects of several factors such as dividend price ratio, dividend yield ratio, net equity

expansion and T-bill rate on stock return as well as equity premium, using the data in Goyal

and Welch (2008). In addition to their original monthly data, we calculate the annualized

monthly stock return as in Campbell and Thompson (2008).

Denote Pt as the S&P500 index at month t. The monthly simple one-month return

from month t to month t+1 is defined as Rt(1) ≡ Pt+1/Pt−1, and equity premium is defined

as Qt(1) ≡ Rt(1)− rft with rft being the risk-free interest rate. Following Campbell, Lo and

MacKinlay (1997, p. 10), we define the aggregated k-period return from month t to month

t+ k as

Rt(k) ≡
Pt+k

Pt
− 1

=

(

Pt+k

Pt+k−1

)

× · · · ×
(

Pt+1

Pt

)

− 1

= (1 +Rt+k−1(1)) × · · · × (1 +Rt(1))− 1 (1.26)

and following Campbell and Thompson (2008) we define the aggregated k-period equity

premium as

Qt(k) ≡ (1 +Rt+k−1(1)− rft+k−1)× · · · × (1 +Rt(1)− rft )− 1

= (Qt+k−1(1) + 1)× · · · × (Qt(1) + 1)− 1

=

[

k
∏

j=1
(Qt+k−j(1) + 1)

]

− 1. (1.27)

To model financial return using certain factors we are interested in, we let yt = Rt(k) or

Qt(k), and consider k = 1, 3, 12 denoting the monthly data, quarterly aggregated monthly

33



data, and the annually aggregated monthly data respectively. We consider four factors sepa-

rately for our predictive regressions to examine their effects on financial returns respectively:

dividend price ratio (d/p), dividend yield (d/y), net equity expansion (ntis) and treasure

bill rates (tbl), where the ntis is a variable reflects the issuing activities of corporations. For

a detailed definition and calculation of each of the predictors as well as the return, please

refer to Goyal and Welch (2008).

We consider the data from January 1952 to December 1989 in particular, since as

noted in Zhu (2013), the interest rate is hard to interpret before the 1951 Treasury Accord

and there was significant structural break around the 1990s. We divide the data equally into

R in-sample observations and P pseudo out-of-sample observations to evaluate predictability

with bias correction. The models are estimated using rolling windows of the fixed size R.

For annualized or quarterly aggregated monthly data, to avoid using future information,

we only use data up to month t − 11 or t− 2 for estimation. For forecast comparison, we

compare the forecasts from the predictive regression model with two simple models: the

historical mean forecast and the martingale difference forecast where the optimal forecasts

for yt is zero at all forecast horizon.

Table 10 reports the results for estimation and forecasts from data. Since the

predictability of the covariates on the month or even quarterly aggregated return does not

vary much between models, we only report the case for k = 12 here. Panel a of table

10 summarizes the 95 % confidence interval of the OLS estimation of the parameters in

the predictive regressions using different regressors for both annualized stock return and

equity premium. According to the table, it is obvious that when using d/p or d/y, for both
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equity premium and stock return, the predictive regressions has stationary AR(1) process

for xt and nonzero intercept for both equations. However, when using ntis or tbl, the

estimation of ρ for both two stock return and equity premium is very close to one, though

the confidence interval itself does not contain 1. Also notice that for both of these two

variables, the estimated intercepts are close to zero as well for the AR(1) process. Since

based on current results, the bias correction result for unit root process of xt with zero

intercept is approximated under a different frame work in Abadir (1993, 1995) through

calculations under normality assumptions rather than expansions. And moreover, for unit

root model with intercept, when the true intercept is small relative to variance of the error

term, the bias correction maynot work well, according to Kiviet and Phillips (2005) and our

simulation results. And based on the data observations, the error terms of the covariates is

far away from normal distribution since both the skewness and excess kurtosis is significantly

not zero. Based on these facts, we apply the bias correction formula for stationary AR(1)

process of xt of model with intercept when x is ntis or tbl as well.

Panel b of table 10 reports the parameter estimation and bias correction results

as well as the corresponding MSFE of the feasible conditional forecasts. We report the

OLS estimator for the four parameters in the predictive regressions as well as the feasible

bias corrected estimator using the bias correction formula up to order O(T−2) for stationary

model with intercept in section three. The notations are similar as the simulation part. From

the results, we can see that after bias correction, the effects of all the four variables, d/p,

d/y, ntis and tbl, increased in absolute value compared to the OLS estimator, indicating that

the OLS estimation underestimates the effects of these variables on both stock return and
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equity premium. And after bias correction, we will expect a larger effect of each variable

on the return. To see how the bias correction to the coefficients works in forecasting,

we will compare the MSFE of the 1, 2, and 5 step feasible conditional forecasts using

OLS estimators and the bias corrected estimators. In table 10 panel b, MSFE (h=1,2,5)

denotes the corresponding mean squared forecast error using OLS estimators, and MSFE-C

(h=1,2,5) denotes the one using the bias corrected estimators. We multiply the numbers by

100 in order to compare more decimal numbers for the result. Results show that for d/p,

d/y, and ntis, for almost all the forecast horizon, applying bias corrected estimators gives

lower MSFE compared with using OLS estimators, while for tbl, the OLS estimators gives

lower MSFE. In the table we also report the MSFE according the formula, which is smaller

than the realized value from data, since the formula only approximates up to order O(T−2).

In the bottom part, we also give the MSFE from the two simple models, historical mean and

martingale difference. Results show that for equity premium, martingale difference gives

the best forecasts compared to other models, and for stock returns, historical mean gives

the best forecasts. This result is consistent to most empirical studies for financial return

that, the stock return and equity premium is hard to predict using covariates, especially

applying linear models.

1.6 Conclusion

This paper focuses on the analytical result of the estimation and forecasting prop-

erties of the predictive regressions, which has been used widely in modeling financial return.

We allow the regressor to follow either a stationary AR(1) process or unit root process, as
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well as zero or nonzero intercept in both equations. The main thrust of this paper is

to develop an analytical bias reduced estimator and study its mean squared error (MSE)

efficiency as well as properties of feasible optimal forecasts.

The results from this paper shed lights on the bias reduction estimator of the

predictive regressions in small samples, for both stationary AR(1) and unit root regressors,

as well as the optimal forecasts efficiency for stationary AR(1) regressor. We applied our

analytical results to both simulation and empirical applications. Simulation results show

that the bias correction can effectively reduce estimation bias and the MSE and MSFE

formula gives good approximation. Moreover, by allowing the error terms to have different

distributions, including asymmetric as well as fat tailed, results show that the bias reduction

process works well under distributions other than normal as well. We model stock return

and equity premium using four factors such as dividend yield ratio, dividend price ratio,

corporate issuing activity as well as short term rates. The results show that if we ignore the

estimation bias, the effects of all the factors on stock return as well as equity premium will be

underestimated. Such results not only give inaccurate conclusion of the magnitude to which

those factors affect return, moreover, the optimal forecasts using biased OLS estimators will

be inefficient as well. On the other hand, feasible forecasts using the bias reduced estimators

applying correction performs better than applying the OLS estimators directly. All of the

above results highlight the importance of the bias reduction in estimation and forecasting.
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Table 1.1: No Intercept Model, T=30, ρ = 0.2

(a) Estimator Bias and MSE

ρ=0.2 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

ρ̂ 0.1877 0.1881 0.2120 0.1874 0.1886 0.2119 0.1872 0.1876 0.2111
ρ̃, O(T−1) 0.2010 0.2014 0.2253 0.2008 0.2019 0.2252 0.2005 0.2009 0.2244
ρ̈, O(T−1) 0.2002 0.2006 0.2261 0.1999 0.2012 0.2260 0.1996 0.2001 0.2251
ρ̃, O(T−2) 0.2001 0.1978 0.2244 0.1999 0.1984 0.2243 0.1996 0.1973 0.2235
ρ̈, O(T−2) 0.1989 0.1974 0.2074 0.1987 0.1979 0.2072 0.1984 0.1968 0.2064

β̂ 0.2942 0.2949 0.3023 0.5931 0.5941 0.6013 0.8929 0.8932 0.9010

β̃, O(T−1) 0.3009 0.3016 0.3089 0.5998 0.6008 0.6079 0.8995 0.8998 0.9077

β̈, O(T−1) 0.3004 0.3012 0.3093 0.5993 0.6004 0.6082 0.8991 0.8994 0.9080
β̌, O(T−1) 0.3009 0.3016 0.3098 0.5997 0.6008 0.6087 0.8995 0.8999 0.9085

β̃, O(T−2) 0.3004 0.2998 0.3085 0.5993 0.5990 0.6075 0.8991 0.8981 0.9073

β̈, O(T−2) 0.2998 0.2996 0.3015 0.5987 0.5988 0.6004 0.8985 0.8978 0.9002
β̌, O(T−2) 0.3002 0.3000 0.3017 0.5991 0.5991 0.6007 0.8989 0.8982 0.9005

M(β̂), 0.0351 0.0353 0.0522 0.0348 0.0350 0.0508 0.0350 0.0350 0.0522

M(β̃), O(T−1) 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320

M(β̈), O(T−1) 0.0327 0.0340 0.0523 0.0327 0.0341 0.0520 0.0327 0.0340 0.0522
M(β̌), O(T−1) 0.0324 0.0337 0.0516 0.0324 0.0338 0.0513 0.0324 0.0337 0.0515

M(β̃), O(T−2) 0.0334 0.0399 0.0389 0.0334 0.0399 0.0389 0.0334 0.0399 0.0390

M(β̈), O(T−2) 0.0342 0.0358 0.0567 0.0342 0.0358 0.0564 0.0342 0.0357 0.0567
M(β̌), O(T−2) 0.0339 0.0354 0.0559 0.0339 0.0355 0.0556 0.0339 0.0354 0.0559

(b) Forecast Bias and MSFE

ρ=0.2 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

E(eT+1|T ) 0.0001 0.0014 0.0201 0.0008 -0.0008 0.0200 -0.0001 -0.0009 0.0209
E(eT+2|T ) 0.0002 0.0005 -0.0063 -0.0006 -0.0010 0.0086 -0.0004 -0.0012 0.0309
E(eT+5|T ) 0.0004 0.0001 -2.9353 -0.0002 -0.0047 -5.2951 -0.0011 -0.0018 -1.5595
MSFE(h = 1) 1.0686 1.7591 4.6902 1.0717 1.7612 4.6648 1.0715 1.7568 4.6671
MSFE(h = 2) 1.1004 1.8090 4.8773 1.3951 2.2921 6.2905 1.8739 3.0836 8.5972
MSFE(h = 5) 1.1937 1.9550 5.5204 1.5080 2.4697 7.1095 2.0197 3.3145 9.7292
E(e2

T+1|T
) 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667

E(e2
T+2|T

) 1.1027 1.1027 1.1027 1.3947 1.3947 1.3947 1.8787 1.8787 1.8787

E(e2
T+5|T

) 1.0938 1.0938 1.0938 1.3750 1.3750 1.3750 1.8438 1.8438 1.8438

E(ẽ2
T+1|T

) 1.0000 1.6689 4.6622 1.0020 1.6673 4.6338 1.0013 1.6700 4.6532

E(ẽ2
T+2|T

) 1.0949 1.8271 5.0998 1.3705 2.2778 6.3694 1.8193 3.0401 8.5497

E(ẽ2
T+5|T

) 1.0998 1.8380 5.7892 1.3910 2.3125 7.4048 1.8639 3.1134 9.6352

MSFE-HM(h = 1) 1.1617 1.9399 5.4570 1.4636 2.4321 6.8202 1.9582 3.2670 9.1908
MSFE-HM(h = 2) 1.1050 1.8438 5.1651 1.4129 2.3488 6.5399 1.9032 3.1790 8.8722
MSFE-HM(h = 5) 0.8724 1.4546 4.0670 1.1189 1.8591 5.1599 1.5110 2.5254 7.0268
MSFE-MD(h = 1) 1.0910 1.8216 5.1241 1.3766 2.2888 6.4092 1.8445 3.0743 8.6451
MSFE-MD(h = 2) 1.0179 1.6983 4.7783 1.2848 2.1369 5.9818 1.7204 2.8690 8.0673
MSFE-MD(h = 5) 0.7995 1.3334 3.7495 1.0098 1.6773 4.6877 1.3524 2.2563 6.3411
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Table 1.2: No Intercept Model, T=30, ρ = 0.5

(a) Estimator Bias and MSE

ρ=0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

ρ̂ 0.4691 0.4695 0.4963 0.4683 0.4722 0.4969 0.4693 0.4707 0.4956
ρ̃, O(T−1) 0.5025 0.5028 0.5296 0.5016 0.5055 0.5303 0.5026 0.5040 0.5289
ρ̈, O(T−1) 0.5004 0.5008 0.5294 0.4995 0.5037 0.5301 0.5006 0.5021 0.5286
ρ̃, O(T−2) 0.5002 0.4940 0.5274 0.4994 0.4966 0.5280 0.5004 0.4951 0.5267
ρ̈, O(T−2) 0.4978 0.4948 0.4988 0.4969 0.4976 0.4993 0.4980 0.4960 0.4980

β̂ 0.2832 0.2847 0.2944 0.5841 0.5855 0.5946 0.8846 0.8853 0.8944

β̃, O(T−1) 0.2999 0.3013 0.3111 0.6008 0.6021 0.6112 0.9013 0.9020 0.9110

β̈, O(T−1) 0.2988 0.3003 0.3104 0.5998 0.6012 0.6105 0.9003 0.9010 0.9103
β̌, O(T−1) 0.2999 0.3013 0.3114 0.6008 0.6022 0.6116 0.9013 0.9020 0.9114

β̃, O(T−2) 0.2988 0.2969 0.3100 0.5997 0.5977 0.6101 0.9002 0.8975 0.9099

β̈, O(T−2) 0.2976 0.2973 0.2977 0.5985 0.5981 0.5978 0.8990 0.8980 0.8976
β̌, O(T−2) 0.2985 0.2982 0.2981 0.5994 0.5990 0.5982 0.9000 0.8989 0.8980

M(β̂), 0.0291 0.0296 0.0417 0.0285 0.0289 0.0416 0.0287 0.0291 0.0409

M(β̃), O(T−1) 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250

M(β̈), O(T−1) 0.0265 0.0275 0.0402 0.0265 0.0274 0.0408 0.0264 0.0274 0.0405
M(β̌), O(T−1) 0.0253 0.0263 0.0378 0.0253 0.0262 0.0383 0.0253 0.0262 0.0381

M(β̃), O(T−2) 0.0269 0.0320 0.0312 0.0269 0.0320 0.0313 0.0269 0.0320 0.0313

M(β̈), O(T−2) 0.0284 0.0296 0.0436 0.0284 0.0295 0.0443 0.0284 0.0295 0.0439
M(β̌), O(T−2) 0.0273 0.0284 0.0412 0.0273 0.0283 0.0418 0.0273 0.0284 0.0415

(b) Forecast Bias and MSFE

ρ=0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

E(eT+1|T ) 0.0011 -0.0003 0.0270 -0.0020 -0.0003 0.0274 0.0021 -0.0008 0.0287
E(eT+2|T ) 0.0005 0.0001 0.0197 -0.0030 0.0002 0.0400 0.0034 -0.0015 0.0671
E(eT+5|T ) 0.0007 0.0024 -0.4267 -0.0039 -0.0004 -0.7742 0.0054 0.0008 -0.7880
MSFE(h = 1) 1.0743 1.7619 4.6045 1.0731 1.7634 4.5959 1.0736 1.7577 4.6250
MSFE(h = 2) 1.1215 1.8391 4.8475 1.4135 2.3378 6.2751 1.9030 3.1478 8.5704
MSFE(h = 5) 1.2388 2.0383 5.6313 1.6445 2.7429 7.7386 2.3256 3.8663 11.0489
E(e2

T+1|T
) 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667

E(e2
T+2|T

) 1.1227 1.1227 1.1227 1.4207 1.4207 1.4207 1.9107 1.9107 1.9107

E(e2
T+5|T

) 1.1219 1.1219 1.1219 1.4856 1.4856 1.4856 2.0914 2.0914 2.0914

E(ẽ2
T+1|T

) 1.0062 1.6783 4.6514 1.0053 1.6783 4.6924 1.0056 1.6761 4.6911

E(ẽ2
T+2|T

) 1.0974 1.8310 5.0852 1.3629 2.2841 6.4133 1.8133 3.0388 8.5376

E(ẽ2
T+5|T

) 1.1397 1.9033 5.5004 1.5086 2.5371 7.7570 2.1270 3.5647 10.9474

MSFE-HM(h = 1) 1.1875 1.9788 5.5370 1.5569 2.6044 7.2956 2.1839 3.6395 10.1825
MSFE-HM(h = 2) 1.1342 1.8892 5.2768 1.5195 2.5439 7.0934 2.1617 3.6017 10.0250
MSFE-HM(h = 5) 0.9082 1.5146 4.2066 1.2393 2.0805 5.7586 1.7848 2.9662 8.2028
MSFE-MD(h = 1) 1.1205 1.8655 5.2163 1.4774 2.4736 6.9162 2.0797 3.4711 9.6762
MSFE-MD(h = 2) 1.0458 1.7405 4.8781 1.3781 2.3089 6.4678 1.9410 3.2403 9.0397
MSFE-MD(h = 5) 0.8210 1.3683 3.8246 1.0832 1.8176 5.0766 1.5261 2.5412 7.0786
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Table 1.3: No Intercept Model, T=30, ρ = 0.8

(a) Estimator Bias and MSE

ρ=0.8 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

ρ̂ 0.7516 0.7522 0.7731 0.7506 0.7527 0.7735 0.7503 0.7524 0.7731
ρ̃, O(T−1) 0.8050 0.8055 0.8265 0.8039 0.8061 0.8269 0.8036 0.8058 0.8264
ρ̈, O(T−1) 0.8017 0.8023 0.8247 0.8006 0.8029 0.8251 0.8003 0.8026 0.8247
ρ̃, O(T−2) 0.8014 0.7913 0.8229 0.8003 0.7918 0.8233 0.8001 0.7915 0.8229
ρ̈, O(T−2) 0.7978 0.7933 0.7805 0.7966 0.7939 0.7810 0.7964 0.7935 0.7806

β̂ 0.2754 0.2760 0.2838 0.5747 0.5766 0.5842 0.8746 0.8769 0.8839

β̃, O(T−1) 0.3021 0.3027 0.3105 0.6014 0.6033 0.6109 0.9013 0.9036 0.9105

β̈, O(T−1) 0.3005 0.3011 0.3084 0.5997 0.6016 0.6088 0.8996 0.9020 0.9085
β̌, O(T−1) 0.3022 0.3027 0.3100 0.6014 0.6033 0.6104 0.9013 0.9037 0.9101

β̃, O(T−2) 0.3003 0.2956 0.3087 0.5996 0.5961 0.6091 0.8995 0.8965 0.9088

β̈, O(T−2) 0.2985 0.2966 0.2901 0.5978 0.5972 0.5906 0.8976 0.8975 0.8902
β̌, O(T−2) 0.3001 0.2980 0.2907 0.5993 0.5986 0.5912 0.8992 0.8989 0.8908

M(β̂), 0.0179 0.0182 0.0236 0.0178 0.0182 0.0234 0.0178 0.0182 0.0240

M(β̃), O(T−1) 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120

M(β̈), O(T−1) 0.0148 0.0154 0.0204 0.0149 0.0153 0.0202 0.0148 0.0154 0.0205
M(β̌), O(T−1) 0.0120 0.0125 0.0153 0.0121 0.0124 0.0150 0.0120 0.0125 0.0153

M(β̃), O(T−2) 0.0148 0.0172 0.0169 0.0148 0.0172 0.0169 0.0148 0.0172 0.0169

M(β̈), O(T−2) 0.0177 0.0184 0.0243 0.0177 0.0184 0.0240 0.0177 0.0184 0.0243
M(β̌), O(T−2) 0.0151 0.0157 0.0194 0.0151 0.0157 0.0192 0.0151 0.0157 0.0195

(b) Forecast Bias and MSFE

ρ=0.8 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

E(eT+1|T ) 0.0001 0.0010 0.0418 -0.0007 -0.0007 0.0382 -0.0005 -0.0007 0.0413
E(eT+2|T ) 0.0001 0.0012 0.0563 -0.0007 -0.0012 0.0860 -0.0004 -0.0012 0.1269
E(eT+5|T ) 0.0000 0.0008 0.1913 -0.0016 -0.0060 6.0454 0.0003 -0.0006 0.0303
MSFE(h = 1) 1.0789 1.7709 4.5374 1.0826 1.7681 4.4930 1.0787 1.7725 4.5314
MSFE(h = 2) 1.1545 1.9027 4.8789 1.4656 2.4108 6.2803 1.9616 3.2412 8.5900
MSFE(h = 5) 1.4166 2.3737 6.2379 2.2324 3.7691 9.9887 3.5814 6.0379 16.1641
E(e2

T+1|T
) 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667 1.0667

E(e2
T+2|T

) 1.1547 1.1547 1.1547 1.4587 1.4587 1.4587 1.9547 1.9547 1.9547

E(e2
T+5|T

) 1.2612 1.2612 1.2612 1.9776 1.9776 1.9776 3.1605 3.1605 3.1605

E(ẽ2
T+1|T

) 1.0146 1.6936 4.7301 1.0172 1.6868 4.6291 1.0134 1.6937 4.7097

E(ẽ2
T+2|T

) 1.1026 1.8439 5.1631 1.3705 2.2841 6.3375 1.8139 3.0429 8.6012

E(ẽ2
T+5|T

) 1.2482 2.0969 5.9210 1.8906 3.1729 9.1377 2.9441 4.9990 14.6364

MSFE-HM(h = 1) 1.2614 2.1072 5.9590 1.9068 3.1815 8.8974 2.9989 5.0183 14.1902
MSFE-HM(h = 2) 1.2179 2.0363 5.7363 1.9091 3.1864 8.8626 3.0643 5.1317 14.4321
MSFE-HM(h = 5) 1.0203 1.7039 4.7775 1.6930 2.8345 7.8431 2.8076 4.7077 13.1128
MSFE-MD(h = 1) 1.2493 2.0842 5.8751 1.9971 3.3277 9.2555 3.2389 5.4237 15.2592
MSFE-MD(h = 2) 1.1649 1.9451 5.4835 1.8643 3.1046 8.6307 3.0235 5.0630 14.2600
MSFE-MD(h = 5) 0.9148 1.5268 4.3121 1.4627 2.4374 6.7927 2.3754 3.9734 11.2087
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Table 1.4: No Intercept Model, T=100, ρ = 0.5

(a) Estimator Bias and MSE

ρ=0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

ρ̂ 0.4900 0.4901 0.4960 0.4901 0.4906 0.4958 0.4900 0.4906 0.4955
ρ̃, O(T−1) 0.5000 0.5001 0.5060 0.5001 0.5006 0.5058 0.5000 0.5006 0.5055
ρ̈, O(T−1) 0.4998 0.4999 0.5059 0.4999 0.5005 0.5057 0.4998 0.5004 0.5055
ρ̃, O(T−2) 0.4998 0.4993 0.5058 0.4999 0.4998 0.5056 0.4998 0.4998 0.5053
ρ̈, O(T−2) 0.4996 0.4993 0.4998 0.4997 0.4998 0.4996 0.4996 0.4998 0.4993

β̂ 0.2953 0.2954 0.2973 0.5949 0.5955 0.5975 0.8949 0.8959 0.8975

β̃, O(T−1) 0.3003 0.3004 0.3023 0.5999 0.6005 0.6025 0.8999 0.9009 0.9025

β̈, O(T−1) 0.3002 0.3003 0.3016 0.5998 0.6004 0.6018 0.8998 0.9008 0.9017
β̌, O(T−1) 0.3003 0.3004 0.3016 0.5999 0.6005 0.6018 0.8999 0.9009 0.9018

β̃, O(T−2) 0.3002 0.3000 0.3022 0.5998 0.6001 0.6024 0.8998 0.9005 0.9024

β̈, O(T−2) 0.3001 0.3000 0.2993 0.5997 0.6000 0.5994 0.8997 0.9005 0.8994
β̌, O(T−2) 0.3002 0.3001 0.2993 0.5998 0.6001 0.5995 0.8998 0.9006 0.8995

M(β̂), 0.0078 0.0078 0.0094 0.0078 0.0078 0.0094 0.0079 0.0079 0.0094

M(β̃), O(T−1) 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075

M(β̈), O(T−1) 0.0076 0.0078 0.0098 0.0076 0.0078 0.0098 0.0076 0.0078 0.0098
M(β̌), O(T−1) 0.0075 0.0077 0.0097 0.0075 0.0077 0.0097 0.0075 0.0077 0.0097

M(β̃), O(T−2) 0.0077 0.0082 0.0081 0.0077 0.0082 0.0081 0.0077 0.0082 0.0081

M(β̈), O(T−2) 0.0078 0.0080 0.0104 0.0078 0.0080 0.0104 0.0078 0.0080 0.0104
M(β̌), O(T−2) 0.0077 0.0079 0.0102 0.0077 0.0079 0.0102 0.0077 0.0079 0.0102

(b) Forecast Bias and MSFE

ρ=0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

E(eT+1|T ) -0.0004 0.0005 0.0044 0.0003 -0.0005 0.0030 -0.0002 -0.0004 0.0044
E(eT+2|T ) -0.0007 0.0006 0.0051 0.0002 -0.0014 0.0065 0.0001 -0.0007 0.0120
E(eT+5|T ) -0.0010 0.0007 -0.0108 0.0001 -0.0022 -0.0286 0.0005 -0.0005 -0.0078
MSFE(h = 1) 1.0199 1.6765 4.4635 1.0192 1.6806 4.4471 1.0201 1.6804 4.4459
MSFE(h = 2) 1.0983 1.8067 4.8297 1.3746 2.2705 6.1130 1.8352 3.0380 8.2061
MSFE(h = 5) 1.1441 1.8821 5.0502 1.5100 2.4951 6.7592 2.1214 3.5145 9.5435
E(e2

T+1|T
) 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200

E(e2
T+2|T

) 1.0998 1.0998 1.0998 1.3782 1.3782 1.3782 1.8402 1.8402 1.8402

E(e2
T+5|T

) 1.1202 1.1202 1.1202 1.4804 1.4804 1.4804 2.0805 2.0805 2.0805

E(ẽ2
T+1|T

) 1.0007 1.6610 4.6527 1.0006 1.6663 4.6576 1.0013 1.6658 4.6213

E(ẽ2
T+2|T

) 1.0887 1.8079 5.0681 1.3557 2.2596 6.3362 1.8039 3.0104 8.3985

E(ẽ2
T+5|T

) 1.1206 1.8605 5.2138 1.4783 2.4630 6.8919 2.0765 3.4644 9.6304

MSFE-HM(h = 1) 1.1417 1.8973 5.3312 1.5066 2.5163 7.0515 2.1165 3.5328 9.8437
MSFE-HM(h = 2) 1.1271 1.8734 5.2570 1.4976 2.5010 6.9983 2.1128 3.5272 9.8087
MSFE-HM(h = 5) 1.0651 1.7704 4.9581 1.4233 2.3774 6.6480 2.0154 3.3657 9.3499
MSFE-MD(h = 1) 1.1200 1.8606 5.2291 1.4786 2.4699 6.9205 2.0785 3.4707 9.6563
MSFE-MD(h = 2) 1.0976 1.8236 5.1249 1.4490 2.4203 6.7846 2.0369 3.4017 9.4648
MSFE-MD(h = 5) 1.0306 1.7125 4.8080 1.3604 2.2730 6.3781 1.9120 3.1948 8.8966
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Table 1.5: Model with Intercept, T=30, ρ = 0.2

(a) Estimator Bias and MSE

ρ=0.2, α = 0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5, θ=0.4 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

ρ̂ 0.1466 0.1477 0.1485 0.1463 0.1474 0.1480 0.1462 0.1466 0.1489
ρ̃, O(T−2) 0.2010 0.1994 0.2029 0.2007 0.1991 0.2023 0.2006 0.1984 0.2032
ρ̈, O(T−2) 0.1960 0.1967 0.1953 0.1957 0.1964 0.1947 0.1956 0.1956 0.1956

β̂ 0.2734 0.2736 0.2752 0.5726 0.5735 0.5743 0.8730 0.8732 0.8735

β̃, O(T−2) 0.3006 0.2994 0.3024 0.5998 0.5994 0.6015 0.9002 0.8990 0.9007

β̈, O(T−2) 0.2982 0.2981 0.2976 0.5973 0.5980 0.5967 0.8977 0.8976 0.8960
β̌, O(T−2) 0.3007 0.3005 0.2996 0.5999 0.6004 0.5987 0.9002 0.9001 0.8980

θ̂ 0.4246 0.4252 0.4236 0.4261 0.4258 0.4254 0.4256 0.4248 0.4240

θ̃, O(T−2) 0.3974 0.3993 0.3964 0.3989 0.4000 0.3982 0.3984 0.3990 0.3968

θ̈, O(T−2) 0.3999 0.4006 0.3648 0.4012 0.4013 0.3976 0.4008 0.4003 0.3642
α̂ 0.5123 0.5125 0.5087 0.5123 0.5135 0.5112 0.5127 0.5125 0.5122
α̃, O(T−2) 0.4987 0.4996 0.4951 0.4987 0.5006 0.4976 0.4991 0.4996 0.4986
α̈, O(T−2) 0.5003 0.4928 0.3476 0.5002 0.4939 0.4351 0.5007 0.4928 0.3816

M(β̂), 0.0367 0.0376 0.0571 0.0369 0.0372 0.0580 0.0367 0.0378 0.0572

M(β̃), O(T−1) 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320

M(β̈), O(T−1) 0.0332 0.0346 0.0560 0.0333 0.0347 0.0568 0.0333 0.0347 0.0565
M(β̌), O(T−1) 0.0324 0.0338 0.0547 0.0325 0.0338 0.0555 0.0325 0.0338 0.0552

M(β̃), O(T−2) 0.0328 0.0312 0.0328 0.0328 0.0312 0.0328 0.0328 0.0312 0.0328

M(β̈), O(T−2) 0.0341 0.0350 0.0543 0.0341 0.0351 0.0551 0.0342 0.0351 0.0548
M(β̌), O(T−2) 0.0336 0.0345 0.0532 0.0336 0.0345 0.0540 0.0337 0.0346 0.0537

(b) Forecast Bias and MSFE

ρ = 0.2, α = 0.5 β = 0.3 β=0.6 β=0.9
corr(u, v)=0.5, θ=0.4 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

E(eT+1|T ) 0.0000 0.0014 0.0006 -0.0003 -0.0002 0.0003 0.0007 0.0010 0.0038
E(eT+2|T ) -0.0005 0.0015 -0.0346 0.0006 -0.0002 -0.0372 0.0023 0.0006 -0.0348
E(eT+5|T ) -0.0009 0.0014 -0.0489 0.0019 -0.0010 -0.0782 0.0035 0.0000 -0.1033
MSFE(h = 1) 1.1472 1.8826 4.9622 1.1495 1.8814 5.0089 1.1507 1.8781 5.0042
MSFE(h = 2) 1.1902 1.9500 5.2428 1.5193 2.4924 6.9226 2.0567 3.3634 9.3568
MSFE(h = 5) 1.3033 2.1293 6.4199 1.6695 2.7335 8.6371 2.2609 3.6981 11.8418
E(e2

T+1|T
) 1.0827 1.0827 1.0827 1.0827 1.0827 1.0827 1.0827 1.0827 1.0827

E(e2
T+2|T

) 1.1187 1.1187 1.1187 1.4107 1.4107 1.4107 1.8947 1.8947 1.8947

E(e2
T+5|T

) 1.1098 1.1098 1.1098 1.3910 1.3910 1.3910 1.8598 1.8598 1.8598

E(ẽ2
T+1|T

) 1.0110 1.6993 4.8650 1.0114 1.7002 4.9930 1.0130 1.6965 4.9328

E(ẽ2
T+2|T

) 1.0882 1.8266 5.2496 1.3313 2.2332 6.5778 1.7575 2.9334 8.5196

E(ẽ2
T+5|T

) 1.0882 1.8296 6.1243 1.3375 2.2429 8.2741 1.7722 2.9581 13.6071

MSFE-HM(h = 1) 1.1631 1.9445 5.3464 1.4611 2.4384 6.8654 1.9592 3.2570 9.1082
MSFE-HM(h = 2) 1.1065 1.8494 5.0684 1.4105 2.3530 6.5809 1.9059 3.1672 8.8054
MSFE-HM(h = 5) 0.8737 1.4612 3.9854 1.1181 1.8634 5.1956 1.5127 2.5127 6.9817
MSFE-MD(h = 1) 1.0933 1.8266 5.0190 1.3750 2.2918 6.4500 1.8452 3.0662 8.5734
MSFE-MD(h = 2) 1.0202 1.7045 4.6860 1.2833 2.1386 6.0187 1.7216 2.8618 8.0111
MSFE-MD(h = 5) 0.8017 1.3404 3.6678 1.0089 1.6792 4.7185 1.3528 2.2491 6.3034
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Table 1.6: Model with Intercept, T=30, ρ = 0.5

(a) Estimator Bias and MSE

ρ=0.5, α = 0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5, θ=0.4 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

ρ̂ 0.4158 0.4171 0.4232 0.4149 0.4168 0.4229 0.4154 0.4168 0.4228
ρ̃, O(T−2) 0.5030 0.4976 0.5104 0.5021 0.4974 0.5102 0.5027 0.4973 0.5100
ρ̈, O(T−2) 0.4945 0.4944 0.4934 0.4935 0.4940 0.4931 0.4941 0.4940 0.4928

β̂ 0.2576 0.2589 0.2616 0.5577 0.5582 0.5625 0.8574 0.8580 0.8614

β̃, O(T−2) 0.3012 0.2992 0.3052 0.6014 0.5985 0.6061 0.9010 0.8982 0.9050

β̈, O(T−2) 0.2969 0.2975 0.2958 0.5970 0.5969 0.5963 0.8966 0.8966 0.8953
β̌, O(T−2) 0.3019 0.3024 0.2993 0.6022 0.6022 0.6002 0.9017 0.9014 0.8990

θ̂ 0.4623 0.4602 0.4550 0.4618 0.4612 0.4577 0.4630 0.4605 0.4549

θ̃, O(T−2) 0.3925 0.3957 0.3852 0.3920 0.3967 0.3879 0.3932 0.3960 0.3851

θ̈, O(T−2) 0.3992 0.3977 0.2696 0.3988 0.3999 0.1837 0.3999 0.3992 0.3313
α̂ 0.5317 0.5311 0.5230 0.5305 0.5305 0.5232 0.5305 0.5293 0.5227
α̃, O(T−2) 0.4968 0.4989 0.4881 0.4956 0.4983 0.4883 0.4956 0.4971 0.4879
α̈, O(T−2) 0.5012 0.4812 -0.0709 0.5000 0.4820 0.0465 0.5000 0.4811 -0.0908

M(β̂), 0.0329 0.0334 0.0502 0.0326 0.0334 0.0494 0.0328 0.0335 0.0485

M(β̃), O(T−1) 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250

M(β̈), O(T−1) 0.0283 0.0293 0.0480 0.0283 0.0294 0.0474 0.0283 0.0294 0.0473
M(β̌), O(T−1) 0.0257 0.0266 0.0436 0.0257 0.0267 0.0431 0.0257 0.0267 0.0430

M(β̃), O(T−2) 0.0280 0.0267 0.0280 0.0280 0.0267 0.0280 0.0280 0.0267 0.0280

M(β̈), O(T−2) 0.0310 0.0316 0.0481 0.0309 0.0318 0.0475 0.0309 0.0318 0.0473
M(β̌), O(T−2) 0.0291 0.0298 0.0449 0.0291 0.0299 0.0443 0.0291 0.0299 0.0442

(b) Forecast Bias and MSFE

ρ=0.5, α = 0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5, θ=0.4 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

E(eT+1|T ) 0.0003 0.0014 0.0006 -0.0005 0.0005 0.0069 -0.0004 -0.0012 0.0019
E(eT+2|T ) 0.0000 0.0016 -0.0350 0.0000 0.0000 -0.0338 -0.0004 -0.0013 -0.0394
E(eT+5|T ) -0.0007 0.0028 -0.0715 -0.0007 -0.0016 -0.1087 -0.0004 -0.0034 -0.1476
MSFE(h = 1) 1.1575 1.8980 4.9829 1.1583 1.8965 5.0790 1.1579 1.9052 5.0050
MSFE(h = 2) 1.2120 1.9830 5.3490 1.5498 2.5416 7.1504 2.0922 3.4573 9.6511
MSFE(h = 5) 1.3723 2.2557 7.5395 1.8823 3.1145 11.4793 2.7044 4.5038 16.4595
E(e2

T+1|T
) 1.0987 1.0987 1.0987 1.0987 1.0987 1.0987 1.0987 1.0987 1.0987

E(e2
T+2|T

) 1.1547 1.1547 1.1547 1.4527 1.4527 1.4527 1.9427 1.9427 1.9427

E(e2
T+5|T

) 1.1539 1.1539 1.1539 1.5176 1.5176 1.5176 2.1234 2.1234 2.1234

E(ẽ2
T+1|T

) 1.0333 1.7457 5.3429 1.0348 1.7440 5.3944 1.0340 1.7562 5.2889

E(ẽ2
T+2|T

) 1.1016 1.8594 5.7434 1.3326 2.2449 6.9462 1.7363 2.9402 8.7805

E(ẽ2
T+5|T

) 1.1218 1.8969 13.3469 1.4078 2.3807 14.7301 1.9055 3.2317 15.7844

MSFE-HM(h = 1) 1.1864 1.9791 5.5844 1.5565 2.5994 7.3796 2.1773 3.6536 10.1836
MSFE-HM(h = 2) 1.1337 1.8911 5.3251 1.5204 2.5364 7.1618 2.1552 3.6155 10.0276
MSFE-HM(h = 5) 0.9085 1.5140 4.2639 1.2402 2.0708 5.8251 1.7796 2.9826 8.2403
MSFE-MD(h = 1) 1.1188 1.8677 5.2672 1.4793 2.4656 6.9978 2.0740 3.4821 9.7019
MSFE-MD(h = 2) 1.0443 1.7436 4.9297 1.3813 2.2994 6.5304 1.9362 3.2479 9.0688
MSFE-MD(h = 5) 0.8206 1.3685 3.8838 1.0854 1.8060 5.1408 1.5231 2.5497 7.1407
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Table 1.7: Model with Intercept, T=30, ρ = 0.8

(a) Estimator Bias and MSE

ρ=0.8, α = 0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5, θ=0.4 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

ρ̂ 0.6859 0.6837 0.6889 0.6855 0.6828 0.6887 0.6868 0.6832 0.6892
ρ̃, O(T−2) 0.8235 0.8106 0.8265 0.8231 0.8097 0.8262 0.8243 0.8101 0.8268
ρ̈, O(T−2) 0.8034 0.7993 0.7842 0.8061 0.7989 0.7885 0.8071 0.7997 0.7954

β̂ 0.2431 0.2416 0.2454 0.5423 0.5419 0.5447 0.8430 0.8413 0.8455

β̃, O(T−2) 0.3119 0.3050 0.3142 0.6111 0.6053 0.6135 0.9118 0.9048 0.9142

β̈, O(T−2) 0.3018 0.2993 0.2895 0.6025 0.6000 0.5928 0.9033 0.8997 0.8960
β̌, O(T−2) 0.3348 0.2930 0.2980 0.5976 0.6191 0.6241 0.9326 0.8643 0.8917

θ̂ 0.5859 0.5905 0.5802 0.5882 0.5893 0.5827 0.5845 0.5897 0.5804

θ̃, O(T−2) 0.3108 0.3367 0.3051 0.3131 0.3355 0.3076 0.3094 0.3360 0.3053
α̂ 0.5926 0.5955 0.5752 0.5950 0.5930 0.5759 0.5919 0.5952 0.5737
α̃, O(T−2) 0.4550 0.4686 0.4376 0.4575 0.4661 0.4383 0.4543 0.4684 0.4361

M(β̂), 0.0227 0.0248 0.0380 0.0230 0.0245 0.0383 0.0230 0.0248 0.0374

M(β̃), O(T−1) 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120

M(β̈), O(T−1) 0.0183 0.0192 0.0311 0.0183 0.0192 0.0311 0.0183 0.0192 0.0310
M(β̌), O(T−1) 0.0129 0.0136 0.0220 0.0129 0.0136 0.0220 0.0128 0.0136 0.0219

M(β̃), O(T−2) 0.0183 0.0177 0.0183 0.0183 0.0177 0.0183 0.0183 0.0177 0.0183

M(β̈), O(T−2) 0.0240 0.0248 0.0361 0.0239 0.0248 0.0360 0.0239 0.0248 0.0360
M(β̌), O(T−2) 0.0199 0.0208 0.0298 0.0199 0.0208 0.0297 0.0199 0.0208 0.0297

(b) Forecast Bias and MSFE

ρ=0.8, α = 0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5, θ=0.4 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

E(eT+1|T ) 0.0052 0.0026 0.0026 0.0029 0.0033 0.0033 0.0055 0.0050 0.0050
E(eT+2|T ) 0.0069 0.0041 -0.0273 0.0065 0.0065 -0.0288 0.0139 0.0143 -0.0343
E(eT+5|T ) 0.0087 0.0055 -0.0822 0.0097 0.0081 -0.1345 0.0240 0.0271 -0.2024
MSFE(h = 1) 1.1859 1.9417 5.0671 1.1867 1.9419 5.0745 1.1846 1.9469 5.0750
MSFE(h = 2) 1.2635 2.0672 5.5859 1.6202 2.6655 7.3297 2.1926 3.6166 10.0543
MSFE(h = 5) 1.6078 2.6822 9.9191 2.6313 4.4078 16.3384 4.2753 7.1736 27.6880
E(e2

T+1|T
) 1.1627 1.1627 1.1627 1.1627 1.1627 1.1627 1.1627 1.1627 1.1627

E(e2
T+2|T

) 1.2507 1.2507 1.2507 1.5547 1.5547 1.5547 2.0507 2.0507 2.0507

E(e2
T+5|T

) 1.3572 1.3572 1.3572 2.0736 2.0736 2.0736 3.2565 3.2565 3.2565

E(ẽ2
T+1|T

) 1.1850 2.0464 7.3057 1.1859 2.0455 7.3577 1.1864 2.0581 7.5011

E(ẽ2
T+2|T

) 1.2393 2.1401 7.6813 1.4494 2.4948 8.7840 1.8288 3.1428 10.7590

E(ẽ2
T+5|T

) 1.3046 2.2632 12.6103 1.7056 2.9492 14.2016 2.3975 4.1207 16.3624

MSFE-HM(h = 1) 1.2678 2.1033 5.8885 1.9317 3.2028 9.0109 3.0545 5.0586 14.2095
MSFE-HM(h = 2) 1.2248 2.0316 5.6820 1.9351 3.2090 8.9831 3.1234 5.1698 14.4830
MSFE-HM(h = 5) 1.0264 1.7069 4.7497 1.7260 2.8574 7.9312 2.8731 4.7435 13.1630
MSFE-MD(h = 1) 1.2488 2.0791 5.7851 2.0019 3.3336 9.3383 3.2575 5.4082 15.2708
MSFE-MD(h = 2) 1.1652 1.9398 5.4117 1.8678 3.1097 8.7200 3.0396 5.0467 14.2778
MSFE-MD(h = 5) 0.9150 1.5267 4.2692 1.4684 2.4443 6.8593 2.3851 3.9596 11.1759
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Table 1.8: Model with Intercept, T=100, ρ = 0.5

(a) Estimator Bias and MSE

ρ=0.5, α = 0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5, θ=0.4 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

ρ̂ 0.4745 0.4749 0.4767 0.4749 0.4756 0.4769 0.4747 0.4749 0.4768
ρ̃, O(T−2) 0.4999 0.4996 0.5021 0.5003 0.5004 0.5023 0.5000 0.4997 0.5021
ρ̈, O(T−2) 0.4991 0.4992 0.4990 0.4995 0.4999 0.4993 0.4993 0.4993 0.4991

β̂ 0.2870 0.2875 0.2899 0.5872 0.5877 0.5904 0.8876 0.8873 0.8901

β̃, O(T−2) 0.2997 0.2998 0.3026 0.5999 0.6001 0.6030 0.9002 0.8997 0.9027

β̈, O(T−2) 0.2993 0.2996 0.2996 0.5995 0.5999 0.6000 0.8999 0.8995 0.8997
β̌, O(T−2) 0.2997 0.3000 0.2999 0.5999 0.6003 0.6003 0.9003 0.8998 0.9000

θ̂ 0.4202 0.4195 0.4186 0.4196 0.4193 0.4181 0.4199 0.4197 0.4179

θ̃, O(T−2) 0.3999 0.3997 0.3983 0.3993 0.3995 0.3978 0.3996 0.3999 0.3977

θ̈, O(T−2) 0.4005 0.4000 0.4010 0.3999 0.4001 0.4005 0.4003 0.4002 0.4004
α̂ 0.5105 0.5102 0.5086 0.5099 0.5104 0.5066 0.5103 0.5095 0.5079
α̃, O(T−2) 0.5004 0.5003 0.4985 0.4998 0.5005 0.4965 0.5002 0.4996 0.4977
α̈, O(T−2) 0.5008 0.4942 0.4730 0.5002 0.4994 0.4708 0.5006 0.4935 0.4722

M(β̂), 0.0082 0.0082 0.0098 0.0082 0.0082 0.0098 0.0081 0.0083 0.0099

M(β̃), O(T−1) 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075

M(β̈), O(T−1) 0.0078 0.0079 0.0102 0.0078 0.0079 0.0101 0.0078 0.0079 0.0102
M(β̌), O(T−1) 0.0075 0.0077 0.0099 0.0075 0.0077 0.0098 0.0075 0.0077 0.0098

M(β̃), O(T−2) 0.0078 0.0077 0.0078 0.0078 0.0077 0.0078 0.0078 0.0077 0.0078

M(β̈), O(T−2) 0.0080 0.0081 0.0099 0.0080 0.0081 0.0098 0.0080 0.0081 0.0099
M(β̌), O(T−2) 0.0078 0.0079 0.0096 0.0078 0.0079 0.0095 0.0078 0.0079 0.0096

(b) Forecast Bias and MSFE

ρ=0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

E(eT+1|T ) 0.0002 -0.0003 -0.0003 0.0006 -0.0002 -0.0016 -0.0005 -0.0008 0.0010
E(eT+2|T ) 0.0003 -0.0005 -0.0032 0.0006 0.0002 -0.0052 -0.0004 -0.0012 -0.0045
E(eT+5|T ) 0.0003 -0.0006 -0.0076 0.0006 0.0002 -0.0124 0.0002 -0.0018 -0.0156
MSFE(h = 1) 1.0406 1.7124 4.4740 1.0403 1.7127 4.4538 1.0402 1.7139 4.4903
MSFE(h = 2) 1.1248 1.8513 4.8608 1.4135 2.3331 6.1820 1.8919 3.1207 8.3526
MSFE(h = 5) 1.1804 1.9427 5.1281 1.5761 2.6057 6.9576 2.2319 3.6838 9.9206
E(e2

T+1|T
) 1.0296 1.0296 1.0296 1.0296 1.0296 1.0296 1.0296 1.0296 1.0296

E(e2
T+2|T

) 1.1094 1.1094 1.1094 1.3878 1.3878 1.3878 1.8498 1.8498 1.8498

E(e2
T+5|T

) 1.1298 1.1298 1.1298 1.4900 1.4900 1.4900 2.0901 2.0901 2.0901

E(ẽ2
T+1|T

) 1.0098 1.6832 4.7520 1.0095 1.6834 4.7003 1.0096 1.6847 4.7531

E(ẽ2
T+2|T

) 1.0890 1.8154 5.1377 1.3462 2.2470 6.3230 1.7847 2.9761 8.4325

E(ẽ2
T+5|T

) 1.1140 1.8564 5.2527 1.4466 2.4141 6.7851 2.0108 3.3520 9.4705

MSFE-HM(h = 1) 1.1411 1.9028 5.3753 1.5067 2.5150 7.0354 2.1179 3.5324 9.9319
MSFE-HM(h = 2) 1.1266 1.8781 5.3029 1.4973 2.5005 6.9805 2.1145 3.5264 9.8962
MSFE-HM(h = 5) 1.0644 1.7739 4.9995 1.4230 2.3773 6.6221 2.0174 3.3624 9.4171
MSFE-MD(h = 1) 1.1194 1.8664 5.2719 1.4794 2.4680 6.9048 2.0805 3.4687 9.7462
MSFE-MD(h = 2) 1.0971 1.8287 5.1699 1.4495 2.4190 6.7671 2.0390 3.3992 9.5526
MSFE-MD(h = 5) 1.0301 1.7163 4.8489 1.3608 2.2718 6.3516 1.9142 3.1896 8.9617
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Table 1.9: Unit Root xt Model with Intercept, T=30

(a) Estimator Bias and MSE

ρ=1, α = 0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5, θ=2 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

ρ̂ 0.9985 0.9974 0.9945 0.9985 0.9975 0.9945 0.9984 0.9974 0.9945
ρ̃, O(T−2) 1.0002 0.9991 0.9962 1.0001 0.9991 0.9962 1.0001 0.9990 0.9962
ρ̈, O(T−2) 1.0001 1.0002 1.0009 1.0001 1.0003 1.0009 1.0001 1.0002 1.0009
ρ̃, O(T−3) 1.0000 0.9989 0.9960 1.0000 0.9990 0.9961 1.0000 0.9989 0.9960
ρ̈, O(T−3) 1.0000 1.0001 0.9609 1.0000 1.0002 0.9583 1.0000 1.0001 0.9590

β̂ 0.2992 0.2986 0.2976 0.5992 0.5987 0.5977 0.8992 0.8986 0.8977

β̃, O(T−2) 0.3000 0.2995 0.2984 0.6000 0.5996 0.5985 0.9000 0.8995 0.8986

β̈, O(T−2) 0.3000 0.3001 0.3004 0.6000 0.6001 0.6004 0.9000 0.9001 0.9005

β̃, O(T−3) 0.2999 0.2994 0.2984 0.6000 0.5995 0.5985 0.9000 0.8994 0.8985

β̈, O(T−3) 0.2999 0.3000 0.2998 0.6000 0.6001 0.5998 0.9000 0.9000 0.8999

θ̂ 2.0602 2.1010 2.2467 2.0599 2.0989 2.2452 2.0617 2.1020 2.2457
α̂ 0.5314 0.5521 0.6002 0.5318 0.5502 0.5970 0.5308 0.5515 0.5951

M(β̂), 0.0001 0.0002 0.0006 0.0001 0.0002 0.0006 0.0001 0.0002 0.0006

M(β̃), O(T−3) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

M(β̈), O(T−3) 0.0001 0.0002 0.0008 0.0001 0.0002 0.0008 0.0001 0.0002 0.0008

M(β̃), O(T−4) 0.0001 0.0001 0.0004 0.0001 0.0001 0.0004 0.0001 0.0001 0.0004

M(β̈), O(T−4) 0.0001 0.0002 0.0007 0.0001 0.0002 0.0007 0.0001 0.0002 0.0007

(b) Forecast Bias and MSFE

ρ=1, α = 0.5 β=0.3 β=0.6 β=0.9
corr(u, v)=0.5, θ=2 bivN bivT bivlogN bivN bivT bivlogN bivN bivT bivlogN

E(eT+1|T ) 0.0272 0.0446 0.0676 0.0273 0.0453 0.0660 0.0258 0.0465 0.0680
E(eT+2|T ) 0.0418 0.0686 0.0998 0.0593 0.0985 0.1491 0.0717 0.1267 0.1873
E(eT+5|T ) 0.0740 0.1173 0.0650 0.1387 0.2312 0.2786 0.1797 0.3143 0.2085
MSFE(h = 1) 1.2900 2.0870 5.1400 1.2890 2.0959 5.1424 1.2865 2.0960 5.1365
MSFE(h = 2) 1.5579 2.5295 6.3565 2.0000 3.2673 8.3106 2.6719 4.3845 11.213
MSFE(h = 2), (ρ = 1) 1.3989 2.2780 5.8709 1.7636 2.8969 7.9638 2.4464 4.0393 11.614
MSFE(h = 5) 3.3091 5.3992 15.195 6.8503 11.264 32.052 12.414 20.325 57.901
MSFE(h = 5), (ρ = 1) 2.4791 4.1136 12.496 5.8698 9.8102 31.613 12.036 19.966 65.188
MSFE-HM(h = 1) 24.440 25.360 29.696 94.854 96.665 105.18 212.39 215.69 231.64
MSFE-HM(h = 2) 28.604 29.519 33.835 111.70 113.61 122.54 250.39 253.97 271.18
MSFE-HM(h = 5) 39.311 40.146 44.116 155.06 157.08 166.40 348.22 352.15 371.23
MSFE-MD(h = 1) 27.334 29.307 38.133 106.31 112.05 138.68 238.17 250.77 307.24
MSFE-MD(h = 2) 27.176 29.050 37.426 105.88 111.34 136.69 237.29 249.31 303.15
MSFE-MD(h = 5) 26.337 27.873 34.743 103.12 107.63 128.71 231.31 241.33 286.38
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Table 1.10: Predictive Regression of Financial Returns

(a) Confidence Interval of Parameters

d/p d/y ntis tbl

Qt(12) α 0.4390 0.7748 0.4349 0.7699 0.0313 0.0735 0.0455 0.1033
β 0.1304 0.2331 0.1294 0.2320 -3.0444 -1.2685 -1.5503 -0.6323

Rt(12) α 0.5963 0.9263 0.5896 0.9191 0.1005 0.1420 0.0526 0.1118
β 0.1613 0.2623 0.1596 0.2605 -3.7264 -1.9808 -0.6702 0.2706

Xt θ -1.0749 -0.8221 -1.0779 -0.8227 -0.0001 0.0010 0.0001 0.0021
ρ 0.6725 0.7498 0.6710 0.7492 0.9494 0.9949 0.9676 0.9984

(b) Estimation Correction and Forecast MSFE

Qt(12) Rt(12)
d/p d/y ntis tbl d/p d/y ntis tbl

β̂ 0.1818 0.1807 -2.1564 -1.0913 0.2118 0.2100 -2.8536 -0.1998

β̈ 0.1831 0.1820 -2.1937 -1.1513 0.2135 0.2117 -2.8993 -0.2533
ρ̂ 0.7112 0.7101 0.9722 0.9830 0.7112 0.7101 0.9722 0.9830
ρ̈ 0.7164 0.7153 0.9817 0.9934 0.7164 0.7153 0.9817 0.9934
α̂ 0.6069 0.6024 0.0524 0.0744 0.7613 0.7544 0.1212 0.0822
α̈ 0.6069 0.6025 0.0524 0.0744 0.7614 0.7544 0.1212 0.0822

θ̂ -0.9485 -0.9503 0.0005 0.0011 -0.9485 -0.9503 0.0005 0.0011

θ̈ -0.9313 -0.9334 0.0003 0.0004 -0.9313 -0.9334 0.0003 0.0004

M(β̈) 0.0018 0.0018 0.1237 0.0309 0.0017 0.0017 0.1208 0.0311
MSFE(h=1) 3.0895 3.0859 2.4113 2.8729 2.9551 2.9496 2.6267 3.1585
MSFE(h=2) 3.0093 3.0265 2.4390 2.9082 2.8850 2.9009 2.6675 3.1640
MSFE(h=5) 2.9037 2.9499 2.6426 2.9853 2.8011 2.8497 2.9148 3.1794
MSFE-C(h=1) 2.9910 2.9418 2.3922 3.1083 2.8737 2.8346 2.6155 3.3872
MSFE-C(h=2) 2.9397 2.9103 2.4286 3.0739 2.8296 2.8102 2.6698 3.4544
MSFE-C(h=5) 2.8923 2.8947 2.6624 3.3988 2.7956 2.8134 2.9629 4.2822
E(e2

T+1|T
) 1.8168 1.8198 1.9677 2.1073 1.7558 1.7648 1.9787 2.2112

E(e2
T+2|T

) 1.8447 1.8473 1.9909 2.1122 1.7892 1.7972 2.0062 2.2156

E(e2
T+5|T

) 1.9172 1.9187 2.0512 2.1265 1.8771 1.8828 2.0782 2.2279

HM MD HM MD
MSFE(h=1) 2.7539 2.4620 2.9907 3.1588
MSFE(h=2) 2.7575 2.4610 2.9926 3.1550
MSFE(h=5) 2.7601 2.4598 2.9907 3.1493
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Chapter 2

Finite Sample Bias of the

Estimators in the First Order

Autoregressive Moving Average

Model under a General Error

Distribution

The quasi maximum likelihood estimator (QMLE) of parameters in the first order

autoregressive moving average model (ARMA(1, 1)) can be biased in finite samples. This

paper discusses bias properties of the QMLE of the ARMA(1,1) model up to order O(T−1)

by applying the stochastic expansion and the formula and sheds light on the bias correction
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for the parameter estimation in applied works. The analytical bias expression of the QMLE

suggests that the bias is robust to nonnormality and the simulation results show that the

bias corrected QML estimators is better even when sample size increased to a moderate

size.

2.1 Introduction

Extensive literature has been focused on the finite-sample bias property of stable

time-series models. Tanaka (1984) gives the finite sample bias correction formula using

Edgeworth type asymptotic expansion for AR(1), AR(2), MA(1), MA(2) as well as AR-

MA(1, 1) model under normally distributed error terms. Bao and Ullah (2007) and Bao

(2007) studied the finite sample bias for the QML estimator of MA(1) model and the OL-

S estimator of AR(1) model, the bias correction formula is given in both papers under a

general distributed error term.

2.2 Main Results

Consider the pure first-order autoregressive moving average ARMA(1,1) model:

yt = ρyt−1 − φεt−1 + εt (2.1)

and the model with intercept:

yt = α+ ρyt−1 − φεt−1 + εt (2.2)

where ρ, φ ∈ (−1, 1), φ 6= ρ, α is a constant of order O(1), εt ∼ i.i.d.(0, σ2) and no further

distributional assumptions is imposed on εt. The population parameters to be estimated is
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denoted by β, where β = (φ, ρ, σ2) for the pure model and β = (α, φ, ρ, σ2) for the intercept

model. In this paper, we consider the bias properties for the quasi maximum likelihood

(QML) estimator of β by assuming normality.

Conditional on ε0 = 0 and y0 given, either fixed or stochastic, we can rewrite the

above pure model as y−1 = Fy0 + Aε, where y−1 = (y0, y2, ...yT−1)
′, ε = (ε1, ε2, ...εT )

′,

F = (1, ρ, ..., ρT−1)′, and A is defined by:

A =

































0 0 · · · · · · 0

1 0 0 · · · 0

ρ− φ 1 0 · · · 0

...
. . .

. . .
. . .

...

ρT−3(ρ− φ) · · · ρ− φ 1 0

































.

And the intercept model can be rewritten as y−1 = αM1ι+ y0F +Aε, where ι is a vector of

ones with dimension T , M1 = C−1A, where C = I − B, I is a T × T identity matrix, and

B is a T × T matrix with (i, j)th element being φ if i− j = 1 and otherwise zero.

The average quasi log likelihood function assuming normality and given informa-

tion up to time T is

L(φ, ρ, σ2) = −1

2
log(2π)− 1

2
log(σ2)− 1

T

ε′ε
2σ2

where ε can be rewritten recursively as ε = ι′T yT +Dy−1+Bε for the pure model, where ι′T

is T -dimensional vector with T th element equal to 1 and others zero, D is a upper triangular

T×T matrix with diagonal entries equal to −ρ and (i, j)th upper off-diagonal element being

1 if j − i = 1, otherwise zero. For the intercept model, ε can be rewritten recursively as

ε = ι′T yT − αι+Dy−1 +Bε.
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Following Bao and Ullah(2007, 2009), the stochastic expansion of the QML esti-

mator β̂ can be written as β̂−β = a−1/2 +a−1+a−3/2+ oP (T
−3/2), where a−i/2 is of order

Op(T
−i/2) for i = 1, 2, 3, and

a−1/2 = −QψT , a−1 = −QV1a−1/2 −
1

2
QH̄2(a−1/2 ⊗ a−1/2),

a−3/2 = −QV1a−1 −
1

2
QV2(a−1/2 ⊗ a−1/2)−

1

2
QH̄2(a−1/2 ⊗ a−1 + a−1 ⊗ a−1/2)

+
1

6
QH̄3(a−1/2 ⊗ a−1/2 ⊗ a−1/2) (2.3)

where ψT is the score function, X̄ = E(X), Q = H̄−1
1 , Vi = Hi − H̄i for i = 1, 2, 3, and

⊗ represents the Kronecker product. Applying the above expansion, the bias of the QML

estimator β̂ up to O(T−1) is given by B(β̂) = E(β̂ − β).

To get the bias of the estimator, we only need to check up to a−1. To get the expec-

tation of a−1/2 and a−1, we follow Ullah(2004, p.187) and Bao and Ullah(2010) for the ex-

pectation of quadratic forms, that for any matrices N1, N2 and ε ∼ i.i.d.(0, σ2), E(ε′N1ε) =

σ2tr(N1), E(ε
′N1ε · ε′N2ε) = σ4[γ2tr(N2 ⊙ N1) + tr(N1)tr(N2) + tr(N1N2) + tr(N ′

1N2)],

and E(εε′N1ε) = σ3γ1(I ⊙N1)ι, where ⊙ denotes the Hadamard product operator and γ1

and γ2 are the Pearson’s measures of skewness and excess kurtosis of ε. Substitute the

score function and Hessian matrix in appendix I for the pure model and appendix II for

the intercept model to a−1/2 in (2.3), it can be verified that E(a−1/2) = E(−QψT ) = 0, so

B(β̂) = E(a−1) for both models.

Notice that F ′
1F1, F

′
1F2, F

′
1F3, F

′
1N1F1, a

′F1, b
′F1, a

′F3 and b
′N∗

1F1 are all of order

O(1), and also we can verify the following terms of order O(T ):

tr(N2) =
T

1− φ2
, tr(N3) =

6Tφ

(1− φ2)2
, tr(M2) =

T

1− ρ2
, tr(M3) =

T

1− φρ
,
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tr(M1M3) =
Tφ

(1− ρφ)2
, tr(M4) =

T (φ+ ρ)

(1− φ2)(1− ρφ)2
, tr(M5) =

Tρ

(1− ρφ)(1− ρ2)
,

tr(M1N2) =
Tφ

(1− φ2)(1− ρφ)
, tr(M ′

1N1N1) =
Tρ

(1− ρφ)2
, tr(M1M2) =

Tρ

(1− ρ2)2
,

tr(N1N2) =
Tφ

(1− φ2)2
, tr(N1M2) =

Tρ

(1− ρ2)(1− φρ)
,

a′a =
T

(1− φ)2
, a′b =

αT

(1− φ)2(1− ρ)
, b′b =

α2T

(1− φ)2(1− ρ)2
, a′N1a =

T

(1− φ)3
,

a′M1a =
T

(1− φ)2(1− ρ)
, b′N1b =

α2T

(1− φ)3(1− ρ)2
, b′M1b =

α2T

(1− φ)2(1− ρ)3
,

a′N∗
1 b =

2αT

(1− φ)3(1− ρ)
, a′M1b = b′M1a =

αT

(1− ρ)2(1− φ)2
.

where N2 = N ′
1N1 + 2N2

1 , N1 = C−1B1, B1 = ∂B
∂φ , N3 = 6N ′

1N
2
1 + 6N3

1 , M2 = M ′
1M1,

M3 = N ′
1M1 + N1M1, M4 = N ′

1N1M1 +M ′
1N

2
1 + N2

1M1, M5 = M ′
1N1M1, F1 = C−1F ,

F ′
2 = F ′

1M1, F
′
3 = F ′

1N1 + F ′
1N

′
1, a = −C−1ι, b = αC−1M1ι, N

∗
1 = N1 +N ′

1. Applying the

expectation of quadratic forms and substitute the above results into a−1 in (2.3) with other

results in the appendices, we have the following two propositions for the pure model and

the intercept model respectively:

Proposition 1:For the pure first order autoregressive moving average model with an initial

condition y0 and an initial error term ε0 = 0, the approximate bias of the QML estimators,

up to order O(T−1), is given by:

B(φ̂) =
1

T (ρ− φ)4

(

φ5(−6ρ4 + 5ρ2 + 1) + φ4(8ρ3 − 9ρ) + φ3(5ρ4 − ρ2) + φ2(−11ρ3 + 5ρ)

+φ(2ρ4 + 2ρ2)− ρ3
)

B(ρ̂) =
1

T (ρ− φ)4

(

ρ5(−6φ4 + 3φ2 − 1) + ρ4(6φ3 + 6φ) + ρ3(9φ4 − 20φ2 − 1)

+ρ2(2φ3 + 2φ) + ρ(−5φ4 + 5φ2)

)

B(σ̂2) = −2σ2

T
(2.4)
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provided φ, ρ ∈ (−1, 1) and φ 6= ρ. And the above results is robust to nonnormality.

Proposition 2:For the first order autoregressive moving average model with intercept and

with an initial condition y0 and an initial error term ε0 = 0, the approximate bias of the

QML estimators, up to order O(T−1), is given by:

B(α̂) =
α

T (1− ρ)(ρ− φ)4

(

ρ5(6φ4 − 3φ2 − φ+ 1) + ρ4(−6φ3 + 3φ2 − 7φ+ 1) + ρ3(−9φ4

−3φ3 + 23φ2 − 3φ+ 2)ρ2(φ4 − 5φ3 + 3φ2 − 5φ) + ρ(6φ4 − φ3 − 2φ2)− φ3
)

B(φ̂) =
1

T (ρ− φ)4

(

φ5(−6ρ4 + 5ρ2 − ρ+ 1) + φ4(8ρ3 + 3ρ2 − 10ρ+ 1) + φ3(5ρ4 − 3ρ3

+2ρ2 − 3ρ+ 1) + φ2(ρ4 − 14ρ3 + 3ρ2 + 2ρ) + φ(3ρ4 − ρ3 + 5ρ2)− 2ρ3
)

B(ρ̂) =
1

T (ρ− φ)4

(

ρ5(−6φ4 + 3φ2 + φ− 1) + ρ4(6φ3 − 3φ2 + 7φ− 1) + ρ3(9φ4 + 3φ3

−23φ2 + 3φ− 2)− ρ2(φ4 − 5φ3 + 3φ2 − 5φ) + ρ(−6φ4 + φ3 + 2φ2) + φ3
)

B(σ̂2) = −3σ2

T
(2.5)

provided φ, ρ ∈ (−1, 1) and φ 6= ρ. And the above results is robust to nonnormality.

Remark 1. Notice that if ρ = 0 in the pure ARMA(1,1) model, it reduces to the

MA(1) model, and from Bao and Ullah (2007), the bias of the QML estimators are B(φ̂) =

φ
T , B(σ̂2) = −σ2

T , which could also be verified by deleting the corresponding elements with

ρ in the score, Hessian and H2 matrix for the pure ARMA(1,1) model in the appendix.

However, by substituting ρ = 0 into (3.3), we have B(φ̂) = φ
T , B(ρ̂) = 0 ,B(σ̂2) = −2σ2

T ,

which indicates that if the true model is MA(1) but we misspecified as ARMA(1,1), the

bias of the QML estimators for φ and ρ will be the same, yet the bias of the variance term

is twice as large in absolute value for the misspecified model.

Remark 2. On the other hand, if we assume φ = 0 in the pure ARMA(1,1) model,
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it degenerates to the AR(1) model, and from Bao and Ullah (2007) and Bao (2007), the

bias of the least squares estimators of the AR(1) model is given by B(ρ̂) = −2ρ
T , and we can

verify this is also the case for the QML estimators by deleting the corresponding rows and

columns in the score function, Hessian and the H2 matrix for the pure ARMA(1,1) model.

Moreover, we can verify in this case, B(σ̂2) = −σ2

T . However, if we substitute φ = 0 into

(3.3), we have: B(φ̂) = − 1
Tρ , B(ρ̂) = − 1

T (ρ + 1
ρ), and B(σ̂2) = −2σ2

T . This implies that

if the true model is AR(1) yet misspecified as ARMA(1,1), the bias for both of the QML

estimators of φ and ρ is larger in absolute value, may even be huge when ρ is close to zero.

Also, the bias of the variance term is twice as large in absolute value for the misspecified

model.

Remark 3. For the pure model, when φ = 0, the difference between the two bias

in the misspecified ARMR(1,1) model is B(ρ̂)−B(φ̂) = − ρ
T , implies that when the bias of

ρ̂ is bigger than the bias of φ̂ when ρ < 0, and opposite when ρ > 0 when the AR(1) model

is misspecified as the ARMA(1,1) model. Moreover, since dB(φ̂)
dρ = 1

Tρ2
> 0, the bias of φ̂ is

always increasing when ρ increases. And since d2B(φ̂)
dρ2

= − 2
Tρ3

, so the bias of φ̂ is concave in

ρ when ρ > 0 and convex in ρ when ρ < 0. In addition, dB(ρ̂)
dρ = 1−ρ2

Tρ2
> 0, means the bias

of ρ̂ increases when ρ increases, and d2B(φ̂)
dρ2 = − 2

Tρ3 , so similarly, the bias of ρ̂ is concave

when ρ > 0 and convex when ρ < 0.

Remark 4. Another interesting thing for the intercept ARMA(1,1) model is that

the bias for α̂ is equal to − α
1−ρB(ρ̂). And for the MA(1) model, from Bao, Ullah and

Zhang (2012), the bias of α̂ is equal to zero, which could also be verified by deleting the

corresponding rows and columns of the score, Hessian and H2 matrix related to ρ for the
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ARMA(1,1) model. For the AR(1) case, we can verify that the bias of α is equal to α(1+3ρ)
T (1−ρ) ,

which is also equal to − α
1−ρB(ρ̂), where B(ρ̂) = −1+3ρ

T from Bao (2007).

Remark 5. For both models, the initial condition y0 does not affect the estimator

bias up to order O(T−1), however, y0 does affect the bias of order O(T−2). Moreover, the

skewness and excess kurtosis of the error terms also enters the bias term of order O(T−2).

This is similar to the results of the AR(1) model, as in Bao (2007).

Remark 6. In general, for any ARMA(1,1) process, since the bias of σ̂2 comes both

from AR(1) and MA(1) process, it is not surprising to see that it is twice as large as the bias

in both AR(1) and MA(1). And similar to those two models, the bias of σ̂2 is increasing in

σ2 in absolute value. Moreover, the bias for φ̂ and ρ̂ is bigger than both models, implying

that it is affected by the correlation between the two parameters, since the Hessian matrix

is no longer diagonal, as in the AR(1) and MA(1) models.

Remark 7. Tanaka (1984) derived the bias formula for both pure and intercept

ARMA(1,1) model using Edgeworth type asymptotic expansion under normal distributed

error terms. The bias formula given in this paper under general distributed error terms is

slightly different from that paper. The simulation results below show that when sample size

is small (for example, T = 30), the two results gives very similar bias correction, however,

as sample size increases (for example, T = 100), the bias correction formula given in this

paper tend to achieve the true parameter value while the formula given in Tanaka (1984)

shows slower rate of convergence to the true value.
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2.3 Simulation Results

This part uses simulation to check the effect of bias correction of the QML esti-

mators applying (3.3) and (2.5) in the pure and intercept ARMA(1,1) model respectively.

To check robustness to nonnormality, we allow the error term to have different distribution-

s, including normal, uniform, exponential, mixture of of two normals N(-3,1) and N(3,1)

with half probability for each, and student-t with 5 degrees of freedom. The error terms

are standardized to zero mean and with variance equal to 1 or 2 in different cases. The

sample size is equal to 30 and 100. Since the model assumes that φ 6= ρ, for the pure

model, (φ, ρ) ∈ {−0.9,−0.5,−0.2, 0.2, 0.5, 0.9} and with opposite sign for each pair chosen;

for the intercept model, α ∈ (0.2, 0.5, 1), and (φ, ρ) ∈ {−0.8,−0.5,−0.2, 0.2, 0.5, 0.8} to

ensure convergence. The QML estimators are reported as α̂, φ̂, ρ̂, σ̂2, the bias corrected

estimators are reported as α̈, φ̈, ρ̈ and σ̈2 by deducting the bias in (3.3) and (2.5) from the

corresponding QML estimators, and the feasible bias corrected estimators are reported as

α̃, φ̃, ρ̃ and σ̃2 by substituting the QML estimators to the bias representation in the bias

corrected estimators.

Table 1 to 4 report the results for the pure ARMA(1, 1) model, only the case when

ρ is positive and φ is negative is reported since the results for ρ negative and φ positive is

quite similar. Table 1 and 2 is for sample size is 30 and σ2 is equal to 1 and 2 respectively.

Table 3 and 4 are results for sample size equal to 100. From Table 1 to 4, we can see that for

small sample size, when ρ is equal to 0.5 or 0.9 and φ is equal to -0.2 or -0.5, both the bias

corrected estimators for φ and ρ give smaller bias than the QMLE estimators. And when ρ

is equal to 0.5 or 0.9 and φ is equal to -0.9, the bias corrected estimators for ρ is better yet

58



the QML estimator for φ is better. However, when ρ is equal to 0.2, all the QML estimators

for φ and ρ are better no matter what value φ is. This implies that when the true value of ρ

increases from moderate to large, the bias corrected estimators work better than the QML

estimators, which means in applied works the bias corrected estimator will outperform the

QML estimator since ρ always has larger value in real time series data. The bias corrected

estimators for σ2 is always better than QML estimators. And when sample size increase to

100, almost all the bias corrected estimators are better than the QML estimators, which

implies the bias correction works even better when sample size is larger.

Table 5 to 10 show results for the intercept model, with 5 to 7 for sample size equal

to 30 and 8 to 10 for sample size equal to 100. Here only cases for σ2 = 1 and ρ > 0 are

reported since other cases have similar results. The results show that for almost all cases,

the bias corrected estimator outperform the QML estimator, and when sample size increase

to 100, the results for bias corrected estimators are even better.

2.4 Concluding Remarks

The quasi maximum likelihood estimator (QMLE) of parameters in the first order

autoregressive moving average model can be biased in finite samples. In this paper, we

develop the bias of the QMLE of the pure ARMA(1,1) model up to order O(T−1). And

the formula represented in the proposition can be used as bias correction for parameter

estimation in applied works. Our analytical bias expression of the QMLE suggests that the

bias is robust to nonnormality since no special assumptions about the distribution of the

error terms is imposed. Our simulation results show that the bias corrected QML estimators
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is better than the without correction, and it works even when sample size increased from

30 to 100. The comparison between the ARMA(1,1) model with AR(1) and MA(1) model

shows that the bias for all the estimators in the ARMA(1,1) model is larger, due to the

interaction between φ and ρ, as well as the variance coming from both AR(1) and MA(1)

processes. When there is model misspecification, the bias will be larger, especially when

the true model is AR(1).
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Table 2.1: Bias Correction for pure ARMA(1,1) model, σ2 = 1, T = 30

(φ, ρ) φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂ σ̈ σ̃

(-0.9, 0.9) -0.9131 -0.8809 -0.8810 0.8439 0.9013 0.8962 0.9311 0.9978 0.9932
-0.9115 -0.8792 -0.8794 0.8495 0.9069 0.9023 0.9403 1.0070 1.0030
-0.9126 -0.8803 -0.8804 0.8545 0.9119 0.9078 0.9437 1.0104 1.0066
-0.9135 -0.8812 -0.8813 0.8440 0.9014 0.8963 0.9362 1.0029 0.9986
-0.9131 -0.8808 -0.8809 0.8475 0.9049 0.9001 0.9373 1.0040 0.9998

(-0.5, 0.9) -0.5348 -0.5039 -0.5050 0.8425 0.9029 0.8979 0.9332 0.9999 0.9954
-0.5320 -0.5012 -0.5023 0.8406 0.9010 0.8958 0.9300 0.9967 0.9920
-0.5349 -0.5040 -0.5050 0.8479 0.9083 0.9037 0.9378 1.0044 1.0003
-0.5345 -0.5036 -0.5046 0.8423 0.9027 0.8977 0.9333 1.0000 0.9956
-0.5369 -0.5060 -0.5070 0.8440 0.9044 0.8995 0.9369 1.0036 0.9994

(-0.2, 0.9) -0.2408 -0.2071 -0.2089 0.8370 0.9009 0.8962 0.9323 0.9989 0.9944
-0.2436 -0.2099 -0.2119 0.8306 0.8946 0.8894 0.9308 0.9975 0.9929
-0.2375 -0.2038 -0.2055 0.8399 0.9039 0.8995 0.9513 1.0179 1.0147
-0.2408 -0.2071 -0.2093 0.8292 0.8932 0.8882 0.9319 0.9986 0.9940
-0.2377 -0.2040 -0.2062 0.8374 0.9014 0.8965 0.9430 1.0097 1.0059

(-0.9, 0.5) -0.9104 -0.8825 -0.8812 0.4735 0.4955 0.4951 0.9387 1.0053 1.0012
-0.9091 -0.8811 -0.8799 0.4767 0.4987 0.4985 0.9422 1.0089 1.0051
-0.9076 -0.8796 -0.8783 0.4883 0.5102 0.5108 0.9405 1.0071 1.0032
-0.9100 -0.8820 -0.8807 0.4761 0.4980 0.4978 0.9377 1.0044 1.0003
-0.9117 -0.8837 -0.8824 0.4779 0.4999 0.4997 0.9374 1.0041 0.9999

(-0.5, 0.5) -0.5380 -0.5233 -0.5172 0.4556 0.4815 0.4818 0.9326 0.9993 0.9948
-0.5331 -0.5184 -0.5121 0.4615 0.4874 0.4885 0.9292 0.9959 0.9912
-0.5339 -0.5192 -0.5139 0.4655 0.4914 0.4914 0.9535 1.0201 1.0170
-0.5347 -0.5200 -0.5128 0.4587 0.4846 0.4869 0.9298 0.9964 0.9917
-0.5300 -0.5153 -0.5093 0.4627 0.4886 0.4895 0.9335 1.0001 0.9957

(-0.2, 0.5) -0.2487 -0.2193 -0.2142 0.4426 0.4894 0.5022 0.9318 0.9985 0.9939
-0.2506 -0.2212 -0.1835 0.4395 0.4863 0.5389 0.9326 0.9993 0.9948
-0.2459 -0.2165 -0.2235 0.4469 0.4937 0.4893 0.9377 1.0044 1.0003
-0.2593 -0.2299 -0.2401 0.4359 0.4827 0.4795 0.9277 0.9944 0.9896
-0.2571 -0.2278 -0.2548 0.4389 0.4857 0.4688 0.9341 1.0007 0.9963

(-0.9, 0.2) -0.9037 -0.8772 -0.8749 0.2041 0.2060 0.2118 0.9421 1.0087 1.0049
-0.9082 -0.8817 -0.8793 0.1997 0.2016 0.2072 0.9385 1.0052 1.0011
-0.8993 -0.8729 -0.8711 0.2178 0.2197 0.2251 0.9383 1.0049 1.0008
-0.9073 -0.8808 -0.8783 0.2031 0.2050 0.2108 0.9381 1.0047 1.0006
-0.9062 -0.8798 -0.8775 0.2068 0.2087 0.2140 0.9433 1.0100 1.0062

(-0.5, 0.2) -0.5251 -0.5302 -0.4342 0.1835 0.1713 0.2896 0.9320 0.9986 0.9941
-0.5284 -0.5335 -0.4640 0.1819 0.1697 0.2571 0.9277 0.9944 0.9896
-0.5231 -0.5281 -0.4797 0.1851 0.1730 0.2323 0.9387 1.0054 1.0013
-0.5360 -0.5411 -0.4365 0.1790 0.1668 0.2926 0.9267 0.9933 0.9884
-0.5238 -0.5289 -0.4623 0.1836 0.1715 0.2536 0.9282 0.9948 0.9900

(-0.2, 0.2) -0.2496 -0.2613 -0.0067 0.1735 0.1667 0.5810 0.9440 1.0106 1.0069
-0.2638 -0.2755 -0.0299 0.1609 0.1542 0.5773 0.9353 1.0020 0.9977
-0.2531 -0.2647 -0.0222 0.1663 0.1595 0.5685 0.9470 1.0137 1.0101
-0.2705 -0.2821 0.0386 0.1557 0.1489 0.6356 0.9328 0.9995 0.9950
-0.2591 -0.2708 -0.0892 0.1679 0.1612 0.4947 0.9427 1.0093 1.0055

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.
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Table 2.2: Bias Correction for pure ARMA(1,1) model, σ2 = 2, T = 30

(φ, ρ) φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂ σ̈ σ̃

(-0.9, 0.9) -0.9110 -0.8787 -0.8789 0.8484 0.9058 0.9011 1.8804 2.0138 2.0058
-0.9121 -0.8798 -0.8799 0.8473 0.9047 0.8999 1.8769 2.0103 2.0021
-0.9123 -0.8800 -0.8801 0.8535 0.9109 0.9067 1.8830 2.0163 2.0085
-0.9115 -0.8792 -0.8794 0.8451 0.9025 0.8975 1.8743 2.0076 1.9992
-0.9125 -0.8802 -0.8803 0.8489 0.9063 0.9016 1.9036 2.0369 2.0305

(-0.5, 0.9) -0.5381 -0.5072 -0.5082 0.8424 0.9028 0.8977 1.8757 2.0090 2.0007
-0.5423 -0.5114 -0.5125 0.8401 0.9005 0.8953 1.8687 2.0021 1.9933
-0.5382 -0.5073 -0.5084 0.8465 0.9069 0.9021 1.8847 2.0180 2.0104
-0.5361 -0.5052 -0.5062 0.8408 0.9012 0.8960 1.8576 1.9910 1.9815
-0.5345 -0.5036 -0.5046 0.8442 0.9046 0.8997 1.8770 2.0103 2.0021

(-0.2, 0.9) -0.2377 -0.2040 -0.2059 0.8353 0.8992 0.8943 1.8523 1.9857 1.9758
-0.2398 -0.2061 -0.2079 0.8347 0.8987 0.8939 1.8550 1.9883 1.9786
-0.2366 -0.2029 -0.2045 0.8405 0.9045 0.9002 1.8626 1.9959 1.9868
-0.2422 -0.2086 -0.2106 0.8363 0.9003 0.8954 1.8654 1.9987 1.9897
-0.2386 -0.2049 -0.2067 0.8408 0.9047 0.9002 1.8944 2.0278 2.0207

(-0.9, 0.5) -0.9074 -0.8795 -0.8782 0.4801 0.5021 0.5022 1.8759 2.0092 2.0010
-0.9085 -0.8805 -0.8793 0.4752 0.4972 0.4969 1.8797 2.0130 2.0050
-0.9096 -0.8816 -0.8803 0.4901 0.5121 0.5127 1.8947 2.0280 2.0210
-0.9115 -0.8835 -0.8822 0.4726 0.4946 0.4942 1.8756 2.0089 2.0006
-0.9105 -0.8825 -0.8812 0.4793 0.5013 0.5012 1.9051 2.0385 2.0322

(-0.5, 0.5) -0.5334 -0.5187 -0.5120 0.4609 0.4868 0.4884 1.8711 2.0045 1.9959
-0.5359 -0.5212 -0.5143 0.4628 0.4887 0.4903 1.8607 1.9941 1.9848
-0.5348 -0.5201 -0.5149 0.4655 0.4914 0.4910 1.8717 2.0050 1.9964
-0.5347 -0.5200 -0.5125 0.4590 0.4849 0.4872 1.8641 1.9975 1.9884
-0.5361 -0.5214 -0.5058 0.4597 0.4856 0.4962 1.8601 1.9935 1.9841

(-0.2, 0.5) -0.2567 -0.2273 -0.2201 0.4340 0.4808 0.4994 1.8629 1.9962 1.9871
-0.2521 -0.2227 -0.2188 0.4429 0.4897 0.5024 1.8617 1.9951 1.9859
-0.2405 -0.2111 -0.2127 0.4560 0.5027 0.5061 1.8512 1.9845 1.9746
-0.2463 -0.2169 -0.2345 0.4414 0.4882 0.4797 1.8613 1.9947 1.9854
-0.2468 -0.2174 -0.2366 0.4457 0.4925 0.4814 1.8735 2.0068 1.9984

(-0.9, 0.2) -0.9068 -0.8804 -0.8781 0.2018 0.2037 0.2091 1.8756 2.0089 2.0006
-0.9041 -0.8776 -0.8753 0.2059 0.2078 0.2135 1.8751 2.0084 2.0001
-0.9007 -0.8743 -0.8722 0.2145 0.2163 0.2219 1.9129 2.0462 2.0404
-0.9072 -0.8808 -0.8784 0.2062 0.2081 0.2137 1.8761 2.0094 2.0012
-0.9065 -0.8801 -0.8778 0.2039 0.2058 0.2112 1.9086 2.0419 2.0359

(-0.5, 0.2) -0.5273 -0.5324 -0.4655 0.1791 0.1669 0.2497 1.8667 2.0001 1.9912
-0.5293 -0.5344 -0.4625 0.1811 0.1689 0.2600 1.8632 1.9965 1.9874
-0.5225 -0.5275 -0.4832 0.1941 0.1819 0.2358 1.8755 2.0088 2.0005
-0.5264 -0.5315 -0.4538 0.1821 0.1699 0.2670 1.8555 1.9888 1.9792
-0.5304 -0.5355 -0.4613 0.1826 0.1704 0.2606 1.8835 2.0168 2.0091

(-0.2, 0.2) -0.2619 -0.2735 0.0368 0.1586 0.1518 0.6550 1.8555 1.9889 1.9792
-0.2731 -0.2847 0.0807 0.1541 0.1473 0.7003 1.8593 1.9926 1.9832
-0.2494 -0.2611 0.0650 0.1728 0.1660 0.6571 1.8862 2.0195 2.0120
-0.2732 -0.2849 0.0367 0.1539 0.1472 0.6341 1.8638 1.9971 1.9880
-0.2687 -0.2803 0.0489 0.1606 0.1538 0.6623 1.8923 2.0257 2.0185

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.
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Table 2.3: Bias Correction for pure ARMA(1,1) model, σ2 = 1, T = 100

(φ,ρ) φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂ σ̈ σ̃

(-0.9, 0.9) -0.9102 -0.9006 -0.9006 0.8823 0.8995 0.8990 0.9814 1.0014 1.0010
-0.9093 -0.8996 -0.8996 0.8827 0.8999 0.8994 0.9793 0.9993 0.9989
-0.9103 -0.9006 -0.9006 0.8829 0.9001 0.8996 0.9794 0.9994 0.9990
-0.9105 -0.9008 -0.9008 0.8822 0.8994 0.8989 0.9790 0.9990 0.9986
-0.9100 -0.9003 -0.9003 0.8835 0.9007 0.9002 0.9767 0.9967 0.9963

(-0.5, 0.9) -0.5127 -0.5034 -0.5036 0.8825 0.9006 0.9001 0.9811 1.0011 1.0008
-0.5094 -0.5001 -0.5003 0.8812 0.8994 0.8989 0.9793 0.9993 0.9988
-0.5093 -0.5000 -0.5001 0.8827 0.9008 0.9004 0.9730 0.9930 0.9925
-0.5110 -0.5017 -0.5019 0.8815 0.8997 0.8992 0.9804 1.0004 1.0000
-0.5097 -0.5004 -0.5005 0.8827 0.9009 0.9004 0.9847 1.0047 1.0044

(-0.2, 0.9) -0.2107 -0.2006 -0.2007 0.8807 0.8999 0.8995 0.9813 1.0013 1.0009
-0.2091 -0.1989 -0.1990 0.8801 0.8992 0.8989 0.9807 1.0007 1.0003
-0.2097 -0.1995 -0.1996 0.8828 0.9020 0.9017 0.9737 0.9937 0.9932
-0.2124 -0.2023 -0.2024 0.8810 0.9002 0.8999 0.9821 1.0021 1.0018
-0.2112 -0.2011 -0.2012 0.8812 0.9004 0.9001 0.9830 1.0030 1.0027

(-0.9, 0.5) -0.9091 -0.9007 -0.9006 0.4909 0.4975 0.4974 0.9805 1.0005 1.0001
-0.9088 -0.9004 -0.9002 0.4907 0.4972 0.4971 0.9791 0.9991 0.9987
-0.9075 -0.8991 -0.8989 0.4928 0.4994 0.4993 0.9826 1.0026 1.0022
-0.9085 -0.9001 -0.9000 0.4911 0.4977 0.4976 0.9789 0.9989 0.9985
-0.9091 -0.9007 -0.9005 0.4899 0.4965 0.4964 0.9821 1.0021 1.0017

(-0.5, 0.5) -0.5092 -0.5048 -0.5044 0.4874 0.4952 0.4949 0.9808 1.0008 1.0004
-0.5075 -0.5031 -0.5027 0.4881 0.4959 0.4956 0.9798 0.9998 0.9994
-0.5101 -0.5057 -0.5053 0.4882 0.4960 0.4957 0.9787 0.9987 0.9983
-0.5091 -0.5047 -0.5043 0.4884 0.4962 0.4959 0.9808 1.0008 1.0004
-0.5088 -0.5043 -0.5040 0.4913 0.4990 0.4989 0.9840 1.0040 1.0037

(-0.2, 0.5) -0.2121 -0.2033 -0.2042 0.4814 0.4954 0.4937 0.9811 1.0011 1.0007
-0.2131 -0.2042 -0.2053 0.4832 0.4973 0.4954 0.9792 0.9992 0.9987
-0.2158 -0.2070 -0.2081 0.4813 0.4953 0.4935 0.9828 1.0028 1.0024
-0.2146 -0.2058 -0.2068 0.4848 0.4988 0.4971 0.9791 0.9991 0.9986
-0.2096 -0.2008 -0.2017 0.4868 0.5008 0.4993 0.9760 0.9960 0.9955

(-0.9, 0.2) -0.9085 -0.9006 -0.9003 0.1976 0.1981 0.1986 0.9791 0.9991 0.9987
-0.9074 -0.8995 -0.8992 0.1969 0.1974 0.1979 0.9787 0.9987 0.9983
-0.9069 -0.8990 -0.8987 0.1987 0.1993 0.1997 0.9799 0.9999 0.9995
-0.9073 -0.8994 -0.8991 0.1975 0.1980 0.1985 0.9806 1.0006 1.0002
-0.9094 -0.9014 -0.9011 0.1982 0.1988 0.1993 0.9841 1.0041 1.0038

(-0.5, 0.2) -0.5107 -0.5123 -0.5077 0.1904 0.1868 0.1917 0.9763 0.9963 0.9958
-0.5090 -0.5105 -0.5061 0.1935 0.1898 0.1945 0.9789 0.9989 0.9985
-0.5110 -0.5125 -0.5083 0.1905 0.1869 0.1913 0.9849 1.0049 1.0046
-0.5132 -0.5147 -0.5098 0.1864 0.1827 0.1878 0.9803 1.0003 0.9999
-0.5086 -0.5101 -0.5057 0.1954 0.1917 0.1966 0.9843 1.0043 1.0040

(-0.2, 0.2) -0.2090 -0.2125 -0.1713 0.1866 0.1846 0.2464 0.9803 1.0003 0.9999
-0.2143 -0.2178 -0.1935 0.1844 0.1824 0.2240 0.9794 0.9994 0.9990
-0.2099 -0.2134 -0.1771 0.1900 0.1879 0.2379 0.9748 0.9948 0.9943
-0.2168 -0.2203 -0.1784 0.1830 0.1809 0.2401 0.9799 0.9999 0.9995
-0.2153 -0.2188 -0.1952 0.1822 0.1802 0.2201 0.9793 0.9993 0.9989

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.
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Table 2.4: Bias Correction for pure ARMA(1,1) model, σ2 = 2, T = 100

(φ, ρ) φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂ σ̈ σ̃

(-0.9, 0.9) -0.9092 -0.8995 -0.8996 0.8817 0.8990 0.8984 1.9649 2.0049 2.0042
-0.9100 -0.9003 -0.9003 0.8830 0.9002 0.8998 1.9577 1.9977 1.9969
-0.9090 -0.8993 -0.8993 0.8836 0.9008 0.9003 1.9704 2.0104 2.0098
-0.9103 -0.9006 -0.9006 0.8827 0.9000 0.8995 1.9590 1.9990 1.9982
-0.9112 -0.9015 -0.9015 0.8819 0.8991 0.8986 1.9534 1.9934 1.9924

(-0.5, 0.9) -0.5096 -0.5004 -0.5005 0.8810 0.8992 0.8987 1.9562 1.9962 1.9953
-0.5090 -0.4997 -0.4999 0.8800 0.8981 0.8977 1.9592 1.9992 1.9984
-0.5105 -0.5012 -0.5014 0.8810 0.8991 0.8987 1.9663 2.0063 2.0056
-0.5116 -0.5023 -0.5025 0.8808 0.8989 0.8984 1.9603 2.0003 1.9995
-0.5107 -0.5014 -0.5015 0.8830 0.9012 0.9007 1.9608 2.0008 2.0000

(-0.2, 0.9) -0.2097 -0.1996 -0.1997 0.8803 0.8995 0.8992 1.9616 2.0016 2.0009
-0.2113 -0.2012 -0.2014 0.8803 0.8995 0.8992 1.9573 1.9973 1.9965
-0.2128 -0.2027 -0.2028 0.8825 0.9017 0.9014 1.9642 2.0042 2.0034
-0.2122 -0.2021 -0.2022 0.8794 0.8986 0.8983 1.9620 2.0020 2.0013
-0.2104 -0.2003 -0.2004 0.8809 0.9001 0.8998 1.9603 2.0003 1.9995

(-0.9, 0.5) -0.9094 -0.9010 -0.9009 0.4888 0.4954 0.4952 1.9595 1.9995 1.9987
-0.9086 -0.9002 -0.9000 0.4901 0.4967 0.4966 1.9553 1.9953 1.9944
-0.9084 -0.9000 -0.8998 0.4926 0.4992 0.4991 1.9679 2.0079 2.0072
-0.9088 -0.9004 -0.9002 0.4894 0.4959 0.4958 1.9585 1.9985 1.9976
-0.9092 -0.9008 -0.9006 0.4907 0.4973 0.4972 1.9802 2.0202 2.0198

(-0.5, 0.5) -0.5088 -0.5044 -0.5041 0.4872 0.4950 0.4948 1.9591 1.9991 1.9983
-0.5067 -0.5023 -0.5019 0.4879 0.4957 0.4954 1.9619 2.0019 2.0012
-0.5101 -0.5056 -0.5053 0.4865 0.4943 0.4939 1.9643 2.0043 2.0036
-0.5079 -0.5035 -0.5031 0.4868 0.4946 0.4943 1.9617 2.0017 2.0009
-0.5091 -0.5047 -0.5044 0.4892 0.4970 0.4968 1.9747 2.0147 2.0142

(-0.2, 0.5) -0.2139 -0.2050 -0.2061 0.4844 0.4984 0.4967 1.9629 2.0029 2.0021
-0.2149 -0.2061 -0.2073 0.4800 0.4940 0.4921 1.9595 1.9995 1.9987
-0.2124 -0.2036 -0.2046 0.4846 0.4986 0.4969 1.9686 2.0086 2.0079
-0.2193 -0.2104 -0.2115 0.4782 0.4923 0.4904 1.9553 1.9953 1.9944
-0.2129 -0.2040 -0.2048 0.4820 0.4960 0.4946 1.9500 1.9900 1.9890

(-0.9, 0.2) -0.9086 -0.9007 -0.9004 0.1962 0.1968 0.1973 1.9567 1.9967 1.9959
-0.9084 -0.9005 -0.9002 0.1990 0.1996 0.2001 1.9545 1.9945 1.9935
-0.9089 -0.9009 -0.9006 0.1988 0.1994 0.1998 1.9672 2.0072 2.0065
-0.9077 -0.8998 -0.8995 0.1997 0.2003 0.2007 1.9606 2.0006 1.9999
-0.9098 -0.9019 -0.9016 0.1987 0.1993 0.1997 1.9679 2.0079 2.0073

(-0.5, 0.2) -0.5120 -0.5135 -0.5090 0.1907 0.1871 0.1918 1.9579 1.9979 1.9971
-0.5073 -0.5088 -0.5041 0.1946 0.1909 0.1961 1.9581 1.9981 1.9973
-0.5091 -0.5106 -0.5065 0.1935 0.1899 0.1941 1.9578 1.9978 1.9970
-0.5058 -0.5073 -0.5027 0.1957 0.1920 0.1971 1.9588 1.9988 1.9980
-0.5115 -0.5130 -0.5086 0.1907 0.1871 0.1917 1.9647 2.0047 2.0040

(-0.2, 0.2) -0.2138 -0.2173 -0.1822 0.1854 0.1834 0.2358 1.9545 1.9945 1.9936
-0.2152 -0.2187 -0.1903 0.1817 0.1797 0.2257 1.9592 1.9992 1.9984
-0.2226 -0.2261 -0.1936 0.1779 0.1758 0.2204 1.9665 2.0065 2.0058
-0.2220 -0.2255 -0.1875 0.1770 0.1750 0.2296 1.9557 1.9957 1.9948
-0.2181 -0.2216 -0.1854 0.1807 0.1787 0.2328 1.9738 2.0138 2.0133

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.

64



Table 2.5: Bias Correction for ARMA(1,1) model with intercept, ρ = 0.2, σ2 = 1, T = 30

(α, φ) α̂ α̈ α̃ φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂2 σ̈2 σ̃2

(0.2, -0.2) 0.2307 0.2064 0.0327 -0.3054 -0.2477 0.2251 0.0811 0.1783 0.7921 0.8990 0.9990 0.9889
0.2186 0.1943 0.0596 -0.2957 -0.2380 0.1121 0.0920 0.1893 0.6722 0.8972 0.9972 0.9869
0.2275 0.2032 0.1268 -0.2990 -0.2413 -0.0761 0.0856 0.1829 0.4855 0.9049 1.0049 0.9954
0.2242 0.1999 0.0782 -0.2986 -0.2409 0.1892 0.0851 0.1823 0.7377 0.8943 0.9943 0.9838
0.2185 0.1942 0.1447 -0.2895 -0.2318 0.0021 0.0974 0.1947 0.5656 0.9018 1.0018 0.9920

(0.5, -0.2) 0.5602 0.4994 0.3561 -0.2946 -0.2369 -0.1110 0.0949 0.1922 0.4326 0.8988 0.9988 0.9887
0.5555 0.4947 0.2110 -0.2719 -0.2142 0.1790 0.1071 0.2043 0.7078 0.8949 0.9949 0.9844
0.5742 0.5134 0.2532 -0.3030 -0.2453 -0.0059 0.0782 0.1755 0.5446 0.9021 1.0021 0.9923
0.5631 0.5023 0.3397 -0.2904 -0.2327 -0.0861 0.1017 0.1989 0.4414 0.8925 0.9925 0.9818
0.5604 0.4997 0.3516 -0.2925 -0.2348 -0.0544 0.0934 0.1907 0.4865 0.8913 0.9913 0.9804

(1.0, -0.2) 1.0907 0.9691 0.6157 -0.2528 -0.1951 0.0763 0.1209 0.2182 0.5776 0.8936 0.9936 0.9830
1.0774 0.9558 0.9068 -0.2454 -0.1877 -0.1282 0.1293 0.2266 0.3602 0.8875 0.9875 0.9762
1.0751 0.9536 0.9543 -0.2464 -0.1887 -0.2526 0.1309 0.2281 0.2585 0.8897 0.9897 0.9787
1.1017 0.9802 0.7632 -0.2606 -0.2029 -0.0522 0.1140 0.2112 0.4428 0.8861 0.9861 0.9747
1.0837 0.9622 1.0558 -0.2532 -0.1955 -0.2716 0.1263 0.2236 0.2232 0.9021 1.0021 0.9923

(0.2, -0.5) 0.2191 0.2064 0.1841 -0.5531 -0.5320 -0.4458 0.1225 0.1732 0.2729 0.8998 0.9998 0.9897
0.2258 0.2132 0.1950 -0.5675 -0.5464 -0.4691 0.1157 0.1664 0.2598 0.8960 0.9960 0.9856
0.2260 0.2133 0.1942 -0.5643 -0.5432 -0.4834 0.1149 0.1656 0.2325 0.9059 1.0059 0.9965
0.2196 0.2070 0.1671 -0.5707 -0.5496 -0.4148 0.1093 0.1599 0.3171 0.8949 0.9949 0.9844
0.2188 0.2062 0.1844 -0.5610 -0.5399 -0.4543 0.1194 0.1701 0.2699 0.9035 1.0035 0.9939

(0.5, -0.5) 0.5457 0.5140 0.4806 -0.5645 -0.5434 -0.4778 0.1164 0.1671 0.2458 0.8976 0.9976 0.9874
0.5474 0.5158 0.4921 -0.5617 -0.5406 -0.5042 0.1190 0.1697 0.2190 0.8953 0.9953 0.9848
0.5430 0.5114 0.4740 -0.5551 -0.5340 -0.4861 0.1264 0.1771 0.2311 0.9028 1.0028 0.9931
0.5468 0.5151 0.4681 -0.5713 -0.5502 -0.4745 0.1134 0.1641 0.2539 0.8916 0.9916 0.9808
0.5450 0.5133 0.4741 -0.5659 -0.5448 -0.4771 0.1182 0.1689 0.2474 0.9048 1.0048 0.9953

(1.0, -0.5) 1.0711 1.0078 0.9405 -0.5552 -0.5341 -0.4740 0.1282 0.1788 0.2472 0.8958 0.9958 0.9854
1.0766 1.0132 0.9358 -0.5535 -0.5324 -0.4720 0.1297 0.1804 0.2493 0.8945 0.9945 0.9840
1.0716 1.0082 0.9536 -0.5549 -0.5338 -0.4926 0.1324 0.1831 0.2275 0.9010 1.0010 0.9911
1.0863 1.0230 0.9411 -0.5540 -0.5329 -0.4756 0.1262 0.1769 0.2465 0.8905 0.9905 0.9796
1.0772 1.0139 0.9945 -0.5489 -0.5278 -0.5120 0.1311 0.1817 0.2047 0.8951 0.9951 0.9846

(0.2, -0.8) 0.2177 0.2064 0.2044 -0.8332 -0.8063 -0.7994 0.1521 0.1975 0.2046 0.8950 0.9950 0.9845
0.2149 0.2036 0.2010 -0.8319 -0.8049 -0.7978 0.1565 0.2019 0.2093 0.8963 0.9963 0.9859
0.2128 0.2015 0.1990 -0.8309 -0.8040 -0.7983 0.1560 0.2013 0.2062 0.9034 1.0034 0.9938
0.2135 0.2022 0.2004 -0.8332 -0.8063 -0.7992 0.1520 0.1973 0.2046 0.8958 0.9958 0.9853
0.2130 0.2016 0.1997 -0.8332 -0.8063 -0.7992 0.1529 0.1983 0.2052 0.9026 1.0026 0.9928

(0.5, -0.8) 0.5251 0.4968 0.4923 -0.8343 -0.8074 -0.8006 0.1545 0.1998 0.2068 0.8986 0.9986 0.9885
0.5199 0.4915 0.4880 -0.8382 -0.8113 -0.8049 0.1561 0.2015 0.2074 0.8999 0.9999 0.9899
0.5234 0.4951 0.4917 -0.8340 -0.8071 -0.8013 0.1557 0.2011 0.2062 0.9033 1.0033 0.9937
0.5214 0.4931 0.4879 -0.8346 -0.8077 -0.8005 0.1589 0.2043 0.2121 0.8976 0.9976 0.9874
0.5197 0.4913 0.4882 -0.8387 -0.8117 -0.8050 0.1477 0.1931 0.1994 0.8994 0.9994 0.9893

(1.0, -0.8) 1.0219 0.9652 0.9583 -0.8343 -0.8074 -0.8013 0.1659 0.2112 0.2174 0.8990 0.9990 0.9889
1.0318 0.9751 0.9704 -0.8370 -0.8101 -0.8055 0.1625 0.2078 0.2124 0.8960 0.9960 0.9856
1.0420 0.9853 0.9792 -0.8360 -0.8090 -0.8036 0.1515 0.1968 0.2009 0.8975 0.9975 0.9872
1.0312 0.9745 0.9693 -0.8359 -0.8090 -0.8032 0.1580 0.2034 0.2086 0.8923 0.9923 0.9815
1.0300 0.9733 0.9682 -0.8390 -0.8121 -0.8068 0.1600 0.2053 0.2104 0.9101 1.0101 1.0011

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.
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Table 2.6: Bias Correction for ARMA(1,1) model with intercept, ρ = 0.5, σ2 = 1, T = 30

(α, φ) α̂ α̈ α̃ φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂2 σ̈2 σ̃2

(0.2, -0.2) 0.2572 0.2070 0.1984 -0.3005 -0.2292 -0.2456 0.3504 0.4758 0.4653 0.9049 1.0049 0.9954
0.2471 0.1969 0.2052 -0.3079 -0.2366 -0.2467 0.3511 0.4765 0.4704 0.8953 0.9953 0.9849
0.2484 0.1982 0.1761 -0.2975 -0.2262 -0.1959 0.3524 0.4778 0.5097 0.8964 0.9964 0.9860
0.2527 0.2026 0.2150 -0.3103 -0.2390 -0.2622 0.3466 0.4719 0.4520 0.8944 0.9944 0.9838
0.2489 0.1988 0.2086 -0.2928 -0.2215 -0.2086 0.3628 0.4882 0.5022 0.8895 0.9895 0.9784

(0.5, -0.2) 0.6242 0.4988 0.5538 -0.2973 -0.2260 -0.2722 0.3618 0.4872 0.4468 0.8958 0.9958 0.9854
0.6128 0.4874 0.5190 -0.2933 -0.2220 -0.2374 0.3674 0.4927 0.4742 0.8945 0.9945 0.9840
0.6273 0.5019 0.5348 -0.2990 -0.2277 -0.2557 0.3608 0.4862 0.4571 0.9056 1.0056 0.9962
0.6210 0.4956 0.5633 -0.2969 -0.2256 -0.2844 0.3609 0.4863 0.4293 0.8942 0.9942 0.9836
0.6215 0.4962 0.5730 -0.2921 -0.2208 -0.2775 0.3673 0.4927 0.4387 0.9080 1.0080 0.9988

(1.0, -0.2) 1.1883 0.9376 1.3010 -0.2630 -0.1917 -0.3597 0.3918 0.5172 0.3442 0.8957 0.9957 0.9853
1.2009 0.9502 1.4370 -0.2731 -0.2018 -0.4121 0.3834 0.5087 0.3042 0.8925 0.9925 0.9817
1.1813 0.9306 1.1427 -0.2584 -0.1871 -0.2860 0.3973 0.5226 0.4212 0.8944 0.9944 0.9838
1.2070 0.9563 1.2537 -0.2730 -0.2017 -0.3400 0.3869 0.5123 0.3778 0.8921 0.9921 0.9813
1.1859 0.9352 1.1791 -0.2554 -0.1841 -0.2921 0.3962 0.5215 0.4138 0.8925 0.9925 0.9817

(0.2, -0.5) 0.2390 0.2037 0.2133 -0.5609 -0.5254 -0.5271 0.3954 0.4839 0.4719 0.9008 1.0008 0.9908
0.2436 0.2082 0.2103 -0.5729 -0.5374 -0.5325 0.3876 0.4760 0.4699 0.8996 0.9996 0.9895
0.2417 0.2064 0.2071 -0.5663 -0.5307 -0.5282 0.3907 0.4791 0.4699 0.9003 1.0003 0.9903
0.2382 0.2029 0.2054 -0.5669 -0.5314 -0.5278 0.3909 0.4793 0.4715 0.8937 0.9937 0.9831
0.2343 0.1990 0.2031 -0.5635 -0.5279 -0.5233 0.3908 0.4792 0.4721 0.9083 1.0083 0.9991

(0.5, -0.5) 0.5922 0.5038 0.5312 -0.5671 -0.5315 -0.5448 0.3902 0.4786 0.4552 0.8923 0.9923 0.9815
0.5903 0.5019 0.5079 -0.5627 -0.5272 -0.5241 0.4013 0.4897 0.4821 0.8955 0.9955 0.9850
0.5861 0.4977 0.5034 -0.5570 -0.5215 -0.5217 0.3972 0.4856 0.4747 0.9017 1.0017 0.9919
0.5853 0.4969 0.4996 -0.5618 -0.5263 -0.5194 0.3968 0.4852 0.4813 0.8942 0.9942 0.9836
0.5864 0.4979 0.5184 -0.5610 -0.5255 -0.5326 0.3986 0.4870 0.4705 0.9014 1.0014 0.9916

(1.0, -0.5) 1.1522 0.9754 0.9933 -0.5537 -0.5181 -0.5180 0.4110 0.4994 0.4897 0.8937 0.9937 0.9830
1.1567 0.9799 1.0116 -0.5587 -0.5231 -0.5277 0.4095 0.4979 0.4833 0.8915 0.9915 0.9806
1.1568 0.9800 0.9906 -0.5613 -0.5258 -0.5246 0.4098 0.4982 0.4889 0.8976 0.9976 0.9874
1.1599 0.9831 1.0130 -0.5594 -0.5239 -0.5263 0.4076 0.4960 0.4830 0.8896 0.9896 0.9785
1.1470 0.9701 0.9898 -0.5567 -0.5212 -0.5200 0.4139 0.5023 0.4928 0.8987 0.9987 0.9886

(0.2, -0.8) 0.2192 0.1889 0.1925 -0.8367 -0.8063 -0.8048 0.4207 0.4965 0.4895 0.8968 0.9968 0.9865
0.2231 0.1928 0.1951 -0.8343 -0.8040 -0.8024 0.4208 0.4967 0.4898 0.8946 0.9946 0.9840
0.2248 0.1945 0.1959 -0.8352 -0.8048 -0.8035 0.4237 0.4996 0.4925 0.9021 1.0021 0.9923
0.2131 0.1828 0.1867 -0.8334 -0.8030 -0.8014 0.4190 0.4948 0.4880 0.8938 0.9938 0.9831
0.2191 0.1888 0.1912 -0.8337 -0.8034 -0.8019 0.4225 0.4984 0.4916 0.8998 0.9998 0.9897

(0.5, -0.8) 0.5543 0.4784 0.4851 -0.8352 -0.8048 -0.8033 0.4292 0.5050 0.4989 0.8982 0.9982 0.9881
0.5537 0.4779 0.4861 -0.8413 -0.8110 -0.8099 0.4214 0.4972 0.4900 0.8928 0.9928 0.9821
0.5597 0.4839 0.4899 -0.8364 -0.8060 -0.8047 0.4251 0.5009 0.4940 0.9065 1.0065 0.9972
0.5586 0.4828 0.4889 -0.8378 -0.8074 -0.8058 0.4269 0.5028 0.4965 0.8942 0.9942 0.9836
0.5528 0.4770 0.4933 -0.8375 -0.8072 -0.8107 0.4255 0.5013 0.4904 0.8977 0.9977 0.9875

(1.0, -0.8) 1.0954 0.9437 0.9568 -0.8393 -0.8089 -0.8083 0.4349 0.5107 0.5042 0.8923 0.9923 0.9816
1.0856 0.9340 0.9456 -0.8416 -0.8112 -0.8096 0.4387 0.5145 0.5090 0.8926 0.9926 0.9819
1.0934 0.9417 0.9527 -0.8390 -0.8087 -0.8073 0.4361 0.5119 0.5059 0.9002 1.0002 0.9903
1.0816 0.9300 0.9444 -0.8400 -0.8097 -0.8083 0.4360 0.5119 0.5057 0.8905 0.9905 0.9796
1.0772 0.9255 0.9399 -0.8359 -0.8055 -0.8051 0.4391 0.5150 0.5087 0.8997 0.9997 0.9897

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.
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Table 2.7: Bias Correction for ARMA(1,1) model with intercept, ρ = 0.8, σ2 = 1, T = 30

(α, φ) α̂ α̈ α̃ φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂2 σ̈2 σ̃2

(0.2, -0.2) 0.3226 0.1920 0.1969 -0.2834 -0.2187 -0.2278 0.6431 0.7737 0.7566 0.8913 0.9913 0.9804
0.3247 0.1941 0.2071 -0.2890 -0.2242 -0.2302 0.6355 0.7661 0.7527 0.8885 0.9885 0.9774
0.3143 0.1837 0.1738 -0.2780 -0.2133 -0.2197 0.6531 0.7836 0.7693 0.8943 0.9943 0.9837
0.3191 0.1885 0.2080 -0.2910 -0.2262 -0.2395 0.6384 0.7690 0.7482 0.8839 0.9839 0.9723
0.3169 0.1864 0.2019 -0.2754 -0.2107 -0.2148 0.6562 0.7868 0.7785 0.8869 0.9869 0.9756

(0.5, -0.2) 0.7578 0.4313 0.4880 -0.2601 -0.1954 -0.2128 0.6699 0.8005 0.7765 0.8928 0.9928 0.9820
0.7534 0.4269 0.4601 -0.2566 -0.1919 -0.2031 0.6692 0.7998 0.7810 0.8827 0.9827 0.9710
0.7389 0.4124 0.4314 -0.2583 -0.1936 -0.2038 0.6777 0.8083 0.7918 0.8836 0.9836 0.9719
0.7588 0.4323 0.4845 -0.2613 -0.1966 -0.2211 0.6673 0.7979 0.7691 0.8870 0.9870 0.9757
0.7434 0.4170 0.5094 -0.2582 -0.1934 -0.2237 0.6737 0.8042 0.7703 0.8884 0.9884 0.9772

(1.0, -0.2) 1.3386 0.6857 0.8425 -0.2179 -0.1532 -0.1809 0.7163 0.8469 0.8152 0.8837 0.9837 0.9721
1.3425 0.6896 0.8673 -0.2201 -0.1554 -0.1923 0.7159 0.8464 0.8071 0.8894 0.9894 0.9784
1.3213 0.6684 0.7739 -0.2132 -0.1484 -0.1691 0.7211 0.8517 0.8273 0.8824 0.9824 0.9707
1.3332 0.6803 0.8128 -0.2149 -0.1502 -0.1737 0.7171 0.8477 0.8197 0.8881 0.9881 0.9769
1.3096 0.6567 0.9502 -0.2091 -0.1444 -0.2066 0.7228 0.8534 0.7836 0.8920 0.9920 0.9812

(0.2, -0.5) 0.3032 0.1852 0.1923 -0.5625 -0.5166 -0.5205 0.6667 0.7847 0.7700 0.8857 0.9857 0.9743
0.2929 0.1749 0.1900 -0.5626 -0.5168 -0.5208 0.6629 0.7809 0.7658 0.8882 0.9882 0.9770
0.3111 0.1931 0.1857 -0.5619 -0.5160 -0.5203 0.6673 0.7853 0.7704 0.9059 1.0059 0.9965
0.3019 0.1838 0.1991 -0.5601 -0.5143 -0.5182 0.6642 0.7822 0.7672 0.8856 0.9856 0.9742
0.2922 0.1742 0.1896 -0.5602 -0.5143 -0.5184 0.6640 0.7821 0.7670 0.9020 1.0020 0.9921

(0.5, -0.5) 0.7307 0.4356 0.4588 -0.5518 -0.5059 -0.5092 0.6793 0.7973 0.7842 0.8911 0.9911 0.9802
0.7330 0.4380 0.4590 -0.5563 -0.5104 -0.5139 0.6781 0.7961 0.7822 0.8884 0.9884 0.9772
0.7309 0.4358 0.4499 -0.5582 -0.5123 -0.5160 0.6806 0.7986 0.7853 0.8942 0.9942 0.9836
0.7273 0.4323 0.4581 -0.5523 -0.5064 -0.5104 0.6783 0.7963 0.7826 0.8837 0.9837 0.9720
0.7210 0.4260 0.4555 -0.5550 -0.5091 -0.5133 0.6833 0.8013 0.7873 0.8968 0.9968 0.9865

(1.0, -0.5) 1.3193 0.7292 0.7855 -0.5385 -0.4926 -0.4992 0.7147 0.8327 0.8190 0.8881 0.9881 0.9770
1.3360 0.7460 0.7846 -0.5398 -0.4939 -0.4960 0.7126 0.8306 0.8209 0.8897 0.9897 0.9787
1.3348 0.7447 0.7753 -0.5341 -0.4882 -0.4906 0.7155 0.8336 0.8241 0.8939 0.9939 0.9833
1.3160 0.7259 0.7621 -0.5344 -0.4886 -0.4905 0.7161 0.8341 0.8246 0.8892 0.9892 0.9781
1.3129 0.7229 0.7727 -0.5370 -0.4911 -0.4959 0.7183 0.8363 0.8246 0.8807 0.9807 0.9688

(0.2, -0.8) 0.2735 0.1628 0.1778 -0.8342 -0.7979 -0.7993 0.6888 0.7994 0.7862 0.8892 0.9892 0.9781
0.2712 0.1605 0.1717 -0.8403 -0.8040 -0.8058 0.6872 0.7979 0.7843 0.8867 0.9867 0.9754
0.2874 0.1767 0.1712 -0.8403 -0.8040 -0.8057 0.6905 0.8012 0.7879 0.9059 1.0059 0.9965
0.2730 0.1623 0.1754 -0.8357 -0.7993 -0.8009 0.6870 0.7977 0.7840 0.8906 0.9906 0.9797
0.2651 0.1544 0.1733 -0.8372 -0.8009 -0.8025 0.6873 0.7979 0.7844 0.8972 0.9972 0.9869

(0.5, -0.8) 0.6649 0.3882 0.4224 -0.8383 -0.8020 -0.8035 0.6962 0.8069 0.7945 0.8904 0.9904 0.9794
0.6601 0.3835 0.4077 -0.8362 -0.7999 -0.8012 0.7022 0.8129 0.8012 0.8915 0.9915 0.9807
0.6688 0.3922 0.4084 -0.8415 -0.8052 -0.8066 0.6999 0.8106 0.7985 0.8935 0.9935 0.9829
0.6642 0.3875 0.4220 -0.8402 -0.8039 -0.8054 0.6977 0.8084 0.7961 0.8858 0.9858 0.9744
0.6673 0.3906 0.4183 -0.8432 -0.8069 -0.8084 0.7012 0.8119 0.7999 0.9054 1.0054 0.9960

(1.0, -0.8) 1.2196 0.6664 0.7140 -0.8399 -0.8036 -0.8045 0.7297 0.8404 0.8317 0.8841 0.9841 0.9725
1.2252 0.6720 0.7091 -0.8347 -0.7984 -0.7993 0.7299 0.8406 0.8322 0.8855 0.9855 0.9740
1.2504 0.6971 0.7207 -0.8358 -0.7995 -0.8005 0.7295 0.8402 0.8316 0.9009 1.0009 0.9910
1.2378 0.6845 0.7308 -0.8413 -0.8049 -0.8060 0.7281 0.8387 0.8299 0.8860 0.9860 0.9746
1.2259 0.6726 0.7161 -0.8352 -0.7989 -0.7998 0.7309 0.8416 0.8332 0.8891 0.9891 0.9780

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.
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Table 2.8: Bias Correction for ARMA(1,1) model with intercept, ρ = 0.2, σ2 = 1, T = 100

(α, φ) α̂ α̈ α̃ φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂2 σ̈2 σ̃2

(0.2, -0.2) 0.2123 0.2050 0.1862 -0.2473 -0.2299 -0.1746 0.1425 0.1717 0.2471 0.9693 0.9993 0.9984
0.2116 0.2043 0.1878 -0.2406 -0.2233 -0.1831 0.1510 0.1802 0.2389 0.9704 1.0004 0.9995
0.2151 0.2078 0.1926 -0.2438 -0.2265 -0.1748 0.1440 0.1732 0.2396 0.9729 1.0029 1.0021
0.2128 0.2055 0.1872 -0.2442 -0.2269 -0.1604 0.1460 0.1752 0.2621 0.9696 0.9996 0.9987
0.2132 0.2059 0.1833 -0.2374 -0.2201 -0.1548 0.1563 0.1855 0.2667 0.9689 0.9989 0.9980

(0.5, -0.2) 0.5357 0.5175 0.4693 -0.2467 -0.2294 -0.1714 0.1447 0.1739 0.2535 0.9691 0.9991 0.9981
0.5277 0.5095 0.4717 -0.2378 -0.2205 -0.1771 0.1524 0.1816 0.2429 0.9685 0.9985 0.9976
0.5298 0.5116 0.4792 -0.2371 -0.2198 -0.1823 0.1508 0.1800 0.2315 0.9709 1.0009 1.0000
0.5276 0.5093 0.4624 -0.2355 -0.2182 -0.1595 0.1541 0.1833 0.2593 0.9707 1.0007 0.9998
0.5284 0.5101 0.4763 -0.2318 -0.2145 -0.1833 0.1557 0.1848 0.2359 0.9729 1.0029 1.0021

(1.0, -0.2) 1.0560 1.0195 0.9718 -0.2365 -0.2192 -0.1960 0.1552 0.1843 0.2233 0.9711 1.0011 1.0002
1.0606 1.0242 0.9421 -0.2354 -0.2181 -0.1692 0.1521 0.1813 0.2496 0.9690 0.9990 0.9980
1.0465 1.0100 0.9640 -0.2295 -0.2122 -0.1868 0.1599 0.1891 0.2259 0.9680 0.9980 0.9970
1.0470 1.0105 0.9372 -0.2289 -0.2116 -0.1715 0.1618 0.1910 0.2480 0.9693 0.9993 0.9984
1.0464 1.0099 0.9566 -0.2316 -0.2143 -0.1830 0.1590 0.1881 0.2350 0.9733 1.0033 1.0025

(0.2, -0.5) 0.2077 0.2039 0.2028 -0.5189 -0.5126 -0.5078 0.1685 0.1837 0.1881 0.9672 0.9972 0.9963
0.2085 0.2047 0.2034 -0.5140 -0.5077 -0.5026 0.1759 0.1911 0.1961 0.9688 0.9988 0.9979
0.2057 0.2019 0.2009 -0.5121 -0.5058 -0.5014 0.1777 0.1929 0.1970 0.9701 1.0001 0.9992
0.2053 0.2015 0.2002 -0.5178 -0.5115 -0.5064 0.1749 0.1901 0.1950 0.9684 0.9984 0.9975
0.2038 0.2000 0.1989 -0.5175 -0.5112 -0.5065 0.1741 0.1893 0.1938 0.9680 0.9980 0.9970

(0.5, -0.5) 0.5115 0.5020 0.4994 -0.5166 -0.5102 -0.5056 0.1739 0.1891 0.1935 0.9716 1.0016 1.0007
0.5188 0.5093 0.5063 -0.5203 -0.5139 -0.5088 0.1685 0.1837 0.1885 0.9677 0.9977 0.9968
0.5169 0.5074 0.5049 -0.5193 -0.5129 -0.5085 0.1731 0.1883 0.1923 0.9707 1.0007 0.9998
0.5146 0.5051 0.5015 -0.5154 -0.5091 -0.5034 0.1746 0.1898 0.1955 0.9689 0.9989 0.9980
0.5204 0.5109 0.5082 -0.5213 -0.5150 -0.5103 0.1692 0.1844 0.1887 0.9774 1.0074 1.0067

(1.0, -0.5) 1.0242 1.0052 0.9998 -0.5159 -0.5096 -0.5050 0.1768 0.1920 0.1963 0.9695 0.9995 0.9986
1.0300 1.0110 1.0055 -0.5173 -0.5110 -0.5063 0.1753 0.1905 0.1949 0.9698 0.9998 0.9989
1.0297 1.0107 1.0060 -0.5180 -0.5117 -0.5075 0.1719 0.1871 0.1909 0.9621 0.9921 0.9909
1.0258 1.0068 1.0013 -0.5136 -0.5073 -0.5026 0.1787 0.1939 0.1983 0.9681 0.9981 0.9972
1.0249 1.0059 1.0006 -0.5131 -0.5067 -0.5023 0.1783 0.1935 0.1978 0.9731 1.0031 1.0023

(0.2, -0.8) 0.2032 0.1998 0.1997 -0.8143 -0.8062 -0.8056 0.1793 0.1929 0.1933 0.9712 1.0012 1.0003
0.2028 0.1994 0.1993 -0.8143 -0.8062 -0.8056 0.1811 0.1948 0.1951 0.9702 1.0002 0.9993
0.2093 0.2059 0.2057 -0.8118 -0.8037 -0.8031 0.1848 0.1984 0.1988 0.9776 1.0076 1.0069
0.1996 0.1962 0.1961 -0.8138 -0.8057 -0.8051 0.1834 0.1970 0.1974 0.9686 0.9986 0.9977
0.2036 0.2002 0.2001 -0.8131 -0.8051 -0.8045 0.1813 0.1949 0.1953 0.9701 1.0001 0.9992

(0.5, -0.8) 0.5089 0.5004 0.5002 -0.8139 -0.8058 -0.8052 0.1818 0.1954 0.1958 0.9696 0.9996 0.9987
0.5128 0.5043 0.5040 -0.8123 -0.8042 -0.8037 0.1816 0.1952 0.1956 0.9699 0.9999 0.9989
0.5076 0.4991 0.4990 -0.8113 -0.8032 -0.8027 0.1824 0.1960 0.1964 0.9652 0.9952 0.9942
0.5162 0.5077 0.5074 -0.8132 -0.8051 -0.8045 0.1811 0.1947 0.1950 0.9691 0.9991 0.9982
0.5096 0.5011 0.5009 -0.8129 -0.8048 -0.8042 0.1823 0.1959 0.1963 0.9760 1.0060 1.0053

(1.0, -0.8) 1.0264 1.0094 1.0090 -0.8156 -0.8075 -0.8069 0.1798 0.1934 0.1937 0.9681 0.9981 0.9971
1.0219 1.0049 1.0045 -0.8127 -0.8047 -0.8041 0.1809 0.1945 0.1949 0.9679 0.9979 0.9970
1.0241 1.0071 1.0067 -0.8132 -0.8051 -0.8045 0.1816 0.1952 0.1955 0.9705 1.0005 0.9997
1.0171 1.0001 0.9997 -0.8142 -0.8062 -0.8056 0.1833 0.1969 0.1973 0.9678 0.9978 0.9969
1.0174 1.0004 0.9999 -0.8110 -0.8029 -0.8023 0.1831 0.1967 0.1971 0.9709 1.0009 1.0000

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.
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Table 2.9: Bias Correction for ARMA(1,1) model with intercept, ρ = 0.5, σ2 = 1, T = 100

(α, φ) α̂ α̈ α̃ φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂2 σ̈2 σ̃2

(0.2, -0.2) 0.2174 0.2023 0.2034 -0.2317 -0.2103 -0.2114 0.4539 0.4915 0.4891 0.9712 1.0012 1.0003
0.2176 0.2025 0.2035 -0.2263 -0.2049 -0.2062 0.4576 0.4952 0.4925 0.9700 1.0000 0.9991
0.2167 0.2017 0.2029 -0.2256 -0.2042 -0.2059 0.4577 0.4953 0.4924 0.9644 0.9944 0.9933
0.2157 0.2007 0.2019 -0.2300 -0.2086 -0.2102 0.4543 0.4919 0.4890 0.9686 0.9986 0.9976
0.2153 0.2002 0.2015 -0.2284 -0.2070 -0.2087 0.4566 0.4942 0.4913 0.9736 1.0036 1.0028

(0.5, -0.2) 0.5413 0.5037 0.5065 -0.2267 -0.2053 -0.2067 0.4563 0.4939 0.4912 0.9707 1.0007 0.9998
0.5447 0.5071 0.5102 -0.2306 -0.2092 -0.2109 0.4524 0.4900 0.4870 0.9689 0.9989 0.9979
0.5388 0.5012 0.5039 -0.2255 -0.2041 -0.2057 0.4600 0.4976 0.4949 0.9702 1.0002 0.9993
0.5390 0.5014 0.5042 -0.2271 -0.2057 -0.2072 0.4596 0.4972 0.4944 0.9682 0.9982 0.9972
0.5398 0.5022 0.5051 -0.2255 -0.2041 -0.2057 0.4575 0.4951 0.4923 0.9668 0.9968 0.9958

(1.0, -0.2) 1.0727 0.9975 1.0024 -0.2194 -0.1980 -0.1994 0.4627 0.5003 0.4978 0.9661 0.9961 0.9950
1.0797 1.0045 1.0097 -0.2269 -0.2055 -0.2070 0.4595 0.4971 0.4945 0.9680 0.9980 0.9971
1.0742 0.9990 1.0042 -0.2246 -0.2032 -0.2047 0.4619 0.4995 0.4969 0.9713 1.0013 1.0004
1.0696 0.9943 0.9986 -0.2168 -0.1954 -0.1966 0.4660 0.5036 0.5014 0.9679 0.9979 0.9969
1.0760 1.0008 1.0057 -0.2238 -0.2024 -0.2037 0.4607 0.4983 0.4958 0.9747 1.0047 1.0039

(0.2, -0.5) 0.2122 0.2016 0.2023 -0.5206 -0.5099 -0.5100 0.4654 0.4920 0.4906 0.9686 0.9986 0.9977
0.2156 0.2050 0.2054 -0.5197 -0.5090 -0.5091 0.4659 0.4924 0.4911 0.9685 0.9985 0.9976
0.2099 0.1992 0.1998 -0.5179 -0.5072 -0.5074 0.4674 0.4939 0.4926 0.9676 0.9976 0.9966
0.2093 0.1986 0.1992 -0.5172 -0.5065 -0.5065 0.4691 0.4957 0.4945 0.9694 0.9994 0.9984
0.2147 0.2040 0.2046 -0.5211 -0.5105 -0.5106 0.4646 0.4911 0.4897 0.9706 1.0006 0.9997

(0.5, -0.5) 0.5328 0.5063 0.5072 -0.5146 -0.5039 -0.5040 0.4700 0.4966 0.4954 0.9711 1.0011 1.0003
0.5338 0.5073 0.5085 -0.5187 -0.5080 -0.5081 0.4664 0.4930 0.4917 0.9680 0.9980 0.9970
0.5299 0.5034 0.5047 -0.5186 -0.5079 -0.5080 0.4686 0.4951 0.4939 0.9696 0.9996 0.9987
0.5321 0.5056 0.5069 -0.5172 -0.5065 -0.5066 0.4656 0.4922 0.4909 0.9700 1.0000 0.9991
0.5330 0.5064 0.5078 -0.5204 -0.5098 -0.5099 0.4669 0.4934 0.4921 0.9701 1.0001 0.9992

(1.0, -0.5) 1.0603 1.0073 1.0096 -0.5169 -0.5062 -0.5063 0.4687 0.4953 0.4941 0.9679 0.9979 0.9970
1.0582 1.0052 1.0073 -0.5165 -0.5058 -0.5058 0.4705 0.4970 0.4959 0.9699 0.9999 0.9990
1.0561 1.0031 1.0058 -0.5186 -0.5079 -0.5080 0.4682 0.4948 0.4935 0.9623 0.9923 0.9911
1.0563 1.0032 1.0057 -0.5172 -0.5065 -0.5066 0.4694 0.4959 0.4947 0.9691 0.9991 0.9982
1.0571 1.0040 1.0060 -0.5152 -0.5045 -0.5046 0.4717 0.4983 0.4972 0.9739 1.0039 1.0031

(0.2, -0.8) 0.2091 0.2000 0.2003 -0.8135 -0.8044 -0.8043 0.4732 0.4959 0.4951 0.9697 0.9997 0.9988
0.2026 0.1935 0.1942 -0.8140 -0.8049 -0.8048 0.4729 0.4957 0.4948 0.9678 0.9978 0.9969
0.2077 0.1986 0.1989 -0.8132 -0.8041 -0.8040 0.4738 0.4966 0.4957 0.9686 0.9986 0.9977
0.2103 0.2012 0.2017 -0.8136 -0.8045 -0.8044 0.4691 0.4918 0.4908 0.9701 1.0001 0.9992
0.2145 0.2054 0.2056 -0.8140 -0.8049 -0.8048 0.4715 0.4942 0.4933 0.9685 0.9985 0.9975

(0.5, -0.8) 0.5270 0.5042 0.5049 -0.8137 -0.8045 -0.8045 0.4750 0.4977 0.4969 0.9684 0.9984 0.9974
0.5256 0.5028 0.5036 -0.8132 -0.8041 -0.8040 0.4737 0.4965 0.4957 0.9689 0.9989 0.9980
0.5252 0.5024 0.5032 -0.8132 -0.8041 -0.8040 0.4749 0.4977 0.4969 0.9733 1.0033 1.0025
0.5278 0.5050 0.5058 -0.8136 -0.8045 -0.8044 0.4726 0.4953 0.4945 0.9689 0.9989 0.9980
0.5183 0.4955 0.4964 -0.8119 -0.8028 -0.8027 0.4758 0.4986 0.4978 0.9752 1.0052 1.0045

(1.0, -0.8) 1.0431 0.9976 0.9992 -0.8125 -0.8034 -0.8033 0.4761 0.4989 0.4981 0.9689 0.9989 0.9980
1.0472 1.0017 1.0031 -0.8131 -0.8040 -0.8039 0.4765 0.4992 0.4985 0.9707 1.0007 0.9998
1.0470 1.0015 1.0033 -0.8145 -0.8054 -0.8053 0.4743 0.4970 0.4962 0.9709 1.0009 1.0000
1.0388 0.9933 0.9951 -0.8150 -0.8059 -0.8058 0.4760 0.4988 0.4980 0.9676 0.9976 0.9967
1.0439 0.9984 1.0001 -0.8143 -0.8052 -0.8051 0.4747 0.4974 0.4966 0.9687 0.9987 0.9977

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.
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Table 2.10: Bias Correction for ARMA(1,1) model with intercept, ρ = 0.8, σ2 = 1, T = 100

(α, φ) α̂ α̈ α̃ φ̂ φ̈ φ̃ ρ̂ ρ̈ ρ̃ σ̂2 σ̈2 σ̃2

(0.2, -0.2) 0.2427 0.2035 0.2045 -0.2227 -0.2033 -0.2037 0.7557 0.7949 0.7939 0.9707 1.0007 0.9999
0.2400 0.2008 0.2015 -0.2212 -0.2018 -0.2022 0.7588 0.7979 0.7971 0.9700 1.0000 0.9991
0.2415 0.2023 0.2027 -0.2192 -0.1998 -0.2001 0.7605 0.7996 0.7988 0.9766 1.0066 1.0059
0.2386 0.1995 0.2010 -0.2218 -0.2023 -0.2027 0.7570 0.7962 0.7953 0.9680 0.9980 0.9970
0.2422 0.2030 0.2036 -0.2227 -0.2033 -0.2037 0.7571 0.7963 0.7953 0.9734 1.0034 1.0026

(0.5, -0.2) 0.5943 0.4964 0.4980 -0.2182 -0.1987 -0.1991 0.7611 0.8003 0.7995 0.9667 0.9967 0.9957
0.5968 0.4989 0.5013 -0.2207 -0.2013 -0.2016 0.7588 0.7980 0.7971 0.9695 0.9995 0.9986
0.5908 0.4928 0.4954 -0.2193 -0.1999 -0.2002 0.7604 0.7996 0.7988 0.9625 0.9925 0.9914
0.5975 0.4996 0.5014 -0.2206 -0.2012 -0.2016 0.7601 0.7992 0.7984 0.9674 0.9974 0.9965
0.5916 0.4936 0.4959 -0.2200 -0.2006 -0.2009 0.7615 0.8007 0.7998 0.9646 0.9946 0.9935

(1.0, -0.2) 1.1557 0.9598 0.9627 -0.2137 -0.1943 -0.1945 0.7675 0.8067 0.8061 0.9685 0.9985 0.9976
1.1554 0.9596 0.9633 -0.2164 -0.1970 -0.1972 0.7670 0.8062 0.8056 0.9702 1.0002 0.9993
1.1628 0.9669 0.9704 -0.2153 -0.1958 -0.1961 0.7656 0.8047 0.8041 0.9780 1.0080 1.0073
1.1601 0.9642 0.9670 -0.2125 -0.1931 -0.1932 0.7665 0.8057 0.8051 0.9683 0.9983 0.9974
1.1607 0.9648 0.9686 -0.2170 -0.1976 -0.1979 0.7658 0.8050 0.8043 0.9654 0.9954 0.9944

(0.2, -0.5) 0.2318 0.1964 0.1986 -0.5179 -0.5041 -0.5046 0.7598 0.7952 0.7939 0.9690 0.9990 0.9981
0.2357 0.2003 0.2015 -0.5158 -0.5020 -0.5024 0.7622 0.7976 0.7964 0.9687 0.9987 0.9978
0.2356 0.2002 0.2011 -0.5168 -0.5030 -0.5035 0.7636 0.7990 0.7978 0.9726 1.0026 1.0018
0.2318 0.1964 0.1985 -0.5187 -0.5050 -0.5054 0.7616 0.7970 0.7957 0.9681 0.9981 0.9971
0.2354 0.2000 0.2013 -0.5165 -0.5027 -0.5031 0.7621 0.7975 0.7963 0.9706 1.0006 0.9997

(0.5, -0.5) 0.5934 0.5049 0.5076 -0.5160 -0.5023 -0.5027 0.7612 0.7966 0.7953 0.9682 0.9982 0.9973
0.5926 0.5041 0.5069 -0.5162 -0.5024 -0.5028 0.7619 0.7973 0.7961 0.9668 0.9968 0.9958
0.5830 0.4945 0.4977 -0.5168 -0.5030 -0.5035 0.7647 0.8001 0.7989 0.9647 0.9947 0.9936
0.5846 0.4961 0.4994 -0.5145 -0.5008 -0.5012 0.7629 0.7983 0.7971 0.9688 0.9988 0.9978
0.5831 0.4945 0.4978 -0.5164 -0.5027 -0.5031 0.7637 0.7991 0.7979 0.9716 1.0016 1.0008

(1.0, -0.5) 1.1526 0.9756 0.9810 -0.5147 -0.5010 -0.5013 0.7676 0.8030 0.8019 0.9659 0.9959 0.9949
1.1561 0.9791 0.9851 -0.5136 -0.4998 -0.5002 0.7664 0.8018 0.8007 0.9690 0.9990 0.9981
1.1567 0.9797 0.9861 -0.5168 -0.5030 -0.5034 0.7663 0.8017 0.8006 0.9694 0.9994 0.9985
1.1494 0.9724 0.9781 -0.5120 -0.4982 -0.4985 0.7676 0.8030 0.8020 0.9674 0.9974 0.9964
1.1587 0.9817 0.9881 -0.5155 -0.5018 -0.5021 0.7655 0.8009 0.7998 0.9701 1.0001 0.9992

(0.2, -0.8) 0.2325 0.1993 0.2009 -0.8135 -0.8026 -0.8028 0.7636 0.7968 0.7954 0.9686 0.9986 0.9977
0.2388 0.2056 0.2063 -0.8131 -0.8022 -0.8024 0.7631 0.7963 0.7950 0.9672 0.9972 0.9962
0.2308 0.1976 0.1986 -0.8127 -0.8018 -0.8020 0.7681 0.8013 0.8001 0.9714 1.0014 1.0005
0.2344 0.2012 0.2019 -0.8145 -0.8036 -0.8038 0.7653 0.7985 0.7972 0.9684 0.9984 0.9974
0.2290 0.1958 0.1981 -0.8134 -0.8025 -0.8027 0.7634 0.7966 0.7952 0.9688 0.9988 0.9979

(0.5, -0.8) 0.5776 0.4946 0.4982 -0.8134 -0.8025 -0.8027 0.7654 0.7986 0.7973 0.9648 0.9948 0.9937
0.5720 0.4890 0.4928 -0.8129 -0.8020 -0.8022 0.7673 0.8005 0.7993 0.9695 0.9995 0.9986
0.5761 0.4931 0.4964 -0.8127 -0.8018 -0.8020 0.7668 0.8000 0.7987 0.9704 1.0004 0.9995
0.5846 0.5017 0.5058 -0.8152 -0.8043 -0.8045 0.7619 0.7951 0.7937 0.9694 0.9994 0.9985
0.5791 0.4961 0.4987 -0.8138 -0.8029 -0.8031 0.7673 0.8005 0.7992 0.9702 1.0002 0.9993

(1.0, -0.8) 1.1245 0.9585 0.9655 -0.8135 -0.8026 -0.8028 0.7710 0.8042 0.8031 0.9681 0.9981 0.9971
1.1309 0.9649 0.9717 -0.8145 -0.8036 -0.8038 0.7704 0.8036 0.8025 0.9691 0.9991 0.9982
1.1328 0.9668 0.9728 -0.8142 -0.8033 -0.8034 0.7709 0.8041 0.8030 0.9725 1.0025 1.0017
1.1379 0.9719 0.9779 -0.8127 -0.8018 -0.8019 0.7699 0.8031 0.8020 0.9682 0.9982 0.9973
1.1293 0.9633 0.9696 -0.8127 -0.8018 -0.8019 0.7711 0.8043 0.8033 0.9757 1.0057 1.0050

Note: All the estimators are the average value over 5,000 simulations. For each parameter value pair, the five rows

in each column correspond to normal, uniform, exponential, mixture of two normals and student-t distributions. All

the above distributions are standardized to zero mean and unit variance.

70



Bibliography

[1] Bao, Y. “The approximate moments of the least squares estimator for the stationary
autoregressive model under a general error distribution. Ecomometric Theory, 23:1013-
1021, 2007a.

[2] Bao, Y. “Finite-sample properties of forecasts from the stationary first-order autoregres-
sive model under a general error distribution. Ecomometric Theory, 23:767-773, 2007b.

[3] Bao, Y. and A. Ullah. “Expectation of quadratic forms in normal and nonnormal vari-
ables with applications. Journal of Statistical Planning and Inference, 140:1193-1205,
2010.

[4] Bao, Y. and A. Ullah. “The second-order bias and mean squared error of estimators in
time-series models. Journal of Econometrics, 140:650-669, 2007.

[5] Bao, Y. and A. Ullah. “Higher-order bias and MSE of nonlinear estimators. Pakistan
Journal of Statistics, 25:587-594, 2009.

[6] Ullah, A. Finite Sample Ecomometrics. Oxford Universit Press, New York, 2004.

71



Chapter 3

Estimation Bias and Feasible

Conditional Forecasts from the

First-Order Moving Average

Model

The quasi maximum likelihood estimator (QMLE) of parameters in the first-order

moving average model can be biased in finite samples. We develop the second-order ana-

lytical bias of the QMLE and investigate whether this estimation bias can lead to biased

feasible optimal forecasts conditional on the available sample observations. We find that

the feasible multiple-step-ahead forecasts are unbiased under any nonnormal distribution

and the one-step-ahead forecast is unbiased under symmetric distributions.
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3.1 Introduction

Forecasts are made to guide decisions in many fields and the reduced-from time-

series models have been used commonly. It is well known that under a quadratic loss

function, the optimal conditional point forecast is the conditional expectation. Typically,

optimal forecasts are made feasible by replacing unknown model parameters with estimated

parameters based on the sample data. One can argue that parameter estimation uncertainty

should vanish as the sample size grows. Yet, it is not uncommon that for many economic

time series, the sample size can be quite limited. Thus, one would naturally wonder how the

model estimation uncertainty will affect the constructed feasible forecasts in finite samples.

For example, one might ask whether the bias in parameter estimation will produce a biased

feasible forecast.

There has been some literature on the finite-sample issues associated with forecasts

based on the autoregressive (AR) models, see Phillips (1979) and Bao (2007) and references

therein. Schmidt (1977) discussed the small-sample properties of dynamic forecasts from

AR models with exogenous variables. To our best knowledge, however, the literature has

been silent about forecasts based on the moving average (MA) models. Compared with the

AR models, the MA models can be used to model and forecast economic variables of less

persistence and shorter memory. A prominent example is from Stock and Watson (2007),

who found that the simple MA model of order 1 (MA(1)) works really well in describing

the inflation rate change for the US economy.

Tanaka (1984) and Cordeiro and Klein (1994) derived the approximate bias of

the maximum likelihood estimator of the MA parameter under the assumption of normally
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distributed data. Bao and Ullah (2007) considered the case when the data might be non-

normally distributed, but restricted to a zero-mean MA model. These authors found that

the estimation bias is inversely proportional to the sample size. Then immediately one may

ask whether this bias problem will carry over to the forecasts.

The purpose of this paper is twofold. First, we derive the approximate bias of the

conditional quasi maximum likelihood estimator (QMLE) of the parameters in an invertible

MA(1) model with a possible nonzero mean and nonnormally distributed data. For most

economic data, nonnormality is more a norm than an exception. So an interesting issue

is how the distribution assumption will affect parameter estimation in finite samples. Sec-

ond, we investigate whether the parameter estimation bias will lead to biased conditional

forecasts in finite samples. It is found that the feasible multiple-step-ahead forecasts are

unbiased under any nonnormal distribution and the one-step-ahead forecast is unbiased un-

der symmetric distributions. Our theoretical results regarding the estimation and forecast

biases are confirmed by a simulation study.

Throughout, ι is a vector of ones, ei is a null vector except its ith element is one,

I is the identity matrix, and 0 is a null vector. The dimensions of vectors/matrices are to

be read from the context, and thus we suppress the dimension subscripts in our notation.

For a square matrix A, we use A∗ to denote A+A′.

3.2 Main Results

Consider the first-order moving average MA(1) model:

yt = µ+ εt + θεt−1, (3.1)
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where εt ∼i.i.d.(0, σ2) and |θ| < 1. Note that here we do not assume that εt is normal, so the

observable data y = (y1, · · · , yT )′ is in general nonnormally distributed. Let β = (µ, θ, σ2)′

denote the population parameters to be estimated.1 Conditional on the observable sample

y, we are interested in forecasting the future values of y. Under a quadratic loss function, the

conditional optimal one-step-ahead forecast is yT+1|T = µ + θεT and the optimal forecasts

beyond that are nothing but the unconditional mean of the process, yT+h|T = µ, ∀h > 1,

see Hamilton (1994). In practice, we need to replace the unknown population parameters in

the forecast formulae with their sample estimates to make the forecasts feasible. Moreover,

for the one-step-ahead forecast, we also need to replace εT with its estimate that can be

inferred from the sample data. We use ŷT+h|T to denote the feasible conditional forecasts.

In particular, ŷT+1|T = µ̂ + θ̂ε̂T and ŷT+h|T = µ̂ for any h > 1, where µ̂ and θ̂ are the

estimated parameters and ε̂T is defined recursively as ε̂T = yT − µ̂ − θ̂ε̂T−1. Typically, we

estimate β by the method of quasi maximum likelihood (QML) by maximizing a Gaussian

likelihood function even though the true process is nonnormal.

The QML estimator (QMLE) β̂ , though consistent under typical conditions, is

biased in finite samples. Tanaka (1984) and Cordeiro and Klein (1994) derived the second-

order bias of β̂ , up to O(T−1), when the true distribution of εt is Gaussian (and thus the

QMLE is the maximum likelihood estimator (MLE)). Bao and Ullah (2007) relaxed the

assumption of normality, but focused on a zero-mean MA(1) process.

1Throughout, we suppress the subscript 0 for the true parameter value for notational convenience.

75



3.2.1 Estimation Bias

Conditional on ε0 = 0, the average Gaussian log likelihood function of the observ-

able data y is

L(β|ε0 = 0) = −1

2
log(2π)− 1

2
log(σ2)− ε′ε

2Tσ2
, (3.2)

where ε = (ε1, · · · , εT )′ and εt is defined recursively from εt = yt − µ− θεt−1 starting with

ε0 = 0. To derive the finite-sample bias of the QMLE, we can follow Bao and Ullah (2007)

to implement a stochastic expansion β̂ − β = β−1/2 + β−1 + oP (T
−1) (see the appendix),

where β−i/2 = OP (T
−i/2),

β−1/2 =

















a′ε

a′a

ε′A1ε

σ2tr(A2)

ε′ε

T − σ2

















,

β−1 =

















−a′A
∗
1εε

′A1ε

σ2tr(A2)a′a
+ 2a′A1aa

′εε′A1ε

σ2tr(A2)(a′a)2

3tr(A3
1+A

′
1A

2
1)(ε

′A1ε)2

σ4tr3(A2)
− ε′A1εε

′A2ε

σ4tr2(A2)
− ε′aa′A

∗
1ε

σ2tr(A2)a′a
+ a′A1aε

′aa′ε

σ2tr(A2)(a′a)2 + ε′A1ε

σ2tr(A2)

−ε′aa′ε

Ta′a
− (ε′A1ε)2

Tσ2tr(A2)

















,

with a = C−1ι, A1 = C−1B, A2 = 2A2
1 + A

′
1A1, B = ∂C/∂θ, and C being a T × T

tridiagonal matrix with main diagonal elements 1, super-diagonal elements 0, and sub-

diagonal elements θ. We can check that A1 is strictly lower triangular. Then immediately

E(β−1/2) = 0 and

E(µ̂− µ) = −a
′A∗

1E(εε
′A1ε)

σ2tr(A2)a′a
+

2a′A1aa
′
E(εε′A1ε)

σ2tr(A2)(a′a)2
+ o(T−1)

= 0 + o(T−1),
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since f ′
E(εε′A1ε) = E(ε3i )f

′diag(A1) = 0 for any vector f . For evaluating the biases of θ̂

and σ̂2, we need expectations of second-order quadratic forms in ε. From Ullah (2004, p.

187), for any matrices N1 and N 2, E(ε
′N 1εε

′N2ε) = σ4[γ2tr(N 1 ⊙N 2)+tr(N 1)tr(N 2)

+tr(N 1N 2)+tr(N ′
1N 2)], where ⊙ is the Hadamard (element by element) product operator

and γ2 is the excess kurtosis coefficient of the distribution of εt. Again, since A1 is strictly

lower triangular, tr(A1) =tr(A1A1) =tr(A1 ⊙A1) =tr(A1 ⊙A2) = 0. This leads to

E(θ̂ − θ) =
3tr(A3

1 +A
′
1A

2
1)tr(A

′
1A1)

tr3(A2)
− tr(A∗

1A
∗
2)

2tr2(A2)
− a′A1a

tr(A2)a′a
+ o(T−1),

E(σ̂2 − σ2) = −σ
2

T
− σ2tr(A′

1A1)

T tr(A2)
+ o(T−1),

which suggests that up to order O(T−1), E(θ̂ − θ) and E(σ̂2 − σ2) are both robust to the

distribution of the data. Utilizing the special structure of the matrix A1, we can verify

a′a =
T

(1 + θ)2
+O(1),

a′A1a =
T

(1 + θ)3
+O(1),

tr(A2) =
T

1− θ2
+O(1),

tr(A′
1A1) =

T

1− θ2
+O(1),

tr(A∗
1A

∗
2) = − 8Tθ

(1− θ2)2
+O(1),

tr(A3
1 +A

′
1A

2
1) = − Tθ

(1− θ2)2
+O(1).

Upon substitution,

E(β̂ − β) = 1

T

















0

−1 + 2θ

−2σ2

















+ o(T−1), (3.3)
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Tanaka (1984) and Cordeiro and Klein (1994) derived the second-order bias of the MLE

in the MA(1) model with normally distributed εt. Not surprisingly, as indicated earlier,

the bias of the QMLE is robust to the distribution, and (3.3) coincides with Tanaka (1984)

and Cordeiro and Klein (1994).2 Note that (3.3) indicates that up to the second order,

µ̂ is unbiased, θ̂ is upward biased when θ > 0.5 but downward biased when θ < 0.5, and

unbiased when θ = 0.5, and σ̂2 is always downward biased.

3.2.2 Forecast Bias

We have already seen in the previous subsection that both µ̂ and θ̂ are biased in

finite samples. Now we investigate whether their biases can be translated into forecast bias.

(Note that the feasible forecasts depend on µ̂ and θ̂, but not σ̂2.) First we note that since

ŷT+h|T = µ̂ for h > 1, then up to O(T−1), the multiple-step-ahead forecasts ŷT+h|T are

unbiased under any distribution.

To derive the one-step-ahead feasible forecast bias, we first write

ŷT+1|T − yT+1 = µ̂− µ+ θ̂ε̂T − εT+1 − θεT

= µ̂− µ+ θ̂

T−1
∑

i=0

(−θ̂)i(yT−i − µ̂)− εT+1 − θεT

= µ̂− µ+ θ̂
T−1
∑

i=0

(−θ̂)i(yT−i − µ) + θ̂(µ − µ̂)
T−1
∑

i=0

[(−θ̂)i]

−εT+1 − θεT . (3.4)

2In Tanaka (1984) and Cordeiro and Klein (1994), the MA(1) parameter is −θ.One can see that E(θ̂−θ) =
−E((−θ̂)− (−θ)). They gave E((−θ̂)− (−θ)) = (1 + 2(−θ))/T.
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Thus the feasible forecast bias is

E(ŷT+1|T − yT+1) =
T−1
∑

i=0

(−1)iE[θ̂i+1(εT−i + θεT−i−1)]− (µ̂ − µ)
T−1
∑

i=0

(−1)iE(θ̂i+1) + o(T−1).

Since T terms are added up in the above bias expression, we need to expand β̂ − β to

order OP (T
−2) for deriving the order O(T−1) one-step-ahead feasible forecast bias. We

also need expansions of θ̂i+1, i = 0, · · · , T − 1, to order OP (T
−2). Suppose θ̂i+1 = θi+1 +

θ
(i+1)
−1/2 + θ

(i+1)
−1 + θ

(i+1)
−3/2 + θ

(i+1)
−2 + oP (T

−2), where θ
(i+1)
−j/2 = OP (T

−j/2), then up to the order

of approximation, we put

E(ŷT+1|T − yT+1) =

T−1
∑

i=0

(−1)i
4

∑

j=1

E

[

θ
(i+1)
−j/2 (εT−i + θεT−i−1)

]

−
T−1
∑

i=0

(−1)i



θi+1
4

∑

j=2

E(µ−j/2) +
3

∑

j=1

E(θ
(i+1)
−1/2µ−j/2)





−
T−1
∑

i=0

(−1)i





2
∑

j=1

E(θ
(i+1)
−1 µ−j/2) + E(θ

(i+1)
−3/2µ−1/2)



+ o(T−1),

where µ−j/2 = OP (T
−j/2), j = 1, · · · , 4, are the stochastic terms in the order OP (T

−2)

expansion of µ̂− µ.

Bao (2007) showed that for q = i+ 1, θ
(q)
−j/2, j = 1, · · · , 4, are as follows:

θ
(q)
−1/2 = qθq−1θ−1/2,

θ
(q)
−1 = qθq−1θ−1 +

q(q − 1)

2
θq−2θ2−1/2,

θ
(q)
−3/2 = qθq−1θ−3/2 + q(q − 1)θq−2θ−1/2θ−1 +

q(q − 1)(q − 2)

6
θq−3θ3−1/2,

θ
(q)
−2 = qθq−1θ−2 + q(q − 1)θq−2θ−1/2θ−3/2 +

q(q − 1)

2
θq−2θ2−1

+
q(q − 1)(q − 2)

2
θq−3θ2−1/2θ−1 +

q(q − 1)(q − 2)(q − 3)

24
θq−4θ4−1/2,

where θ−j/2 = OP (T
−j/2), j = 1, · · · , 4, are the stochastic terms in the order OP (T

−2)
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expansion of θ̂− θ. By writing εT−i+ θεT−i−1 = (eT−i+ θeT−i−1)
′ε (when i = T −1, define

e0 = 0 since ε0 = 0) and defining

f1i = (−1)i(i+ 1)θi(eT−i + θeT−i−1),

f2i = (−1)ii(i+ 1)θi−1(eT−i + θeT−i−1),

f3i = (−1)ii(i2 − 1)θi−2(eT−i + θeT−i−1),

f4i = (−1)ii(i2 − 1)(i− 2)θi−3(eT−i + θeT−i−1),

then upon substituting θ
(q)
−1/2, we have

E(ŷT+1|T − yT+1) =

T−1
∑

i=0

f ′
1iE[ε(θ−1/2 + θ−1 + θ−3/2 + θ−2)]

+
1

2

T−1
∑

i=0

f ′
2iE[ε(θ

2
−1/2 + θ2−1 + 2θ−1/2θ−1 + 2θ−1/2θ−3/2)]

+
1

6

T−1
∑

i=0

f ′
3iE[ε(θ

3
−1/2 + 3θ2−1/2θ−1)] +

1

24

T−1
∑

i=0

f ′
4iE(εθ

4
−1/2)

−
4

∑

j=3

E(µ−j/2)
T−1
∑

i=0

(−1)iθi+1

−E



θ−1/2

3
∑

j=1

µ−j/2 + θ−1

2
∑

j=1

µ−j/2 + θ−3/2µ−1/2





T−1
∑

i=0

(−1)i(i+ 1)θi

−1

2
E



θ2−1/2

2
∑

j=1

µ−j/2 + 2θ−1/2θ−1µ−1/2





T−1
∑

i=0

(−1)ii(i+ 1)θi−1

−1

6
E(θ3−1/2µ−1/2)

T−1
∑

i=0

(−1)ii(i+ 1)(i − 1)θi−2 + o(T−1).

Note that
∑T−1

i=0 (−1)iθi+1,
∑T−1

i=0 (−1)i(i+1)θi,
∑T−1

i=0 (−1)i(i+1)iθi−1, and
∑T−1

i=0 (−1)ii(i+

1)(i − 1)θi−2 are all of order O(1), and E(θ−1/2µ−1/2) = [σ2tr(A2)a
′a]−1a′E(εε′A1ε) = 0.
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Therefore,

E(ŷT+1|T − yT+1) =
T−1
∑

i=0

f ′
1iE[ε(θ−1/2 + θ−1 + θ−3/2 + θ−2)]

+
1

2

T−1
∑

i=0

f ′
2iE[ε(θ

2
−1/2 + θ2−1 + 2θ−1/2θ−1 + 2θ−1/2θ−3/2)]

+
1

6

T−1
∑

i=0

f ′
3iE[ε(θ

3
−1/2 + 3θ2−1/2θ−1)]

+
1

24

T−1
∑

i=0

f ′
4iE(εθ

4
−1/2) + o(T−1). (3.5)

When substituting θ−i/2, i = 1, · · · , 4, from the appendix into (3.5), we notice that all

the expectations are of the form: E[ε
∏m

i=1(ε
′Aiε)] for m up to 4. Under a general non-

normal distribution, the results for m up to 3 can be found in Bao and Ullah (2010), but

E[ε
∏4

i=1(ε
′Aiε)] has not been developed in the literature and deriving its analytical expres-

sion is beyond the scope of this paper. Nevertheless, for symmetric distributions, not nec-

essarily normal, E[ε
∏m

i=1(ε
′Aiε)] = 0. Then immediately, E(ŷT+1|T − yT+1) = 0 + o(T−1),

namely, the 1-step-ahead forecast is also unbiased. We summarize our results in the follow-

ing proposition.3

Proposition: For the first-order moving average model with an initial error term ε0 = 0, the

approximate bias of the QMLE β̂ = (µ̂, θ̂, σ̂2)′, given by (0,−1 + 2θ,−2σ2)′/T , under any

distribution of εt. Under a quadratic loss function, the feasible conditional optimal multiple-

step-ahead forecasts based on the QMLE of model parameters are unbiased up to order

O(T−1) under any distribution, and the conditional one-step-ahead forecast is unbiased up

3When µ = 0 and we estimate the model yt = εt+ θεt−1, the bias of the QMLE is given by (−θ,−σ2)′/T
as derived in Bao and Ullah (2007). It is the same as the bias of the MLE derived in Tanaka (1984) and
Cordeiro and Klein (1994). The unbiasedness of the feasible forecasts also holds.
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to order O(T−1) under any symmetric distribution.

3.2.3 A Simulation Experiment

This subsection reports a simulation experiment to illustrate the finite-sample

properties of the QMLE. The results are based on 100,000 simulations. We set µ = 0.2, 0.5, 1,

θ = 0.2, 0.5, 0.9, σ2 = 1, T = 30, 50, 100, 200. We experimented with normal, exponential,

uniform, scale mixtures of normals, and t distribution with 10 degrees of freedom. To

save space, we report only the results from the t distribution, whereas the results under the

other distributions, with similar findings, are available upon request from the corresponding

author. In Tables 1 and 2, θ̃ = θ̂− (−1+2θ̂)/T and σ̃2 = σ̂2− (−2σ̂2)/T denote the feasible

bias-corrected θ̂ and σ̂2, respectively, FE1, FE2, and FE5 are the 1-, 2- and 5-step-ahead

feasible forecast errors, with
√
M1,

√
M2, and

√
M5 being the corresponding square root of

the mean squared forecast errors (MSFEs).4

We observe first that the bias behaviors of µ̂, θ̂, and σ̂2 match what our theory

predicts: up to the second order, µ̂ is unbiased, θ̂ maybe upward or downward biased

(depending on whether θ is greater than or less than 0.5), and σ̂2 is always downward

biased. The approximate bias results given by (3.3) generally capture really well the true

biases. In particular, θ̂ tends to be severely biased in small samples when θ is small (0.2), and

θ̃ corrects for the bias substantially. Second, in all cases, the forecast errors are very close to

zero and this is consistent with the proposition that under any symmetric distribution, the

4In this paper we do not attempt to derive the analytical MSFE. For the one-step feasible forecast error
(3.4), one can check that we need results on the expectation of nonnormal quadratic forms of order 5 like
E[
∏5

i=1(ε
′
Aiε)]. Unfortunately, an analytical expression for E[

∏5
i=1(ε

′
Aiε)] is not available and deriving

such an expression is beyond the scope of this paper.
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feasible forecasts are unbiased. Third, for a given sample size, the MSFEs do not vary much

over the values of µ and θ when th forecast horizon is 1, but increase with θ for the 2- and

5-step forecasts. Moreover, the MSFEs do not necessarily increase with the forecast horizon,

perhaps largely due to the presence of parameter estimation uncertainty. Analytical results

regarding the MSFEs, which unfortunately are not available, might provide us with a better

understanding of the finite-sample behavior of the MSFEs.
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Table 3.1: Finite-Sample Properties of QMLE in MA(1) (T = 30, 50)

T µ θ µ̂ θ̂ σ̂2 θ̃ σ̃2 FE1 FE2 FE5
√
M1

√
M2

√
M5

30 0.2 0.2 0.1978 0.1693 0.9552 0.1913 1.0189 -0.0053 -0.0044 0.0054 1.0541 1.0649 1.0546

0.5 0.2002 0.4978 0.9558 0.4979 1.0195 0.0054 -0.0085 0.0066 1.0672 1.1704 1.1665

0.9 0.1954 0.9133 0.9580 0.8857 1.0218 0.0029 -0.0065 -0.0100 1.0581 1.4103 1.4028

0.5 0.2 0.4984 0.1677 0.9581 0.1898 1.0220 -0.0052 -0.0109 0.0007 1.0554 1.0573 1.0540

0.5 0.4966 0.4973 0.9562 0.4975 1.0199 -0.0004 -0.0071 0.0063 1.0525 1.1633 1.1657

0.9 0.5019 0.9127 0.9578 0.8852 1.0217 -0.0020 -0.0049 -0.0069 1.0413 1.3951 1.4020

1 0.2 0.9985 0.1719 0.9553 0.1938 1.0190 0.0002 0.0028 0.0027 1.0599 1.0506 1.0568

0.5 0.9971 0.5001 0.9555 0.5001 1.0192 0.0070 -0.0041 -0.0001 1.0523 1.1707 1.1578

0.9 0.9964 0.9136 0.9591 0.8861 1.0231 0.0022 -0.0037 -0.0022 1.0404 1.4064 1.4075

50 0.2 0.2 0.1987 0.1833 0.9847 0.1960 1.0240 0.0028 -0.0053 0.0157 1.0412 1.0510 1.0385

0.5 0.2010 0.5004 0.9853 0.5004 1.0247 -0.0069 -0.0159 0.0073 1.0381 1.1513 1.1594

0.9 0.2032 0.9137 0.9824 0.8971 1.0217 -0.0165 -0.0192 -0.0210 1.0410 1.3885 1.3902

0.5 0.2 0.5012 0.1855 0.9866 0.1981 1.0260 -0.0030 -0.0032 0.0060 1.0436 1.0487 1.0461

0.5 0.4994 0.4995 0.9896 0.4995 1.0291 -0.0078 -0.0079 -0.0045 1.0491 1.1529 1.1475

0.9 0.5032 0.9143 0.9825 0.8977 1.0218 -0.0024 -0.0043 -0.0273 1.0395 1.3948 1.3891

1 0.2 1.0008 0.1847 0.9843 0.1973 1.0237 -0.0008 -0.0084 -0.0024 1.0355 1.0400 1.0393

0.5 1.0031 0.4987 0.9844 0.4987 1.0238 -0.0130 -0.0137 -0.0002 1.0406 1.1548 1.1547

0.9 1.0033 0.9138 0.9827 0.8972 1.0220 -0.0121 -0.0178 -0.0079 1.0371 1.3887 1.3888
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Table 3.2: Finite-Sample Properties of QMLE in MA(1) (T = 100, 200)

T µ θ µ̂ θ̂ σ̂2 θ̃ σ̃2 FE1 FE2 FE5
√
M1

√
M2

√
M5

100 0.2 0.2 0.2005 0.1930 1.0064 0.1992 1.0265 0.2005 0.0011 -0.0042 1.0209 1.0376 1.0467

0.5 0.2007 0.5002 1.0061 0.5002 1.0262 0.2007 0.0009 -0.0102 1.0243 1.1401 1.1435

0.9 0.1996 0.9093 1.0042 0.9011 1.0243 0.1996 -0.0013 -0.0067 1.0200 1.3694 1.3796

0.5 0.2 0.5004 0.1929 1.0058 0.1991 1.0260 0.5004 0.0091 -0.0034 1.0245 1.0386 1.0474

0.5 0.5014 0.5007 1.0057 0.5007 1.0258 0.5014 -0.0063 0.0002 1.0289 1.1457 1.1369

0.9 0.4998 0.9091 1.0046 0.9009 1.0247 0.4998 -0.0100 0.0101 1.0204 1.3757 1.3825

1 0.2 0.9992 0.1938 1.0063 0.1999 1.0265 0.9992 -0.0005 -0.0026 1.0228 1.0385 1.0437

0.5 1.0009 0.4997 1.0064 0.4997 1.0265 1.0009 -0.0071 -0.0017 1.0270 1.1394 1.1428

0.9 0.9981 0.9090 1.0038 0.9008 1.0239 0.9981 -0.0062 0.0087 1.0098 1.3688 1.3789

200 0.2 0.2 0.1998 0.1965 1.0171 0.1995 1.0273 0.0018 0.0007 -0.0038 1.0120 1.0534 1.0440

0.5 0.2006 0.5001 1.0177 0.5001 1.0279 0.0007 0.0079 -0.0070 1.0118 1.1443 1.1516

0.9 0.1984 0.9053 1.0176 0.9012 1.0278 -0.0061 -0.0092 0.0134 1.0180 1.3748 1.3816

0.5 0.2 0.4997 0.1967 1.0203 0.1997 1.0305 0.0014 -0.0080 -0.0126 1.0155 1.0473 1.0428

0.5 0.5001 0.5007 1.0169 0.5007 1.0271 0.0134 0.0026 0.0027 1.0169 1.1457 1.1507

0.9 0.5003 0.9051 1.0163 0.9011 1.0265 0.0166 0.0209 -0.0034 1.0073 1.3698 1.3788

1 0.2 0.9999 0.1968 1.0176 0.1998 1.0278 0.0088 0.0012 -0.0030 1.0153 1.0427 1.0399

0.5 0.9989 0.4999 1.0180 0.4999 1.0281 0.0043 -0.0070 -0.0066 1.0119 1.1415 1.1395

0.9 0.9993 0.9047 1.0155 0.9007 1.0256 -0.0016 -0.0142 0.0116 1.0142 1.3629 1.3877

3.3 Concluding Remarks

In this paper, we have derived approximate bias of the QMLE of parameters in an

invertible MA(1) model with possibly nonnormally distributed data. We then investigate

whether the feasible conditional forecasts can be biased due to the bias in the QMLE in finite
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samples. It turns out that multiple-step-ahead forecasts are in fact unbiased, up to O(T−1),

under any distribution, and the one-step-ahead forecast is unbiased when the distribution

is symmetric. This finding, together with the finding of similar properties from Bao (2007)

regarding forecasts from AR processes, perhaps can partially alleviate for researchers the

worry of parameter estimation uncertainty. Of course, one has yet to investigate the more

general ARMA type models and other nonlinear time-series models before more affirmative

conclusions can be made.

We have restricted ourselves to the invertible MA(1) model, but recently noncausal

AR and noninvertible MA models have been used by empirical researchers. For example,

the noncausal AR model was used by Lanne and Luoto (2012) to forecast the US inflation

rate, and the noninvertible MA model was used by Huang and Pawitan (2000) and Breidt

et al. (2001) to study the US unemployment rate and New Zealand/US exchange rate,

respectively. Estimation and forecasting strategies in these cases are quite nonstandard,

and studying the finite-sample properties of forecasts in this direction is a future subject of

investigation.
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Chapter 4

Using Extreme Learning Machines

for Out-of-Sample Prediction

In this paper, we apply the artificial neural network (ANN) model to out-of-sample

prediction of financial return using a set of covariates. The main challenge in ANN model

estimation is the multicolinearity between the large numbers of randomly generated hidden

layers. We explore several methods to deal with the large dimension regressors, such as

general inverse, ridge, pretest and principal components, which are also named extreme

learning machines (ELM). We find that although the ELM methods sometimes fit perfectly

for in-sample data, it has very poor out-of-sample forecast ability. We then introduce some

modifications to the ELM method, which is a two step algorithm, where the first step

uses ELM methods with some modifications to get a set of forecasts, and the second step

combines the forecasts using principal components weighting scheme. Empirical results

show that our method gives best forecast for annually aggregated equity premium among
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all the alternatives.

4.1 Introduction

The artificial neural network (ANN) model, as an flexible universal approximator,

works efficiently in testing nonlinearity in the sense that it can approximate and thus detect

any kind of nonlinear relationship, see Lee, White and Granger (1993, denoted by LWG

thereafter), Lee, Xi and Zhang (2013, denoted by LXZ thereafter, 2014). In this paper,

we apply the ANN model to forecast stock returns using a set of covariates. LWG uses

a set randomly generated activation functions as the hidden layer in the ANN model and

LXZ further extend the method to a lager set of randomly generated activation functions,

which makes the test more robust to empirical applications. Both of LWG and LXZ apply

the principal component (PC) method to solve the problem of multicolinearity between the

randomly generated hidden layers, where a relatively small number of principal components

are selected rather than including all the activation functions generated. In this paper, we

first apply this method to forecast excess stock returns, and compare the results with some

linear models as benchmarks. Results show that the this LWG method using a set of

principal components does not give very good results for out-of-sample forecasting. Then

we further explore several other methods rather than principal components to shrink the

dimension of the activation function, these methods are named extreme learning machines

(ELM) according to Huang, Wang and Lan (2011). Their ELM method does not reduce the

dimension of the activation function, but instead use a general inverse or ridge estimator to

estimate the ANN model with a large number of activation functions. Their paper shows
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that the ELM method can perfectly fit any nonlinear functions with the set of activation

functions of dimension less than the total number of observations. We apply their methods

to fit and forecast excess stock returns, and find that although their ELM methods using

general inverse regression fit perfectly for in sample data, it has very poor forecast ability

for out-of-sample data.

Based on these above results, we introduce some modifications to the ELM method

following Huang ana Lee (2009), which we refer to as ELM-CFPC method. The ELM-CFPC

method is a two step algorithm, the first step uses ELM methods with some modifications

to get set of forecasts, and the second step combines the forecasts using principal compo-

nents weighting scheme. We also compare this method with alternative models, including

linear and nonlinear models, as well as forecast combination of ELM using other weighting

schemes, including equal weight, Mellows criteria (Hansen, 2007, 2008). Empirical results

show that the ELM-CFPC method gives best forecast for annual aggregated excess stock

returns among all the linear and nonlinear alternative methods.

The rest of this paper is arranged as follows: part two reviews different extreme

learning machines applying different shrinkage methods; part three introduces the two step

algorithm which we call ELM-CFPC method; part four lists the alternative methods con-

sidered in this paper for our application of forecasting equity premium, and part five shows

the results of application and part six concludes.
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4.2 Extreme Learning Machines

The linear-augmented single hidden-layer feedforward ANN model has the follow-

ing architecture:

yt = f(xt, θ) + εt := x′
tα+

q
∑

j=1

θjψ
(

x′
tγj

)

+ εt, (4.1)

where t = 1, . . . , n, xt = (x1,t, . . . xk,t)
′ , θ =

(

α′, β′, γ′1, . . . , γ
′
q

)′
, α = (α1, . . . , αk)

′, β =

(β1, . . . , βq)
′, and γj = (γj,1, . . . , γj,k)

′ for j = 1, . . . , q, and ψ(·) is an activation function.1

An example of the activation function is the logistic function ψ(z) = (1 + exp(z))−1. α is

a column vector of connection strength from the input layer to the output layer; γj is a

conformable column vector of connection strength from the input layer to the hidden units,

j = 1, . . . , q; βj is a (scalar) connection strength from the hidden unit j to the output unit,

j = 1, . . . , q; and ψ is a squashing function (e.g., the logistic squasher) or a radial basis

function. Input units x send signals to intermediate hidden units, then each of hidden unit

produces an activation ψ that then sends signals toward the output unit. The integer q

denotes the number of hidden units added to the affine (linear) network.

When then hidden layers of the ANN model does not need turning, the algorithm

is called extreme learning machine (ELM) according to Huang, Wang and Lan (2011). And

as a special case of ANN model, the set of γj ’s are randomly generated in ELM, which

is also proved in Bierens (1982). When the set of γj is randomly generated, the hidden

layers ψ(x′tγj) can be determined given a realization of γj, then the ANN model can be

regarded as a linear function of the the covariants xt and the activation functions ψ. To

estimate those linear coefficients, we can just apply the least squares method. However, as

1‘a := b’ means that a is defined by b, while ‘a =: b’ means that b is defined by a.
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the set of γj is randomly generated with large dimension, there may exist multicolinearity

problem. To solve this, several estimation methods could be used. Huang, Wang and Lan

(2011) introduced using the general inverse in the OLS regression as well as ridge regression,

referred to as basic ELM and ridge based ELM in this paper, respectively. In this paper,

we further extend their methods.

4.2.1 Basic ELM

The above N equations for the ANN model can be rewritten compactly as:

y = Ψ(x)β + ε (4.2)

where y = (y1, ..., yn), Ψ(x) = [Ψ′(x′1), ...,Ψ
′(x′n)]

′, in which Ψ(x′t) = [x′t, ψ(x
′
tγ1), ..., ψ(x

′
tγq)],

Ψ(x) contains both the linear part and the nonlinear activation functions of xt, β =

[α′, θ1, ..., θq]′.

Given randomly generated γ, the above system is linear in β. The basic ELM solves

the linear system using the least squares method. However, in case of multicolinearity, the

matrix of Ψ(x)′Ψ(x) may not be full rank, as an alternative, the general inverse could be

applied instead. The basic ELM method estimates the model by:

β̂bELM = Ψ(x)†y (4.3)

where Ψ(x)† is the Moore-Penrose generalized inverse of Ψ(x).

The fact that least square estimators can give good approximation and can fit well

for any functional form is shown in Huang and Chen (2007, 2008) and summarized theo-

rem 2.4 in Huang, Whang and Lan (2011), that for any nonconstant piecewise continuous
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activation function, if the hidden layers are dense in L2, then for any randomly generated

γ with dimension q, the norm of the approximation error goes to zero with probability

one as q goes to infinity if β is determined by ordinary least square method. Nevertheless,

their proof is for in-sample estimation only, we will apply the method to both in-sample

regression and out-of-sample forecasting for excess stock returns in the next section.

4.2.2 Ridge based ELM

In the existence of multicolinearity between the ψ(x′tγj)’s, various shrinkage meth-

ods could be used. In particular, the L2 shrinkage method, also known as ridge regression,

adds a penalty of the sum of squares of the coefficients to the least squares residual sum of

squares, in this case, β̂ solves the following minimization problem:

β̂rELM = argmin
β

{

(y −Ψ(x)β)′(y −Ψ(x)β) + λβ′β

}

(4.4)

the solution to the above equation can be written explicitly as β̂ELMr = (Ψ(x)′Ψ(x) +

λI)−1Ψ(x)′y, where λ is a small number, chosen to be 10−6 in this paper. We refer to this

method ridge based ELM according Huang, Wang and Lan (2011). They suggested that

the ridge based ELM works better than the basic ELM for in-sample fitting. We will check

whether this method also works for out-of-sample forecasting in the next section as well.

4.2.3 PC based ELM

Instead of doing model shrinkage through optimization such as the ridge method,

an alternative way to solve the multicolinearity problem between the Ψ functions is to use

the principal components in the regression. According to LWG and LXZ, the shrinkage by
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principal component method works well for nonlinearity testing with ANN models, so we

also consider this method for forecasting in this paper. After getting the Ψ functions of

dimension q from given randomly generated γj ’s, a relatively smaller number of principal

components are selected from Ψ(x), with dimension of q∗, where q∗ < q, and those principal

components are used in the least squares regression. We refer this method as principal

component based ELM, and will apply it to both in-sample fitting and out-of-sample forecast

as well.

4.2.4 Pretest based ELM

In addition to selection by coefficients shrinkage or by combination of the infor-

mation in the Ψ functions through principal components, we can also select Ψ functions

directly through setting a threshold criterion. In particular, we consider the pretest method,

which selects the significant Ψ functions using the t-statistic with a chosen significance level,

such as 0.01. Then the selected set of Ψ functions is used in least squares regression both

in-sample fitting and out-of-sample forecast.

4.3 Forecast Combination using ELM

Huang and Lee (2010) shows that with many explanatory variables, the combi-

nation of forecasts (CF) is better than combination of information (CI), where CI refers

to model shrinkage such as by principal components, and the combination weight scheme

can be based on equal weight, principal component, or other optimization methods. From

empirical results, we find that (reported in next section) both the above ELM and LWG
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methods does not work well for out-of-sample forecasting for stock returns, so we consider

apply forecast combination methods to the ELM models. That is, we modify the ELM

methods into a two step algorithm, where in the first step, a set of forecasts are made using

variations of ELM models, and then in the second step, we combine those forecasts using

certain weighting schemes.

In particular, for the weighting scheme in the second step, we will consider a

principal component based weighting scheme, we will compare this weighing method with

equal weight weighting scheme as well as the Mallows criteria based weighting scheme. That

is, to combine the forecast of yt under the principal component based weighting scheme,

the weights in forecast combination is calculated according to the principal component

coefficients. And in order to get the forecasts of yt in the first step, we consider three

different methods, based on what methods to use in order to deal with the multicollinearity

problem of activation functions and get each individual forecasts: one-at-a-time regression,

ridge regression, and principal components regression.

4.3.1 Two Step Algorithm

In stead of using all the activation functions with the existence of multicollinearity

in the first step regression, we can regress yt on the linear part xt and each activation

function ψ(x′tγj) at a time for j = 1, ...q. And make forecasts of yt based on each individual

models. Then in the second step, we combine these q individual forecasts using certain

weighting scheme. We call this method one-at-a-time then combine.

Alternatively, for the first step of individual forecast model, in stead of doing the
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regression one activation function at a time, we can also use ridge estimation to get rid

of the multicollinearity problem. We refer this method as ridge-then-combine method. In

particular, in the first step, we regress yt on the linear part xt and a set of activation

functions using ridge estimator, and then repeat for m times, and then get a series of

forecasts ŷt+h = (ŷ
(1)
t+h, ŷ

(2)
t+h, ..., ŷ

(m)
t+h)

′. Then in the second step, we apply some weighting

scheme to these m forecasts.

On the other hand, since ridge estimator does not reduce the dimension of the

activation functions, we further consider reducing dimension through principal components,

that is, we use only a few principal components of the activation functions for regression in

the first step. In particular, we regress yt on the linear part xt and q
∗ principal components

of the activation functions for each model in the first step, and then repeat for m times. The

second step is the same as above again where a certain weighting scheme can be applied.

We call this method principal component then combine.

4.3.2 Weighting Scheme

To use the principal component weighting scheme in the one-at-a-time then com-

bine method, we first divide the in-sample data into two parts, the in-sample regression

part and in-sample prediction part. Then use in-sample regression data, we can produce

h-step-ahead forecasts of yt, each using one activation function and denote these q forecasts

as ŷt+h = (ŷ
(1)
t+h, ŷ

(2)
t+h, ..., ŷ

(q)
t+h)

′, where ŷ(i)t+h is the forecast from ith model. We then combine

them through the principal components weighting scheme, that we first get the principal

components of ŷt+h, denoted as ft+h, where ft+h = Λŷt+h, and Λ contains the first q∗
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eigenvectors of ŷt+h corresponding to the first q∗ largest eigenvalues. And then estimate

the weight from the OLS regression of yt+h on the principal components ft+h using the

in-sample prediction data:

yt+h = αft+h + vt+h (4.5)

Then the principal components weighing forecast combination is given by the weighted

principal components of ŷT+h:

ŷCFPC
T+h = α̂fT+h = α̂ΛŷT+h (4.6)

where fT+h = ΛŷT+h. Notice that this forecast combination can be recovered in terms of

ŷT+h, with weight equal to α̂Λ. We will refer the principal component weighing scheme as

ELM-CFPC in the following.

To use the principal component weighting scheme in the ridge then combine and

principal component then combine method, the first step is similar that the data is divid-

ed into in-sample regression and prediction parts and we use ridge estimation or selected

principal components on the in-sample regression part and repeat for m times. And then

in the second step, we apply the above principal components weighting scheme to these m

forecasts.

As a comparison to the principal components weighting scheme, we also use the

equal weight weighing scheme. That is, in the second step, in stead of estimating weights by

principal components of ŷt+h, we assign each individual forecast (ŷ
(1)
t+h, ŷ

(2)
t+h, ..., ŷ

(m)
t+h)

′ with

a weight equal to 1/m (m = q for one-at-a-time then combine method).

As another weighting scheme comparison, we also apply the Mallows weighing
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criteria for forecast combination, according to Hansen (2007, 2008). That is, we first use a

set of nested models to get individual forecasts, each of which contains the firstm activation

functions for m = 1, ..., q, and then combine these q models where the weight minimizes the

penalized mean squared error in terms of the Mallow’s criteria:

C(w) =

n
∑

t=1

(yt − ŷ′tw)
2 + 2

q
∑

m=1

w(m)k(m)s2 = w′ê′êw + 2w′Ks2 (4.7)

where ê = (ê(1), ..., ê(q)), is the vector of mean squared errors for individual models, K =

(1, ...q)′ is the vector of dimension for each model and s2 = ê′(q)ê(q)/(n − q) is the sample

variance for the largest model with all the activation fuctions.

4.4 Alternative Models

As comparison, we also include some simple linear and nonlinear models as bench-

marks. The linear models include:

1. Martingale Difference (MD)

The model assumes that excess stock return is a martingale difference process, that

the return at time t is equal to a random error, given by:

yt = εt (4.8)

so the one-step-ahead forecast at any time T is equal to zero, denoted by ŷMD
T+1 = 0.

2. Historical Mean (HM)

This model assumes the excess stock return at any time T is equal to the average of
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all historical returns up to this time, so the one-step ahead forecast uses all the past

information of yt:

ŷHM
T+1 =

1

T

T
∑

t=1

yt (4.9)

In this paper, we make the forecast using rolling window method with the window

width fixed.

3. Autoregressive of Order One (AR(1))

In this model, we assume the excess stock return is an AR(1) process:

yt = βyt−1 + εt (4.10)

where |β| < 1. Then the one-step-ahead forecast is ŷAR
T+1 = β̂yT .

4. Random Walk (RW)

When the parameter β in the AR(1) is equal to one, we have a nonstationary random

walk process.

yt = yt−1 + εt (4.11)

The one-step-ahead forecast at any time T is equal to the previous time return ŷRW
T+1 =

yt.

5. Linear Regression (LR)

The above models are all univariate. The stock return can also be explained by a set

of covariates using the linear model, given by:

yt = xtβ + εt (4.12)
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where the regressor xt is k-dimensional. And the one-step-ahead forecast is given by

ŷLRT+1 = xtβ̂, where β̂ is estimated using least squares method.

6. Linear Principal Component (PC)

Assume we fit the stock return using the linear model, yet the regressors maybe

correlated. As a result, using a relatively smaller number of principal components of

the regressors would solve the problem. The model is written as:

yt = x∗tβ + εt (4.13)

where x∗t is a k∗-dimension principal component of xt where k
∗ < k. In this paper,

we choose k∗ = 5.

The two alternative nonlinear models as a comparison to the nonlinear ELM mod-

els in this paper are from Bai and Ng (2008):

1. Principal Component of X2 (QPC)

As a comparison to the linear PC model, following Bai and Ng (2008), we use a

quadratic principal component model, where the principal components is composed

from xt and x
2
t .

2. Nonlinear Principal Component (PCSQ)

An alternative way to construct the nonlinear PC model, is to assume excess stock

returns is a nonlinear function of the principal components of xt, in particular, a

second order polynomial function.

yt = x∗∗t β + εt (4.14)
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where x∗∗t = [x∗t , x
∗2
t ]. This model is called principal component square model (PCSQ),

following Bai and Ng (2008).

4.5 Results

4.5.1 Data and Variables

We use the data set provided by Goyal and Welch (2008). The stock return in

this paper is the k period excess return, which is calculated from the S&P 500 Index (Pt),

with k = 1, 2, 3 representing the annualized monthly data, quarterly aggregated monthly

data and the monthly data respectively. To get excess return, we use the compound return

minus the risk free rate:

Qt(1) = Rt(1)−Rf

where Qt(1) is the monthly excess return, Rt(1) is the one-period simple return, calculated

from Rt(1) =
Pt+1

Pt
−1, and Rf is the risk free rate, which is the Treasury-bill rate. Following

Campbell and Thompson (2008), the k period excess return is calculated by:

Qt(k) = (Qt+k−1(1) + 1)× ....× (Qt(1) + 1)− 1 =

k
∏

j=1

(Qt+k−j(1) + 1)− 1

where k = 1, 3, 12. We call them monthly, quarterly aggregated and annualized excess

returns respectively in this paper.

The covariates in this paper include 13 variables: dividend price ratio (d/p), div-

idend yield (d/y), earnings price ratio (e/p), dividend payment ratio (d/e), stock variance

(svar), cross-sectional premium (csp), book to market ratio (b/m), net equity expansion
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(ntis), treasury bills (tbl), long term yield (lty), long term rate of returns (ltr), default yield

spread (dfy), inflation (infl). For detailed description of each variables, refer to Goyal and

Welch (2008). The time period we choose is form May 1937 to December 2002, during

which we have the balanced data for all the 13 variables. In addition, we divide the whole

period into 3 subsamples in order to check robustness of each method. We group the whole

sample into the first half, 25 to 75 percentile, and last half of the data as three subsamples,

called subsample 1, 2 and 3 respectively. In each sample and subsample, we use the rolling

window method to do forecasting, and according to each model, the ratio for estimation

and prediction period is equal to 1.

4.5.2 Main Results

One issue for the ELM models is to choose the number randomly generated set of

γj ’s, or alternatively, the number of activation functions, denoted by q. According to Huang,

Zhu and Siew (2006) and also summarized in theorem 2.1 and 2.2 in Huang, Wang and Lan

(2011), the number of activation functions needed to make good approximation is smaller

or equal to the number of observations. That is, when q ≤ N , the ELM method is good

enough to approximate any functional forms for any randomly generated γ in the sense that

the norm of the approximation error goes to zero with probability one. In particular, when

q = N , the norm of the approximation error could achieve zero with probability one for any

randomly generated γ. However, their proof is valid theoretically since the probability to

have multicolinear Ψ functions is zero when γj is randomly generated. However, in practice,

for any given realization of γj’s, the Ψ functions may be correlated, and thus making the
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estimation questionable. Moreover, their theorem is for in sample approximation rather

than time series forecasting, so in this paper, we will consider both the case when q = N

and q >> N as well as both in-sample and out-of-sample.

We consider two cases for the dimension of the activation functions, q = N and

q >> N , and for q >> N , we choose q = 1000. And for PC based ELM, q∗ = 3, as well as

in the PC weighting forecasting combination. For all the following tables, MD, HM, AR,

RW, LIN denotes for martingale difference, historical mean, AR(1), random walk, linear

model, respectively, and LINPC, PCSQ, QPC denote for linear principal component model,

principal component of X andX2, as well as nonlinear principal component model, as in Bai

and Ng (2008). ELMB, ELMR ELMPC, ELMPT denote for basic ELM, ridge based ELM,

principal component based ELM and pretest based ELM. ELMCFPC denotes for one-at-a-

time then combine using principal component weighting scheme, ELMCFPC2 denotes for

principal component then combine using principal component weighting scheme, ELMCFR

denotes for ridge then combine using principal component weighting scheme, ELMCFEW

denotes for one-at-a-time then combine using equal weighting scheme, ELMCFEW2 denotes

for principal component then combine using equal weighting scheme, ELMCFEW3 denotes

for ridge then combine using equal weighting scheme, ELMMMA denotes for using MMA

to combine nested models. For MMA weighting, since the models are nested and requires

number of variables less than number of observations, so we only consider q = N . And for

the principle components and then combine as well as ridge then combine method, since

the first step needs regressors to have large dimension, and in order to compare the total

sample with sub samples, we only consider the case for q = 1000.
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Table 1 summarizes the in-sample fitting mean squared error using various ELM

methods as well as the alternative models. From the table we can observe that the basic

ELM method works best among all the models with the mean squared error very close to

zero. Moreover, we can see that the results for q = N and q >> N are quite similar, verifies

that q = N is enough to make a good fit. In addition, for the annually aggregated data, all

the ELM models fit better than the linear and quadratic pc models, suggesting ANN model

can make a perfect fit for the nonlinear feature of the aggregated data. And for quarterly

aggregated and monthly data, the results are similar between other ELM methods rather

than the basic ELM and the linear methods.

Table 2 summarizes the out-of-sample mean square forecast error (MSFE) of al-

l the above models. Among the linear models, martingale difference model works best

for all annualized, quarterly aggregated and monthly data, so we will use it as the linear

benchmark for comparison. From the results, we can see that for the annually aggregated

data, basic ELM and PC based ELM give very poor forecasts, implies that the basic ELM

method can give good approximation of nonlinear functions only for in-sample fitting rather

than out-of-sample forecast. On the other hand, the principal component weighting scheme

forecast combination gives best results compared with all the alternative linear and non-

linear models in terms of a lower MSFE. This implies that the forecast combination works

well for out-of-sample forecasting of nonlinear data, and moreover, the principal compo-

nent weighting scheme outperforms the equal weight weighting scheme, meaning that the

“supervision” works in the sense that the choice of weight takes into account the forecast

ability of individual models, rather than giving equal weight for every individual forecast.
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For quarterly aggregated and especially monthly data, most models give similar results, yet

ELMCFPC an ELMCFPC2 give similar or better forecasts. Further, the results from the

three subsamples has similar properties as the full sample for all the annualized, quarterly

aggregated and monthly data, indicating the above conclusion is robust.

4.5.3 Comparison Criterion

To compare between different models, one way is to compare their mean squared

forecast error (MSFE), yet this may not be enough to see if there is significant improvement.

In this paper, we choose three criteria for forecast comparision: the out of sample goodness

of fit (R2
OOS), the adjusted DM statistic, and the first or second order stochastic dominance

(FOSD/SOSD).

The out of sample goodness of fit statistic follows from Campbell and Thompson

(2008), which is computed as:

R2
OS = 1−

∑T
t=1(yt − ŷt)

2

∑T
t=1(yt − ȳt)2

where yt is the true excess return, ȳt is the forecast from benchmark model and ŷt is the

forecast from alternative model. The out of sample R2 could be positive, zero, or negative,

depending on whether alternative model forecast outperforms, equals to, or worse than the

benchmark model forecast.

Diebold and Mariano construct an test statistic for comparing predictive accuracy,

which is usually referred as the DM statistic. It is computed from:

St =
d̄

ˆavar(d̄)1/2
=

d̄

( ˆavar(dt)/P )1/2

106



where d̄ = 1
P

∑P
t=1 dt, R is the number of out of sample period, and dt is the difference of

benchmark loss function and alternative loss function. ˆavardt is the consistent estimator

of the asymptotic variance of dt, and in this paper, we use the Newey-West estimator from

Newey and West (1987).

However, when the benchmark model and the alternative model is nested, DM

statistic is not appropriate since the MSFE from the parsimonious model is expected to be

smaller than the larger model. Following Clark and West (2007), we use the adjusted DM

statistic, which is calculated from:

S∗
t =

d̄∗

ˆavar(d̄∗)1/2
=

d̄∗

( ˆavar(d∗t )/P )
1/2

where d̄∗ = d̄+ adj, and when we have squared loss function, the adjustment term is given

by adj = 1
P

∑P
t=1(etb− eta)2, where etb is the forecast error of the benchmark model and eta

is the forecast error from alternative model. Since the forecast comparision in this paper is

based on nested model, we will use the adjusted DM statistic, and the asymptotic variance

is estimated using the Newey-West estimator.

The rationality to use the adjusted DM statistic is that it is equivalent to the

encompassing test in Stock and Watson (2002), which tests the coefficient in the following

forecast combination regression:

yt = αŷAt + (1− α)ŷBt + ut

where yt is the true excess return, ŷBt is the forecast of yt using benchmark model and ŷAt

is the forecast of yt using alternative model. If the test H0 : α = 0 versus H1 : α 6= 0

is rejected, then it implies that the benchmark model does not dominate the alternative
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model. On the other hand, if the test H0 : α = 1 versus H1 : α 6= 1 is rejected, it implies

the alternative model does not dominate the benchmark model. It can be shown that the

encompassing test is equivalent to the adjusted DM statistic that if the encompassing test

cannot reject H0 : α = 1 versus H1 : α 6= 1, which means the alternative model dominates,

then the adjusted DM statistic is also significant.

We could also apply the above adjustment to the out of sample R2, as did in

Hillebrand, Lee and Medeiros (2012), where the adjusted R2
OS , R

2∗
OS is defined by:

R2∗
OS = 1−

∑T
t=1[(yt − ŷt)

2 − (ȳt − ŷt)
2]

∑T
t=1(yt − ȳt)2

The previous two criteria for forecast comparison are both based on the mean value

of the MSFE, however, a lower average MSFE does not necessary lead to a better forecast

since the whole distribution of the MSFE is not considered. The stochastic dominance

comparison criteria takes into account this problem through comparing the two distributions

of the MSFE of the benchmark and alternative models. By definition, given the error

distribution functions for benchmark model (FB(e)) and the alternative model (FA(e)),

then the alternative model first order stochastic dominate (FOSD) the benchmark model if

FA(e) − FB(e) > 0 for all e. And the alternative model second order stochastic dominate

the benchmark model (SOSD) up to r if
∫ r
0 [F

A(e) − FB(e)]de > 0, for r > 0. Since FOSD

implies SOSD, we will say alternative model is better if alternative model FOSD benchmark

model, or alternative model outperforms benchmark model up to point r if alternative model

SOSD benchmark model up to r.

Since martingale difference is the best among all the linear models and basic ELM

model is the best among all nonlinear models for annualized data, we will set the bench-
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mark as the martingale difference model and alternative as the basic ELM model. Table 3

summarizes the comparison results for the out of sample goodness of fit as well as the DM

statistic, both adjusted and unadjusted, as well as the results for the stochastic dominance

between ELMCFPC for q = N , q >> N , ELMCFPC2 for q = N compared with benchmark.

From this table, for annually aggregated data and quarterly aggregated data both out of

sample R2 and the DM statistic shows ELMCFPC and ELMCFPC2 significantly improves

upon the martingale difference model. Yet for monthly data, martingale difference model

is significantly better than the ELM models. Figure 1 shows the graph for FOSD, SOSD

and the distribution of the squared errors for the benchmark and the ELMCFPC2 model.

The conclusion is that in most cases, ELMCFPC2 second order stochastic dominate the

martingale difference model for annualized and quarterly aggregated data, while martingale

difference model second order stochastic dominate basic ELM model. All the above results

show that the conclusion from table 2 is significant.

4.6 Conclusion

In this paper, we apply the artificial neural network (ANN) model to out-of-sample

prediction of financial return using a set of covariates. The main challenge in ANN model

estimation is the multicolinearity between the large numbers of randomly generated hidden

layers. We explore several methods of extreme learning machines to deal with the large

dimension regressors. We find that the dimension shrinkage methods such as general inverse,

ridge, pretest and principal components sometimes fit perfectly for in-sample data, however,

it has very poor out-of-sample forecast ability. We then introduce some modifications to
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the ELM method, which is a two step forecast combination algorithm, where the first

step uses ELM methods with some modifications to get a set of forecasts, and the second

step combines the forecasts using principal components weighting scheme. We compared

our methods with some alternative linear and nonlinear models as well as applying other

weighting schemes in forecast combination. Empirical results show that our method gives

best forecast for annually aggregated equity premium among all the alternatives, which

indicates that the two step ELM-CFPC algorism is the method to use for out-of-sample

forecasting of the ANN model.
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Table 4.1: In-sample Mean Squared Error

Qt(12) Qt(3) Qt(1)

All S1 S2 S3 All S1 S2 S3 All S1 S2 S3

MD 0.0272 0.0279 0.0255 0.0246 0.0062 0.0067 0.0051 0.0059 0.0021 0.0023 0.0016 0.0020

HM 0.0257 0.0261 0.0254 0.0241 0.0060 0.0063 0.0051 0.0059 0.0021 0.0022 0.0016 0.0020

AR 0.0040 0.0039 0.0029 0.0039 0.0035 0.0039 0.0026 0.0033 0.0021 0.0023 0.0016 0.0020

RW 0.0041 0.0041 0.0030 0.0041 0.0043 0.0047 0.0030 0.0040 0.0044 0.0049 0.0031 0.0040

LIN 0.0207 0.0138 0.0100 0.0200 0.0058 0.0054 0.0037 0.0052 0.0020 0.0021 0.0015 0.0019

LINPC 0.0235 0.0185 0.0132 0.0213 0.0061 0.0058 0.0040 0.0057 0.0021 0.0022 0.0015 0.0020

PCSQ 0.0235 0.0185 0.0129 0.0209 0.0060 0.0056 0.0040 0.0055 0.0021 0.0022 0.0015 0.0020

QPC 0.0237 0.0182 0.0140 0.0225 0.0061 0.0058 0.0042 0.0058 0.0021 0.0022 0.0015 0.0020

(q=1000)

ELMB 4.62E-17 7.05E-20 1.64E-20 1.95E-05 9.41E-17 1.61E-20 1.48E-20 2.71E-21 4.59E-17 3.17E-21 1.88E-20 5.71E-22

ELMR 0.0043 0.0032 0.0026 0.0026 0.0024 0.0020 0.0017 0.0015 0.0013 0.0011 0.0008 0.0010

ELMPC 0.0193 0.0130 0.0095 0.0183 0.0056 5.30E-03 0.0036 0.0049 0.0020 0.0021 0.0014 0.0019

ELMPT 0.0207 0.0138 0.0100 0.0139 0.0058 0.0054 0.0037 0.0052 0.0020 0.0021 0.0015 0.0019

(q=N)

ELMB 3.34E-05 1.38E-05 1.78E-05 2.59E-21 2.10E-05 2.43E-05 1.28E-05 1.13E-05 1.48E-05 1.16E-05 1.67E-05 8.67E-06

ELMR 0.0050 0.0041 0.0031 0.0020 0.0026 0.0024 0.0020 0.0021 0.0013 0.0013 0.0010 0.0012

ELMPC 0.0235 0.0129 0.0085 0.0182 0.0056 0.0053 0.0036 0.0050 0.0020 0.0021 0.0014 0.0019

ELMPT 0.0172 0.0138 0.0093 0.0200 0.0051 0.0053 0.0037 0.0044 0.0020 0.0021 0.0014 0.0017

Note: Qt(12), Qt(3), Qt(1) denote for the annualized, quarterly aggregated and monthly data respectively. All, S1,

S2, S3 denotes for the full sample period, subsample 1, 2, 3 respectively. The first part of the table is the MSFE for

the linear and nonlinear alternative models, and the middle part is the ELM methods with q = 1000, and last part is

the ELM methods with q = N .
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Table 4.2: Out-of-sample Mean Squared Forecast Error

Qt(12) Qt(3) Qt(1)

All S1 S2 S3 All S1 S2 S3 All S1 S2 S3

MD 0.0255 0.0278 0.0246 0.0252 0.0060 0.0043 0.0060 0.0063 0.0021 0.0013 0.0020 0.0022

HM 0.0269 0.0293 0.0271 0.0272 0.0061 0.0043 0.0061 0.0064 0.0021 0.0013 0.0020 0.0022

AR 0.0477 0.0499 0.0577 0.0363 0.0087 0.0051 0.0079 0.0100 0.0021 0.0013 0.0020 0.0023

RW 0.0509 0.0527 0.0611 0.0391 0.0118 0.0067 0.0103 0.0138 0.0041 0.0024 0.0037 0.0045

LIN 0.0534 0.0476 0.0556 0.0496 0.0075 0.0041 0.0070 0.0094 0.0022 0.0014 0.0021 0.0025

LINPC 0.0391 0.0313 0.0469 0.0264 0.0071 0.0041 0.0066 0.0073 0.0022 0.0014 0.0021 0.0024

PCSQ 0.0400 0.0320 0.0502 0.0264 0.0073 0.0041 0.0071 0.0071 0.0022 0.0014 0.0021 0.0024

QPC 0.0370 0.0311 0.0445 0.0263 0.0068 0.0040 0.0069 0.0077 0.0022 0.0013 0.0021 0.0025

(q=1000)

ELMB 43.5205 0.2195 52.2015 0.0245 8.2129 0.2074 13.3428 0.6081 7.7495 0.0841 46.5603 1.4765

ELMR 0.0751 0.0562 0.0802 0.0301 0.0214 0.0075 0.0603 0.0352 0.0079 0.0027 0.0169 0.0114

ELMPC 22.2340 15.1789 72.3221 9.8265 1.4840 0.9757 3.3956 1.7257 0.1786 0.0872 0.4583 0.2867

ELMPT 0.0534 0.0476 0.0556 0.0496 0.0075 0.0041 0.0070 0.0094 0.0022 0.0014 0.0021 0.0025

ELMCFPC 0.0232 0.0282 0.0236 0.0231 0.0059 0.0042 0.0061 0.0066 0.0025 0.0013 0.0023 0.0024

ELMCFPC2 0.0228 0.0314 0.0256 0.0229 0.0061 0.0042 0.0060 0.0059 0.0021 0.0013 0.0020 0.0023

ELMCFR 0.0279 0.0267 0.0242 0.0267 0.0062 0.0041 0.0063 0.0063 0.0021 0.0013 0.0020 0.0023

ELMCFEW 0.0515 0.0493 0.0571 0.0417 0.0073 0.0041 0.0070 0.0095 0.0022 0.0014 0.0023 0.0025

ELMCFEW2 13.3596 102.6214 20.9627 26.6212 1.5188 4.4847 7.1449 1.8509 0.2143 1.3407 2.0209 0.3659

ELMCFEW3 0.0545 0.0544 0.0606 0.0572 0.0122 0.0062 0.0138 0.0178 0.0036 0.0020 0.0051 0.0091

(q=N)

ELMB 323.8111 11.0306 2029.7000 26.8175 1655.3000 5.0791 161.1933 32.6020 392.6649 2.8299 2722.9000 15.4184

ELMR 0.0616 0.0542 0.0633 0.0455 0.0147 0.0058 0.0166 0.0279 0.0056 0.0020 0.0064 0.0098

ELMPC 20.7082 26.5227 49.8685 7.2852 1.5345 1.8209 4.6028 2.0563 0.2249 0.2334 0.9325 0.2914

ELMPT 0.0538 0.0502 0.0622 0.0440 0.0075 0.0042 0.0081 0.0099 0.0039 0.0015 0.0033 0.0026

ELMCFPC 0.0230 0.0281 0.0232 0.0227 0.0059 0.0042 0.0062 0.0066 0.0025 0.0013 0.0025 0.0025

ELMCFEW 0.0513 0.0493 0.0574 0.0418 0.0072 0.0041 0.0070 0.0094 0.0022 0.0014 0.0023 0.0025

ELMMMA 0.0534 0.0481 0.0574 0.0421 0.0075 0.0040 0.0070 0.0093 0.0022 0.0014 0.0021 0.0024

Note: Qt(12), Qt(3), Qt(1) denote for the annualized, quarterly aggregated and monthly data respectively. All, S1,

S2, S3 denotes for the full sample period, subsample 1, 2, 3 respectively. The first part of the table is the MSFE for

the linear and nonlinear alternative models, and the middle part is the ELM methods with q = 1000, and last part is

the ELM methods with q = N .
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Table 4.3: Forecast Comparison

Qt(12) Qt(3) Qt(1)

All S1 S2 S3 All S1 S2 S3 All S1 S2 S3

ELMCFPC(q=1000)

R2
OS 0.0891 -0.0116 0.0417 0.0850 0.0238 0.0278 -0.0211 -0.0521 -0.2134 -0.0165 -0.2992 -0.1282

R2∗
OS 0.2171 0.1296 0.1527 0.5470 0.2143 0.1173 0.0644 0.0247 0.0336 -0.0062 -0.0851 -0.0531

St 2.3856 -0.2453 0.7054 1.1184 0.3702 0.5412 -0.3931 -1.1160 -0.9507 -1.1466 -1.3022 -1.2074

S∗
t 4.9083 2.8948 2.8484 3.4680 3.4829 2.0903 1.0038 0.6081 0.3810 -0.4447 -0.7982 -0.9956

FOSD NA NA NA NA NA NA NA NA NA NA NA NA

SOSD A B A A A A NA B NA NA B B

ELMCFPC2(q=1000)

R2
OS 0.1037 -0.1288 -0.0371 0.0941 0.0370 0.0184 -0.0107 0.0685 -0.0227 -0.0311 -0.0294 -0.0092

R2∗
OS 0.5877 0.6496 0.1956 0.8574 0.1259 0.2048 0.0600 0.1783 -0.0009 0.0796 0.0040 0.0196

St 1.1134 -0.9921 -0.3930 0.5350 0.8756 0.2607 -0.1761 1.1817 -1.2639 -0.5696 -0.8426 -0.3878

S∗
t 4.9428 3.2041 1.8305 4.6749 2.6107 2.6071 0.8965 2.7397 -0.0479 1.4574 0.1109 0.8631

FOSD NA NA NA NA NA NA NA NA NA NA NA NA

SOSD A B NA A NA A NA A B NA NA NA

ELMCFPC(q=N)

R2
OS 0.0965 -0.0112 0.0568 0.0998 0.0263 0.0225 -0.0347 -0.0478 -0.1975 -0.0127 -0.2794 -0.1306

R2∗
OS 0.2291 0.1174 0.1584 0.5182 0.2064 0.1177 0.0413 0.0323 0.0157 -0.0027 -0.0503 -0.0547

St 2.5821 -0.2366 1.0168 1.3441 0.4222 0.4145 -0.7227 -0.8666 -0.9174 -0.8834 -1.4276 -1.2982

S∗
t 5.0173 2.6338 2.9823 3.5341 3.6310 2.0411 0.7935 0.6858 0.1759 -0.2006 -0.5806 -1.0362

FOSD NA NA NA NA NA NA NA NA NA NA NA NA

SOSD A NA A A A A NA NA NA NA B B

Note: Qt(12), Qt(3), Qt(1) denote for the annualized, quarterly aggregated and monthly data respectively. All, S1,

S2, S3 denotes for the full sample period, subsample 1, 2, 3 respectively. Benchmark model is martingale difference,

alternative model is basic ELM. The first part of the table is results for ELM methods with q = 1000, and the second

part is results for the ELM methods with q = N . B, A, NA for FOSD, SOSD denote for benchmark model dominates,

alternative model dominates, and non of them dominates the other, respectively.
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Figure 4.1: Stochastic Dominance and Distribution of Squared Errors for Qt(12)

(a) FOSD for Qt(12)
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Figure 4.2: Stochastic Dominance and Distribution of Squared Errors for Qt(3)

(a) FOSD for Qt(3)

0 0.02 0.04 0.06 0.08 0.1 0.12
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

(b) SOSD for Qt(3)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.5

1

1.5

2

2.5

3

(c) DIST for Qt(3)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

115



Figure 4.3: Stochastic Dominance and Distribution of Squared Errors for Qt(1)

(a) FOSD for Qt(1)
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Chapter 5

Mallows Model Averaging in the

Presence of Multicollinearity

A challenge with large dimensional data in regression is the collinearity among

covariates. A common solution to this problem is to apply principal component analysis

(PCA). Yet one needs to select the number of principal components. Many studies have

focused on finding the optimal number of principal components assuming the linear factor

model is correctly specified. In this paper, we do not assume that the data generating

process (DGP) is a linear factor model and thus there is no true number of factors. Under

this circumstance, we can combine several principal component regressions with different

numbers of principal components through the Mallows criteria. Under certain conditions,

the model averaging estimator is minimax such that the estimation risk is smaller. We show

that the Mallow model averaging estimator can improve the estimation efficiency.

119



5.1 Introduction

In empirical studies of macroeconomics and finance, the problem of how to deal

with a large number of variables, especially in the presence of multicollinearity is an im-

portant issue. A common way to solve the above large dimension problem is to use the

principal component analysis for a factor model, where the variations of the large set of

variables can be modeled by a small number of reference variables. To efficiently use a fac-

tor model, the predetermined number of factors (k) has become a major concern, since the

regression results is sensitive to the choice of k. Many studies including Bai and Ng (2002),

Onatski (2009), Ahn and Horenstein (2013), among others, developed various criteria to

choose (estimate) k assuming the factor model is a true data generating model and there is

a true value for k. Much of these papers are about consistently estimating k.

However, some of the above criteria are complicated to use in empirical work

and also may not generate satisfying results due to estimation error, model instability,

and structural breaks. In this research, we first consider a two-step Stein-Mallows Model

Averaging (Stein-MMA) method to use factor model without choosing k, and we aim to

show that such procedure improves upon the results for any choice of k in estimation and

prediction especially when there is no true value of k in the underlying data generating

process such as a nonlinear functional form. For a chosen k factors, a Stein shrinkage

estimator (Hill and Judge 1987) could be used to combine the full model that includes

all (K) factors and the model including k factors to improve the risk of estimators and

predictor. The main point of the paper is that the above process can be replicated for

different values of k, ranging from 1 to K − 1. Then, for the second step, as the Mallows
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Model Average (MMA) method (Hansen 2007) can be used to these K − 1 models. This

two-step procedure can be shown to improve upon any single factor model for a chosen k.

Alternatively, we skip the first step of Stein shrinkage, and directly apply the MMA to the

factor model with each k to obtain the MMA forecast. In this case k ranges from 1 to K.

These MMA procedures can be extended to out-of-sample forecast combination

of factor models. This method is easy to use, much easier than choosing a k using com-

plicated model selection methods or cross validation. Applications of this paper can be in

asset returns forecasts, in portfolio performance evaluation, in prediction of inflation and in

monetary policy analysis, where the interested variable can be modeled as a function of a

number of factors extracted from a large set of predictors.

5.2 OLS estimator

Consider we have the following model of y as a function of some predictor matrix

X:

y = m(X) + ε, (5.1)

where y is a T × 1 time series, X is a T × K matrix of K predictors, and ε is a T × 1

error time series with the conditional mean zero E(ε|X) = 0 and conditional variance

E(εε′|X) = σ2IK . Note that we do not assume normality of ε. The relation between Y

and X, which is denoted by function m(X), is possibly linear or nonlinear. Our interest is

to forecast y when the number K of predictors in X is large using a linear model. That is,
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we use the following linear model in estimation:

y = Xβ + ε, (5.2)

where β is a K×1 parameter vector. The location vector β is unknown and the objective is

to estimate it by β(y,X). We consider three estimators for β in this paper: (i) the ordinary

least squares (OLS) estimator denoted β̂, (ii) the principal component (PC) estimator de-

noted β̂∗, and (iii) the combined estimator of β̂ and β̂∗, using the Mallows model averaging

criteria.

The OLS estimator of the linear model is written as:

β̂ =
(

X ′X
)−1

X ′y, (5.3)

When the dimension of X is large, the major concern of the OLS model is the existence

of multicollinearity. To deal with this problem, in this paper, we consider using the or-

thogonalized variables from X. Let V be the K ×K matrix of eigenvectors of X ′X, then

X ′X = T V ΛV ′, where Λ is the diagonal matrix of eigenvalues of X in descending order,

and T is a scalar, V is orthognormal such that V ′V = V V ′ = IK and

y = Xβ + ε = XV Λ− 1
2

1√
T

√
TΛ

1
2V ′β + ε = Pδ + ε, (5.4)

where P = XV Λ− 1
2

1√
T
, δ =

√
TΛ

1
2V ′β. This is the principal components representation of

the OLS regression, and P contains all the K principal components of X, where

P ′P =
1√
T
Λ− 1

2V ′X ′XV Λ− 1
2

1√
T

=
1√
T
Λ− 1

2V ′TV ΛV ′V Λ− 1
2

1√
T

= IK (5.5)

δ̂ =
(

P ′P
)−1

P ′y = P ′y =
1√
T
Λ− 1

2V ′X ′y (5.6)
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Note that

PP ′ =
1√
T
XV Λ− 1

2Λ− 1
2V ′X ′ 1√

T
=

1

T
XV Λ−1V ′X ′ =

1

T
X(V ΛV ′)−1X ′ = X(X ′X)−1X

The OLS estimator β̂ can be written using the PC representation, since ŷ = P δ̂ + ε̂ =

XV Λ− 1
2

1√
T
δ̂ + ε̂, so the OLS estimator can be written as:

β̂ =
1√
T
V Λ− 1

2 δ̂ (5.7)

5.3 Principal Component Estimator

Next we consider shrinking the dimension of the model through selecting some of

the principal components. The number of all the K principal components of X ′X can be

decomposed into two parts, K = K1 +K2, where K1 is the number of eigenvalues that are

relatively large and K2 is the number of eigenvalues that are relatively close to zero. For the

model selection, we consider discarding the K2 principal components which correspond to

the small eigenvalues while maintaining the K1 principal components correspond to larger

eigenvalues. Write P = (P1, P2), δ = (δ′1, δ
′
2)

′, V = (V1, V2), then the model becomes

y = Pδ + ε = (P1 P2)









δ1

δ2









+ ε = P1δ1 + P2δ2 + ε,

= X(V1 V2)Λ
− 1

2
1√
T

√
TΛ

1
2 (V1 V2)

′β + ε

= XV1Λ
− 1

2
1

1√
T

√
TΛ

1
2
1 V

′
1β +XV2Λ

− 1
2

2

1√
T

√
TΛ

1
2
2 V

′
2β + ε,

where Λ1 and Λ2 are of dimension K1 and K2 diagonal matrices, that contain the corre-

sponding theK1 largest andK2 smallest eigenvalues respectively, and P2δ2 = XV2Λ
− 1

2
2 Λ

1
2
2 V

′
2β
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is deleted in the PC method. Therefore, principal components regression with deleted com-

ponents is equivalent to OLS estimation with the restriction:

δ2 = Rβ =
√
TΛ

1
2
2 V

′
2β = 0, (5.8)

where R =
√
TΛ

1
2
2 V

′
2 imposes K2 linear restrictions on β. Note that R =

√
TΛ

1
2
2 V

′
2 is

stochastic depending on X. And P1 = 1√
T
XV1Λ

− 1
2

1 , and we can verify that P ′
1P1 = IK1 ,

where IK1 is identity matrix with dimension K1.

The principal components estimator of δ with K2 deleted components, correspond-

ing to the restrictions δ2 = 0, is

δ̂1 = (P ′
1P1)

−1P ′
1y = P ′

1y =
1√
T
Λ
− 1

2
1 V ′

1X
′y. (5.9)

And note that P1P
′
1 = 1

TXV1Λ
−1
1 V ′

1X
′, V ′

1V1 = IK1 , V
′
2V2 = IK2 , V

′
1V2 = 0K2×K1 , V

′
2V1 =

0K1×K2 .

Using the estimator δ̂1 and setting δ2 = 0, the fitted value of y is given by:

ŷ = P1δ̂1 + ε̂ =
1√
T
X V1Λ

− 1
2

1 δ̂1 + ε̂, (5.10)

and the principal components estimator of β is:

β̂∗ =
1√
T
V1Λ

− 1
2

1 δ̂1. (5.11)

5.4 Mallows Model Average Estimator with a Fixed k

Given the OLS estimation using all the K principal components and the shrinkage

model using only k = K1 principal components, there is always ways to improve both
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models, such as model averaging. Model averaging is an alternative to model selection.

The advantage of model averaging is that rather than selecting a criterion to pick up a

particular model, the model averaging method gives the best fit by choosing a weight to

combine all the candidate models. Model averaging can reduce estimation variance and at

the same time controlling the bias. Model averaging is more flexible compared to model

selection since the latter is just a special case of model averaging if putting the weights to

extreme values 0 and 1. It has been proved that the model averaging estimator would give

a lower loss than any of the individual model, see Hansen (2007, 2008). In this sense, the

procedure of model selection using different criterion could be regarded as a special case of

model averaging by setting the weights to the extreme values with weight equal to 1 for the

particular selected model and 0 for the models discarded. The model selection procedure is

a discrete selection of individual models, while the model averaging method finds a proper

weight that is a smooth function of all the individual models. In this section, we will

consider the Mallows model averaging (MMA) estimator over the PC and OLS models.

First we can rewrite the OLS model and the PC model denoted by ĝ1 and ĝ2

respectively:

ĝ1 = P δ̂ = PP ′y = B1y

ĝ2 = P1δ̂1 = P1P
′
1y = B2y

where B1 = PP ′, B2 = P1P
′
1. Then the model averaging estimation of the two models is:

ĝ = wĝ1 + (1− w)ĝ2 = wB1y + (1−w)B2y = B(w)y

where B(w) = wB1 + (1−w)B2 = wPP ′ + (1−w)P1P
′
1, w is the combination weight, and

125



0 ≤ w ≤ 1. The estimation error from the OLS model, PC model and the averaging model

are denoted respectively by ê1, ê2 and ê(w):

ê1 = y − ĝ1 = y −B1y = (IT −B1)y = (IT − PP ′)y

ê2 = y − ĝ2 = y −B2y = (IT −B2)y = (IT − P1P
′
1)y

ê(w) = wê1 + (1− w)ê2 = y −B(w)y = (IT − wPP ′ − (1− w)P1P
′
1)y

By the Mallows criteria for model averaging, we need to choose the weight w such that the

loss form the model averaging is minimized, where the loss from the model is a function

of the squared error terms, penalized by the dimension of the model, that is, we need to

minimize the following loss function C(w) with respect to w:

C(w) = ê(w)′ê(w) + 2σ̂2tr(B(w))

= y′(IT − wPP ′ − (1− w)P1P
′
1)

′(IT − wPP ′ − (1− w)P1P
′
1)y + 2σ̂2tr(B(w))

where tr(B(w)) = wtr(PP ′) + (1 − w)tr(P1P
′
1) = wK + (1 − w)K1 = K1 + wK2. Penalty

term is added such that both the estimation error and the parsimoniousness of the model is

considered when choosing a proper weight vector w. Also we can verify that P ′
2P1 = 0K2×K1 ,

and

P ′P1 =









P ′
1

P ′
2









P1 =









IK1

0K2









,

PP ′P1P
′
1 = P









IK1

0K2









P ′
1 = (P1P2)









P ′
1

0









= P1P
′
1,

P1P
′
1PP

′ = P1(IK10)









P ′
1

P ′
2









= (P10)









P ′
1

P ′
2









= P1P
′
1.
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Substitute to C(w) and simplify, we have,

C(w) = y′y − 2wy′PP ′y − 2(1 − w)y′P1P
′
1y + w2y′PP ′y + 2w(1 − w)y′P1P

′
1y

+(1− w)2y′P1P
′
1y + 2σ̂2(K1 + wK2)

Take the first order condition with respect to w and set to zero, we can then solve the

optimal weight which minimizes the loss function:

w =
y′PP ′y − y′P1P

′
1y − σ̂2K2

yPP ′y − y′P1P ′
1y

=
y′P2P

′
2y − σ̂2K2

y′P2P ′
2y

since PP ′ = (P1P2)(P1P2)
′ = P1P

′
1+P2P

′
2, so the optimal weight from MMA can be written

as:

w = 1− σ̂2K2

y′P2P ′
2y

= 1− K2

y′P2P ′
2y

σ̂2

= 1− K2

δ̂′2δ̂2
σ̂2

if K2 <
δ̂′2δ̂2
σ̂2 , since δ̂2 = P ′

2y, and w = 0 if K2 >
δ̂′2δ̂2
σ̂2 . We will show below that this optimal

weight from MMA can be written equivalently as:

w = 1− 1

FK2,T−K

if FK2,T−K > 1, and w = 0 if FK2,T−K < 1, where FK2,T−K is the F -statistic from the null

hypothesis H0 : δ2 = 0 in the OLS model y = P1δ1 + P2δ2 + ε. Since we can write the

F-statistic in the above test with K2 constraints as:

F =
(RRSS − URSS)/K2

URSS/(T −K)

where RRSS is the restricted sum of squares under the null (PC model), and URSS is the
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unrestricted sum of squares from the OLS model. So we have

F =

(

δ̂ −









δ̂1

0









)′
P ′P

(

δ̂ −









δ̂1

0









)

/K2

ê′1ê1/(T −K)

=

(

P ′y −









P ′
1

0









y

)′(

P ′y −









P ′
1

0









y

)

/K2

σ̂2

=

(0 δ̂′2)P
′P









0

δ̂′2









/K2

σ̂2

=
δ̂′2δ̂2/K2

σ̂2
∼ FK2,T−K

Substitute the optimal weight back to the MMA, we have, when FK2,T−K > 1,

ĝ = (wPP ′ + (1− w)P1P
′
1)y = (1− 1

FK2,T−K
)PP ′y +

1

FK2,T−K
P1P

′
1y

= (1− 1

FK2,T−K
)P δ̂ +

1

FK2,T−K
P1δ̂1

and since PP ′y = P δ̂ = Xβ̂, and P1P
′
1y = P1δ̂1 = Xβ̂∗, we have,

ĝ = wXβ̂ + (1− w)Xβ̂∗ = X(wβ̂ + (1−w)β̂∗) = Xβ̂∗∗

where β̂∗∗ is denoted as the MMA estimator. From the above formula, we can see that the

MMA estimator β∗∗ can be written as a linear combination of the OLS and PC estimator,

with weight equal to w and 1−w respectively. And when FK2,T−K < 1, the model averaging

estimator just shrink to the PC estimator β̂∗.

Hill and Judge (1987, 1990) propose a Stein-rule estimator β̃ that shrinks the
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standard OLS estimator β̂ towards the principal components estimator β̂∗:

β̃ = β̂∗ + ψ(β̂ − β̂∗)

= ψβ̂ + (1− ψ)β̂∗

where ψ = 1 − a∗

F , and a∗ = (T−k)a
K2

and a is a constant. The Stein coefficient ψ is the

shrinkage from the OLS estimator β̂ to the PC estimator β̂∗, see Hillebrand and Lee (2012).

We can see that when a∗ = 1, the Stein rule estimator is equivalent to the MMA estimator,

that β̃ = β̂∗∗, also see Hansen (2013). Since the Stein-rule estimator β̃ is minimax if

0 ≤ a∗ ≤ 2(T −K)(K2 − 2)

(T −K + 2)K2
(5.12)

and a∗ = 1 satisfies the above condition, we can conclude that the MMA estimator β̂∗∗ is a

special case of Stein-rule estimator that is minimax, in the sense that the MMA estimator

will minimize the maximum of the model risk defined in Hill and Judge (1987, 1990).

5.5 Mallows Model Average Estimator with Many k

The above method of model shrinkage with a chosen k = K principal components

and model averaging through combining the OLS estimator with the K principal components

and the PC model with only K of them creates a question of how to determine the key

parameter k in this method. Bai and Ng (2002), Onatski (2009), Ahn and Horenstein

(2013), among others, developed various criteria to choose (estimate) k assuming the factor

model is a true data generating process and there is a true value for k. However, when the

underlying data generating process is nonlinear, there may not exist a true value of k, in this

case, the estimation of k is biased and model selection and averaging based on k principal
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components are not good approximation for the original model, since the restriction δ2 = 0

is not true. In this section, we consider a two-step model averaging method that avoids

estimation the value of k.

Consider the PC model with the first i principal components, where i = 1, ...,K−1,

the estimator of β of this model is given by β̂∗i and the fitted value of y is denoted by

f̂i = Xβ̂∗i , where β̂
∗
i = 1√

T
ViΛ

− 1
2

i δ̂i. Also consider the full model which uses all the K

principal components, denoted by f̂K = Xβ̂, where β̂ is the OLS estimator. Then the

model averaging estimator β̂∗∗i which combines the full model and the model using i principal

components is given by:

β̂∗∗i = wiβ̂ + (1− wi)β̂
∗
i (5.13)

Using the MMA method to solve the optimal weight wi, will give the weight that minimizes

the penalized loss function, that wi = 1− 1
FKi,T−K

if FKi,T−K > 1 and wi = 0 if FKi,T−K < 1.

And the combined estimation of the model using the first i principal components of X is

given by

ĝi = Xβ̂∗∗i = X(wiβ̂ + (1− wi)β̂
∗
i ) = wif̂K + (1− wi)f̂i (5.14)

where i = 1, ...,K − 1 and the models are nested. And each model ĝi is a combination of

the model using the first i principal components and the full model. For the case where

there is true value of k and k = i, the combined estimation will do no worse than ĝi.

For the case when there is no true value of k, we consider another step of model

averaging using the Mallows criteria to combine all the models of ĝi for i = 1, ...,K − 1,

assuming the weight for model ĝi is equal to vi, where 0 ≤ vi ≤ 1, and
∑K−1

i=1 vi = 1, the
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combined model can be written as:

ĥ =
K−1
∑

i=1

viĝi =
K−1
∑

i=1

vi[wif̂K + (1 −wi)f̂i]

=

K−1
∑

i=1

vi[(1 −
1

FK−i,T−K
)f̂K +

1

FK−i,T−K
f̂i]

=
K−1
∑

i=1

vi(1−
1

FK−i,T−K
)f̂K +

K−1
∑

i=1

vi
FK−i,T−K

f̂i

= (1−
K−1
∑

i=1

vi
FK−i,T−K

)f̂K +

K−1
∑

i=1

vi
FK−i,T−K

f̂i

since FK−i,T−k can be calculated from the first step model averaging, to get the model

averaging estimation ĥ, we only need to calculate the optimal vi for i = 1, ...,K − 1 from

minimizing the loss function C(v) using the Mallows criteria, where v = (v1, ..., vK−1).

Since we can written the model using first i principal components and the full model as

f̂i = Biy, f̂K = By, where B is the same as before, and Bi = PiP
′
i . Then we can rewrite ĥ

as:

ĥ = (1−
K−1
∑

i=1

vi
FK−i,T−K

)By +
K−1
∑

i=1

vi
FK−i,T−K

Biy

= [(1−
K−1
∑

i=1

vi
FK−i,T−K

)B +

K−1
∑

i=1

vi
FK−i,T−K

Bi]y = B(v)y

where B(v) = (1 −∑K−1
i=1

vi
FK−i,T−K

)B +
∑K−1

i=1
vi

FK−i,T−K
Bi, and the estimation error from

the combined model is given by:

ê(v) = (I −B(v))y = (I − (1−
K−1
∑

i=1

vi
FK−i,T−K

)B −
K−1
∑

i=1

vi
FK−i,T−K

Bi)y

and the optimal weight v = (v1, ..., vK−1) by the Mallows’ model averaging is calculated by

minimizing the following loss function:

C(v) = ê(v)′ê(v) + 2σ̂2tr(B(v))
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where tr(B(v)) =
∑K−1

i=1 viKi + (1−
∑K−1

i=1 vi)K. Then apply quadratic programming, one

can find the optimal weights for vi, i = 1, ...,K − 1.

The above two-step Mallows’ model averaging method gives the combined estima-

tion using all the information of X without selecting k, this nests the case where there is

true value of k, in which the optimal weight for vi will be one for k = i, and zero otherwise.

This two step procedure can deal with the problem of multicollinearity of X as well as the

possibility that there is no true value of k.

Alternatively to this two step procedure, one can combine the two step calculation

into one step applying the MMA method, since the combined model ĥ can also be written

as:

ĥ =

K
∑

i=1

pif̂i =

K
∑

i=1

piBiy = B(p)y

where p = (p1, ..., pK), B(p) =
∑K

i=1 piBi. And the estimation error from the combined

model can be rewritten as:

ê(p) = (I −B(p))y = (I −
K
∑

i=1

piBi)y

and the optima weight p = (p1, ..., pK) using the one step MMA method is calculated from

minimizing the following loss function:

C(p) = ê(p)′ê(p) + 2σ̂2tr(B(p))

where tr(B(p)) =
∑K

i=1 piKi. This one step procedure is essentially equivalent to the two

step procedure, since we have pi =
vi

FK−i,T−K
for i = 1, ...,K−1, and pi = 1−∑K−1

i=1
vi

FK−i,T−K

for i = K. In both methods, we can observe that the optimal weight is proportional to the

132



reciprocal of the F statistic for the ith model where the first i principal components are

applied, with restriction that the rest of the principal components are discarded.

5.6 Conclusion

This paper considers model estimation in the existence of multicollinearity with

relatively large dimension of predictor X, and when there is possible no true value of

predetermined number of factors, such as a nonlinear process. We showed that the model

averaging applying the Mallows criteria is equivalent to the Stein-rule estimator under some

conditions, and a special case of the latter in general. And to avoid selecting the number

of k, one can apply a two step or one step MMA procedure, which uses information from

all the principal components of X. The optimal weight is proportional to the reciprocal of

the F statistic for the ith model where the first i principal components are applied, with

restriction that the rest of the principal components are discarded. Applications of this

method can be in asset returns forecasts, in portfolio performance evaluation, in prediction

of inflation and in monetary policy analysis, where the interested variable can be modeled

as a function of a number of factors extracted from a large set of predictors.
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Appendix A

Appendix for Chapter 1

A.1 Calculation of E(X ′X)−1 for model without intercept

For the stationary AR(1) process, notice that from the Nagar-type expansion

of 1
D , after taking expectation, we have Ea−1 = 1

ED , and Ea−2 = E(D−ED)2

(ED)3 = ED2

(ED)3 .

Rewrite the AR(1) process without intercept in vector representation as X = Cv, where

C is a strict lower triangular T × T matrix with the ijth element ρi−j−1, for i > j,

so that ED = E(X ′X) = E(v′C ′Cv), and ED2 = E(X ′XX ′X) = E(v′C ′Cvv′C ′Cv).

Then apply the expectation of quadratic forms by Bao and Ullah (2010), Ullah(2004, page

187), we have: ED = E(X ′X) = E(v′C ′Cv) = σ2vtr(C
′C), and ED2 = E(X ′XX ′X) =

E(v′C ′Cvv′C ′Cv) = σ4(γ2tr(C
′C

⊙

C ′C) + tr(C ′C)tr(C ′C) + 2tr(C ′CC ′C)), where γ2 is

the excess kurtosis of vt which is zero in our case. Then check the traces of the respective

matrices, we can verify that E(a−1) =
1−ρ2

Tσ2
v
, E(a−2) =

2(1−ρ2)
T 2σ2

v
. The similar method follows

for the unit root case, where only the traces of the matrices are different.
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A.2 Nagar Expansion of ρ̂ for model without intercept

For the stationary AR(1) model without intercept, the OLS estimator of ρ can be

written as: ρ̂ = ρ +
x′
−1v

x′
−1x−1

= ρ + N
D , where N = x′−1v, D = x′−1x−1. Then the Nagar

expansion for ρ̂ can be written as:

ρ̂− ρ = a−1/2 + a−1 + a−3/2 + oP (T
−3/2)

where a−1/2 = N(ED)−1, a−1 = −N(D−ED)(ED)−2, a−3/2 = N(D−ED)2(ED)−3, and

a−i/2 is of order OP (T
−i/2) for i = 1, 2, 3.

A.3 Calculation of E(X ′X)−1 for model with intercept

For the stationary AR(1) process with intercept, notice that from the Nagar-

type expansion of 1
D , after take expectation, we have Ea−1 = (ED)−1, and Ea−2 =

(ED)−1(ED)−1EDD′(ED′)−1 − (ED′)−1. Rewrite the AR(1) process with intercept in

vector representation as X = θCι + Cε, where C is defined the same as the no intercept

case, ι is a vector of ones. Plug in the vector form representation into Ea−1 and Ea−2 and

then apply the expectation of quadratic forms by Bao and Ullah (2010) and Ullah(2004,

page 187) similar as the no intercept case. After some calculations with matrices traces and

getting the (2, 2)th elements for the two terms respectively, the results follows.
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A.4 h-step-ahead forecast bias of AR(1) model with inter-

cept

Consider the following stationary AR(1) model,

xt = θ + ρxt−1 + vt

where |ρ| < 1, vt ∼ i.i.d.(0, σ2), not necessary normal. We are interested in the forecast bias

and MSFE of the feasible conditional h period ahead forecast of xT+h, given information

set at time T . The least squares estimator based, h-step-ahead feasible conditional forecast

is given by:

x̂T+h|T = θ̂ + ρ̂x̂T+h−1|T + vt

where x̂T+h−1|T = xT when h = 1, ρ̂ and θ̂ are the least squares estimators of ρ and θ.

Notice that since xT+h = ρhxT +θ
∑h

t=1 ρ
t−1+

∑h
t=1 ρ

h−t−1vT+t+1, the feasible forecast can

be rewritten as: x̂T+h|T = ρ̂hxT +θ̂
∑h

t=1 ρ̂
t−1. Then the forecast error is given by: eT+h|T =

xT+h − x̂T+h|T =
∑h

t=1(θρ
t−1 − θ̂ρ̂t−1) + (ρh − ρ̂h)xT +

∑h
t=1 ρ

h−t−1vT+t+1. Therefore the

forecast bias can be written as:

E(eT+h|T ) =
h

∑

t=1

E(θρt−1 − θ̂ρ̂t−1) + E[(ρh − ρ̂h)xT ] (A.1)

where the second term E[(ρh− ρ̂h)xT ] is equal to the forecast bias for AR(1) model without

intercept. And MSFE is:

E(e2T+h|T ) = ρ2hE(x2T ) + E(ρ̂2hx2T )− 2ρhE(ρ̂hy2T ) + σ2
h
∑

t=1

ρ2(t−1) +
h

∑

t=1

E(θρt−1

−θ̂ρ̂t−1)2 + 2
h
∑

t=1

E[(θρt−1 − θ̂ρ̂t−1)(ρh − ρ̂h)xT ] (A.2)
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where the first four terms ρ2hE(x2T ) + E(ρ̂2hx2T )− 2ρhE(ρ̂hy2T ) + σ2
∑h

t=1 ρ
2(t−1) are equal

to the MSFE for AR(1) model without intercept case.

Consider the OLS estimator of (θ, ρ)′, where

ρ̂ = ρ+
x′−1Av

x′−1Ax−1
= ρ+

N

D

θ̂ = x̄− ρ̂x̄−1 (A.3)

where A = IT− 1
T ιι

′, x−1 = (x0, ..., xT−1)
′, v = (v1, ..., vT )

′, and N = x′−1Av, D = x′−1Ax−1.

We can also rewrite the above terms in vector form by substituting x−1 = θCι+Cv, where

C is defined the same as before.

Apply the Nagar expansion for ρ̂ and θ̂ similar as before, we have,

ρ̂− ρ = a−1/2 + a−1 + a−3/2 + oP (T
−3/2)

θ̂ − θ = − θ

(1− ρ)
(a−1/2 + a−1 + a−3/2 + oP (T

−3/2))

where a−1/2 = N(ED)−1, a−1 = −N(D−ED)(ED)−2, a−3/2 = N(D−ED)2(ED)−3, and

a−i/2 is of order OP (T
−i/2) for i = 1, 2, 3. Plug into the forecast bias in equation A.1, and

notice that E(a−1/2) = 0, then up to order O(T−1), the forecast bias can be rewritten as:

E(eT+h|T ) =
h

∑

t=1

(
θ

1− ρ
ρh−1 − θ(h− 1)ρh−2)E(a−1)− hρh−1E(a−1/2xT )

+

h
∑

t=1

(
θ

1− ρ
(h− 1)ρh−2 − θ(h− 1)(h − 2)

2
ρh−3)E(a2−1/2)− hρh−1E(a−1xT )

−h(h− 1)

2
ρh−2E(a2−1/2xT ) + o(T−1) (A.4)

since up to order O(T−1), we can verify that E(a−1) = −1+3ρ
T , E(a2−1/2) = 1−ρ2

T , and in

addition, notice that xT = ι′XT = ι′(θι+θρCι+ρCv+v). Substitute to the above equation,
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and apply the expectation of quadratic forms, we can see that the h-period-ahead feasible

forecast of the AR(1) model is unbiased up to order O(T−1), that is,

E(eT+h|T ) = 0 + oP (T
−1) (A.5)

Similarity, substitute A.3 into A.2, we can rewrite the MSFE as:

E(e2T+h|T ) =

h
∑

t=1

(
θ

1− ρ
ρh−1 − θ(h− 1)ρh−2)2E(a2−1/2)

−
h
∑

t=1

(
θ

1− ρ
ρh−1 − θ(h− 1)ρh−2)(hρh−1)E(a2−1/2xT )

+
σ2(1− ρ2h)

1− ρ2
+ h2ρ2h−2E(a2−1/2x

2
T ) + o(1)

Similarly apply the expectations of quadratic forms, after simplification, the MSFE up to

order one is given by:

E(e2T+h|T ) =
σ2(1− ρ2h)

1− ρ2
+ o(1)
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Appendix B

Appendix for Chapter 2

B.1 Expansion of β̂ − β for the pure model

Following Bao and Ullah (2007, 2009), a stochastic expansion of the QMLE β̂ can

be written as:

β̂ − β0 = a−1/2 + a−1 + a−3/2 + oP (T
−3/2)

To derive the bias of β̂ up to O(T−1), we need the expansion up to a−1. Given the quasi

likelihood function, the score function is given by:

ψT =

(

− ε′N1ε
Tσ2 ,

ε′M1ε+y0F ′
1ε

Tσ2 , − 1
2σ2 + ε′ε

2Tσ4

)′

where N1 = C−1B1, C = I −B, B1 =
∂B
∂φ , and M1 = C−1A, F1 = C−1F .

The Hessian matrix H1, which is symmetric 3 × 3 matrix, has the following ele-

ments:

∂2L

∂φ2
= −ε

′N2ε

Tσ2
,

∂2L

∂φ∂ρ
=
ε′M3ε+ y0F

′
3ε

Tσ2
,

∂2L

∂φ∂σ2
=
ε′N1ε

Tσ4
,

140



∂2L

∂ρ2
= −ε

′M2ε+ y20F
′
1F1 + 2y0F

′
2ε

Tσ2
,

∂2L

∂ρ∂σ2
= −ε

′M1ε+ y0F
′
1ε

Tσ4
,

∂2L

∂σ4
=

1

2σ4
− ε′ε
Tσ6

.

where F ′
2 = F ′

1M1, F
′
3 = F ′

1N1 + F ′
1N

′
1, N2 = N ′

1N1 + 2N2
1 , M2 = M ′

1M1, M3 = N ′
1M1 +

N1M1.

For H2, similarly, we have the following elements:

∂3L

∂φ3
= −ε

′N3ε

Tσ2
,

∂3L

∂φ2∂ρ
=

2(ε′M4ε+ y0F
′

4ε)

Tσ2
,

∂3L

∂φ∂ρ2
= −2(ε′M5ε+ y20F

′

1N1F1 + y0F
′

5ε)

Tσ2
,

∂3L

∂φ∂ρ∂σ2
= −ε

′M3ε+ y0F
′

3ε

Tσ4
,

∂3L

∂φ2∂σ2
=
ε′N2ε

Tσ4
,

∂3L

∂φ∂σ4
= −2ε′N1ε

Tσ6
,

∂3L

∂ρ3
= 0,

∂3L

∂ρ2∂σ2
=
ε′M2ε+ y20F

′

1F1 + 2y0F
′

2ε

Tσ4
,

∂3L

∂ρ∂σ4
=

2(ε′M1ε+ y0F
′

1ε)

Tσ6
,

∂3L

∂σ6
= − 1

σ6
+

3ε′ε

Tσ8
.

where F ′
4 = F ′

1N
′
1N1 + F ′

1N
2
1 + F ′

1N
′2
1 , F ′

5 = F ′
1N

′
1M1 + F ′

1N1M1, N3 = 6N ′
1N

2
1 + 6N3

1 ,

M4 = N ′
1N1M1 +M ′

1N
2
1 +N2

1M1, M5 =M ′
1N1M1.

Notice that tr(M1) = tr(N1) = 0, y20F
′
1F1, y

2
0F

′
1N1F1, E(F

′
1εε

′N2ε), E(F
′
1εε

′M2ε),

E(F ′
1εε

′M3ε) are all of order O(1), then the expectation of H1 and H2 and matrix Q, up to

order O(1), is given as:

H̄1 =

















− tr(N2)
T

tr(M3)
T 0

tr(M3)
T − tr(M2)

T 0

0 0 − 1
2σ4

















Q = H̄−1
1 =

















− tr(M2)T
tr(M2)tr(N2)−tr2(M3)

− tr(M3)T
tr(M2)tr(N2)−tr2(M3)

0

− tr(M3)T
tr(M2)tr(N2)−tr2(M3)

− tr(N2)T
tr(M2)tr(N2)−tr2(M3)

0

0 0 −2σ4

















H̄2 =

















− tr(N3)
T

2tr(M4)
T

tr(N2)
Tσ2

2tr(M4)
T

− 2tr(M5)
T

− tr(M3)
Tσ2

tr(N2)
Tσ2 − tr(M3)

Tσ2 0

2tr(M4)
T

− 2tr(M5)
T

− tr(M3)
Tσ2 − 2tr(M5)

T
0 tr(M2)

Tσ2 − tr(M3)
Tσ2

tr(M2)
Tσ2 0

tr(N2)
Tσ2 − tr(M3)

Tσ2 0 − tr(M3)
Tσ2

tr(M2)
Tσ2 0 0 0 2

σ6
















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Substitute the above results in to (2.3) and denote φ−i/2 = a−i/2,1, ρ−i/2 = a−i/2,2 and

σ2−i/2 = a−i/2,3, we have:

φ−1/2 = −tr(M2)ε
′N1ε− tr(M3)(ε

′M1ε+ y0F
′
1ε)

σ2(tr(M2)tr(N2)− tr2(M3))
,

ρ−1/2 = −tr(M3)ε
′N1ε− tr(N2)(ε

′M1ε+ y0F
′
1ε)

σ2(tr(M2)tr(N2)− tr2(M3))
,

σ2−1/2 = −σ2 + ε′ε
T
.

φ−1 =
[

− 1

2
tr(M2)tr

2(M3)tr(N3)(ε
′M1ε)

2 + 2tr(M2)tr(M3)tr(M4)tr(N2)(ε
′M1ε)

2

−tr(M2)tr(M5)tr
2(N2)(ε

′M1ε)
2 + tr(M4)tr

3(M3)(ε
′M1ε)

2

−2tr(M5)tr
2(M3)tr(N2)(ε

′M1ε)
2 + tr3(M3)tr(N2)ε

′M1εε
′M2ε

+tr2(M2)tr(M3)tr(N3)ε
′M1εε

′N1ε− 2tr2(M2)tr(M4)tr(N2)ε
′M1εε

′N1ε

−4tr(M2)tr(M4)tr
2(M3)ε

′M1εε
′N1ε+ 4tr(M2)tr(M3)tr(M5)tr(N2)ε

′M1εε
′N1ε

+2tr(M5)tr
3(M3)ε

′M1εε
′N1ε+ tr2(M2)tr

2(N2)ε
′M1εε

′M3ε− tr4(M3)ε
′M1εε

′M3ε

−tr2(M2)tr(M3)tr(N2)ε
′M1εε

′N2ε+ tr(M2)tr
3(M3)ε

′M1εε
′N2ε

−tr(M2)tr(M3)tr
2(N2)ε

′M1εε
′M2ε−

1

2
tr3(M2)tr(N3)(ε

′N1ε)
2

+3tr(M4)tr
2(M2)tr(M3)(ε

′N1ε)
2 + tr3(M2)tr(N2)ε

′N1εε
′N2ε

−3tr(M5)tr(M2)tr
2(M3)(ε

′N1ε)
2 − tr2(M2)tr

2(M3)ε
′N1εε

′N2ε

+2tr(M2)tr
3(M3)ε

′N1εε
′M3ε− 2tr2(M2)tr(M3)tr(N2)ε

′N1εε
′M3ε− tr4(M3)ε

′N1εε
′M2ε

+tr(M2)tr
2(M3)tr(N2)ε

′N1εε
′M2ε+ σ2tr2(M2)tr(M3)tr

2(N2)ε
′M1ε

−2σ2tr(M2)tr
3(M3)tr(N2)ε

′M1ε−
1

2
y20tr(N3)tr(M2)tr

2(M3)(F
′

1ε)
2

+σ2tr5(M3)ε
′M1ε− y20F

′

1F1tr(M2)tr(M3)tr
2(N2)ε

′M1ε+ y20F
′

1F1tr
3(M3)tr(N2)ε

′M1ε

−σ2tr(M2)tr
4(M3)ε

′N1ε+ 2σ2tr2(M2)tr
2(M3)tr(N2)ε

′N1ε− σ2tr3(M2)(tr(N2))
2ε′N1ε

+y20F
′

1F
′

1tr(M2)tr
2(M3)tr(N2)ε

′N1ε− y20F
′

1F
′

1tr
4(M3)ε

′N1ε
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+2y20tr(M4)tr(M2)tr(M3)tr(N2)(F
′

1ε)
2 − y20tr(M5)tr(M2)tr

2(N2)(F
′

1ε)
2

+y20tr(M4)tr
3(M3)(F

′

1ε)
2 + 2y0tr(M4)tr

3(M3)F
′

1εε
′M1ε

−2y20tr(M5)tr
2(M3)tr(N2)(F

′

1ε)
2 − y0tr(N3)tr(M2)tr

2(M3)F
′

1εε
′M1ε

+4y0tr(M4)tr(M2)tr(M3)tr(N2)F
′

1εε
′M1ε− 2y0tr(M5)tr(M2)tr

2(N2)F
′

1εε
′M1ε

−4y0tr(M5)tr
2(M3)tr(N2)F

′

1εε
′M1ε+ y0tr(N3)tr

2(M2)tr(M3)F
′

1εε
′N1ε

−2y0tr(M4)tr
2(M2)tr(N2)F

′

1εε
′N1ε− 2y0σ

2tr(M2)tr
3(M3)tr(N2)F

′

1ε

−4y0tr(M4)tr(M2)tr
2(M3)F

′

1εε
′N1ε+ 4y0tr(M5)tr(M2)tr(M3)tr(N2)F

′

1εε
′N1ε

+2y0tr(M5)tr
3(M3)F

′

1εε
′N1ε+ y0σ

2tr2(M2)tr(M3)tr
2(N2)F

′

1ε

−y30F ′

1F1tr(M2)tr(M3)tr
2(N2)F

′

1ε+ y0σ
2tr5(M3)F

′

1ε+ y30F
′

1F1tr
3(M3)tr(N2)F

′

1ε

−y0tr2(M2)tr(M3)tr(N2)F
′

1εε
′N2ε+ y0tr(M2)tr

3(M3)F
′

1εε
′N2ε

+y20tr
2(M2)tr

2(N2)ε
′F1F

′

3ε− 2y20tr(M2)tr(M3)tr
2(N2)ε

′F1F
′

2ε

−y20tr4(M3)ε
′F1F

′

3ε+ y0tr
2(M2)tr

2(N2)F
′

1εε
′M3ε− y0tr

4(M3)F
′

1εε
′M3ε

+2y20tr
3(M3)tr(N2)ε

′F1F
′

2ε− y0tr(M2)tr(M3)tr
2(N2)F

′

1εε
′M2ε

+y0tr
3(M3)tr(N2)F

′

1εε
′M2ε+ 2y0tr(M2)tr

3(M3)F
′

3εε
′N1ε

+y0tr
2(M2)tr

2(N2)F
′

3εε
′M1ε− y0tr

4(M3)F
′

3εε
′M1ε− 2y0tr(M2)tr(M3)tr

2(N2)F
′

2εε
′M1ε

+2y0tr
3(M3)tr(N2)F

′

2εε
′M1ε− 2y0tr

2(M2)tr(M3)tr(N2)F
′

3εε
′N1ε

−2y0tr
4(M3)F

′

2εε
′N1ε+ 2y0tr(M2)tr

2(M3)tr(N2)F
′

2εε
′N1ε

]

/
[

σ4(tr(N2)tr(M2)− (tr(M3))
2)3

]

ρ−1 =
[

− 1

2
tr3(M3)tr(N3)(ε

′M1ε)
2 + 3tr(M4)tr

2(M3)tr(N2)(ε
′M1ε)

2

−3tr(M3)tr(M5)tr
2(N2)(ε

′M1ε)
2 + 4tr(M5)tr

2(M3)tr(N2)ε
′M1εε

′N1ε

+tr(N3)tr(M2)tr
2(M3)ε

′M1εε
′N1ε− 4tr(M2)tr(M3)tr(M4)tr(N2)ε

′M1εε
′N1ε

+2tr(M2)tr(M5)tr
2(N2)ε

′M1εε
′N1ε− 2tr(M4)tr

3(M3)ε
′M1εε

′N1ε
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−tr(M2)tr
2(M3)tr(N2)ε

′M1εε
′N2ε+ tr4(M3)ε

′M1εε
′N2ε− tr(M2)tr

3(N2)ε
′M1εε

′M2ε

+tr2(M3)tr
2(N2)ε

′M1εε
′M2ε− 2tr3(M3)tr(N2)ε

′M1εε
′M3ε

+2tr(M2)tr(M3)tr
2(N2)ε

′M1εε
′M3ε+ 2tr(M2)tr(M4)tr

2(M3)(ε
′N1ε)

2

−1

2
tr(N3)tr

2(M2)tr(M3)(ε
′N1ε)

2 + tr(M4)tr
2(M2)tr(N2)(ε

′N1ε)
2

−2tr(M2)tr(M3)tr(M5)tr(N2)(ε
′N1ε)

2 − tr(M5)tr
3(M3)(ε

′N1ε)
2

−σ2tr2(M2)tr(M3)tr
2(N2)ε

′N1ε− tr(M2)tr
3(M3)ε

′N1εε
′N2ε

+2σ2tr(M2)tr
3(M3)tr(N2)ε

′N1ε− σ2tr5(M3)ε
′N1ε+ y20F

′

1F1tr(M2)tr(M3)tr
2(N2)ε

′N1ε

−y20F ′

1F1tr
3(M3)tr(N2)ε

′N1ε+ (tr(M2))
2tr(M3)tr(N2)ε

′N1εε
′N2ε

+tr(M2)tr(M3)tr
2(N2)ε

′N1εε
′M2ε− tr3(M3)tr(N2)ε

′N1εε
′M2ε+ tr4(M3)ε

′N1εε
′M3ε

−tr2(M2)tr
2(N2)ε

′N1εε
′M3ε+ σ2tr4(M3)tr(N2)ε

′M1ε+ σ2tr2(M2)tr
3(N2)ε

′M1ε

−2σ2tr(M2)tr
2(M3)tr

2(N2)ε
′M1ε− y20F

′

1F1tr(M2)tr
3(N2)ε

′M1ε

+y20F
′

1F1tr
2(M3)tr

2(N2)ε
′M1ε− 3y20tr(M5)tr(M3)tr

2(N2)(F
′

1ε)
2

−1

2
y20tr(N3)tr

3(M3)(F
′

1ε)
2 + 3y20tr(M4)tr

2(M3)tr(N2)(F
′

1ε)
2

−y0tr(N3)tr
3(M3)F

′

1εε
′M1ε+ 6y0tr(M4)tr

2(M3)tr(N2)F
′

1εε
′M1ε

−6y0tr(M5)tr(M3)tr
2(N2)F

′

1εε
′M1ε+ 4y0tr(M5)tr

2(M3)tr(N2)F
′

1εε
′N1ε

+y0tr(N3)tr(M2)tr
2(M3)F

′

1εε
′N1ε− 4y0tr(M4)tr(M2)tr(M3)tr(N2)F

′

1εε
′N1ε

+2y0tr(M5)tr(M2)tr
2(N2)F

′

1εε
′N1ε− 2y0tr(M4)tr

3(M3)F
′

1εε
′N1ε

+y0σ
2tr2(M2)tr

3(N2)F
′

1ε− y30F
′

1F1tr(M2)tr
3(N2)F

′

1ε− 2y0σ
2tr(M2)tr

2(M3)tr
2(N2)F

′

1ε

+y0σ
2tr4(M3)tr(N2)F

′

1ε+ y30F
′

1F1tr
2(M3)tr

2(N2)F
′

1ε+ 2y20tr(M2)tr(M3)tr
2(N2)ε

′F1F
′

3ε

−2y20tr
3(M3)tr(N2)ε

′F1F
′

3ε+ 2y0tr(M2)tr(M3)tr
2(N2)F

′

1εε
′M3ε

−2y0tr
3(M3)tr(N2)F

′

1εε
′M3ε− 2y0tr(M2)tr

3(N2)F
′

2εε
′M1ε

−2y20tr(M2)tr
3(N2)ε

′F1F
′

2ε+ 2y20tr
2(M3)tr

2(N2)ε
′F1F

′

2ε− y0tr(M2)tr
3(N2)F

′

1εε
′M2ε
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+y0tr
2(M3)tr

2(N2)F
′

1εε
′M2ε+ y0tr

4(M3)F
′

1εε
′N2ε− y0tr(M2)tr

2(M3)tr(N2)F
′

1εε
′N2ε

+2y0tr(M2)tr(M3)tr
2(N2)F

′

3εε
′M1ε− 2y0tr

3(M3)tr(N2)F
′

3εε
′M1ε

+2y0tr
2(M3)tr

2(N2)F
′

2εε
′M1ε− y0tr

2(M2)tr
2(N2)F

′

3εε
′N1ε+ y0tr

4(M3)F
′

3εε
′N1ε

+2y0tr(M2)tr(M3)tr
2(N2)F

′

2εε
′N1ε− 4y0tr

3(M3)tr(N2)F
′

2εε
′N1ε

]

/
[

σ4(tr(M2)tr(N2)− (tr(M3))
2)3

]

σ2
−1 = −

[

tr(N2)(ε
′M1ε)

2 − 2tr(M3)ε
′M1εε

′N1ε+ tr(M2)(ε
′N1ε)

2 − 2y0tr(M3)F
′

1εε
′N1ε

+(F ′

1ε)
2tr(N2)y

2
0 + 2F ′

1εε
′M1εtr(N2)y0

]

/
[

Tσ2(tr(N2)tr(M2)− tr2(M3))
]

B.2 Expansion of β̂ − β for the intercept model

Consider the ARMA(1,1) with intercept: yt = α + ρyt−1 − φεt−1 + εt, where

α is a constant, α = O(1). In vector form, we have y−1 = αM1ι + y0F + Aε, where ι

is a vector of ones with dimension T . Alternatively, we can rewrite the model as ε =

ι′T yT − αι + Dy−1 + Bε. Now the parameter to be estimated is β = (α, φ, ρ, σ2)′. Then

given the quasi likelihood function by imposing normality assumption and following similar

steps, we have the following score function:

ψT =

(

a′ε
Tσ2 , − ε′N1ε

Tσ2 ,
ε′M1ε+y0F ′

1ε+b′ε
Tσ2 , − 1

2σ2 + ε′ε
2Tσ4

)′

where a = −C−1ι, b = αC−1M1ι. The Hessian matrix H1, is now 4 × 4 symmetric, and it

has the following unique elements:

∂2L

∂α2
= − a′a

Tσ2
,

∂2L

∂α∂φ
=
a′N∗

1 ε

Tσ2
,

∂2L

∂α∂ρ
= −a

′b+ y0a
′F1 + a′M1ε

Tσ2
,
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∂2L

∂α∂σ2
= − a′ε

Tσ4
,

∂2L

∂φ2
= −ε

′N2ε

Tσ2
,

∂2L

∂φ∂ρ
=
ε′M3ε+ y0F

′
3ε+ b′N∗

1 ε

Tσ2
,

∂2L

∂φ∂σ2
=
ε′N1ε

Tσ4
,

∂2L

∂ρ2
= −ε

′M2ε+ 2y0F
′
2ε+ y20F

′
1F1 + 2b′M1ε+ 2y0b

′F1 + b′b
Tσ2

,

∂2L

∂ρ∂σ2
= −ε

′M1ε+ y0F
′
1ε+ b′ε

Tσ4
,

∂2L

∂σ4
= − 1

2σ4
− ε′ε
Tσ6

.

where for any matrix X, X∗ = X +X ′.

Then H2, which is 16× 4, has the following elements:

∂3L

∂α3
=

∂3L

∂α2∂ρ
=

∂3L

∂α∂ρ2
=
∂3L

∂ρ3
= 0,

∂3L

∂α2∂φ
= −2a′N1a

Tσ2
,

∂3L

∂α2∂σ2
=

a′a
Tσ4

,

∂3L

∂α∂φ2
=
a′N∗

2 ε

Tσ2
,

∂3L

∂α∂φ∂ρ
= −a

′N∗
1 b+ y0a

′F3 + a′M3ε

Tσ2
,

∂3L

∂α∂φ∂σ2
= −a

′N∗
1 ε

Tσ4
,

∂3L

∂α∂ρ∂σ2
=
a′b+ y0a

′F1 + a′M1ε

Tσ4
,

∂3L

∂α∂σ4
=

2a′ε
Tσ6

,
∂3L

∂φ3
= −ε

′N3ε

Tσ2
,

∂3L

∂φ2∂ρ
=

2(y0F
′
4ε+ ε′M4ε)

Tσ2
+
b′N∗

2 ε

Tσ2
,

∂3L

∂φ2∂σ2
=
ε′N2ε

Tσ4
,

∂3L

∂φ∂ρ2
= −2(b′N1b+ y0b

′N∗
1F1 + b′N∗

1M1ε+ y20F
′
1N1F1 + y0F

′
5ε+ ε′M5ε)

Tσ2
,

∂3L

∂φ∂σ4
= −2ε′N1ε

Tσ6
,

∂3L

∂φ∂ρ∂σ2
= −ε

′M3ε+ y0F
′
3ε+ b′N∗

1 ε

Tσ4
,

∂3L

∂ρ2∂σ2
=
ε′M2ε+ 2y0F

′
2ε+ y20F

′
1F1 + 2b′M1ε+ 2y0b

′F1 + b′b
Tσ4

,

∂3L

∂ρ∂σ4
=

2(ε′M1ε+ y0F
′
1ε+ b′ε)

Tσ6
,

∂3L

∂α∂σ4
=

2a′ε
Tσ6

,
∂3L

∂σ6
= − 1

σ6
+

3ε′ε
Tσ8

.

Applying the expectations of quadratic forms to the Hessian and H2 matrix, we have, up

to order O(1),

H̄1 =

























− a′a
Tσ2 0 − a′b

Tσ2 0

0 − tr(N2)
T

tr(M3)
T 0

− a′b
Tσ2

tr(M3)
T − tr(M2)

T − b′b
Tσ2 0

0 0 0 − 1
2σ4
























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H̄2 =























0 −
2a′N1a

Tσ2 0 a′a
Tσ4 −

2a′N1a

Tσ2 0 −
a′N∗

1 b

Tσ2 0

−
2a′N1a

Tσ2 0 −
a′N∗

1 b

Tσ2 0 0 −
tr(N3)

T
2tr(M4)

T
tr(N2)

Tσ2

0 −
a′N∗

1 b

Tσ2 0 a′b
Tσ4 −

a′N∗

1 b

Tσ2
2tr(M4)

T
−

2tr(M5)
T

−
2b′N1b

Tσ2 −
tr(M3)

Tσ2

a′a
Tσ4 0 a′b

Tσ4 0 0
tr(N2)

Tσ2 −
tr(M3)

Tσ2 0























≍























0 −
a′N∗

1 b

Tσ2 0 a′b
Tσ4

a′a
Tσ4 0 a′b

Tσ4 0

−
a′N∗

1 b

Tσ2
2tr(M4)

T
−

2tr(M5)
T

−
2b′N1b

Tσ2 −
tr(M3)

Tσ2 0
tr(N2)

Tσ2 −
tr(M3)

Tσ2 0

0 −
2tr(M5)

T
−

2b′N1b

Tσ2 0
tr(M2)

Tσ2 + b′b
Tσ4

a′b
Tσ4 −

tr(M3)

Tσ2
tr(M2)

Tσ2 + b′b
Tσ4 0

a′b
Tσ4 −

tr(M3)

Tσ2
tr(M2)

Tσ2 + b′b
Tσ4 0 0 0 0 2

σ6























where ≍ denotes matrix horizontal concatenation.

Substitue the above results to (2.3), we have:

α
−1/2 =

a′btr(M3)ε
′N1ε − tr(N2)(a

′bε′M1ε + a′by0F
′

1ε + a′bb′ε − b′ba′ε) + σ2a′ε(tr(M2)tr(N2) − tr
2(M3))

σ2a′a(tr(M2)tr(N2) − tr2(M3)) + tr(N2)(a′ab′b − (a′b)2)

φ
−1/2 = −

a′atr(M2)ε
′N1ε − tr(M3)(a

′aε′M1ε + a′ay0F
′

1ε + a′ab′ε − a′ba′ε) + ε′N1ε(a
′ab′b − (a′b)2)/σ2

σ2a′a(tr(M2)tr(N2) − tr2(M3)) + tr(N2)(a′ab′b − (a′b)2)
,

ρ
−1/2 = −

a′atr(M3)ε
′N1ε − tr(N2)(a

′aε′M1ε + a′ay0F
′

1ε + a′ab′ε − a′ba′ε)

σ2a′a(tr(M2)tr(N2) − tr2(M3)) + tr(N2)(a′ab′b − (a′b)2)
, σ

2
−1/2 = −σ

2
+

ε′ε

T
.

σ2−1 = −
[

y20σ
2a′atr(N2)(F

′
1ε)

2 − 2y0σ
2a′btr(N2)ε

′aF ′
1ε+ 2y0σ

2a′atr(N2)ε
′bF ′

1ε

+2y0σ
2a′atr(N2)F

′
1εε

′M1ε− 2σ2a′btr(N2)ε
′aε′M1ε

−2y0σ
2a′atr(M3)F

′
1εε

′N1ε− (a′b)2(ε′N1ε)
2 − 2σ2a′btr(N2)ε

′ab′ε

+2σ2a′btr(M3)a
′εε′N1ε− σ4tr2(M3)(a

′ε)2 + σ4tr(M2)tr(N2)(a
′ε)2

+σ2b′btr(N2)(a
′ε)2 + σ2a′atr(N2)(ε

′M1ε)
2

+σ2a′atr(N2)(b
′ε)2 + 2σ2a′atr(N2)b

′εε′M1ε− 2σ2a′atr(M3)b
′εε′N1ε

−2σ2a′atr(M3)ε
′M1εε

′N1ε+ σ2a′atr(M2)(ε
′N1ε)

2 + a′ab′b(ε′N1ε)
2

]

/
[

Tσ2(σ2a′a(tr(M2)tr(N2)− tr2(M3)) + tr(N2)(a
′ab′b− (a′b)2))

]

The terms of α−1, φ−1 and ρ−1 is much longer than the pure model and is not

reported here but available upon request to the author.
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Appendix C

Appendix for Chapter 3

C.1 Expansion of β̂ − β

Let ψ denote the score function and H i = ▽iψ, all evaluated the true parameter

vector.1 Following Bao and Ullah (2007, 2009), a stochastic expansion of the QMLE β̂ can

be written as

β̂ − β = β−1/2 + β−1 + β−3/2 + β−2 + oP (T
−2),

where β−i/2 are terms of orders OP (T
−i/2), defined as

β−1/2 = Σψ,

β−1 = ΣV 1β−1/2 +
1

2
ΣE(H2)(β−1/2 ⊗ β−1/2),

β−3/2 = ΣV 1a−1 +
1

2
ΣV 2(β−1/2 ⊗ β−1/2) +

1

2
ΣE(H2)(β−1/2 ⊗ β−1 + β−1 ⊗ β−1/2)

+
1

6
ΣE(H3)(β−1/2 ⊗ β−1/2 ⊗ β−1/2),

β−2 = ΣV 1β−3/2 +
1

2
ΣV 2(β−1/2 ⊗ β−1 + β−1 ⊗ β−1/2) +

1

2
ΣE(H2)(β−1/2 ⊗ β−3/2

1The matrices Hi are defined recursively as in Rilstone et al. (1996)
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+ β−3/2 ⊗ β−1/2 + β−1 ⊗ β−1) +
1

6
ΣV 3(β−1/2 ⊗ β−1/2 ⊗ β−1/2)

+
1

6
ΣE(H3)(β−1/2 ⊗ β−1/2 ⊗ β−1 + β−1/2 ⊗ β−1 ⊗ β−1/2 + β−1 ⊗ β−1/2 ⊗ β−1/2)

+
1

24
ΣE(H4)

(

β−1/2 ⊗ β−1/2 ⊗ β−1/2 ⊗ β−1/2

)

,

in which Σ = −[E(H1)]
−1 and V i = Hi − E(H i). For deriving the second-order bias of

β̂, we need only the expansion up to β−1. But for investigating the second-order bias of

the one-step-ahead feasible forecast, as suggested in (3.5), we need the expansion up to

β−2. For notational convenience, let Li1i2···ir denote the rth-order derivative of the quasi

log likelihood function (3.2) with respect to the elements of β in the order of i1i2 · · · ir.

Given the quasi log likelihood function (3.2), the score function can be written as

ψ′ =

(

a′ε
Tσ2

,
ε′A1ε

Tσ2
, − 1

2σ2
+

ε′ε
2Tσ4

)′
.

The Hessian matrix H1, which is 3× 3 and symmetric, has its unique elements

L11 = − a
′a

Tσ2
, L12 = −a

′A∗
1ε

Tσ2
, L13 = − a

′ε
Tσ4

,

L22 = −ε
′A2ε

Tσ2
, L23 = −ε

′A1ε

Tσ4
, L33 = − ε′ε

Tσ6
+

1

2σ4
,

which gives

Σ = diag

(

Tσ2

a′a
,

T

tr(A2)
, 2σ4

)

.

Next, by taking derivatives and using the identities ε = C−1(y − µι) and y = µι + Cε,

we put the non-zero unique elements of higher-order derivative matrices Hi, i = 2, 3, 4, in

the following, with the additional notation: A3 = A′
1A1 + A

′2
1 +A2

1, A4 = A3
1 + A

′
1A

2
1,

A5 = A
′3
1 +A3

1+A
′
1A

2
1+A

′2
1A1, A6 = 2A4

1+2A′
1A

3
1+A

′2
1A

2
1, A7 = A

5
1+A

′
1A

4
1+A

′2
1A

3
1.
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For H2,

L112 =
2a′A1a

Tσ2
, L113 =

a′a
Tσ4

, L122 =
2a′A3ε

Tσ2
,

L123 =
a′A∗

1ε

Tσ4
, L133 =

2a′ε
Tσ6

, L222 =
6ε′A4ε

Tσ2
,

L223 =
ε′A2ε

Tσ4
, L233 =

2ε′A1ε

Tσ6
, L333 =

3ε′ε
Tσ8

− 1

σ6
;

for H3,

L1122 = −2a′A2a

Tσ2
, L1123 = −2a′A1a

Tσ4
, L1133 = −2a′a

Tσ6
,

L1222 = −6a′A5ε

Tσ2
, L1223 = −2a′A3ε

Tσ4
, L1233 = −2a′A∗

1ε

Tσ6
,

L1333 = −6a′ε
Tσ8

, L2222 = −12ε′A6ε

Tσ2
, L2223 = −6ε′A4ε

Tσ4
,

L2233 = −2ε′A2ε

Tσ6
, L2333 = −6ε′A1ε

Tσ8
, L3333 = −12ε′ε

Tσ10
+

3

σ8
;

and for H4

L11222 =
12a′A4a

Tσ2
, L11223 =

2a′A2a

Tσ4
, L11233 =

4a′A1a

Tσ6
,

L11333 =
6a′a
Tσ8

, L12222 =
12a′A∗

6ε

Tσ2
, L12223 =

6a′A5ε

Tσ4
,

L12233 =
4a′A3ε

Tσ6
, L12333 =

6a′A∗
1ε

Tσ8
, L13333 =

24a′ε
Tσ10

,

L22222 =
120ε′A7ε

Tσ2
, L22223 =

12ε′A6ε

Tσ4
, L22233 =

12ε′A4ε

Tσ6
,

L22333 =
6ε′A2ε

Tσ8
, L23333 =

24ε′A1ε

Tσ10
, L33333 =

60ε′ε
Tσ12

− 12

σ10
.

Readers should keep in mind that theH i are defined recursively as in Rilstone et al. (1996)

and the dimensions of Hi are 3× 3i. The expectations of H i can also be straightforwardly

calculated as they involve only order-1 quadratic forms in ε. By substituting ψ, Σ,H i, and

E(H i) into the order OP (T
−2) expansion of β̂ − β, we can derive the expansions for each
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parameter estimator. In the following, we present only those terms needed for developing

our results:

µ−1/2 =
a′ε

a′a
,

µ−1 = −a′A
∗
1εε

′A1ε

σ2tr(A2)a′a
+ 2a′A1aa

′εε′A1ε

σ2tr(A2)(a′a)2
,

σ2−1/2 =
ε′ε

T − σ2,

σ2−1 = −ε′aa′ε

Ta′a
− (ε′A1ε)2

Tσ2tr(A2)
,

θ−1/2 =
ε′A1ε

σ2tr(A2)
,

θ−1 =
3tr(A4)(ε′A1ε)2

σ4tr3(A2)
− ε′A1εε

′A2ε

σ4tr2(A2)
− ε′aa′A

∗
1ε

σ2tr(A2)a′a
+ a′A1aε

′aa′ε

σ2tr(A2)(a′a)2
+ ε′A1ε

σ2tr(A2)
,

θ−3/2 =
18tr2(A4)(ε′A1ε)3

σ6tr5(A2)
− 2tr(A6)(ε′A1ε)3

σ6tr4(A2)
− 9tr(A4)(ε′A1ε)2ε′A2ε

σ6tr4(A2)
+ ε′A1ε(ε′A2ε)2

σ6tr3(A2)
+ 3(ε′A1ε)2ε′A4ε

σ6tr3(A2)

+
ε′A

∗
1aa

′A
∗
1εε

′A1ε

σ4tr2(A2)a′a
− 4a′A1aε

′aa′A
∗
1εε

′A1ε

σ4tr2(A2)(a′a)2
+ 2ε′aa′A3εε

′A1ε

σ4tr2(A2)a′a
+ 4(a′A1a)2ε′aa′εε′A1ε

σ4tr2(A2)(a′a)3

−a′A2aε
′aa′εε

′
A1ε

σ4tr2(A2)(a′a)2
− 6tr(A4)ε′aa′A

∗
1εε

′A1ε

σ4tr3(A2)a′a
+ 6tr(A4)a′A1aε

′aa′εε
′
A1ε

σ4tr3(A2)(a′a)2
+ 6tr(A4)(ε′A1ε)2

σ4tr3(A2)

+
ε′aa

′
A

∗
1εε

′A2ε

σ4tr2(A2)a′a
− a′A1aε

′aa′εε′A2ε

σ4tr2(A2)(a′a)2
− 2ε′A1εε

′A2ε

σ4tr2(A2)
− ε′aa′A

∗
1ε

σ2a′atr(A2)
+ a′A1aε

′aa′ε

σ2(a′a)2tr(A2)
+

ε′A1ε

σ2tr(A2)
,

θ−2 = 135tr3(A4)(ε
′
A1ε)

4

σ8tr7(A2)
− 30tr(A4)tr(A6)(ε

′
A1ε)

4

σ8tr6(A2)
+ 5tr(A7)(ε

′
A1ε)

4

σ8tr5(A2)
− 90tr2(A4)(ε

′
A1ε)

3
ε
′
A2ε

σ8tr6(A2)

+ 8tr(A6)(ε
′
A1ε)

3
ε
′
A2ε

σ8tr5(A2)
− ε

′
A1ε(ε

′
A2ε)

3

σ8tr4(A2)
+ 18tr(A4)(ε

′
A1ε)

2(ε′
A2ε)

2

σ8tr5(A2)
+ 36tr(A4)(ε

′
A1ε)

3
ε
′
A4ε

σ8tr5(A2)

− 2(ε′
A1ε)

3
ε
′
A6ε

σ8tr4(A2)
− 9(ε′

A1ε)
2
ε
′
A2εε

′
A4ε

σ8tr4(A2)
− 3ε′

A
∗

1aa
′
A3ε(ε

′
A1ε)

2

σ6a′atr3(A2)
+

3a′
A1aε

′
A

∗

1aa
′
A

∗

1ε(ε
′
A1ε)

2

σ6(a′a)2tr3(A2)

+ 6a′
A1aε

′
aa

′
A3ε(ε

′
A1ε)

2

σ6(a′a)2tr3(A2)
− 12(a′

A1a)
2
ε
′
aa

′
A

∗

1ε(ε
′
A1ε)

2

σ6(a′a)3tr3(A2)
+

3a′
A2aε

′
aa

′
A

∗

1ε(ε
′
A1ε)

2

σ6(a′a)2tr3(A2)

− 3ε′
aa

′
A5ε(ε

′
A1ε)

2

σ6a′atr3(A2)
+ 12(a′

A1a)
3
ε
′
aa

′
ε(ε′

A1ε)
2

σ6(a′a)4tr3(A2)
− 6a′

A1aa
′
A2aε

′
aa

′
ε(ε′

A1ε)
2

σ6(a′a)3tr3(A2)
+ 3a′

A4aε
′
aa

′
ε(ε′

A1ε)
2

σ6(a′a)2tr3(A2)

+
9tr(A4)ε

′
A

∗

1aa
′
A

∗

1ε(ε
′
A1ε)

2

σ6a′atr4(A2)
+ 18tr(A4)ε

′
aa

′
A3ε(ε

′
A1ε)

2

σ6a′atr4(A2)
− 36tr(A4)a

′
A1aε

′
aa

′
A

∗

1ε(ε
′
A1ε)

2

σ6(a′a)2tr4(A2)

+ 36tr(A4)(a
′
A1a)

2
ε
′
aa

′
ε(ε′

A1ε)
2

σ6(a′a)3tr4(A2)
− 9tr(A4)a

′
A2aε

′
aa

′
ε(ε′

A1ε)
2

σ6(a′a)2tr4(A2)
− 54tr2(A4)ε

′
aa

′
A

∗

1ε(ε
′
A1ε)

2

σ6a′atr5(A2)

+ 54tr2(A4)a
′
A1aε

′
aa

′
ε(ε′

A1ε)
2

σ6(a′a)2tr5(A2)
+

6tr(A6)ε
′
aa

′
A

∗

1ε(ε
′
A1ε)

2

σ6a′atr4(A2)
− 6tr(A6)a

′
A1aε

′
aa

′
ε(ε′

A1ε)
2

σ6(a′a)2tr4(A2)

+ 54tr2(A4)(ε
′
A1ε)

3

σ6tr5(A2)
− 6tr(A6)(ε

′
A1ε)

3

σ6tr4(A2)
− 2ε′

A
∗

1aa
′
A

∗

1εε
′
A1εε

′
A2ε

σ6a′atr3(A2)
− 4ε′

aa
′
A3εε

′
A1εε

′
A2ε

σ6a′atr3(A2)

+
8a′

A1aε
′
aa

′
A

∗

1εε
′
A1εε

′
A2ε

σ6(a′a)2tr3(A2)
− 8(a′

A1a)
2
ε
′
aa

′
εε

′
A1εε

′
A2ε

σ6(a′a)3tr3(A2)
+ 2a′

A2aε
′
aa

′
εε

′
A1εε

′
A2ε

σ6(a′a)2tr3(A2)
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+
18tr(A4)ε

′
aa

′
A

∗

1εε
′
A1εε

′
A2ε

σ6a′atr4(A2)
− 18tr(A4)a

′
A1aε

′
aa

′
εε

′
A1εε

′
A2ε

(a′a)2σ6tr4(A2)
− 27tr(A4)(ε

′
A1ε)

2
ε
′
A2ε

σ6tr4(A2)

− ε
′
aa

′
A

∗

1ε(ε
′
A2ε)

2

σ6a′atr3(A2)
+ a

′
A1aε

′
aa

′
ε(ε′

A2ε)
2

σ6(a′a)2tr3(A2)
+ 3ε′

A1ε(ε
′
A2ε)

2

σ6tr3(A2)
− 6ε′

aa
′
A

∗

1εε
′
A1εε

′
A4ε

σ6a′atr3(A2)

+ 6a′
A1aε

′
aa

′
εε

′
A1εε

′
A4ε

σ6(a′a)2tr3(A2)
+ 9(ε′

A1ε)
2
ε
′
A4ε

σ6tr3(A2)
− ε

′
A

∗

1aa
′
A

∗

1εε
′
aa

′
A

∗

1ε

σ4(a′a)2tr2(A2)
− 2ε′

A
∗

1aa
′
A3εε

′
aa

′
ε

σ4(a′a)2tr2(A2)

+
5a′

A1a(ε
′
aa

′
A

∗

1ε)
2

σ4(a′a)3tr2(A2)
+ 2a′

A1aε
′
aa

′
A3εε

′
aa

′
ε

σ4(a′a)3tr2(A2)
− 8(a′

A1a)
2
ε
′
aa

′
A

∗

1εε
′
aa

′
ε

σ4(a′a)4tr2(A2)
+

a
′
A2aε

′
aa

′
A

∗

1εε
′
aa

′
ε

σ4(a′a)3tr2(A2)

+ 4(a′
A1a)

3(ε′
aa

′
ε)2

σ4(a′a)5tr2(A2)
− a

′
A1aa

′
A2a(ε

′
aa

′
ε)2

σ4(a′a)4tr2(A2)
+

3tr(A4)(ε
′
aa

′
A

∗

1ε)
2

σ4(a′a)2tr3(A2)
− 6tr(A4)a

′
A1aε

′
aa

′
A

∗

1εε
′
aa

′
ε

σ4(a′a)3tr3(A2)

+ 3tr(A4)(a
′
A1a)

2(ε′
aa

′
ε)2

σ4(a′a)4tr3(A2)
+

2ε′
A

∗

1aa
′
A

∗

1εε
′
A1ε

σ4a′atr2(A2)
+ 4ε′

aa
′
A3εε

′
A1ε

σ4a′atr2(A2)
− 8a′

A1aε
′
aa

′
A

∗

1εε
′
A1ε

σ4(a′a)2tr2(A2)

+ 8(a′
A1a)

2
ε
′
aa

′
εε

′
A1ε

σ4(a′a)3tr2(A2)
− 2a′

A2aε
′
aa

′
εε

′
A1ε

σ4(a′a)2tr2(A2)
− 12tr(A4)ε

′
aa

′
A

∗

1εε
′
A1ε

σ4a′atr3(A2)
+ 12tr(A4)a

′
A1aε

′
aa

′
εε

′
A1ε

σ4(a′a)2tr3(A2)

+ 9tr(A4)(ε
′
A1ε)

2

σ4tr3(A2)
+

2ε′
aa

′
A

∗

1εε
′
A2ε

σ4a′atr2(A2)
− 2a′

A1aε
′
aa

′
εε

′
A2ε

σ4(a′a)2tr2(A2)
− 3ε′

A1εε
′
A2ε

σ4tr2(A2)
− ε

′
aa

′
A

∗

1ε

σ2a′atr(A2)

+ a
′
A1aε

′
aa

′
ε

σ2(a′a)2tr(A2)
+ ε

′
A1ε

σ2tr(A2)
.
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