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Abstract

Secant Varieties of Segre-Veronese Varieties

by

Claudiu Cristian Raicu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Eisenbud, Chair

Secant varieties of Segre and Veronese varieties (and more generally Segre-Veronese vari-
eties, which are embeddings of a product of projective spaces via the complete linear system
of an ample line bundle) are very classical objects that go back to the Italian school of math-
ematics in the 19-th century. Despite their apparent simplicity, little is known about their
equations, and even less about the resolutions of their coordinate rings. The main goal of
this thesis is to introduce a new method for analyzing the equations and coordinate rings of
the secant varieties to Segre-Veronese varieties, and to work out the details of this method
in the first case of interest: the variety of secant lines to a Segre-Veronese variety.

There is an extensive literature explaining the advantages of analyzing the equations of
the secant varieties of X ⊂ PN as G-modules, when X is endowed with a G-action that
extends to PN . For X a Segre-Veronese variety, the corresponding G is a general linear
(GL) group, or a product of such. Looking inside the highest weight spaces of carefully
chosen GL-representations, we identify a set of “generic equations” for the secant varieties
of Segre-Veronese varieties. The collections of “generic equations” form naturally modules
over (products of) symmetric groups and moreover, they yield by the process of specialization
all the (nongeneric) equations of the secant varieties of Segre-Veronese varieties.

Once we reduce our problem to the analysis of “generic equations”, the representation
theory of symmetric groups comes into play, and with it the combinatorics of tableaux.
In the case of the first secant variety of a Segre-Veronese variety, we are naturally led to
consider 1-dimensional simplicial complexes, i.e. graphs, attached to the relevant tableaux.
We believe that simplicial complexes should play an important role in the combinatorics that
emerges in the case of higher secant varieties.

The results of this thesis go in two directions. For both of them, the reduction to
the “generic” situation is used in an essential way. One direction is showing that if we
put together the 3 × 3 minors of certain generic matrices (called flattenings), we obtain a
generating set for the ideal of the secant line variety of a Segre-Veronese variety. In particular,
this recovers a conjecture of Garcia, Stillman and Sturmfels, corresponding to the case of
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a Segre variety. We also give a representation theoretic description of the homogeneous
coordinate ring of the secant line variety of a Segre-Veronese variety. In the cases when this
secant variety fills the ambient space, we obtain formulas for decomposing certain plethystic
compositions.

A different direction is, for the Veronese variety, to show that for k small, the ideal of
k × k minors of the various flattenings (which in this case are also known as catalecticant
matrices) are essentially independent of which flattening we choose. In particular this proves
a conjecture of Geramita, stating that the ideals of 3×3 minors of the “middle” catalecticant
matrices are the same, and moreover that the ideal of the first secant variety of a Veronese
variety is generated by the 3× 3 minors of any such catalecticant.
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Chapter 1

Introduction

1.1 Overview

The study of tensors and particularly tensor ranks is important in numerous fields of
research today: algebraic statistics ([GSS05]), biology ([AR08], [PS04]), signal processing
([WvB10]), complexity theory ([Lan08], [BLMW09]). For example, people in computer
science would very much like to know how expensive matrix multiplication is - how fast
algorithms can be developed for multiplying arbitrary size matrices. The usual assumptions
in this problem are that

• addition is free;

• multiplication has some positive cost, say 1 cent per scalar multiplication.

One could start with the basic

Question 1.1.1. How much does it cost to compute the product of two 2× 2 matrices?

The naive answer, based on the usual algorithm for matrix multiplication that we learn in
school, would be 8 cents. But in fact one could do better than that, and Strassen’s algorithm
([CLRS01], Section 28.2, or [Lan08], Section 1.1) gives a way to multiply two such matrices
at a cost of only 7 cents.

More generally, one could ask

Question 1.1.2. What is the cost of multiplying two n× n matrices, or even more generally,
two arbitrary rectangular matrices?

The answer to this is not known in general, and is controlled by the rank of a certain
3-tensor, the tensor of matrix multiplication. If we denote by Ma,b the space of a×b matrices,
then matrix multiplication is a linear map

Tm,n,p : Mm,n ⊗Mn,p −→Mm,p,



2

i.e. a 3-tensor in Mm,n ⊗Mn,p ⊗M∗
m,p. The rank of Tm,n,p is the minimal possible number of

terms in an expression of Tm,n,p as a linear combination of pure tensors A⊗B ⊗ C.
It turns out that for algebraic geometry, a better suited question is

Question 1.1.3. What is the cost of computing the product of two matrices with arbitrarily
high precision?

The reason for this is that it allows one to replace the tensor rank of Tm,n,p with its border
rank, i.e. the minimal number k such that Tm,n,p is a limit of tensors of rank k. This replaces
the study of certain quasi-projective varieties defined by rank conditions, with that of closed
subvarieties in projective space defined by border rank conditions - the secant varieties of
triple Segre products. Knowing the equations of such varieties would allow us to evaluate the
border rank of any given tensor, in particular that of matrix multiplication, and therefore
enable us to answer Question 1.1.3.

It is worth mentioning that not a single equation is known for σ6(Seg(P3×P3×P3)), the
variety of secant 5-planes to a Segre product of three projective 3-spaces, or equivalently, the
space of tensors of border rank at most 6 living in the tensor product of three vector spaces
of dimension 4 (M2,2,M2,2 and M∗

2,2). The reason why this would be interesting is because
having one such equation that didn’t vanish on T2,2,2 would allow us to conclude that the
border rank of multiplication of 2× 2 matrices is at least 7, and hence equal to 7 since it is
bounded above by rank(T2,2,2), which by Strassen’s algorithm is at most 7.

One of the main goals of this thesis is to set up a general framework that would allow one
to attack questions like the ones presented above, and illustrate how insights from combi-
natorics naturally occur in this framework, providing new results in the case of small secant
varieties. The rest of this chapter contains an introduction to the study of the defining equa-
tions of secant varieties of Segre-Veronese varieties, as well as a description of catalecticant
varieties and their connections to secant varieties and other areas of mathematics. We state
our main results and mention the relationship to the existing literature on the subject.

In Chapter 2 we give the basic definitions for secant varieties, Segre-Veronese varieties,
catalecticant varieties. We introduce the basic notions from Representation Theory that
are used throughout the work, and describe the process of flattening a tensor, which leads
to the notion of a flattening matrix. We give a flavour of the problem of analyzing the
ideals and coordinate rings of secant varieties of Segre-Veronese varieties, by illustrating the
classical case of the zeroth secant variety, the Segre-Veronese variety itself. Our main result
in Chapter 4 will describe a completely analogous picture in the case of the first secant
variety, the variety of secant lines to a Segre-Veronese variety.

Chapter 3 builds the framework for analyzing the equations and homogeneous coordinate
rings of arbitrary secant varieties of Segre-Veronese varieties. Even though we were only able
to work out the details of this analysis in the case of the first secant variety, we believe that
the general method of approach may be used to shed some light on the case of higher
secant varieties. In particular, the new insight of concentrating on the “generic equations”
is presented in detail and in the generality needed to deal with arbitrary secant varieties.
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Chapter 4 is inspired by a conjecture of Garcia, Stillman and Sturmfels, describing the
generators of the ideal of the variety of secant lines to a Segre variety. We prove more
generally that this description holds for the first secant variety of a Segre-Veronese variety.
We also give a representation theoretic decomposition of the coordinate ring of this variety,
which allows us to deduce certain plethystic formulas based on known computations of
dimensions of secant varieties of Segre varieties.

In Chapter 5 we describe our combinatorial techniques through a series of examples. We
recover the classical Cauchy formula for decomposing symmetric powers of tensor products
of two vector spaces. We also describe our view on Strassen’s equations from the “generic”
perspective, as well as on their generalized version introduced by Landsberg and Manivel
([LM08]). The new result in this chapter is a strengthening of [LM08, Theorem 4.2], by
removing an unnecessary assumption, as suggested by the authors. We also show how our
methods can be used to recover some of the known equations for the variety of secant 3-
planes to a Segre product of three projective 3-spaces - determining the defining ideal of this
variety is known under the name of “The Salmon Problem”. Finally, we give the “generic”
version of the Aronhold invariant, a module of equations for the variety of secant planes to
the 3-uple embedding of projective space, that does not come from flattenings.

Finally, Chapter 6 deals with catalecticant varieties, i.e. varieties defined by vanishing
of minors of catalecticant matrices. These matrices appear earlier in the work in connection
with the equations of the secant varieties of Veronese varieties: they are special cases of
matrices of flattenings, but their beauty lies in their ubiquitous nature - determinantal loci
of catalecticant matrices are not only related to secant varieties, but also to Hilbert functions
of Gorenstein Artin algebras, the polynomial Waring problem, or configurations of points in
projective space (see [Ger96], [IK99]). We show that for small values of k and fixed d, most
catalecticant matrices arising from flattening the generic symmetric tensor of degree d have
the same ideals of k × k minors. This proves a conjecture of Geramita, and establishes the
first new case of its natural generalization.

1.2 Secant Varieties of Segre-Veronese Varieties

The spaces of matrices (or 2-tensors) are stratified according to rank by the secant vari-
eties of Segre products of two projective spaces. The defining ideals of these secant varieties
are known to be generated by minors of generic matrices. As mentioned in the previous
section, it is an important problem, with numerous applications, to understand (border)
rank varieties of higher order tensors. These are (upon taking closure) the classical secant
varieties to Segre varieties, whose equations are far from being understood. To get an idea
about the boundary of our knowledge, note that the famous Salmon problem ([All]), which
asks for the generators of the ideal of σ4(P3 × P3 × P3), the variety of secant 3-planes to
the Segre product of three projective 3-spaces, is still unsolved (although its set-theoretic
version has been recently resolved in [Fri10,FG11]; see also [BO10]).
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Flattenings (see Section 2.5) provide an easy tool for obtaining some equations for secant
varieties of Segre products, but they are not sufficient in general, as can be seen for example
in the case of the Salmon problem. Inspired by the study of Bayesian networks, Garcia,
Stillman and Sturmfels conjectured ([GSS05]) that flattenings give all the equations of the
first secant variety of the Segre variety. This conjecture also appeared at the same time
in a biological context, namely in work of Pachter and Sturmfels on phylogenetic inference
([PS04], Conjecture 13).

Conjecture 1.2.1 (Garcia-Stillman-Sturmfels). The ideal of the secant line variety of a
Segre product of projective spaces is generated by 3× 3 minors of flattenings.

The set-theoretic version of this conjecture was obtained by Landsberg and Manivel
([LM04]), as well as the case of a 3-factor Segre product. The 2-factor case is classical, while
the 4-factor case was resolved by Landsberg and Weyman ([LW07]). The 5-factor case was
proved by Allman and Rhodes ([AR08]). We prove the GSS conjecture in Corollary 4.1.2 as
a consequence of our main result (Theorem 4.1.1).

It is a general fact that for a subvariety X in projective space which is not contained in
a hyperplane, the ideal of the variety σk(X) of secant (k − 1)-planes to X has no equations
in degree less than k + 1. If X = G/P is a rational homogeneous variety, a theorem of
Kostant (see [Lan]) states that the ideal of X is generated in the smallest possible degree
(i.e. in degree two), and Landsberg and Manivel asked whether this is also true for the first
secant variety to X ([LM04]). It turns out that when X is the D7-spinor variety, there are
in fact no cubics in the ideal of σ2(X) (see [LW09] and [Man09]). In Theorem 4.1.1, we
provide a family of G/P ’s, the Segre-Veronese varieties for which the answer to the question
of Landsberg and Manivel is positive. We obtain furthermore an explicit decomposition into
irreducible representations of the homogeneous coordinate ring of the secant line variety of
a Segre-Veronese variety, thus making it possible to compute the Hilbert function for this
class of varieties. This can be regarded as a generalization of the computation of the degree
of these secant varieties in [CS07].

Before stating the main theorem, we establish some notation. For a vector space V , V ∗

denotes its dual, and PV denotes the projective space of lines in V . If µ = (µ1 ≥ µ2 ≥ · · · ) is
a partition, Sµ denotes the corresponding Schur functor (if µ2 = 0 we get symmetric powers,
whereas if all µi = 1, we get wedge powers). For positive integers d1, · · · , dn, SVd1,··· ,dn
denotes the Segre-Veronese embedding of a product of n projective spaces via the complete
linear system of the ample line bundle O(d1, · · · , dn). σ2(X) denotes the variety of secant
lines to X.

Theorem 4.1.1. Let X = SVd1,··· ,dn(PV ∗1 × PV ∗2 × · · · × PV ∗n ) be a Segre-Veronese variety,
where each Vi is a vector space of dimension at least 2 over a field K of characteristic zero.
The ideal of σ2(X) is generated by 3 × 3 minors of flattenings, and moreover, for every
nonnegative integer r we have the decomposition of the degree r part of its homogeneous
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coordinate ring

K[σ2(X)]r =
⊕

λ=(λ1,··· ,λn)
λi`rdi

(Sλ1V1 ⊗ · · · ⊗ SλnVn)mλ ,

where mλ is obtained as follows. Set

fλ = max
i=1,··· ,n

⌈
λi2
di

⌉
, eλ = λ12 + · · ·+ λn2 .

If some partition λi has more than two parts, or if eλ < 2fλ, then mλ = 0. If eλ ≥ r − 1,
then mλ = br/2c − fλ + 1, unless eλ is odd and r is even, in which case mλ = br/2c − fλ. If
eλ < r − 1 and eλ ≥ 2fλ, then mλ = b(eλ + 1)/2c − fλ + 1, unless eλ is odd, in which case
mλ = b(eλ + 1)/2c − fλ.

Theorem 4.1.1 has further consequences to deriving certain plethystic formulas for de-
composing (in special cases) symmetric powers of triple tensor products (Corollary 4.1.3a))
and Schur functors applied to tensor products of two vector spaces (Corollary 4.1.3b)), or
even symmetric pletyhsm (Corollary 4.1.4).

Finding equations for higher secant varieties of Segre-Veronese varieties turns out to be
a delicate task, even in the case of two factors (n = 2) with not too positive embeddings
(small d1, d2). Recent progress in this direction has been obtained by Cartwright, Erman
and Oeding ([CEO10]).

Since finding precise descriptions of the equations, and more generally syzygies, of secant
varieties to Segre-Veronese varieties constitutes such an intricate project, much of the current
effort is directed to finding more qualitative statements. Draisma and Kuttler ([DK11]) prove
that for each k, there is an uniform bound d(k) such that the (k−1)-st secant variety of any
Segre variety is cut out (set-theoretically) by equations of degree at most d(k). Theorem
4.1.1 implies that d(2) = 3, even ideal theoretically.

For higher syzygies, Snowden ([Sno10]) proves that all the syzygies of Segre varieties
are obtained from a finite amount of data via an iterative process. It would be interesting
to know if the same result holds for the secant varieties. This would generalize the result
of Draisma and Kuttler. For Veronese varieties, the asymptotic picture of the Betti tables
is described in work of Ein and Lazarsfeld ([EL11]). Again, it would be desirable to have
analogous results for secant varieties.

1.3 Hilbert Functions of Gorenstein Artin Algebras

and Catalecticant Varieties

The possible Hilbert functions of graded (Artin) algebras are characterized by a classical
theorem of Macaulay ([BH93, Thm. 4.2.10]), and it would be desirable to have a similar
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characterization for Gorenstein (Artin) algebras. The spaces of Gorenstein Artin rings with
a given Hilbert function ([IK99]) are described in terms of determinantal loci of catalecticant
matrices. These are matrices that generalize both generic symmetric matrices and Hankel
matrices, and their ideals of minors also provide some of the equations for the secant varieties
to the Veronese varieties (see Sections 2.4 and 2.5).

In [Ger99], Geramita gives a beautiful exposition of classical results about catalecticant
varieties, and proposes several further questions (see also [IK99], Chapter 9). We recall the
last one, which we shall answer affirmatively in Section 6.2. It is divided into two parts:

Q5a. Is it true that
I3(Cat(2, d− 2;n)) = I3(Cat(t, d− t;n))

for all t with 2 ≤ t ≤ d− 2?

Q5b. Is it true that for n ≥ 3 and d ≥ 4

I3(Cat(1, d− 1;n)) ( I3(Cat(2, d− 2;n))?

Here Cat(t, d−t;n) denotes the t-th generic catalecticant (see Section 2.4), and I3(Cat(t, d−
t;n)) is the ideal generated by its 3 × 3 minors. Geramita conjectures that the answers
to these questions are affirmative, and furthermore, that any of the catalecticant ideals
I3(Cat(t, d − t;n), 2 ≤ t ≤ d − 2, is the ideal of the secant line variety of the d-uple
embedding of Pn−1. Once we answer Q5a and Q5b positively, the last part of the conjecture
follows from a result of Kanev ([Kan99]), which states that the ideal of the secant line variety
to the Veronese variety is generated by the 3×3 minors of the first and second catalecticants
(alternatively, one can apply Theorem 4.1.1 in the special case n = 1, d1 = d).

The values of the Hilbert function of a graded Gorenstein Artin algebra coincide with
the ranks of the catalecticants associated to its dual socle generator ([Eis95, Thm. 21.6]).
Macaulay’s theorem characterizing Hilbert functions of Artin algebras can thus be used to
give set theoretic inclusions between ideals of minors of catalecticant matrices. This provided
the motivation behind Q5a and Q5b. Geramita asks the more general question

Q4. How is Macaulay’s theorem on the growth of the Hilbert function of an Artin algebra
reflected in containment relations among ideals of minors of catalecticant matrices?

A partial answer to this question would be provided by the proof of the following conjecture,
which is a natural generalization of Q5a and Q5b (Ik denotes the ideal of k × k minors of a
matrix).

Conjecture 1.3.1. For all k, n ≥ 2, d ≥ 2k − 2 and t with k − 1 ≤ t ≤ d− k + 1, one has

Ik(Cat(k − 1, d− k + 1;n)) = Ik(Cat(t, d− t;n)).

Moreover, the following inclusions hold:

Ik(Cat(1, d− 1;n)) ⊂ Ik(Cat(2, d− 2;n)) ⊂ · · · ⊂ Ik(Cat(k − 1, d− k + 1;n)).
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When n = 2, it is well-known (see [GP82], [Eis88], [Con98] for proofs) that

Ik(Cat(k − 1, d− k + 1; 2)) = Ik(Cat(t, d− t; 2)) (1.3.1)

for all t with k− 1 ≤ t ≤ d− k+ 1, and that any of these ideals is the ideal of the (k− 2)-nd
secant variety to the d-uple embedding of P1, hence Conjecture 1.3.1 holds in this case. For
t < k − 1 (or t > d− k + 1), Ik(Cat(t, d− t; 2)) = 0 because the catalecticant matrices have
less than k rows (or columns).

We prove Conjecture 1.3.1 in three special cases, namely k = 2, 3 and 4. The case k = 2
was already known, by an easy reduction to the case n = 2 in characteristic zero, and by
[Puc98] in arbitrary characteristic. We give a short proof of Pucci’s result in Section 6.1,
together with a characteristic zero proof independent of (1.3.1).
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Chapter 2

Preliminaries

Throughout this work, K denotes a field of characteristic 0. All the varieties we study
are of finite type over K. They are usually reduced and irreducible, but we don’t require this
for the definition of variety (e.g. catalecticant varieties are neither reduced nor irreducible
in general). PN denotes the N -dimensional projective space over K. We write PW for PN
when we think of PN as the space of 1-dimensional subspaces (lines) in a vector space W of
dimension N+1 over K. Given a nonzero vector w ∈ W , we denote by [w] the corresponding
line. The coordinate ring of PW is Sym(W ∗), the symmetric algebra on the vector space W ∗

of linear functionals on W .

2.1 Secant Varieties

Definition 2.1.1. Given a subvariety X ⊂ PN , the (k − 1)-st secant variety of X, denoted
σk(X), is the closure of the union of linear subspaces spanned by k points on X:

σk(X) =
⋃

x1,··· ,xk∈X

Px1,··· ,xk .

Alternatively, if we write PN = PW for some vector space W , and let X̂ ⊂ W denote the

cone over X, then we can define σk(X) by specifying its cone σ̂k(X). This is the closure of
the image of the map

s : X̂ × · · · × X̂ −→ W,

defined by
s(x1, · · · , xk) = x1 + · · ·+ xk.

The main problem we are concerned with is

Problem. Given (the equations of) X, determine (the equations of) σk(X).
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More precisely, given the homogeneous ideal I(X) of the subvariety X ⊂ PW , we would
like to describe the generators of I(σk(X)). Alternatively, we would like to understand the
homogeneous coordinate ring of σk(X), which we denote by K[σk(X)]. As we will see, this
is a difficult problem even in the case when X is simple, i.e. isomorphic to a projective space
(or a product of such). There is thus little hope of giving an uniform satisfactory answer in
the generality we posed the problem. However, the following observation provides a general
approach to the problem, which we exploit in the future chapters.

The ideal/homogeneous coordinate ring of a subvariety Y ⊂ PW coincides with the
ideal/affine coordinate ring of its cone Ŷ ⊂ W , hence our problem is equivalent to un-

derstanding I(σ̂k(X)) and K[σ̂k(X)]. The morphism s of affine varieties defined above
corresponds to a ring map

s# : Sym(W ∗)→ K[X̂ × · · · × X̂] = K[X̂]⊗ · · · ⊗K[X̂].

We have that I(σ̂k(X)) and K[σ̂k(X)] are the kernel and image respectively of s#. The
main focus for us will be on the case when X is a Segre-Veronese variety (described in the
following section), and k = 2.

2.2 Segre-Veronese Varieties

Consider vector spaces V1, · · · , Vn of dimensions m1, · · · ,mn ≥ 2 respectively, with duals
V ∗1 , · · · , V ∗n , and positive integers d1, · · · , dn. We let

X = PV ∗1 × · · · × PV ∗n

and think of it as a subvariety in projective space via the embedding determined by the line
bundle OX(d1, · · · , dn). Explicitly, X is the image of the map

SVd1,··· ,dn : PV ∗1 × · · · × PV ∗n → P(Symd1 V ∗1 ⊗ · · · ⊗ Symdn V ∗n )

given by
([e1], · · · , [en]) 7→ [ed11 ⊗ · · · ⊗ ednn ].

We call X a Segre-Veronese variety.
For such X we prove that I(σ2(X)) is generated in degree 3 and we describe the de-

composition of K[σ2(X)] into a sum of irreducible representations of the product of general
linear groups GL(V1)× · · · ×GL(Vn) (Theorem 4.1.1).

When n = 1 we set d = d1, V = V1. The image of SVd is the d-th Veronese embedding,
or d-uple embedding of the projective space PV ∗, which we denote by Verd(PV ∗). When
d1 = · · · = dn = 1, the image of SV1,1,··· ,1 is the Segre variety Seg(PV ∗1 × · · · × PV ∗n ). An
element of Symd1 V ∗1 ⊗ · · · ⊗ Symdn V ∗n is called a (partially symmetric) tensor. The points in
the cone over the Segre-Veronese variety are called pure tensors.
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2.3 Representation Theory

We refer the reader to [FH91] for the basic representation theory of symmetric and general
linear groups. Given a positive integer r, a partition µ of r is a nonincreasing sequence of
nonnegative integers µ1 ≥ µ2 ≥ · · · with r =

∑
µi. We write µ = (µ1, µ2, · · · ). Alternatively,

if µ is a partition having ij parts equal to µj for all j, then we write µ = (µi11 µ
i2
2 · · · ). To a

partition µ = (µ1, µ2, · · · ) we associate a Young diagram which consists of left-justified rows
of boxes, with µi boxes in the i-th row. For µ = (5, 2, 1), the corresponding Young diagram
is

For a vector space W , a positive integer r and a partition µ of r, we denote by SµW
the corresponding irreducible representation of GL(W ): Sµ are commonly known as Schur
functors, and we make the convention that S(d) denotes the symmetric power functor, while
S(1d) denotes the exterior power functor. We write Sr for the symmetric group on r letters,
and [µ] for the irreducible Sr-representation corresponding to µ: [(d)] denotes the trivial
representation and [(1d)] denotes the sign representation.

Given a positive integer n and a sequence of nonnegative integers r = (r1, · · · , rn), we
define an n-partition of r to be an n-tuple of partitions λ = (λ1, · · · , λn), with λj partition
of rj, j = 1, · · · , n. We write λj ` rj and λ `n r. Given vector spaces V1, · · · , Vn as above,
we often write GL(V ) for GL(V1)× · · · ×GL(Vn). We write SλV for the irreducible GL(V )-
representation Sλ1V1⊗ · · · ⊗ SλnVn. Similarly, we write [λ] for the irreducible representation
[λ1]⊗ · · · ⊗ [λn] of the n-fold product of symmetric groups Sr = Sr1 × · · · × Srn . We have

Lemma 2.3.1 (Schur-Weyl duality).

V ⊗r11 ⊗ · · · ⊗ V ⊗rnn =
⊕
λ`nr

[λ]⊗ SλV.

Most of the group actions we consider are left actions, denoted by ·. We use the symbol
∗ for right actions, to distinguish them from left actions.

For a subgroup H ⊂ G and representations U of H and W of G, we write

IndGH(U) = K[G]⊗K[H] U, and ResGH(W ) = WH ,

for the induced representation of U and restricted representation of W , where K[M ] denotes
the group algebra of a group M , and WH is just W , regarded as an H-module. We write
WG for the G-invariants of the representation W , i.e.

WG = HomG(1,W ) ⊂ HomK(1,W ) = W,

where 1 denotes the trivial representation of G.
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Remark 2.3.2. If G is finite, let

sG =
∑
g∈G

g ∈ K[G].

We can realize WG as the image of the map W −→ W given by

w 7→ sG · w.

Assume furthermore that H ⊂ G is a subgroup, and let sH denote the corresponding element
in K[H]. We have a natural inclusion of the trivial representation of H

1 ↪→ K[H], 1 7→ sH ,

which after tensoring with K[G] becomes

IndGH(1) = K[G]⊗K[H] 1 ↪→ K[G]⊗K[H] K[H] ' K[G],

so that we can identify IndGH(1) with K[G] · sH .

We have

Lemma 2.3.3 (Frobenius reciprocity).

WH = HomH(1,ResGH(W )) = HomG(IndGH(1),W ).

Given an n-partition λ = (λ1, · · · , λn) of r, we define an n-tableau of shape λ to be an
n-tuple T = (T 1, · · · , T n), which we usually write as T 1⊗· · ·⊗T n, where each T i is a tableau
of shape λi. A tableau is canonical if its entries index its boxes consecutively from left to
right, and top to bottom. We say that T is canonical if each T i is, in which case we write Tλ
for T . If T = (λ1, λ2), with λ1 = (3, 2), λ2 = (3, 1, 1), then the canonical 2-tableau of shape
λ is

1 2 3
4 5

⊗
1 2 3
4
5

.

We consider the subgroups of Sr

Rλ = {g ∈ Sr : g preserves each row of Tλ},

Cλ = {g ∈ Sr : g preserves each column of Tλ}

and define the symmetrizers

aλ =
∑
g∈Rλ

g, bλ =
∑
g∈Cλ

sgn(g) · g, cλ = aλ · bλ,
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with sgn(g) =
∏

i sgn(gi) for g = (g1, · · · , gn) ∈ Sr, where sgn(gi) denotes the signature of
the permutation gi.

The GL(V )- (or Sr-) representations W that we consider decompose as a direct sum of
SλV ’s (or [λ]’s) with λ `n r. We write

W =
⊕
λ

Wλ,

where Wλ ' (SλV )mλ (or Wλ ' [λ]mλ) for some nonnegative integer mλ = mλ(W ), called
the multiplicity of SλV (or [λ]) in W . We call Wλ the λ-part of the representation W .

Recall that mj denotes the dimension of Vj, j = 1, · · · , n. We fix bases

Bj = {xij : i = 1, · · · ,mj}

for Vj ordered by xij > xi+1,j. We choose the maximal torus T = T1 × · · · × Tn ⊂ GL(V ),
with Tj being the set of diagonal matrices with respect to Bj. We choose the Borel subgroup
of GL(V ) to be B = B1 × · · · × Bn, where Bj is the subgroup of upper triangular matrices
in GL(Vj) with respect to Bj. Given a GL(V )-representation W , a weight vector w with
weight a = (a1, · · · , an), ai ∈ T ∗i , is a nonzero vector in W with the property that for any
t = (t1, · · · , tn) ∈ T ,

t · w = a1(t1) · · · an(tn)w.

The vectors with this property form a vector space called the a-weight space of W , which we
denote by wta(W ).

A highest weight vector of a GL(V )-representation W is an element w ∈ W invariant
under B. W = SλV has a unique (up to scaling) highest weight vector w with corresponding
weight λ = (λ1, · · · , λn). In general, we define the λ-highest weight space of a GL(V )-
representation W to be the set of highest weight vectors in W with weight λ, and denote
it by hwtλ(W ). If W is an Sr-representation, the λ-highest weight space of W is the vector
space hwtλ(W ) = cλ ·W ⊂ W , where cλ is the Young symmetrizer defined above. In both
cases, hwtλ(W ) is a vector space of dimension mλ(W ).

2.4 Catalecticant varieties

Given a vector space V of dimension n over K, with basis B = {x1, · · · , xn}, we consider
its dual space V ∗ with dual basis E = {e1, · · · , en}. For every positive integer d we get a
basis of S(d)V

∗ consisting of divided power monomials e(α) of degree d in the ei’s, as follows.
If α ⊂ {1, · · · , n} is a multiset of size |α| = d, then we write eα for the monomial∏

i∈α

ei.
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We often identify α with the multiindex (α1, · · · , αn), where αi represents the number of
occurrences of i in the multiset α. We write e(α) for eα/α!, where α! = α1! · · ·αn!. For
a, b > 0 with a+ b = d we get a divided power multiplication map S(a)V

∗ ⊗ S(b)V
∗ → S(d)V

∗,
sending e(α)⊗ e(β) to e(α∪β). We can represent this via a multiplication table whose rows and
columns are indexed by multisets of sizes a and b respectively, and whose entry in the (α, β)
position is e(α∪β). The generic catalecticant matrix Cat(a, b;n) is defined to be the matrix
obtained from this multiplication table by replacing each e(α∪β) with the variable zα∪β, where
(zγ)|γ|=d ⊂ S(d)V is the dual basis to (e(γ))|γ|=d ⊂ S(d)V

∗.
One can also think of zγ’s as the coefficients of the generic form of degree d in the ei’s,

F =
∑
zγe

(γ). Specializing the zγ’s we get an actual form f ∈ S(d)V
∗, and we denote

the corresponding catalecticant matrix by Catf (a, b;n). Any such form f is the dual socle
generator of some Gorenstein Artin algebra A ([Eis95, Thm. 21.6]) with socle degree d and
Hilbert function

hi(A) = rank(Catf (i, d− i;n)).

Macaulay’s theorem on the growth of the Hilbert function of an Artin algebra ([BH93, Thm.
4.2.10]) implies that if hi < k for some i ≥ k − 1, then the function becomes nonincreasing
from that point on. In particular, since A is Gorenstein, h is symmetric, so if hi < k for
some k − 1 ≤ i ≤ d− k + 1, then we have

h1 ≤ h2 ≤ · · · ≤ hk−1 = hk = · · · = hd−k+1 ≥ hd−k+2 ≥ · · · ≥ hd.

If we denote by Ik(i) = Ik(Cat(i, d − i;n)) the ideal of k × k minors of the i-th generic
catalecticant, then the remarks above show that whenever k − 1 ≤ d − k + 1 we have the
following up-to-radical relations:

Ik(1) ⊂ · · · ⊂ Ik(k − 1) = · · · = Ik(d− k + 1) ⊃ · · · ⊃ Ik(d− 1).

Conjecture 1.3.1 states that these relations hold exactly. We prove the conjecture in the
cases k = 2, 3 and 4 in Chapter 6.

2.5 Flattenings

Given decompositions di = ai + bi, with ai, bi ≥ 0, i = 1, · · · , n, we let A = (a1, · · · , an),
B = (b1, · · · , bn), so that d = (d1, · · · , dn) = A+B, and embed

Symd1 V ∗1 ⊗ · · · ⊗ Symdn V ∗n ↪→ V ∗A ⊗ V ∗B

in the usual way, where

VA = Syma1 V1 ⊗ · · · ⊗ Syman Vn, VB = Symb1 V1 ⊗ · · · ⊗ Symbn Vn.

This embedding allows us to flatten any tensor in Symd1 V ∗1 ⊗ · · · ⊗ Symdn V ∗n to a 2-tensor,
i.e. a matrix, in V ∗A ⊗ V ∗B. We call such a matrix an (A,B)-flattening of our tensor. If
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|A| = a1 + ...+ an then we also say that this matrix is an |A|-flattening, or a |B|-flattening,
by symmetry. In the case of one factor (n = 1), the flattening matrices are precisely the
catalecticant matrices described in the previous section.

We obtain an inclusion

SVd1,··· ,dn(PV ∗1 × · · · × PV ∗n ) ↪→ Seg(PV ∗A × PV ∗B),

and consequently

σk(SVd1,··· ,dn(PV ∗1 × · · · × PV ∗n )) ↪→ σk(Seg(PV ∗A × PV ∗B)),

where the latter secant variety coincides with (the projectivization of) the set of matrices
of rank at most k in V ∗A ⊗ V ∗B. This set is cut out by the (k + 1) × (k + 1) minors of the
generic matrix in V ∗A ⊗ V ∗B. This observation yields equations for the secant varieties of
Segre-Veronese varieties (see also [Lan]).

Lemma 2.5.1. For any decomposition d = A+B and any k ≥ 1, the ideal of (k+1)×(k+1)
minors of the generic matrix given by the (A,B)-flattening of Symd1 V ∗1 ⊗ · · · ⊗ Symdn V ∗n is
contained in the ideal of σk(SVd1,··· ,dn(PV ∗1 × · · · × PV ∗n )).

Definition 2.5.2. We write F k+1,r
A,B (V ) = F k+1,r

A,B (V1, · · · , Vn) for the degree r part of the
ideal of (k + 1)× (k + 1) minors of the (A,B)-flattening.

Note that the invariant way of writing the generators of the ideal of (k + 1) × (k + 1)
minors of the (A,B)-flattening in the preceding lemma (F k+1,k+1

A,B (V )) is as the image of the
composition

k+1∧
VA ⊗

k+1∧
VB ↪→ Symk+1(VA ⊗ VB) −→ Symk+1(Symd1 V1 ⊗ · · · ⊗ Symdn Vn),

where the first map is the usual inclusion map, while the last one is induced by the multi-
plication maps

Symai Vi ⊗ Symbi Vi −→ Symdi Vi.

2.6 The ideal and coordinate ring of a Segre-Veronese

variety

If X = SVd1,··· ,dn(PV ∗1 × · · · × PV ∗n ), then the ideal I(X) is generated by 2 × 2 minors
of flattenings, i.e. when k = 1 the equations described in Lemma 2.5.1 are sufficient to
generate the ideal of the corresponding variety. As for the homogeneous coordinate ring of
a Segre-Veronese variety, we have the decomposition

K[X] =
⊕
r≥0

(Symrd1 V1 ⊗ · · · ⊗ Symrdn Vn). (*)
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This decomposition will turn out to be useful in the next chapter, in conjunction with the
map s# defined in Section 2.1. In Chapter 4 we give a description of K[σ2(X)] analogous to
(*), and prove that the 3× 3 minors of flattenings generate the homogeneous ideal of σ2(X).

The statements above regarding the ideal and coordinate ring of a Segre-Veronese variety
hold more generally for rational homogeneous varieties (G/P ), and have been obtained in
unpublished work by Kostant (see [Lan]).
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Chapter 3

Equations of the secant varieties of a
Segre-Veronese variety

This chapter introduces the main new tool for understanding the equations and coor-
dinate rings of the secant varieties of Segre-Veronese varieties, from a representation theo-
retic/combinatorial perspective. All the subsequent chapters are based on the ideas described
here. The usual method for analyzing the secant varieties of Segre-Veronese varieties is based
on the representation theory of general linear groups. We review some of its basic ideas, in-
cluding the notion of inheritance, in Section 3.1. The new insight of restricting the analysis to
special equations of the secant varieties, the “generic equations”, is presented in Section 3.2.
More precisely, we use Schur-Weyl duality to translate questions about representations of
general linear groups into questions about representations of symmetric groups and tableaux
combinatorics. The relationship between the two situations is made precise in Section 3.3.
One should think of the “generic equations” as a set of equations that give rise by special-
ization to all the equations of the secant varieties of Segre-Veronese varieties. Similarly, we
have the “generic flattenings” which by specialization yield the usual flattenings.

3.1 Multi-prolongations and inheritance

In this section V1, · · · , Vn are (as always) vector spaces over a field K of characteristic
zero. We switch from the Symd notation to the more compact Schur functor notation S(d)

described in Section 2.3. The homogeneous coordinate ring of P(S(d1)V
∗
1 ⊗ · · · ⊗ S(dn)V

∗
n ) is

S = Sym(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn),

the symmetric algebra of the vector space S(d1)V1 ⊗ · · · ⊗ S(dn)Vn. This vector space has a
natural basis B = Bd1,··· ,dn consisting of tensor products of monomials in the elements of the
bases B1, · · · ,Bn of V1, · · · , Vn. We write this basis, suggestively, as

B = Symd1 B1 ⊗ · · · ⊗ Symdn Bn.
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We can index the elements of B by n-tuples α = (α1, · · · , αn) of multisets αi of size di with
entries in {1, · · · ,mi = dim(Vi)}, as follows. The α-th element of the basis B is

zα = (
∏
i1∈α1

xi1,1)⊗ · · · ⊗ (
∏
in∈αn

xin,n),

and we think of zα as a linear form in S.
We can therefore identify S with the polynomial ring K[zα]. One would like to have a

precise description of the ideal I ⊂ S of polynomials vanishing on σk(SVd1,··· ,dn(PV ∗1 × · · · ×
PV ∗n )), but this is a very difficult problem, as mentioned in the introduction. We obtain such
a description for the case k = 2 in Theorem 4.1.1. The case k = 1 was already known, as
described in Section 2.6.

Given a positive integer r and a partition µ = (µ1, · · · , µt) ` r, we consider the set Pµ of
all (unordered) partitions of {1, · · · , r} of shape µ, i.e.

Pµ =

{
A = {A1, · · · , At} : |Ai| = µi and

t⊔
i=1

Ai = {1, · · · , r}

}
,

as opposed to the set of ordered partitions where we take instead A = (A1, · · · , At).

Definition 3.1.1. For a partition µ = (µi11 · · ·µiss ) of r, we consider the map

πµ : S(r)(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn) −→
s⊗
j=1

S(ij)(S(µjd1)V1 ⊗ · · · ⊗ S(µjdn)Vn),

given by

z1 · · · zr 7→
∑
A∈Pµ

s⊗
j=1

∏
B∈A
|B|=µj

m(zi : i ∈ B),

where
m : (S(d1)V1 ⊗ · · · ⊗ S(dn)Vn)⊗µj −→ S(µjd1)V1 ⊗ · · · ⊗ S(µjdn)Vn

denotes the usual componentwise multiplication map.
We write πµ(V ) or πµ(V1, · · · , Vn) for the map πµ just defined, when we want to distin-

guish it from its generic version (Definition 3.2.5). We also write Ud
r (V ) = Ud

r (V1, · · · , Vn)
and Ud

µ(V ) = Ud
µ(V1, · · · , Vn) for the source and target of πµ(V ) respectively (see Definitions

3.2.1 and 3.2.4 for the generic versions of these spaces).

A more invariant way of stating Definition 3.1.1 is as follows. If µ = (µ1, · · · , µt), then
the map πµ is the composition between the usual inclusion

S(r)(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn) ↪→ (S(d1)V1 ⊗ · · · ⊗ S(dn)Vn)⊗r =
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(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn)⊗µ1 ⊗ · · · ⊗ (S(d1)V1 ⊗ · · · ⊗ S(dn)Vn)⊗µt .

and the tensor product of the natural multiplication maps

m : (S(di)Vi)
⊗µj −→ S(µjdi)Vi.

Example 3.1.2. Let n = 2, d1 = 2, d2 = 1, r = 4, µ = (2, 2) = (22), dim(V1) = 2,
dim(V2) = 3. Take

z1 = z({1,2},{1}), z2 = z({1,1},{3}), z3 = z({1,1},{1}), z4 = z({2,2},{2}).

We have

πµ(z1 · z2 · z3 · z4) = m(z1, z2) ·m(z3, z4) +m(z1, z3) ·m(z2, z4) +m(z1, z4) ·m(z2, z3) =

z({1,1,1,2},{1,3}) · z({1,1,2,2},{1,2}) + z({1,1,1,2},{1,1}) · z({1,1,2,2},{2,3}) + z({1,2,2,2},{1,2}) · z({1,1,1,1},{1,3}).

A more “visual” way of representing the monomials in Sym(Symd1 V1⊗· · ·⊗Symdn Vn) =
K[zα] and the maps πµ is as follows. We identify each zα with an 1 × n block with entries
the multisets αi:

zα = α1 α2 · · · αn .

We represent a monomial m = zα1 · · · zαr of degree r as an r × n block M , whose rows
correspond to the variables zαi in the way described above.

m ≡M =

α1
1 α1

2 · · · α1
n

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αr1 αr2 · · · αrn

Note that the order of the rows is irrelevant, since the zαi ’s commute. The way πµ acts on
an r × n block M is as follows: it partitions in all possible ways the set of rows of M into
subsets of sizes equal to the parts of µ, collapses the elements of each subset into a single
row, and takes the sum of all blocks obtained in this way. Here by collapsing a set of rows
we mean taking the columnwise union of the entries of the rows. More precisely, if M is the
r × n block corresponding to zα1 · · · zαr and µ = (µ1, · · · , µt), then

πµM =
∑
A∈Pµ

A={A1,··· ,At}

· · ·
⋃
i∈A1

αik · · ·
· · ·

⋃
i∈A2

αik · · ·
...

. . .
...

· · ·
⋃
i∈At α

i
k · · ·

.

Note that if two Ai’s have the same cardinality, then the variables corresponding to their
rows commute, so we can harmlessly interchange them.
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Example 3.1.3. With these conventions, we can rewrite Example 3.1.2 as

1, 2 1
1, 1 3
1, 1 1
2, 2 2

π(2,2)−→ 1, 1, 1, 2 1, 3
1, 1, 2, 2 1, 2

+
1, 1, 1, 2 1, 1
1, 1, 2, 2 2, 3

+
1, 2, 2, 2 1, 2
1, 1, 1, 1 1, 3

.

Proposition 3.1.4 (Multi-prolongations, [Lan]). For a positive integer r, the polynomi-
als of degree r vanishing on σk(SVd1,··· ,dn(PV ∗1 × · · · × PV ∗n )) are precisely the elements of
S(r)(S(d1)V1⊗· · ·⊗S(dn)Vn) in the intersection of the kernels of the maps πµ, where µ ranges
over all partitions of r with (at most) k parts.

Proof. Let X denote the Segre-Veronese variety SVd1,··· ,dn(PV ∗1 × · · · × PV ∗n ). As in Section
2.1, there exists a map (s#, which we now denote π)

π : Sym(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn) −→ K[X]⊗k,

whose kernel and image coincide with the ideal and homogeneous coordinate ring respectively,
of σk(X). Using the description of K[X] given in Section 2.6, we obtain that the degree r
part of the target of π is

(K[X]⊗k)r =
⊕

µ1+···+µk=r

(S(µ1d1)V1 ⊗ · · · ⊗ S(µ1dn)Vn)⊗ · · · ⊗ (S(µkd1)V1 ⊗ · · · ⊗ S(µkdn)Vn).

The degree r component of π, which we call πr, is then a direct sum of maps πµ as in
Definition 3.1.1, where µ ranges over partitions of r with at most k parts. The conclusion of
the proposition now follows. To see that it’s enough to only consider partitions with exactly
k parts, note that if µ has fewer than k parts, and µ̂ is a partition obtained by subdividing
µ (splitting some of the parts of µ into smaller pieces), then πµ factors through (up to a
multiplicative factor) πµ̂, hence ker(πµ) ⊃ ker(πµ̂), so the contribution of ker(πµ) to the
intersection of kernels is superfluous.

Definition 3.1.5 (Multi-prolongations). We write Iµ(V ) = Idµ(V ) for the kernel of the
map πµ(V ), and Ir(V ) = Idr (V ) for the intersection of the kernels of the maps πµ(V ) as
µ ranges over partitions of r with k parts. I.e. Ir(V ) is the degree r part of the ideal of
σk(SVd1,··· ,dn(PV ∗1 × · · · × PV ∗n )).

Given the description of the ideal of σk(X) as the kernel of the GL(V )-equivariant map π,
we now proceed to analyze π irreducible representation by irreducible representation. That
is, we fix a positive integer r and an n-partition λ = (λ1, · · · , λn) of (rd1, · · · , rdn), and we
restrict π to the λ-parts of its source and target. The map π depends functorially on the
vector spaces V1, · · · , Vn, and its kernel and image stabilize from a representation theoretic
point of view as the dimensions of the Vi’s increase. More precisely, we have the following
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Proposition 3.1.6 (Inheritance, [Lan]). Fix an n-partition λ `n r · (d1, · · · , dn). Let lj
denote the number of parts of λj, for j = 1, · · · , n. Then the multiplicities of SλV in the
kernel and image respectively of π are independent of the dimensions mj of the Vj’s, as long
as mj ≥ lj. Moreover, if some lj is larger than k, then SλV doesn’t occur as a representation
in the image of π.

Proof. The last statement follows from the representation theoretic description of the co-
ordinate ring of a Segre-Veronese variety, and Pieri’s rule: every irreducible representation
SλV occurring in K[X]⊗k must have the property that each λj has at most k parts.

As for the first part, note that π is completely determined by what it does on the λ-
highest weight vectors, and that the λ-highest weight vector of an irreducible representation
SλV only depends on the first lj elements of the basis Bj, for j = 1, · · · , n.

We just saw in the previous proposition that (the λ-part of) π is essentially insensitive
to expanding or shrinking the vector spaces Vi, as long as their dimensions remain larger
than li. Also, the last part of the proposition allows us to concentrate on n-partitions λ
where each λi has at most k parts. To understand π, we thus have the freedom to pick the
dimensions of the Vi’s to be positive integers at least equal to k. It might seem natural then
to pick these dimensions as small as possible (equal to k), and understand the kernel and
image of π in that situation. However, we choose not to do so, and instead we fix a positive
degree r and concentrate our attention on the map πr, the degree r part of π. We assume
that

dim(Vi) = r · di, i = 1, · · · , n.

The reason for this assumption is that now the sl zero-weight spaces of the source and
target of πr are nonempty and generate the corresponding representations. Therefore πr is
determined by its restriction to these zero-weight spaces, which suddenly makes our problem
combinatorial: the zero-weight spaces are modules over the Weyl group, which is just the
product of symmetric groups Srd1 × · · · × Srdn , allowing us to use the representation theory
of the symmetric groups to analyze the map πr. We call this reduction the “generic case”,
because the sl zero-weight subspace of S(r)(S(d1)V1⊗· · ·⊗S(dn)Vn) is the subspace containing
the most generic tensors.

3.2 The “generic case”

3.2.1 Generic multi-prolongations

We let d, r denote the sequences of numbers (d1, · · · , dn) and r · d = (rd1, · · · , rdn)
respectively. We let Sr denote the product of symmetric groups Srd1 × · · · × Srdn , the Weyl
group of the Lie algebra sl(V ) of GL(V ) (recall that dim(Vj) = mj = rdj for j = 1, · · · , n).
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Definition 3.2.1. We denote by Ud
r the sl(V ) zero-weight space of the representation

S(r)(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn). Ud
r has a basis consisting of monomials

m = zα1 · · · zαr ,

where for each j, the elements of {α1
j , · · · , αrj} form a partition of the set {1, · · · , rdj}, with

|αij| = dj. Alternatively, Ud
r has a basis consisting of r × n blocks M , where each column of

M yields a partition of the set {1, · · · , rdj} with r equal parts.

Example 3.2.2. For n = 2, d1 = 2, d2 = 1, r = 4, a typical element of Ud
r is

M =

1, 6 1
2, 3 4
4, 5 2
7, 8 3

= z({1,6},{1}) · z({2,3},{4}) · z({4,5},{2}) · z({7,8},{3}) = m.

Sr acts on Ud
r by letting its j-th factor Srdj act on the j-th columns of the blocks M

described above. As an abstract representation, we have

Ud
r ' Ind

Sr
(Sd1×···×Sdn )

roSr(1),

where o denotes the wreath product of (Sd1 × · · · × Sdn)r with Sr, and 1 denotes the trivial
representation (we will say more about this in the following section). The dimension of the
space Ud

r is

N = Nd
r =

(rd1)!(rd2)! · · · (rdn)!

(d1!d2! · · · dn!)r · r!
.

Example 3.2.3. Continuing Example 3.2.2, let σ = (σ1, σ2) ∈ S8×S4, with σ1 = (1, 2)(5, 3, 7),
σ2 = (1, 4, 3), in cycle notation. Then

σ ·M =

2, 6 4
1, 7 3
4, 3 2
5, 8 1

,

or
σ ·m = z({2,6},{4}) · z({1,7},{3}) · z({4,3},{2}) · z({5,8},{1}).

Definition 3.2.4. For a partition µ written in multiplicative notation µ = (µi11 · · ·µiss ) as in
Definition 3.1.1, we define the space Ud

µ to be the sl zero-weight space of the representation

s⊗
j=1

S(ij)(S(µjd1)V1 ⊗ · · · ⊗ S(µjdn)Vn).
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Writing µ = (µ1, · · · , µt) we can realize Ud
µ as the vector space with a basis consisting of

t× n blocks M with the entry in row i and column j consisting of µi · dj elements from the
set {1, · · · , rdj}, in such a way that each column of M represents a partition of {1, · · · , rdj}.
As usual, we identify two blocks if they differ by permutations of rows of the same size, i.e.
corresponding to equal parts of µ. Note that when µ = (1r) we get Ud

µ = Ud
r , recovering

Definition 3.2.1.

We can now define the generic version of the map πµ from Definition 3.1.1:

Definition 3.2.5. For a partition µ ` r as in Definition 3.1.1, we define the map

πµ : Ud
r −→ Ud

µ ,

to be the restriction of the map from Definition 3.1.1 to the sl zero-weight spaces of the
source and target.

Example 3.2.6. The generic analogue of Example 3.1.3 is:

1, 6 1
2, 3 4
4, 5 2
7, 8 3

π(2,2)−→ 1, 2, 3, 6 1, 4
4, 5, 7, 8 2, 3

+
1, 4, 5, 6 1, 2
2, 3, 7, 8 3, 4

+
1, 6, 7, 8 1, 3
2, 3, 4, 5 2, 4

.

If instead of the partition (2, 2) we take µ = (2, 1, 1) = (122), then we have

1, 6 1
2, 3 4
4, 5 2
7, 8 3

π(2,1,1)−→
1, 2, 3, 6 1, 4

4, 5 2
7, 8 3

+
1, 4, 5, 6 1, 2

2, 3 4
7, 8 3

+

1, 6, 7, 8 1, 3
2, 3 4
4, 5 2

+
2, 3, 4, 5 2, 4

1, 6 1
7, 8 3

+
2, 3, 7, 8 3, 4

1, 6 1
4, 5 2

+
4, 5, 7, 8 2, 3

1, 6 1
2, 3 4

.

Note that if we compose π(2,1,1) with the multiplication map that collapses together the last

two rows of a block in U
(2,1)
(2,1,1), then we obtain the map 2 · π(2,2).

Definition 3.2.7 (Generic multi-prolongations). We write Iµ = Idµ for the kernel of πµ,
and Ir = Idr for the intersection of the kernels of the maps πµ, as µ ranges over partitions
of r with at most (exactly) k parts. We refer to Ir as the set of “generic equations” for
σk(SVd(PV ∗1 ⊗ · · · ⊗ PV ∗n )), or “generic multi-prolongations” (see Proposition 3.1.4).
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3.2.2 Tableaux

The maps πµ, for various partitions µ, are Sr-equivariant, so to understand them it
suffices to analyze them irreducible representation by irreducible representation. Recall that
irreducible Sr-representations are classified by n-partitions λ `n r, so we fix one such. This
gives rise to a Young symmetrizer cλ as explained in Section 2.3, and all the data of πµ
(concerning the λ-parts of its kernel and image) is contained in its restriction to the λ-
highest weight spaces of the source and target, i.e. in the map

πµ = πµ(λ) : cλ · Ud
r −→ cλ · Ud

µ .

We now introduce the tableaux formalism that’s fundamental for the proof of our main
results, giving a combinatorial perspective on the analysis of the kernels and images of the
maps πµ, which are the main objects we’re after.

The representations Ud
µ are spanned by blocks M as in Definition 3.2.4, hence the vector

spaces cλ · Ud
µ are spanned by elements of the form cλ · M , which we shall represent as

n-tableaux, according to the following definition.

Definition 3.2.8. Given a partition µ = (µ1, · · · , µt) ` r, an n-partition λ `n r and a block
M ∈ Ud

µ , we associate to the element cλ ·M ∈ cλ · Ud
µ the n-tableaux

T = (T 1, · · · , T n) = T 1 ⊗ · · · ⊗ T n

of shape λ, obtained as follows. Suppose that the block M has the set αij in its i-th row and
j-th column. Then we set equal to i the entries in the boxes of T j indexed by elements of
αij (recall from Section 2.3 that the boxes of a tableau are indexed canonically: from left to
right and top to bottom). Note that each tableaux T j has entries 1, · · · , t, with i appearing
exactly µi · dj times.

Note also that in order to construct the n-tableau T we have made a choice of the ordering
of the rows of M : interchanging rows i and i′ when µi = µi′ should yield the same element
M ∈ Ud

µ , therefore we identify the corresponding n-tableaux that differ by interchanging the
entries equal to i and i′.

Example 3.2.9. We let n = 2, d = (2, 1), r = 4, µ = (2, 2) as in Example 3.1.2, and consider
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the 2-partition λ = (λ1, λ2), with λ1 = (5, 3), λ2 = (2, 1, 1). We have

cλ ·

1, 6 1
2, 3 4
4, 5 2
7, 8 3

1 2 2 3 3
1 4 4

⊗
1 3
4
2

cλ ·

2, 3 4
7, 8 3
1, 6 1
4, 5 2

3 1 1 4 4
3 2 2

⊗
3 4
2
1

Let’s write down the action of the map πµ on the tableaux pictured above

πµ

 1 2 2 3 3
1 4 4

⊗
1 3
4
2

 = 1 1 1 2 2
1 2 2

⊗
1 2
2
1

+ 1 2 2 1 1
1 2 2

⊗
1 1
2
2

+ 1 2 2 2 2
1 1 1

⊗
1 2
1
2

.

We collect in the following lemma the basic relations that n-tableaux satisfy.

Lemma 3.2.10. Fix an n partition λ `n r, and let T be an n-tableau of shape λ. The
following relations hold:

1. If σ is a permutation of the entries of T that preserves the set of entries in each column
of T , then

σ(T ) = sgn(σ) · T.

In particular, if T has repeated entries in a column, then T = 0.

2. If σ is a permutation of the entries of T that interchanges columns of the same size of
some tableau T j, then

σ(T ) = T.

3. Assume that one of the tableaux of T , say T j has a column C of size t with entries
a1, a2, · · · , at, and that b is an entry of T j to the right of C. Let σi denote the trans-
position that interchanges ai with b. We have

T =
t∑
i=1

σi(T ).
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We write this as

a1 b
...

ai
...

at

=
t∑
i=1

a1 ai
...

b
...

at

,

disregarding the entries of T that don’t get perturbed.

Proof. (1) follows from the fact that if σ ∈ Cλ is a column permutation, then bλ · σ = −bλ.
(2) follows from the fact that if σ permutes columns of the same size, then σ ∈ Rλ is a

permutation that preserves the rows of the canonical n-tableau of shape λ (so in particular
aλ · σ = aλ), and σ commutes with bλ. It follows that

cλ · σ = aλ · (bλ · σ) = aλ · (σ · bλ) = (aλ · σ) · bλ = aλ · bλ = cλ.

(3) follows from Corollary 3.2.16 (note the rest of the proof uses the formalism of Section
3.2.3). Let us assume first that all entries a1, · · · , at, b are distinct. If T̃ is the n-tableau
obtained by circling the entries a1, · · · , at, b, then

T̃ =

76540123a1 b
...

/.-,()*+ai
...

/.-,()*+at

−
t∑
i=1

76540123a1 ai
...

'&%$ !"#b
...

/.-,()*+at

.

By skew-symmetry on columns (part (1)), the effect of circling t entries in the same column
of a tableau T is precisely multiplying T by t!. It follows that we can rewrite the above
relation as

T̃ = t! ·


a1 b
...

ai
...

at

−
t∑
i=1

a1 ai
...

b
...

at

 .

By Corollary 3.2.16, T̃ = 0, which combined with the above equality yields the desired
relation.

Now if a1, · · · , at, b are not distinct, then either ai = aj for some i 6= j, or b = ai for some
i. If ai = aj, then T and σk(T ), k 6= i, j, have repeated entries in the column C, hence they
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are zero. Relation (3) becomes then 0 = σi(T ) +σj(T ). But this is true by part (1), because
σi(T ) and σj(T ) differ by a column transposition.

Assume now that b = ai for some i. Then σj(T ) has repeated entries in the column C
for j 6= i, thus relation (3) becomes T = σi(T ), which is true because ai = b.

There is one last ingredient that we need to introduce in the generic setting, namely the
generic flattenings.

3.2.3 Generic flattenings

Definition 3.2.11 (Generic flattenings). For a decomposition d = A+B, A = (a1, · · · , an),
B = (b1, · · · , bn), (i.e. di = ai + bi for i = 1, · · · , n), we write F k,r

A,B for the span of k × k
minors of generic (A,B)-flattenings. This is the subspace of Ud

r spanned by expressions of the
form

[α1, · · · , αk|β1, · · · , βk] · zγk+1 · · · zγr ,

where [α1, · · · , αk|β1, · · · , βk] = det(zαi∪βj), α
i = (αi1, · · · , αin), βi = (βi1, · · · , βin), γi =

(γi1, · · · , γin), with |αij| = aj, |βij| = bj and |γij| = dj, and such that for fixed j, the sets
αij, β

i
j, γ

i
j form a partition of the set {1, · · · , rdj}.

Example 3.2.12. Take n = 2, d = (2, 1) and r = 4, as usual. Take A = (1, 1), B = (1, 0)
and k = 3. A typical element of F 3,4

A,B looks like

D = [({1}, {1}), ({3}, {4}), ({7}, {3})|({6}, {}), ({2}, {}), ({8}, {})] · z({4,5},{2}) =

det

 z({1,6},{1}) z({1,2},{1}) z({1,8},{1})
z({3,6},{4}) z({3,2},{4}) z({3,8},{4})
z({7,6},{3}) z({7,2},{3}) z({7,8},{3})

 · z({4,5},{2}).
Expanding the determinant, we obtain

D =

1, 6 1
3, 2 4
7, 8 3
4, 5 2

−

1, 2 1
3, 6 4
7, 8 3
4, 5 2

−

1, 8 1
3, 2 4
7, 6 3
4, 5 2

−

1, 6 1
3, 8 4
7, 2 3
4, 5 2

+

1, 8 1
3, 6 4
7, 2 3
4, 5 2

+

1, 2 1
3, 8 4
7, 6 3
4, 5 2

.

Notice that all the blocks in the above expansion coincide, except in the entries 2, 6, 8 that
get permuted in all possible ways. Let’s multiply now D with the Young symmetrizer cλ for
λ = (λ1, λ2), λ1 = (5, 3) and λ2 = (2, 1, 1). We get

cλ ·D = 1 2 2 4 4
1 3 3

⊗
1 4
3
2

− 1 1 2 4 4
2 3 3

⊗
1 4
3
2

− 1 2 2 4 4
3 3 1

⊗
1 4
3
2



27

− 1 3 2 4 4
1 3 2

⊗
1 4
3
2

+ 1 3 2 4 4
2 3 1

⊗
1 4
3
2

+ 1 1 2 4 4
3 3 2

⊗
1 4
3
2

.

Note that all the 2-tableaux in the previous expression coincide, except in the 2-nd, 6-th
and 8-th box of their first tableau, which get permuted in all possible ways. We represent
cλ ·D by a 2-tableau with the entries in boxes 2, 6 and 8 of its first tableau circled (see also
Definition 3.2.13 below):

cλ ·D =
1 '&%$ !"#2 2 4 4'&%$ !"#1 3 '&%$ !"#3

⊗
1 4
3
2

.

To reformulate this one last time, we write

1 '&%$ !"#2 2 4 4'&%$ !"#1 3 '&%$ !"#3
⊗

1 4
3
2

=
∑
σ∈S3

sgn(σ) · σ

 1 2 2 4 4
1 3 3

⊗
1 4
3
2

 ,

where S3 = S{1,2,3} is the symmetric group on the circled entries.

Definition 3.2.13. Let A,B and F k,r
A,B as in Definition 3.2.11, let

D = [α1, · · · , αk|β1, · · · , βk] · zγk+1 · · · zγr ∈ F k,r
A,B,

and let λ `n r = (rd1, · · · , rdn). We let γi = αi∪βi for i = 1, · · · , k, and consider T = cλ ·m
the n-tableau corresponding to the monomial

m = zγ1 · · · zγr .

We represent cλ · D ∈ hwtλ(F
k,r
A,B) as the n-tableau T with the entries in the boxes corre-

sponding to the elements of α1, · · · , αk circled. Alternatively, we can circle the entries in the
boxes corresponding to the elements of β1, · · · , βk.

It follows that a spanning set for hwtλ(F
k,r
A,B) can be obtained as follows: take all the

subsets C ⊂ {1, · · · , r} of size k, and consider all the n-tableaux T with aj (alternatively
bj) of each of the elements of C circled in T j. Of course, because of the symmetry of the
alphabet {1, · · · , r} (see Definition 5.1.1), it’s enough to only consider C = {1, · · · , k}, so
that the only entries we ever circle are 1, 2, · · · , k.

Continuing with Example 3.2.12, we have

cλ ·D =
1 '&%$ !"#2 2 4 4'&%$ !"#1 3 '&%$ !"#3

⊗
1 4
3
2

=
'&%$ !"#1 2 '&%$ !"#2 4 4
1 '&%$ !"#3 3

⊗
'&%$ !"#1 4'&%$ !"#3'&%$ !"#2

.

Our goal is to reduce the statement of Theorem 4.1.1 to an equivalent statement that
holds in the generic setting, and thus transform our problem into a combinatorial one.



28

More precisely, we would like to say that the space of generic flattenings coincides with the
intersection of the kernels of the (generic) maps πµ, and that this is enough to conclude
the same about the nongeneric case. One issue that arises is that we don’t know at this
point (although it seems very tempting to assert) that the zero-weight space of the space of
flattenings coincides with the space of generic flattenings. Section 3.3 will show how to take
care of this issue, and how to reduce all our questions to the generic setting.

3.2.4 1-flattenings

In this section we focus on the space of generic 1-flattenings, F1 = F k,r
1 , defined as the

subspace of Ud
r given by

F k,r
1 =

∑
A+B=d
|A|=1

F k,r
A,B.

We shall see that F1 has a very simple representation theoretic description, which by the
results of the next section will carry over to the nongeneric case.

Proposition 3.2.14. With the above notations, we have

F1 =
⊕
λ`nr
λk 6=0

(Ud
r )λ,

where (Ud
r )λ denotes the λ-part of the representation Ud

r , and λk 6= 0 means λjk 6= 0 for some
j = 1, · · · , n, i.e. some partition λj has at least k parts.

Proof. We divide the proof into two parts:
a) If λ `n r is an n-partition with some λj having at least k parts, and T is an n-tableau

of shape λ, then T ∈ F1.
b) If λ `n r is an n-partition with all λj having less than k parts, then cλ · F1 = 0.
Let us start by proving part a). We assume that λj has at least k parts and consider T an

n-tableau of shape λ. If T j has repeated entries in its first column, then T = 0. Otherwise,
we may assume that the first column of T j has entries 1, 2, · · · , t in this order, where t is the
number of parts of λj, t ≥ k. We consider the n-tableau T̃ obtained from T by circling the
entries 1, 2, · · · , k in the first column of T j. We have

T̃ = T 1 ⊗ · · · ⊗

'&%$ !"#1 · · ·
'&%$ !"#2 · · ·
...

...

/.-,()*+k · · ·

k+1 · · ·
...

⊗ · · · ⊗ T n,
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i.e.
T̃ =

∑
σ∈Sk

sgn(σ) · σ(T ),

where Sk denotes the symmetric group on the circled entries. Since σ(T ) differs from T by
the column permutation σ, it follows by the skew-symmetry of tableaux that

σ(T ) = sgn(σ) · T.

This shows that

T̃ = k! · T ⇐⇒ T =
1

k!
· T̃ ∈ F1,

proving a).
To prove b), let

D = [α1, · · · , αk|β1, · · · , βk] · zγk+1 · · · zγr ∈ F k,r
A,B,

for some A + B = d with |A| = 1. We have that bλ · D is a linear combination of terms
that look like D, so in order to prove that cλ = aλ · bλ annihilates D, it suffices to show that
aλ ·D = 0.

We have A = (a1, · · · , an) with aj = 1 for some j and ai = 0 for i 6= j. We can thus think
of each of α1, · · · , αk as specifying a box in the partition λj. Since λj has less than k parts,
it means that two of these boxes, say p and q, lie in the same same row of λj. Let σ = (p, q)
be the transposition of the two boxes. σ is an element in the group Rλ of permutations
that preserve the rows of the canonical n-tableau of shape λ (Section 2.3), which means that
aλ · σ = aλ. However,

σ · [α1, · · · , αp, · · · , αq, · · · , αk|β1, · · · , βk] = [α1, · · · , αq, · · · , αp, · · · , αk|β1, · · · , βk]

= −[α1, · · · , αp, · · · , αq, · · · , αk|β1, · · · , βk],

since interchanging two rows/columns of a matrix changes the sign of its determinant. We
get

aλ ·D = (aλ · σ) ·D = aλ · (σ ·D) = aλ · (−D) = −aλ ·D,

hence aλ ·D = 0, as desired.

Remark 3.2.15. The nongeneric 1-flattenings give the equations of the so-called subspace
varieties (see [Lan] or [Wey03, Prop. 7.1.2]), and in fact this statement is essentially equivalent
to our Proposition 3.2.14 via the results of the next section, namely Proposition 3.3.5.

Corollary 3.2.16. Let C ⊂ {1, · · · , r} be a subset of size k. If λ is an n-partition with each
λj having less than k parts, and T̃ is an n-tableau of shape λ, with one of each entries of C
in T̃ j circled, then T̃ = 0. More generally, with no assumptions on λ, if the circled entries
in T̃ j all lie in columns of size less than k, then T̃ = 0.
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Proof. The first part follows directly from Proposition 3.2.14, since T̃ is a 1-flattening, and
the space of 1-flattenings doesn’t have nonzero λ-parts when λ is such that each of its
partitions have less than k parts.

For the more general statement, we can apply the argument for part b) of the proof of
the previous proposition. If

D = [α1, · · · , αk|β1, · · · , βk] · zγk+1 · · · zγr ∈ F1

is such that each αi corresponds to a box of T̃ j situated in a column of size less than k, then
since column permutations don’t change the columns of the boxes corresponding to the αi’s,
it follows that bλ ·D is a combination of expressions D′ with the same properties as D. To
show that cλ ·D = 0 is thus enough to prove that aλ ·D = 0. The proof of this statement is
identical to the one in the preceding proposition.

The reader might wish to skip to Chapter 5 now, to get some familiarity with the tableaux
combinatorics in the way it’s going to be used throughout this work.

3.3 Polarization and specialization

In this section V1, · · · , Vn are again vector spaces of arbitrary dimensions, dim(Vj) = mj,
j = 1, · · · , n. Let r = (r1, · · · , rn) be a sequence of positive integers, and let

W = V ⊗r11 ⊗ · · · ⊗ V ⊗rnn .

Let Sr denote the product of symmetric groups Sr1×· · ·×Srn , and let G ⊂ Sr be a subgroup.
Consider the natural (right) action of Sr on W obtained by letting Sri act by permuting the
factors of V ⊗rii . More precisely, we write the pure tensors in W as

v =
⊗
i,j

vij, with vij ∈ Vj, j = 1, · · · , n, i = 1, · · · , rj,

and for an element σ = (σ1, · · · , σn) ∈ Sr, we let

v ∗ σ =
⊗
i,j

vσj(i)j.

This action commutes with the (left) action of GL(V ) on W , and restricts to an action of
G on W . It follows that WG is a GL(V )-subrepresentation of W .

Proposition 3.3.1. Continuing with the above notation, we let U = WG and U ′ = Ind
Sr
G (1).

Let λ `n r be an n-partition with λj having at most mj parts. The multiplicity of SλV in U
is the same with that of [λ] in U ′.
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Moreover, there exist polarization and specialization maps

Pλ : wtλ(U) −→ U ′, Qλ : U ′ −→ wtλ(U),

with the following properties:

1. Qλ is surjective.

2. Pλ is a section of Qλ.

3. Pλ and Qλ restrict to maps between hwtλ(U) and hwtλ(U
′) which are inverse to each

other.

Proof. The first part is a consequence of Schur-Weyl duality (Lemma 2.3.1) and Frobenius
reciprocity (Lemma 2.3.3). We start with the identification

U = WG = HomG(1,Res
Sr
G (W )).

Using Schur-Weyl duality we get

W = V ⊗r11 ⊗ · · · ⊗ V ⊗rnn =
⊕
λ`nr

[λ]⊗ SλV,

therefore the previous equality becomes

U =
⊕
λ`nr

HomG(1,Res
Sr
G ([λ]))⊗ SλV.

Frobenius reciprocity now yields

HomG(1,Res
Sr
G ([λ])) = HomSr(Ind

Sr
G (1), [λ]) = HomSr(U

′, [λ]).

We get

U =
⊕
λ`nr

HomSr(U
′, [λ])⊗ SλV,

hence the multiplicity of SλV in U coincides with that of [λ] in U ′, as long as SλV 6= 0, i.e.
as long as mj is at least as large as the number of parts of the partition λj.

It follows that the vector spaces hwtλ(U) and hwtλ(U
′) have the same dimension, equal

to the multiplicity of SλV and [λ] in U and U ′ respectively. We next construct explicit maps
Pλ, Qλ inducing isomorphisms of vector spaces between the two spaces.

We identify an element σ = (σ1, · · · , σn) ∈ Sr with the “tensor”⊗
i,j

σj(i),
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and consider the (regular) representation of Sr on the vector space R with basis consisting
of the tensors σ for σ ∈ Sr. The left action of Sr on R is given by

σ ·
⊗
i,j

aij =
⊗
i,j

σj(aij),

while the right action is given by ⊗
i,j

aij ∗ σ =
⊗
i,j

aσj(i)j.

We consider the vector space map Qλ : R→ W given by⊗
i,j

aij −→
⊗
i,j

gj(aij),

where gj : {1, · · · , rj} → Bj is the map sending a to xij if the a-th box of λj is contained in
the i-th row of λj (or equivalently if λj1 + · · ·+ λji−1 < a ≤ λj1 + · · ·+ λji ). The image of Qλ

is wtλ(W ). It is clear that if a =
⊗

i,j aij and b =
⊗

i,j bij, then Qλ(a) = Qλ(b) if and only
if a = σ · b for σ ∈ Sr a permutation that preserves the rows of the canonical n-tableau of
shape λ. It follows that we can define Pλ : wtλ(W )→ R by

Pλ(Qλ(a)) =
1

λ!
aλ · a,

where aλ is the row symmetrizer defined in Section 2.3, hence Pλ is a section of Qλ.
Notice that Pλ and Qλ are maps of right Sr-modules, i.e. they respect the ∗-action of Sr

on R and wtλ(W ) respectively.
Let us prove now that Pλ and Qλ restrict to inverse isomorphisms between hwtλ(R) =

cλ · R (recall from Section 2.3 that cλ denotes the Young symmetrizer corresponding to λ)
and hwtλ(W ). The two spaces certainly have the same dimension (take G = {e} to be the
trivial subgroup of Sr and apply the first part of the proposition), so it’s enough to prove
that for a′ ∈ hwtλ(R)

a) Qλ(a
′) ∈ hwtλ(W ), and

b) Pλ(Qλ(a
′)) = a′.

To see why part b) is true, note that

Pλ(Qλ(aλ · a)) =
1

λ!
· a2λ · a = aλ · a,

i.e. Pλ ◦Qλ fixes aλ ·R. Since hwtλ(R) = cλ ·R ⊂ aλ ·R, it follows that Pλ(Qλ(a
′)) = a′. To

prove a) we need to show that Qλ(a
′) is fixed by the Borel (recall the definition of the Borel

subgroup from 2.3). It’s enough to do this when

a′ = cλ · a, a =
⊗
i,j

aij.
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The pure tensor a corresponds to an element σ ∈ Sr, so we can write a = e ∗ σ, where

e =
⊗
i,j

eij

is the “identity” tensor, eij = i for all i, j. It follows that

Qλ(a
′) = Qλ(cλ · a) = Qλ(aλ · bλ · e ∗ σ) = λ! ·Qλ(bλ · e) ∗ σ.

Since the ∗ action commutes with the action of the Borel, it is then enough to prove that
Qλ(bλ · e) is fixed by the Borel. But this is a direct computation:

Qλ(bλ · e) =
⊗
i,j

x1j ∧ · · · ∧ x(λj)′ij,

where (λj)′ denotes the conjugate partition of λj, so that in fact (λj)′i denotes the number
of entries in the i-th column of λj. In any case, it is clear from the formula of Qλ(bλ · e)
that it is invariant under the Borel, proving the claim that Pλ and Qλ restrict to inverse
isomorphisms between hwtλ(W ) and hwtλ(R).

To finish the proof of the proposition, it suffices to notice that, by Remark 2.3.2, we have
the identities

U = WG = W ∗ s and U ′ = Ind
Sr
G (1) = R ∗ s,

where
s =

∑
g∈G

g.

Now since Pλ, Qλ respect the ∗ action, it follows that they restrict to inverse isomorphisms
between

hwtλ(W ) ∗ s = hwtλ(W ∗ s) = hwtλ(U)

and
hwtλ(R) ∗ s = hwtλ(R ∗ s) = hwtλ(U

′),

proving the last part of the proposition.

We shall apply Proposition 3.3.1 with r = (rd1, · · · , rdn) and

U = Ud
r (V ) = S(r)(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn),

or more generally

U = Ud
µ(V ) =

s⊗
j=1

S(ij)(S(µjd1)V1 ⊗ · · · ⊗ S(µjdn)Vn),
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the source and target respectively of the map πµ in Definition 3.1.1. W is now the represen-
tation

W = V ⊗rd11 ⊗ · · · ⊗ V ⊗rdnn .

We start with U = Ud
r (V ). We have U = WG where

G = (Sd1 × · · · × Sdn)r o Sr

is the wreath product between (Sd1 × · · · × Sdn)r and Sr. Recall that for a group H and
positive integer r, the wreath product Hr o Sr of Hr with the symmetric group Sr is just the
semidirect product

Hr o Sr,

where Sr acts on Hr by permuting the r copies of H. We can thus identify an element σ ∈ G
with a collection

σ = ((σkj )j=1,··· ,n
k=1,··· ,r

, τ),

where
σkj ∈ Sdj , τ ∈ Sr.

We need to say how we regard G as a subgroup of Sr. First of all, we think of Sr = Srd1 ×
· · · × Srdn as a product of symmetric groups, where Srdj acts on the set Dj = {1, · · · , rdj}.
Then we think of an element σ ∈ G as an element of Sr by letting σkj act as a permutation
of

{(τ(k)− 1) · dj + 1, · · · , τ(k) · dj} ⊂ Dj.
For example, when d1 = · · · = dn = 1, G is just the group Sr, diagonally embedded in Snr .

With this G, we let U ′ = Ind
Sr
G (1).

One can now see why the representation Ud
r , as defined in the previous section, can

be identified with U ′. Recall that Ud
r was defined as a space of r × n blocks with certain

identifications. Consider the block

M =

{1, · · · , d1} {1, · · · , d2} · · · {1, · · · , dn}
{d1 + 1, · · · , 2d1} {d2 + 1, · · · , 2d2} · · · {dn + 1, · · · , 2dn}

...
...

. . .
...

{(r − 1)d1 + 1, · · · , rd1} {(r − 1)d2 + 1, · · · , rd2} · · · {(r − 1)dn + 1, · · · , rdn}

.

G acts trivially on M (because each σkj does, and because the effect of τ is just permuting
the rows of M), and all the other blocks are obtained from M by the action of some element
of Sr. One should think of the span of M thus as the trivial representation 1 of G that’s
induced to Sr.

It is probably best to forget at this point that U ′ was the zero-weight space of a certain
representation, and just think of it abstractly as the induced representation

Ind
Sr
G (1),
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with its realization as a space of blocks. An important point to notice now is that for any
decomposition d = A+B, and any k, r we have

Pλ(wtλ(F
k,r
A,B(V ))) ⊂ F k,r

A,B,

and
Qλ(F

k,r
A,B) ⊂ wtλ(F

k,r
A,B(V )),

where F k,r
A,B (Definition 3.2.11) is the generic version of F k,r

A,B(V ) (Definition 2.5.2). This
means that on the corresponding λ-highest weight spaces, Pλ and Qλ restrict to isomorphisms

hwtλ(F
k,r
A,B(V )) ' hwtλ(F

k,r
A,B).

Example 3.3.2. Here’s an example of specialization, that involves blocks we’re already
familiar with. Let n = 2, d1 = 2, d2 = 1, r = 4, λ1 = (5, 3), λ2 = (2, 1, 1). The specialization
map Qλ sends

M =

1, 6 1
2, 3 4
4, 5 2
7, 8 3

Qλ−→

1, 2 1
1, 1 3
1, 1 1
2, 2 2

= M ′.

Qλ sends 1, 2, 3, 4, 5 from the first column of M to 1, because boxes 1, 2, 3, 4, 5 of λ1 lie in
the first row of λ1, and it sends 6, 7, 8 to 2 because boxes 6, 7, 8 of λ1 lie in its second row.
A similar description holds for the second column of M and λ2.

Although we won’t write down explicitly Pλ(M
′) in this example (see the example below

for a concrete illustration of the action of Pλ), we will just mention that Pλ(M
′) is the average

of the blocks that specialize to M ′ via the specialization map Qλ. Of course, M is one such
block, but there are many more others.

Example 3.3.3. Let n = 3, d1 = d2 = d3 = 1 and λ1 = λ2 = λ3 = (2, 1). If m =
z({1},{1},{2})z({2},{3},{1})z({3},{2},{3}) ∈ U ′, then

Qλ(m) = z({1},{1},{1})z({1},{2},{1})z({2},{1},{2}) ∈ U

and

Pλ(Qλ(m)) =
1

8
(z({1},{1},{2})z({2},{3},{1})z({3},{2},{3}) + z({2},{1},{2})z({1},{3},{1})z({3},{2},{3})

+z({1},{1},{1})z({2},{3},{2})z({3},{2},{3}) + z({2},{1},{1})z({1},{3},{2})z({3},{2},{3})

+z({1},{2},{2})z({2},{3},{1})z({3},{1},{3}) + z({2},{2},{2})z({1},{3},{1})z({3},{1},{3})

+z({1},{2},{1})z({2},{3},{2})z({3},{1},{3}) + z({2},{2},{1})z({1},{3},{2})z({3},{1},{3})).
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When U = Ud
µ(V ), with µ = (µi11 · · ·µiss ), we get U = WG, where

G =
s×
j=1

(
(Sµjd1 × · · · × Sµjdn)ij o Sij

)
.

It follows that U ′ = Ind
Sr
G (1) = Ud

µ with the realization as a space of blocks explained in the
preceding section.

We note that the maps πµ and πµ(V ) commute with the polarization and specialization
maps Pλ, Qλ, i.e. we have a commutative diagram

Ud
r

Qλ //

πµ
��

wtλ(U
d
r (V ))

Pλ
oo

πµ(V )
��

Ud
µ

Qλ //
wtλ(U

d
µ(V ))

Pλ
oo

(3.3.1)

Example 3.3.4. Let d = (2, 1), r = 4, µ = (2, 2), λ1 = (5, 3), λ2 = (2, 1, 1). We only
illustrate the specialization map Qλ, with the above diagram transposed:

1, 6 1
2, 3 4
4, 5 2
7, 8 3

πµ //

Qλ

��

1, 2, 3, 6 1, 4
4, 5, 7, 8 2, 3

+
1, 4, 5, 6 1, 2
2, 3, 7, 8 3, 4

+
1, 6, 7, 8 1, 3
2, 3, 4, 5 2, 4

Qλ

��1, 2 1
1, 1 3
1, 1 1
2, 2 2

πµ(V ) // 1, 1, 1, 2 1, 3
1, 1, 2, 2 1, 2

+
1, 1, 1, 2 1, 1
1, 1, 2, 2 2, 3

+
1, 2, 2, 2 1, 2
1, 1, 1, 1 1, 3

Restricting 3.3.1 to the λ-highest weight spaces, we obtain a commutative diagram

hwtλ(U
d
r )

Qλ //

πµ
��

hwtλ(U
d
r (V ))

Pλ
oo

πµ(V )
��

hwtλ(U
d
µ)

Qλ //
hwtλ(U

d
µ(V ))

Pλ
oo

where all the horizontal maps are isomorphisms. This shows that the λ-highest weight spaces
of the kernels of πµ and πµ(V ) get identified via the polarization and specialization maps,
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and therefore the same is true for Idr and Idr (V ): the generic multi-prolongations and multi-
prolongations correspond to each other via polarization and specialization. We summarize
the conclusions of this section in the following

Proposition 3.3.5. The polarization and specialization maps Pλ and Qλ restrict to maps
between generic flattenings and flattenings, inducing inverse isomorphisms

hwtλ(F
k,r
A,B) ' hwtλ(F

k,r
A,B(V )).

They also restrict to maps between the kernels of the generic πµ’s and the nongeneric ones,
inducing inverse isomorphisms

hwtλ(ker(πµ)) ' hwtλ(ker(πµ(V ))).

As a consequence, Pλ and Qλ yield inverse isomorphisms between the λ-highest weight spaces
of generic and nongeneric multi-prolongations

hwtλ(I
d
r ) ' hwtλ(I

d
r (V )).

It follows that in order to show that flattenings coincide with multi-prolongations for the
variety of secant lines to a Segre-Veronese variety (Theorem 4.1.1), it suffices to prove their
equality in the generic setting.
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Chapter 4

The secant line variety of a
Segre-Veronese variety

This chapter is based on the techniques developed in the preceding one. We use the
reduction to the “generic” situation to work out the analysis of the equations and coordinate
rings of secant varieties of Segre-Veronese varieties in the first new interesting case, that of
the first secant varieties. We show how in the case of the secant line variety σ2(X) of a Segre-
Veronese variety X, the combinatorics of tableaux can be used to show that the “generic
equations” coincide with the 3× 3 minors of “generic flattenings”. In particular, we confirm
a conjecture of Garcia, Stillman and Sturmfels, which constitutes the special case when X is
a Segre variety. We also obtain the representation theoretic description of the homogeneous
coordinate ring of σ2(X), which in particular can be used to compute the Hilbert function
of σ2(X). In the special cases when σ2(X) coincides with the ambient space, we obtain the
decomposition into irreducible representations of certain plethystic compositions. Section 4.1
describes the statements of our results, while Section 4.2 contains the details of the proofs.

4.1 Main result and consequences

The main result of our thesis is the description of the generators of the ideal of the variety
of secant lines to a Segre-Veronese variety, together with the decomposition of its coordinate
ring as a sum of irreducible representations.

Theorem 4.1.1. Let X = SVd1,··· ,dn(PV ∗1 × PV ∗2 × · · · × PV ∗n ) be a Segre-Veronese variety,
where each Vi is a vector space of dimension at least 2 over a field K of characteristic zero.
The ideal of σ2(X) is generated by 3 × 3 minors of flattenings, and moreover, for every
nonnegative integer r we have the decomposition of the degree r part of its homogeneous
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coordinate ring

K[σ2(X)]r =
⊕

λ=(λ1,··· ,λn)
λi`rdi

(Sλ1V1 ⊗ · · · ⊗ SλnVn)mλ ,

where mλ is obtained as follows. Set

fλ = max
i=1,··· ,n

⌈
λi2
di

⌉
, eλ = λ12 + · · ·+ λn2 .

If some partition λi has more than two parts, or if eλ < 2fλ, then mλ = 0. If eλ ≥ r − 1,
then mλ = br/2c − fλ + 1, unless eλ is odd and r is even, in which case mλ = br/2c − fλ. If
eλ < r − 1 and eλ ≥ 2fλ, then mλ = b(eλ + 1)/2c − fλ + 1, unless eλ is odd, in which case
mλ = b(eλ + 1)/2c − fλ.

As a consequence, we derive the conjecture by Garcia, Stillman and Sturmfels, concerning
the equations of the secant line variety of a Segre variety.

Corollary 4.1.2. The GSS conjecture (Conjecture 1.2.1) holds, namely the ideal of the
variety of secant lines to a Segre product of projective spaces is generated by 3× 3 minors of
flattenings.

Proof. This is the special case of the first part of Theorem 4.1.1 when d1 = d2 = · · · = dn =
1.

Combining Theorem 4.1.1 with known dimension calculations for secant varieties of Segre
and Veronese varieties, we obtain two interesting plethystic formulas. We do not claim
that these formulas are new: since all the vector spaces involved have dimension two, the
representation theory of sl2 can be also used to deduce them. However, we hope that the
simple idea we present, together with a generalization of the last part of Theorem 4.1.1 to
higher secant varieties, would yield new plethystic formulas for decomposing Schur functors
applied to tensor products of representations.

Corollary 4.1.3. a) Let V1, V2, V3 be vector spaces of dimension two over a field K of
characteristic zero, and let r be a positive integer. We have the decomposition

Symr(V1 ⊗ V2 ⊗ V3) =
⊕

λ=(λ1,λ2,λ3)
λi`r

(Sλ1V1 ⊗ Sλ2V2 ⊗ Sλ3V3)mλ ,

where mλ is obtained as follows. Set

fλ = max{λ12, λ22, λ32}, eλ = λ12 + λ22 + λ32.

If some partition λi has more than two parts, or if eλ < 2fλ, then mλ = 0. If eλ ≥ r − 1,
then mλ = br/2c − fλ + 1, unless eλ is odd and r is even, in which case mλ = br/2c − fλ. If
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eλ < r − 1 and eλ ≥ 2fλ, then mλ = b(eλ + 1)/2c − fλ + 1, unless eλ is odd, in which case
mλ = b(eλ + 1)/2c − fλ.

b) Let V1, V2 be vector spaces of dimension two over a field K of characteristic zero, let
r be a positive integer and let µ = (µ1, µ2) be a partition of r with at most two parts. We
have the decomposition

Sµ(V1 ⊗ V2) =
⊕

λ=(λ1,λ2)
λi`r

(Sλ1V1 ⊗ Sλ2V2)mλ ,

with mλ = m(λ1,λ2,µ), where m(λ1,λ2,µ) is as defined in part a).

Proof. Part a) follows from the fact that the secant line variety of a 3-factor Segre variety
X has the expected dimension, namely 2 · dim(X) + 1. In the case we are interested in
X = Seg(P1×P1×P1) has dimension 3 and is a subvariety of P2·2·2−1 = P7, so σ2(X) fills in
the whole space. This means that the coordinate ring of σ2(X) and P7 coincide, i.e.

K[σ2(X)] = Sym(V1 ⊗ V2 ⊗ V3),

and therefore we can use the description of Theorem 4.1.1 to compute

K[σ2(X)]r = Symr(V1 ⊗ V2 ⊗ V3).

As for part b), let V3 be another vector space of dimension two. Part a) tells us how to
decompose

Symr(V1 ⊗ V2 ⊗ V3)
in general. On the other hand, regarding V1 ⊗ V2 ⊗ V3 as the tensor product between the
vector spaces V1 ⊗ V2 and V3, we can use Cauchy’s formula (Section 5.2) to obtain

Symr(V1 ⊗ V2 ⊗ V3) =
⊕
µ`r

Sµ(V1 ⊗ V2)⊗ SµV3.

Now the desired formula for the multiplicity of the irreducible representations occurring in
Sµ(V1⊗V2) follows by combining the formula from part a) with the Cauchy formula depicted
above.

Corollary 4.1.4. Let V be a vector space of dimension two over a field K of characteristic
zero. We have the decomposition

Symr(Sym3(V )) =
⊕
λ`3r

(SλV )mλ ,

where mλ is obtained as follows. Set

fλ =

⌈
λ2
3

⌉
, eλ = λ2.
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If λ has more than two parts, or if eλ < 2fλ (i.e. λ2 = 1), then mλ = 0. If eλ ≥ r − 1,
then mλ = br/2c − fλ + 1, unless eλ is odd and r is even, in which case mλ = br/2c − fλ. If
eλ < r − 1 and eλ ≥ 2fλ, then mλ = b(eλ + 1)/2c − fλ + 1, unless eλ is odd, in which case
mλ = b(eλ + 1)/2c − fλ.

Proof. This follows from the fact that σ2(Ver3(P1)), the secant line variety of the twisted
cubic fills in the space, hence its coordinate ring is

Sym(Sym3(V )).

Using the description in Theorem 4.1.1 with n = 1, d1 = 3 and V = V1 of dimension 2, we
obtain the desired formula.

4.2 Proof of the main result

Proof. We start by outlining the main steps in the proof of Theorem 4.1.1. We fix a sequence
of positive integers d = (d1, · · · , dn) and a positive degree r, and let r = (rd1, · · · , rdn). By
Proposition 3.3.5, it suffices to prove the generic version of the theorem. More precisely, we
let

F =
∑

A+B=d

F 3,r
A,B ⊂ Ud

r

be the set of generic flattenings, and let Fi denote those generic flattenings with |A| = i. (As
the rest of the proof will imply, we have F = F1 + F2 + F3; see Chapter 6 for more precise
results in this direction in the case n = 1 of the Veronese variety.)

Recall that I = Idr denotes the space of generic multi-prolongations of degree r (Definition
3.2.7), i.e. I is the kernel of the map

π =
⊕

µ=(µ1,µ2)`r

πµ : U = Ud
r −→

⊕
µ=(µ1,µ2)`r

Ud
µ .

We have F ⊂ I, by combining Lemma 2.5.1 with Proposition 3.3.5. We will show that F = I
and that the image of π decomposes into irreducible Sr-representations as

π(U) =
⊕
λ`nr

[λ]mλ ,

where mλ is as defined in the statement of the theorem.
We list the main steps below. The details will occupy the rest of the chapter.
Step 0: If λ is an n-partition with some λi having at least three parts, then hwtλ(U) =

hwtλ(F ) (Proposition 3.2.14), hence hwtλ(F ) = hwtλ(I), because F ⊂ I ⊂ U . Moreover,
this also shows that mλ = 0.
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Step 1: We fix an n-partition λ of r with each λi having at most two parts. We identify
each tableau T with a certain graph G. We show that graphs containing odd cycles are
contained in F .

Step 2: We show that the λ-highest weight space of U/F is spanned by bipartite graphs
that are as connected as possible, i.e. that are either connected, or a union of a tree and
some isolated nodes.

Step 3: We introduce the notion of type associated to a graph G as in Step 2, encoding
the sizes of the sets in the bipartition of the maximal component of G. We show that if
G1, G2 have the same type, then G1 = ±G2 (modulo F ).

Step 4: If we let

π =
⊕
µ`r

µ=(a≥b)

πµ : U −→
⊕
µ`r

µ=(a≥b)

Un
µ ,

and if Gi are graphs of distinct types (not contained in F ), then the elements π(Gi) are
linearly independent. This suffices to prove that F and the kernel of π are the same, i.e.
that F = I. The formulas for the multiplicities mλ follow from counting the number of Gi’s,
i.e. the number of possible types.

4.2.1 Step 1

We fix an n-partition λ of r with λi = (λi1 ≥ λi2 ≥ 0), for i = 1, · · · , n. For each n-tableau
T of shape λ we construct a graph G with r vertices labeled by the elements of the alphabet

A = {1, · · · , r} as follows. For each tableau T i of T and column x
y

of T i of length 2, G has

an oriented edge (x, y) which we label by the index i. We will often refer to the labels of the
edges of G as colors. Note that we allow G to have multiple edges between two vertices (some
call such G a multigraph), but at any given vertex there can be at most di incident edges of
color i. Since we think of two n-tableaux as being the same if they differ by a permutation of
A, we shall also identify two graphs if they differ by a relabeling of their nodes. Note that a

graph G determines an element in hwtλ(U), by considering a tableau T with columns x
y

for

each edge (x, y) of G. The order of the columns of T is not determined by G, but part (2) of
Lemma 3.2.10 states that any such T yields the same element of hwtλ(U). The orientation
of the edges of our graphs will be mostly irrelevant: reversing the orientation of an edge of
G = T will correspond to changing G to −G (see part (1) of Lemma 3.2.10). When we talk
about connectedness and cycles, we don’t take into account the orientation of the edges.
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Example 4.2.1. The graph

'&%$ !"#1

2

������������

1

��..........

1 2
3

⊗ 1 3
2

⊗ 2 1
3

=

'&%$ !"#2
3

// '&%$ !"#3

is connected and has a cycle of length 3, while

'&%$ !"#1

1




2

��

1 3
2

⊗ 1 3
2

=

'&%$ !"#2 '&%$ !"#3

is disconnected and has a cycle of length 2.

From now on we work modulo F , and more precisely, inside the λ-highest weight space
of (U/F ). This space is generated by the graphs described above. The main result of Step
1 is

Proposition 4.2.2. If G has an odd cycle, then G = 0 (i.e. G is in F ).

We first need to establish some fundamental relations, that will be used throughout the
rest of the proof.

Lemma 4.2.3. The following relations between tableaux/graphs hold (see the interpretation
below)

a) x
y

= − y
x

, in particular x
x

= 0.

b) x z
y

= x y
z

+ z x
y

.

c) x z
y

⊗ x y
z

= x y
z

⊗ x z
y

.

d) x z
y

⊗ x z
y

⊗ x y
z

= x z
y

⊗ x y
z

⊗ x y
z

.

Interpretation: For an expression E =
∑

T aT · T , where the T ’s are n-tableaux of shape
λ, we say that E = 0 if ∑

T

aT · T ∈ F ⊂ U.

If all the n tableaux occurring in the expression E contain the same n-subtableau S, then we
suppress S entirely from the notation (see also the comment in part (3) of Lemma 3.2.10).
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Example 4.2.4. One interpretation of part b) of Lemma 4.2.3 could be that

a b
c d

⊗ x z t
y

= a b
c d

⊗ x y t
z

+ a b
c d

⊗ z x t
y

,

for any {a, b, c, d} = {x, y, z, t} = {1, 2, 3, 4}. The 2-subtableau S is in this case

S = a b
c d

⊗ t .

Proof of Lemma 4.2.3. a) is part (1) of Lemma 3.2.10.
b) follows from part (3) of the same lemma (since all columns of our tableaux have size

at most two).
c) We have

'&%$ !"#x '&%$ !"#y
'&%$ !"#z ⊗

'&%$ !"#x '&%$ !"#z'&%$ !"#y =
∑
σ∈S3

sgn(σ) · σ
(
x y
z

⊗ x z
y

)
= 0,

(because the left hand side is contained in F2). Using parts a) and b) repeatedly, we can

express everything in terms of x y
z

and x z
y

, and after simplifications, the above equation

becomes

3 ·
(
x y
z

⊗ x z
y

− x z
y

⊗ x y
z

)
= 0.

d) Part c) states that any tensor expression in a = x z
y

and b = x y
z

does not depend

on the order in which a and b appear, so we can think of the pure tensors in a, b as commuting

monomials in a, b. Writing y x
z

= b− a, we can translate

'&%$ !"#x '&%$ !"#z'&%$ !"#y ⊗
'&%$ !"#x '&%$ !"#z'&%$ !"#y ⊗

'&%$ !"#x '&%$ !"#y
'&%$ !"#z =

∑
σ∈S3

sgn(σ) · σ
(
x z
y

⊗ x z
y

⊗ x y
z

)
= 0,

into
a2b− a2(b− a) + (a− b)2b− b2a− (b− a)2a+ b2(a− b) = 0,

which simplifies to 3(a2b− ab2) = 0, i.e. a2b = ab2, or

x z
y

⊗ x z
y

⊗ x y
z

= x z
y

⊗ x y
z

⊗ x y
z

.

Corollary 4.2.5. If G is a graph having a connected component H consisting of two nodes
joined by an odd number of edges, then G = 0.
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Proof. Interchanging the labels of the two nodes of H preserves G, but by part a) of Lemma
4.2.3, it also transforms G into (−1)eG, where e is the number of edges in H. Since e is odd,
G = 0.

Corollary 4.2.6. If G is a graph containing cycles of length 1 or 3, then G = 0.

Proof. If G has a cycle of length 1, this follows from part a) of Lemma 4.2.3. If G has a
cycle of length 3, we may assume this cycle is C = '&%$ !"#1 → '&%$ !"#2 → '&%$ !"#3 → '&%$ !"#1 . We have several
cases to analyze, depending on the colors of the edges in this cycle.

If the edges in C have distinct colors, we need to prove that

1 3
2

⊗ 2 1
3

⊗ 1 2
3

= 0.

We have by part b) of Lemma 4.2.3 applied to the middle tableau that

1 3
2

⊗ 2 1
3

⊗ 1 2
3

= 1 3
2

⊗ 1 2
3

⊗ 1 2
3

− 1 3
2

⊗ 1 3
2

⊗ 1 2
3

= 0,

where the last equality is part d) of the same lemma.
If the edges of C have the same color, we need to prove that

1 1 2
2 3 3

= 0.

We have

0 =
'&%$ !"#1 '&%$ !"#1 '&%$ !"#2'&%$ !"#2 '&%$ !"#3 '&%$ !"#3

= 1 1 2
2 3 3

− 2 2 1
1 3 3

− 3 3 2
2 1 1

− 1 1 3
3 2 2

+ 2 2 3
3 1 1

+ 3 3 1
1 2 2

= 1 1 2
2 3 3

+ 1 2 1
2 3 3

+ 2 1 1
3 3 2

+ 1 1 2
3 2 3

+ 2 1 1
3 2 3

+ 1 2 1
3 3 2

= 6 · 1 1 2
2 3 3

,

where the penultimate equality follows from skew-symmetry on rows, while the last one
follows from part (2) of Lemma 3.2.10.

Finally, suppose that the edges of C have two colors, say (1, 2) and (1, 3) have the same
color. We need to prove that

1 1 2 3
2 3

⊗ 2 1
3

= 0.

As in the preceding case,

0 =
'&%$ !"#1 '&%$ !"#1 '&%$ !"#2 '&%$ !"#3'&%$ !"#2 '&%$ !"#3

⊗
'&%$ !"#2 '&%$ !"#1'&%$ !"#3

= 1 1 2 3
2 3

⊗ 2 1
3

− 2 2 1 3
1 3

⊗ 1 2
3

− 3 3 2 1
2 1

⊗ 2 3
1

− 1 1 3 2
3 2

⊗ 3 1
2

+ 2 2 3 1
3 1

⊗ 3 2
1

+ 3 3 1 2
1 2

⊗ 1 3
2

= 6 · 1 1 2 3
2 3

⊗ 2 1
3

,
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where the last equality follows by utilizing repeatedly parts a) and c) of 4.2.3. For example,
we have for the second term that

2 2 1 3
1 3

⊗ 1 2
3

= − 1 2 1 3
2 3

⊗ 1 2
3

= − 1 1 2 3
2 3

⊗ 2 1
3

,

where the last equality follows by applying part c) of 4.2.3 in the form

y z
x

⊗ z y
x

= z y
x

⊗ y z
x

,

with
y z
x

= 2 1
3

, z y
x

= 1 2
3

.

Corollary 4.2.7. If an n-tableau T contains the columns C1 = x
y

and C2 = x
z

, and T ′ is

obtained from T by interchanging two boxes y and z from the same tableau T i of T , and

not contained in any of C1, C2, then T = T ′ (modulo F ).

Proof. If y
z

is a column of T i then T contains a triangle, hence T = 0. Since interchanging

y and z transforms T into T ′ = −T = 0, it follows that T = T ′. We can assume then that
y and z don’t lie in the same column of T i. If they both belong to columns of size one of
T i, then interchanging them preserves T (see part (2) of Lemma 3.2.10). Otherwise we may
assume that y belongs to a column of size two in T i, hence we have the relation

y z
∗ = y ∗

z
+ z y
∗ = z y

∗ ,

where the last equality follows from the fact that any tableau containing C1, C2 and y
z

is a

graph containing a triangle, i.e. it is zero (Corollary 4.2.6).

Proof of Proposition 4.2.2. We show that a graph G (with corresponding tableau T ) con-
taining an odd cycle of length at least 5 is a linear combination of graphs with shorter
odd cycles. The conclusion then follows by induction from Corollary 4.2.6. Suppose that
C : '&%$ !"#1 → '&%$ !"#2 → · · · → /.-,()*+k → '&%$ !"#1 is an odd cycle in G, with k ≥ 5. We denote by Ei the edge
(i, i+ 1) (Ek = (k, 1)).

Let’s assume first that there are two consecutive edges of C of the same color, say E1

and E2 have color 1. If not all edges of C have color 1, we may assume that E3 has color 2,
so that T contains the subtableau

1 2
2 3

⊗ 3
4
.
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Since E1, E2 have color 1, it follows that d1 ≥ 2, hence there are at least two 4’s in T 1. One
of them is thus not contained in E5, and therefore in none of the edges of C. We apply
Corollary 4.2.7 with C1, C2 the columns corresponding to E2, E3, y = 2 and z = 4. We can
thus interchange the 2 in E1 with a 4 ∈ T 1 not in any Ei, obtaining an n-tableau T ′ = T ,
with T ′ containing the cycle '&%$ !"#1 → '&%$ !"#4 → '&%$ !"#5 → · · · → /.-,()*+k → '&%$ !"#1 of length k − 2.

If all the Ei’s have color 1, T contains the subtableau

S = 1 2 3 4 · · · k
2 3 4 5 · · · 1 ⊂ T 1.

If there is an edge (3, 4) of G with color different from 1, then we can replace E3 by that
edge and apply the previous case. If d1 > 2 then T 1 has a 4 not contained in any Ei, so we
can again use the argument from the previous paragraph. Suppose now that d1 = 2. The
proof of Corollary 4.2.7 shows that we can interchange 3 with 4 in all T i’s (i 6= 1), modulo
tableaux containing S and an edge (3, 4) of color different from 1. But these we know are
zero (modulo F ) by the argument above, so we can write T = T ′ where T ′ is obtained from
T by interchanging all 3’s and 4’s in T i for i ≥ 2. We now use the relation

1 2 3 4
2 3 4 5

= 1 2 3 4
2 5 4 3

+ 1 2 3 3
2 4 4 5

,

to write
T ′ = T ′′ + T ′′′,

where T ′′ contains the cycle '&%$ !"#1 → '&%$ !"#2 → '&%$ !"#5 → · · · → /.-,()*+k → '&%$ !"#1 of length k − 2, and T ′′′ differs
from T by interchanging all the 3’s and 4’s in T , and doing a column transposition in the
column of E3. This shows that T = T ′ = 0− T , hence T = 0.

Finally, we assume that no two consecutive edges have the same color. Since the cycle is
odd, we can find three consecutive edges with distinct colors, say E1, E2 and E3, with colors
1, 2 and 3 respectively. By Corollary 4.2.7, we have

T = 1 4
2

⊗ 2
3
⊗ 3

4
= 1 2

4
⊗ 2

3
⊗ 3

4
.

If the edge E4 in C doesn’t have color 1, then it survives after interchanging 2 and 4 as above,
hence T is equal with a graph containing the odd cycle '&%$ !"#1 → '&%$ !"#4 → '&%$ !"#5 → · · · → /.-,()*+k → '&%$ !"#1 of
length k − 2.

Suppose now that E4 has color 1. If the edge E5 doesn’t have color 2, then we may repeat
the above argument replacing the edges E1, E2 and E3 with E2, E3 and E4 respectively.
Otherwise, T contains the subtableau (with ∗ = 6 if k > 5 and ∗ = 1 if k = 5)

1 4
2 5

⊗ 2 5
3 ∗ ⊗

3 5
4

= 1 2
4 5

⊗ 2 5
3 ∗ ⊗

3 5
4

= 1 2
4 5

⊗ 2 5
3 ∗ ⊗

5 3
4

,
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where the first equality follows by interchanging 2 and 4 in the first factor, while the last one
follows by interchanging 3 and 5 in the last factor (in both cases we apply Corollary 4.2.7). It
follows that T is equal to a graph containing the odd cycle '&%$ !"#1 → '&%$ !"#4 → '&%$ !"#5 → · · · → /.-,()*+k → '&%$ !"#1
of length k − 2, concluding the proof.

4.2.2 Step 2

We first translate the relations in part b) of Lemma 4.2.3 into basic operations on graphs.
We start with the following

Definition 4.2.8. A node /.-,()*+j is said to be i-saturated if there are di edges of color i incident

to /.-,()*+j .

Remark 4.2.9 (Basic operations). Let G be a graph containing an edge (1, 2) of color 1. The
following relations hold:

1. If the vertex '&%$ !"#3 is not 1-saturated, then 1 3
2

= 1 2
3

+ 3 1
2

becomes

'&%$ !"#1
1

��������
'&%$ !"#1

1

��------
'&%$ !"#1

= +
'&%$ !"#2 '&%$ !"#3 '&%$ !"#2 '&%$ !"#3 '&%$ !"#2 '&%$ !"#3

1
oo

2. If G has an edge (3, 4) of color 1, then 1 3
2 4

= 1 2
3 4

+ 1 3
4 2

becomes

'&%$ !"#1

1
��

'&%$ !"#3

1
��

'&%$ !"#1
1 // '&%$ !"#3 '&%$ !"#1

1

��6666666 '&%$ !"#3
1

���������
= +

'&%$ !"#2 '&%$ !"#4 '&%$ !"#2
1

// '&%$ !"#4 '&%$ !"#2 '&%$ !"#4

Proposition 4.2.10. Let λ be as before, and let

eλ =
n∑
i=1

λi2.

If eλ ≥ r−1, then hwtλ(U/F ) is spanned by connected graphs. If eλ < r−1, then hwtλ(U/F )
is spanned by graphs G that consist of a tree, together with a collection of isolated nodes.

Proof. We first show that if G has two connected components H1, H2 with H1 containing a
cycle, then we can write G = G1 + G2, where G1 and G2 are graphs obtained from G by
joining the components H1, H2 together.
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Consider an edge (1, 2) contained in a cycle of H1, having say color 1. Consider a node'&%$ !"#3 of H2 and suppose first it is not 1-saturated. Using the first basic operation of Remark
4.2.9, we get that G = G1 +G2, where G1, G2 are obtained from G by connecting H2 to H1

via an edge of color 1. If '&%$ !"#3 is 1-saturated, then in particular there exists at least one edge,
say (3, 4), of color 1 in H2. The second basic operation of Remark 4.2.9 yields G = G1 +G2,
where G1, G2 are obtained from G by connecting H1 and H2 via two edges of color 1.

If eλ ≥ r − 1, then G will contain cycles as long as it is not connected, so iterating the
above procedure, we can write G as a linear combination of connected graphs.

If eλ < r − 1, then the above argument reduces the problem to the case when G is a
union of trees, some of which may be isolated nodes. We show that if G has at least two
components that are not nodes, then G = G1 + G2, where G1, G2 are unions of trees, and
the sizes of the largest components of G1, G2 are strictly larger than the size of the largest
component of G. Induction on the size of the largest component of G concludes then the
proof of the proposition.

Let H1 be the largest component of G, and let H2 be another component which isn’t a
node. If H2 has only one edge, then G = 0 by Corollary 4.2.5. Consider a leaf of H1, say '&%$ !"#3 ,
and assume first that all edges in H2 have the same color, say 1. Since H2 has more than
one edge and is connected, it must have a vertex with at least two incident edges of color
1, i.e. d1 ≥ 2. This means that '&%$ !"#3 is not 1-saturated. Let (1, 2) be an edge of H2 (of color
1). The first basic operation of Remark 4.2.9 shows that G = G1 + G2, where G1, G2 are
obtained from G by expanding its largest component.

Assume now that the edges in H2 have at least two colors, and that the edge incident
to '&%$ !"#3 has color 2. Let (1, 2) be an edge of H2 of color different from 2, say 1. '&%$ !"#3 is not
1-saturated, thus we can use the first basic operation of Remark 4.2.9 as in the preceding
case.

4.2.3 Step 3

Combining Step 1 with Step 2 we get that, depending on the n-partition λ, hwtλ(U/F ) is
spanned either by connected graphs without odd cycles, or by graphs consisting of a tree and
some isolated nodes. We call these graphs maximally connected bipartite (MCB) graphs. For
an MCB-graph G, the maximal connected component admits an essentially unique bipartition
of its vertex set into subsets A,B of sizes a ≥ b (i.e. vertices in the same subset A or B
are not connected by an edge). We say that G has type (a, b;λ) (or just (a, b) when λ is
understood), and that it is canonically oriented if all the edges have source in A and target
in B (when a = b, there are two canonical orientations). We have the following

Proposition 4.2.11. If G1, G2 are canonically oriented MCB-graphs of type (a, b), then
G1 = G2.

We first need to refine the relations of Remark 4.2.9:
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Remark 4.2.12 (Refined basic operations). Suppose that G is an MCB-graph with vertex
bipartition A tB as above.

1. Assume that '&%$ !"#3 is not 1-saturated, (1, 2) is an edge of color 1, and '&%$ !"#1 , '&%$ !"#3 belong to A.
If '&%$ !"#1 , '&%$ !"#3 are contained in the same connected component of the graph obtained from
G by removing the edge (1, 2), then

'&%$ !"#1
1

�������
'&%$ !"#1

=
'&%$ !"#2 '&%$ !"#3 '&%$ !"#2 '&%$ !"#3

1
oo

This follows from the fact that the above conditions guarantee that the term that was
left out from the first basic operation of Remark 4.2.9 has an odd cycle, and hence
equals 0 by Proposition 4.2.2.

2. Assume that (1, 2) and (3, 4) are edges of color 1, '&%$ !"#1 , '&%$ !"#3 ∈ A and '&%$ !"#2 , '&%$ !"#4 ∈ B, and either'&%$ !"#1 and '&%$ !"#3 , or '&%$ !"#2 and '&%$ !"#4 are in the same connected component of the graph obtained
from G by removing the edges (1, 2) and (3, 4). Then

'&%$ !"#1
1

��

'&%$ !"#3
1

��

'&%$ !"#1
1

��999999 '&%$ !"#3
1

��������
=

'&%$ !"#2 '&%$ !"#4 '&%$ !"#2 '&%$ !"#4

As above, the missing term from the second basic operation has an odd cycle, and
hence equals 0.

Proof of Proposition 4.2.11. We prove by induction on eλ (the number of “edges” of λ), that
it is possible to get from G1 to G2 via a series of refined basic operations. If eλ = 0, there is
nothing to prove. Suppose now that eλ > 0.

We call an edge E of an MCB-graph G nondisconnecting if the graph obtained from G
by removing E is still an MCB-graph. More explicitly, if eλ ≥ r, then E must be contained
in a cycle of G, and if eλ < r, then one of the endpoints of E must be a leaf of G.

We will prove that for any nondisconnecting edge E2 of G2 of color c, there exist a
sequence of refined basic operations which transforms G1 into a new graph Ĝ1 having a
nondisconnecting edge E1 of color c, such that the graphs G′1 and G′2 obtained from Ĝ1 and
G2 by removing the edges E1 and E2 have the same type. Assuming this, by induction we
can find a series of refined basic operations that transform G′1 into G′2. We lift this sequence
of operations to Ĝ1 as follows: the refined basic operations of type (2) are performed just
as if the edge E1 was not contained in Ĝ1, as well as the operations of type (1) that don’t
transform an edge E ′ of color c into one that’s incident to E1; the operations of type (1)
involving an edge E ′ of color c that gets transformed into an edge incident to E1 are replaced
by operations of type (2) involving E ′ and E1. It is clear that E1 remains nondisconnecting
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along the process, so we end up with the graphs G′′1 and G2 that coincide after removing the
nondisconnecting edges E1 and E2 of color c. At most two more refined operations of type
(2) (that correspond to correcting the positions of the endpoints of E1) are then sufficient
to transform G′′1 into G2, concluding the proof.

We now show that if eλ ≥ r and G1 has an edge E1 of color c, then we can find a refined
basic operation that makes E1 nondisconnecting. Suppose that E1 is disconnecting, and
let H1, H2 be the connected components of the graph obtained from G1 by removing the
edge E1. One of H1, H2 must contain a cycle, say H1, and let O, Y be consecutive edges of
this cycle, of colors o(range) and y(ellow) (note that o might coincide with y). If H2 has
a node N that is not o-saturated or not y-saturated, then a refined operation of type (1)
involving the node N (as '&%$ !"#3 ) and one of the edges O, Y (as the edge (1, 2)) will make E1

a nondisconnecting edge. Otherwise, if every vertex of H2 is both o- and y-saturated, then
there exists a cycle in H2 consisting of edges of colors o and y (if o = y, then since O, Y are
incident edges of color o, it means that do ≥ 2, in particular any o-saturated node has at
least two incident edges of color o; if o 6= y, then any o- and y-saturated node has at least
one o- and one y- incident edge; in both cases, the nodes in H2 have at least two incident
edges, so we can find a cycle as stated). A refined basic operation of type (2) involving an
o-edge on this cycle and O (or an y-edge and Y ) will make E1 nondisconnecting.

Finally, if eλ < r and G2 has a nondisconnecting edge E2 of color c, then we have claimed
that we can find a sequence of refined basic operations that transforms G1 into a graph Ĝ1

containing a nondisconnecting edge E1 of color c, and moreover Ĝ1 − E1 and G2 − E2 have
the same type. We may assume that eλ = r − 1, by removing the isolated nodes of G1 and
G2. Suppose that the graphs Gi have vertex bipartitions Ai t Bi, with |Ai| = a, |Bi| = b,
and that E2 = (x, y), with '&%$ !"#y ∈ B2 a leaf of G2. This means that the graph G2, and hence
also G1, has at most (b− 1) · dc + 1 edges of color c, and for any color c′ 6= c, it has at most
(b−1) ·dc′ edges of color c′. In particular, for any color c′ 6= c, there exists a node in B1 which
is not c′-saturated. Consider an edge E = (u, v) of color c in G1, with '&%$ !"#u ∈ A1, '&%$ !"#v ∈ B1. Let
H1, H2 be the connected components of G1 − E containing u and v respectively. We prove
by descending induction on the size of H2 that we can make E nondisconnecting, with its
endpoint in B1 being a leaf.

If H2 = { '&%$ !"#v } then E is nondisconnecting. More generally, if H2 ∩ B1 = { '&%$ !"#v }, then we
may assume that all the edges in H2 have color c. If E ′ is an edge of H2 of color c′ 6= c (see
the second transformation in Example 4.2.13 below), then there are at most (b− 1) · dc′ − 1
edges of color c′ in H1, so that we can find a vertex C ′ in H1 that is not c′-saturated. A
refined basic operation of type (1) involving E ′ and C ′ decreases the size of H2 by one, so
we can conclude by induction. Assume now that the edges in H2 have color c. Together
with the edge E, we get at least two edges of color c outside H1, which means that H1 has
at most (b− 1) · dc − 1 edges of color c, i.e. it has a vertex that is not c-saturated. We now
do a refined basic operation of type (1) as before, involving that vertex and an edge of H2,
and conclude by induction.

We may now assume that |H2 ∩ B1| > 1 (see the first transformation in Example 4.2.13
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below). Therefore there exist distinct edges Y = (u′, v) of color y(ellow) and O = (u′, v′)
of color o(range) in H2 (y and o might coincide). If o = c then we replace E with (u′, v′),
which decreases the size of H2, so that we can conclude by induction. If there exists a
vertex W ∈ H1 ∩ B1 that is not y-saturated, then the refined basic operation involving Y
and W decreases the size of H2. Likewise, if there exists a vertex W ∈ H1 ∩ A1 that is not
o-saturated, then the refined basic operation involving O and W also decreases the size of
H2. We may therefore assume that all nodes in B1∩H1 are y-saturated, and those in A1∩H1

are o-saturated, and show that this leads to a contradiction. If y = o, then since u′ has two
incident edges of color o, we must have do ≥ 2. All the nodes of H1 being saturated implies
that they have degree at least do ≥ 2, so H1 contains a cycle, which is a contradiction. If
y 6= o, then H1 must contain at least |H1 ∩A1| edges of color o (since each vertex in H1 ∩A1

is o-saturated) and at least |H1 ∩ B1| edges of color y, i.e. H1 contains at least |H1| edges,
hence it can’t be a tree.

Example 4.2.13. Consider the 3-tableaux

T1 = 3 5 1 6
2 4

⊗ 3 1 2 5 6
4

⊗ 1 5 3 4
2 6

, T2 = 1 3 5 6
2 4

⊗ 5 1 2 3 4
6

⊗ 3 5 1 6
2 4

,

with corresponding graphs

'&%$ !"#1

��=
=

=

'&%$ !"#2

G1 = '&%$ !"#3

AA������

���]
�]

�]

'&%$ !"#4

'&%$ !"#5

@@������

��=
=

=

'&%$ !"#6

'&%$ !"#1

��======

'&%$ !"#2

and G2 = '&%$ !"#3

AA�
�

�

��;;;;;;

'&%$ !"#4

'&%$ !"#5

@@�
�

�

���^
�^

�^

'&%$ !"#6

where color 1 corresponds to // , color 2 to ///o/o/o , and color 3 to //___ . G1 and G2

are MCB of the same type, and in fact G1 = 0, since it is the same as the graph obtained by
reversing the orientation of its 5 edges (an odd number), and this equals −G1 by part a) of
Lemma 4.2.3. However, it is unclear a priori that G2 is also equal to 0. We use the algorithm
described in the proof of Proposition 4.2.11 to get a sequence of refined basic operations that
transforms G1 into G2. We first make the edge of G1 of color 2 nondisconnecting, and then
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adjust its position (the third step) and relabel the nodes (last step) to get G2:

'&%$ !"#1

��=
=

= '&%$ !"#1

��=
=

= '&%$ !"#1

��=
=

= '&%$ !"#1

��=
=

=

�� �T
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�T
�T
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�� �T
�T
�T
�T
�T
�T
�T
�T
�T
�T
�T

'&%$ !"#2 '&%$ !"#2 '&%$ !"#2 '&%$ !"#2 '&%$ !"#4
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���\
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�\
�\

'&%$ !"#3
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(
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(
(

(
(

(

���\
�\

�\
�\

'&%$ !"#3
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�\

��(
(

(
(

(
(

(
(

(
'&%$ !"#3

@@������

��(
(

(
(

(
(

(
(

(
'&%$ !"#3

@@������

��(
(

(
(

(
(

(
(

(

'&%$ !"#4 1−→ '&%$ !"#4 2−→ '&%$ !"#4 3−→ '&%$ !"#4 4−→ '&%$ !"#6

'&%$ !"#5

��=
=

=

BB������ '&%$ !"#5

BB������ '&%$ !"#5

��====== '&%$ !"#5

��====== '&%$ !"#1

��======

'&%$ !"#6 '&%$ !"#6 '&%$ !"#6 '&%$ !"#6 '&%$ !"#2

With the notation in the last paragraph of the proof of Proposition 4.2.11, we have E = (3, 4)
a disconnecting edge, A1 = {1, 3, 5}, B1 = {2, 4, 6} a bipartition of the vertex set of G1. We’d
like to make E nondisconnecting, with its endpoint in B1 being a leaf. We have

'&%$ !"#1

��;
;

;

H1 = '&%$ !"#2

'&%$ !"#3

AA������

'&%$ !"#4

and H2 = '&%$ !"#5

AA������

��;
;

;

'&%$ !"#6

We also have Y = (5, 4) of color y = // and O = (5, 6) of color o = //___ . The unique
vertex '&%$ !"#2 in H1 ∩ B1 is y-saturated, and '&%$ !"#1 ∈ H1 ∩ A1 is o-saturated, but W = '&%$ !"#3 is not
o-saturated. The refined basic operation involving W and O yields the first transformation.

We now have

'&%$ !"#1

��;
;

;

H1 = '&%$ !"#2

'&%$ !"#3

AA������

��=
=

=

'&%$ !"#6

'&%$ !"#4

and H2 = '&%$ !"#5

AA������

We are in the case H2 ∩ B1 = { '&%$ !"#v } = { '&%$ !"#4 }. The edge E ′ = (5, 4) has color c′ = // ,
different from c = ///o/o/o . W = '&%$ !"#6 is a vertex in H1∩B1 which is not c′-saturated, so we can
use the refined basic operation involving E ′ and W as our second transformation, making E
a nondisconnecting edge as desired.

We next adjust the position of E, in order to get the graph G2. We use the refined
operation involving the vertex '&%$ !"#1 and the edge (3, 4). The last transformation involves
relabeling the nodes '&%$ !"#5 , '&%$ !"#6 , '&%$ !"#2 , '&%$ !"#1 and '&%$ !"#4 by '&%$ !"#1 , '&%$ !"#2 , '&%$ !"#4 , '&%$ !"#5 and '&%$ !"#6 respectively.
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Corollary 4.2.14. If G is a canonically oriented MCB-graph of type (a, a), having an odd
number of edges, then G = 0.

Proof. Changing the orientation of all the edges of G, we obtain a canonically oriented MCB-
graph G′ of the same type as G. It follows from Proposition 4.2.11 that G = G′. On the
other hand, we get by part a) of Lemma 4.2.3 that G′ = −G, hence G = 0.

4.2.4 Step 4

The preceding steps yield the following

Corollary 4.2.15. For eλ, fλ as in Theorem 4.1.1, the space (U/F )λ is spanned by MCB-
graphs Gµ′ of type µ′ = (a′ ≥ b′), with a′+b′ = min(eλ+1, r) and b′ ≥ fλ. Moreover, Gµ′ = 0
if a′ = b′ and eλ is odd.

Proof. The last statement is the content of Corollary 4.2.14. We know that (U/F )λ is
spanned by MCB-graphs (Proposition 4.2.10), and the condition b′ ≥ fλ follows from the
fact that any graph G has at least λi2/di vertices incident to edges of color i, and any edge is
incident to one vertex in each of the two sets of the bipartition. The number of vertices in
the maximal connected component of an MCB-graph of type µ′ is a′ + b′ = min(eλ + 1, r).

It remains to show that if µ′ = (a′ ≥ b′), a′ + b′ = min(eλ + 1, r) and b′ ≥ fλ, then there
exists an MCB-graph Gµ′ of type µ′. Consider A′ and B′ disjoint sets consisting of a′ and
b′ vertices in { '&%$ !"#1 , · · · , '&%$ !"#r } respectively. For every i = 1, · · · , n we draw λi2 edges of color i
joining pairs of elements in A′ and B′, in such a way that no vertex has more than di incident
edges of color i. This is possible since λi2/di ≤ fλ ≤ b′ ≤ a′. If the bipartite graph G (with
vertex set A′ ∪ B′) obtained in this way is connected, then we get an MCB-graph Gµ′ by
adding to G the isolated nodes outside A′ ∪ B′. If G is not connected, then it has an edge
E of color c contained in a cycle, and a vertex v outside the connected component of E. If
v is not c-saturated, we can move E to make it incident to v, and preserve the bipartition
of G (as in the refined basic operations of type (1), Remark 4.2.12), thus obtaining a graph
with fewer components. If v is c-saturated, let E ′ be an incident edge of color c. We move
E and E ′ as in a refined basic operation of type (2), connecting the components of E and
v. Repeating this procedure will eventually yield a connected graph G and an MCB-graph
Gµ′ as above.

Lemma 4.2.16. Consider canonically oriented graphs Gµ′ as above, one for each type µ′ =
(a′, b′), with a′ 6= b′ when eλ is odd. If

π =
⊕
µ`r

µ=(a≥b)

πµ : U −→
⊕
µ`r

µ=(a≥b)

Ud
µ ,
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then the set {π(Gµ′)}µ′ is linearly independent. In particular, F = I and the graphs Gµ′ give
a basis of (U/F )λ. This shows that dim((U/I)λ) = mλ, where mλ is as described in Theorem
4.1.1, concluding the proof of our main result.

Proof. Note that the number of Gµ′ ’s is precisely mλ, so the last statement follows once
we prove the independence of Gµ′ ’s. This is a consequence of the linear independence of
{π(Gµ′)}µ′ , which in turn follows once we show that for µ = (a, b), µ′ = (a′, b′), we have

1. πµ(Gµ′) = 0 if b < b′, and

2. πµ(Gµ′) 6= 0 if b = b′.

Recall that Gµ′ = Tµ′ , for some n-tableau Tµ′ . We have

πµ(Tµ′) =
∑

Ti, (*)

where each Ti is an n-tableau with entries 1, 2, obtained from a partition AtB = {1, · · · , r},
by setting equal to 1 and 2 the entries of Tµ′ from A and B respectively.

To prove (1), note that since |B| = b < b′, for each i the endpoints of some edge in Gµ′

have to be set to the same value, so Ti has repeated entries in some column, i.e. Ti = 0. It
follows that πµ(Gµ′) =

∑
Ti = 0.

To prove (2), let A′ tB′ be the bipartition of the maximal connected component of Gµ′ ,
and take µ = (a, b) = (d− b′, b′). The only n-tableau(x) Ti in (*) without repeated entries in
some column is (are) the n-tableau T1 obtained from setting the entries of A = {1, · · · , r}−B′
to 1, and the entries of B = B′ to 2 (and if |A′| = |B′|, the n-tableau T2 obtained by setting
the entries of A = {1, · · · , r} − A′ to 1 and the entries of B = A′ to 2). Since in the latter
case eλ must be even, we get in fact that T1 = T2, since T1 and T2 differ by an even number
of transpositions within columns, and by permutations of columns of size 1. It follows that
it’s enough to prove that T1 6= 0.

Up to permutations within columns, and permutations of columns of the same size, we
may assume that

T1 = cλ ·m = cλ · z(A,··· ,A) · z(B,··· ,B),

where A = {1, · · · , a} and B = {a+ 1, · · · , a+ b}, i.e. T1 = T 1
1 ⊗ · · · ⊗ T n1 , with

T i1 = 1 1 · · · 1 1 1 · · · 2 2 · · ·
2 2 · · · 2 .

If a > b and σ = τ · τ ′, with τ a row permutation and τ ′ a column permutation of the
canonical n-tableau Tλ of shape λ, then σ · m 6= m, unless τ ′ = id. This shows that the
coefficient of m in T1 is a positive number, hence T1 6= 0. If a = b, σ ·m = m and τ ′ 6= id,
then τ ′ must transpose all the pairs (1, 2) in the columns of T1 of size 2. Since T1 has eλ
(an even number) of such columns, the signature of τ ′ must be +1. It follows again that the
coefficient of m in T1 is positive and therefore T1 6= 0.
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Chapter 5

Examples

The purpose of this chapter is to gather some known examples from the literature, and
describe them from the “generic” perspective. The list of examples we consider consists of

• Cauchy’s formula for decomposing a symmetric power of a tensor product of two vector
spaces.

• The (generalized) Strassen’s equations, which are modules of equations for secant va-
rieties of Segre varieties.

• Equations of degree 6 of the third secant variety of a triple Segre product of projective
3-spaces.

• The Aronhold invariant, a module of equations for the variety of secant planes to the
3-uple embedding of P2.

The only new contribution of this chapter is showing that the generalized Strassen’s
equations occur in the generality anticipated by the authors of [LM08]. More precisely, we
relax the condition r ≥ 3s from [LM08, Theorem 4.2] to r ≥ 2s.

5.1 Tableaux

Let r = (r1, · · · , rn) be a sequence of positive integers, λ = (λ1, · · · , λn) an n-partition
of r, r a positive integer giving rise to an alphabet A = {1, · · · , r}, and n = (nji ) i=1,··· ,r

j=1,··· ,n
an

array of nonnegative integers satisfying

r∑
i=1

nji = rj, j = 1, · · · , n.
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Definition 5.1.1. We define Tab(λ, r, n) to be an (the) universal vector space of n-tableaux
T = T 1 ⊗ · · · ⊗ T n with T j containing nji entries equal to i, and satisfying the following
relations

1. (skew-symmetry on columns) A permutation σ of the entries within a column of some
tableau T j in T multiplies T by sgn(σ), the sign of the permutation σ.

2. (shuffling relations) Given two columns C1, C2 of some tableau T j of sizes |C1| ≥ |C2|,
and given subsets Bi ⊂ Ci of their sets of boxes, with the property that |B1|+ |B2| >
|C1|, then we have the shuffling relation∑

σ∈SB

sgn(σ) · σ(T ) = 0,

where B = B1 ∪ B2, SB denotes the group of permutations of the boxes in B, and
σ ∈ SB acts on an n-tableau T by permuting the selected set B of boxes.

3. (symmetry) If i 6= i′ ∈ A have the property that nji = nji′ for all j = 1, · · · , n, then
T = Ti↔i′ for any n-tableau T , where Ti↔i′ is the n-tableau obtained from T by
interchanging i with i′.

Remark 5.1.2. The reason we have stated the shuffling relations in this form is in order to
stick to the standard literature ([Wey03, Chapter 2]). We will only use them in the form
that appears in part (3) of Lemma 3.2.10.

Example 5.1.3. Let r = (rd1, · · · , rdn), and nji = dj for all i, j. Then Tab(λ, r, n) can be
identified with the λ-highest weight space of the representation Ud

r introduced in Definition
3.2.1. Tab(λ, r, n) = cλ · Ud

r is a vector space of dimension equal to the multiplicity of
the irreducible GL(V )-representation SλV inside S(r)(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn) (when the
dimensions of the Vi’s are large enough so that SλV 6= 0). Alternatively, its dimension equals
the multiplicity of the irreducible Sr-representation [λ] inside the induced representation

Ind
Sr
(Sd1×···×Sdn )

roSr(1).

Example 5.1.4. This example’s goal is to illustrate the three parts of Definition 5.1.1.

1. We have

1 2
3

⊗
1
2
3
⊗ 1 1 2

2
= − 1 2

3
⊗

1
3
2
⊗ 1 1 2

2
,

because the 3-tableau on the right hand side was obtained from the one on the left by
making a transposition (2, 3) of two boxes in its middle tableau.

Now change all the 3’s in the previous example to 2’s. By the same argument, we get

T = 1 2
2

⊗
1
2
2
⊗ 1 1 2

2
= − 1 2

2
⊗

1
2
2
⊗ 1 1 2

2
= −T,
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hence T = 0. In general, tableaux with repeated entries in some column are equal to
zero.

2. For any tableau T 2, we have the following relation between 2-tableaux:

1 2
3

⊗ T 2 = 2 1
3

⊗ T 2 + 1 3
2

⊗ T 2.

(see part (3) of Lemma 3.2.10 for the more general statement; see also part (2) of
Lemma 4.2.3 for this specific situation.)

3. The equality below already showed up in Example 3.2.9. It comes from applying the
permutation (1, 3, 4, 2) (in cycle notation) to the entries of the alphabetA = {1, 2, 3, 4}.

1 2 2 3 3
1 4 4

⊗
1 3
4
2

= 3 1 1 4 4
3 2 2

⊗
3 4
2
1

.

5.2 Cauchy’s Formula

Cauchy’s formula is a plethystic formula for decomposing a symmetric power of a tensor
product of two vector spaces into a sum of irreducible representations over the product of
the corresponding general linear groups. More precisely, it says the following.

Proposition 5.2.1 (Cauchy’s formula). Let V1, V2 be vector spaces over a field of charac-
teristic zero, and let r be a positive integer. We have

S(r)(V1 ⊗ V2) =
⊕
µ`r

SµV1 ⊗ SµV2.

Proof. We are in the situation of Example 5.1.3, with n = 2 and d1 = d2 = 1. The statement
of Cauchy’s formula is equivalent to the fact that the vector space Tab(λ, r, n) has dimension
one if λ1 = λ2 = µ ` r and is zero otherwise. Fix then a pair of partitions λ1, λ2 ` r, and let
T = T 1 ⊗ T 2 ∈ Tab(λ, r, n) be a tableau.

By property 3. of Definition 5.1.1, we may assume that the entries in T 1 are ordered top
to bottom and left to right, as in

1 4 6 7
2 5
3

.

We will show that we can assume the same for the entries of T 2, and moreover, that if T 1

and T 2 don’t have the same shape, then in fact T = 0. We prove this column by column,
proceeding from left to right. We may assume that T 1 has at least as many boxes (say c) in
the first column as T 2 does. Suppose that we’ve arranged that T 2 has the first i entries in
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its first column equal to 1, 2, · · · , i respectively, for some 0 ≤ i ≤ c. If i = c, then the first
columns of T 1 and T 2 coincide, and we can proceed to the next column.

Suppose now that i < c. Let’s assume first that T 2 has exactly i boxes in its first column.
We write down the shuffling relation with B1 being the set of boxes in the first column of
T 2, and B2 = { i+ 1 } consisting of the unique box in T 2 having its entry equal to i + 1.
We get

T 1 ⊗

1 i+1

2
...

i

= T 1 ⊗

i+1 1

2
...

i

+ T 1 ⊗

1 2

i+1
...

i

+ · · ·+ T 1 ⊗

1 i

2
...

i+1

Now interchanging the entries equal to j with those equal to i + 1 in the j-th term on
the RHS of the shuffling relation above preserves the corresponding 2-tableau by symmetry
(property 3. of Definition 5.1.1). This has the effect of applying a transposition to the
first column of T 1, and making the 2-nd tableau of the j-th term equal to T 2. Using the
skew-symmetry of tableaux on columns to cancel the effect of the transposition on T 1, we
obtain

T = −T − T − · · · − T = −i · T,
hence (i + 1) · T = 0, yielding T = 0. Here’s an example to illustrate the argument of the
preceding paragraph:

Example 5.2.2. Let T 1 =

1 5 7
2 6
3
4

, T 2 =
1 4 5
2 7 6
3

, T = T 1 ⊗ T 2, c = 4 and i = 3. Using

the shuffling relation involving the boxes with entries {1, 2, 3, 4} in T 2, we get

T =

1 5 7
2 6
3
4

⊗
1 4 5
2 7 6
3

=

1 5 7
2 6
3
4

⊗
4 1 5
2 7 6
3

+

1 5 7
2 6
3
4

⊗
1 2 5
4 7 6
3

+

1 5 7
2 6
3
4

⊗
1 3 5
2 7 6
4

.

Now applying the transpositions (1, 4), (2, 4) and (3, 4) respectively to the three terms on
the RHS of the above relation, we get

T =

4 5 7
2 6
3
1

⊗
1 4 5
2 7 6
3

+

1 5 7
4 6
3
2

⊗
1 4 5
2 7 6
3

+

1 5 7
2 6
4
3

⊗
1 4 5
2 7 6
3

.

Note that the 2-nd tableau in each term is now equal to T 2, and that the first tableau
is obtained from T 1 by applying a transposition. Since tableaux are skew-symmetric on
columns, it follows that each of the terms is −T 1⊗ T 2 = −T , i.e. T = −3T , yielding T = 0.
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Assume now that T 2 has more than i boxes in its first column. Then the same argument
as above shows that (i + 1) · T is a linear combination of 2-tableaux of the form T 1 ⊗ T ′,
where T ′ is a tableau whose first column contains the entries {1, 2, · · · , i + 1}, so we can
conclude by induction on i. Below is an example to illustrate this phenomenon:

Example 5.2.3. Let T 1 =

1 5 7
2 6
3
4

, T 2 =

1 4 5
2 7
3
6

, T = T 1 ⊗ T 2, c = 4 and i = 3. Using

the shuffling relation involving the boxes with entries {1, 2, 3, 6, 4} in T 2, we get

T =

1 5 7
2 6
3
4

⊗
4 1 5
2 7
3
6

+

1 5 7
2 6
3
4

⊗
1 2 5
4 7
3
6

+

1 5 7
2 6
3
4

⊗
1 3 5
2 7
4
6

+

1 5 7
2 6
3
4

⊗
1 6 5
2 7
3
4

.

Now applying the transpositions (1, 4), (2, 4) and (3, 4) respectively to the first three terms
on the RHS of the above relation, we get

T =

4 5 7
2 6
3
1

⊗
1 4 5
2 7
3
6

+

1 5 7
4 6
3
2

⊗
1 4 5
2 7
3
6

+

1 5 7
2 6
4
3

⊗
1 4 5
2 7
3
6

+

1 5 7
2 6
3
4

⊗
1 6 5
2 7
3
4

.

Note that the 2-nd tableau in each of the first three terms on the RHS is now equal to T 2,
and that the first tableau is obtained from T 1 by applying a transposition. Since tableaux
are skew-symmetric on columns, it follows that each of the terms is −T 1 ⊗ T 2 = −T , i.e.

T = −3T +

1 5 7
2 6
3
4

⊗
1 6 5
2 7
3
4

,

yielding

T =
1

4
·

1 5 7
2 6
3
4

⊗
1 6 5
2 7
3
4

.

Repeating the arguments above to the other columns of T 1 and T 2 we obtain that
Tab(λ, r, n) = 0 when λ1 6= λ2 and is at most 1-dimensional when λ1 = λ2 = µ, gener-
ated by T 1 ⊗ T 1 where T 1 is the tableau of shape µ with entries ordered top to bottom and
left to right (or any other tableau of shape µ, by symmetry). To see that T = T 1 ⊗ T 1 is
nonzero, note that

T = cλ ·m, where m =
r∏
i=1

z({i},{i}).
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We can write
cλ ·m =

∑
σ∈Rλ, τ∈Cλ

sgn(τ) · σ · τ ·m,

where Rλ and Cλ (Section 2.3) denote the groups of row and column permutations respec-
tively. We write σ = (σ1, σ2) and τ = (τ1, τ2). In order for m and σ · τ ·m to be equal, we
must have that σ1τ1 = σ2τ2. Since Rλ and Cλ intersect trivially, we must have σ1 = σ2 and
τ1 = τ2, in which case sgn(τ) = sgn(τ1)sgn(τ2) = 1. It follows that all the occurrences of m
in cλ ·m have coefficient 1, thus T 6= 0.

5.3 Strassen’s Equations

We give the generic version of Strassen’s equations ([Str88]) for σ3(Seg(P2 × P2 × P2)).
These equations have been shown by Landsberg and Weyman to generate the homogeneous
ideal of σ3(Seg(P2 × P2 × P2)) ([LW07]).

We are in the situation of Example 5.1.3, with n = 3, r = 4, d1 = d2 = d3 = 1 and
λ1 = λ2 = λ3 = (2, 1, 1) = (122). We show that Tab(λ, d, n) has a basis consisting of the
3-tableau

T0 =
1 2
3
4

⊗
1 4
2
3

⊗
1 3
2
4

,

and that T0 gives a generic equation for the variety of secant planes to a triple Segre product
of projective spaces. That is, we show that for every partition µ ` 4 with three parts, we
have πµ(T0) = 0, where πµ is as defined in 3.2.5.

To prove the last statement, note that µ = (2, 1, 1) is the only partition of 4 with three
parts. Note also that πµ(T0) is in this case a sum of 3-tableaux obtained from T0 by setting
two of the entries {1, 2, 3, 4} equal to 1 and the other equal to 2 and 3 in some (any) order.
In particular, πµ(T0) is a sum of 3-tableaux with repeated entries in some column (because
every pair {i, j} ⊂ {1, 2, 3, 4} shows up in at least one column of T0), hence πµ(T0) = 0.
Explicitly,

πµ(T0) =
1 1
3
2

⊗
1 2
1
3

⊗
1 3
1
2

+
1 2
1
3

⊗
1 3
2
1

⊗
1 1
2
3

+
1 2
3
1

⊗
1 1
2
3

⊗
1 3
2
1

+
2 1
1
3

⊗
2 3
1
1

⊗
2 1
1
3

+
2 1
3
1

⊗
2 1
1
3

⊗
2 3
1
1

+
3 2
1
1

⊗
3 1
2
1

⊗
3 1
2
1

,

so we see that our claim is indeed true.
To see that T0 spans, it suffices to note that if two tableaux T i, T j of a 3-tableau T of

shape λ have the same entry in the 2-nd column, then T = 0. Say the two tableaux are
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T 1, T 2 and 4 is their entry in the second column. Up to sign (because of the skew-symmetry
of tableaux), we may assume that

T =
1 4
2
3

⊗
1 4
2
3

⊗ T 3.

Then no matter what T 3 is, one of the pairs {1, 2}, {1, 3}, {2, 3} shows up in the first column
of each of the T i’s. Interchanging the two entries in that pair simultaneously preserves T
(by symmetry) and changes T to (−1)3T (by skew-symmetry), proving that T = 0. We may
then assume that the tableaux of T have distinct entries in their unique box in the 2-nd
column, hence by symmetry we can assume these entries are 2 for T 1, 4 for T 2 and 3 for T 3.
We can then rearrange the entries in the first columns of the tableaux of T (at the expense
of possibly changing the sign of T ) to get T0.

To see that T0 6= 0, note that

T0 = cλ ·m, where m = z({1},{1},{1}) · z({2},{3},{3}) · z({3},{4},{2}) · z({4},{2},{4}),

and that each time m appears in cλ · m, it has coefficient 1. To see this, note that the
instances of m as a term in cλ ·m coincide with the ways of obtaining σ(T0) from T0 for some
permutation σ of the entries {1, 2, 3, 4}, by applying first column permutations and then row
permutations to T0. The coefficient of m corresponding to that instance would then be the
product of the signs of the column permutations involved.

Now in order to get σ(T0) from T0 by applying column permutations followed by row
permutations, it must be the case that either σ(1) = 1, in which case σ is the identity, or
that for some i ∈ {2, 3, 4} we have σ(1) = i, and σ(j) = j for i 6= j ∈ {2, 3, 4}: this is
because any of the entries {2, 3, 4} in the 2-nd columns of the T i0’s either stays fixed, or
takes the place of 1. This means that σ is one of the transpositions (1, 2), (1, 3), (1, 4). To
realize such a σ precisely two column transpositions of T are required, so the product of the
corresponding signs is +1. This shows that the coefficient of m in cλ ·m is in fact 4, and in
any case T0 6= 0.

5.4 Generalized Strassen’s Equations

We give the generic version of the generalized Strassen’s equations, or coercive contrac-
tions, as they appear in Theorem 4.2 of [LM08]. We also show that this theorem can be
strengthen in the case when r is odd, by replacing the condition r ≥ 3s with r ≥ 2s, as
anticipated by the authors.

We are in the situation of Example 5.1.3, with n = 3, d1 = d2 = d3 = 1, and r, the size of
the alphabet A replaced by r + s, where r, s are positive integers, s is odd and r ≥ 2s. We
also have λ1 = (r− s, s, s) and λ2 = λ3 = (2s1r−s). For convenience, we use special notation



63

for some of the elements in the alphabet A: we denote r − s + i by i′ and r + i by i′′, for
i = 1, · · · , s; we also denote r − s by r̂. The alphabet A is thus the union of {1, · · · , r̂},
{1′, · · · , s′} and {1′′, · · · , s′′}.

Proposition 5.4.1. With the above notation, the vector space Tab(λ, d, n) is one-dimensional,
spanned by the tableau

T0 =

1 2 · · · · · · · · · r̂
1′ 2′ · · · s′

1′′ 2′′ · · · s′′
⊗

1 1′′

2 2′′

...
...

s s′′

...

r̂

1′

...

s′

⊗

1 1′

2 2′

...
...

s s′

...

r̂

1′′

...

s′′

.

Moreover, T0 gives a generic equation for the variety of secant (r−1)-planes to a triple Segre
product, i.e. for any partition µ ` (r + s) with exactly r parts, πµ(T0) = 0.

Proof. Let us first prove that T0 spans. Consider any 3-tableau T ∈ Tab(λ, d, n), and let
C2, C3 be the sets of entries in the first columns of T 2 and T 3 respectively. C2, C3 are subsets
of size r of the alphabet A (which has cardinality r + s), hence their intersection contains
at least 2 · r − (r + s) = r̂ elements. If |C2 ∩ C3| > r̂, then since T 1 has only r̂ columns, we
can find i 6= j ∈ C2 ∩ C3 such that i and j are contained in the same column of T 1. Now
the usual argument based on combining properties 1. and 3. of Definition 5.1.1 shows that
T = 0: interchanging the entries i and j in T simultaneously preserves T and changes it to
(−1)3T , hence T = −T , i.e. T = 0.

We may therefore assume that |C2 ∩ C3| = r̂, and by symmetry that in fact C2 ∩ C3 =
{1, · · · , r̂}. We may further assume still using property 3. of Definition 5.1.1 that C2 \C3 =
{1′, · · · , s′} and C3 \C2 = {1′′, · · · , s′′}. Using skew-symmetry, we can rearrange (up to sign)
the entries in T 2 and T 3 and assume that T 2 = T 2

0 and T 3 = T 3
0 . The same argument as at

the end of the previous paragraph shows that, unless T = 0, no two elements of C2 ∩C3 can
be contained in the same column of T 1, i.e. there is precisely one of them in each column of
T 1. Again, using the skew-symmetry of T 1 we may assume that all of the entries in C2 ∩C3

are contained in the first row of T 1. We can further assume by symmetry that they appear
in order: 1, 2, · · · , r̂; this might require changing the order of {1, · · · , r̂} in the first columns
of T 2 and T 3, but we can fix that by using the skew-symmetry of T 2 and T 3. What we’ve
shown so far is that, unless T = 0, T coincides up to sign with T0 in the first row of the first
tableau, and in the 2-nd and 3-rd tableaux.
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Now if for some i 6= j, {i′, j′} or {i′′, j′′} are contained in the same column of T 1, then
T = 0 by the usual argument: interchange i′ with j′ everywhere, or i′′ with j′′, to show that
T = −T . If this isn’t the case, then we can do column permutations in such a way that
the 2-nd row of T 1 consists of {1′, · · · , s′}, while the 3-rd consists of {1′′, · · · , s′′}, in some
order. We can now use the symmetry to arrange these entries as in T 1

0 , which might affect
the order in which they appear in T 2 and T 3. Using the skew-symmetry of T 2 and T 3 we
can again fix that order. In any case, we have proved that, unless T = 0, T = ±T0, i.e. T0
spans Tab(λ, d, n).

We show next that if µ ` (r + s) has exactly r parts, then πµ(T0) = 0. Write µ =
(µ1, · · · , µr). Recall the way πµ acts: it partitions the alphabet A into sets A1, · · · ,Ar of
sizes µ1, · · · , µr in all possible ways, and then maps the elements of Ai to i for i = 1, · · · , r
and sums over the corresponding tableaux. Note that if two elements of some Ai are in the
same column of T0, then after mapping the entries of Ai to i we get a 3-tableau with repeated
entries in some column, i.e. one that is equal to zero. This is why we are only interested in
partitions of A into sets Ai such that no two entries of some Ai are in the same column of T0.
Therefore no two of {1, · · · , r̂, 1′, · · · , s′}, as well as no two of {1, · · · , r̂, 1′′, · · · , s′′} can be
in the same subset Ai of a partition. This implies that the only interesting µ is (2s1r−s), and
correspondingly the only interesting partitions are (up to reordering), A1 = {1}, · · · ,Ar̂ =
{r̂}, Ar̂+1 = {1′, σ(1)′′}, · · · ,Ar = {s′, σ(s)′′} for σ a permutation of the set {1, · · · , s} (we
write this as σ ∈ Ss). We get

πµ(T0) =
∑
σ∈Ss

1 2 · · · · · · · · · r̂

1′ 2′ · · · s′

σ(1)′ σ(2)′ · · · σ(s)′

⊗

1 σ(1)′

2 σ(2)′

...
...

s σ(s)′

...

r̂

1′

...

s′

⊗

1 1′

2 2′

...
...

s s′

...

r̂

σ(1)′

...

σ(s)′

.

For each σ, we can rearrange the entries σ(1)′, · · · , σ(s)′ in the 2-nd and 3-rd tableaux of
the RHS of the above expression, so that they appear in increasing order 1′, · · · , s′. This has
the effect of multiplying the corresponding 3-tableau by the square of sgn(σ), i.e. by 1. We
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can therefore assume that all the tableaux T on the RHS of the above expression have

T 2 = T 3 =

1 1′

2 2′

...
...

s s′

...

r̂

1′

...

s′

.

We get

πµ(T0) =
∑
σ∈Ss

1 2 · · · · · · · · · r̂

1′ 2′ · · · s′

σ(1)′ σ(2)′ · · · σ(s)′

⊗ T 2 ⊗ T 3.

Since each of the entries {1′, · · · , s′} appears the same number of times (twice) in the tableaux
on the RHS, we can apply symmetry (property 3. of Definition 5.1.1), and replace i′ by σ−1(i)′

everywhere. This will affect both T 2 and T 3, but we can then use skew-symmetry of these
tableaux to rearrange the entries in the original order (again the effect is multiplying the
corresponding 3-tableaux by the square of the signature of σ−1, which is 1). We get

πµ(T0) =
∑
σ∈Ss

1 2 · · · · · · · · · r̂

1′ 2′ · · · s′

σ(1)′ σ(2)′ · · · σ(s)′

⊗ T 2 ⊗ T 3 =

∑
σ−1∈Ss

1 2 · · · · · · · · · r̂

σ(1)′ σ(2)′ · · · σ(s)′

1′ 2′ · · · s′

⊗ T 2 ⊗ T 3.

Note that we have changed the indexing set from σ ∈ Ss to σ−1 ∈ Ss - of course this only
amounts to a reordering of the terms. Using skew-symmetry, we can interchange the 2-nd
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and 3-rd rows of the 1-st tableaux in the terms on the RHS. This amounts to changing the
signs of the corresponding tableaux by (−1)s = −1, since s is odd. We get

πµ(T0) =
∑

σ−1∈Ss

(−1)s ·

1 2 · · · · · · · · · r̂

1′ 2′ · · · s′

σ(1)′ σ(2)′ · · · σ(s)′

⊗ T 2 ⊗ T 3 = −πµ(T0),

i.e. πµ(T0) = 0, as desired.
To finish up, we need to check that T0 6= 0. As for the classical Strassen’s equations

(Section 5.3), we show that the monomial m shows up only with coefficient 1 in T0 = cλ ·m,
with

m =
∏
i∈A

z({ai},{bi},{ci}),

where ai, bi, ci denote the indices of the boxes of T 1
0 , T 2

0 and T 3
0 respectively, that contain

an entry equal to i. For example a1 = b1 = c1 = 1, a1′ = r̂ + 1, b1′ = r + 1, c1′ = 2, etc.
As before, it’s enough to show that if for some permutation σ of the alphabet A, σ(T0) is
obtained from T0 by a column permutation σC , followed by a row permutation σR, then
sgn(σC) = 1.

Note first, by looking at T 2
0 , that a column permutation followed by a row permutation

can’t send a box labeled i′′ to one labeled j′, i.e. σ(j′) 6= i′′ for all i, j ∈ {1, · · · , s}.
Similarly, by looking at T 3

0 we conclude that σ(i′′) 6= j′ for all i, j ∈ {1, · · · , s}. This means
that the column permutation σC restricted to the tableau T 1

0 must be a product of column
transpositions, each interchanging an element in the first row of T0 with one in the second
or third row of T0. Write σC = σ1

C · σ2
C · σ3

C , where σiC is the restriction of σC to the i-th
tableau of T0, and similarly σR = σ1

R · σ2
R · σ3

R. We have

σ1
C =

∏
i∈I

(i, i′)1 ·
∏
j∈J

(j, j′′)1,

where I, J are disjoint subsets of {1, · · · , s}, and (i, i′)1, (j, j′′)1 denote the transpositions
interchanging the boxes labeled {i, i′} and {j, j′′} respectively (the significance of the index
1 is that the transpositions occur in the first factor). In particular

sgn(σ1
C) = (−1)|I|+|J |.

It follows now that, since σ = σR ·σC , we must have that σ2
R is a product of transpositions

interchanging boxes labeled by elements in J with boxes labeled by elements in J ′′ = {j′′ :
j ∈ J}. Similarly, σ1

R is a product of transpositions interchanging boxes labeled by I with
those labeled by I ′ (in some order). We may therefore write

σkR · σkC = τ kC · τ kR, k = 2, 3,



67

where
τ 2R =

∏
j∈J

(j, j′′)2, τ
3
R =

∏
i∈I

(i, i′)3,

τ 2C = τ̂ 2C ·
∏
i∈I

(i, i′)2, τ
3
C = τ̂ 3C ·

∏
j∈J

(j, j′′)3,

for some column permutations τ̂ 2C , τ̂
3
C .

Note that sgn(σkR) = sgn(τ kR), k = 2, 3, since the given permutations are products of the
same number of transpositions (|J | and |I| respectively). This means that sgn(σkC) = sgn(τ kC),
and moreover

sgn(σ2
C) = sgn(τ̂ 2C) · (−1)|I|,

sgn(σ3
C) = sgn(τ̂ 3C) · (−1)|J |.

It follows that

sgn(σC) = sgn(σ1
C) · sgn(σ2

C) · sgn(σ3
C) = (−1)|I|+|J | · sgn(τ̂ 2C) · (−1)|I| · sgn(τ̂ 3C) · (−1)|J |

= sgn(τ̂ 2C) · sgn(τ̂ 3C).

Observe now that

σ1
C · (

∏
i∈I

(i, i′)2 · τ 2R) · (
∏
j∈J

(j, j′′)3 · τ 3R)(T0) = τ(T0),

for some permutation τ of the alphabet A, and that the condition

σR · σC(T0) = σ(T0),

can be rewritten as
σ1
R · τ̂ 2C · τ̂ 3C · τ(T0) = σ(T0).

This means that the three permutations σ1
R, τ̂ 2C and τ̂ 3C induce the same permutation of the

alphabet A, in particular sgn(τ̂ 2C) = sgn(τ̂ 3C), and thus their product, which equals sgn(σC),
is equal to 1. We get that sgn(σC) = 1, which is the same as saying that the coefficient
of m in cλ ·m corresponding to the permutation σ is equal to 1, finishing the proof of the
proposition.

5.5 The Salmon Problem: finding the defining ideal of

σ4(Seg(P3 × P3 × P3))

The known equations for σ4(Seg(P3 × P3 × P3)) = σ4(Seg(PV1 × PV2 × PV3)), where
dim(Vi) = 4, i = 1, 2, 3, consist of ([LM08],[BO10])
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• the generalized Strassen’s equations, of degree 5, with r = 3, s = 1, i.e. the module

S(3,1,1)V1 ⊗ S(2,1,1,1)V2 ⊗ S(2,1,1,1)V3,

together with its permutations.

• a module of equations of degree 9, isomorphic to

S(3,3,3)V1 ⊗ S(3,3,3)V2 ⊗ S(3,3,3)V3,

which we won’t discuss here.

• the module of equations of degree 6

S(3,1,1,1)V1 ⊗ S(2,2,2)V2 ⊗ S(2,2,2)V3,

together with its permutations.

In what follows, we shall give the generic version of the latter. We are in the situation of
Example 5.1.3, with n = 3, d1 = d2 = d3 = 1, r = 6, λ1 = (3, 1, 1, 1), λ2 = λ3 = (2, 2, 2). We
prove that Tab(λ, d, n) is one dimensional, generated by

T0 =

1 5 6
2
3
4

⊗
1 3
2 4
5 6

⊗
1 2
3 4
5 6

,

and that T0 gives generic equations for the variety of secant 3-planes of a triple Segre product,
i.e. πµ(T0) = 0 for every partition µ ` 6 with exactly 4 parts.

To see that T0 spans, choose any T ∈ Tab(λ, d, n). We may assume by symmetry that
T 1 = T 1

0 . Also, using the skew-symmetry on columns, and the shuffling relations, we may
assume that T 1 and T 2 are standard, i.e. their entries are increasing along both rows and
columns. Let us show first that if any three of {1, 2, 3, 4} lie in the same column of T 2 or T 3,
then T = 0. Say this is the case, and the first column of T 2 consists of {1, 2, 3}. It follows
that, since T 3 has only two columns, we can find {i, j} ⊂ {1, 2, 3} such that {i, j} appear in
the same column of each of T 1, T 2 and T 3. The usual argument of switching i with j shows
then that T = 0.

We assume now that no three of {1, 2, 3, 4} appear in the same column of T 2 or T 3. Since
we can also assume that T 2, T 3 are standard, and that no pair {i, j} appears in the same
column of each of T 1, T 2 and T 3, then in fact we see that there are only two possibilities for
T , namely

T 1 ⊗
1 3
2 4
5 6

⊗
1 2
3 4
5 6

, T 1 ⊗
1 2
3 4
5 6

⊗
1 3
2 4
5 6

.
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The first 3-tableau is precisely T0, while the second one is −T0 (after interchanging 2, 3
everywhere by symmetry, and then interchanging the 2 and 3 in T 1, by skew-symmetry).
In any case, we see that T0 spans. We could give a tedious argument as in the preceding
sections to show that T0 6= 0, but we prefer to use a Macaulay2 calculation ([GS]) using the
SchurRings package, which shows that the multiplicity of SλV inside S(6)(V1 ⊗ V2 ⊗ V3) is
indeed equal to 1.

It remains to prove that πµ(T0) = 0 whenever µ ` 6 has exactly 4 parts. As in Section
5.4, it suffices to concentrate on partitions A = A1∪ · · ·∪A4 where no two elements in some
Ai live in the same column of T0. We see at once that this leaves us with only one choice
(up to reordering): µ = (2, 2, 1, 1) and

A1 = {1, 6}, A2 = {2}, A3 = {3}, A4 = {4, 5}.

We get

πµ(T0) =

1 4 1
2
3
4

⊗
1 3
2 4
4 1

⊗
1 2
3 4
4 1

.

Let T ′ = πµ(T0). Note that 1 and 4 show up the same number of times in each of the
tableaux of T ′, so we can interchange them by symmetry. We get

T ′ =

4 1 4
2
3
1

⊗
4 3
2 1
1 4

⊗
4 2
3 1
1 4

.

Now interchanging all the pairs (1, 4) occurring in the 5 columns of T ′, we change the sign
of the RHS 3-tableau by (−1)5 = −1. We get

T ′ = −
1 1 4
2
3
4

⊗
1 3
2 4
4 1

⊗
1 2
3 4
4 1

.

Using now the shuffling relation applied to the boxes in the 2-nd and 3-rd column of the first
tableau of the 3-tableau on the RHS, we get

T ′ = −T ′,

i.e. T ′ = 0, and πµ(T0) = 0, as desired.
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5.6 The Aronhold Invariant

The Aronhold Invariant is a module of equations of degree 4 for the variety of secant
planes to the 3-uple embedding of projective space, σ3(Ver3(PV )). It is isomorphic as a
representation to S(4,4,4)V . In what follows, we present the generic version of the Aronhold
invariant. We are in the situation n = 1, d1 = 3, r = 4. We will show that Tab(λ, d, n) is a
one-dimensional space, spanned by

T0 =
1 1 1 2
2 2 3 3
3 4 4 4

,

and that πµ(T0) = 0 for any partition µ ` 4 with exactly 3 parts.
We start by proving the last statement: there is only one partition of 4 with 3 parts,

namely µ = (2, 1, 1). Since any pair (i, j) with i 6= j ∈ A = {1, 2, 3, 4} appears in some
column of T0, it follows that πµ(T0) is a sum of tableaux with repeated entries in some
column, i.e. πµ(T0) = 0.

Let now T ∈ Tab(λ, d, n) be any (1−)tableau. Using the shuffling relations and skew-
symmetry, we may assume that T is standard, i.e. T has weakly increasing rows and strictly
increasing columns. It must then be the case that the first row of T starts as

1 1 1 .

Since the last column of T must have distinct entries, and T contains only three 1’s, it must
be that this last column equals

2
3
4
.

Now there’s a unique way to fill in T to a standard tableau, and that yields T0. To see that
T0 is nonzero, we do again a Macaulay2 calculation ([GS]), showing that the multiplicity of
SλV in S(4)(S(3)V ) is equal to 1, hence T0 must be a basis of Tab(λ, d, n).
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Chapter 6

Minors of Catalecticants

In this chapter we prove three cases of Conjecture 1.3.1, namely when k = 2, 3 and 4. The
case k = 2 was already known by work of Pucci, but we give a simpler argument. Except
for this case, all the proofs are representation theoretic, and only work in characteristic
zero. The basic strategy is to show that for each k(= 2, 3, 4), the equations of degree k of
σk−1(Verd(Pn)) coincide with the space of k × k minors of any of the middle catalecticant
matrices (where “middle” here means from the (k− 1)-st to the (d− k + 1)-st). It has been
proved recently ([BB10]) that for large values of k, k × k minors of catalecticant matrices
aren’t enough to generate the ideal of σk−1(Verd(Pn)) even when d is very large. However,
we do not know if it will still be the case that for larger values of k (k ≥ 5), the equations
of degree k of σk−1(Verd(Pn)) will coincide with the minors of the middle catalecticants for
sufficiently large d.

In Section 6.k, k = 1, 2, 3, we shall write Fa,b for the space F k+1,k+1
A,B introduced in Defini-

tion 3.2.11, where A = (a) and B = (b) give a decomposition of d = (d) (i.e. a+ b = d). We
refer to Fa,b as the space of generic (k+ 1)× (k+ 1)-minors of the a-th catalecticant matrix.
In general we shall write simply d for the 1-tuple d = (d).

6.1 2× 2 Minors

In this section we give two proofs of the following result of Pucci, which is the case k = 2
of Conjecture 1.3.1. The first proof works in arbitrary characteristic, while the second one
is a characteristic zero proof meant to illustrate the methods that we shall use in the case
of higher minors.

Theorem 6.1.1 ([Puc98]). Let K be a field of arbitrary characteristic and let n, d ≥ 2 be
integers. For all t with 1 ≤ t ≤ d− 1 we have

I2(Cat(1, d− 1;n)) = I2(Cat(t, d− t;n)).
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Proof in arbitrary characteristic. For multisets m1,m2, n1, n2 we let

[m1,m2|n1, n2] =

∣∣∣∣ zm1∪n1 zm1∪n2

zm2∪n1 zm2∪n2

∣∣∣∣ .
With this notation, we have the following identity for multisets u1, u2, v1, v2, α1, α2, β1, β2:

[u1 ∪ u2, v1 ∪ v2|α1 ∪ α2, β1 ∪ β2] = [u1 ∪ α1, v1 ∪ β1|u2 ∪ α2, v2 ∪ β2]
+ [u1 ∪ β2, v1 ∪ α2|v2 ∪ α1, u2 ∪ β1].

(6.1.1)

We shall prove that I2(Cat(a, b;n)) ⊂ I2(Cat(a+ 1, b− 1;n)) for a+ b = d and 1 ≤ a ≤
d− 2. This is enough to prove the equality of the 2× 2 minors of all the catalecticants, since
I2(Cat(1, d − 1;n)) = I2(Cat(d − 1, 1;n)). Since the ideal I2(Cat(a, b;n)) is generated by
minors [m1,m2|n1, n2] with |m1| = |m2| = a and |n1| = |n2| = b, it follows from 6.1.1 that
it’s enough to decompose m1,m2, n1, n2 as

m1 = u1 ∪ u2, m2 = v1 ∪ v2, n1 = α1 ∪ α2, n2 = β1 ∪ β2,

in such a way that

|u1|+ |α1| = |v1|+ |β1| = a+ 1, |u2|+ |α2| = |v2|+ |β2| = b− 1,

|u1|+ |β2| = |v1|+ |α2| = b− 1, |v2|+ |α1| = |u2|+ |β1| = a+ 1,
(6.1.2)

or

|u1|+ |α1| = |v1|+ |β1| = a+ 1, |u2|+ |α2| = |v2|+ |β2| = b− 1,

|u1|+ |β2| = |v1|+ |α2| = a+ 1, |v2|+ |α1| = |u2|+ |β1| = b− 1.
(6.1.3)

If a ≤ 2b − 2, then we can find 0 ≤ x, y ≤ b − 1 with x + y = a. Choose any such x, y
and decompose

m1 = u1 ∪ u2, m2 = v1 ∪ v2, with |u2| = |v1| = x and |u1| = |v2| = y,

and

n1 = α1 ∪ α2, n2 = β1 ∪ β2, with

|α1| = x+ 1, |β1| = y + 1, |α2| = b− 1− x and |β2| = b− 1− y.

It’s easy to see then that 6.1.2 is satisfied.
If b ≤ 2a+ 2, then since b ≥ 2 (a ≤ d− 2), we can find 1 ≤ x, y ≤ a+ 1 with x+ y = b.

Choose any such x, y and decompose

n1 = α1 ∪ α2, n2 = β1 ∪ β2, with |α2| = |β1| = x and |α1| = |β2| = y,
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and

m1 = u1 ∪ u2, m2 = v1 ∪ v2, with

|u1| = a+ 1− y, |v1| = a+ 1− x, |u2| = y − 1 and |v2| = x− 1.

It’s easy to see then that 6.1.3 is satisfied.
If neither of a ≤ 2b− 2 and b ≤ 2a+ 2 holds, then

a ≥ 2b− 1 ≥ 2(2a+ 3)− 1 = 4a+ 5,

so 0 ≥ 3a+ 5, a contradiction.

Proof in characteristic zero. By Proposition 3.3.5, it’s enough to treat the “generic case”.
We want to show that for positive integers a, b with a + b = d, and N = 2d, all SN -
subrepresentations Fa,b ⊂ Ud

2 = indSNSd∼S2
(1) are the same. Clearly the trivial representation

[(N)] is not contained in any Fa,b, so

Fa,b ⊆ Ud
2 /[(N)] =

bd/2c⊕
i=1

[(2 · (d− i), 2 · i)], for all a, b with a+ b = d.

(see [Mac95, I.8, Ex. 6] for the formula of the decomposition of Ud
2 into irreducible repre-

sentations; as the rest of the proof will show, we don’t really need the precise description of
this decomposition).

We will finish the proof by showing that all of the above inclusions are in fact equalities.
To see this, it’s enough to prove that for any a, b with a + b = d, any partition λ with two
parts, and any monomial m = zα · zβ, with α t β = {1, · · · , N}, we have cλ ·m ∈ Fa,b. Fix
then such a, b, λ = (λ1, λ2) and m = zα · zβ.

Recall from Section 3.2 that we can identify cλ ·m with a tableau T of shape λ with 1’s in
the positions indexed by the elements of α, and 2’s in the positions indexed by the elements
of β. Recall also that if T has repeated entries in a column, then T = 0. Since permutations
within columns of T can only change the sign of T , and permutations of the columns of T
of the same size don’t change the value of T (Lemma 3.2.10), we can assume in fact that
m = z{1,··· ,d} · z{d+1,··· ,N} and

T = cλ · z{1,··· ,d} · z{d+1,··· ,N} = 1 1 1 · · · 2 2 · · ·
2 2 · · · .

Consider the sets

α1 = {2, · · · , a+ 1}, α2 = {1, · · · , d} \ α1, β1 and β2 = {d+ 1, · · · , N} \ β1,

where β1 is any subset with a elements of {d + 1, · · · , N} containing λ1 + 1. Let T̃ be the
tableau obtained from T by circling the boxes corresponding to the entries of α1 and β1 (see
Definition 3.2.13). We have

T̃ = cλ · [α1, β1|α2, β2] = cλ(zα1∪α2 · zβ1∪β2 − zα1∪β2 · zα2∪β1) = T − T ′,
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where T ′ is a tableau with two equal entries in its first column, i.e. T ′ = 0. We get

T = T̃ ∈ Fa,b,

completing the proof.

Remark 6.1.2. The characteristic zero case also follows by inheritance (Propositions 3.1.6
and 3.3.5): since all the partitions λ that show up have at most two parts, it suffices by
inheritance to prove the theorem when n = 2, but in this case all the catalecticant ideals are
the same, as remarked in the introduction (1.3.1).

6.2 3× 3 Minors

We are now ready to give an affirmative answer to Geramita’s questions Q5a and Q5b in
the introduction.

Theorem 6.2.1. Let K be a field of characteristic 0 and let n ≥ 2, d ≥ 4 be integers. The
following statements hold:

1. For all t with 2 ≤ t ≤ d− 2 we have

I3(Cat(2, d− 2;n)) = I3(Cat(t, d− t;n)).

2. There is a strict inclusion

I3(Cat(1, d− 1;n)) ( I3(Cat(2, d− 2;n)).

3. Any of the ideals I3(Cat(t, d − t;n)), 2 ≤ t ≤ d − 2, is the ideal of the first secant
variety to the d-th Veronese embedding of Pn−1K .

Proof. To prove (1), it suffices by Proposition 3.3.5 to show that F2,d−2 = Ft,d−t ⊂ Ud
3 for

2 ≤ t ≤ d− 2. The λ-highest weight spaces of all Ft,d−t, 2 ≤ t ≤ d− 2, are the same when λ
has at most two parts. This follows by inheritance: combine Proposition 3.3.5 with the fact
that the theorem is known when n = 2 (1.3.1). We shall prove that when λ has three parts,
the λ-part of Ft,d−t is equal to the λ-part of Ud

3 for all t with 1 ≤ t ≤ d− 1 (we already know
this when t = 1, by Proposition 3.2.14). This will imply (1) and the inclusion of (2). The
reason why this inclusion is strict for d ≥ 4 is because it is already strict when n = 2, and
because inheritance holds for catalecticant ideals.

Consider a partition λ = (λ1, λ2, λ3) with 3 parts, a monomial m ∈ Ud
3 with corresponding

tableau T = cλ ·m, and integers 2 ≤ a ≤ b with a + b = d. We shall prove that T ∈ Fa,b.
We will see that if λ has only one entry in the second column, then T = 0, so let’s assume
this isn’t the case for the moment. We may also harmlessly assume that T has no repeated
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entries in a column. Since permuting the numbers 1, 2, 3 in the tableau T doesn’t change
T , and permutations within the columns of T preserve T up to sign, we may assume that T
contains the subtableau

1 1
2 2
3

in its first two columns (there may or may not be a third box in the second column of λ).
It follows that m = zγ1zγ2zγ3 , with γ1 = {1, 2, · · · }, γ2 = {λ1 + 1, λ1 + 2, · · · }, γ3 =

{λ1 + λ2 + 1, · · · }, |γi| = d. Consider subsets αi ⊂ γi, |αi| = a satisfying the conditions

1, 2 ∈ α1, λ1 + 1 ∈ α2, λ1 + 2 /∈ α2, λ1 + λ2 + 1 /∈ α3,

and let βi = γi \ αi, for i = 1, 2, 3. Let T̃ be the tableau obtained from T by circling the
entries of α1, α2, α3, so that T̃ ∈ Fa,b. T̃ looks like

T̃ =

'&%$ !"#1 '&%$ !"#1 · · ·'&%$ !"#2 2 · · ·
3 · · ·

.

We get

T̃ = cλ · [α1, α2, α3|β1, β2, β3] = T +
5∑
j=1

±Tj,

where each Tj is a tableau with repeated entries in one of its first two columns (i.e. Tj = 0).
It follows that

T = T̃ ∈ Fa,b,
which is what we wanted to prove.

To see that T = cλ ·m = 0 for all monomials m when λ = (3d−2, 1, 1), it suffices to notice
that if σ is the transposition of the (3d− 1)-st and 3d-th boxes of λ (the 2nd and 3rd boxes
in the first column of λ), then σ(T ) = cλ · (σ ·m) and T are the same up to permutations
of columns size 1 (and permutations of the entries of the alphabet A = {1, 2, 3}). It follows
that

cλ ·m = cλ · (σ ·m) = (cλ · σ) ·m = −cλ ·m,
so that T = cλ ·m = 0, as desired. Alternatively, see [Mac95, I.8, Ex. 9] for a description of
the decomposition of Ud

3 into a sum of irreducible representations.
As mentioned in the introduction, part (3) follows from (1), (2) and the result of Kanev

([Kan99], see also [Lan, Corollary 6.4.2.4], or the (n =)1-factor case of Theorem 4.1.1). We
include a short argument for completeness: by Propositions 3.2.14 and 3.3.5, for λ a partition
with at least 3 parts the λ-part of S(r)S(d)V is contained in I3(1, d− 1;n), hence by part (2)
also in I3(t, d− t;n) for all t. It is also contained in the ideal of σ2(Verd(PV ∗)), by the last
part of 3.1.6. It remains to check that the modules corresponding to partitions with at most
2 parts in the ideal of σ2(Verd(PV ∗)) are the same as those in I3(t, d− t;n) for 2 ≤ t ≤ d−2,
but this follows by inheritance from the case of the rational normal curve (1.3.1).
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6.3 4× 4 Minors

In this section, we prove Conjecture 1.3.1 in the case k = 4.

Theorem 6.3.1. Let F be a field of characteristic 0 and let n ≥ 2, d ≥ 6 be integers. The
following statements hold:

1. For all t with 3 ≤ t ≤ d− 3 one has

I4(Cat(3, d− 3;n)) = I4(Cat(t, d− t;n)).

2. If n ≥ 3, then there exist strict inclusions

I4(Cat(1, d− 1;n)) ( I4(Cat(2, d− 2;n)) ( I4(Cat(3, d− 3;n)).

Proof. By the polarization-specialization technique of Section 3.3, it suffices to prove the
theorem in the generic case. Namely, we want to show that F3,d−3 = Ft,d−t for 3 ≤ t ≤ d− 3
and that F1,d−1 ( F2,d−2 ( F3,d−3. Furthermore, it suffices to prove these relations for
the λ-parts of the corresponding representations, one partition λ at a time. When λ is a
partition with at most two parts, the theorem follows by inheritance from the case n = 2 of
the rational normal curve (1.3.1). Note that this yields the strict inclusion F2,d−2 ( F3,d−3,
but does not distinguish between F1,d−1 and F2,d−2. When n = 3, the catalecticant matrix
Cat(1, d − 1;n) has three rows, so I4(Cat(1, d − 1;n)) = 0, whereas Cat(2, d − 2;n) has at
least 4 rows and 4 columns. It is then easy to see that I4(Cat(2, d−2;n)) is nonzero, so that

I4(Cat(1, d− 1; 3)) ( I4(Cat(2, d− 2; 3)).

The strict inclusion for n > 3 follows by inheritance.
One important tool that we’ll be exploiting throughout the proof of Theorem 6.3.1 is

Corollary 3.2.16. We shall also make use of the basic relations of Lemma 3.2.10.

Lemma 6.3.2. Consider a partition λ = (λ1 ≥ λ2 ≥ λ3 ≥ λ4) with λ3 = 1, and the tableau
T ∈ hwtλ(U

d
4 ),

T =

1 1 · · · 1 1 · · · 1 1 · · · 1 · · ·
2 2 · · · 2 3 · · · 3 4 · · · 4
3
∗

,

where the entry ∗ appears only if λ4 = 1, in which case it is equal to 4. Let’s assume that

T has a columns equal to 1
2

, b columns equal to 1
3

and c columns equal to 1
4

. If a = b

then T = 0, otherwise T is a linear combination of tableaux T ′, where each T ′ is a tableau

whose first column and 1
4

-columns are the same as those of T , and which also contains the

column 2
3

and at least min(a, b) of each of the columns 1
2

and 1
3

.
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Proof. Suppose first that a = b. Interchanging the 2’s and the 3’s in T yields a tableau
T ′ = T ∈ hwtλ(U

d
4 ), but since T ′ differs from T by the transposition of the 2-nd and 3-rd

entries in the first column, and by permutations of columns of the same size, it follows from
parts (1) and (2) of Lemma 3.2.10 that

T = T ′ = −T, i.e. T = 0.

Assume now that a > b. Since T has the same number (d) of entries equal to 2 and 3,
there must be a column of size one of T whose entry equals 3. It follows that T contains the
subtableau

S = 1 3
2

,

and thus we can use the shuffling relation (3) of Lemma 3.2.10,

1 3
2

= 1 2
3

+ 3 1
2

= 1 2
3

− 2 1
3

,

to write
T = T1 − T ′,

where T1 is obtained from T by interchanging the 2 and 3 in S, and T ′ is obtained from T
by applying the permutation (1, 2, 3) (in cycle notation) to the entries in S. It follows that

T ≡ T1 mod U,

where U is the subspace of hwtλ(U
d
4 ) spanned by tableaux T ′, with T ′ containing the column

2
3

and at least min(a, b) of each of 1
2

and 1
3

, as in the statement of the lemma. Repeating

this process, we obtain after s steps that

T ≡ Ts (mod U),

where Ts is obtained from T by interchanging (a− b) 2’s from the 1
2

-columns with (a− b)
3’s from the columns of T of size one. If we now interchange the 2’s and 3’s in Ts, we get
a tableau that differs from T by a transposition in the first column and permutations of
columns of the same size. It follows that

Ts = −T,

so that
T ≡ −T (mod U)⇐⇒ 2T ∈ U ⇐⇒ T ∈ U.
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6.3.1 Diagrams with 4 rows

Lemma 6.3.3. For every partition λ of 4d with four parts, the λ-part of Ud
4 is contained in,

and hence equal to, the λ-part of each of Fi,d−i, for i = 1, · · · , d− 1.

Proof. We know this already for i = 1 (and hence also for i = d− 1) by Proposition 3.2.14.
We fix i with 2 ≤ i ≤ d/2 for the rest of the proof. We want to show that any tableau
T ∈ hwtλ(U

d
4 ) of shape λ is contained in Fi,d−i. We have several cases, according to the

shape of λ.
Our basic strategy will be to show that T = T̃ , where T̃ is obtained from T by circling

i entries of each of 1, 2, 3, 4. We shall always picture a subset of the entries of T , some of
which will be circled (at most i of each of 1, 2, 3, 4). The understanding will be that there
are other circled entries, to make up for a total of i circled 1’s, 2’s, 3’s and 4’s. It will always
be the case that the equality T = T̃ will be a consequence of the fact that any permutation
σ ∈ S4 applied to the circled entries will produce a repetition in one of the shown columns.

(1) The first two columns of λ have size 4.
Without loss of generality, we may assume the first 2 columns of T are

1 1
2 2
3 3
4 4

.

The reason for this is because if T had repetitions in one of its columns, then it would be
zero. Otherwise, the entries in each of its first two columns have to be {1, 2, 3, 4}, in some
order. We can rearrange them (at the cost of maybe changing the sign of T , according to
relation (1) of Lemma 3.2.10) so that we get the columns pictured above. In general, we will
argue without loss of generality for the choice of the pictured entries of T , and the reasoning
behind it will be along the lines of the argument just presented. This is why we shall skip
most of the details in the future cases. We let

T̃ =

'&%$ !"#1 '&%$ !"#1'&%$ !"#2 2
3 '&%$ !"#3
4 4

.

Let us check that T = T̃ in this case (again, the following cases will be very similar and we
ask the reader to fill in the necessary details). We have

T̃ =
∑
σ∈S4

sgn(σ) · σ(T ).

We claim that if σ is not the identity, then σ(T ) has repeated entries in one of its first two
columns, and is thus equal to zero: if σ(1) = 3 or σ(1) = 4, we get a repetition in the first
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column, while if σ(1) = 2 we get a repetition in the second column. We may thus assume
that σ(1) = 1. If σ(2) = 3 or σ(2) = 4, then we get a repetition in the first column, so we
may assume that σ(2) = 2. If σ(3) = 4, then we get a repetition in the second column, thus
we assume that σ(3) = 3 which forces σ to be the identity.

(2) We can find two columns of λ, different from the first one, which contain two pairs of
numbers forming a partition of {1, 2, 3, 4}.

We may assume that the two pairs are {1, 2} and {3, 4}, in which case we let

T̃ =

'&%$ !"#1 '&%$ !"#1 '&%$ !"#3'&%$ !"#2 2 4
3
4

.

(3) The second column of λ has size 3, the third column of λ has size at least 2, and (2)
doesn’t happen.

Up to renumbering the entries of T and column permutations, we have one of

T̃ =

1 1 1
2 2 '&%$ !"#2
3 '&%$ !"#3'&%$ !"#4

or T̃ =

'&%$ !"#1 1 1
2 '&%$ !"#2 '&%$ !"#4
3 3'&%$ !"#4

.

(4) The second column of λ has size 3, and all the others have size 1.
We may assume that the first three columns of T are

1 1 4
2 2
3 3
4

.

By part (3) of Lemma 3.2.10 applied with t = 4, C the second column of T , and b = 4, the
entry of the unique box in the third column of T , we get

T =

1 4 1
2 2
3 3
4

+

1 1 2
2 4
3 3
4

+

1 1 3
2 2
3 4
4

= −
4 4 1
2 2
3 3
1

−
1 1 2
4 4
3 3
2

−
1 1 3
2 2
4 4
3

= −3T,

so that T = 0. The reason why each of the tableaux on the last row are equal to T is because
we can permute in each case the entries {1, 2, 3, 4} so that we get tableaux that coincide with
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T (in their first three columns). But this is enough for those tableaux to be equal to T , by
part (2) of Lemma 3.2.10: all the columns that are not shown have size one, so their order
is irrelevant.

(5) The second column of λ has size 2.
If T contains the subtableau

S =

1 1 1 2
2 2 3 3
3
4

,

then we take

T̃ =

1 '&%$ !"#1 '&%$ !"#1 '&%$ !"#2
2 2 3 3
3'&%$ !"#4

We show that the tableaux containing S, together with the ones satisfying (2), span the
λ-highest weight space of Ud

4 .
If T doesn’t satisfy (2), we may assume that it contains the subtableau

S ′ =

1 1 1
2 2 3
3
4

.

To see this, note first that the third column of T must have two entries, otherwise T = 0: if
there is just one entry in the third column of T , we may assume that the first two columns
are

S ′′ =

1 1
2 2
3
4

.

Interchanging the 3’s and 4’s in T preserves the element T ∈ hwtλ(U
d
4 ), and yields a tableau

differing from T by a transposition in its first column, and permutations of columns (of size
one). This shows that T = −T , i.e. T = 0. We may thus assume that the third column of
T has size two. We may still assume that the first two columns of T are given by S ′′. Using
the relation

a 1
b

= 1 a
b

+ a b
1

= 1 a
b

− 1 b
a

,

we may assume that the third column of T has the form 1
∗ . If ∗ = 4, then we interchange
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the 3’s and 4’s in T and get that T contains

1 1 1
2 2 3
4
3

which is S ′ up to sign (transposing 3 and 4 in the first column). Now if ∗ = 1 then T = 0,
while if ∗ = 3 then T contains S ′. If ∗ = 2, then using the relation

1 3
2

= 3 1
2

+ 1 2
3

= − 2 1
3

+ 1 2
3

,

we may assume that the third column of T is either 1
3

(so that T contains S ′), or 2
3

.

Interchanging the 1’s and 2’s in T in the latter case, it follows that T contains

2 2 1
1 1 3
3
4

= (−1)2 ·
1 1 1
2 2 3
3
4

= S ′.

We may thus assume that T contains S ′. If all the other columns of T have size 1, then

T = 0 by Lemma 6.3.2. If T contains the column 2
3

then T contains S, which is the case

already discussed. If T contains one of 2
4

or 3
4

, then we’re in case (2). Otherwise, every

column of T is one of 1
2

, 1
3

or 1
4

, so Lemma 6.3.2 applies to give the desired conclusion.

6.3.2 Diagrams with 3 rows

Throughout the rest of this chapter µ denotes the partition (2, 1, 1) of 4. Ud
µ is the S4d-

representation introduced in Definition 3.2.4. For a partition λ ` 4d, hwtλ(U
d
µ) is the space

of tableaux of shape λ containing d 1’s, d 2’s and 2d 3’s (see Definition 3.2.8). Recall that
a standard tableaux is one that has weakly increasing rows and strictly increasing columns.
We have the following

Proposition 6.3.4. Let λ be a partition of 4d with (at most) three parts. The vector space
hwtλ(U

d
µ) has a basis consisting of the standard tableaux with an even number of columns

containing 1
2

.
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Proof. Recall that Ud
µ is the generic version of the more familiar GL(V )-representation

S(2)(S(d)V ) ⊗ S(2d)V , so the two spaces decompose in the same way into irreducible rep-
resentations (with respect to the combinatorial data given by partitions of 4d). We have
([FH91] or [Mac95])

S(2)(S(d)V ) =
⊕
ρ`2d
ρ2 even

SρV.

It follows for the generic version Ud
2 (= Ud

(1,1)) of S(2)(S(d)V ) that

Ud
2 =

⊕
i≤d/2

[(2d− 2i, 2i)],

and that a basis for hwt(2d−2i,2i)(U
d
2 ) consist of the tableaux

T (i) = 1 · · · 1 1 · · · 2 · · ·
2 · · · 2

with 2i columns equal to 1
2

. S(2d)V is irreducible, and so is its generic version, the trivial

representation Ud
(2) of S2d, having a basis consisting of the tableau

t = 3 3 · · · 3

(in order to stick to our usual notation, we should be writing 1’s instead of 3’s for the entries
of the above tableau, but the 3’s are more suggestive for what is to follow). Pieri’s formula
now implies that

S(2)(S(d)V )⊗ S(2d)V =
⊕

(SλV )mλ ,

where mλ is the number of ways of obtaining a tableau of shape λ by starting with one of
the T (i)’s, and adding 2d 3’s, no two in the same column. This procedure yields precisely
all the standard tableaux of shape λ, with d 1’s, d 2’s and 2d 3’s, having an even number of

columns containing 1
2

. It follows that these standard tableaux form a basis for hwtλ(U
d
4 ),

as long as we can prove that they span.
Since our tableaux satisfy skew-symmetry on rows, and the usual shuffling relations, it

follows that standard tableaux span hwtλ(U
d
4 ). Consider now a standard tableau T , with

an odd number of columns containing 1
2

, say a. We prove that T is a linear combination

of tableaux with at least a + 1 columns containing 1
2

. The argument is similar to that of

Lemma 6.3.2.

Suppose that T contains b columns equal to 1
3

and c columns equal to 2
3

. We have

b ≥ c, since there’s the same number of 1’s and 2’s in T , and there can be no 1 to the right
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of a column equal to 2
3

, because T is standard. Also, there are at least b− c columns of T

of size one with their entry equal to 2. Using the relation

S = 1 2
3

= 1 3
2

+ 2 1
3

on a subtableau S of T consisting of a 1
3

-column of T and a 2 -column of T , we can write

T = T ′ + T1,

where T ′ has (a + 1) 1
2

-columns, and T1 has (b − 1) 1
3

-columns and (c + 1) 2
3

-columns.

Repeating this procedure (b − c) times, we get that T ≡ Tb−c modulo the space Ua+1 of

tableaux with at least (a + 1) 1
2

-columns, and Tb−c differs from T by replacing (b − c) of

its 1
3

-columns with (b − c) 2
3

-columns, and (b − c) of its 2 -columns with 1 -columns.

Interchanging the 1’s and 2’s in Tb−c (and possibly permuting some columns), we recover
the tableau T , with the 1’s and 2’s in its first a columns interchanged. Since a is odd, the
skew-symmetry of tableaux implies that Tb−c = −T , hence

T ≡ −T (mod Ua+1)⇐⇒ T ∈ Ua+1,

as desired.

Diagrams with λ3 ≥ 2

Lemma 6.3.5. If T ∈ Ud
4 is a tableau containing

1 1 3
2 2 4
3 4 ∗

as a subtableau (where ∗ indicates that there might or might not be a box in the corresponding
position), then T ∈ Fi,d−i for all 2 ≤ i ≤ d− 2.

Proof. If there’s a box in the ∗-position (λ3 ≥ 3), we may assume its entry is a 1, in which
case T is equal to

T̃ =

'&%$ !"#1 '&%$ !"#1 '&%$ !"#3
2 '&%$ !"#2 4'&%$ !"#3 4 1

.

Assume now that there is no box in the ∗-position, and that all the columns of λ, except
the first three, have size 1 (λ2 = 3). Then interchanging 3 and 4 doesn’t change the element



84

T ∈ Ud
4 , but transforms T into a tableau that differs from it by permutations of columns,

and a column transposition (the 3 and 4 in the third column). This implies that T = −T ,
i.e. T = 0.

We’re left with the case when λ2 > 3 and 3
4

is a column of T . Applying the usual

shuffling relations (3) of Lemma 3.2.10, with C a column of T of size at least two, not in S ′,

and b = 1, we may assume that T has a column containing 1
a

, where a = 2 or a = 3 (which

is equivalent to a = 4, up to interchanging the 3’s and 4’s in T ). If a = 2, we take

T̃ =
1 1 '&%$ !"#1 '&%$ !"#3
2 2 2 4'&%$ !"#3 '&%$ !"#4 ∗

.

If a = 3, we take

T̃ =
1 '&%$ !"#1 '&%$ !"#1 '&%$ !"#3'&%$ !"#2 '&%$ !"#2 3 4
3 4 ∗

.

Lemma 6.3.6. If λ = (λ1, λ2, λ3) is a partition of 4d with three parts and λ3 ≥ 2, then the
restriction of the map π(2,1,1) to hwtλ(U

d
4 ) surjects onto hwtλ(U

d
µ) with kernel hwtλ(Fi,d−i)

for any i = 2, · · · , d− 2. Therefore, the λ-parts of all Fi,d−i (i 6= 1, d− 1) coincide.

Proof. We first show that hwtλ(U
d
4 ) is spanned by tableaux T whose first two columns are

S =
1 1
2 2
3 4

.

These tableaux together with the once whose first two columns are

1 1
2 2
3 3

span hwtλ(U
d
4 ), so it suffices to show that the latter are linear combinations of the former.

We use the shuffling relation (3) of Lemma 3.2.10 with C being the second column of a
tableau T of the latter type, and with b = 4. We get

T =
1 1 4
2 2
3 3

=
1 4 1
2 2
3 3

+
1 1 2
2 4
3 3

+
1 1 3
2 2
3 4

=
3 4 3
2 2
1 1

+
1 1 3
3 4
2 2

+
1 1 3
2 2
3 4
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=
1 1 3
2 2
3 4

+
1 1 3
2 2
3 4

+
1 1 3
2 2
3 4

, (*)

where in the above relations we only showed the relevant boxes, and we used freely the
symmetry and skew-symmetry of tableaux (as in Definition 5.1.1). Note that the three
tableaux in (*) are not the same (in general): they differ in the boxes that are not shown.
In any case, we wrote T as a sum of three tableaux containing the subtableau S in their first
two columns.

We turn our attention to tableaux of shape λ in hwtλ(U
d
µ). We let Tj denote the (unique)

standard tableau of shape λ with 2j columns containing 1
2

, for λ3 ≤ 2j ≤ min(λ2, d).

Proposition 6.3.4 states that the Tj’s give a basis for hwtλ(U
d
µ). For each Tj, we consider a

“lift” Lj, which is any tableau obtained from Tj by replacing the 3 in the 3-rd row and 2-nd
column of Tj, together with (d − 1) other 3’s (not in the first column of Tj), with 4’s. We
have that πµ(Lj) = Tj for all j, showing that the lifts Lj constructed in this way are linearly
independent modulo ker(πµ). Since every Fi,d−i is contained in ker(πµ), if we can show that
the Lj’s generate hwtλ(U

d
4 ) modulo Fi,d−i, for i = 2, · · · , d − 2, then it follows that in fact

we have the equality hwtλ(ker(πµ)) = hwtλ(Fi,d−i) for each such i.
We need one more lemma, which will show that the choice of the lifts Lj can be done

in an arbitrary way. More generally, once we fix the subtableau consisting of the first two
columns of a tableau T to be S, permuting the 3’s and 4’s in the other columns doesn’t
change T modulo any of the spaces Fi,d−i of generic flattenings.

Lemma 6.3.7. Let T ∈ hwtλ(U
d
4 ) be any tableau containing S as a subtableau, and let σ

be any permutation that interchanges some of the 3’s and 4’s of T , not contained in S. For
any i = 2, · · · , d− 2, we have that T − σ(T ) ∈ Fi,d−i.

Proof. If T has a column containing 3
4

, then T ∈ Fi,d−i for all i = 2, · · · , d− 2, by Lemma

6.3.5. The same lemma, or the fact that σ(T ) might have repeated entries in some column,
implies that σ(T ) ∈ Fi,d−i, thus T − σ(T ) ∈ Fi,d−i.

Assume now that T doesn’t have a column containing 3
4

. It’s enough to prove the lemma

for σ a transposition of two entries, 3 and 4. Assume that the column of 3 is to the left of
the column of 4. We apply the shuffling relation (3) of Lemma 3.2.10, with C the column of
3 and b = 4. We get

T = σ(T ) +
∑

T ′,

where the sum is empty if C has only one entry, and otherwise each T ′ is a tableau having

a column containing 3
4

. As we noted above, T ′ ∈ Fi,d−i, hence T − σ(T ) ∈ Fi,d−i.
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To finish the proof of Lemma 6.3.6, we note that because of the preceding lemma, the
last part of the proof of Proposition 6.3.4 carries over to show that the lifts Lj generate
hwtλ(U

d
4 /Fi,d−i), for any i = 2, · · · , d − 2. Since the Lj’s are linearly independent modulo

ker(πµ), the conclusion follows.

Diagrams with λ3 = 1

In this section, λ = (λ1, λ2, λ3) is a partition of 4d with three parts and λ3 = 1. The
proof strategy is similar to the one in the previous case. We show that hwtλ(U

d
4 ) is spanned

by tableaux T containing the subtableau

S =
1 1 2
2 4 4
3

,

and that modulo any Fi,d−i, any such T is invariant under permutations of 3’s and 4’s not
contained in S. We then show that tableaux T as above, with an even number of columns

containing 1
2

, span hwtλ(U
d
4 /Fi,d−i), and that they map via πµ to a subset of a basis of Ud

µ .

This suffices to conclude that all hwtλ(Fi,d−i) coincide with hwtλ(ker(πµ)), hence they are
the same. We start with the analogue of Lemma 6.3.5:

Lemma 6.3.8. If T ∈ hwtλ(U
d
4 ) is a tableau containing the subtableau

S ′ =
1 1 2 3
2 4 4 4
3

,

then T ∈ Fi,d−i for all i = 2, · · · , d− 2.

Proof. Suppose first that T has a column of size two not containing 4, say 1
2

. Then we take

T̃ =
1 '&%$ !"#1 '&%$ !"#2 '&%$ !"#3 '&%$ !"#1
2 4 4 4 2'&%$ !"#3

.

Otherwise, all the columns of T of size two must contain the entry 4, say a of them also
contain 1, b contain 2 and c contain 3. We may assume that a ≥ b, and apply the (by now
standard) argument of Lemma 6.3.2. We use the relation

1 2
4

= 2 1
4

+ 1 4
2

(a − b) times, with 2 being the entry of a column of size one. This is going to replace
T (modulo the space of tableaux previously analyzed, which is contained in Fi,d−i) with a
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tableau T ′ having a columns equal to 2
4

and b columns equal to 1
4

. Interchanging 1’s

and 2’s in T ′ we recover T , up to reordering columns and transposing the 1 and 2 entries
in its first column. This shows that T ′ = −T , which combined with T − T ′ ∈ Fi,d−i yields
T ∈ Fi,d−i.

Note that Lemma 6.3.7 applies, with the new S defined above: the proof is the same,
except for Lemma 6.3.5 being replaced with Lemma 6.3.8.

Lemma 6.3.9. The tableaux T of shape λ containing S span hwtλ(U
d
4 ).

Proof. We may assume that the first column of a tableau T ∈ hwtλ(U
d
4 ) has entries {1, 2, 3},

and using the usual shuffling relations, that 4 is contained in its second column. It follows
that up to changing the sign of T , its first two columns coincide with those of S. Assume
first that T has a column of size 2 not containing 1. Possibly using the shuffling relation

2 4
3

= 2 3
4

− 3 2
4

,

we may assume that T also contains one of 2
4

or 3
4

. If it contains the former, then T

contains S, otherwise we switch the 2’s and 3’s in T .
Consider now the situation when all the columns of T of size two contain 1. Lemma 6.3.2

implies that T is zero, or a linear combination of tableaux containing the columns 1
4

and

2
3

, which as we’ve seen are in turn combinations of tableaux containing S.

Lemma 6.3.10. If λ = (λ1, λ2, λ3) is a partition of 4d with three parts and λ3 = 1, then the
restriction of the map π(2,1,1) to hwtλ(U

d
4 ) has kernel hwtλ(Fi,d−i) for any i = 2, · · · , d − 2.

Therefore, the λ-parts of all Fi,d−i coincide.

Proof. We can use the argument of the proof of Proposition 6.3.4 to show that tableaux

T containing S and having an even number of columns equal to 1
2

span hwtλ(U
d
4 /Fi,d−i).

More precisely, for 1 ≤ 2j ≤ min(d, λ2) − 2, we choose Lj to be a tableau containing S

in its first three columns, having a total of 2j columns containing 1
2

, and such that the

tableau obtained from Lj by removing S is standard. The Lj’s form a spanning set for
hwtλ(U

d
4 /Fi,d−i).

We now show that πµ(Lj) are linearly independent in Ud
µ , which implies that hwtλ(Fi,d−i) =

hwtλ(ker(πµ)). For 1 ≤ 2j ≤ min(d, λ2), we let Sj denote the unique standard tableau in

hwtλ(U
d
µ) with 2j columns containing 1

2
. The Sj’s form a basis for hwtλ(U

d
µ), by Proposition
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6.3.4. We have

πµ(Lj) =
1 1 2 · · ·
2 3 3 · · ·
3

.

If πµ(Lj) doesn’t contain a column of size one whose entry is equal to 1, then after reordering

its columns of size two, so that the 1
2

’s come before the 1
3

’s, which in turn come before

the 2
3

’s, we obtain the tableau Sj. This shows that πµ(Lj) = Sj.

If πµ(Lj) contains a column of size one whose entry is 1, we let b = 1 be the entry in that
column, and C be the third column of πµ(Lj). Applying the shuffling relation (3) of Lemma
3.2.10, we get

πµ(Lj) =
1 1 1 · · ·
2 3 3 · · ·
3

−
1 1 1 · · ·
2 3 2 · · ·
3

.

Up to reordering columns of size two, the first tableau on the RHS of the above relation is

equal to Sj, while the second one is a tableau with 2j+ 1 columns containing 1
2

, i.e. by the

proof of Proposition 6.3.4, it is a linear combination of Sj+1, Sj+2, · · · .
Writing the elements πµ(Lj) as row vectors of coordinates with respect to the basis of

Sj’s we obtain a matrix in row-echelon form, with a pivot equal to 1 in every row. This
matrix has thus maximal rank, showing that the πµ(Lj)’s are linearly independent.
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