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An MBO Scheme on Graphs for Classification and Image Processing∗

Ekaterina Merkurjev†, Tijana Kostić†, and Andrea L. Bertozzi†

Abstract. In this paper we present a computationally efficient algorithm utilizing a fully or seminonlocal graph
Laplacian for solving a wide range of learning problems in binary data classification and image
processing. In their recent work [Multiscale Model. Simul., 10 (2012), pp. 1090–1118], Bertozzi and
Flenner introduced a graph-based diffuse interface model utilizing the Ginzburg–Landau functional
for solving problems in data classification. Here, we propose an adaptation of the classic numerical
Merriman–Bence–Osher (MBO) scheme for minimizing graph-based diffuse interface functionals,
like those originally proposed by Bertozzi and Flenner. We also make use of fast numerical solvers
for finding eigenvalues and eigenvectors of the graph Laplacian. Various computational examples
are presented to demonstrate the performance of our algorithm, which is successful on images with
texture and repetitive structure due to its nonlocal nature. The results show that our method is
multiple times more efficient than other well-known nonlocal models.
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1. Introduction. This work develops a fast algorithm for a recent variational method in
a graph setting. The method is inspired by diffuse interface models that have been used in
a variety of problems, such as those in fluid dynamics and materials science. We consider
data represented as nodes in a weighted graph, and each edge is assigned a numerical value
describing the similarity between the nodes. In spectral graph theory, this approach is suc-
cessfully used to perform various learning tasks in imaging and data clustering. The standard
techniques of the theory are thoroughly described in [13, 45], and the graph Laplacian, which
is discussed in more detail in section 2.2, is introduced as one of the fundamental concepts.
In imaging, spectral methods are often used in image segmentation applications, as shown in
[54, 33, 14].

We are particularly interested in nonlocal total variation methods, as they are a link be-
tween spectral graph theory and diffuse interface models and thus can be used as a motivation
for our algorithm. These methods are used in numerous image processing applications. They
were initially developed as methods for image denoising [9, 29] but were successfully applied
to many other image processing problems such as inpainting and reconstruction in [30, 63, 49],
image deblurring in [40], and manifold processing in [18].

Bertozzi and Flenner introduce a graph-based model based on the Ginzburg–Landau func-
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tional in their work [8]. To define the functional on a graph, the spatial gradient is replaced
by a more general graph gradient operator. Bertozzi and Flenner propose a classification
algorithm by minimizing the Ginzburg–Landau functional with a fidelity term,

(1.1) E(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx+ F (u, u0),

where u0 is the initial state of the system. They replace the ε
2

∫ | � u|2dx term with a more
general graph operator term, εu ·Lsu, to be discussed in detail in sections 2.2 and 2.3, so that

(1.2) E(u) = εu · Lsu+
1

ε

∫
W (u)dx+

∫
F (u, u0).

The functional is minimized using the method of gradient descent, resulting in the following
expression:

(1.3)
∂u

∂t
= −εLsu− 1

ε
W ′(u)− ∂F

∂u
.

Note that this is just the Allen–Cahn equation with a fidelity term, where Δu is replaced by
a graph operator term −Ls. Properties of the operator Ls will be explained in more detail in
sections 2.2 and 2.3. Taking F to be 1

2Cλ(x)(u− u0)
2 for some constant C, one obtains

(1.4)
∂u

∂t
= −εLsu− 1

ε
W ′(u)−Cλ(x)(u− u0).

The main purpose of this paper is to develop a fast and simple method for solving (1.4) in the
small ε limit. To achieve our goal, we created a graph-based MBO (Merriman–Bence–Osher)
scheme. The famous MBO scheme uses simple threshold dynamics to approximate motion
by mean curvature. Since the Allen–Cahn equation is closely related to motion by mean
curvature, the MBO scheme has been proven to be a very successful tool in solving different
variants of the Allen–Cahn equation. For example, the authors of [22] propose an adaptation
of the MBO scheme to minimize the piecewise constant Mumford–Shah functional. Inspired
by the efficiency and the robustness of the MBO scheme, we decide to adapt it solve (1.4).
However, the implementation of the proposed scheme poses many computational challenges.
The quadratic size of the graph Laplacian could make the iterative process of our algorithm
very computationally expensive. To reduce the dimension of the graph Laplacian and make
the computation more efficient, the authors of [8] propose the Nyström extension method
[25] for approximating eigenvalues and the corresponding eigenvectors of the graph Laplacian.
To maximize the performance of our algorithm, for each data set we use either the Nyström
extension or the Raleigh–Chebyshev algorithm proposed in [1]. The details of our algorithm
are discussed in section 3, after sections 2.2–2.4 on the relevant background.

There are several reasons for the efficiency of our algorithm. Our method is a geometric
approach to the minimization problem, as opposed to the more traditional L1 minimization
approach. In addition, our method is more simple and less computationally complex than
that described in the paper of Bertozzi and Flenner [8]. Moreover, we take advantage of
fast numerical solvers for eigenvalue/eigenvector decomposition as well as using only a small
number of principal components in our numerical iterations.
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In this paper, we go beyond the applications presented in [8] and devise a nonlocal in-
painting algorithm. To show the efficiency of our algorithm, we compare the computational
times of our algorithm against those obtained by the state-of-the-art nonlocal inpainting al-
gorithm form [30]. For the data classification problem presented in Figure 2, the comparison
of our results to those obtained in the new work [8] demonstrate that our algorithm produces
a significant speedup, while producing comparable results in terms of quality. In section 4,
the inpainting results show that our method is about five times more efficient than other
well-known nonlocal models, while being comparable in quality.

This paper is organized as follows. In section 1, we review the motivation for our method as
well as some relevant background such as diffuse interfaces, the Ginzburg–Landau functional,
graphs, nonlocal operators, and the MBO scheme. We then introduce our algorithm, which
is applied to classification and inpainting in sections 2 and 3, respectively; show results; and
include comparisons to some of the recent methods. The performance of our data classification
algorithm is compared against the algorithm from [8]. The algorithm from [8] is more accurate
than other standard classification algorithms, such as a naive Bayes decision trees from [50]
and p-Laplacian spectral clustering from [56]. We compared our inpainting results to those
obtained using the split Bregman method from [62], which is a well-known efficient algorithm
for nonlocal TV minimization. The advantage of this new method is its speed and its ability
to recover texture and repetitive structure in an image.

2. Background. In this section, we present some useful background information. In sec-
tion 2.1, we review the Ginzburg–Landau functional, which is the core of the model of Bertozzi
and Flenner in [8]. Our algorithm is graph-based, so a background on graphs is given in sec-
tion 2.2. To understand the motivation behind the definition of the graph Laplacian, one may
turn to the theory of nonlocal operators, outlined in section 2.3. The MBO scheme, which
serves as the core element in our model, is described in section 2.4. Finally, two methods to
compute eigenvalues and associated eigenvectors are described in section 2.6.

2.1. Ginzburg–Landau functional. Numerous image segmentation energy functionals use
a binary segmentation function that takes a certain value inside the segmented region and a
different one outside of the segmented region. In their pioneering work [46], Mumford and
Shah propose an energy functional that uses the perimeter of the segmentation function as a
regularizer. Many papers, such as [12], successfully use the total variation (TV) semi norm

(2.1) ||u||TV =

∫
Ω
|∇u|dx

to approximate the perimeter of the front between the two values of the segmentation function.
As an alternative to this approach, some researchers, such as Esedoḡlu and Tsai in their work
[22], use the Ginzburg–Landau functional

(2.2) GL(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx

to approximate the perimeter of the front. W (u) is a double well potential. In this work,
W (u) = (u2−1)2 is used. Note that, due to the nature of the potential, the functional is used
for binary data.
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A proof in [39] shows that the perimeter is the limit in the sense of Γ-convergence of the
Ginzburg–Landau functional. Therefore, one can write

(2.3) GL(u)→Γ C|u|TV .

This convergence allows the two functionals to be interchanged in some cases. One might
prefer to use the Ginzburg–Landau functional instead of the TV seminorm since its highest
order term is purely quadratic, which allows for efficient minimization procedures. In contrast,
minimization of the TV seminorm leads to a nonlinear curvature term, making it less trivial
to solve numerically. However, recent advances, such as the split Bregman method described
in [31], have made progress in such problems.

Due to its connection to the TV seminorm, the Ginzburg–Landau functional has also often
been used in image processing and in various image processing applications, such as inpainting
[16, 7] and segmentation [19, 22]. In practice, one would minimize

(2.4) E(u) = GL(u) + F (u, u0),

where F is the fidelity term and u0 is the initial state of the system. In the case of inpainting,
the fidelity term is C

∫
(u − u0)

2, where one integrates over the known region only. For
denoising, the term is an L2 fit, C

∫
(u−u0)

2. In the case of deblurring, it is C
∫
(K ∗u−u0)

2,
where K is some kernel. Of course, a different norm, such as the L1 norm, can be used.

When one minimizes the Ginzburg–Landau functional, the function u approaches either
one of the two minimizers, 1 and −1, of the double well potential. However, the presence
of the gradient term will force u to be somewhat smooth, i.e., without any sharp transitions
between 1 and −1. Therefore, the function that minimizes the functional will have regions
where it is close to −1, regions close to 1, and a thin region of scale O(ε) where it is somewhere
in between. Since the minimizer appears to have two phases with an interface between them,
models involving the Ginzburg–Landau functional are typically referred to as “diffuse interface
models.”

2.2. Background on graphs. In this paper, to create a nonlocal method, we use the
theory of graphs, described in [13]. Consider an undirected graph G = (V,E), where V and
E are the sets of vertices and edges, respectively. In the tests done in this paper, the vertices
are, for example, points in R

n or pixels in an image. Let w be the weight function, where
w(i, j) represents the weight (often measured between 0 and 1) between vertices i and j and
w(i, i) is set to zero. The weight represents a measure of similarity between the vertices; thus,
two vertices having a weight close to 1 are very similar to each other, and two vertices having
a weight close to 0 are dissimilar.

Now let the degree of a vertex i ∈ V be defined as

(2.5) d(i) =
∑
j∈V

w(i, j).

Using the above, one defines the graph Laplacian to be the matrix L such that

L(i, j) =

{
d(i) if i = j,

−w(i, j) otherwise.
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If we define the degree matrix D to be the N ×N diagonal matrix with diagonal elements
d(i), then the graph Laplacian can be written in matrix form as L = D−W , where W is the
matrix w(i, j). The matrix W is sometimes referred to as the “affinity matrix.”

Note that the graph Laplacian satisfies the equations

(2.6) Lu(i) =
∑
j

w(i, j)(u(i) − u(j)),

(2.7) u · Lu =
1

2

∑
i,j

w(i, j)(u(i) − u(j))2

for all u ∈ R
n and has nonnegative, real-valued eigenvalues, including 0.

When working with the graph Laplacian, one must consider the behavior that arises as
the sample size grows larger. Increasing sample size leads to decreasing grid size; thus, the
operator must be scaled to converge to the differential Laplacian as N → ∞, where N is
the number of vertices. Although several versions that have been shown to have the correct
scaling in the limit exist, the one used in this paper is the symmetric Laplacian

(2.8) Ls = D− 1
2LD− 1

2 = I −D− 1
2WD− 1

2

that satisfies

(2.9) u · Lsu =
1

2

∑
i,j

w(i, j)(u(i) − u(j))2√
d(i)d(j)

∀u ∈ R
n.

We use this version since the symmetric property of the matrix allows for more efficient
algorithms for calculating eigenvectors, which is necessary for our algorithm.

Another version that is commonly used is the random walk Laplacian,

(2.10) Lw = D−1L = I −D−1W,

which is related to Markov processes. More detail about normalized Laplacians is given in
[13] and [59].

2.2.1. Choice of similarity function. As mentioned in previous sections, the weight func-
tion w(i, j) is a function that measures the degree of similarity between vertices i and j.
Therefore, it is necessary to choose the function in such a way that two vertices that are
heavily weighted by w, i.e., w(i, j) large, are also closely related in the data. Although several
options for w are discussed in [59], the choice depends on the problem, so no general theory
can be formulated.

One popular choice for the similarity function is the Gaussian function

(2.11) w(i, j) = e−
d(i,j)2

σ2 ,

where D(i, j) is some distance measure between the two vertices i and j, and σ is a parameter
to be chosen. Von Luxburg in [59] explains that σ can be chosen to be on the order of
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log(n)+1, where n is the number of vertices. This similarity function is an appropriate choice
when vertices are, for example, points in R

n, since two points that are close together are more
likely to belong to the same cluster than are two points that are far apart.

Another choice for the similarity function used in this work is the Zelnik-Manor and Perona
weight function for sparse matrices described in [61]:

(2.12) w(i, j) = e
− d(i,j)2√

τ(i)τ(j) ,

where the local parameter
√

τ(i) = d(i, k) and k is the Mth closest vertex to vertex i. As
noted in [8], one should use this similarity function for classification when there exist multiple
scales to be classified. In [61], M is chosen to be 7, while in [56], it is 10. Depending on the
data set, we use either (2.11) or (2.12).

The choice of d(i, j) varies with the data set. If one wants to cluster points in R
n, a

reasonable choice for d(i, j) is the Euclidean distance between points i and j. In the case of
image processing, where the vertices are the pixels in the image, to construct d(i, j), we use
the concept of feature vectors, as in [8]. Each vertex i is assigned an n-dimensional feature
vector, and d(i, j) is then the weighted 2-norm (where each coordinate of the vector is assigned
a weight) of the difference of the feature vectors of pixels i and j. More details on d(i, j) in
this case are given in sections 4.1 and 4.2.

2.2.2. Graph clustering and the graph Laplacian. The theory shown below justifies the
use of the (thresholded) second eigenvector of Ls as an initialization when applying our clas-
sification algorithm to the two-moons data set, which will be described in section 3.1.1.

The goal of graph clustering is to partition the graph so that the weights between vertices
of different groups are small and the weights between vertices within the same group are large.
In this section, we deal with a binary problem only. A mincut approach to the above problem
is to partition a set of vertices V into sets A and Ā in such a way that

(2.13) cut(A, Ā) =
∑

x∈A,y∈Ā
w(x, y)

is minimized. This mincut problem can be solved using an efficient algorithm like the ones in
[55, 37, 38].

However, this problem leads to poor classification in many cases since the resulting “bad”
partition often isolates one vertex from the rest of the set [44]. One way to overcome this
problem is to use correct normalization, i.e., to force the sets A and Ā to be “large.” Let

(2.14) vol(A) =
∑
x∈A

d(x).

Then the modified problem is to find a subset A of V such that

(2.15) Ncut(A, Ā) =
cut(A, Ā)

vol(A)
+

cut(A, Ā)

vol(Ā)

is minimized. This is a NP-hard discrete problem [60]. One way to simplify it would be to
allow the solution to take arbitrary values in R. This leads to the following relaxed Ncut
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problem:

(2.16) min
A⊂Y
〈u,Lsu〉, u ⊥ D

1
21, ||u||2 = vol(Y ).

The fact that the above problem obtains a real-valued solution instead of a discrete-valued
solution, like problem (2.15), is emphasized.

The relaxed problem (2.16) has been applied to many segmentation problems; for example,
appealing results are shown in [54]. To solve the above problem, one can apply the Raleigh–
Ritz theorem, and the solution is given by the second eigenvector of the symmetric graph
Laplacian Ls [59].

2.3. Nonlocal operators. In general, image processing methods that are local fail to
produce satisfactory results on images with repetitive structures and textures because they
operate only on small neighborhoods, without using any information about the whole domain.
The advantage of nonlocal operators is that they contain data about the whole vertex set and
are thus more successful with those types of images.

Zhou and Schölkopf in their papers [67, 64, 66, 65] formulated a theory of nonlocal oper-
ators that is related to the discrete graph Laplacian described in section 2.2. Buades, Coll,
and Morel applied this nonlocal theory to denoising algorithms in their work [9]. Gilboa and
Osher proposed using nonlocal operators to define functionals involving the TV seminorm for
various image processing applications in their work [29].

We review nonlocal calculus below, where all definitions are continuous. Let Ω ∈ R
n, u(x)

be a function u : Ω→ R, and the nonlocal derivative be defined as

(2.17)
∂u

∂y
(x) =

u(y)− u(x)

d(x, y)
, x, y ∈ Ω,

where d is some positive distance defined on the space and 0 < d(x, y) ≤ ∞ for all x, y. If the
(symmetric) weight function is defined as

(2.18) w(x, y) =
1

d(x, y)2
,

the nonlocal derivative can be written as

(2.19)
∂u

∂y
(x) = (u(y)− u(x))

√
w(x, y).

We now consider vectors and denote them by �v = v(x, y) ∈ Ω×Ω. Let �v1 and �v2 be two such
vectors. We define the dot product and the inner product as

(2.20) (�v1 · �v2)(x) =
∫
Ω
v1(x, y)v2(x, y)dy,

(2.21) 〈�v1, �v2〉 = 〈�v1 · �v2, 1〉 =
∫
Ω×Ω

v1(x, y)v2(x, y)dxdy.
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The magnitude of a vector can be defined as

(2.22) |v|(x) =
√
�v · �v =

√∫
Ω
v(x, y)2dy,

while the nonlocal gradient �wu(x) : Ω→ Ω× Ω is the vector of all partial derivatives:

(2.23) (∇wu)(x, y) = (u(y)− u(x))
√

w(x, y), x, y ∈ Ω.

With the above definitions, the nonlocal divergence divw�v(x) : Ω × Ω → Ω is defined as
the adjoint of the nonlocal gradient:

(2.24)
(
div
w

�v
)
(x) =

∫
Ω
(v(x, y) − v(y, x))

√
w(x, y)dy.

The Laplacian is now defined as

(2.25) Δwu(x) =
1

2
div
w
(∇wu(x)) =

∫
Ω
(u(y)− u(x))w(x, y)dy.

Since the graph Laplacian was defined in section 2.2 as

(2.26) Lu(x) =
∑
y

w(x, y)(u(x) − u(y)),

one can interpret −Lu(x) as a discrete approximation of Δwu. Note that a constant of 1
2 was

needed here to relate the two Laplacians.
According to the nonlocal calculus described above,

(2.27)

∫
Ω
|∇u|2dx =

∫
Ω×Ω

(u(y)− u(x))2w(x, y)dxdy.

Since

(2.28) u · Lu =
1

2

∑
x,y

w(x, y)(u(x) − u(y))2,

one can consider 2u · Lu to be the discrete graph version of
∫ |∇u|2dx.

In their paper [8], Bertozzi and Flenner replace the ε
2

∫ |∇u|2dx term of (2.2) by εu ·Lu(x).
However, normalization of the Laplacian is necessary (refer to the beginning of section 2.2 or
to [8]), so instead they use

(2.29) εu · Lsu =
ε

2

∑
x,y

w(x, y)(u(x) − u(y))2√
d(x)d(y)

.

When the variational solution u takes the values −1 or 1,

(2.30) u ·Lsu = C +4
∑

x∈A,y∈Ā

w(x, y)√
d(x)d(y)

− 2

⎛
⎝ ∑

x∈A,y∈A

w(x, y)√
d(x)d(y)

+
∑

x∈Ā,y∈Ā

w(x, y)√
d(x)d(y)

⎞
⎠ .
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In this case, C is a constant that varies with the graph but not with the partition. The rep-
resentation shows that the above is minimized when the normalized weights between vertices
of different groups are small but the normalized weights between vertices within a group are
large. This is precisely the goal of graph clustering. Therefore, by replacing the ε

2

∫ | � u|2dx
term of (2.2) with εu ·Lsu, thus creating a graph-based version of (2.2), and then minimizing
the resulting equation, one achieves the desired segmentation.

The Γ-convergence of the graph-based Ginzburg–Landau functional is investigated in [57].
The authors prove that as ε→ 0, the limit is related to the TV seminorm and cut from (2.13).

Another important operator that arises from the need to define variational methods on
graphs is the mean curvature on graphs. This nonlocal operator was introduced by Osher and
Shen in [48], who defined it via graph-based p-Laplacian operators. p-Laplacian operators are
a family of quasi-linear elliptic partial differential operators defined for 1 ≤ p <∞:

(2.31) Lp(f) = ∇ · (| ∇f |p−2 ∇f).
In the special case p = 2, the p-Laplacian is just a regular Laplacian. For p = 1, the p-
Laplacian represents curvature.

The discrete graph version of p-Laplace operators is defined in [18] as

(2.32) Lp(u(x)) =
1

p

∑
(x,y)∈E

w(x, y)(‖∇u(x)‖p−2 + ‖∇u(y)‖p−2)(u(x)− u(y)).

Note that the graph 2-Laplacian is just the graph Laplacian, which is consistent with the
continuous case.

Let us now define the mean curvature on graphs—the discrete analogue of the mean
curvature of the level curve of a function defined on a continuous domain of RN :

(2.33) κw =
1

2

∑
(x,y)∈E

w(x, y)

(
1

‖∇u(x)‖ +
1

‖∇u(y)‖
)
(u(x)− u(y)).

Note that in the case of an unweighted mesh graph, κw becomes a numerical discretization
of the mean curvature. This curvature, κw, is also used in [15] as a regularizer in a graph
adaptation of the Chan–Vese method. In their work-in-progress [58], van Gennip et al. propose
a different definition of mean curvature on graphs and prove convergence of the MBO scheme
on graphs.

2.4. Review of the MBO scheme. The idea of approximating mean curvature flow using
threshold dynamics was introduced in [43] by Merriman, Bence, and Osher. To explain the
intuition behind the numerical scheme they propose, the authors analyze the mean curvature
flow of the curve C = ∂Σ using diffusion of the characteristic function χ of the set Σ. If
one imagines an interface, such as χ, and then applies the heat equation χt = Δχ, then the
diffusion blunts the sharp points on the front but has little impact on the flatter parts, thus
leaving the χ = 1

2 level set invariant to diffusion. By changing the coordinates to polar form,
the authors of [43] show that the 1

2 -level set also moves according to some curvature dependent
motion. Therefore, if one diffuses the characteristic function of a set with boundary C for a
short time and then identifies the boundary of the “new set” with the 1

2 -level set, the curve C
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moves with a normal velocity that is at any given point equal to the mean curvature at that
point. The above analysis is local, so the timestep needs to be short enough so that it is valid
but long enough so that the curve is moving.

From the previous discussion follows the MBO numerical scheme for approximation of the
motion of u by mean curvature at discrete times:

• Step 1 (diffusion). Let v(x) = S(δt)un(x), where S(δt) is the propagator (by time δt) of

(2.34)
∂v

∂t
= Δv.

• Step 2 (thresholding). Set

un+1(x) =

{
1 if v(x) ≥ 1

2 ,

0 if v(x) < 1
2 .

2.5. Applications of the MBO scheme. We are interested in motion by mean curvature
because it is closely related to the Ginzburg–Landau functional, which we use here as a
regularizer. The gradient descent of the Ginzburg–Landau functional yields the Allen–Cahn
equation:

(2.35)
∂u

∂t
= 2εΔu− 1

ε
W ′(u).

Here W is the double well potential W (u) = (u2 − 1)2. It is proven in [51] that as ε → 0+,
the rescaled solutions uε(x, t/ε) of the above equation move according to mean curvature
of the interface between the −1 and 1 phases of the solutions. In addition, [3] and [23]
present rigorous proofs that the MBO algorithm approximates motion by mean curvature.
This implies that for the small values of ε, the MBO thresholding scheme can be used to
numerically solve the Allen–Cahn equation.

Multiple extensions, adaptations, and applications of the MBO scheme are present in
literature. We find the modification of the MBO scheme for solving the inhomogeneous Allen–
Cahn equation proposed in [22] particularly interesting. To create a fast image segmentation
algorithm, Esedoḡlu and Tsai propose a thresholding scheme for minimizing a diffuse interface
version of the piecewise constant Mumford–Shah functional,

(2.36) MSε(u, c1, c2) =

∫
D
ε|∇u|2 + 1

ε
W (u) + λ{u2(c1 − f)2 + (1− u)2(c2 − f)2}dx,

where f is the image. The first variation of the model (2.36) yields the following gradient
descent equation:

(2.37) ut = 2εΔu− 1

ε
W ′(u) + 2λ{u(c1 − f)2 + (1− u)(c2 − f)2},

and the adaptation of the MBO scheme is used to solve it. Esedoḡlu and Tsai propose the
following scheme (similar to the MBO scheme, where the propagation step based on the heat
equation is combined with thresholding):
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• Step 1. Let v(x) = S(δt)un(x), where S(δt) is a propagator by time δt of the equation

wt = Δw − 2λ̃
(
w(c1 − f)2 + (1− w)(c2 − f)2

)
with appropriate boundary conditions.

• Step 2. Set

un+1(x) =

{
0 if v(x) ∈ (−∞, 12 ],
1 if v(x) ∈ (12 ,∞).

We also use an adaptation of the MBO scheme to solve our equation (1.4), but the most
important difference between our method and the above approach, besides a different energy
to minimize, is that we generalize to graphs.

Some other extensions of the MBO scheme appeared in [20, 21, 42]. An efficient algorithm
for motion by mean curvature using adaptive grids was proposed in [52].

2.6. Computation of eigenvectors. Our method involves the computation of eigenvalues
and associated eigenvectors of the symmetric graph Laplacian. In practice, one needs to
compute only a fraction of the eigenvalues and eigenvectors (since eigenvectors with very
small eigenvalues are not very significant computationally), and different methods of doing so
are used depending on the size of the domain.

When the graph is sparse and is of moderate size, around 5000 × 5000 or less, we use
a Rayleigh–Chebyshev procedure outlined in [1]. It is a modification of an inverse subspace
iteration method that uses adaptively determined Chebyshev polynomials. The procedure
is also a robust method that converges rapidly and that can handle cases when there are
eigenvalues of multiplicity greater than one.

When the graph is very large, such as in the case of image classification, the Nyström
extension method, to be described in the next section, is used.

2.6.1. Nyström extension for fully connected graphs. Nyström extension [8, 26, 25, 4]
is a matrix completion method often used in image processing applications, such as kernel
principle component analysis [17] and spectral clustering [47]. This procedure performs much
faster than many alternate techniques because it uses approximations based on calculations
on small submatrices of the original large matrix. When the size of the matrix becomes very
large, this method is especially valuable.

Note that if λ is an eigenvalue of Ŵ = D− 1
2WD− 1

2 , then 1 − λ is an eigenvalue of Ls,
and the two matrices have the same eigenvectors. We formulate a method to calculate the
eigenvectors and eigenvalues of Ŵ and thus of Ls.

Let w be the similarity function, λ be an eigenvalue of W , and φ its associated eigenvector.
The Nyström method approximates the eigenvalue equation

(2.38)

∫
Ω
w(y, x)φ(x)dx = λφ(x)

using a quadrature rule, a technique to find weights cj(y), and a set of L interpolation points
X = {xj} such that

(2.39)
L∑

j=1

cj(y)φ(xj) =

∫
Ω
w(y, x)φ(x)dx + E(y),
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where E(y) represents the error in the approximation.
We use cj(y) = w(y, xj) and choose the L interpolation points randomly from the vertex

set V . Denote the set of L randomly chosen points by X = {xi}Li=1 and its complement by
Y . Partitioning Z into Z = X ∪ Y and letting φk(x) be the the kth eigenvector of W and λk

its associated eigenvalue, we obtain the system of equations

(2.40)
∑
xj∈X

w(yi, xj)φk(xj) = λkφk(yi) ∀yi ∈ Y, ∀k ∈ 1, . . . , L.

This system of equations cannot be solved directly, since the eigenvectors are not known. To
overcome this problem, the L eigenvectors of W are approximated using calculations involving
submatrices of W .

Let WXY be defined as ⎡
⎢⎣

w(x1, y1) . . . w(x1, yN−L)
...

. . .
...

w(xL, y1) . . . w(xL, yN−L)

⎤
⎥⎦ ,

where W has dimension N×N . The matrices WY X , WXX , and WY Y can be defined similarly.
Notice that WXY = WY X

T . Then the matrix W can be written as[
WXX WXY

WY X WY Y

]
.

To calculate the eigenvalues and eigenvectors of Ŵ , one must correctly normalize the above
weight matrix. The correct normalization is achieved by the following calculations, where we
denote by 1K the K-dimensional unit vector.

Let the matrices dX and dY be defined as

dX = WXX1L +WXY 1N−L,

dY = WY X1L + (WY XW−1
XXWXY )1N−L.

(2.41)

If A./B denotes componentwise division between matrices A and B, and vT denotes the
transpose of vector v, then define the matrices ŴXX and ŴXY as

ŴXX = WXX ./(sXsTX),

ŴXY = WXY ./(sXsYX),
(2.42)

where sX =
√
dX and sY =

√
dY .

It is shown in [8] that if ŴXX = BXDBT
X , and if A and Γ are matrices such that

(2.43) ATΓA = ŴXX + Ŵ
− 1

2
XXŴXY ŴY XŴ

− 1
2

XX ,

then the eigenvector matrix V consisting of L eigenvectors of Ŵ and thus of Ls is given by[
BXD

1
2BT

XAΓ− 1
2

ŴY XBXD− 1
2BT

XAΓ− 1
2

]
,
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while I − Γ contains the corresponding eigenvalues of Ls in its diagonal entries.
Therefore, the efficiency of the Nyström extension method lies with the fact that when

computing the eigenvalues and eigenvectors of an N ×N matrix, where N is large, it approx-
imates them using calculations involving only much smaller matrices, the largest of which has
dimension N × L, where L is small.

Although this method is very efficient, there are problems when it is applied to binary
image inpainting, especially when the image has a repetitive structure. This occurs because
of singular or nearly singular matrices that arise in the calculations of the Nyström extension
method. Therefore, in this case, we use the Rayleigh–Chebyshev procedure of [1] to calculate
the eigenvalues and associated eigenvectors.

3. Classification algorithm. We construct a new classification algorithm by proposing a
different approach to minimizing (1.2) than that in [8] to obtain a more simple and efficient
method that eliminates the diffuse interface parameter ε. Our scheme is based on a variation
of the MBO scheme.

As was shown in section 2.4, for small ε, the MBO thresholding scheme can be used to
evolve the Allen–Cahn equation to steady state. The scheme consists of two steps: a heat
equation propagation step and a thresholding step.

A candidate for the threshold dynamics of (1.2) is found by splitting (1.4), which is the
Allen–Cahn equation plus an extra fidelity term. There are several options, including splitting
the equation into three steps, but we choose the possibility in which (1.4) is split so that the
thresholding step resembles the one in the original MBO scheme, as is done in [22] and
explained in section 2.5.

Therefore, our algorithm consists of alternating between the following two steps to obtain
approximate solutions un(x) at discrete times:
• Step 1 (heat equation with forcing term). Propagate using

(3.1)
∂y

∂t
= −Lsy − C1λ(x)(y − u0),

starting with un. Note that C1 can be different from the original C.
• Step 2 (thresholding). Set

un+1(x) =

{
1 if y(x) ≥ 0,

−1 if y(x) < 0.

Note that we now use 0 as the thresholding value (instead of 1
2 as in the original MBO

scheme), since the values of u are concentrated at −1 and 1, not 0 and 1.
We have decided to discretize (3.1) above in the following manner:

(3.2)
un+1 − un

dt
= −Lsu

n+1 − C1λ(x)(u
n − u0).

Note that the symmetric Laplacian is calculated implicitly. This is due to the stiffness of the
operator, which is caused by a wide range of its eigenvalues. An implicit term is needed, since
an explicit scheme requires that all the scales of the eigenvalues be resolved numerically. The
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above scheme is used because it is the simplest scheme possible keeping the Laplacian term
implicit.

The scheme is solved using the spectral decomposition of the symmetric graph Laplacian.
Let un =

∑
k a

n
kφk(x) and C1λ(u

n − u0) =
∑

k d
n
kφk(x), where φ(x) are the eigenfunctions of

the symmetric Laplacian. Using the obtained representations and (3.2), we obtain

(3.3) an+1
k =

ank − dtdnk
1 + dtλk

,

where λk are the eigenvalues of the symmetric graph Laplacian.

This spectral decomposition method is chosen because it is very efficient. Without it,
the discrete Laplacian term by itself requires O(N2) calculations (without assuming any spar-
sity). However, when using spectral decomposition, we obtain the advantage of only having to
calculate the first few largest eigenvalues and associated eigenvectors (as the smallest eigenval-
ues and associated eigenvectors become insignificant in calculations). Therefore, the discrete
Laplacian term now requires only O(NL) calculations, where L is the number of eigenval-
ues/eigenvectors calculated. In our data sets, L � N . Of course, this method is useful only
if there is an efficient way to calculate the eigenvalues and eigenvectors of the symmetric
Laplacian. For the results in this paper, we use two methods, described in section 2.6.

Therefore, the new algorithm consists of the following:

• Step 1. Create a graph from the data, choose a similarity function, and then calculate
the symmetric graph Laplacian.

• Step 2. Calculate the eigenvectors and eigenvalues of the symmetric graph Laplacian.
It is necessary only to calculate a portion of the eigenvectors.

• Step 3. Initialize u.

• Step 4. Apply the two-step scheme (to minimize the Ginzburg–Landau functional)
described above for a certain number of iterations until a stopping criterion is satisfied. Use
the following method:

1. Let a0k =
∑

x u0(x)φk(x) and d0k(x) = 0 for all x.

2. Until a stopping criterion is satisfied, do the following:

a. Repeat for some number s of steps:

1. ank ←
ank−δtdnk
1+δtλk

,

2. y(x) =
∑

k a
n
kφk(x),

3. dnk =
∑

xC1(y − u0)(x)φk(x).

b. (thresholding part)

un+1(x) =

{
1 if y > 0,

−1 otherwise.

c. Let an+1
k =

∑
x un+1(x)φk(x) and dn+1

k =
∑

xC1(y − u0)(x)φk(x).

The parameter δt is chosen using trial and error. The stopping criteria we use in our work

is
||unew−uold||22

||unew||22
< α = 0.0000001.
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Table 1
Classification results comparison.

Min. time Min. time # of iter. # of iter.
in method in [8] in our method in method in [8] in our method

Two moons 0.105 s 0.002 s 300 40

Grass label 8 s 3.5 s 130 22
Cow label 18 s 3.5 s 274 29
Sky label 6 s 1.8 s 84 11

Voting data 0.035 s 0.002 s 400 5

3.1. Results for classification. We applied our classification algorithm on three data
sets: the two moons data set, an image, and the House of Representatives voting records from
1984. A comparison of the results to those of the method of Bertozzi and Flenner in [8], which
includes the same three data sets, is displayed in Table 1. The minimization time is the time
needed for step 4 of the algorithm; our model and that in [8] follow similar procedures before
this step. The table shows that our method significantly reduces the number of iterations and
the minimization time.

The model of Bertozzi and Flenner is a recent work, whose results compare favorably
to those some of the best algorithms. Thus, by favorably comparing our results to those of
Bertozzi and Flenner we are also favorably comparing them to the best methods. For example,
one of the algorithms Bertozzi and Flenner compare their results to is the method of Hein
and Buehler in [35].

There are four parameters that were involved in this problem: the number of eigenvectors,
C1, σ, and dt. As long as the number of eigenvectors was not too small compared to the sample
size, there was enough information to produce an accurate result. The fidelity term C1 was
also chosen to be relatively big so that the fidelity region is preserved. The weight matrix
parameter σ was chosen so that the weights contain a wide range of numbers from 0 to 1; in
other words, the situation in which most weights are very close to 0 (or 1) was avoided. The
time range dt was the most difficult parameter, and its value differed for each data set. It was
mostly chosen by trial and error, but in all cases it was neither too small or too big (in which
case there is either no evolution in the iterations or frequent oscillations). The algorithm is
relatively robust with the above conditions.

In the case of semisupervised classification, λ(x) was set to 1 on the known region and
0 elsewhere, since our fidelity term assumed a least-squares fit on the information supplied.
Note that the fidelity term allows for a small amount of misclassification in the known data.

3.1.1. Two moons. This data set was used by Bühler and Hein in [10] in relation to
spectral clustering using the p-Laplacian. It is constructed from the following two half cir-
cles in R

2 with radius one. The first half circle is centered at the origin and is in the upper
half plane. The second half circle is formed by taking the lower half of the circle centered
at (1, 0.5). A thousand points are chosen uniformly from each of the two half circles. The
two thousand points are then embedded in R

100, and i.i.d. (independent and identically dis-
tributed) Gaussian noise with standard deviation 0.02 is added to each coordinate. The goal
is to segment those two half circles using unsupervised binary classification. This is achieved
using the mean zero constraint (applicable since clusters are of equal size).
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An affinity matrix W is created using the weight function w(i, j) = e
− d(i,j)2√

(τ(i)τ(j)) , a weight
function introduced by Zelnik-Manor and Perona in [61], where τ(i) is the Euclidean distance
between point i and the Mth closest point to it, and d(i, j) is the Euclidean distance between
points i and j. The matrix W (i, j) is made sparse by setting W (i, j) equal to zero if point j is
not among the Mth closest points to point i. It is then “symmetrized” by setting W (i, j) =
max(W (i, j),W (j, i)).

To calculate the eigenvectors, the Rayleigh–Chebyshev procedure [1] is used, since the
graph is not large and Nyström extension is inefficient for sparse graphs [8].

Since the problem is unsupervised binary classification (and thus no prior knowledge of
class membership is assumed for any of the points), in Step 4 of the algorithm, there is no
fidelity term, so λ(x) = 0 for all x. Thus, dnk = 0 for all k and n. However, since the goal is
to achieve two clusters of equal size, we can use the mean zero constraint. This results in two
classes of the same size. Due to the mean zero constraint,

∫
u(x)dx = 0, before thresholding,

one applies the mean constraint to y by subtracting its mean from each element of y. For
initialization of u, we use the sign of the second eigenvector of the symmetric Laplacian after
the mean zero constraint has been applied to it. The use of such initialization was justified in
section 2.2.2.

We compared our results to the method of Bertozzi and Flenner in [8] by running simula-
tions on 35 different randomly generated two moons data sets, each taking around 2 seconds
to run. The average accuracy was 96.0520% and 96.0460% for our method and the method in
[8], respectively. However, 40 iterations in the minimization procedure were used, compared to
300 needed using the method in [8]. Therefore, our method resulted in a significant decrease
in the number of iterations. The minimization time was also decreased from 0.105 seconds to
0.002 seconds. These results are displayed in Table 1.

We also compared our results to a spectral clustering method of thresholding the second
eigenvector of Ls. The results are displayed in Figure 1. Clearly, clustering using the second
eigenvector does not result in an accurate binary classification.

3.1.2. Semisupervised image labeling. We also applied our algorithm to segmenting ob-
jects in images of cows from the Microsoft image database, available from http://research.
microsoft.com/en-us/projects/objectclassrecognition/. The goal was semisupervised image
labeling, where two images are inputted into the algorithm, one of which has been hand seg-
mented into two classes. The algorithm segments the second image based on the classification
of the first.

A fully connected graph is constructed in this case, and the entries in the affinity matrix
are calculated using feature vectors. Every pixel in the image is assigned a feature vector
consisting of intensity values of pixels in its neighborhood, which was of size 7 × 7 in our

classification tests. We use the formula w(i, j) = e−
d(i,j)2

σ2 , where d(i, j) is the weighted 2-
norm of the difference of the feature vectors of pixels i and j, and we add along the three
RGB channels of the image. The weighted 2-norm modifies the components of the entered
vector by giving more weight to the pixels close to the original pixel and less weight to those
farther away. We use a linearly decreasing kernel, where the weight decreases linearly. This
construction can be used to segment different types of objects using, for example, their color

http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
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(a) Second eigenvector classification—83.75%. (b) Our method’s classification—97.7%.

Figure 1. Classification by thresholding using the second eigenvector and our method, respectively. The four
parameters s (in Step 4 of our algorithm), number of eigenvectors, dt, and M (parameter in the Zelnik-Manor
and Perona weight function) are set to 3, 25, 0.725, and 13, respectively.

and texture features. Note that the weight function can be modified according to the image.
For example, a weight function calculated using the spectral angle may be more effective in
the segmentation of hyperspectral images.

To obtain eigenvalues and eigenvectors of Ls, the Nyström extension method is used, since
the size of the graph is very large (70, 000 × 70, 000).

For the problem in the fidelity term, λ(x) was set to 1 on the hand labeled image and 0
on the unlabeled image. On the hand-labeled image, we initialized u to be 1 for one class and
−1 for the other class. On the unlabeled image, u0 was set to zero.

The results are displayed in Figure 2, where it is shown that our algorithm is robust to
mislabeling in the hand-labeled image. Although we do not include the results of [8] in this
paper, they are very similar to ours. We are also able to capture more of the eyes and the
nose of the red cow than does the method in [8]. To transfer the label for the grass, cows, and
sky, our method needed about 29, 29, and 27 seconds, respectively.

The number of iterations in the minimization procedure (Step 4 of the algorithm) and
minimization time as compared to the method in [8] are displayed in Table 1. The calcula-
tions show that our method significantly reduces the minimization time and the number of
iterations.

3.1.3. House voting records from 1984. We applied our algorithm to a US House of Rep-
resentatives voting records data set (http://archive.ics.uci.edu/ml/datasets/Congressional+
Voting+Records), which consists of 16 different votes from each of the 435 individuals. The
goal was to assign each individual to either the Republican or the Democratic party using
prior knowledge of the party affiliation of only five individuals, two Democrats and three Re-
publicans. The votes were taken in 1984 from the 98th United States Congress, 2nd session.

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
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(a) Original labeled image. (b) Unlabeled image.

(c) Regions with grass label. (d) Grass label transferred.

(e) Regions with cow label. (f) Cow label transferred.

(g) Regions with sky label. (h) Sky label transferred.

Figure 2. The grass, cow, and sky labels were transferred to another image using our algorithm. The
number of eigenvectors, C1, and σ were set to 200, 30, and 22, respectively. The parameter dt was 0.03, 0.003,
and 0.17 for the grass, cow, and sky label, respectively.
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An affinity matrix is constructed using calculations involving feature vectors. A 16-
dimensional feature vector is assigned to each individual, consisting of his/her 16 votes. A
“yes” vote is set to 1, a “no” vote is set to −1, while a “did not vote” recording is set to 0.

The weight function used is w(i, j) = e−
d(i,j)2

σ2 , where d(i, j) is the 2-norm of the difference
between the feature vectors of points i and j. The graph is made sparse by setting W (i, j)
equal to zero if point j is not among the Mth closest points to point i. The graph is then
symmetrized by setting W (i, j) = max(W (i, j),W (j, i)).

To calculate the eigenvectors, an SVD solver is used. In Step 4 of the algorithm, the
function u is initialized to 1 for the two Democrats, −1 for the three Republicans, and 0 for
the rest of the Representatives. The three Republicans were chosen to be the first, second,
and eighth people in the list. The Democrats were chosen to be the third and fourth people
in the list. In the fidelity term, λ(x) was set to 1 for each of the five known individuals and 0
for the rest.

The parameters C1 (fidelity term parameter), s (in Step 4 of our algorithm), number of
eigenvectors, dt, σ, and M are set to 9.25, 3, 45, 4.675,

√
5, and 10, respectively.

We obtained an accuracy of 94.023%. Only 5 iterations in the minimization procedure were
needed, compared to 450 iterations needed by the method in [8]. Each simulation took about
0.7 seconds, and the minimization time was decreased more than 15 times. This information
is shown in Table 1.

Some of the votes predicted the party affiliation very well, i.e., above 85%. We investigated
the accuracy of our algorithm when these votes were removed. With top two, top six, and
top eight most predictive votes removed, our method obtained an accuracy of 90.1149%,
88.34448%, and 81.1494%, respectively. The order of the top eight predictive votes from the
most predictive to least predictive is vote 4, 14, 1, 2, 15, 6, 3, and 8.

4. Image inpainting algorithm. The problem of fitting information in the missing pixels
of an image is an important inverse problem in image processing with various applications.
Obviously, the goal is to produce a modified image that will look natural to an observer. The
problem of inpainting may also be seen as the problem of removing occlusive objects from an
image. Sparse reconstruction refers to the problem of recovering randomly distributed missing
pixels.

There are numerous approaches to solving these problems in the current literature. Local
TV methods became state-of-the-art techniques for image inpainting. However, since they do
not perform well on images with high texture, methods that decompose images into cartoon
and texture and simultaneously inpaint both have been developed [5, 53]. The problem is
also solved with nonlocal inpainting methods. We are particularly interested in the nonlocal
inpainting algorithm from [30] as we develop a computationally efficient nonlocal method.
Some very successful nonlocal methods for inpainting and sparse reconstruction are given
in [2] and [24]. Recently, the class of methods that use dictionaries of small patches that
commonly appear in natural images has become increasingly popular. Those methods, besides
inpainting, are also successful in denoising, as shown in [41]. In addition, a method for image
inpainting using Navier–Stokes fluid dynamics is proposed in [6]. The authors use Navier–
Stokes dynamics to propagate isophotes into the inpainting region, thus simulating the way
painting restoration is done. Wavelets and framelets have also been successfully applied to
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solve inpainting problems [16, 11].
Our semisupervised image classification algorithm can be modified to inpainting by treat-

ing the inpainted region as unclassified and the rest as the fidelity region. However, since
there is no information on the inpainted region, we decided to first apply a fast, yet somewhat
inaccurate, H1 inpainting algorithm, and then use the result for weight computation. The H1

inpainting method consists of minimizing

(4.1) E(u) =

∫
|∇u|2dx+ C

∫
λ(x)(u− u0)

2dx,

where λ(x) is 0 on the inpainting region and 1 elsewhere, and u0 is the initial state of the
image. Although the latter algorithm is very fast, it does not perform well on images with high
textures and repetitive structures, nor does it preserve edges [27], something that is achieved
by our algorithm.

The algorithm consists of the same four steps:
• Create a graph from the data using pixels as vertices, choose a similarity function, and

then create the symmetric graph Laplacian.
• Calculate the eigenvectors and eigenvalues of the symmetric graph Laplacian. It is

necessary only to calculate a fraction of the eigenvectors.
• Initialize u.
• Apply the two-step scheme (to minimize the Ginzburg–Landau functional) detailed in

section 2 for a certain number of iterations until a stopping criterion is satisfied.
However, there are some important differences to be discussed in sections 4.1 and 4.2.

Our algorithm is an efficient image inpainting algorithm that is able to correct images
with repetitive structure or those with high texture content.

4.1. Binary image inpainting. Although the key steps of the classification algorithm re-
main the same when it is modified for image inpainting, there are key differences to be noted.

Before the weight matrix is calculated, H1 inpainting is used to preprocess the image. The
matrix W is then built by using a window, or a square-shaped neighborhood around a pixel.
We set W (i, j) = 0 for all pixels j that are not in the window of pixel i. Inside the window,
W (i, j) = w(i, j), where the weight function is calculated in the same way as in section 3.1.2,
i.e., using feature vectors and the Gaussian weight function. No updating of the matrix W is
necessary in the case of binary image inpainting.

The Rayleigh–Chebyshev procedure is used to calculate the eigenvectors and eigenvalues
of the graph Laplacian for binary inpainting. As mentioned before, the Nyström extension
method encounters some problems when dealing with binary images.

In Step 4 of the algorithm, λ(x) in the fidelity term is set to 0 on the inpainting region
(which is given the value 0.5 on a 0 to 1 intensity scale) and to 1 on the rest of the image,
while u0 is set to 0 on the inpainting region, 1 on the white area, and −1 on the black area.
The same stopping criterion is used.

4.2. Grayscale image inpainting. To generalize to gray scale inpainting, we split the
signal bitwise into channels, as in [16],

(4.2) u(x) =
7∑

m=0

um(x)2m,
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and inpaint each channel separately. Here um denotes the (m + 1)th component or digit in
the binary representation of the signal, and um ∈ {0, 1} for all x.

A fully connected graph is created in the same way as in section 3.1.2. Again, we first
preprocess the image using the H1 inpainting algorithm, and use the result to build the matrix
W . This weight matrix is used in all eight of the inpainting problems.

The Nyström extension method is used to calculate the eigenvalues and corresponding
eigenvectors since the size of the graph is very large.

In Step 4 of the algorithm, λ(x) in the fidelity term is set to 0 on the inpainting region
and to 1 on the rest of the image. The initialization of u varies with the bit. In the inpainting
region, u0 is 0, while in the rest of the image, it is 1 on the area where the bit is 1 and −1 on
the area where the bit is 0. The same stopping criterion is used, except α = 0.0001. For some
images, Step 4 is performed for a certain number of iterations.

Updating the matrix W is often necessary for grayscale inpainting, since the adjacency
matrix formed from the preprocessed image using H1 inpainting is usually not good enough
to restore texture and complex patterns, as it contains “bad” regions whose values lie far from
the true value. In our tests, every few iterations, the matrix is updated using the result from
the last iteration as the “new image.”

4.3. Inpainting results. We have tested our inpainting algorithm on both binary and
grayscale images. In all cases, we compare our results to the state-of-the-art nonlocal TV
inpainting using split Bregman from [62]. Our results are comparable to those achieved using
the state-of-the-art method, but the timing of the run is significantly reduced (in most cases
by about five times).

4.3.1. Binary image inpainting results. We applied our algorithm on an image of Barbara
and one of stripes. The results and their PSNR (peak signal-to-noise ratios) are displayed in
Figure 3. In both cases, the algorithm was able to recover the texture and repetitive structure
present in the image, something that is unfeasible for simple algorithms such as local TV
inpainting.

4.3.2. Grayscale image inpainting results. We applied our algorithm on an image of
Barbara and a chessboard-like pattern. The goals ranged from removing occlusive objects,
such as a flower, text, or a rectangle, to sparse reconstruction. The results along with their
PSNR are displayed in Figures 4–7. Timing and iteration results are displayed in Table 2. In
all cases, repetitive structure and texture were recovered.

We compare our results to local and nonlocal TV inpainting. Local TV inpainting fails
to recover texture and repetitive structure. While the results of nonlocal TV inpainting are
comparable to those of our method, our method is more efficient. Timing and iteration results
are displayed in Table 2. We also show our method and nonlocal TV inpainting at certain
iterations in Figure 8. To implement the nonlocal TV inpainting algorithm, we used the split
Bregman method detailed in [62] and modified it for inpainting. The stopping condition was
the same as in our inpainting algorithm, and a quick H1 inpainting algorithm was run on the
image before the weights were calculated.
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(a) Original
image—Barbara.

(b) Damaged
image—Barbara.

(c) Nonlocal TV
result—PSNR
20.0129.

(d) Our method’s
result—PSNR
20.6896.

(e) Original image—
stripes.

(f) Damaged image—
stripes.

(g) Nonlocal TV
result—PSNR 25.02.

(h) Our method’s
result—PSNR 25.0687.

Figure 3. Binary inpainting. For the Barbara image, we used C1 = 700, dt = 0.003, σ = 45, 31 × 31
neighborhood for feature vector calculation, 21× 21 window, and calculated 400 eigenvectors. For the image of
stripes, we used C1 = 700, dt = 0.002, σ = 45, 17 × 17 neighborhood for feature vector calculation, 21 × 21
window, and calculated 200 eigenvectors.

(a) Original
image—pattern.

(b) Damaged
image—pattern.

(c) Local TV
inpainting—
PSNR 16.5520.

(d) Nonlocal
TV inpainting—
PSNR 41.3891.

(e) Our method’s
result—perfect re-
construction.

Figure 4. Pattern. We used C1 = 700, dt = 0.005, σ = 20, 41 × 41 neighborhood for feature vector
calculation, and calculated 600 eigenvectors. No updating of W was necessary.
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(a) Original
image—Barbara.

(b) Damaged
image—Barbara.

(c) Local TV
inpainting—
PSNR 32.8517.

(d) Nonlocal
TV inpainting—
PSNR 44.1469.

(e) Our method’s
result—PSNR
41.2848.

(f) Original
image—Barbara.

(g) Damaged
image—Barbara.

(h) Local TV
inpainting—
PSNR 31.3673.

(i) Nonlocal TV
inpainting—
PSNR 35.0663.

(j) Our method’s
result—PSNR
37.0315.

Figure 5. Rectangle inpainting. For the small rectangle, we used C1 = 700, dt = 0.01, σ = 4, 31 × 31
neighborhood for feature vector calculation, and calculated 500 eigenvectors. For the large rectangle, we used
C1 = 700, dt = 0.014, σ = 4, 45×45 neighborhood for feature vector calculation, and calculated 500 eigenvectors.
We update W every iteration.

(a) Original
image—Barbara.

(b) Damaged
image—Barbara.

(c) Local TV
inpainting—
PSNR 29.1508.

(d) Nonlocal
TV inpainting—
PSNR 35.6896.

(e) Our method’s
result—PSNR
34.0688.

Figure 6. Text inpainting. We used C1 = 700, dt = 0.005, σ = 5, 21× 21 neighborhood for feature vector
calculation, and calculated 500 eigenvectors. We update W every other iteration.
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(a) Original
image-Barbara.

(b) Damaged
image-Barbara.

(c) Local TV
inpainting-PSNR
23.6049.

(d) Nonlocal TV
inpainting-PSNR
27.8196.

(e) Our method’s
result-PSNR
27.1651.

(f) Damaged
image-35% of the
pixels removed.

(g) Local TV
inpainting- PSNR
22.6530.

(h) Our method’s
result-PSNR
24.1266.

Figure 7. 50% and 35% random inpainting. For the top row, we used C1 = 700, dt = 0.005, σ = 4, 7× 7
neighborhood for feature vector calculation, and calculated 400 eigenvectors. We update W every iteration. For
the bottom row, we used C1 = 700, dt = 0.012, σ = 4, 7 × 7 neighborhood for feature vector calculation, and
calculated 500 eigenvectors. We update W every other iteration.

Table 2
Inpainting results comparison.

Total time for Total time for # of iterations
nonlocal TV our method for our method

Binary Barbara 590 s 113 s 6
Binary stripes 141 s 66 s 4

Chessboard-like pattern 266 s 48 s 2
Text inpainting 410 s 67 s 4
Small rectangle inpainting 1882 s 443 s 13
Large rectangle inpainting 3397 s 832 s 13
50% inpainting 1402 s 333 s 50
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(a) Nonlocal TV,
after 2 iter.—
PSNR 25.7101.

(b) Nonlocal TV,
after 5 iter.—
PSNR 30.7031.

(c) Nonlocal TV,
after 8 iter.—
PSNR 33.2284.

(d) Nonlocal
TV, after 13
iter.—PSNR
35.0663.

(e) Our method,
after 2 iter.—
PSNR 30.4406.

(f) Our method, af-
ter 5 iter.—PSNR
31.8993.

(g) Our method,
after 8 iter.—
PSNR 34.4851.

(h) Our method,
after 13 iter.—
PSNR 37.0315.

Figure 8. Nonlocal TV inpainting and our method at certain iterations.

5. Conclusion. This work presents an algorithm, derived from graph methods and the
MBO scheme [43], that links together ideas of graphs and image processing. The results show
that using threshold dynamics in combination with an efficient eigenvalue solver, such as the
Nyström extension or the Raleigh–Chebyshev procedure of [1], develops an efficient method
that can be applied to binary data classification or image processing. In addition, the nonlocal
nature of our method allows it to be successful on images with high texture and repetitive
structure.

Garcia-Cardona et al. recently extended this paper’s binary classification algorithm to a
multiclass method using the idea of the n-simplex; the model and the results are described in
[28]. Hu et al. also built upon the ideas in this paper in [36] by describing a method based on
TV for network modularity optimization using the MBO scheme.

Acknowledgments. The authors would like to thank Yanina Landa for providing a MAT-
LAB version of the code of the algorithm in [8], and Chris Anderson for providing a code
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[50] C.A. Ratanamahatana and D. Gunopulos, Scaling up the naive Bayesian classifier: Using decision
trees for feature selection, in Proceedings of the IEEE International Conference on Data Mining
(ICDM 2002), Maebashi, Japan, 2002, pp. 475–487.

[51] J. Rubinstein, P. Sternberg, and J.B. Keller, Fast reaction, slow diffusion, and curve shortening,
SIAM J. Appl. Math., 49 (1989), pp. 116–133.

[52] S.J. Ruuth, Efficient algorithms for diffusion-generated motion by mean curvature, J. Comput. Phys.,
144 (1998), pp. 603–625.

[53] H. Schaeffer and S. Osher, A low patch-rank interpretation of texture, SIAM J. Imaging Sci., 6 (2013),
pp. 226–262.

[54] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell.,
22 (2000), pp. 888–905.

[55] M. Stoer and F. Wagner, A simple min-cut algorithm, J. ACM, 44 (1997), pp. 585–591.
[56] A. Szlam and X. Bresson, Total variation-based graph clustering algorithm for Cheeger ratio cuts, in

Proceedings of the 27th International Conference on Machine Learning, 2010, pp. 1039–1046.
[57] Y. van Gennip and A.L. Bertozzi, Γ-convergence of graph Ginzburg–Landau functionals, Adv. Differ-

ential Equations, 17 (2012), pp. 1115–1180.
[58] Y. van Gennip, N. Guillen, B. Osting, and A.L. Bertozzi, Mean curvature, threshold dynamics,

and phase field theory on finite graphs, (2013) (journal unknown).
[59] U. von Luxburg, A tutorial on spectral clustering, Statist. Comput., 17 (2007), pp. 395–416.
[60] D. Wagner and F. Wagner, Between min cut and graph bisection, in Mathematical Foundations of

Computer Science 1993, Lecture Notes in Comput. Sci. 711, Springer, New York, 1993, pp. 744–750.
[61] L. Zelnik-Manor and P. Perona, Self-tuning spectral clustering, Adv. Neutral Inform. Process. Syst.,

17 (2004), pp. 1601–1608.
[62] X. Zhang, M. Burger, X. Bresson, and S. Osher, Bregmanized nonlocal regularization for deconvo-

lution and sparse reconstruction, SIAM J. Imaging Sci., 3 (2010), pp. 253–276.
[63] X. Zhang and T. Chan, Wavelet inpainting by nonlocal total variation, Inverse Problems Imag., 4

(2010), pp. 1–20.
[64] D. Zhou and B. Schölkopf, Regularization on discrete spaces, in Pattern Recognition, Springer, Berlin,

Germany, 2005, pp. 361–368.
[65] D. Zhou and B. Schölkopf, Discrete regularization, in Semi-Supervised Learning, MIT Press, Cam-

bridge, MA, 2006, pp. 221–232.
[66] D. Zhou, J. Huang, and B. Schölkopf, Learning from labeled and unlabeled data on a directed graph,

in Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 1041–1048.
[67] D. Zhou, B. Schölkopf, and T. Hofmann, Semi-supervised learning on directed graphs, Adv. Neutral

Inform. Process. Syst., 17 (2005), pp. 1633–1640.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




