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ABSTRACT OF THE DISSERTATION

Advancing Ultrafast Nano Probes: Imaging and Diffraction

by

Paul Elliot Denham

Doctor of Philosophy in Physics

University of California, Los Angeles, 2024

Professor Pietro Musumeci, Chair

To enable more groundbreaking scientific discoveries, imaging, diffraction, and spec-

troscopy techniques must evolve beyond traditional static or low-speed imaging by dra-

matically improving temporal resolution. Being able to resolve processes at the ps and fs

time scales would enable visualization of the dynamics of atomic motion at its fundamen-

tal timescales but requires the development of new electron sources and advanced optics.

Among the techniques under active research, ultrafast electron diffraction (UED) is the

most advanced, while ultrafast transmission electron microscopy (UTEM) and ultrafast

electron energy loss spectroscopy (EELS) are still in earlier research and development

stages. Concept designs for these instruments leverage high extraction field radiofre-

quency photoinjectors as these sources can produce dense electron bunches with the

necessary brightness to enable high spatial and temporal resolution. This work presents

several techniques developed in order to preserve the initial beam brightness from the

cathode to the detector, thereby meeting the stringent requirements for capturing ultra-

fast dynamics and advancing ultrafast electron scattering instrumentation.

We focus on the opportunities offered by operating a photoinjector in the so-called

cigar regime, where the beam’s elongated aspect ratio in its own reference frame enables

the requisite brightness for high spatiotemporal resolution in UTEM, and investigate the

longitudinal phase space manipulation of these beams using RF fields. Pairing the Pe-

gasus RF photoinjector source with a newly installed 3rd harmonic RF cavity, we show

the 6D phase space of the electron beam can be shaped to achieve optimal bunching

conditions or minimal energy spread, making Pegasus well-suited for high-fidelity UED

or UTEM. An envelope equation-based approach is employed to derive analytical scal-
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ing laws for RF-based pulse compression, revealing the dependencies on beam energy

and charge. Our results indicate that relativistic energies are crucial for achieving sub-

femtosecond pulse lengths with electron bunches containing 106 electrons. We further

demonstrate experimentally that the 3rd harmonic removes non-linear effects of RF cur-

vature, hence, shrinking energy spread by nearly two orders of magnitude to 10 parts per

million and paving the way for ultrashort beams in the sub-femtosecond regime.

Next, we theoretically address the effects of space charge fields on imaging performance

in single-shot time-resolved TEM. By employing a Green’s function perturbation method,

we derive analytical estimates of space charge-induced aberration coefficients and validate

them through particle tracking simulations. Our findings provide critical insights into how

space charge nonlinearity affects image formation and offer fundamental scaling laws for

balancing temporal and spatial resolution in time-resolved TEM. These results provide

an important framework for improving the performance of ultrafast electron scattering

instruments, particularly in high-charge, single-shot modes.

Finally, we propose advancing UED to higher beam energies, potentially exceeding 10

MeV. Higher beam energies flatten the Ewald sphere, bringing higher-order Bragg reflec-

tions into the field of view, while also reducing space charge effects, allowing more charge

to be loaded into the bunch and enhancing the intensity of Bragg orders. Additionally,

higher energies provide greater penetration depths and improved temporal resolution,

though they introduce challenges related to beam rigidity and focusing. We address

these challenges by utilizing post-sample strong focusing permanent magnet quadrupole

(PMQ) optics, which provide angular magnification to overcome the point spread of the

detector. Our method employs a triplet of compact, high field gradient (> 500 T/m),

small-gap (3.5 mm) Halbach PMQs. These PMQ lenses allow us to maintain high-quality

diffraction patterns at higher energies. With this optical setup, we demonstrate a tunable

camera length, achieving a 6× improvement and reciprocal space resolution better than

0.1 Å−1 with an 8.2 MeV electron beam and a crystal Au sample. Future designs should

consider larger aperture PMQs to capture more Bragg orders, as larger apertures also

reduce the aberrations.
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CHAPTER 1

Introduction

1.1 Probing irreversible ultra-fast dynamics

Transmission Electron Microscopy (TEM) has historically offered the unique capability

to capture static images of the nano and subatomic world [1]. However, it has fallen short

in frame rate, which leaves a significant lack in our ability to track motion on these scales.

For instance, during thermal excitation of a gold lattice, grain boundary motion occurs on

a scale of several nanometers [2]; given the speed of sound, and the typical spatial scale

of the crystal grains, the spatiotemporal scale approaches the nanometer/picosecond.

Phenomena, such as phase transformations, defect migrations, and chemical reactions,

occur on these scales and dictate the properties and behaviors of materials in various

applications, branches of science ranging from microelectronics to biochemistry [3]. These

phenomena benefit from being studied with pump-probe techniques. In the pump-probe

scheme, a short laser pulse (the pump) excites the sample, and a delayed electron pulse

(the probe) captures the resulting dynamics either in a direct image or encoded in a

diffraction pattern, enabling the visualization of structural dynamics.

Figure 1.1: Illustration of laser pump-electron probe schemes, showing techniques ar-

ranged from left to right with increasing electron charge, designed to observe progres-

sively irreversible phenomena. A controllable delay, ∆t, between the pump and probe is

intentionally introduced for temporally correlated studies.
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There are primarily two modes of operation for pump-probe electron-based instru-

mentation:

Stroboscopic Mode: A pump-probe scheme with a variable repetition rate be-

tween 250 kHz and 25 MHz. The delayed probing electron pulse contains few

electrons within a sub 100 fs envelope, minimizing space charge effects. This

method provides excellent temporal and Angstrom-level spatial resolution but

is limited to reversible processes where the sample recovers between excita-

tions. To achieve high resolution, electron column currents are minimized,

sometimes to single-electron emission levels, and the probing beam is syn-

chronized with the pump laser delay. Despite requiring high repetition rates

for reasonable acquisition times, this technique has enabled breakthroughs in

visualizing electric and magnetic field dynamics, particularly in PINEM and

magnetic vortex scenarios [4, 5, 6, 7, 8, 9, 10].

Single-Shot Mode: Captures an image in a single electron pulse. The pulse

contains just enough electrons to form an image, typically more than 106,

resulting in a peak current far exceeding that of conventional TEM. This

high current leads to significant space charge effects, degrading resolution. To

manage these effects, some groups use few-MeV electron sources to shorten

the pulse, leveraging relativistic effects to suppress space charge [11, 12, 13,

14]. The main advantage of the single-shot method is its ability to study

irreversible processes, unlike the stroboscopic approach.

The exposure times in conventional TEMs are many orders of magnitude beyond

the ps scale because they typically operate with nA currents and a sufficient amount

of electrons must be accumulated on the detector to form an image. So, there is a

scientific interest to devise machines that can maintain sufficient spatial resolution while

increasing the peak current for single-shot acquisition. To address this need, the Basic

Energy Science Report on the Future of Electron Scattering recommended developing

instruments capable of ultrafast electron diffraction (UED) with potentially sub-micron

beam sizes, achieving 100 fs temporal resolution in single shot mode. Additionally, it
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recommended single-shot real-space imaging (UTEM) with spatial-temporal resolution

of 10 nm - 10 picoseconds (ps) [15].

The electron sources required for these instruments to work represent a thousand-fold

improvement over current instruments. Single-shot microscopes require electron beam

bunches with more than a million electrons, nanometer-normalized emittance, and a

relative energy spread smaller than ten parts per million (ppm). The peak current of the

electron source is several orders of magnitude higher than current electron microscopes.

Moreover, the beam energy of these instruments is significantly higher, necessitating

advanced electron optics capable of focusing the beam within a compact space. The

consensus from the workshop on the Future of Electron Sources was that realizing these

capabilities requires next-generation R&D in generating high-brightness beams, advanced

cathodes, higher cathode extraction fields and beam energy, and advanced acceleration

and beam manipulation schemes [16].

Time-resolved imaging and diffraction techniques can greatly benefit from particle

accelerator developments. For example, radio frequency-driven electron sources for free

electron lasers have led to accelerating gradients of 100 MV/m, enabling rapid acceleration

of short pulses without being degraded by space charge. Many facilities have adopted this

RF source for UED and UTEM to deliver beams with variable charge with good quality

while providing more control over the full beam phase space all in a compact footprint

[17, 18, 19, 20, 21, 22].

Following this trend multiple beamlines have incorporated advanced accelerator beam

manipulation technologies in time-resolved imaging applications. Examples include the

use of high-accelerating-gradient RF cavities to reverse space-charge-induced temporal

broadening [23, 24, 25, 26, 27]. RF deflecting cavities have been successfully used as

ultrafast streak cameras [28], high-speed beam choppers—creating ultrashort, low-charge

bunches with excellent beam quality at a high repetition rate by sweeping a continu-

ous beam across an aperture [29]—and as high-resolution time-of-flight spectrometers

[30]. Achromatic beam transport has made it possible to passively reverse space-charge-

induced expansion while reducing the time-of-arrival jitter of the electron pulse at the

sample [31, 32]. These demonstrations indicate a promising future for UED and UTEM

probes as more electron scattering instruments adopt accelerator and beam physics tech-
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niques.

In this thesis, the theory of 6D transport of relativistic electron beams is explored

and applied to developing photoinjector-based UTEM and UED instruments. Advanced

beam manipulation techniques are employed to optimally shape the 6D phase space of the

electron beam, mitigating space charge effects and ensuring the desired spatiotemporal

resolution is achieved. The operational mode focuses on utilizing a relatively low bunch

charge to attain the low emittance required for probing nanometer-scale spatial resolution

while maintaining just enough charge to form an image in a single shot without signifi-

cant phase space dilution from non-linearities. The thesis reviews the theory of electron

beam optics. Then it investigates longitudinal phase space shaping techniques to tailor

the beam’s energy spread and pulse duration for these applications. Then it explores

transverse phase space shaping to mitigate the impact of transverse space charge effects

on spatial resolution. Finally, the work delves into advanced permanent magnetic-based

optics to enable higher energy UTEM and UED operation.

The rest of this chapter details the brightness requirements for functional UTEM and

UED and concludes with a summary of the subsequent chapters that form the bulk of

the dissertation.

1.2 Beam brightness requirements

1.2.1 Brightness definitions

A critical step in achieving spatiotemporal resolution required for successful UTEM op-

eration is preserving the beam’s phase space as it is transported from the source to the

sample and on through the imaging transport. The figure of merit used to quantify phase

space or beam quality is the volume occupied by the particles in phase space. A density

distribution function can describe the beam 6d phase space. If the x-y-z phase space dy-

namics are decoupled and second-order moments of that distribution are used to describe

the extent of the particles in phase space, then areas in respective sub phase spaces are

called normalized RMS emittance. In each respective phase plane we can write:

ϵnqr =
1

mc

√
⟨q2⟩⟨p2q⟩ − ⟨qpq⟩2, (1.1)
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where q and pq are conjugate variables, and q can be x,y, or z, m is the mass of the

electron, c is the speed of light, x, y, z and px, py, pz are the position and momentum.

The angle brackets represent averages against the statistical distribution representing

the ensemble of particles comprising the beam. If the x-y-z phase space dynamics are

decoupled, then the product of the areas provide a measure of the 6D phase space volume

V6D ∼ ϵnxrϵnyrϵnzr. In the context of a beam phase space, the transverse momentum is

typically approximated as paraxial and typically reparameterized in terms of the angle

made by the electron trajectory in the horizontal direction, i.e., px = pcx
′ where pc is the

momentum of the beam, and x′ is the angle made. Notions of phase space density, volume,

and area are given greater depth in the second chapter. The smaller the emittance, the

easier it becomes to keep the beam tightly collimated or bunched over longer distances and

to be focused on smaller spots. Better transverse emittance also translates to sharper

images in microscope setups. A smaller longitudinal emittance translates to a beam

having less energy spread, which can be compressed into shorter pulses. A key fact of

the rms emittance is that it remains constant when the equations of motion governing

position and corresponding momentum are linear. However, it changes and commonly

grows due to non-linearities, also called aberrations.

In terms of normalized RMS emittance, for an amount of charge Q, we can define the

rms six-dimensional brightness as the inverse of phase space volume scaled by the charge

in the beam

B6D,rms =
Q

ϵnxrϵnyrϵnzr
. (1.2)

Four-dimensional brightness can be defined as:

B4D,rms =
Q

ϵnxrϵnyr
. (1.3)

Since normalized rms emittance is constant in linear transport, so is brightness, which is

determined at the source.

1.2.2 Phase space requirements for electron scattering instrumentation

We can estimate beam phase space quality requirements based on a desired performance.

Contrast is essential for distinguishing features when scattering electrons off a sample.

This is achieved by separating scattered and unscattered electrons either through beam
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drift or using electron optics 1. Ideally, the initial angular spread should be smaller than

the first Bragg angle, which depends on the beam quality and required spot size.

For a thin crystalline sample with atomic periodic spacing a, the first-order Bragg

reflection angles are proportional to θb =
λ
a
, where λ is the electron wavelength. We need

θb
σθ

= λc

ϵnxr

σx

a
> 1. For a fixed probe spot size of 1µm, this requires the normalized rms

emittance ϵnxr to be less than λcσx

a
. With typical atomic spacings ranging from 1 to 5

angstroms, this results in a necessary normalized emittance between 5 nm and 20 nm.

Assuming the optical system is perfectly linear and the beam is monochromatic, the

limiting aperture radius—and consequently the beam divergence—sets the diffraction

limit on resolution. The Rayleigh criterion defines the resolution limit set by electron

interference effects from the limiting aperture as Rd = 1.22 λ
σθ

where λ is the electron

wavelength and σθ is the maximum opening angle accepted by the limiting aperture.

Resolution is also significantly affected by energy spread and higher-order charged

particle dynamics, major sources of aberrations. Chromatic aberration arises from non-

monochromatic beams, where different energies have different focal planes. The transport

coefficient Cc relates the offset from the linear imaging position to the energy design

offset, typically similar in magnitude to the focal length. A bundle of rays from a point

in the object plane, with a spread in angle and transverse momentum, forms a disk in

the image plane with radius Rc = Cc
σp

p
σθ. Spherical aberration results from third-order

contributions to the transport. The aberration coefficient Cs, similar in magnitude to

the lens focal length, quantifies the displacement in the image plane of a ray originating

from the object plane without lateral offset, based on its initial angle. A bundle of rays

diverging from a point with an angle spread σθ will result in an error disk with radius

Rs = Csσ
3
θ .

The overall resolution, referring to the object plane, is determined by the quadrature

sum of all competing aberrations:

d =

√(
1.22

λ

σθ

)2

+

(
Cc
σp
p
σθ

)2

+ (Csσ3
θ)

2
(1.4)

For simplicity, we assume the resolution is well above the diffraction limit, as the de

1at the back focal plane of an objective lens, where the initial angle of an electron is directly related
to its final position as x = fθ
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Broglie wavelength for MeV electrons is less than 1 pm. By neglecting the first term under

the square root, we can estimate acceptable beam parameters using the spherical (Cs)

and chromatic (Cc) aberration coefficients. These coefficients, as a first approximation,

have values comparable to the lens focal distance, which can be as short as 2 cm for MeV

electrons.

From the above equation for d, achieving a spatial resolution of 10 nm requires a

relative energy spread lower than 10−4 and a collection semi-angle of less than 5 mrad. To

enhance contrast, it is preferable to have a smaller divergence, ideally at most comparable

to the Bragg angle, which is typically around 1 mrad for MeV electrons.

1.2.3 Single shot dose requirements

1.2.3.1 Imaging

In order to form an image of a sample, we hit the sample with the electron beam. Some

fraction of the beam scatters and some transmits. Suppose we could perfectly intercept

the scattered electrons and keep only the ones transmitted. If the transport is imaging

the sample plane, then we will be able to see the features that ultimately causes the

scattering because there will be a loss of intensity into the corresponding pixels at the

detector.

For now, we won’t concern ourselves with the intricacies of the scattering process, such

as if the scattered and transmitted fractions can be isolated from one another spatially.

For reference on the details consider [33].In this, we assume we can successfully isolate

and block the scattered electrons. So we can think of this process as if a mask is applied

to the image of the direct beam. The mask would apply a contrast map to each pixel so

that, as a whole, an image is formed. We look at a pixel, having area A, and compare

before and after the mask is applied. Before the mask is applied, the original pixel value

is directly proportional to the intensity of the direct beam, (for simplicity, we assume the

direct beam has a uniform circular transverse profile). Then once the mask is applied

(the collimator intercepts the scattered beam), that pixel loses some intensity and takes

on a new, lower value. We can contrast the difference between these events with the
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contrast ratio:

C =
Ib − Is
Ib

(1.5)

where Ib is the intensity of the pixel without the mask, i.e., when we are not blocking

the scattered beam, and Is is the intensity of that pixel when we do block the scattered

beam. That is, if Is is zero, all particles that were supposed to map to this pixel were

scattered and successfully blocked, corresponding with perfect contrast or C = 1. On the

other hand, if nothing was scattered, then Is = Ib and C = 0, so there is no contrast.

Analogously, we can apply this same definition to contrast adjacent pixels.

If we consider the signal to be the difference, ∆I = Ib − Is = CIb, then Ns = A∆I =

CAIb gives the amount of blocked electrons. Meanwhile, the background noise level is

taken when none of the electrons are blocked, σ =
√
AIb, so the signal-to-noise ratio is

SNR = C
√
AIb. Thus, for a desired SNR = 5, and C = 0.5, we need Ib =

100
A
, or 100

electrons per pixel area. If the pixel area, is exactly one-to-one with a resolution area

unit, with dimensions d2, where d is the instrument’s resolution, and we are trying to

obtain 10nm resolution. We would need 1e/(nm2) to distinguish the image visually. So

if the beam fills a field of view that is a 1µm circle at the sample plane, the total charge

needed to distinguish features is roughly 3× 106 electrons, or about 0.5pC.

To simulate the effects of low-dose imaging, we employ a test target consisting of

horizontal line pairs, the largest being 100 nm by 20 nm, decreasing in scale until the

final set of bars is 10 nm by 2 nm. A beam having 3 mrad divergence is imaged with a

magnification of 5 by a 5 cm focal length lens. The image is converted back to the object

plane. Here the pixel size is 10nm. The results are shown in Fig. 1.6, for different doses:

(a) 10e/(10 nm)2, (b) 50e/(10 nm)2, and (c) 250e/(10 nm)2.

1.2.3.2 Diffraction

To estimate the charge required for producing diffraction patterns in a single shot, we start

with a simple model of forming a diffraction pattern image to visualize desirable SNR in

accordance with the Rose Criteria. We let an initial Gaussian distribution represent an

image of the direct beam, which is what would be viewed on a screen when there is no

sample inserted; I(x, y) = I0 exp
(
−x2+y2

2σ2

)
.
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(a)

(b)

(c)

Figure 1.2: Simulated images of a sample target for different doses: (a) 10e/(10 nm)2,

(b) 50e/(10 nm)2, and (c) 250e/(10 nm)2.
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When a thin crystalline sample is inserted, the beam is scattered and produces an

intensity distribution with a characteristic diffraction pattern, the resulting intensity dis-

tribution on the screen is Ĩ(x, y) = I1

(
exp

(
−x2+y2

2σ2

)
+
∑M

k=1 Fk exp
(
− (x−xk)

2+(y−yk)
2

2σ2

))
,

where I1 represents the amplitude or peak value of the primary beam after diffraction,

Fk denotes the fraction of I1 corresponding to the intensity of Bragg peak k such that

Ik = FkI1, xk and yk represent the mean or center of the Gaussian for Bragg peak k

relative to the primary, respectively, M is the number of Bragg peaks, and σ is the root

mean square (RMS) width of each Gaussian. Assuming Bragg peaks mirror the shape

of the original beam, radially offset from the direct beam. Also, the direct beam in-

tensity diminishes and redistributes into the Bragg peaks to conserve the total charge.

Effectively, upon inserting the sample, a mask is applied to the original image. Conser-

vation of charge implies that I0 = I1(1 +
∑M

i=1 Fi), where
∑M

i=1 Fi > 02. Each Gaussian

can be normalized to the total number of electrons within it by using Nk = (2πσ2)Ik,

where Nk represents the total electron count on the screen in a particular Bragg peak.

Since, Ik = FkI1 and I1 is related to I0, we have Nk = FkN0/(1 +
∑m

i=1 Fi). We can

invert the relation,
√
IkA = SNR, to obtain the required input beam charge for a desired

signal-to-noise ratio:

Q0 = 2π(SNR · σ(pixels))2
(
1 +

∑M
i=1 Fi

Fk

)
(electrons) (1.6)

where σ is in units of pixels. This expresses the total bunch charge required to resolve a

particular Bragg peak in a single shot. One interesting observation from this expression

is that less charge is required as long as the spot size can be smaller, which makes sense

because more electrons are packed into a pixel. So, a beam of higher quality having less

charge can be sufficient for single-shot imaging. The nuclear cross-section and expected

positions of the Bragg peaks can be used to theoretically determine
∑M

i=1 Fi and Fk for

a particular material. For simplicity, assume
∑M

i=1 Fi = 0.25, and Fk = 0.01, i.e., an

intensity that is 100 times smaller than the transmitted beam, then to have a SNR = 5

from a 5 pixel spot, we would need , Q0 = 5×105e, nearly a 100fC, assuming the detector

accurately counts single events.

In Fig. 1.3, we present 300x300 pixel diffraction pattern images that explore the

impact of varying electron counts and Gaussian standard deviations on the diffraction

2if it were 0, then there is no scattering.
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Figure 1.3: 300x300 pixel diffraction pattern images generated with varying total number

of electrons and Gaussian standard deviation (σ). Each row represents a different total

number of electrons (5× 104, 1× 105, 5× 105), while each column represents a different

Gaussian standard deviation (σ = 2, 4, 8). The images are overlaid with background

Poisson noise, demonstrating the influence of these parameters on the diffraction pattern.
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patterns. Each row corresponds to a different total number of electrons: 5× 104, 1× 105,

and 5 × 105 electrons. Each column represents a different Gaussian standard deviation

(σ): 2, 4, and 8 pixels. Pixel values range from 0 to 255. The images are overlaid with

background Poisson noise to simulate realistic experimental conditions. The variations in

electron count demonstrate how increasing the number of electrons enhances the intensity

and definition of the diffraction spots. Meanwhile, the variations in σ illustrate the effect

of beam divergence or focusing, where larger σ values result in broader and more diffuse

diffraction spots and the possibility of using less charge.

1.2.4 Beam quality from photoemission

Based on the discussion in sections 1.2.3 and 1.2.4, we now understand the beam pa-

rameters—such as energy spread, emittance, and beam charge—required for electron

scattering instrumentation in both imaging and diffraction modes. According to the Li-

ouville theorem, the phase space density cannot be altered in Hamiltonian transport,

making it crucial to start with the highest possible phase space density to meet these

requirements. The photoemission process determines the initial beam quality.

The source size is determined by how tightly the drive laser can be focused. To address

the reduced average current, single-shot UTEM and UED instruments generate pulses

with many electrons per bunch from flat photocathode surfaces, where a smaller initial

angular spread of emitted electrons increases beam brightness [34]. The precise timing

control of laser-driven photoemission is also essential for adequate shaping of the electron

beam temporal profile. Spicer’s theory indicates that the duration of photoemission from

metal cathodes is extremely brief, typically just a few femtoseconds, as documented in

[35]. This duration is significantly shorter than the incident laser, whose optics can stretch

to tens of picoseconds. Consequently, it is generally assumed that the initially emitted

electron distribution mirrors the temporal profile of the incoming laser beam.

Assuming no correlation between the electron’s emission angle and position, the trans-

verse emittance upon photoemission is given by:

ϵx,th = σx0

√
MTE

mc2
(1.7)

where MTE is the mean transverse energy, and mc2 is the rest mass energy of the
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electron. In typical photoemission systems, the MTE is expressed as (h̄ω−W )/3, where

ω is the laser frequency, W is the material’s work function, and h̄ is the reduced Planck

constant [36]. The initial spot size σx0 refers to the size of the laser beam on the cathode

surface. To minimize the thermal contribution to emittance, reducing the laser spot size

on the cathode is crucial. A best-case estimate of the initial emittance can be made by

knowing the work function and the photon energy.

The presence of an applied electric field reduces the work function through the Schot-

tky effect, effectively lowering the work function due to the image charge field’s influence

on the total potential by an amount ∆W =
√
e3Eacc/4πϵ0, where Eacc represents the

applied electric field. The accelerating field of a state-of-the-art photo injector can, in

principle, reach 100 MV/m at the cathode surface [37]. This accelerating field lowers the

work function by about 0.37 eV and raises the excess energy to around 0.4 eV. If we could

tune the laser wavelength, we could, in principle, lower the effective work function, but

doing so negatively reduces the QE, and thus requires more laser energy to achieve the

same amount of charge [38]. A more practical approach is to make the laser spot size on

the cathode as small as possible. but there are two issues in making the spot small. A

practical one is how far the last lens focusing the laser onto the cathode can be positioned

outside the vacuum. A more fundamental one is the saturation current limitation, which

is the amount of charge that can be extracted from very small spot sizes.

1.2.5 Saturation current

When trying to minimize the initial beam emittance by shrinking the laser spot size,

we encounter a limit due to space charge effects [39]. In 1D, the classic Child-Langmuir

equation predicts the limiting current density jCL,1D = 4ϵ0
9

√
2e
m

V
3/2
acc

d2
where Vacc is the total

applied voltage across the gap, d is the gap length, ϵ0 is the vacuum dielectric permittivity,

m is the electron mass, and e is the electron charge.

This can be generalized to a realistic photoemission case, considering the variation of

the electric field during the photoemission process; the on-axis electric field for a disk of

radius R3 is given by Ez(s) =
σ
2ϵ0

(
1− |s|/

√
s2 +R2

)
, where ζ is the on-axis coordinate

measured from the center of the disk. This field decreases significantly with increasing

3representing a slice of the beam
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distance from the disk, implying that particles beyond a distance s ≈ R contribute less

to the fields at the cathode.

To modify the C-L equation to the diode geometry, we substitute the traditional gap

length d with the effective length zeff ∼ R, and an effective gap voltage Vacc ∼ Eacczeff =

EaccR, where Eacc is the constant gun accelerating field assumed in this derivation. This

assumption is valid under static accelerating fields, such as DC guns, or when the laser

pulse duration is significantly shorter than the radio frequency (rf) period. The two-

dimensional space-charge limiting current for the effective diode can be calculated by

incorporating these modifications into Child’s law and multiplying by the beam’s cross-

sectional area at the cathode πR2:

Isat,2D = CcI0

√
2

9

(
eEaccR

mc2

) 3
2

, (1.8)

where I0 = 4πϵ0mc3

e
≈ 17 kA denotes the characteristic Alfven current, and Cc is an

order-of-unity constant added for calibration. This formula indicates how much charge

can be effectively extracted within a pulse of a specified length for a given spot size on

the cathode before virtual cathode instabilities occur [40]. For example, inspecting this

expression’s scalings, it can be found that a 10 ps current pulse with emittance below 10

nm and pC levels of charge can be achieved without saturation, provided the extraction

fields exceed 15 MV/m.

Alternatively, if the laser pulse length is short so that the initial photoemitted beam

has a pancake-like aspect ratio, then the maximum charge that can be extracted from

the photocathode, assuming a thin disk, is Qsat = ϵ0EaccπR
2. In this regime, the electron

pulse undergoes a strong longitudinal space charge expansion [41]. Extensive simulations

and measurements are required to predict its pulse length, which is strongly charge-

dependent. For more control over the electron pulse duration, it may be preferable to

initialize the beam in the cigar mode of operation.

1.2.6 Relativistic energies for electron scattering instrumentation

Once the beam has been photoemitted, it is critically important to preserve its phase

space density throughout the transport. We will see that non-linearities in external fields

and in the beam self-fields are the main contributors to emittance growth. While the non-
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(a) (b)

Figure 1.4: (a) Resolution versus current for different instruments. Insets label the

beam energy and pulse duration used in each instrument. The data points represent:

MUEM China (100 nm resolution, 10 ps pulse duration, 3 MeV energy), OSAKA (38 nm

resolution, 100 fs pulse duration, 3 MeV energy), and LLNL (10 nm resolution, 15 ns

pulse duration, 200 keV energy). (b) Comparison of 6D beam brightness versus charge

per pulse for various electron sources.

linearities can be controlled by properly designing the electron optics, since a high signal-

to-noise ratio is needed to improve the quality of the data, there is no simple solutions

to the space charge effects. Figure 1.4(a) shows the state-of-the-art resolution versus

current, with insets labeling beam energy and pulse duration used in the instrument. In

single-shot TEM, if electrons did not repel each other, sub-nanometer resolution could

be attained. However, due to the current levels in use, the resolution degrades to tens or

even hundreds of nanometers. This illustrates that space charge aberrations far exceed

lens aberrations, prompting the question: how can we efficiently manage space charge

effects in magnification stages?

Relativistic effects suppress space charge forces.In fact, by Gauss’s law, the electric

field will be proportional to the total charge density of the beam. An inverse square

dependence on the relativistic gamma factor arises because the beam’s collective magnetic

field, Bsc, is related to the collective electric field, Esc according to Bsc = v × Esc/c
2,

where v is the velocity of the beam, perpendicular to Esc. Calculating the transverse

Lorentz force, it can be seen that the electric and magnetic fields cancel at higher beam

energy, where explicitly Fsc ∝ Q
γ2σxσyσz

. The scalings on the transverse force reveal that

as we compress the beams longitudinal dimension σz, for a fixed amount of charge Q,
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the space charge forces increase. Still, the inverse quadratic scaling with beam energy

strongly favors increasing beam energy to bring the magnitude of the force to acceptable

levels for imaging.

RF photoinjectors are effective at generating high energy, pulsed, bright beams with

low emittance, addressing both space charge and brightness requirements with their high

accelerating gradients at the cathode surface (E0 > 50MV/m). They allow for variable

pulse lengths ranging from fs to ps durations, as well as variable charge ranging from

105e to 1010e. Adjusting the laser striking the cathode can tailor the initial electron pulse

distribution.

Consider for example a single-shot microscope application, with a current of approx-

imately 25 mA, an illumination radius of about 1 µm, an angular divergence of around

3 mrad, a beam gamma factor of 10, and a relative energy spread of 10−4, this yields a

6D brightness of approximately 1017A/m2. Fig. 1.4(b) shows how cigar beams generated

by recent photoinjectors nearly meet this requirement. The requirement is an estimate,

and tradeoffs can be made between current and beam quality. Ongoing developments in

enhanced photocathode materials [42] and optimized RF geometries are making signifi-

cant strides. These advancements are aimed at improving both extraction emittance and

brightness preservation.

In order to motivate this thesis, we consider the design of a single-shot UTEM based

on an RF photoinjector source in [43]. This dissertation work began with the goal of

experimentally demonstrating the capability of that concept source. The scheme employs

a photoinjector that operates in the cigar regime, producing 10 ps long shots with an

emittance of 20 nm. An X-band frequency RF cavity suppresses the relative energy

spread of the beam to below 10 parts per million. This configuration ensures a high-

quality electron beam suitable for high-resolution imaging.

After the sample, the design employs a permanent magnet-based quadrupole objective

lens with an effective focal length of 1.5 cm. The optical system is based on quadrupole

lenses, which provide strong focusing capabilities. However, the resolution from such

systems is not easily tractable analytically and requires detailed simulations to accurately

predict performance. These simulations, spanning from start to end, have demonstrated

that the machine can achieve single-shot imaging with a spatial resolution of 10 nm.
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Figure 1.5: Conceptual design of a Single Shot 10 ps UTEM. Figure taken from Ref. [43]

However, despite the promising results, the initial study was primarily a design re-

port. It highlighted the system’s capabilities but did not provide a generalized framework

for other research groups to easily determine the spatial resolution their systems could

achieve. This gap underscores the need for further work to develop analytical models and

methodologies that can be universally applied, enabling broader adoption and adaptation

of single-shot TEM technology for various research applications. A framework for ana-

lytically understanding space charge aberrations in imaging is a core element of a later

chapter of this thesis.

Although solenoids can provide necessary focusing at few MeV energies, they are not

compact or economical because of their poor inverse square scaling with beam energy. An

economic alternative is alternating gradient focusing using quadrupole magnets, whose

focusing capability scales inversely with the beam energy. Recent advancements in the

laboratory have led to the development of permanent magnet quadrupole (PMQ) optics

analogous to those in [43]. These efforts resulted in the demonstration of single-shot

picosecond time-resolved MeV electron with PMQ optics that result in a magnification

factor over 30.

MeV-based time-resolved electron microscopy has a lot of potential. This method

can achieve 10 nm scale resolution with 10 ps temporal resolution when combined with

proper phase space shaping. To realize this potential, it will be essential to develop

advanced engineering solutions and machine learning-driven feedback control systems to

manage the increased complexity of these instruments. High-energy UTEM systems with

permanent magnet-based focusing elements, if properly aligned and optimized, could pave
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Figure 1.6: Optical and electron images obtained using PMQ optics for magnification.

The top images show a nanofabricated UCLA target, while the bottom images display

simulated distributions at the target and image plane. The simulation color coding

indicates the division between scattered and unscattered particles. Figure taken from

Ref. [45]

the way for breakthroughs in ultrafast dynamics and material science. Using machine

learning-driven feedback control systems could be particularly beneficial in managing

these complexities [44].

1.3 Dissertation organization

The organization of this dissertation is inspired by the MeV TEM concept. Subsequent

chapters establish an analytical framework that addresses the limitations inherent in

these electron scattering instruments. This framework is then applied to further develop

ultrafast nanoprobes.

Chapter 2: explores both the linearized theory charged particle beams and the

impact of non-linearities on emittance, focusing on the root-mean-square (rms) beam

emittance and its preservation. The chapter concludes by applying these concepts to a

concept for a 200 keV Dynamic Transmission Electron Microscope (DTEM) source.

Chapter 3: the first half details longitudinal beam dynamics in radio frequency (RF)

photoinjectors and cavities. Concepts of bunch compression and energy spread minimiza-
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tion are detailed, and a 30 keV EELS beamline, leveraging 2 RF cavities for energy spread

minimization, is presented. The second half is dedicated to the commissioning of the har-

monic linearizer cavity and experimental demonstration of energy spread minimization on

the Pegasus beamline, along with a simulation-based design study of distortion-corrected

velocity bunching using the harmonic linearizer.

Chapter 4: presents techniques for calculating space charge aberrations and mitigat-

ing the effects space charge in UTEM. It examines the influence of space charge fields on

single-shot TEM capabilities, derives analytical estimates using Green’s function pertur-

bation method, and validates these estimates with particle tracking simulations, revealing

fundamental scaling laws and trade-offs between temporal and spatial resolution.

Chapter 5: investigates Ultrafast Electron Diffraction (UED), emphasizing how MeV

electron beams, particularly several MeV, enhance temporal resolution by mitigating

space charge effects in real-time atomic-scale structural analysis. It addresses techni-

cal challenges of increased beam energy with a compact magnetic, optical system using

Halbach quadrupole lenses, demonstrated with an 8.2 MeV electron beam on an Au sam-

ple, achieving a significant reduction in camera length and improved reciprocal space

resolution through tunable magnification.
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CHAPTER 2

Transport of charged particles beams

2.1 Introduction

With a central theme of developing techniques for preserving beam quality and trans-

porting charged particles, this chapter delves into deriving the key dynamical equations

and establishing a framework and intuition for low-current transport.

A review of Liouville’s theorem is provided to examine concepts such as phase space

density and phase space area—the smallness of which determines beam quality. We

elucidate how distributions of particles evolve under Hamiltonian flow.

To develop the linearized dynamical equations, linear equations of motion, including

longitudinal acceleration, are generally solved. This discussion brings us back to concepts

of phase space area, revealing an equivalence between a single particle’s phase trajectory

and the evolution of a phase ellipse whose boundary initially contains that particle’s initial

conditions. This fact allows us to establish a first-order transport matrix formalism to

evaluate how statistical measures of the beam distribution evolve.

We then explore how space charge forces naturally tend to disrupt the linearity of the

system through collective forces. To maintain a linear self-field, the beam density must

be uniform—a challenging condition to meet throughout each section of transport. This

analysis also serves to demonstrate the general scaling of collective space charge fields

and the main field components for a beam with a specific aspect ratio. A review of the

Kapchinsky-Vladimirsky (KV) distribution, the only known distribution that maintains

uniformity throughout linear transport, is provided to showcase an ideal self-consistent

model for imaging. The KV distribution is a highly idealized model though so in gen-

eral, we want to minimize or at least control the space charge effects of realistic beams.

We generally provide examples of charge distributions, their associated fields, and their
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evolution when non-linear evolution can be neglected, such as in low current scenarios

where external focusing primarily dictates the trajectories. This highlights that even if

the beam density is uniform at one position, it may not be at other critical positions in

the transport, potentially causing substantial aberrations in the beam transport.

The use of Green’s functions to analyze the effect of higher-order Taylor map coeffi-

cients is examined. This perturbative technique utility is exemplified through calculations

of spherical aberration coefficients for the optimization of an electrostatic DTEM source.

We demonstrate how to calculate emittance growth from higher-order Taylor coefficients

in the case of spherical aberration, ultimately showing how emittance growth in imaging

transport determines resolution.

2.2 Hamiltonian dynamics and Liouville’s theorem

After photoemission, the dynamics of charged particles in the accelerator follow the clas-

sical relativistic Hamiltonian. The equations of motion can be derived from a relativistic

lagrangian [46], which is a scalar function of the conjugate positions and velocities, and

by a Legendre transformation, is related to a Hamiltonian, another scalar function pa-

rameterizing total particle energy with position and momentum. For a particle of charge

q and mass m, The Hamiltonian is given by:

H =
√

(P− qA)2c2 +m2c4 + qϕ (2.1)

where P is the canonical momentum related to the mechanical momentum p = P− qA,

q is the charge of the particle, A is the vector potential of the magnetic field, ϕ is the

scalar potential of the electric field, c is the speed of light in a vacuum.Momentum and

velocity obey Hamilton’s equations, i.e.:

ṙ =
∂H

∂p
(2.2)

ṗ = −∂H
∂r

(2.3)

According to Maxwell’s equations, the fields are related to their potentials by the following

relations:

E = −∇ϕ− ∂A

∂t
, (2.4)
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B = ∇×A, (2.5)

the mechanical momentum to satisfy the Lorentz force law :

ṗ = eE+ eṙ×B (2.6)

where p is the mechanical momentum and r is the time derivative of the position, E and

B, are the electric and magnetic fields respectively.

The Hamiltonian formalism’s utility becomes apparent when describing how an en-

semble of particles will evolve while subject to the Lorentz force. We represent the particle

density within phase space as a smooth function, f(x, px, y, py, z, pz; t); the distribution

function. The quantity dQ = fdV6d = fd3rd3p represents the charge in a small volume el-

ement dV6d = d3rd3p of phase space. The charge density ρ(r) is calculated by integrating

f over all momentum.

The motion of particles in phase space corresponds to an evolution of a vector field

in a phase space continuum, where each particle is associated with a phase space ve-

locity field vector u = (ṙ, ṗ). This 6D vector field maps initial conditions to a later

position/momentum vector, i.e., r = r(r0,p0, t) and p = p(r0,p0, t), and is considered a

Hamiltonian flow. As time progresses, this evolves, causing an ensemble of initial phase

points to flow into a new configuration. Notably, the Hamiltonian dynamics result in an

incompressible flow so that the volume containing the particles remains fixed, and the

particle density remains constant along the streamlines of the phase space velocity field.

Phase space flow must adhere to a 6D continuity equation when particles are not

created or destroyed, with a 6D velocity field along which particles stream; explicitly the

continuity equation is given by:

∇ · (fu) + ∂f

∂t
= 0. (2.7)

The divergence term can be expanded as ∇ · (fu) = f∇ · u+ u · ∇f .

Using Hamilton’s equations, the divergence of the velocity field is:

∇ · u =
∂

∂r
· ∂H
∂p

− ∂

∂p
· ∂H
∂r

= 0 (2.8)

because the Hamiltonian is s smooth function, the mixed partials commute. Thus, the

continuity equation can be simplified to a statement about the convective derivative of
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the distribution function being zero, i.e.:

0 = ∇ · (fu) + ∂f

∂t
= u · ∇f +

∂f

∂t
=
df

dt
(2.9)

which implies that the distribution function f(r,p, t) = f(r0,p0, 0), is constant along

single particle trajectories, indicating that the phase space density is transported along

characteristic particle paths in the continuum, and is inherently preserved, this is the

formal perspective of Liouvilles’s Theorem.

When we consider stationary distributions, i.e., distributions having no explicit de-

pendence on time, then the evolution of the distribution function is obtained once the

single particle dynamical equations are known. Determining the time evolution of the

distribution function becomes finding an invertible relationship between the initial and

final conditions, i.e., r0 = r0(r(t),p(t)), and p0 = p0(r(t),p(t)). Inversion is simple when

an invertible square matrix relates initial and final states, this is when the hamiltonian is

a quadratic function of position and momentum coordinates. This is when the equations

of motion are linear. The difficulty increases when the relationship between the initial

and final states is more complicated because of non-linear forces. This solution method

is called the method of characteristics [47]. Thus, having knowledge of the initial distri-

bution function and the solution to Hamilton’s equations of motion fully determines the

evolution of the distribution function.

Many formulate the theorem from the perspective that the differential volume ele-

ments are invariant [48, 49, 50], that is, a parcel of particles will maintain its volume as

it undergoes Hamiltonian flow. To illustrate this, let’s consider a simplified scenario in a

2D phase space. If we allow our particles to evolve by an infinitesimal time step δt, we

observe that each particle’s phase space location changes according to:
x = x0 + ẋ0δt,

px = px0 + ˙px0δt,

(2.10)

The initial phase area is given by dx0dpx0. Thus, by considering the edges of a square

region in phase space, we find that its edges will change as follows:
dx = dx0 +

∂ẋ0

∂x0
dx0δt,

dpx = dpx0 +
∂ ˙px0
∂px0

dpx0δt.

(2.11)
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The product of these quantities yields the new differential area element. To first order in

δt, we have:

dxdpx = dx0dpx0

(
1 +

(
∂ẋ0
∂x0

+
∂ ˙px0
∂px0

)
δt

)
= dx0dpx0

(
1 +

(
∂2H

∂x0∂px0
− ∂2H

∂px0∂x0

)
δt

)
= dx0dpx0.

(2.12)

This implies that the jacobian for the transformation is 1. Generally, this same argu-

ment applies to showing the 6D differential volume element dV6D constant through a

Hamiltonian flow.

2.3 Paraxial approximation

A pulsed beam is characterized by a distribution of charged particles with small variations

about the centroid and mean momentum. The centroid and average momentum are given

by the first moments:

⟨r⟩ =
∫
rf(r,p)dV6D∫
f(r,p)dV6D

(2.13)

⟨p⟩ =
∫
pf(r,p)dV6D∫
f(r,p)dV6D

(2.14)

These first moments, characterizing the beam centroid, are ideally the design trajectory.

We want to also linearize the distribution with respect to deviations from the average

position and momentum of the electron beam. The deviations from the averages are

given by:

δr = r− ⟨r⟩ (2.15)

δp = p− ⟨p⟩ (2.16)

Single particle dynamics capture the motion of the centroids, and we can ignore col-

lective effects. The distribution can be parameterized in terms of the deviations from

the centroid, which we try to match with an on-axis single particle design trajectory,

i.e., ⟨r⟩ =
∫ t

0
cβc(τ)dτ ẑ = s(t)ẑ, and ⟨p⟩ = mcγc(s)βc(s)ẑ. To parameterize the entire

distribution regarding the centroid and its momentum as the design trajectories, the

distribution satisfies ⟨x⟩ = ⟨y⟩ = 0 and ⟨βx⟩ = ⟨βy⟩ =
∫ t

0
⟨(βz − βc⟩dτ = 0.
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For a beam, the transverse velocities are typically orders of magnitude smaller than

the longitudinal velocity, and the spread in longitudinal velocity components of each

particle in the bunch, about the design trajectories, is also ideally small. We aim to

express an arbitrary particle’s position and momentum in terms of the design trajectory.

So we first consider the longitudinal velocity, and write:

β =
√
β2
x + β2

y + β2
z → βz = β

√
1−

β2
x + β2

y

β2
(2.17)

To account for a total velocity deviation with respect to the design trajectory, we let

β = βc + ∆β, where βc is the velocity of the design trajectory, which is only along the

z-direction. We define particle angles x′ = βx/βc and y′ = βy/βc. To second order in

deviations, the longitudinal velocity, and variation with respect to the design trajectory

are obtained:

βz = βc(1 + ∆β/βc)

√
1− x′2 + y′2

(1 + ∆β/βc)2
(2.18)

≈ βc

(
1 + ∆β/βc −

1

2
(x′2 + y′2)

)
(2.19)

⇒ ∆β

βc
≈ ∆βz

βc
+

1

2
(x′2 + y′2) (2.20)

∆βz

βc
= z′ is referred to as the fractional velocity difference.

The momentum components can be expressed in terms of ray angles and velocity

deviations:

pz =
mcβz√

1− β2
c (1 +

∆β
βc
)2

(2.21)

= pc(1 + γ2c z
′ +

3

2
β2
cγ

4
c z

′2 − 1

2
(x′2 + y′2) + ...) (2.22)

⇒ ∆pz = pc

(
γ2c z

′ +
3

2
β2
cγ

4
c z

′2 − 1

2
(x′2 + y′2) + ...

)
(2.23)

Similarly, second-order expansions for the momentum in the x and y direction are given

by:

px = mcγβx = pc(x
′ + γ2cβ

2
cx

′z′ + ...) (2.24)

py = mcγβy = pc(y
′ + γ2cβ

2
c y

′z′ + ...) (2.25)

If the deviations are small enough to require only first-order terms, then to first order

px = pcx
′, py = pcy

′, and pz − pc = pcγ
2
c z

′. This truncation is what is known as the
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paraxial approximation. Geometrically tracking particles is best understood in terms of

trace variables. However, it is important to note that when x′, y′, or z′ become large

enough, the relation between trace space to phase space, when parameterized in this way,

develops non-linearly.

2.3.1 Trace space emittance

In the paraxial approximation, the projected emittance can be expressed in terms of a

trace space emittance:

ϵnx = pc

∫
Ω′

x

dxdx′ = pcϵx and ϵny = pc

∫
Ω′

y

dydy′ = pcϵy (2.26)

ϵnz = pcγ
2
c

∫
Ω′

z

dzdz′ = pcγ
2
c ϵz (2.27)

It must be stressed that these measures of trace space area are only constant if there

is no acceleration and equal to the true normalized emittance only when the dynamics

are truly paraxial. In the case of acceleration, while remaining paraxial, the trace space

emittance can always be easily related to the normalized emittance, which is conserved

regardless of how non-linear the forces are.

So to recap, we solve for the design trajectory’s velocity βc(s), which determines it’s

momentum pc(s). Then, once these are known, we can describe off-axis/off-momentum

particles, by parameterizing all subsequent particles to the arc length of the design tra-

jectory, which is the straight path through the accelerator that is the electron emitted

normally from the center of the cathode. We can already see that if we consider rays

that are on-momentum, i.e., having the same energy as the design trajectory but small

mismatch in initial transverse conditions, then the corrections are second order compared

to the longitudinal velocity variation.

2.4 Linear transport theory of charged particle optics

A major challenge in transporting the charged particles is designing the transport system

so that the forces about the centroid, including space charge, are linear, then phase space

filamenting will not occur. Analyzing the general case of linear dynamics is the first step

in a perturbative approach to a full solution, including higher-order perturbing forces. If
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we could have, for all time, the forces about the centroid be linear, then corresponding

paraxial equations for each projected phase space are:

ṗx = −kxx =⇒ x′′ +
p′c
pc
x′ +Kxx = 0 (2.28)

ṗy = −kyy =⇒ y′′ +
p′c
pc
y′ +Kyy = 0 (2.29)

ṗz = −kzz =⇒ z′′ +
(pcγ

2
c )

′

(pcγ2c )
z′ +Kzz = 0 (2.30)

Here, kx, ky, and kz are functions dependent on s, typically associated with the gradient

of quadrupole fields or the on-axis field of solenoids, and

Kx =
kx
pccβc

, Ky =
ky
pccβc

, Kz =
kz

(pcγ2c )cβc
(2.31)

The specific characteristics of these functions will be discussed in detail later in this

chapter, as it is a case-by-case function, looking particularly in this chapter at linear

focusing in cylindrical symmetric electrostatic optics, then later into magnetic solenoids

and quadrupoles; however, the discussion is meant to remain general for now.

By making scaling transformations to the equations of motion, i.e., letting x = X/
√
pc,

y = Y/
√
pc, and z = Z/

√
pcγ2c , the equations can be converted to normal form as well,

in summary, the equations of motion in the linearized theory are given by:

X ′′ + κx(s)X = 0, κx(s) =

(
Kx +

1

4

(p′c)
2

p2c
− 1

2

p′′c
p0

)
(2.32)

Y ′′ + κy(s)Y = 0, κy(s) =

(
Ky +

1

4

(p′c)
2

p2c
− 1

2

p′′c
p0

)
(2.33)

Z ′′ + κz(s)Z = 0, κz(s) =

(
Kz +

1

4

((pcγ
2
c )

′)2

(pcγ2c )
2

− 1

2

(pcγ
2
c )

′′

(pcγ2c )

)
(2.34)

For now, let U be a place holder for X, Y , or Z, and let κ take the place of κx, κy, or

κz, so we need to solve:

U ′′ + κU = 0 (2.35)

in general. This second-order linear differential equation is called Hill’s equation, named

after George William Hill who originally studied this equation in the context of orbits,

where κ becomes a periodic function. To solve Hill’s equation [51], it is typical to employ

the variation of parameters technique [52], and assume a form reminiscent to the harmonic

oscillator, i.e.:

U = w cos (ψ) (2.36)
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where w is an amplitude function and ψ is a phase function both depending on s (which

for each dimension each should have a subscript x, y, or z). Substituting into Hill’s

equation results in:

(w′′ − wψ′2 + κw) cos(ψ)− (2w′ψ′ + wψ′′) sin(ψ) = 0 (2.37)

(2.38)

sin(ψ) and cos(ψ) are linearly independent, so to have a solution the coefficients need to

be zero, which implies:

ψ = ψ0 +

∫ s

s0

ds

w2
, and w′′ + κw =

1

w3
(2.39)

where ψ0 is an initial phase and ∆ψ(s) =
∫ s

s0

ds
w2 .

So far, this discussion of the solution to the Hill’s equation has been general, and

we have not stipulated the dimensionality of the equation. If we want to think of U

and w to have units of meters, and derivatives are inverse meters, then there is an issue

with how the phase angle is interpreted, namely, the phase angle has units of inverse

meters. Furthermore, in this context, sin(ψ) has units of meters. If however, U and w

had units of m1/2, then the phase angle is in radians, and the units of the trig functions

are sensible. To remedy this counter-intuitive issue, we normalize by ϵ, a constant referred

to as the Courant Snyder invariant which is a phase space area that has units of meters

times radians, this allows us to redefine U = Ũ/
√
ϵ, and w = σ/

√
ϵ, where σ, the

envelope function, has units of meters, and Ũ is a physical state measured in meters.

This formulation ensures the phase advance ψ has units of radians and corrects the trig

functions. Making this substitution in the differential equation governing w, we get

∆ψ = ϵ

∫ s

s0

ds

σ2
, and σ′′ + κσ =

ϵ2

σ3
(2.40)

an envelope equation and a phase depending on the envelope evolution. A striking feature

of this approach is that the equation for σ is also second order, so it also has two initial

conditions. There are 3 integration constants, meaning we have an additional degree of

freedom; how can we make sense of this peculiar feature? To make some headway, at any

given moment, the position and angle are given by:
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Figure 2.1: Example trace space distributions with different values of ϵ, with the same

initial σ = 20µm and σ′ = 1 mrad.

Ũ = σ cos(ψ) (2.41)

Ũ ′ = σ′ cos(ψ)− ϵ

σ
sin(ψ) (2.42)

For a fixed set of values σ and σ′, this system is a parametric system in ψ for an ellipse

in the trace space, centered on the origin with an area of πϵ. As the initial phase is

varied from 0 to 2π, a complete lap around the phase ellipse is completed. For example,

Fig. 2.2 depicts different– diverging– phase ellipses. We can choose any value of ϵ, σ0,

and σ′
0, if the initial conditions are on the boundary of that initial phase ellipse. As the

particle undergoes its motion, its position in phase space is confined to remain on the

ellipse, which maintains a fixed area while rotating and shearing in accordance with the

evolution of σ. The equation for the trace ellipse is found, after eliminating the parameter

ψ, to be:
U2

σ2
+

(σ′U − σU ′)2

ϵ2
=

U2

ϵw2
+

(w′U − wU ′)2

ϵ
= 1, (2.43)

Consequently, any particle within the region bounded by the ellipse will remain within

it. This suggests we strive to match the phase space from the source to our desired phase

ellipse for the application.
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2.4.1 Transfer matrices

In terms of the initial conditions Ũ0 and Ũ ′
0, the general solution to Hill’s equation is

expressed as:

Ũ(s) = Ũ0w

(
1

w0

cos∆ψ − w′
0 sin∆ψ

)
+ Ũ ′

0ww0 sin∆ψ (2.44)

the two functions scaling the initial conditions are linearly independent and are typically

called cosine and sine-like trajectories [53, 48]. They are labeled as:

C(z) = w

(
1

w0

cos∆ψ − w′
0 sin∆ψ

)
S(z) = ww0 sin∆ψ

(2.45)

We can construct a matrix transport from these two solutions so that we can push forward

arbitrary initial conditions U0 and U ′
0:U

U ′

 =

C(s) S(s)

C ′(s) S ′(s)

U0

U ′
0

 (2.46)

The determinant of this matrix is 1, which makes sense considering if there is no acceler-

ation, the trace emittance should not change. To convert the reduced variables back to

trace space, for example, in the x-direction:x
x′

 =

 1√
γcβc(s)

0

− (γcβc)′(s)

γcβc(s)
√

γcβc(s)

1√
γcβc(s)


Cx(s) Sx(s)

C ′
x(s) S ′

x(s)

 √
γcβc(s0) 0√

γcβc(s0)(γcβc)′(s0)

γcβc(s0)

√
γcβc(s0)

x0
x′0


(2.47)

= Rx

x0
x′0

 (2.48)

Where the det(Rx) = pc(s0)/pc(s). The transport, Ry, for the y-direction is the same

form, but in the case of the z-direction, the momentum factors must switch from pc to

pcγ
2
c .
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Figure 2.2: Image planes and focal planes (angles are not to scale). At image planes,

bundles of rays from points in the object plane converge to points in the image plane,

having a magnified offset. Rays having no angle in the object plane converge to a point

in the focal plane.

For the full 6D case of uncoupled transport, we have:

x

x′

y

y′

z

z′


=


Rx 02x2 02x2

02x2 Ry 02x2

02x2 02x2 Rz





x0

x′0

y0

y′0

z0

z′0


= R



x0

x′0

y0

y′0

z0

z′0


(2.49)

2.4.2 Imaging and momentum mapping conditions

Some key positions (or planes) occur during transport, respectively referred to as image

planes and focal planes. An image plane occurs, for example in the horizontal plane,

wherever the matrix element R12 = 0. When the transport meets this condition, it ensures

that all final horizontal positions are correlated only with the initial horizontal positions

and not on the initial angles. This condition is met whenever the phase advances by an

amount ∆ψx = nπ, where n is a positive integer. In this case, the spatial distribution at

the image plane is a magnified version of the original spatial distribution. Focal planes on

the other hand, which, again considering motion in the horizontal plane, occur wherever

R11 = 0, which is ensured for a transport having w′
0 = 0 and the phase advances by an

amount ∆ψx = (2n+ 1)π/2. At these planes, the spatial distribution is an image of the
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original momentum distribution.

2.4.3 Beam envelope equations

The second moments of the distribution concerning the deviations describe the spatial

extent, correlations between phase space (or trace space) variables, and angular spread.

For example in the x-direction:

⟨x2⟩ =
∫
x2fdV6∫
fdV6

(2.50)

⟨xx′⟩ =
∫
xx′fdV6∫
fdV6

(2.51)

⟨x′2⟩ =
∫
x′2fdV6∫
fdV6

(2.52)

The correlation ⟨xx′⟩ measures how much a beam is either converging or diverging. It can

also be considered a measure of inward or outward flow in the transverse kinetic energy

[46].

The root mean square (RMS) size of the beam in the x-direction is σx =
√

⟨x2⟩, and

is a commonly measured quantity. For distributions of paraxial particles, we can write

an envelope equation for each respective subspace, e.g., in the x-direction, we compute

the second derivative of the envelope:

σ′′
x =

⟨xx′′⟩
σx

+
ϵ2xr
σ3
x

(2.53)

where the quantity ϵ2xr, is the square of the RMS trace emittance is given, and is the

determinant of the covariance matrix of the horizontal trace space moments:

ϵ2xr = ⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2 (2.54)

By differentiating the RMS trace emittance with respect to s and again the equation of

motion for x to simplify, we get the equation governing the evolution of the RMS trace

emittance:

1

ϵ2xr

dϵ2xr
ds

= −2
p′c
pc

(2.55)

⇒ ϵxr(s) =
pc(s0)

pc(s)
ϵxr(s0) =

ϵnxr
pc(s)

(2.56)

where the normalized RMS emittance, ϵnxr = p0(s0)ϵxr(s0) is a constant. There is a

critical difference between RMS emittance and actual emittance. Actual phase space
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emittance is always conserved under Hamiltonian flows, but normalized RMS emittance

measures the linearity of the phase space distribution, only remaining constant under

linear forces. If an initially linear phase space undergoes non-linear forces, as in Fig. ??,

the shape of the distribution deforms, and subsequently, the normalized rms emittance

changes, potentially increasing, so effectively, an increase in rms emittance measures the

phase space filamentation.

With the RMS emittance evolution determined, we can focus on the equation of the

beam’s envelope. By using the equation of motion for x and the evolution of the trace

emittance, we obtain the horizontal envelope equation:

σ′′
x +

p′c
pc
σ′
x +Kxσx =

ϵ2nxr
p2cσ

3
x

(2.57)

By rescaling σx = σ̃x/
√
pc, we reduce the envelope equation to normal form:

σ̃′′
x + κxσ̃x =

ϵ2nxr
σ̃3
x

, κx(s) =

(
Kx +

1

4

(p′c)
2

p2c
− 1

2

p′′c
pc

)
(2.58)

If pc is constant, then the normal form is the same description as the original envelope

equation, and we are free to swap to the trace RMS emittance. An identical analysis

leads to the same equation for the y-direction, but in the z-direction, the trace emittance

evolves instead as:

ϵzr =
ϵnzr

pc(s)γc(s)2
(2.59)

which means the envelope equation in the z-direction is:

σ′′
z +

(pcγ
2
0)

′

(pcγ2c )
σ′
z +Kzσz =

ϵ2nzr
(pcγ2c )

2σ3
x

(2.60)

Which has its own normal form, with σz = σ̃z/
√
pcγ2c :

σ̃z
′′ + κzσ̃z =

ϵ2nzr
σ̃3
z

, κz(s) =

(
Kz +

1

4

((pcγ
2
c )

′)2

(pcγ2c )
2

− 1

2

(pcγ
2
c )

′′

(pcγ2c )

)
(2.61)

In this formalism, we can define a moment matrix as :

Σ =

∫
utufdV6∫
fdV6

(2.62)

where u = (x, x′, y, y′, z, z′), ut is the transpose of u (and is a column vector), and utu is

the dyadic product (or outer product). Given how the coordinates evolve, we can write

how the beam matrix transforms:

Σ(s) = RtΣ(s0)R (2.63)
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Isolating the block corresponding to the x-direction, Σx(s) = Rt
xΣx(s0)Rx, and evaluating

the determinant reaffirms the notion of conserved normalized rms emittance when the

forces are linear.

This analysis bridges single-particle dynamics with the envelope theory, illustrating

that the same equation ultimately governs both perspectives; however, in a single-particle

case, there is freedom in how the envelope is initialized. The envelope can be related to the

evolution of any arbitrary elliptical region of phase space containing the initial conditions

of interest on its boundary.

2.5 Perturbations of the transverse dynamics and RMS emit-

tance growth

Up until now, we have only considered the case where the forces considered have been lin-

ear, and consequently, the rms normalized emittance has not changed. In this section, we

discuss techniques for computing higher-order tensor transport to appropriately map par-

ticles through phase space when there are non-linear forces. For simplicity, we will show

how the formalism works in the x-subspace, consider the beam to not be accelerating,

and then discuss how to write general tensor transport.

When the force on the particle has a term that depends non-linearly on the particle

position, e.g., (x2, x3, xy2,...) then we often consider this to be a small force because

the positions are considered close to the axis. These higher-order polynomial terms don’t

begin to matter until the ray is further off-axis, for instance in the case that we have

quadratic dependence, we have:

x′′ + κx(s)x = Π(s)x3 (2.64)

In this context, Π(s) is a function of s scaled by physical constants, typically inversely with

beam rigidity, which gives the strength of the perturbation. Generally, a perturbation

will have a form that is a product Π(s)P (x, y, z), where P (x, y, z) is a polynomial in

x, y, and potentially z having constant coefficients. Returning to the specific example

where the perturbation is proportional to x3, we apply perturbation theory to solve this

problem. We assume x = xc + δx, where xc is the solution to the homogeneous case and
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substitute into the dynamical equation collecting terms first order in δx. This process

leads to:

δx′′ + κxδx = Π(s)x2c

(
1 + 3

δx

xc

)
(2.65)

Often, it is acceptable to neglect the dependence of δx in the driving force, such as when

δx << xc. When this approximation is made, then we have successfully simplified the

problem to a driven oscillator, which is handled with the Green’s function approach,

ubiquitous in solving perturbation problems in accelerator physics [48].

When the right hand side is considered just a function of s and the characteristic

solution, then the solution can be written as a convolution integral:

δx(z) =

∫ z

Gx(z, s)f(s)ds (2.66)

where the integration interval is from the object to any position along the column up to

the image plane and Gx(z, s) is the Green’s function of the problem which satisfies:

∂2Gx(z, s)

∂z2
+ κx(z)Gx(z, s) = δ(z − s) (2.67)

Considering separately the cases when z ̸= s we can write:

Gx(z, s) =

A1(s)Cx(z) + A2(s)Sx(z) z < s

B1(s)Cx(z) +B2(s)Sx(z) z > s
(2.68)

as a linear combination of the cosine-like and sine-like basis functions.

Applying the proper boundary conditions at z = s (i.e. continuity of G and discon-

tinuity for the derivative as required by integrating once around the δ-function in Eq.

2.67) we get:

Gx(z, s) =


Cx(s)Sx(z)− Sx(s)Cx(z) z > s

0 z < s

(2.69)

This allows us to solve for the excursion from the reference orbits

δx(z) =

∫ z

0

[Cx(s)Sx(z)− Sx(s)Cx(z)] f(s)ds (2.70)

In this case, we have sub-scripted to x to indicate it corresponds to motion in the

x-direction. Note that each dimension will have its own Green’s function. We write
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the first approximation to the solution for δx as δx(1) explicitly in terms of the Green’s

function as:

δx(1) =

∫ s

s0

Gx(s, τ)Π(τ)xc(τ)
3dτ (2.71)

Often, this is far enough, and this is what will typically be done to evaluate aberrations.

However if the perturbations are large enough, then by the method of successive approx-

imations, we can substitute δx(1) back into the equation into the RHS and iteratively

re-solve the driven equation for a better result. For example, when P is only a function

of x, we can write the solution as the limit of a sequence:

δx(n) =

∫ s

s0

Gx(s, τ)Π(s)P
(
xc(τ) + δx(n−1)(τ)

)
dτ (2.72)

Then δx = limn→∞ δx(n). Modern computing can handle this approach, which is analo-

gous to a born-series approach to solving scattering problems in quantum mechanics.

The orbit corrections are ultimately higher-order polynomials of the initial conditions,

and the collection of coefficients is often referred to as a Taylor map. To third order we

may write:

ui(s) = Rijuj(s0) + Tijkuj(s0)uk(s0) + Uijkluj(s0)uk(s0)ul(s0) (2.73)

Where Tijk and Uijkl and rank 3 and 4 tensors respectively [54].

It should be noted that there are times when the transport is non-linear, but can be

solved without relying on the green’s function approach. For instance, there are scenarios

where the function Π(s), which serves as a placeholder in this context, can be replaced

with a delta function. In that case, the higher-order effects only depend on the coordinates

at the delta function’s site. This is the case for longitudinal dynamics when the impulses

are strong but short in time.

Once the Taylor map is obtained, it can be used to evaluate the change in RMS

emittance for a given particle distribution.

2.5.1 Emittance growth in lenses

Now consider an example of an emittance growth calculation. As is often the case in

TEM, a beam is focused onto a sample, so that at the sample plane, the distribution is

characterized by having a small spot but large angular spread [55], this is illustrated in Fig
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(a) (b)

Figure 2.3: Diagram elucidating the typical illumination geometries and subsequent imag-

ing transport. (a) From left to right, a tight focus on the sample is imaged. (b) A large

collimated spot is imaged.

2.3 (a). The subsequent transport is set to image, so that, R11 = −m the magnification,

R12 = 0, R21 = −1/f where f is the lenses focal length. The dominant aberration in this

type of transport is the spherical aberration, for instance in the x-direction, the coefficient

is given by U1222 and its derivative U2222 appears for the image mapping in the horizontal

plane:

x = −mx0 + U1222x
′3
0

x′ = − 1

f
x0 −

1

m
x′0 + U2222x

′3
0

Now we exemplify how to evaluate emittance growth for this map. If the initial dis-

tribution on the sample is an uncorrelated Gaussian with spatial and angular standard

deviations σx and σθ , then the emittance changes by:

∆ϵ2xr =
6σ8

θU
2
1222

m2
+

3σ2
xσ

4
θ(U1222 − fmU2222) (5σ

2
θ(U1222 − fmU2222) + 2f)

f 2

The emittance growth from the first term can become problematic depending on how

large the initial angular spread is, and typically the worse the initial emittance is, the

larger the growth will be from the aberrations. U1222/m is often quoted as the spherical

aberration Cs. The second term can be dropped if the initial spot size is small. In that

case, we have
√

∆ϵ2xr/σθ ∼
√
6Csσ

3
θ ∼ d , which is the resolution. Thus, when imaing

from the smallest spots, the resolution of the imaging transport is directly tied to growth

in emittance.

Alternatively, if a large collimated beam hits the sample, having low angular diver-

gence, as illustrated in Fig 2.3 (b), then the dominant aberrations are actually; U1111 and
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U2111. Repeating the calculation, the strongest term is ∆ϵ2xr = 6σ8
xU

2
1111/f

2. Identifying

θl = σx/f as the convergence angle after the lens, the resolution is again related to the

emittance growth d ∼
√
∆ϵ2xr/θl. Thus in these two cases, the resolution is directly re-

lated to the growth in emittance by the divergence or convergence angle depending upon

the illumination geometry.

2.6 Space charge fields

We model the beam as a system of particles, treating their positions and momentum as a

continuous 6D distribution. Charged particle beams are nonneutral plasmas, exhibiting

collective behaviors, such as instabilities and electromagnetic wave propagation. Partic-

ularly dense beams also experience intrabeam scattering. Any local disturbance in the

beam’s equilibrium charge distribution is attenuated over a distance equivalent to the

Debye length, which screens the electrostatic potential of individual test charges [46].

This shielding distance, or Debye length, is crucial for assessing collisional effects,

especially under conditions of sharp focus caused by strong magnetic lenses. The Debye

length, λd, is defined as the ratio of the RMS transverse velocity to the plasma frequency

of the beam. If the Debye length being significantly smaller than the beam’s dimensions

and much larger than the interparticle spacing, i.e., ρ−1/3 ≪ λd ≪ A, where ρ is the

beam density, and A represents a length measure of the beams. Under such conditions,

we can use the mean field approximation, where a particle’s interaction with its nearest

neighbors can be effectively disregarded in favor of the collective field generated by the

entire beam. The Debye length satisfies the necessary limits, provided the beam is not

focused to exceptionally tight spots smaller than a Debye length.

The electric and magnetic fields are determined self-consistently by Maxwell’s equa-

tions:

∇× E = −∂B
∂t

(2.74)

∇ ·B = 0. (2.75)

∇×B =
1

c2
∂E

∂t
+ µ0

∫
ṙfd3p (2.76)

∇ · E = ϵ0

∫
fd3p (2.77)
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(a)

Figure 2.4: A cartoon of debye shielding (not to scale), where a test charge within the

beam effectively experiences a smooth field from a smooth charge distribution, and the

effects of local density fluctuations are negligible.

Where the electric and magnetic fields can be separated into an applied and self-consistent

field, i.e., E = Es + Eapp, and B = Bs +Bapp.

In our previous discussion on beam evolution, we focused solely on linear forces,

making a significant assumption by considering the forces to be linear. However, the only

charge distribution that produces linear forces in all three dimensions is a uniformly filled

ellipsoid. Practically, creating and maintaining such a distribution is impossible due to

the non-zero initial temperature of the beam. Although mathematical solutions exist

for this ideal case, they are not realistic because they typically assume zero longitudinal

emittance, as discussed in [56].

Here, we are primarily concerned with how space charge fields depend on the beam’s

aspect ratio, how the beam distribution evolves according to linear transport, and when

the beam can be approximated as two-dimensional. The method of characteristics is used

to evaluate the charge density, and working primarily within cylindrical symmetry, an-off

axis expansion for the space charge forces is presented. Then, a review of the Kapchinskij-

Vladimirskij (KV) distribution is provided, highlighting its characteristics and the KV

phase space as a mathematical idealization of the ideal 2D distribution. We then examine

the evolution of two more practical distributions, namely, uniform ellipsoid and gaussian

ellipsoid charge distributions, depicted in Fig. 2.5, showing how they naturally evolve to

exhibit non-linearity and determining when they can still be approximated well enough

with two-dimensional fields.
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Figure 2.5: Visual comparison of 3D ellipsoidal particle distributions: a uniform distri-

bution (left) and a Gaussian distribution (right).

2.6.1 Linear evolution of space charge fields

Assuming linear uncoupled dynamics, after making the appropriate change of variables,

the charge density at any given position is given by:

ρ(x, y, z) =

∫
f(x, px, y, py, z, pz)dpxdpydpz (2.78)

= pc(s)
3γc(s)

2

∫
f(x, x′, y, y′, z, z′)dx′dy′dz′ (2.79)

= pc(si)
3γc(si)

2

∫ f
(

x−R12u
R11

, u, y−R34v
R33

, v, z−R56w
R55

, w
)

R11R33R55

dudvdw (2.80)

1 For a general cylindrically symmetric distribution, the charge density can be expanded

in an even-powered Maclauren series:

ρ(r; s) =
∞∑
n=0

ρ(2n)(0; s)
r2n

(2n)!
(2.81)

where the sum only runs through even indices as required by the symmetry and ρ(2n) is

the 2n radial derivative of the space-charge evaluated on the optical axis. The explicitly

indicated dependence on s is due to the evolution along the beamline. In that case,

1The final integral is obtained by taking advantage of the distribution’s stationary nature, changing
the integration variables to the initial momenta, and factoring out the transport’s determinant. Rij are
the transport matrix elements, and u,v, and w are the initial momenta.
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gauss’s law can be applied to obtain the radial field:

Er(r; s) =
1

r

∫ r

0

ρ(ξ; s)

ϵ0
ξdξ (2.82)

Substituting the charge density and performing the integral yields:

Er(r; s) = ρ(0)(s)
r

2ϵ0
+ ρ(2)(s)

r3

8ϵ0
+O(r5) (2.83)

So, we must strive to preserve the beam’s uniformity to mitigate the non-linear evolution

of the charge density or keep the density sufficiently low wherever the beam is not uniform

so that the space charge field can be neglected. The space charge field will be strongest

at beam waists, characterized by positions where σ′
x = 0, near the focus of a lens, so we

may generally want to preshape a distribution so that in transport, the beam becomes

uniform at waists.

2.6.2 Space charge field example distributions

Now, we analyze the well-known self-consistent Kapchinskij-Vladimirskij (KV) solution

to the Vlasov equation, which describes the evolution of a continuous charged particle

beam. This ideal case serves as a model that we aim to closely mimic with 3D beams

to benefit from the simplicity of a linear field. However, real beams prepared in the

laboratory often exhibit a range of aspect ratios, from unity to very large, due to the

laser’s finite duration and the use of RF cavities to bunch the beam.

2.6.2.1 KV distribution

The Kapchinskij-Vladimirskij (K-V) distribution represents a self-consistent function for

an axially continuous beam with zero longitudinal emittance, ϵz = 0 [57]. Here we review

its properties. It uniquely exhibits a linear self-consistent space charge force.

Explicitly, the KV distribution function is written as:

f =
λ0

π2ϵxrϵyr
δ

(
1− A2

x

ϵxr
−
A2

y

ϵyr

)
δ (z′) (2.84)

Where the first delta function’s argument depends only on the invariants of Hill’s equation
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that were previously discussed:

A2
x

ϵxr
=

1

ϵxr

[
x2

w2
x

+ (w′
xx− wxx

′)
2

]
(2.85)

A2
y

ϵyr
=

1

ϵyr

[
y2

w2
y

+
(
w′

yy − wyy
′)2] (2.86)

The second delta function ensures all particles have the same longitudinal momentum.

The distribution function is not dependent on z, so the distribution projection into the

(z, z′) subspace is an infinite line with no area. The projection into the 4-dimensional

transverse phase space is a 4-dimensional ellipsoidal shell.

The projection into a transverse trace space is a uniform ellipsoidal region, which is

shown by making the change of variables, y =
√
ϵwycos(ψy), and w

′
yy−wyy

′ =
√
ϵsin(ψy),

the projection into the (x, x′) trace space is:

fx(x, x
′) =

∫
fdz′dydy′ (2.87)

∝
∫
δ

(
1− A2

x

ϵxr
− ϵ

ϵyr

)
dϵdψy

2
(2.88)

(2.89)

which evaluates to a constant as long as 1 > A2
x

ϵxr
and defines the uniform elliptical region

in the horizontal trace space that the particles occupy.

To show the density is constant throughout transport, we perform the integral over

momentum by making a change of variables w′
xx−wxx

′ =
√
ϵxrα cos(ζ) and w′

yy−wyy
′ =

√
ϵyrα sin(ζ). With this substitution, the integration element transforms according to the

jacobian by:

dx′dy′ =

√
ϵxrϵyr

wxwy

αdαdζ, (2.90)

then the argument of the first delta function can be simplified to 1− A2
x

ϵxr
− A2

y

ϵyr
= α2

0 −α2,

where α2
0 = 1− x2/w2

xϵxr − y2/w2
yϵyr, so the transverse charge density can be integrated

with the following expression:

ρ(x, y) =
λ0

π2
√
ϵxrwx

√
ϵyrwy

∫ 2π

0

∫ ∞

0

δ(α2 − α2
0)αdαdζ (2.91)

=
λ0

π
√
ϵxrwx

√
ϵyrwy

∫ ∞

0

δ(α− α0)

α0

αdα (2.92)

=
λ0

π
√
ϵxrwx

√
ϵyrwy

. (2.93)
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This finally shows that the density remains constant throughout transport within the

elliptical region defined by the inequality 1 > x2/w2
xϵxr + y2/w2

yϵyr.

By identifying A =
√
ϵxrwx and B =

√
ϵyrwy as the edges of the uniformly charged

ellipse, which vary along the optical axis according to the enevelope functions wx, and wy,

we can immediately write the potential, in the small aspect ratio limit, i.e., that C → ∞

with Q/C is kept constant, the potential of the uniformly charged ellipse is:

ϕ(x, y; s) = −3Q/C

16πϵ0

∫ ∞

0

x2

A2+t
+ y2

B2+t√
(A2 + t)(B2 + t)

dt (2.94)

= − λ0
2πϵ0

(
x2

A(A+B)
+

y2

B(A+B)

)
(2.95)

where again λ0 = 3Q/4C. Being a quadratic potential that yields the desired linear force,

we have closed the loop and have an ideal, self-consistent distribution. Therefore, overall,

our goal is to shape a beam’s phase space distribution to mimic a KV distribution as

closely as possible to maintain the optical system’s linearity.

2.6.2.2 Uniform ellipsoid beam

Ideally, we would generate a KV distribution, but in practice real beams fall short due to

non-zero cathode emittance and no 3D analog to the KV distribution exists [58], having

finite emittance in all dimensions.

So we consider a distribution having an initially uncorrelated Gaussian momentum

space, that in real space is a uniformly filled ellipsoid spatial profile at an initial plane si:

fe =
3Q

4πABCpc(si)3γc(si)2
H

(
1− x2

A2
− y2

B2
− z2

C2

) exp

(
− x′2

2σ2
x′0

− y′20
2σ2

y′0

− z′2

2σ2
z′0

)
(2π)3/2σx′

0
σy′0σz′0

(2.96)

In the initial plane, the charge density in the elliptical region set by the step function is

ρ = 3Q
4πABC

. Uniform ellipsoidal beams are highly desireable, their generation, transport

properties, and phsycal realization is active field of research [59, 60, 61]. State-of-the-art

injectors come close to delivering beams of sufficient quality to almost be called a uniform

ellipsoid [62], employing the blowout technique described in [41] that is essentially the

inverse of gravitational collapse of a spheroid [63], but as we will see, they do not retain

perfect uniform ellipsoidal density in transport.
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To get an idea of how the charge density evolves through a linear transport, let’s as-

sume the beam and transverse transport are axially symmetric, and that the longitudinal

velocity spread is sufficiently small so that the spread can be considered approaching zero,

then A = B, exp
(
− z′2

2σ2
z′

)
/
√
2πσz′ → δ(z′) , in this case, after changing the transverse

variables of integration to polar coordinates, the charge density is given by:

ρ(r, z; s) =

∫
fedpxdpydpz (2.97)

=
3Q

2π(R11A)2C
exp

(
− r2

2R2
12σ

2
θ

)∫ λm

0

λ exp
(
−λ2

)
I0

( √
2r

R12σθ
λ

)
dλ (2.98)

where I0 is a modified Bessel function of the first kind, and λm = R11a√
2R12σθ

√
1− z2

C2 . At

an image plane, where R12 → 0, the charge density ρ→ 3Q
4πR2

11a
2c

inside the ellipse, which,

as expected, is still a uniform ellipsoid but with a magnified transverse radius R11a. In

the center of the bunch, we can neglect the longitudinal dependence, and the beam is

essentially a uniform cylinder of charge having line charge densityλ0 = 3Q/4C and the

field is Er = λ0r/2πϵ0A
2. Meanwhile, at focal planes, whenever R11 → 0, the transverse

distribution transitions to a Gaussian:

ρ(r, z; sf ) =
3Q

4C

(
1− z2

C2

) exp
(
− r2

2R2
12σ

2
θ

)
2πR2

12σ
2
θ

(2.99)

Lastly, throughout transport, the line density remains the same, i.e., λ(z) =
∫ 2π

0

∫∞
0
ρ(r, z)rdrdθ =

λ0(1− z2

C2 ) because the longitudinal motion relative to the centroid is frozen2. So, as the

beam is transported, the transverse charge density transitions between a Gaussian and

an ellipsoid as it undergoes transverse focusing. However, if we did not assume the longi-

tudinal velocities were frozen, then eventually after drifting far enough, the line density

would become Gaussian as well. In the core of the beam, where z ≪ C, the field can be

obtained with Gauss Law, Er =
λ0

2πϵ0r

(
1− e

− r2

2R2
12σ

2
θ

)
, which is a gives a non-linear space

charge force.

By exploiting elliptical coordinates, we can evaluate the potential of the initial ellip-

soidal distribution and reveal how the field components explicitly depend on the beam’s

aspect ratio, which translates well to other cylindrically symmetric distributions. The

2To prove all of these limiting cases the asymptotic expansions of the modified Bessel function are
useful, i.e., for a large argument I0(z) =

ex√
2πx

and I0(0) = 2π
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Figure 2.6: The transverse geometry factor is shown in blue and the longitudinal form

factor is shown in red (scaled by A2). While the transverse size of the beam is finite,

we consider the limiting cases of a pancake and cigar beam. As the beam becomes a

cigar only the transverse field remains, and if the beam becomes a pancake, then the

longitudinal field dominates.

potential of the ellipsoid can be expressed as a single integral, the mathematical technique

is described in [64], we merely quote the result here:

ϕ(x, y, z) = − 3Q

16πϵ0

∫ ∞

0

x2

A2+t
+ y2

B2+t
+ z2

C2+t√
(A2 + t)(B2 + t)(C2 + t)

dt (2.100)

Let’s consider the case where initially, the beam has cylindrical symmetry (i.e., A = B

). The electric field from this potential has a ”nice” closed solution that is linear in the

linear and transverse coordinates, for instance in cylindrical coordinates, r and z:

Eu =
3Qu(A)

8πϵ0A2C
rr̂+

3Qv(A)

4πϵ0C3
zẑ, (2.101)

where A = A/C is the beam aspect ratio and the geometry factors are given by:

u(A) =
ξ(A)− (1− ξ(A)2) coth−1

(
1

ξ(A)

)
ξ(A)3

, (2.102)

v(A) =
coth−1

(
1

ξ(A)

)
− ξ(A)

ξ(A)3
, (2.103)

and ξ(A) =
√
1−A2.
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If we always think of Q/C being finite, we can see how field components depend

on the aspect ratio of the beam. In the first case, by letting A → 0, for instance, by

letting C → ∞, the beam is in the cigar regime; in that scenario, the longitudinal field

component tends to zero. Meanwhile, the transverse force remains finite as it’s geometry

factor approaches 1. In that case, the electric field is E → 3Qrr̂/8πϵ0A
2C. Letting,

λ0 = 3Q/4C, the radial field converges to Er = λ0r/2πϵ0A
2, again the uniformly charged

cylinder.

On the other hand, if A → ∞, for instance, if the beam is compressed by letting

c → 0, then the transverse field vanishes, and resulting longitudinal field is given by

Ez =
λ0

ϵ0πA2 z.

To summarize these features of the charge distribution, a plot of the relevant geometry

factors are shown in Fig. 2.6. Thus, in the cigar regime, the self-fields of beams are

completely independent of longitudinal coordinates, implying that any rms emittance

growth is exclusively correlated with transverse coordinates.

2.6.2.3 Gaussian ellipsoid beam

Beams observed in laboratory settings consistently deviate from uniformity, displaying

profiles that often look Gaussian. We extend the effective 2D model to 3D, incorporating

the longitudinal field to address this. We start our analysis with the 6D uncorrelated

Gaussian phase space distribution:

fg =

Q exp

(
− x2

2σ2
x0

− y2

2σ2
y0

− z2

2σ2
z0

− x′2

2σ2
x′0

− y′2

2σ2
y′0

− z′2

2σ2
z′0

)
(2π)3pc(si)3γc(si)2σx0σy0σz0σx′

0
σy′0σz′0

(2.104)

The Gaussian phase space distribution maintains a Gaussian charge density in linear

transport:

ρ(x, y, z) =

∫
fg dpx dpy dpz =

Q exp
(
− x2

2σx(s)2
− y2

2σy(s)2
− z2

2σz(s)2

)
(2π)3/2σx(s)σy(s)σz(s)

(2.105)

where,

σx(s) =
√
R2

11σ
2
x +R2

12σ
2
x′ , (2.106)

σy(s) =
√
R2

33σ
2
y +R2

34σ
2
y′ , (2.107)

σz(s) =
√
R2

55σ
2
z +R2

56σ
2
z′ . (2.108)
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Although the fields of the Gaussian are non-linear, if the beam’s peak current is low

enough, the trace emittance should remain mostly constant. The linear components of

the field becomes crucial for understanding beam evolution. Particles within one sigma

of the core primarily experience this linear component. For an axially symmetric case,

the linear field component can be calculated directly by Fourier transforming the charge

density:

ϕ(x, y, z) =
1

(2π)3ϵ0

∫∫∫
ρ̃(k)

k2
exp(ik · r) d3k, (2.109)

where ρ̃ is the Fourier transform of the charge density, which also has a Gaussian shape.

Expanding the complex exponential in a Taylor series in (k · r) and omitting the odd

terms due to the symmetry of ρ̃, the second-order term (k · r)2 yields the uncorrelated

linear electric field components:

E(1)
g =

Q/2σz
(2π)3/2ϵ0σ2

x

u(A)rr̂ +
Q

(2π)3/2ϵ0σ3
z

v(A)zẑ, (2.110)

reflecting the same geometry factors as a uniformly filled ellipsoid, now with A = σx/σz

representing the beam aspect ratio.

2.6.3 Lorentz boosting the space charge potential to the lab frame

The potential in the beam’s rest frame, ϕ̃, is a function of x̃, ỹ, and z̃ in the beam’s rest

frame. The transverse coordinates are identical in each reference frame, but the temporal

and longitudinal coordinates are related by a Lorentz transformation:

ct̃
z̃

 =

 γc −γcβc

−γcβc γc

ct
z

 (2.111)

To obtain the potential in the lab frame, we apply the inverse Lorentz boost in the

−z direction:

ϕ/c
A

 =

 γc γcβc

γcβc γc

ϕ̃/c
0

 (2.112)

This shows that the scalar and vector potentials in the lab frame are ϕ = γcϕ̃ and

A = Aẑ = γcβcϕ̃ẑ/c. The electric and magnetic fields are obtained using the relations
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Esc = −∇ϕ− ∂A
∂t

and Bsc = ∇×A. The transverse components of the Lorentz force are

given by:

F⊥ = −e∇⊥ϕ+ ecβcẑ× (∇× Aẑ) = −e∇⊥ϕ̃

γc
(2.113)

and the longitudinal component is given by:

Fz = −e
(
∂ϕ

∂z
+
∂A

∂t

)
= −e

(
∂z̃

∂z

∂ϕ

∂z̃
+
∂z̃

∂t

∂A

∂z̃

)
= −e∂ϕ̃

∂z̃
(2.114)

By identifying s = cβct as the position of the beam rest frame relative to the lab frame,

we can re-reference z → z − s, then we have z̃ = γcz, where z is the particle position

relative to the beam centroid, measured from the lab system, effectively length-contracted

distances. Likewise, the longitudinal extent of the beam is length-contracted; for instance,

the length of the uniform ellipsoid in the rest frame is C̃ = γcC, where C is the contracted

bunch length measured in the lab frame. The aspect ratio of the beam, appearing in

the geometry factors of the potentials of uniform ellipsoids and gaussians, should be in

reference to the beam’s rest frame, i.e., A = A/γcC. Note, in the transverse force, there

is apparently an inverse proportionality with γc when we expect proportionality with

γ2c . However, once length contraction of the charge density is accounted for, the correct

proportionality is recovered.

2.6.4 Beam perveance and coupled envelope equations

We derived the space charge potential for a uniform ellipsoid. Although this distribution

does not fully capture the beam dynamics due to the non-zero temperature of the beam

from the cathode, it can still be used to assess the limit of bunching the beam. To use

those results, we must first Lorentz transform the potential. Defining kx = kx,ext + kx,sc

and kz = kz,ext + kx,sc in 2.30 to be sums of space charge and external forces, After

applying the Lorentz transformation to the potential of the uniform ellipsoid, we can use

the fields 2.101 to incorporate the linear term coefficients given in 2.31. For the ellipsoid,

we can express the coefficients for the linear repulsive space charge force as:
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Kx,sc =
3Nrc

2β2
cγ

3
cA

2C
u(A) (2.115)

Kz,sc =
3Nrc
β2
cγ

5
cC

3
v(A) (2.116)

where N is the number of electrons in the beam, and rc = e2/4πϵ0mc
2 is the classical

electron radius.

For the envelope description, we refer to the rms values. For an ellipsoidal distribution,

σz = C/
√
5 and σx = A/

√
5. By switching from edges to rms values in the space

charge terms, we can develop a coupled rms envelope system. We define the longitudinal

perveance KL = 3Nrc/5
√
5β2

cγ
5
c . The envelope equations then become:

σ′′
x +

p′c
pc
σ′
x +Kx,extσx =

γ2cKL

2σxσz
u(A) +

ϵ2nxr
p2cσ

3
x

(2.117)

σ′′
z +

(pcγ
2
0)

′

(pcγ2c )
σ′
z +Kz,extσz =

KL

σ2
z

v(A) +
ϵ2nzr
p2cγ

4
cσ

3
z

(2.118)

This effectively treats the beam as a uniform ellipsoid that remains self-similar throughout

the transport. Note that this is not a completely accurate kinetic model, but when

assuming dominantly linear dynamics, the equations reasonably model beam envelope

behavior.

When the aspect ratio is small, i.e., in the cigar regime, the longitudinal space charge

force vanishes, and the transverse force no longer depends on the aspect ratio. If there

is no correlation ⟨zz′⟩ and the energy spread is small, then the line density is essentially

constant, and there is only transverse space charge expansion that is determined by the

strength of the transverse beam perveance defined by:

KT =
γ2cKL

2σz
∝ λ0
γ3c

(2.119)

In this scenario, the transverse envelope equation is given by:

σ′′
x +

p′c
pc
σ′
x +Kx,extσx =

KT

σx
+
ϵ2nxr
p2cσ

3
x

(2.120)

2.7 200 keV electrostatic DTEM source

As an exemplifying application of the general linear transport theory previously described,

we explore the optimization of an electrostatic source for high peak current electron bunch
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dynamics in time-resolved electron microscopy (DTEM). It should be noted that ”high-

peak current” in the context of DTEM is the milliampere range compared to nanoamps

typical of traditional TEM. We apply general paraxial theory to optimize a commercially

available 200 keV JEM-2100Plus source, modified for time-resolved TEM [65]. This side-

project, supported by and in collaboration with IDES.INC, a company working with

JEOL, aims to evaluate performance improvements using a modified field emitter gun

(FEG) geometry with a flattened cathode instead of a Mueller tip.

Although tip based field emission guns offer excellent beam quality, a modified FEG-

based DTEM with a flat cathode is expected to surpass thermionic DTEMs in peak

beam current, transverse emittance, and energy spread due to improved control and

mitigation of space charge effects. While finer tip emitters offer excellent beam quality

in time-resolved settings, they are limited to stroboscopic modes and are unsuitable for

high currents required for DTEM, especially in single-shot mode. These emitters cannot

withstand the high current densities and would be destroyed [66]. In collaboration with

IDES, the purpose of this work was to provide a means to quantify the anticipated

performance improvements through computational modeling. This model was applied to

a ”generic gun” (GG) model to provide preliminary performance estimates. Subsequently,

IDES used these simulations to enhance a commercial FEG-based DTEM design, focusing

on optimizing components such as the flat cathode, extractor, and gun lens.

DTEM requires each pulse to contain enough electrons to produce a complete image,

typically at least 107 electrons, with improved performance up to 109 electrons. At 200

keV, these charges must be delivered in nanosecond pulses, resulting in peak currents

on the order of milliamperes. The space charge effects, in this case, are still relatively

weak. This enables the use of analytical space charge models for optimization of beam

brightness specifically for DTEM applications, with GPT serving as the final test of the

model. Mitigating space charge effects involves rapidly accelerating electrons to minimize

their time at low speeds and high densities. This requires a large electric field across a

flat cathode surface used for pulsed-laser photoemission. A FEG-type gun geometry with

dedicated electrodes optimizes each function, such as extraction and beam focus, enabling

higher current and spatial coherence compared to thermionic guns.

We first describe the matrix formalism for electrostatic transport systems, illustrating
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how to include space charge effects; followed by a description of the GG column and

simulations. The numerical model of the beamline is validated by comparing Superfish

and GPT to the matrix propagator. Aberration estimates using Green’s function method

will be presented, followed by a discussion on space charge-induced aberrations, ultimately

shown to be driving more geometrical aberrations from the gun lens.

2.7.1 Electrostatic optics formalism

The formalism used to evaluate the linear focusing properties of the GG column are

described in this section. The third-order ray equation is developed, from which the

linear ray equation is extracted. Reduced equations are given, and within MATLAB, the

cosine and sine-like rays are obtained and subsequently used to develop the transport

map as a function of the desired voltage setpoints of the column. The matrix model is

based on an axially symmetric off-axis expansion.

Assuming axial symmetry greatly simplifies the problem of charged particle dynamics

in electrostatic accelerators. The formalism developed in Chapter 2 proves its utility

in the case where the externally applied potential can be off-axis expanded to arbitrary

order in axial offset:

ϕext(r, z) =
∞∑
n=0

(−1)n
V (2n)(z)

(n!)2

(r
2

)2n
(2.121)

where V (2n)(z) = ϕ(2n)(0, z) represents even powered axial derivatives of the potential at

r = 0. To obtain up to third order from the potential, we need only include up to 4th

order in the potential:

ϕext(r, z) = V − V ′′ r
2

4
+ V ′′′′ r

4

64
+O(r6) (2.122)

The explicit equations of motion are obtained from the relation:

dp

dt
= −q∇ϕ (2.123)

In this context, q can represent either an ion charge or an electron charge, and the

same goes for m. For instance, the formalism is applied to optimize transport for an

ion electrostatic column used for imaging of impact ionization of a low density gas jet

presented in the appendix. Defining x′ = βx/βz and transforming the equation of motion
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to paraxial coordinates, the equations of motion can be expressed in terms of trace space.

The longitudinal equation of motion is:

(γβz)
′ = − q

mc2βz

∂ϕ

∂z
(2.124)

with the prime indicating axial derivatives. The transverse equation of motion can be

parameterized in terms of axial distance, making use of the longitudinal equation, leading

to:

x′′ =
q

mc2γβ2
z

(
∂ϕ

∂z
x′ − ∂ϕ

∂x

)
(2.125)

The equation can be expressed in terms of the total velocity and Lorentz factor using

the fact β2 = β2
z (1 + x′2 + y′2), giving us:

x′′ =
q

mc2γβ2
(1 + x′2 + y′2)

(
∂ϕ

∂z
x′ − ∂ϕ

∂x

)
(2.126)

There is conservation of energy, so at any given position, the energy is related to the

change in potential:

γ(r, z) = γ0 −
q∆ϕ(r, z)

mc2
(2.127)

where the contribution from collective fields has been neglected so far. However, the

Lorentz-boosted potential can be included to account for space charge effects.

We can parameterize the equations of motion relative to the axial coordinate of a

particle that starts on axis with no transverse momentum—the design trajectory. In

that case, the change in the relativistic gamma factor is independent of r, and the beam

velocity is fully determined:

γc(z) = γ0 −
q∆V (z)

mc2
(2.128)

Then, by performing a perturbative expansion, writing a general rays factor of 1/γβ2 to

second order in the potential, we get:

1

γβ2
=

1

γcβ2
c

(
1− q

4mc2
γ2c + 1

γc(γ2c − 1)
V ′′(z)r2 +O(r4)

)
(2.129)

Substituting this into the transverse equation of motion, we obtain the third-order ray

equation of electrostatic optics:

x′′ =
q

mc2γcβ2
c

(
1− q

4mc2
γ2c + 1

γc(γ2c − 1)
(x2 + y2)V ′′

)(
1 + x′2 + y′2

)(∂ϕ
∂z
x′ − ∂ϕ

∂x

)
(2.130)
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In this factorized form, any terms higher than third order can be ignored after multiplying

out. Higher orders enter into the paraxial equation through the terms involving partial

derivatives of the potential and through the expansion of 1/γβ2.

Including space charge forces calculated in the lab frame up to third order, the scaling

of the linear driving terms by the second-order correction to the factor 1/γβ2 leads to

the ray equation:

x′′ +
(γcβc)

′

γcβc
x′ =

(
qV ′′

2mc2γcβ2
c

+
qρ(0)

2ϵ0mc2γ3cβ
2
c

)
x

− qρ(2)

8ϵ0mc2γ3cβ
2
c

(x2 + y2)3/2 −
( q

mc

)2( γ2c + 1

8(γ2c − 1)2

)
(x2 + y2)

(
2V ′V ′′x′ + (V ′′)2x+

V ′′ρ(0)

ϵ0γ2c
x

)
(2.131)

where the higher-order terms are collected on the second line; ρ(0) and ρ(2) are the on

axis charge density and it’s second derivative respectively. If we keep only terms linear

in x′ and x, we obtain the linear equation of motion including space charge:

x′′ +
(γcβc)

′

γcβc
x′ =

(
qV ′′

2mc2γcβ2
c

+
qρ(0)

2ϵ0mc2γ3cβ
2
c

)
x (2.132)

which is a damped harmonic oscillator equation, also provided in [67, 68, 69] for classical

takes, albeit with the exclusion of space charge repulsion and less detail given to higher-

order. By axial symmetry, the same form applies to the y-direction. The space charge

terms depend on the charge density, and it’s axial derivatives, however if we assume a

Gaussian distribution, then the charge density evaluated on the axis is given by ρ(0) =

ρ(0; s) = λ0

2πσx(s)2
, and can be substituted to obtain:

x′′ +
(γcβc)

′

γcβc
x′ =

qV ′′

2mc2γcβ2
c

x+KT (s)
x

σ2
x

(2.133)

where KT (s) = qλ0

4πϵ0mc2γ3
cβ

2
c
is the transverse beam perveance, which depends on the s

because of the explicit dependence on the relativistic Lorentz factors varying through the

electrostatic column.

After applying the transformation to normal coordinates, x = X/
√
γβ, and expressing

all derivatives in terms of the potential, obtaining κx = γ2
c+2

(γcβc)4

(
qV ′

2mc2

)2
+ K(s)

σ2
x
, the reduced

transverse equation of motion is given by:

X ′′ +

[
γ2c + 2

(γcβc)4

(
qV ′

2mc2

)2

+
K(s)

σx(s)2

]
X = 0. (2.134)
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In this case, σx must be obtained from the corresponding envelope equation, self consis-

tently. Hence, provided their axial voltage distribution, transport through electrostatic

accelerators is simplified to obtaining the beam velocity from energy conservation and

then solving Hill’s equation for the sine-like and cosine-like trajectories Sx and Cx, to

obtain the transverse evolution of particle coordinates. Once obtained, the full solution

in matrix format, is obtained after applying the transformation given in 2.48.

The method to obtain the Green’s function is identical to what was laid out in the

previous section, just needing to use the normal form transformation. This leads to a

modified Green’s function which takes into account damping:

Gx(z, s) =

√
γcβc(z)

γcβc(s)
[Cx(s)Sx(z)− Sx(s)Cx(z)] (2.135)

Thus, the general formalism for matrix transport and perturbations in electrostatic

columns is established. This formalism is useful for evaluating the performance of any

generic gun and can be used to optimize for desired imaging properties. Having direct

access semi-analytically to the higher order terms and subsequent aberrations, and un-

derstanding how they depend on beam density and the axial potential, is very useful in

understanding how to suppress them.

2.7.2 Generic gun

The GG model was designed to be representative of TEM electron guns and accelerators

regardless of manufacturer. We calculate the performance using an acceleration voltage

of 200 kV, as would be used in the modified JEM-2100. While TEMs can operate at

reduced voltage, performance in a space-charge-limited regime notorious in single shot

modes will generally perform better at higher accelerating voltages.

The model consists of: A photoemitting cathode region, initially specified as a sharp

tip (as appropriate for the field emission gun design that inspired the model), but flattened

for purposes of calculating the performance of a DTEM. This cathode is set at a voltage

of -200 kV so that negatively charged electrons launched at the cathode will obtain a

kinetic energy of 200 keV when they reach the main part of the TEM column, which is

at the electrostatic ground.

An extractor electrode is also called the first anode. This is a thin electrode with a
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Figure 2.7: The GG column, shown as a cross-section of a cylindrically symmetrical

electrostatic system. Electrons are rapidly accelerated from the cathode surface by the

large electric field imparted by the extractor electrode, focused and collimated with the

independent voltage control on the gun lens electrode, and accelerated up to 200 keV

over the next 20 cm.

(a) (b)

Figure 2.8: (a) The potential distribution on the axis of the GG model. (b) Particle

tracking comparison with matrix solution. Blue shows the matrix solution, and the red

dots show the outputs from GPT for the corresponding initial ray.
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small aperture placed directly below the cathode. A variable electric potential of roughly

2-5 kV relative to the cathode is applied to A1 in order to produce a large extraction and

initial acceleration field across the cathode surface.

A gun lens electrode is also called the second anode. This is a shaped piece of metal

with two apertures and a variable electric potential of roughly 2-10 kV relative to the

cathode. The purpose of this electrode is to focus and collimate the beam so that a very

large fraction of the current ultimately can pass through the final aperture at the bottom

of the accelerator.

A stack of accelerator anodes, equally spaced in voltage between the ground and the

initial voltage, provides a relatively uniform accelerating field between the gun lens and

the final anode.

The final anode is at zero volts and has a fixed aperture at the end. This “final

aperture” is where the throughput and beam properties are supposed to be quantified.

In a real microscope, this would be shortly above the first magnetostatic condenser lens.

However, there was interest in utilizing the gun lens for this purpose.

Before proceeding to model space charge in the GG, electrostatic transport was val-

idated. An axially symmetric 3-dimensional field map of the GG was generated using

POISSON, with the cathode radius set to 150 µm. The geometry and corresponding

equipotentials are shown in Figure 2.7.

First, the full cylindrically symmetric map was used and compared with the off-axis

expanded map element using the on-axis field data. The potential on the axis is shown in

Figure 2.8(a), from which the lorentz factors and all relevant derivatives are computed.

The axial data was also implemented into GPT. Preliminary particle tracking studies

were conducted to assess the field map’s convergence by comparing the off-axis expansion

map with a finely meshed full POISSON solution. Once an agreement was reached on

that front, the off-axis expansion particle tracking was then to serve as a benchmark for

the matrix model, and agreement was obtained. In Figure 2.8(b), individual particle

trajectories obtained from the electrostatic matrix propagator (blue) are overlaid with

rays (red) obtained from the GPT simulation. In this case, the point of propagation is

at the midpoint of the gun lens. Subsequently, the initialization point for the matrix
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Figure 2.9: Spherical aberration from the gun lens when the image plane was set to be

at the final aperture.

propagator was moved to 1.3 mm from the cathode.

Without proper consideration, particles emitted from the cathode will clip on gun

lens apertures. Scanning the laser spot size revealed the transverse extent needed to fully

accept the beam. The apertures and the distance from the cathode to the gun lens were

adjusted to accept more charge.

GPT was used to assess particle losses on apertures for a beam having an initial MTE

of 0.1eV. A smaller laser spot is favorable. Considering just MTE, for the emission from

a sub 100um laser spots to be fully accepted, the gun lens aperture needed to be opened

to 1.5mm and brought to within 1cm of the cathode. For a 150 µm cathode radius, it

was found that the threshold laser spot needed to be about half the cathode radius to

avoid geometric emittance growth from the cathode emission process.

2.7.3 Geometrical/Spherical aberration

In our study of the GG column, we employed the perturbation technique to compute

aberration terms in electrostatics. The most significant perturbations were observed

from the second-order correction to the factor 1/γβ2. Using the Green’s function method

and neglecting space charge, we obtain:

δx(z) =

∫ z

0

γ2c + 1

8(γ2c − 1)2

(
qV ′′

mc2

)2

x3Gx ds (2.136)
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By applying the perturbation formalism and substituting x = R11x0 +R12x
′
0, we can

construct the individual components of higher-order transport.

The large angles off the cathode cause the beam to expand to transverse sizes where

chromatic effects become significant, leading to cubic aberration at the image plane (Fig-

ure 2.9), as well as emittance growth. Since the chromatic term is also scaled by the linear

space charge force, increased beam current drives emittance growth from this term. Both

space charge and a large mean transverse energy (MTE) have a major impact. Unlike

an RF source, the acceleration off the cathode in our model is not as strong, resulting in

substantial intrinsic angles until the axial velocity increases enough to suppress the beam

blow-up.

By making the laser spot size smaller than the cathode’s flat surface, we can mitigate

far off-axis effects. However, the MTE still causes rapid beam blow-up, from a 10 µm

radius to 200 µm within 2 cm. The initial angles within the beam, resulting from the

MTE, approach 50 mrad, and increasing the current further exacerbates this effect. These

large angles contribute significantly to higher-order distortions in the third-order paraxial

equation.

2.7.4 Space charge driven aberrations

With the inclusion of space charge effects, we find that geometric aberrations are increased

and largely dominate the emittance growth off the cathode as the beam passes through

the gun lens. As the beam current increases to the desired levels for single-shot imaging,

reaching the mA scale, the smallest achievable spot size at the aperture increases, making

emittance growth a concern. The voltage of the gun lens can typically be reoptimized

to ensure the waist occurs at the aperture, see Fig. 2.10(a). When space charge effects

are sufficiently negligible, the best phase space at the aperture maintains the cathode

emittance and achieves an RMS spot size of nearly 1 µm. However, increasing the charge

to the mA level causes the spot size at the aperture to increase by a factor of 10. This

increase is due to two competing effects: the sharp emittance growth caused by geometric

aberrations and some space charge emittance growth. This is illustrated in Fig. 2.10(b).

Maintaining a smaller beam size throughout the electrostatic column is challenging
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Figure 2.10: (a) Evolution of the beam envelope and (b) normalized emittance through

the gun lens, demonstrating the effects of geometric and space charge aberrations. (c)

Initial phase space of the beam for a current of 1 mA, roughly 1.3 mm from the cathode,

showing linearity and dominance by thermal emittance. (d) Final phase space exhibiting

cubic correlations due to spherical aberration from both space charge and geometric

aberrations. (e) Beam profile indicating the potential for emittance improvement by

clipping particles with an aperture of 2x the RMS beam size.
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but necessary to ensure the emittance growth from geometric aberrations is mitigated

enough so that at the exit of the source so the beam quality is suitable for imaging in

subsequent magnetic objective and projection optics. However, if the beam density is

maintained in a tight coasting configuration, then space charge aberrations will become

more prominent. In Fig. 2.10(c), the initial phase space of the beam is shown for a current

of 1 mA, roughly 1.3mm from the cathode, and is linear and dominated by the thermal

emittance, with space charge only increasing the angles without adding any non-linear

correlations. In Fig. 2.10(d), the final phase space exhibits cubic correlations attributed

to the calculated spherical aberration of the system, which in this case is attributed to

both space charge and the geometric aberrations, mainly dominated by the geometric

aberrations being driven by large initial angles inherited by the MTE and further driven

by space charge.

An aperture can help clean the phase space. As shown in Fig. 2.10(e), the spot

size indicates that most particles contributing to the larger emittance can be clipped

away with an aperture, with a radius of 2x the RMS size of the beam. This clipping

improves the emittance by more than a factor of 2. This highlights how the model can

aid in designing a better final aperture for future imaging applications and improved

performance.

2.7.5 Future Direction

Future work can focus on further optimizing brightness by modifying the geometry of

the electron gun. While the GG column represents one possible geometry, various other

geometries can also be individually optimized. This includes adjusting the apertures of

the gun lens, as well as the position and diameter of the extractor electrode. Additionally,

modifications to the Pierce electrode geometry [70], such as varying its angles, can be

explored to suppress space charge expansion off the cathode and mitigate emittance

growth in the gun lens. These different geometries can be cataloged and utilized in

robust multi-objective optimization schemes, as demonstrated in [71]. However, there is

still significant progress to be made using semi-analytical optimizations.

At a designed beam energy, the laser can be shaped and its intensity adjusted to

balance charge and temporal resolution while maintaining spatial resolution in single-shot
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mode. Furthermore, implementing more complex electrode geometries may be beneficial

in compensating for aberrations caused by space charge, particularly after addressing the

initial emittance growth mechanism from rapid expansion into the gun lens.
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CHAPTER 3

Longitudinal dynamics

3.1 Introduction

This chapter, which is divided into two parts, is a discussion of the applications of RF

cavities in high-performing electron-based imaging systems.

We start with an introduction to longitudinal phase space variables and present dif-

ferent conventions in the definition of longitudinal emittance. Then, velocity bunching

dynamics are analyzed starting with single particle dynamics. Space charge effects in the

velocity bunching scheme are theoretically investigated to determine the optimal initial

conditions for the process. Techniques of longitudinal emittance growth compensation in

velocity bunching are elucidated, and scaling laws for optimal compensation and depen-

dence on charge, beam energy, and RF parameters are obtained. Then, energy spread

minimization techniques based on RF cavities in relativistic and sub-relativistic imaging

instruments are explored. In relativistic beamlines, the source of energy spread comes

from the RF fields in the gun. It is identified that with an additional short 3rd harmonic

cavity the energy spread can be reduced by two orders of magnitude. The final part of

the first section of the chapter is about the application of RF cavities in sub-relativistic

time-resolved EELS for the purpose monochromatization. Here, we present a concept

where RF cavities temporally stretch an initially short (100fs) electron pulse to ps scales,

which minimizes the beam energy spread after the removal of an energy chirp [72], which

is shown to be capable of improving energy resolution in EELS by an order of magnitude.

In the second part of the chapter, the Pegasus beamline is introduced, along with

experimental work regarding the commissioning of the X-band linearizer and the demon-

stration of X-band harmonic linearization. We measured energy spreads in tens of parts

per million for 10 ps long beams. Results are found to agree with start-to-end simulations
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of the beamline. Although left to future experimental work, start-to-end velocity bunch-

ing simulations demonstrate the feasibility of generating bunches having 0.25pC charge

approaching a fs.

3.2 Theory

3.2.1 Common alternatives in the definition of longitudinal emittance

To facilitate a description in terms of an envelope equation, longitudinal trace vari-

ables (z, z′) are used, where z is the longitudinal position relative to the centroid and

z′ = ∆β/βc represents the fractional velocity difference. We now review the relationship

between longitudinal trace space (z, z′) with the phase space (z, pz).

Typically, the pulse duration is what is measured. The pulse duration is directly

related to the variance in position, σt = σz/cβc. Assuming the initial relative velocity

distribution is uncorrelated with particle positions, we can write for the trace space

emittance:

ϵzr = σzσz′ (3.1)

To first order, a fractional velocity difference corresponds to an energy deviation:

z′ =
1

γ3cβ
2
c

∆γ +O(∆γ2) (3.2)

Likewise, a momentum deviation is related to a fractional velocity difference:

∆pz
mc

= γ3cβcz
′ +O(z′2) (3.3)

The higher-order terms are due to the relativistic relationship between velocity and

energy touched on in Chapter 2. If the differences are sufficiently large, then more terms

from the Taylor expansions are needed. Therefore, for small enough deviations, there

is a direct proportionality relating the spread in fractional velocity differences to energy

spread or momentum spread:

σz′ =
1

γ3cβ
2
c

σγ =
1

γ3cβc

σpz
mc

(3.4)

Where σpz and σγ are variances in momentum and energy respectively. Often quoted

in accelerator physics is the relative energy spread denoted by σδ = σγ/γ. Therefore,
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for an initially uncorrelated longitudinal phase space, the normalized longitudinal RMS

emittance can be expressed in terms of either momentum spread, velocity spread, or

energy spread. In this case, the invariant longitudinal normalized RMS emittance can be

expressed as:

ϵnzr = σzσpz = γ3cβcσzσz′ =
σzσγ
βc

(3.5)

Better longitudinal emittance enables shorter bunch lengths or lower energy spreads

after proper longitudinal phase space manipulation. If the bunch duration remains suf-

ficiently small so that sampled RF phase intervals are essentially linear, then the entire

transport theory is linear and can be analyzed using transport matrices. However, long

beams sample larger phase intervals and can attain large correlated energy spread, which

causes non-linear correlations.

To investigate RF bunching, we use a non-linear impulse approximation to represent

the effect of RF cavities. In this model, the main effect of the RF buncher is that it

changes centroid energy depending on the phase and applies a negatively sloped energy

chirp to allow the tail of the beam to catch the head. RF nonlinearities and relativistic

dynamics in drifts result in longitudinal trace emittance growth, which must be evaluated

to effectively use an envelope description.

3.2.2 Velocity bunching

Ultrafast electron scattering requires the generation of very short electron bunches to

capture the fastest physical processes [8, 73]. Due to the repulsive effect of space-charge

forces, one critical challenge in this field is related to packing as many electrons as possible

in a short bunch [74]. In UED, pushing the electron energy to relativistic levels has helped

in minimizing the space-charge effects, concurrently bringing other advantages such as

longer penetration depths, reduced group velocity mismatch, and suppressed inelastic

scattering background [75, 76, 77, 78]. Over recent years, UED beamlines have seen

continuous improvement in the achievable temporal resolution thanks to the introduction

of techniques borrowed from accelerator physics based on the use of time-dependent

radiofrequency (RF) electric field to compress the electron bunch during its propagation

in the beamline [79]. RF compression using 3 GHz resonant cavities has been applied
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to both non-relativistic and relativistic electron beamlines for UED [80, 81, 82], yielding

bunch lengths down to the single-digit fs in the latter case.

While the discussion in this section focuses on the electron bunch length, it is im-

portant to recognize that there are many additional factors, other than the temporal

duration of the probe pulse, that contribute to the actual temporal resolution limit in a

specific UED setup such as temporal jitter, group velocity mismatch, laser pulse length.

For example, to counteract the additional temporal jitter introduced by RF-based com-

pression, naturally synchronized laser-generated higher frequency waves have been used

to impart an energy chirp on the beam in more complex coupling structures and drive

the compression dynamics [83, 84].

In any case, though, to push the boundary of the UED technique, it is critical to

understand the limits in beam compression and how the various beamline parameters

such as charge, energy, cavity voltage, and frequency affect the shortest bunch duration

achievable. The minimum bunch length at the sample results from a complex interplay

between the details of the bunching dynamics and the longitudinal space-charge forces in

the beam so that typically UED practitioners have resolved to particle tracking simulation

codes to design the beamline and predict the beam dynamics. The agreement with

experimental results has been excellent [85]. Still, particle simulations only deal with

specific beamline setups, typically lack generality, and might not offer an immediate

answer to how to improve the compression in a given configuration.

It would be beneficial to have a unified formalism describing beam dynamics in RF-

compression UED beamlines, covering both relativistic and non-relativistic cases while

including the space charge effects. To this end, we employ the longitudinal envelope

equation formalism to highlight the interplay between longitudinal emittance and space-

charge forces on the pulse evolution. The single-particle dynamics presentation builds on

previous works of Floettman and Zeitler [86, 87] that pointed out the role of the non-

linearities in the beam compression process. The collective effects are then considered in

the approximation that the beam aspect ratio remains constant along the beamline, thus

decoupling the longitudinal dynamics from the transverse beam size evolution. While this

is a somewhat restrictive assumption, it is experimentally relevant (the beams in UED

are usually focused transversely and longitudinally at the sample) because this approach
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yields an upper bound estimate for the minimum bunch length. In this case, space-charge

forces are over-estimated for the situation in which the transverse spot size is kept large

during the compression. Using the constant aspect ratio approximation, we can extend

on the previous work and obtain analytical formulas for the minimum bunch length at

the longitudinal waist that are valid in the presence of space charge. The expressions

presented can then be used to guide the system optimization, compare parameter choices

at different facilities, and evaluate mechanisms for further improving the bunch length.

Figure 3.1: Illustration of RF ballistic bunching scheme. A velocity chirp is imparted on

an electron using an RF cavity so that the tail of the beam has higher energy than the

head. During the following drift the particles in the tail catch up with the particles in

the head resulting in strong longitudinal compression

The simple cartoon in Fig. 3.11 illustrates the dynamics under study. Essentially,

a finite electron beam propagates through an RF buncher cavity where electromagnetic

fields oscillate with angular frequency ω = kc at the zero-crossing phase. Ideally, the input

bunch length satisfies kσz << 1, so only a small phase window of the wave is sampled by

the beam and the chirp imparted on the beam is predominantly linear. However, in our

discussion, we will keep the higher-order terms in the energy modulation expansion to

elucidate their role in the final bunch length. In the propagation region after the buncher,

due to the strong energy chirp, the tail of the beam begins to catch up, while the head

of the beam slows down. Finally, at some location downstream of the buncher, ideally

arranged to be the sample plane or the interaction point of the UED experiment, the

minimum bunch length occurs when the phase space distribution is vertically aligned.

We will strive to keep all the formulas in this section as general as possible (for ex-

ample, not assuming β = 1) so that they could be applied to different RF compression

setups (non-relativistic, MeV UED beamlines, as well as higher frequency compression
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schemes) once the parameters are scaled accordingly. For this reason, we will use two

different example cases, loosely based on the UED beamlines at the UCLA Pegasus lab-

oratory [81], to benchmark the agreement between the analytical framework and particle

tracking simulations. The reference parameters used for this study are reported in Table

4.1.

The section is structured as follows. We will first review gentle acceleration to obtain

the harmonic impulse transport maps representing the cavities. Then we solve the single

particle dynamics and introduce the envelope equation formalism to describe the evolution

of the bunch duration through the system [88]. We approximate the buncher as a thin lens,

compute the main contribution to emittance growth and analyze the ballistic dynamics

in the drift while neglecting space-charge. Thus, essentially re-obtaining the results first

presented in [86], then in [87]. We will then include the space-charge repulsion term

in the envelope equation for an ellipsoidal beam, solving in a space-charge-dominated

regime, and arrive at an expression for the minimum achievable bunch length in the

beam aspect ratio. We will build on the formalism, using it to describe different current

profiles. Finally, in light of the findings presented in this section, we review the use of

an additional higher frequency RF cavity to compensate non-linearities to reach sub-fs

bunch lengths as originally proposed by [86].

Table 3.1: Simulation beam parameters

Parameter High Energy Low Energy

Focal length 1.88 m 1 m

Beam kinetic energy 4.6 MeV 150 keV

Norm. transverse emittance 100 nm 8.3 nm

RMS transverse beam size 100 um 100um

Cavity Frequency 2.856 GHz 2.856 GHz

Relative energy spread 10−5 10−5
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3.2.2.1 Gentle acceleration

Now, we consider the dynamics of charged particles in linear accelerators, where the

incident particles are already moving relativistically. We derive the longitudinal impulse

imparted on the beam by the cavity and examine how it induces a correlation in the

longitudinal phase space at the cavity’s exit.

Close to the axis, the longitudinal field within the RF cavity can generally be expressed

as:

Ez = E(z) cos(ωt+ ϕ0)

The energy gain through the entire structure, denoted as ∆γ, where the full structure

has length L, is given by:

∆γ =
e

mc2

∫ L/2

−L/2

E(z) cos[ωt(z) + ϕ0] dz

=
e

mc2

∫ L/2

−L/2

E(z)[cos(ωt) cosϕ0 − sin(ωt) sinϕ0] dz

By introducing the axial RF voltage, defined by V0 =
∫ L/2

−L/2
E(z) dz, the energy gain

can be expressed compactly as:

∆γ =
qV0τ

mc2
cosϕ0

where the transit-time factor τ has been introduced, and explicitly is given by:

τ =

∫ L/2

−L/2
E(z) cos(ωt(z)) dz∫ L/2

−L/2
E(z) dz

− tanϕ0

∫ L/2

−L/2
E(z) sin(ωt(z)) dz∫ L/2

−L/2
E(z) dz

(3.6)

RF structures are ideally designed to minimize the second term, eliminating the transit

time’s dependence on the initial phase. Note this is only possible when
∫ L/2

−L/2
E(z) dz ̸= 0

[89].

It is often permissible to assume the near speed of light approximation; that the ve-

locity is effectively constant through the cavity, then ωt(z) = ωz/cβc, greatly simplifying

the transit time factor1. We define k = ω/cβc to be the RF wave number divided by

1If we had not integrated over the full cell for the impulse, we could write the energy gain at an
arbitrary axial point within the RF field.
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the normalized longitudinal velocity, so we can conveniently analyze how the impulse

acts on a longitudinal distribution. We make a change of ϕ0 → ϕ0 +∆ϕ, where a phase

offset ∆ϕ = kz0 is relative to the beam centroid arriving at ϕ0. This enables us to write

longitudinal phase space correlations at the exits of RF cavities as:

∆γ = α cos(kz0 + ϕ0) (3.7)

α = qV0τ
mc2

is the amplitude of the imparted energy modulation.

3.2.2.2 Single particle dynamics and non-linear phase-space correlations in

the RF buncher

When the beam arrives at the zero-crossing point, i.e., when ϕ0 = π/2, the energy

modulation is given by:

∆γ = −α sin(kz0) (3.8)

where α = eV0/mc
2 and eV0 is the cavity voltage or maximum energy gain seen by an

ideally phased particle (transit time factored in). The phase of the cavity is tuned so

that the center of the bunch experiences no net energy gain and particles at the tail gain

energy, while particles at the head of the bunch lose energy.

There are two distinct sources of non linearities in the trace space dynamics resulting

from the applied energy change to the particles. Firstly, for finite duration input bunches,

the curvature of the RF wave will cause significant non linear effects in the trace space.

In addition, the relativistic relation between normalized velocity and beam energy β =√
1− 1/γ2 adds an important degree of non linearity to the transport as pointed out in

zeitler. Following the discussion therein, Taylor-expanding the relative velocity deviation

∆β
β

in terms of the energy deviation we can write

∆β

β
=
∑
m

ηm∆γ
m (3.9)

where ηm are proportional to the mth-derivatives dm

dγmβ and in particular

η1 =
1

β2γ3
(3.10a)

η2 =
2− 3γ2

2γ6β4
(3.10b)

η3 =
2− 5γ2 + 4γ4

2γ9β6
(3.10c)
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where γ and β are the mean values of the normalized energy and velocity distributions

respectively. The coefficients ηm scale as γ−(m+2) so that at high relativistic energies the

higher order non linear terms in the transport can be neglected. Considering the lowest

order dynamics, we can simply replace sin(kz0) with kz0 − (kz0)3

6
, and truncate the series

to obtain:
∆β

β
≈ −η1α(kz0) + η2α

2(kz0)
2 +

(η1α
6

− η3α
3
)
(kz0)

3 (3.11)

We verify this expression at high energy (4.6 MeV) and low energy (150 keV) by consid-

ering a particle tracking simulation of the buncher configuration listed in Table 4.1 with

an initial bunch length of 195 µm and 1.87 mm respectively. The buncher was modeled

by a 2.856 GHz standing wave cylindrically symmetric TM010 cavity with an amplitude

adjusted to reach a longitudinal focus 1.88 m and 1 m downstream respectively for the

high and low energy cases. Since the RF cavity length is 0.05 m, it is reasonable to

approximate it as a thin lens. The longitudinal phase spaces from GPT at the exit of the

buncher are shown in Fig. 3.2(a) and 3.2(c) for the high and low energy case respectively

with subtracted linear correlations. The quality of the agreement between GPT and our

analytical framework can be assessed by comparing the distributions with the lines cor-

responding to Eq. 3.11 which are also shown. The parameters chosen for these examples

highlight the different possibilities for the dominant non-linearity in the system. In the

high-energy case, the relativistic effects are responsible for the parabolic shape seen in

the simulation. While in the low energy case, the injected bunch length is longer and the

third-order non-linearity associated with the sinusoidal RF fields is the main effect in the

beam distribution shape.

The convenience of working in the trace space is the linearity of the dynamics in the

drift which fully preserves the trace space area. Explicitly, in the drift after the buncher,

the longitudinal particle position can be written as

z = z0 + s
∆β

β
= z0 + s

∞∑
n=1

ηn∆γ
n (3.12)

The initial coordinate z0 is expressed in terms of the induced energy modulation ∆γ

by inverting Eq. 8. Then ∆γ is Taylor expanded in terms of ∆β/β. Substituting into

Eq. 3.12, keeping only terms up to third order, we can write:

z ≈
(
s− 1

η1αk

)
∆β

β
++

η2
η31αk

∆β2

β2
−
(
η1α
6

− (η3 − 2η22/η1)α
3
)

η41α
4k

∆β3

β3
(3.13)
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The longitudinal waist occurs where the linear chirp is cancelled at distance s = 1
η1αk

along the beamline allowing us to define the buncher longitudinal focal length:

f =
1

η1αk
=
m0c

2γ3β2

eV0k
(3.14)

which indicates that very high voltage cavities are needed to obtain short focal lengths

for relativistic electrons. It is also useful to note the k-dependence of this expression

which favors the use of very high frequencies for this application. At the focal plane,

(a) (b)

(c) (d)

Figure 3.2: Left) Trace spaces of the beam at the exit of the prebuncher after the linear

chirp has been subtracted from the distribution for high energy (top) and low energy

(bottom) cases, compared with the analytical predictions from Eq. 3.11 (green curves).

Right) Longitudinal trace spaces at the temporal waist for the high energy (top) and low

energy (bottom) cases compared with the predictions from Eq. 3.33 (green curves). The

current profiles at the focus are also shown in black.

the residual correlation is quadratic or cubic in ∆β depending on the relative importance

of the non-linearity in the drift propagation concerning the RF curvature. As discussed

above, lower beam energies and longer input bunches tend to show higher third-order non-

linearities, while relativistic energies typically have dominant second-order contributions.

The predictions from Eq. 3.33 can be again verified by comparing to the phase spaces
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at the temporal waist plane from the same GPT simulation, as shown in Fig. 3.2(b) and

(d).

3.2.2.3 Emittance growth mechanisms and the relationship between different

longitudinal phase space definitions.

3.2.2.3.1 (z, z′) trace space emittance

Since the drift dynamics in the trace space are entirely linear, and the emittance

growth is all accrued in the buncher, the envelope equation formalism is a convenient

choice to follow the RMS bunch length evolution. To evaluate the RMS emittance growth

induced by the RF compressor, we start from an initial longitudinal phase space with RMS

emittance ϵz0,z′0 . After the energy chirp is applied, the single-particle velocity variation

maps to z′0 → z′0 +∆β/β, where ∆β/β represents the velocity variation imparted by the

buncher, which is correlated with particle position. In the thin lens approximation, the

particles do not change position as the beam goes through the cavity.

The moments of the new distribution can be calculated and the relation between

initial and final emittance after the buncher written as

ϵ2zz′ = ϵ2z0z′0 + ϵ2RF

= ϵ2z0z′0 + ⟨z20⟩⟨
(
∆β

β

)2

⟩ − ⟨z0
(
∆β

β

)
⟩2

Note that each respective expectation value needed to calculate the emittance, with

the exception of ⟨z20⟩ = σ2
z0, requires integrating sinm(kz) or z sinm(kz) over the beam

distribution. Assuming an initial Gaussian current profile, these integrals have closed-

form expressions up to arbitrary order of m, but keeping the leading contributions to the

emittance growth, we obtain

∆ϵ2RF ≈ σ2
z0

[
2η22α

4
1k

4
1σ

4
z0 +

1

6

(
η1α1 − 6η3α

3
1

)2
k61σ

6
z0

]
, (3.15)

Alternatively, assuming an initial quadratic current profile, the emittance growth is:

∆ϵ2RF ≈ σ2
z0

[
8

7
η22α

4k4σ4
z0 +

50

1323

(
αη1 − 6α3η3

)2
k6σ6

z0

]
. (3.16)

In most cases, these expressions are much larger than the initial longitudinal emittance

because the buncher induces a large velocity spread (with correspondingly significant non-

linear contributions) to achieve strong compression. As long as the space-charge forces
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are negligible in the drift, ϵRF is also equal to the final emittance and can be used to

calculate the shortest bunch length achievable at the waist using Eq. 3.22. The emittance

growth in the buncher and its preservation in the drift is shown in Fig. 3.9, where the

trace space RMS emittance evolution calculated from GPT is plotted along the beamline.

The black dotted line shows Eq. 3.15 which provides a good approximation for the final

emittance after a thin lens buncher cavity located at the origin.

Figure 3.3: Comparison between analytical estimates (dashed lines) and GPT simulations

(solid lines) for an initial bunch length of 0.65 ps. The trace space emittance after the

buncher is shown in blue, and emittance growth in (z, δ) phase space in orange.

3.2.2.3.2 (z, δ) phase space It is important to note at this point that if instead,

we had utilized more common choices of defining the longitudinal trace space in terms

of the relative energy spread δ = ∆γ
γ

or momentum spread ∆pz/pz, the drift dynamics

would become highly non-linear especially for mildly relativistic particles.

Initially, the trace space emittance ϵz,z′ is related to the (z, δ) emittance by the fol-

lowing relationship:

ϵz0,δ = γ2β2ϵz0,z′0 (3.17)

This relationship holds because z′ ≈ η1∆γ and explains the order of magnitude difference

in absolute emittance values in Fig. 3.9. It is then fairly common to see in the literature

the envelope equation written in terms of the (z, δ) emittance:

σ′′
z =

⟨zz′′⟩
σz

+
ϵ2z,δ

β2γ2σ3
z

(3.18)
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Nevertheless, in a drift, the particle positions evolve according to Eq. 3.12 where the

transport is inherently non-linear, especially for mildly relativistic particles, causing emit-

tance growth and limiting the usefulness of the envelope equation approach. Ultimately,

for large enough initial energy spreads, the higher-order terms proportional to ηm lead to

significant (z, δ) emittance growth, which can be estimated using the same techniques as

in the previous subsection

ϵ2zδ = ϵ2z0,δ0 + 2s2η22α
6k6σ6

z (3.19)

where ϵz0,δ0 is the emittance at the beginning of the drift. This expression predicts a

nearly linear growth with propagation distance for a small initial emittance. This is

shown in Fig. 3.9 where the (z, δ) phase space evolution from GPT is compared with Eq.

3.19 with the inclusion of the initial emittance as well.

The seemingly counterintuitive behavior of the longitudinal emittance (growing lin-

early in the drift) is the main reason we adopt the (z, z′) trace space emittance in cal-

culating the final bunch length when using the envelope equation formalism. Finally, for

completeness, we observe that if the un-normalized momentum (z,∆pz/pz) was used as a

trace space variable, all expressions could be simply modified substituting z′ = 1
γ2
0
∆pz/pz.

Nevertheless, due to the relativistic non-linear relation between momentum and velocity,

even in this case, one would have significant emittance growth in the drift propagation.

3.2.2.4 Envelope analysis

3.2.2.4.1 Bunch limits without space charge

The simplest scenario is where propagation occurs in a drift and space-charge forces

are negligible, meaning the beam remains dominated by emittance up to the waist. This

situation applies to beams with very low charge.

To determine the shortest bunch length in the absence of space charge, we solve the

longitudinal envelope equation independently of the transverse equation. The envelope

equation can be expressed as:

1

2

d

ds

(
σ′2
z

)
=
ϵ2z,z′

σ3
z

σ′
z, (3.20)

which can be exactly integrated when the trace emittance is constant:
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σ′2
zf − σ′2

z0 = ϵ2z,z′

(
1

σ2
z0

− 1

σ2
zf

)
. (3.21)

At the waist, σz reaches a local minimum, allowing us to set σ′
zf = 0. Immediately

following the buncher, we can write σ′
z0 =

⟨z0z′0⟩
σz0

− σz0

f
, where the first term represents in-

coming phase space correlations and the second term represents the linear chirp imparted

by the buncher cavity. The waist size can be expressed as:

σzf =
1√

1
ϵ2
z,z′

(
⟨z0z′0⟩
σz0

− σz0

f

)2
+ 1

σ2
z0

≈ fϵz,z′

σz0

∣∣∣∣1− f⟨z0z′0⟩
σ2
z0

∣∣∣∣−1

, (3.22)

where we neglect the term 1
σ2
z0
, which is small compared to 1

σ2
z
for large compression

factors.

Examining the factor that accounts for initial correlations, we find that an initial neg-

ative chirp (i.e., ⟨z0z′0⟩ < 0) effectively reduces the focal length and final bunch length.

Conversely, in most scenarios, an RF buncher is used to achieve strong compression,

making
f⟨z0z′0⟩
σ2
z0

<< 1, meaning incoming correlations are minor compared to the linear

correlation introduced by the RF fields. In this case, the final bunch length at the waist

is
fϵz,z′

σz0
, directly proportional to the focal length times the energy spread, assuming ther-

mal contributions dominate the longitudinal emittance. However, non-linear correlations

induced by the buncher significantly distort the trace space and dominate the emittance

in the final drift. Therefore, beams with smaller longitudinal emittance allow for shorter

bunch lengths. Additionally, shorter final bunch durations can be achieved by reducing

the focal length f of the RF buncher.

To estimate the minimum achievable bunch duration based on the main beamline

parameters (when space-charge effects are negligible), we insert the trace space longitu-

dinal emittance estimate incorporating Equation (3.16) or 3.15 depending if a quadratic

or gaussian profile is initialized, into the envelope-equation solution (Equation (3.22)),

yielding an expression as the quadrature sum of the contributions to the final emittance

from (i) the initial uncorrelated relative energy spread σδ, (ii) non-linearities from rela-

tivistic corrections to the transport, or (iii) RF-induced emittance.

For easier comparison between beamlines of different energies, we rewrite the terms
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as a function of the buncher’s focal length, a useful parameter related to standard re-

quirements on the sample chamber dimensions, pumping geometry, and transverse optics.

Assuming one term dominates, we can summarize this result as:

σzf ∼



fσz0′ =
f

β2γ2σδ

√
2 |η2|

η1
αkσ2

z0 ≈
3
√
2γ2

2

σ2
z0

f

1√
6
k2σ3

z0.

(3.23)

In this particular example, a gaussian distribution was assumed. For any reasonable

distribution, the first equation is the same. The second and third equations will scale

the same with rms length measures, but with different numeric prefactors. The total

quadrature sum of these three expressions can generally be used when two or more terms

are comparable in magnitude.

In all three cases, to be expected, removing non-linearities, and starting with a shorter

bunch having less energy spread is the direction to go to shrink the beam even more.

Eventually hitting an optimum where the charge density in transit to the focal point is

just right so that space charge repulsion disrupts away from the optimum.

This is validated by observing the scalings in the formulas. In the first case, non-

linearities in the transport can be ignored, and the final bunch length is proportional to

the initial relative velocity spread σ′
z0. For the same uncorrelated relative energy spread

σδ, a relativistic energy system has an advantage in achieving ultrashort bunch lengths

due to the inverse square γ dependence in the formula. However, as the energy increases,

non-linearities due to relativistic dynamics in the drift likely become the dominant con-

tribution to the final emittance and bunch length. In this regime, after approximating

η2/η
2
1 ≈ 3/2γ2 and using the definition of the focal length (Equation (3.14)), the final

bunch duration scales with the square of the beam energy. The RF curvature, the third

equation, dominates the final phase space shape for very long initial bunch lengths, set-

ting the limit for the shortest achievable bunch duration. This contribution is crucial for

both relativistic and non-relativistic energies and strongly favors using lower RF frequen-

cies. Hence, in all THz compression experiments conducted so far, this term has been a

significant limit to the final bunch length [83, 90].
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The analytical formulas summarized in Eq. 3.23 were found in excellent agreement

with GPT in both the relativistic and non-relativistic regimes. The results are shown in

Fig. 3.4 top and bottom for the 4.6 MeV and 150 keV cases, respectively. In the low-

energy case, the cubic non-linearity from the RF curvature dominates due to the longer

initial bunch length.

(a) (b)

Figure 3.4: Final bunch length as a function of the initial bunch length for the (a) high

energy, and (b) low energy cases. The analytical curves are also shown and are found to

be in very good agreement with the simulations.

In the absence of space-charge, the shortest bunch durations are obtained by mini-

mizing the emittance growth in the temporal lens, which can be done by using shorter

input beams. At the same time, as we will see, decreasing the initial bunch length also

increases the initial peak current so that the space-charge effects in the longitudinal en-

velope equation can no longer be neglected. As a result, space-charge effects begin to

take over at a certain point and prevent further bunch compression. Thus, there must be

an optimum initial bunch length to inject, which exactly balances space charge and RF

emittance growth.

3.2.2.4.2 Bunch limits with space charge

To evaluate the limits imposed by space charge, we solve the envelope equations

assuming the beam is dominated by space charge, thereby neglecting the emittance term.

In this space-charge-dominated regime, the envelope equations for each dimension can be

written as:
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d

ds

(
γ2σ′2

z

2

)
= γ2KL

v(A)

σ2
z

σ′
z (3.24)

d

ds

(
σ′2
x

2

)
= γ2KL

u(A)

2σxσz
σ′
x (3.25)

Assuming axial symmetry, the total kinetic energy in the beam’s rest frame (which is

non-relativistic) is the sum γ2σ′2
z /2 + σ′2

x . Thus, we have:

d

ds

(
γ2σ′2

z

2
+ σ′2

x

)
= γ2KL

(
v(A)

σ2
z

σ′
z +

u(A)

σxσz
σ′
x

)
(3.26)

The right-hand side is a perfect differential related to the electrostatic self-energy of

the beam in the rest frame, i.e., v(A)
σ2
z
σ′
z +

u(A)
σxσz

σ′
x = − d

ds

(
coth−1( 1

ξ
)

σzξ

)
. Therefore, when

the beam is dominated by space charge, the dynamics of the envelope edges resemble

Hamiltonian mechanics. After some algebraic simplifications, we obtain a conservation

equation:

d

ds

(
σ′2
z

2
+
σ′2
x

γ2
+KL

coth−1(1/ξ)

σzξ

)
= 0 (3.27)

Here, the first two terms represent kinetic expansion, while the last term represents

the electrostatic self-energy of the beam in the rest frame.

Experimentally, to shrink the beam in all dimensions, one would use a bunching

cavity followed by a solenoid or quadrupole multiplet. The focal length of a buncher (f||)

is typically much longer than that of a solenoid or quadrupole lenses (f⊥). To utilize the

conservation equation, we assume the beam starts emittance-dominated and remains so

up to the lens, with σ′
z staying constant leading up to the lens. We also assume the beam

is collimated transversely, with low divergence. Thus, just after the lens, the slopes are

σ′
z = −σz0/f|| and σ′

x = −σx0/f⊥. For a simultaneous waist, the envelope edge derivatives

are zero, leading to the final bunch length:

σz =
2f 2

||KL

σ2
z0

(
coth−1(1/ξf )/ξf
1 + 2(A0f||/f⊥)2

)
(3.28)
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where ξf =
√
1−A2

f , and Af and A0 are the final and initial aspect ratios, respec-

tively. Typically, the initial aspect ratio is small enough to neglect the term A0f||/f⊥ in

the denominator.

Two scenarios are noteworthy: First, when aiming to focus the beam in all dimensions

to achieve a unit aspect ratio (a spherical shape in the beam’s rest frame), the final aspect

ratio approaches unity. The factor coth−1(1/ξf )/ξf → 1, and the final bunch length is:

σzf ∼
2f 2

||KL

σ2
z0

(3.29)

For instance, if the RF emittance growth is not compensated and dominated by

quadratic non-linearity, setting Equation (3.29) equal to the second expression in Equa-

tion (3.23), the optimum initial bunch size is:

σ2
z0 ∼

√
f 3
||KL

γ2
(3.30)

Substituting this into Equation (3.29), in the high energy limit (γ0 ≫ 1), the minimum

bunch duration at the temporal waist is:

σzf = C

√
f||Nrc
γ3

(3.31)

where C is a dimensionless factor of order unity that depends on the longitudinal

distribution, particularly in the computation of RF emittance growth and linear compo-

nents of the space charge field. In the case of a uniform distribution, Cu = 1.02 and for

a Gaussian, Cg =
√
2Cu.

The nonlinear forces in the Gaussian beam’s space charge field self-consistently cause

some emittance evolution, which is not accounted for in our model. The emittance is not

exactly constant as the beam density becomes larger near optimal conditions. It is not

straightforward to include this evolution; yet it has only a small error on the solution.

Effectively, because the linear driving force plays the dominant roll in the rms envelope

evolution and the emittance doesnt change signifantly near optimum. In Fig. 3.5(a), for a

Gaussian beam, we compare the exact field experienced by the particles of the simulation
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within the Gaussian beam before the focus with both the linear component and beam

averaged force that appears in the envelope equation.

In Figure 3.5(b), a simulation of the optimum compensation for 105 electrons is shown.

For an initial Gaussian beam, The optimum initial pulse duration is 72µm and is com-

pressed to 1µm, or 3 fs. Notably, the final phase space shows space charge correlations,

with the longitudinal phase space partially reflecting the Gaussian beam’s field distribu-

tion and partially exhibiting quadratic distortion. Nonetheless, the final bunch length is

in good agreement with the analytical approximation, differing by less than 15%.

In Figure 3.5(c), the comparison of Equation (3.31) with GPT simulations, while

setting the initial bunch length according to Equation (3.30) as the charge varies from

105e to 106e, shows good agreement for both ellipsoidal and Gaussian distributions. As

expected, the Gaussian distribution yields a longer final bunch length by a factor of
√
2. In Figure 3.5(d), we use Equation (3.31) to visualize the dependence on energy and

charge for a constant focal length of the bunching system set to 1.88 m. Due to the energy

dependence intrinsic to the focal length, increasing beam energy while keeping the focal

length constant poses technological challenges involving RF cavity breakdown limits and

available power sources at higher frequencies.

The second scenario, if there is no lens (f⊥ → ∞), while the beam is collimated,

then the aspect ratio of the beam becomes large, as it does the transverse force becomes

constant suggesting we assume the transverse dimension of the beam is mostly constant,

then the final bunch length satisfies the transcendental equation:

σzf = C

√
f||Nrc
γ3

coth−1(1/ξf )

ξf
(3.32)

Note that the factor coth−1(1/ξf )/ξf is less than 1 in this case, indicating a reduction

from the optimum achievable with a unit aspect ratio. In fact, plotting
√

coth−1(1/ξf )

ξf

between aspect ratios of 1 and 10 shows a decrease in the space charge contribution by

more than a factor of 2, as shown in Fig. 3.6.
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Figure 3.5: (a) Longitudinal field of the bunch compared with the linear field component

of the 3D Gaussian field and with the beam-averaged generalized force term that appears

in the envelope equation. The total charge in the bunch in this simulation is Q =

105e.(b) The final phase space for an optimized Gaussian bunch. (c) Minimum bunch

length analytical estimates compared with GPT simulation as the charge in the 4.6 MeV

energy beam is varied for Gaussian (purple) and uniformly filled ellipsoidal (blue) beam

distributions. (d) Minimum bunch length versus γ and N for the Gaussian distribution

assuming a constant focal length f = 1.88 m.
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(a)

Figure 3.6: Plot of
√

coth−1(1/ξf )

ξf
as a function of the aspect ratio A. The graph illustrates

how the space charge contribution decreases significantly, by more than a factor of 2, as

the aspect ratio increases from 1 to 10.

3.2.2.5 Longitudinal emittance compensation using a higher harmonic cavity

Assuming the input beam has an uncorrelated LPS and traverses the higher harmonic

cavity first, then traverses a bunching cavity second while operated at zero crossing.

Then, the energy correlation can be written as:

γ = γ0 − α1 sin (k1z)− α2 cos (k2z + ϕ2)

≈ (γ0 − α2 cos(ϕ2))− z(k1α1 − k2 sin(ϕ2))

+
1

2
z2k22α2 cos(ϕ2) +

1

6
z3(k31α1 − k32α2 sin(ϕ2)) (3.33)

where γ0 is the initial energy, α1 is the amplitude of the bunching cavity, k1 the wave

number, α2 is the amplitude of the x-band, k2 is the x-band wave number, and ϕ2 is the

phase of the x-band. The constant term in (3.33) defines the resonant energy in the drift

after the buncher leading up to the focus, i.e., γc = γ0 − α2 cos(ϕ2). After subtracting

the resonant energy, the correlation between energy deviation and position is denoted as

∆γ(z)

After substitution of ∆γ(z) into (3.9), and collecting terms, we obtain z′ = z′0+ c1z+

c2z
2 + c3z

3 +O(z4), where z′0 is added to account for an uncorrelated spread in velocity,
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Figure 3.7: The addition of a short x-band cavity compensates for the curvature in trace

space imparted by the S-band linac and gun and vertically aligning the output trace

space.

and the coefficients are given by:

c1 = −η1(k1α1 − k2α2 sin(ϕ2)) (3.34a)

c2 =
1

2
η1k

2
2α2 cos(ϕ2) + η2(k1α1 − k2α2 sin(ϕ2))

2 (3.34b)

c3 =
1

6
η1(k

3
1α1 − k32α2 sin(ϕ2))

− η3(k1α1 − k2α2 sin(ϕ2))
3

− η2α2k
2
2 cos(ϕ2)(k1α1 − k2α2 sin(ϕ2)) (3.34c)

The longitudinal positions change in the drift after the buncher according to zf =

z + sz′. The linear correlation of the longitudinal phase space is canceled after the beam

drifts a distance f = 1/|c1|, which in the absence of higher harmonic k2, gives the general

expression for the focal length of the buncher 3.14.

The higher order coefficients contribute to emittance growth, and manifest distortions

of the longitudinal phase space at the focus, which ultimately limit the electron beam

from achieving the shortest bunch length.

By inspection, second-order correlations can be canceled by setting ϕ2 = 0 and

α2 = 2 |η2|
η1

(
k1
k2

)2
α2
1. Although this solution still retains third-order curvature on the final

phase space, it reveals a compensation amplitude with quadratic dependence on relative

frequencies, the amplitude of the buncher, as well as the resonant energy (which in turn

scales linearly with the initial accelerating voltage). Meanwhile, the amplitude needed
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to compensate for any quadratic curvature imbued upon the longitudinal phase space

during the initial injection scales only linearly with gun voltage [91], thus our assumption

that the initial correlations are negligible is mildly justified.

Figure 3.8: Longitudinal phase spaces for three cases, no compensation, only second order

compensation, and third order compensation.

Although there is an analytic solution where c2 = 0 and c3 = 0 simultaneously, the

expression is omitted. The solution is typically close in phase-amplitude parameter space

to the second-order compensation. Therefore, to find the cavity phase and amplitude

which eliminates both second and third-order coefficients, a numerical approach is em-

ployed whereby analyzing the neighborhood of phases around ϕ2 = 0 where α2(ϕ2) is such

that c2 = 0 reveals a simultaneous compensation of c2 and c3. In the case that all higher

order coefficients are negligible, the final bunch length is σzf = σγ/(k1α1−k2α2 sin(ϕ2)) ≈

fη1σγ, where σγ is the uncorrelated energy spread. So in the ideal case, the bunch length

is determined by the focal length, beam energy, and uncorrelated energy spread. The

analytical description is illustrated in Fig. 3.8.

3.2.2.6 Managing non-linear space charge forces

Various factors can prevent reaching the limit set by the initial uncorrelated relative

energy spread. If space charge effects are negligible and ballistic non-linearities are ad-

dressed, then a wide range of initial bunch lengths can be compressed nearly to the
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thermal limit, assuming the bunch lengths are short enough that fourth-order distortions

are insignificant. When space charge is significant, compression is constrained by radial

and longitudinal slice-dependent energy spread.

Uniform picosecond-long cigar-shaped beams are desirable due to their linear fields,

which help manage the growth of slice-dependent energy spread and fully optimize com-

pression. Other charge distributions can cause unfavorable distortions at the final focus.

In practice, we plan to generate electron beams of this quality by stretching the temporal

profile of the drive laser into a quadratic shape with an RMS duration on the order of

picoseconds while focusing the initial cathode spot size to approximately 10 µm. Imper-

fections in the temporal and transverse profiles can significantly hinder this approach,

but diagnostics may allow for corrections during operation.

With compensation, the need for a precisely selected initial bunch length to achieve

optimum compression is relaxed. In the uncompensated case, the optimum initial bunch

length is sharply defined; however, with compensation, a broad range of bunch lengths

achieve nearly the same performance, reaching the thermal limit. This is illustrated in

Fig. 3.9(a), showing results of a GPT simulation scan of the bunching process with a

charge of 250 fC for a range of initial bunch lengths. The final bunch length is plotted

against the initial bunch length for both compensated and uncompensated cases. In the

uncompensated case, the best compression occurs just above 1 µm, requiring the initial

bunch length to be nearly 300 fs, with a quadratic dependence of the final bunch length

on the initial bunch length. This optimum working point was established at Pegasus [92].

However, when non-linearities are compensated, any initial bunch length greater than

1.5 ps nearly achieves the thermal limit, with an optimum at 2.5 ps, as long as fourth-

order curvature remains negligible. The necessity for optimal shaping of the electron

distribution is evident in Fig. 3.9(b). In this scan, the initial bunch length is set to the

optimum, and the charge is varied from 0 up to 2 pC for two distributions: Gaussian and

uniform ellipsoid. The compressed Gaussian bunch length experiences substantial non-

linearities at relatively low charges compared to the uniform ellipsoid, which can pack up

to 1 pC of charge to sub-micron lengths while the transverse dimensions are focused to

a few microns by a 20 cm focal length solenoid. Fig. 3.9(c) shows the space charge fields

of the two distributions at 250 fC as each beam approaches focus. The linearization of
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(a) (b)

(c) (d)

Figure 3.9: (a) Compressed bunch length as a function of the input bunch length for

the uncompensated and compensated cases of a uniform ellipsoid distribution. (b) Com-

pressed bunch length as a function of bunch charge for both the uniform ellipsoid and

Gaussian spatial distributions. (c) Longitudinal component of the electric field experi-

enced by particles at respective z-coordinate in the bunch. (d) Longitudinal phase space

at the focus for the two distribution cases.

the ellipsoid and the curvature of the Gaussian are apparent. Fig. 3.9(d) shows the field

curvature imprint on the longitudinal phase space of the Gaussian beam as a distortion,

while the ellipsoid maintains linearity. In practice, adjusting the phase and amplitude of

the x-band cavity can compensate to some extent for these additional distortions caused

by space charge fields, but no exact analytical prescription currently exists.

Integrating these findings with the previous analytical estimates and simulations, it is

clear that managing non-linear space charge effects heuristically, through compensation

and optimal shaping of the electron distribution, is crucial for achieving the desired

compression and minimizing emittance growth.

We have developed an analytical framework that yields a simple estimate for the

minimum bunch length achievable in an RF compression beamline. Besides UED, the
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formulas in this section might be helpful in the optimization of RF compression for other

ultrashort electron beam applications, including radiation generation and injection into

very high-frequency THz-driven [93] and laser-driven accelerators [94].

The envelope formalism allowed us to estimate the final bunch length accurately; our

analysis showed that one can integrate the competing non-linear RF effects into the en-

velope evolution with space charge accurately with relative ease. The results indicate

that an optimum initial bunch length condition (which can be satisfied by adjusting the

laser pulse length on the cathode, for example) compromises the RF-induced emittance

growth and the effects of the longitudinal self-fields. The simplicity of the reported ex-

pressions mainly stems from the fact that the effects from the longitudinal perveance are

integrable. We have also limited the expansion yielding the non-linear terms in the emit-

tance growth to second and third-order. Still, in principle, we could have evaluated all the

higher-order terms (and compensated if enough independent knobs are added/available

on the beamline).

Although realistic beams produced by photoinjectors typically present more complex

phase-space distributions, the initial conditions assumed in the derivations are an initially

unchirped longitudinal phase space. Nonetheless, the results obtained here still provide

valuable estimates of the compression limits in a given configuration, which prove helpful

as a starting point for numerical optimizations. In addition, the scaling laws have proven

capable of guiding parameter choices in the design of new setups. Most importantly, these

results highlight the main contributions to the final bunch length and suggest possible

paths to improve the compression further and achieve sub-fs bunch lengths.

3.2.3 Energy spread minimization techniques

3.2.3.1 Relativistic RF harmonic energy spread linearization

A functional time-resolved electron microscope relies on beam sources with sufficiently

low energy spread to mitigate chromatic aberration [11]. Adding a linearizing cavity

of a different frequency can enhance the use of RF photoinjectors for this application

[43]. The temporal nature of these instruments necessitates a detailed understanding

of harmonically linearizing a longitudinal phase space to improve beam compression or
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reduce energy spread. Simplified scaling laws and longitudinal envelope equations provide

insights into the interplay between longitudinal emittance and space-charge forces on

pulse evolution.

In an RF photoinjector, particles are violently accelerated off the cathode to relativis-

tic energies in a few cm by a strong RF field; this process can also lead to high levels

of energy spread for longer pulse durations – ones spanning multiple degrees of phase.

Inside the cavity, The on-axis electric field component inside the cavity is given by:

Ez = E0 cos(kz) sin(ωt+ ϕ0) (3.35)

where E0 is the peak electric field, k is the RF wave number. The cavity nominally spans

a distance equal to 3λ/4, ω is the RF angular frequency, and ϕ0 is the initial phase.

Assuming a 1D scenario, the energy gain can be expressed as:

mc2
dγ

dt
= ecβzEz ⇒

dγ

dz
=
eE0

mc2
cos(kz) sin(ωt+ ϕ0) (3.36)

The harmonic factors can be rewritten as a sum of forward and backward traveling waves:

cos(kz) sin(ωt+ ϕ0) =
1

2
(sin(ωt+ ϕ0 − kz) + sin(ωt+ ϕ0 + kz)) (3.37)

The first term represents the forward traveling wave, which dictates the electron’s energy

gain. It is what we strive to keep particles in phase with (typically by pursuing larger

accelerating gradients). The phase the electron experiences is generally given by:

ϕ = ϕ0 + k

∫ z

0

(
γ√
γ2 − 1

− 1

)
dz (3.38)

Expressing the energy gain in terms of this phase, we get:

dγ

dz
=

eE0

2mc2
(sin(ϕ) + sin(ϕ+ 2kz)) (3.39)

The first term here represents the forward wave, which we want the particles to remain

in phase with, and the other term is the backward propagating wave. Approximating the

dynamics to be close to a resonant phase condition, we consider ϕ = ϕ0 to essentially

remain constant during the gain process; we find dγ
dz

≈ eE0

mc2
sin(ϕ0), indicating rapid

energy change near the cathode when considering a 70 MV/m gradient at an S-band

wavenumber k = 59m−1; the particle would gain approximately 1 MeV in the first few
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cm 2. The phase slippage complicates the problem, and requires the equations to be

numerically solved. Approximate solutions reveal the scalings for the ideal cavity case.

Notably, the longitudinal phase space correlations are harmonic, and to leading order,

the energy spread scales linearly with pulse duration σγ = αkσz [95], which is inherently

much larger for longer beams. For picosecond beams, this spread can exceed 1000 ppm,

which is unusable for high-performing imaging applications.

Generally, the fields and particle dynamics in realistic gun geometries must be nu-

merically simulated, but the overall shape of the longitudinal phase space still exhibits a

harmonic correlation. For narrow phase intervals, at high energy, it is often permissible

to assume the energy correlation is of the form γ = γ0 cos(kz + ϕ0). Here, γ0 represents

the maximal energy gain from the gun, k is the spatial wave number of the gun, and ϕ0

is it’s operational phase. Still, it should be noted that the longitudinal phase space at

the exit of a realistic cavity will have a polynomial correlation of the form:

γ = a0 + a1(kz) + a2(kz)
2 + a3(kz)

3 + · · · (3.40)

where the expansion coefficients are analogous to the coefficients in a Taylor series.

By adding a booster linac and a higher harmonic x-band linearizer, we can ensure that

the desired beam energy is obtained for the application while compensating to remove

the undesirable correlations, maintaining tolerable levels of energy spread.

For the analysis of minimizing the energy spread, we assume at the exit of the gun,

the longitudinal phase space (LPS) exhibits a dominant correlation between energy and

position relative to the beam centroid, expressed as γ(z) ∼ γ0 cos(kz + ϕ0). We also

assume that the longitudinal positions of the particles remain frozen during propagation

between cavities. In practice, particles may move toward the tail or head of the beam

depending on their energy. This assumption holds if sin(ϕ0)kL/γ
2 ≪ 1 for a drift distance

characterized by L.

Under these approximations, the LPS RF correlations after the sequence of the gun,

X-band cavity, and linac can be expressed as:

γ(z) = γ0 cos(kz + ϕ0) + αx cos(kxz + ϕx) + αL cos(kz + ϕL) (3.41)

2This assumes the particles remain in phase with the forward-propagating wave; however, as the
initial accelerating gradient increases, this condition becomes more readily satisfied.
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where αx and αL are the normalized voltages of the X-band cavity and linac, respectively.

This correlation can be Taylor-expanded to third order as:

γ(z) = c0 + c1z + c2z
2 + c3z

3 +O(z4) (3.42)

The expansion coefficients c1, c2, and c3 are the primary contributors to the energy spread.

One solution where these coefficients vanish is if the following conditions are met: the

X-band phase is set to π, the linac phase satisfies sin(ϕL) = −γ0 sin(ϕ0)/αL, and the

X-band voltage is:

αx =

(
γ0 cos(ϕ0) +

√
α2
L − γ20 sin

2(ϕ0)

)
k2

k2x
(3.43)

Under these conditions, c0 is given by:

c0 =

(
γ0 cos(ϕ0) +

√
α2
L − γ20 sin

2(ϕ0)

)(
1− k2

k2x

)
(3.44)

Since c0 → 0 when kx = k, the need for higher harmonics is apparent to ensure the beam

is not overly decelerated by the compensation cavity. Typically, the optimal gun phase

and voltage are determined by factors such as transverse emittance and charge. However,

including the linac allows for tunable beam energy, with compensation across the entire

range of accessible energies.

(a)

Figure 3.10: LPS of the beam before (blue) and after (red) the use of an x-band cavity.

The correlated energy spread has been removed.

In Fig. 3.10, an illustration of harmonic linearization of the initial energy correlation

from the gun is shown. A beam accelerated to 4.6 MeV of kinetic energy having a 10
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ps duration and 10−5 uncorrelated energy spread spans nearly 10◦ of phase at S-band,

which causes RF significant curvature, culminating in 10−3 rms relative energy spread.

Introducing a cavity at the third harmonic, i.e., kx = 3k, it is shown to completely remove

the RF curvature without a significant loss of beam energy, thus reducing the relative

spread to the 10−5 level or 10 ppm.

After all correlations are removed, the thermal spread in energy is the final limit. The

thermal spread can grow by intrabeam scattering. The change in energy spread from

intrabeam scattering can be estimated through the use of the following expression:

dσ2
γ

dz
=

2r2eNb

σxσzϵnxr
(3.45)

where rc = e2

4πϵ0mc2
, is the classical electron radius and Nb is the number of particles

in the bunch [96]. Assuming a coasting, 10ps long beam, with an average rms spotsize

σx = 100µm, having 100nm normalized emittance, after a 1 meter of drift distance, we

get
√

∆σ2
γ ≈ 2 · 10−5, which is negligible. However, beams having better emittance are

more susceptible to growth, and considering the beam evolution and tight focusing in

these scenarios may increase the spread by an order of magnitude from what was just

calculated as well, but even at this level, it is still manageable for high-performance

imaging.

3.2.3.2 Sub-relativistic time-resolved EELS RF cavity based monochromati-

zation

Now we briefly explore a concept pulsed transmission EELS scheme for non-relativistic 40-

100 keV table-top setups, enabling access to meV-scale energy resolution and significantly

higher beam brightness compared to current EELS instruments. The scheme uses a very

short (40 fs FWHM) laser pulse to emit a burst of electrons from a flat photocathode

in a high-tension DC gun. Two properly phased radiofrequency (RF) cavities act as a

temporally magnifying telescope, stretching and collimating the electron bunch by nearly

two orders of magnitude to 5-10 ps while proportionally reducing its energy spread. Unlike

the original approach by [72], which involved strong coupling between transverse and

longitudinal dynamics due to the nanoscale dimensions of the electron emitter, our use of

a flat photocathode decouples beam size evolution, allowing for larger electron charges per
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bunch. This simplification enables an analytical description of the longitudinal dynamics,

revealing the scaling laws and limits in energy spread reduction.

Using a 2D energy analyzer, the energy spectra can also be momentum-resolved, re-

vealing the dispersion characteristics of excitations. With the electron beam intrinsically

synchronized with an ultrafast laser, our scheme is ideal for pump-probe studies, where

energy resolution can be traded off for temporal resolution. An EELS instrument like this

will represent a significant advancement in electron-beam technologies, enabling quantifi-

cation of the energy loss function in quantum materials and the first momentum-resolved

collective-mode studies of far-from-equilibrium electronic systems. Here, we review an

analytical model describing the two RF cavity monochromatization scheme.

Figure 3.11: Cartoon depiction of compensation scheme. All elements are axially sym-

metric. Two RF cavities working in the TM010 mode are used to stretch the initial

electron bunch length while simultaneously reducing its energy spread. Bunch arrives at

the first cavity at the zero crossing of the field, receiving a positive chirp (energy-time

correlation) which causes it to elongate in the following drift. The second cavity is tuned

in amplitude and phase in order to remove the energy chirp and minimize the final energy

spread.

A cartoon of the proposed beamline is depicted in Fig. 3.11. Therein, it is shown

a DC photo-injector with a photocathode which is used to emit a short (40 fs) pulse

electron beam containing a small amount of charge (< 5000e potentially down to a

single electron per pulse). The beam is then accelerated to 40keV and through two

TM010-like cavities. The first cavity is set to act as a temporal defocusing lens which
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stretches the beam. Due to Liouville’s theorem, a temporally stretching beam must

simultaneously have its intrinsic energy spread compressed to conserve phase space area.

This principle is captured in the cartoon where the thickness of the longitudinal phase

space ellipse is shown to decrease after the first cavity. As the beam exits the first

cavity, the longitudinal phase space exhibits a positive correlation between position and

energy (positive chirp). As the beam drifts to the next cavity, the pulse stretches in time,

meanwhile the uncorrelated energy spread (the thickness of the longitudinal phase space

ellipse) decreases. When the beam finally enters the second cavity, the positive chirp is

cancelled. The end result is a significantly reduced energy spread.

Neglecting space charge (which will always be true in the limit of single-electron

pulses) and transverse effects to focus only on longitudinal single particle dynamics. For

an on-axis particle the effect of a cavity can be simply described by a sinusoidal change in

its kinetic energy depending on the phase experienced by the particle. The energy gain

imparted by the first cavity as a function of phase offset within the bunch can then be

written as:

∆γ1 = ∆γ0 + α1 sin(k1z0/β) (3.46)

∆γ1 is the energy deviation from the reference particle at the exit of the first cavity, ∆γ0

is the energy deviation prior entering the RF fields, typically associated with the emission

process, α1 = e∆V1/mc
2, ∆V is the peak accelerating voltage with transit time factored

into the voltage, and with m and e the electron charge and mass, c is the speed of light,

and z0 is the particles longitudinal coordinate relative to the reference particle (which is

assumed to be at the center of the bunch).

Adopting the impulse approximation, which amounts to the longitudinal coordinates

not changing while passing through the RF cavity. This is reasonable when considering

RF cavities occupying a very short distance in the beamline; then their only effect is to

change the particle energy (and not their position within the bunch).

To combine the effects of two RF cavities and the drift in between them, a non-linear

dynamical map determines the evolution of the position and energy coordinates (z,∆γ)

along the beamline; the map also determines the beam’s final energy spread.

By design, the initial bunch length entering the first cavity is sufficiently small to
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consider only the first order in the Taylor series expansion i.e. sin(k1z0/β) ≈ k1z0/β.

Each electron then ballistically propagates for a distance L to the second cavity. Its

relative longitudinal position in the bunch after the drift can be written as:

z2 = z0 + L
∆β

β
(3.47)

= z0 + L
(
η1∆γ1 + η2∆γ

2
1 +O(∆γ31)

)
(3.48)

using the expansion ∆β
β

=
∑

m ηm∆γ
m to second order.

The second cavity is tuned so that the reference particle arrives at a zero crossing

where the fields impart a negative chirp on the beam so that the resulting final energy

difference is:

∆γ2 = ∆γ1 − α2 sin(k2z2/β) (3.49)

The amplitude of the second cavity is set to exactly cancel the positive linear chirp

imparted by the first cavity, but at this point it is important to note that the beam is

much larger at the second cavity, so we can not simply ignore the non-linear terms in the

Taylor series expansion. Keeping the third order contribution, we get:

∆γ2 = ∆γ1 − α2

(
k2z2/β − (k2z2/β)

3/6
)

(3.50)

By composing mappings, we obtain a final symplectic map in terms of the initial coordi-

nates which enables a straightforward evaluation of the second moments of the longitudi-

nal phase space at the exit of the second cavity once we know the input beam distribution.

We can then use it as a guide to evaluate optimal settings for the energy spread reduction

EELS scheme. For example, only retaining the linear terms, we can determine the re-

lation between cavity amplitudes and frequency to cancel the linear correlation between

final energy and initial position. The resulting condition is:

α2 =
k1
k2
α1

1 + η1α1Lk1/β
(3.51)

then, to linear order, the residual energy spread is given by:

∆γ2 =
∆γ0

1 + η1α1Lk1/β
(3.52)

These expressions point out how the compensation of energy spread is enhanced by in-

creasing the first cavity frequency, increasing the drift length, or increasing the amplitude
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Figure 3.12: Final RMS energy spread (normalized to initial energy spread) near optimum

as a function of the first cavities amplitude plotted using Eq. 3.54

of the first cavity. Although both scenarios increase sampled RF phase in either cavity,

making the problem less linear as a whole.

Looking more in detail, while Eq. 3.52 suggests that the compensation is independent

of the second cavity, provided its amplitude is set accordingly to Eq. 3.51. This issue

can be addressed if we consider the higher-order terms in the Taylor expansion; it is easy

to see a limit in compensation associated with the longitudinal emittance growth. In

practice, the main issue that must be dealt with when optimizing this scheme is that the

beam cannot sample too much RF phase at the second cavity, to avoid the non-linearities

induced emittance growth which ruins the compensation. Optimal tuning of the first

cavity amplitude is essential to minimize this effect.

To this end, we take advantage of the third order map to directly evaluate the final

energy spread of the beam at the exit of the second cavity. In general, the second moment

is given by:

σγ =

√∫
∆γ2(z0,∆γ0)2f(z0,∆γ0)dz0d(∆γ0) (3.53)

If we make the assumption of an incoming gaussian distribution in both initial energy
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and position, we can perform the integrals which result in the following quadrature sum:

σγ ≈
√(

σ
(1)
γ

)2
+
(
σ
(3)
γ

)2
σ(1)
γ =

σγ0
1 + η1α1Lk1/β

σ(3)
γ =

√
5

12
α1k1k

2
2

[(
1 + η1α1L

k1
β

)2

σ3
z0/β

3 +
(σγ0η1L)

3/β3

1 + η1α1Lk1/β

] (3.54)

Note that the linear order term, σ
(1)
γ , asymptotically approaches zero as the first cavity

amplitude increases. Meanwhile, the third order term, σ
(3)
γ begins to dramatically increase

when the final rms bunch length at the second cavity entrance samples an appreciable

amount of RF phase. Furthermore, the third order term has a cubic dependence on σz0

which clearly imposes a limit on the possible compensation by requiring a smaller initial

bunch length to improve compensation. Given that the scheme relies on the elongation of

the bunch to compensate for energy spread, beginning with a smaller bunch provides more

room for the bunch to grow before it reaches a point of sampling too much RF phase at

the second cavity. The initial bunch length is dependent on the laser pulse length which

will thus determine the maximum compensation possible. For a initial bunch length of

14µm, the optimum is evident in Fig. 3.12, with the optimum compensation being 27,

corresponding to a final energy spread of σγ0 = 3.6 × 10−6, and a final bunch length of

1.2 mm.

Note that the first cavity amplitude that sets the minimum is very close to the pre-

dicted crossing of linear contributions to energy spread with third-order contributions.

The optimum first cavity setting taking into account the nonlinearities can be estimated

by equating σ
(1)
γ = σ

(3)
γ , then solving for α1. In the assumption of a strong initial chirp

i.e. α1η1k1L >> 1, the optimum amplitude of the first cavity is well approximated by:

α1,opt ≈
8

√
3
5

4
√
2 4
√
σγ0β

3/2

η
3/4
1 k1

√
k2L3/4σ

3/4
z

, (3.55)

then substituting the acquired amplitude into Eq.3.52 and scaling by a quadrature factor

leads to:

σγ,opt ≈
8

√
5
3
23/4σ

3/4
γ0 σ

3/4
z

√
k2
β

4
√
η1L

(3.56)

Eq. 3.55 together with Eq. 3.56 serve as excellent starting points for more complete

simulations of the scheme, which take into account transverse focusing and require ro-
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bust particle tracking optimization to realize compensation. The optimum of Eq. 3.54

represents the best energy spread achievable for a particular setup.

To further justify the applicability of the aforementioned formulas, we study a sim-

plified GPT simulation model which utilizes ideal cavity field maps built into GPT

to benchmark the analytic formulas. The longitudinal field component of the TM010

cavities used in the simulation have Gaussian spatial profile expressed as Ez(s, t) =

A exp(−s2/2σ2) sin(ωt+ ϕ) where A is the cavity amplitude, σ is the effective length of

the cavity, ω is the cavity frequency, and ϕ is the phase. The cavity phase is synchro-

nized such that the beam centroid gains no energy. The resulting longitudinal energy

modulation is given by:

∆γ = ∆γ0 +

∫ ∞

−∞
Ez(s, s/cβ)ds/mc

2

= ∆γ0 +

√
2πσA exp(−k2σ2/2β2)

mc2
sin(kz0/β)

(3.57)

which can used to derive α. To mimic the impulse approximation, we reduce the width

of the Gaussian profile towards zero while keeping Aσ finite. Doing this in GPT also

has the negative side effect of ramping up transverse effects, so we find a trade-off that

makes the cavities significantly short, so the cavity behaves as an impulse while making

sure the transverse fields do not play a role.

Considering the case of equal frequency cavities, each operating at (2.856 Ghz). In

Fig. 3.12, the final energy spreads at the exit of the second cavity from GPT are plotted

along with the predictions from Eq. 3.54. In Fig. 3.13 we illustrate initial and final

phase spaces at the optimal compensating cavity amplitude. The non-linear phase space

correlation begins to dominate the final distribution which presents a preeminent cubic

dependence of energy modulation on particle time of arrival. A shorter initial pulse

duration and low second cavity frequency lower the optimum energy spread. Recall that

this is because the lower initial bunch length sets the initial phase space area, and a lower

frequency reduces the effects correlations imparted by the second cavity. It is attractive

to seek a lower frequency cavity because it can potentially reduce energy spread more,

but this requires more power and much larger cavities given that the optimum is directly

proportional to the square root of frequency.

These results highlight the main features of this scheme. Cavities less ideal than those
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Figure 3.13: Initial, intermediate, and final phase space of mildly over-compensated sim-

ulation. Space charge effects are turned off. These phase spaces should be considered an

aggregate of many shots.

just considered can be used to achieve more realistic expectations; however, the general

scalings presented will still apply. This 1D model sets the limit of the experimental

setup and will guide future optimization of the low-energy EELS beamline setup to be

implemented at the Pegasus lab.

3.3 Pegasus beamline - longitudinal phase space shaping

Figure 3.14: Layout of the PEGASUS beamline. The electron beam is accelerated by the

S-band gun and travels downstream through additional accelerator components from left

to right.

The Pegasus beamline is a compact electron beamline utilized for a variety of ap-
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plications, including the study and development of ultrafast imaging, THz generation,

dielectric laser accelerators, and high-brightness beam diagnostics. Aerospace companies

have also employed the Pegasus beamline in target studies, showcasing its versatility.

Pegasus is housed in a 10 m x 3 m radiation-shielded bunker, complemented by a

nearby laser room equipped with a 3-mJ, 45 fs Ti:Sapphire laser. The accelerator consists

of an S-band RF photogun, a short S-band 11-cell linac, and a compact 7-cell X-band

linearizer.

The most recent configuration of the Pegasus beamline is shown in Fig. 3.14. Elec-

trons originate on the left, inside the RF photogun [37], where they are accelerated to

99% of the speed of light. Following the photogun, the main components are: the gun

solenoid for collimating the divergent beam exiting the gun; an ICT [97] for shot-to-shot

charge measurements; the X-band linearizer, which is used to linearize the longitudinal

phase space; a linac [98] that can either boost the energy to a maximum of 7 MeV or

impart a negative chirp to initiate velocity bunching; a dipole spectrometer for measuring

the beam energy; blue and green quadrupole triplets for focusing into the vacuum box;

and a final focusing solenoid that can be utilized for downstream applicationss.

3.3.1 1.6 Cell RF photoinjector

The 1.6 cell high-gradient RF photoinjector was originally prototyped at Pegasus and

continues to be a pivotal element of the Pegasus laboratory, enabling the production of

relativistic beams with high current density and low emittance [81]. Operating in a π

mode, this dual capability results from accelerating electrons rapidly to relativistic en-

ergies, which mitigates the space-charge forces that would otherwise disturb the beam.

Initially developed to provide a high-current source for free electron lasers [37], the inno-

vative application at Pegasus (and similar facilities [75, 99, 100, 101, 78]) leverages the

photoinjector’s potential for low bunch charge operation (< 1pC). This mode offers low

emittance (ϵnxr < 25nm), provided there is a small enough photo-emitting spot, making

it an invaluable tool for ultrafast scattering experiments. The actual cavity has a shunt

impedance of 1.78MΩ, and given enough RF power, is designed to achieve up 100MV/m

gradients after appropriately conditioning.
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Figure 3.15: Basic cell structure of the 1.6 cell RF photoinjector. The inset shows the

on-axis longitudinal field profile of the cavity mode.

The field map and geometry of the 1.6 cell is shown in Fig. 3.15. Most particle

tracking simulations through the RF structures performed in this thesis are based on 1D

off-axis expansions of the field for comparison with analytical formulas. This approach

is suitable for low emittance beams with small envelopes that remain close to the axis.

However, for the gun, a full 3D map was developed using HFSS, which shows multipole

moments and small dipole kicks on the beam due to minor asymmetries in the geometry

during GPT simulations. Emittance evolution agreed between the 1D and 3D maps for

the range of initial laser profiles relevant to this work.

The backplane of the gun was modified to allow different cathodes to be loaded. Alkali

antimonide photocathodes grown on molybdenum plug surfaces at Cornell University

were loaded into the gun. The UHV load lock maintains a vacuum level of 10−10 torr

using a combination of NEGs and ion pumps. This modification results in the recession

of the actual cathode and back plane when inserted, changing the gun frequency and

extraction field. The extraction field and cavity frequency for different recessions are

shown in the bottom middle and bottom right plots in 3.15. Digital low-level RF enables

the gun to achieve the shifted resonance frequency without heating.

After installing the cathodes, the gun frequency shift was measured with a vector

network analyzer. The shift in frequency corresponded to a 1.25 mm recession in Superfish
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simulations.

Using this recession and using the gun solenoid to perform a solenoid scan. The MTE

in the GPT simulation model can be fit to the experimentally measured beam size. The

resulting fit is shown in Fig. 3.16(a). Given the measured laser spot on the cathode was

190 µm, laser pulse duration of 100fs rms, 15 degrees RF phase, 500 fC, and 42.5 gunloop

mV (corresponding to a 3.2 MeV beam), the fit resulted in 1 eV at 266 nm and 0.45 eV

at 400 nm. These MTE values are comparable to those of copper. Given the observed

QE degradation in transit from Cornell to UCLA, it is not surprising that the MTE is

higher than expected for what are supposed to be high-quality cathodes.

From this recession study, we found that Na K Sb photocathodes at high gradients

maintain comparable emittance to copper cathodes at UV wavelengths for multiple weeks

of operation after initial degradation during transport.

3.3.1.1 Thermal emittance dominated beams

For single-shot imaging applications, the ideal mode of operating is primarily in a low-

charge (< 1pC) cigar regime, where the incident laser pulse is long (> 1ps) to ensure the

pulse duration is preserved. At the same time, the illumination spot on the cathode is

small (< 50µm) for minimal emittance. For UED, it may be favorable to initialize a very

short laser pulse and, subsequently, a pancake aspect ratio to achieve sub-ps resolution.

The goal is to exemplify that although longitudinal emittance grows substantially for

longer pulses at the gun exit due to RF, space charge-driven dynamics at the cathode

are sufficiently weak that each slice of the beam is emittance-dominated at the gun exit

when operating either in the cigar or pancake regime.

Although the RF forces are linear near the axis, the temporal structure correlates

the transverse position and the longitudinal emission time or exit phase. Therefore, it

is necessary to assess how the cathode emittance is modified by the RF field’s temporal

structure. As shown in [95], calculating the transverse impulse on an electron at the exit

of the gun leads to the expression px
mc

= px0
mc

+αk sin(ϕ)x where in this case ϕ is interpreted

as the exiting phase. Assuming a symmetrical distribution in z at the optimum phase,
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(a) (b)

Figure 3.16: (a) Na-K-Sb MTE measurements, solenoid scan performed on a screen

downstream of the gun solenoid, using a 500fC, emitted from a 190µm spot, with a 40 fs

duration. (b) Transverse emittance dependence on initial laser spot size at the gun exit

for pancake and cigar beams, as well as the case of a cigar beam with space charge off

and no MTE, showing the beam is emittance dominated in both the cigar and pancake

regime at the gun exit.

the transverse emittance scales as:

ϵx,gun ≈ αk2σ2
xσz (3.58)

depending on the longitudinal distribution. This contribution is assumed to be added in

quadrature with the cathode emittance. Typically, we can substitute σx with the laser

spot size and σz with the laser pulse duration. Either configuring the initial pulse to

exhibit a cigar-like aspect ratio (with the longitudinal dimension significantly exceeding

the transverse dimension) or a pancake, the emittance at the exit of the gun is thermal,

for achievable laser spots on the cahtode [60]. Given the challenges in reducing the initial

laser spot size; in our experimental scenario, the smallest the laser spot can feasibly be

made is nearly 25µm. In Fig. 3.16(b), results from GPT simulations of the gun are shown

where the beam is intercepted on a screen 15 cm from the cathode. The emittance is

sampled as the laser spot size is varied for an initially parabolic laser profile with a 4.5

ps rms duration. In blue, a beam initialized with no MTE and space charge off develops

RF-induced emittance growth for large spots. In orange and yellow, the space charge is

set to 500fC with an MTE of 0.4 eV; the long pulse case had a 4.5ps rms, while the short

pulse case was 100fs. Given that in both the pancake and cigar regimes, the emittance

is linearly dependent in the same way on the initial spot size, we can conclude the RF
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forces do not appreciably disrupt beam quality and normalized transverse emittance is

thermal at the gun exit in the experimental scenario. Thus, the main issue to address is

the longitudinal phase space correlations for cigar beams.

3.3.2 Dual slot resonance linac electromagnetic description

The Dual Slot Resonance Linac (DSRL) on the Pegasus beamline can serve to either

velocity bunch or accelerate the beam. It was designed to achieve an energy gain of

up to 10 MeV [102]. This 10+2/2 cell standing-wave structure, operating in a phase

and amplitude stabilized π/2 mode, is integral to the experimental and simulation work

conducted throughout this thesis.

(a)

(b)

Figure 3.17: (a) Geometry of the DSRL accelerating structure. Figure taken from Ref.

[33]. (b) On-axis accelerating field distribution for the DSRL accelerating structure.

The DSRL features an innovative dual-slot coupling mechanism, where two reso-

nant slots separated by a non-resonant void region are located within the walls between

adjacent cells. This configuration provides strong cell-to-cell coupling, enhancing the

structure’s efficiency and compactness. The design overcomes the low-velocity limita-

tions of single-slot systems by introducing an additional sign change in the electric field

between slots, resulting in a 180 degree phase advance in the on-axis accelerating field

when driven in a π/2 mode. This mode ensures that the slots remain unexcited, thereby

minimizing RF losses and enhancing the shunt impedance. The shunt impedance of the
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DSRL installed on the PEGASUS beamline is approximately 85 MΩ/m.

3.3.2.1 Comment on RF transverse focusing

Fast, reliable, optimizable MATLAB-based transfer maps aid beamline operation. First-

order transfer map descriptions are unique to each beamline, while the method to achieve

accurate evaluations is generalizable in terms of axial field data[103, 104]. Ensuring com-

patibility with the higher-order particle tracking codes and the actual beamline requires

precision and accurate axial field data. This section comments on future work developing

RF transfer maps based on axial derivatives. In MATLAB, with the potential of com-

posing RF maps with the other beamline optics (i.e., solenoids, drifts and quadrupoles)

accurate beamline models become quickly optimizable functions of the RF cavity’s phase

and amplitude, and potentially other important experimental parameters, which target

ideal operational settings of the accelerator.

To develop the map, work in lab coordinates, where z references an axial point along

the beamline. Whether or not the near speed of light approximation is valid, generally

writing t(z) =
∫ z

z0
dz̃/cβ(z̃), we can still derive the first order paraxial equations of motion

assuming that the on-axis energy gain has been obtained. The relativistic factor γ(z) fully

defines the on-axis velocity cβ(z) and t(z). The transverse force is purely in the radial di-

rection and given by ṗr = e(Er−cβBθ) Hence in the x-direction: ṗx = − e
2

(
∂Ez

∂z
+ β

c
∂Ez

∂t

)
x.

Thus, applying the result from chapter 2 regarding general linear forces, we can obtain

the transverse equation of motion; x′′ + p′c
pc
x′ + e

2p0cβ

(
∂Ez

∂z
+ β

c
∂Ez

∂t

)
x = 0 [89],[105]. In

reduced form, the ray equation is:

X ′′ +

[
γ2 + 2

(γβ)4

( e

2mc2

)2
E2

z −
e

2mc2(γβ)3
∂Ez

∂t

]
X = 0 (3.59)

This form makes apparent the relevant oscillator strength to solve the hill’s equation

for the problem, and the transfer matrix can be constructed. When appended with a

matrix form representing the longitudinal coordinates, full 6D transport maps of the

linac structures can be made.
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3.3.3 Installation of X-band harmonic linearizer

In collaboration with UCLA, Radiabeam technologies developed the X-band linearizer

for future use in PEGASUS as an energy spread suppressor for the UTEM instrument.

The X-band linearizer consists of 7 cells of an X-band (9.6 GHz) accelerating section.

Each cell features a side-coupled geometry with noses, and the relative phase velocity is

β = 0.9922. The beam pipe radius is 4 mm. The noses on the accelerating cells enhance

the accelerating voltage. Coupling cells are included to ensure the structure operates in

the π/2 mode, which has a larger frequency separation from neighboring modes than the

π-mode, thereby increasing the fabrication tolerances of the structure. The accelerating

structure is designed to achieve an accelerating voltage of 300 kV with an input power of

less than 10 kW. Power is delivered to the accelerating section through a WR90 waveguide

and coupling slot. Circulator losses are estimated to be between 0.3 and 0.5 dB.

(a) (b) (c)

Figure 3.18: (a) One period of the side-coupled accelerating structure. (b) End cell of

the structure. (c) Full 7-cell model of the X-band cavity.

Figure 3.19: On-axis accelerating field distribution for the 7-cell X-band cavity model.

One period of the side-coupled accelerating structure is shown in Fig. 3.18(a). Both
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the accelerating and coupling cells are tuned to the same frequency of 9.6 GHz. The main

RF parameters are listed in Table 3.2. The coupling between cells was tuned to 2.6%

to achieve a 30 MHz mode separation between the operating π/2 mode and neighboring

modes, thereby increasing the geometry tolerances. The shunt impedance is optimized to

90 MΩ/m to achieve a 300 kV accelerating gradient with a source power below 10 kW.

To ensure the proper design of the accelerating cells and estimate the accelerating

gradient, a full 7-cell model was simulated (Fig. 3.18(c)). The operating frequency was

confirmed as 9.6 GHz, and the on-axis accelerating field distribution is shown to be flat

(Fig. 3.19).

By integrating the accelerating field along the structure length, including the transient

time factor corresponding to β = 0.9922 and normalizing the voltage to 300 kV, the

required power should be around 8.4 kW.

Table 3.2: Accelerating Cell RF Parameters

Parameter Value

Resonance frequency (GHz) 9.6

Q-factor 9000

Shunt impedance (MΩ/m) 93

Mode separation (MHz) 30

The installation of the X-band cavity is shown in Fig. 3.20. The synchronization

of the X-band linearizer with the S-band gun and linac system is essential for ensuring

phase coherence across the RF components. Part of the low-level 2.856 GHz seed used

to drive the S-band klystron is frequency divided by 36 to 79.33 MHz, then split into

two paths. One fraction powers the synchrolock system to synchronize the laser with the

RF system. The other portion is frequency multiplied by 121, pre-amplified to 1 W, and

further amplified up to 40 kW with a small X-band klystron, phase-locking the X-band

system to the laser at the operating frequency of 9.599 GHz.

The Xband linearizer’s shunt impedance was measured using the dipole positioned

immediately after the linac; genric low-charge operating conditions were used and centroid

tracking was sufficient. Specifically, the accelerating voltage was determined from the
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(a) (b)

Figure 3.20: (a) X-band cavity installation at PEGASUS. (b) Shunt Impedance measure-

ments of X-band cavity.

energy gain of the beam at the maximum accelerating phase as the input power was

varied. The results, illustrated in Fig. 3.20, show a shunt impedance of 8.69 MΩ, which

aligns well with the design specifications of shun impedance per unit length and cell

length presented earlier. Based on the klystron power budget, the maximum achievable

field in the cavity is 10 MV/m.

Amplitude stability was quantified by setting the X-band to the maximum acceler-

ating phase, where the beam energy is linearly dependent on the cavity amplitude and

essentially insensitive to the phase. Over one hundred shots, the rms amplitude fluc-

tuations were 2 × 10−3. Phase fluctuations were quantified at the zero crossing, where

the beam energy changes linearly with phase offset. After removing long-term drift, rms

phase fluctuations were estimated to be 1◦. For the intended applications of the X-band

cavity, the phase fluctuations of this scale will have a greater impact on stable compensa-

tion than amplitude fluctuations. Therefore the development of a phase feedback system

is paramount to the future success of this element on the beamline.

3.3.4 Demonstration of X-band harmonic linearization

For the demonstration, a NaKSb photocathode was used and illuminated by a 266nm

drive laser. Note that photoemission from NaKSb cathodes using a UV is well above the
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(a) (b) (c)

Figure 3.21: (a) The laser profile measured on the virtual cathode camera for the energy

spread minimization setup. (b) in the top figure, spectrometer 1 screen measurement of 8

beamlets formed after inserting all 3 α-BBO crystals. In the middle panel, spectrometer

2 measurements are taken of the beam without optimal energy spread compensation, and

the beamlets have been smeared together by using the prism and MgF2; in the bottom

panel, the optimum beamsize on spectrometer 2 is shown with compensation to be a

round spot suggesting the beam is emittance dominated. (c) Shows a comparison of

horizontal projections taken at spectrometer 1, with x-band on, off, and at accelerating

phase while linac was turned on to compensate the linear chirp.

photoemission threshold, which ultimately increases the MTE to around 1eV. The drive

laser was focused by a 175 mm focal length lens through a 72 degrees oblique incidence

vacuum port. The oblique port allows the final lens to be brought closer to the cathode

surface [92], but the illumination of the cathode is asymmetric. Fig. 3.21(a) shows the

laser profile from the virtual cathode in the setup.

To stretch the temporal profile of the laser from the initial 40 fs RMS temporal

duration to a nearly uniform flat-top > 10 ps long pulse, we use 3 α-BBO crystals with

respective lengths 8.75mm, 4.375mm, 2.1875mm, which splits the single 40fs beam into

8 beamlets spanning 13.3 ps [106]. In Fig. 3.21(b), the top panel shows the effect on

the beam when measured on a spectrometer while having all 3 of these crystals shaping

the drive laser. The pulses are then sent through a MgF2 crystal and a prism to further

stretch each pulse and facilitate temporal overlap. The middle panel of Fig. 3.21(b)

shows an example of this smoothing on the energy spectra; this was measured on the

beamline’s second spectrometer. The bottom panel of Fig. 3.21(b) shows the energy

spectrum on the beamline’s second spectrometer. Given that the beam is round after the

dispersion arm, the horizontal extent of the beam is at a resolution limit, which in this
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case is limited by the beam’s transverse emittance, not the energy spread.

The presence of second-order curvature in the longitudinal phase space manifests

on the spectrometer projection as a skewed distribution. The suppression of skewness

correlates to removal of the curvature. To take advantage of this fact, the Linac phase

was tuned to remove linear chirp, then we made a comparison between three cases; a

compensation phase of the xband, the accelerating phase of the xband to intentionally

give a small second order correlation, and finally the xband was turned off. By comparing

the projections on the screen, we could visualize the removal of second-order correlations

and reduction in energy spread by using the xband. In Fig. 3.21(c), the projections

on the spectrometer 1 screen for each case are shown, where the removal of the second-

order correlation is apparent. Unfortunately, due to the emittance of the beam, the

spectrometer could, at best, resolve the relative energy spread down to 3×10−4. Without a

smaller beam emittance, the resolution on both beamline spectrometers would be limited

above 10−4.

In our second spectrometer line located nearly 4 m downstream of the PEGASUS

linac, we placed a pinhole with radius r = 50 µm , 0.5 m upstream of a round-pole dipole

magnet. The pinhole reduces the spot size and subsequently the emittance over an order

of magnitude at the cost of charge. There are two quadrupoles between the pinhole and

dipole which enable the full system to image the pinhole onto the detector.

Theoretically, for a final dispersion length L, dipole bend radius ρ and bend angle θ

the dispersion is denoted by R16 = ρ(1−cos(θ))+L sin(θ). In the thin lens approximation,

if a defocusing lens with focal length f is positioned in the dispersion arm between the

dipole and the screen such that it maximizes dispersion, then the expression characterizing

dispersion becomes:

R̃16 = R16

(
1 +

L+ ρ tan(θ/2)

4f

)
(3.60)

So we positioned the final quadrupole at this optimal in the final 0.5 m dispersion arm.

The entire layout of the modified second spectrometer is shown in Fig. 3.22(a). With

these additions, spectrometer 2’s dispersion reaches 1.08m when the final quadrupole is

fully powered.

With the dispersion magnifier quadrupole fully powered, the beam sizes measured

109



(a) (b)

Figure 3.22: (a) Shows a top-down cartoon view of the second spectrometer layout with

a pinhole and quadrupole optics. (b) Shows the best shot having an RMS relative energy

spread of 7.6× 10−5

typically had an RMS size of 10 pixels. Given that the calibration of the screen was

8.4µm/pixel and the dispersion value R16 = 1.08m, we can estimate the energy spread as

σγ/γ ≈ σx/R16 = 7.6×10−5. In reality, there is the additional contribution to the spot size

from the finite size of the pinhole, provided the system is imaging, and the magnification of

the system is known, then the spot size is determined by σx =
√

(Mr/2)2 + (R16σγ/γ)2,

where M is the magnification, and r is the pinhole radius. With r = 50 µm and a

demagnification factor of 0.64, the correction to the relative energy spread is of order

10−6 and is neglected.

To fully characterize the longitudinal phase space and any residual correlations, it

would have been beneficial to have an X-band deflecting cavity operational upstream of

the dispersion arm. This addition would enable longitudinal phase space tomography

and overall better characterization of higher-order phase space correlations. However, at

the time, we could not successfully split klystron power with independent phase control

over both cavities. Future work will enable this feature and facilitate a thorough analysis

and characterization of beams having nominal longitudinal phase spaces.
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Table 3.3: Simulation of experimental setup

Parameter Value

Beam Kinetic Energy 4.2 MeV

Relative Energy Spread 2× 10−5

Normalized Emittance 130 nm·rad

3.3.5 Start-to-end simulations of X-band harmonic linearization

Employing GPT, An injector simulation was conducted, using spacecharge3Dtree op-

tion [85], to capture not only smooth space charge effects but also intrabeam scattering.

The beam was initialized with a mean transverse energy (MTE) of 1 eV to account for

the lower work function of the NaKSb photocathode photoexcited still by UV; a bunch

charge of 250 fC, a transverse rms size of 50 µm, and a duration of 10 ps (FWHM). The

initial laser profile was created as a superposition of Gaussians, replicating the expected

profile after passing the drive laser through α-BBO crystals for pulse stacking.

In Table 3.3, we list the results of the simulation at a screen 3 m downstream of

the cathode. The beam’s LPS at this location is shown in Fig. 3.23. Notably, all RF

correlations other than 0th order have been removed from the LPS. The remaining spread

in energy is mainly due to smooth space charge effects. To minimize these effects, the

initial temporal profile should be free of temporal modulations, and the rise and fall times

of the laser pulse should be sharp. Transverse uniformity of the electron beam is difficult

to maintain because the beams inherit a Gaussian angular spread from the photocathode

at emission. The outlying particles in the LPS are due to Coulomb collisions, which

overall are found to contribute negligibly to the energy spread in this case.

3.3.6 Start-to-end Pegasus beamline compression simulations

Building on the theory and ideal simulations of beam compression focused on validating

those scalings, we now apply these principles to the Pegasus beamline in a realistic start-

to-end simulation, shaping the beam from the source towards optimums indicated by the

envelope analysis.
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Figure 3.23: Longitudinal phase space 3 m downstream of the gun, after the linearizer

and linac cavities, where the beam coasts with 2× 10−5 relative energy spread. The LPS

is color-coded with particle radius from the core. Energy and temporal projections are

shown along the corresponding axes. The input laser profile (initial temporal distribution)

is also shown.

A spot size of 10 µm is initialized at the cathode with an MTE of 1 eV. An initially

quadratic pulse with a 4.5 ps RMS duration with 500fC of charge. The gun phase is

set to 25 degrees with peak accelerating gradient of nearly 70 MV/m which brings the

beam up to 3.2 MeV. The LINAC and Xband are optimized to achieve a focus inside the

vacuum box where there is ample room for potential diagnostics.

The dynamics of the bunch lengths (transverse and longitudinal) and beam energy are

plotted in Fig. 3.24. The X-band phase is set to the decelerating phase (ϕ2 = 0) with an

amplitude of 8.6 MV/m, compensates to third order the LPS distortions, attaining a final

bunch length of 1.4fs, which in this case turns out to be limited from achieving a sub-fs

duration by some space charge driven emittance growth. By going to lower charge sub

200fC, the emittance growth is relaxed sub fs is achievable with the same RF setpoints.

The transverse and longitudinal dynamics of the beam are largely independent, ex-

cept near a simultaneous waist. This independence allows the beam to be focused tightly

transversely to several microns without significantly affecting the longitudinal focus, pro-

vided the transverse beam quality is high. However, there are some practical parasitic

limitations. For instance, stray quadrupole moments, which may not be aligned with

the laboratory axes, can degrade the transverse emittance, impacting both transverse
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Figure 3.24: Evolution of the bunch length and beam energy from the cathode up to the

focus.

and longitudinal focusing quality. In principle, a skew quadrupole can be utilized at the

gun’s exit to counteract this emittance growth, but the precise details are not known a

priori. Additionally, minor asymmetries in the RF elements, such as those from the RF

coupling ports, can lead to transverse centroid kicks that must be corrected with steering

magnets. These effects are not accounted for in the ideal case but are anticipated to have

a somewhat significant impact on the optimum bunch length.

If the beam size at the final focus lens is too large, time-of-flight effects can limit

the achievable bunch length. Specifically, the longitudinal focus positions of the particles

become correlated with their initial transverse positions at the lens, as detailed in [107].

To address this, the injection solenoid is employed to collimate the beam and maintain a

narrow waist, keeping the beam size below 0.5 mm up to the longitudinal focus. This min-

imizes time-of-flight correlations, which is crucial when both transverse and longitudinal

focuses are needed simultaneously.

With these considerations in mind, we explore the limitations to achieving a fully

compressed beam with a unit aspect ratio in a realistic beamline setting. Initially, we

utilize the green quadrupole triplet, which has an effective focal length of about 25 cm.

The envelope evolution is depicted in Fig. 3.25(a), along with the final longitudinal

phase space (LPS) in Fig. 3.25(b). The uncorrelated energy spread limits the final phase

space, with some additional temporal broadening due to time-of-flight correlations from
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(a) (b)

(c) (d)

Figure 3.25: (a) The green electromagnetic quadrupole triplet focus the beam into the

box to 25 µm while achieving nearly the same 1.4 fs bunch length. (b) The longitudinal

phase space in the vacuum box. (c) An additional PMQ triplet is added to nearly achieve

a unit aspect ratio. (d) The LPS at the interaction point with a unit aspect ratio.

the electromagnetic triplet lens. In this case, the transverse focusing is not enough to

become fully space charge dominant. The transverse size of 25 µm is still limited by the

transverse emittance.

Finally, we can employ a permanent magnet quadrupole triplet to achieve the desired

degree of focusing into the space charge dominated regime. The triplet utilized here is

based on the design presented in Chapter 7, with minor modifications from the recent

8.5 MeV diffraction experiment at Pegasus. This triplet comprises a 6 mm quadrupole

placed between two 3 mm quadrupoles to obtain a symmetric focus.

In this scenario, the envelope evolution is depicted in Fig. 3.25(c), and the final

longitudinal phase space (LPS) in Fig. 3.25(d). The LPS exhibits correlations stemming

from residual non-linear space charge forces and some time-of-flight distortions, largely

aligning with the previous analytical discussion. However, in this case, the second-order

RF emittance growth is compensated. Therefore, the optimum starting bunch length is
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determined by equating the space charge dominant regime with the uncorrelated energy

spread result, suggesting that the final bunch length should be limited by the uncorrelated

energy spread.

Of course, this is not exactly what we achieve because the analysis neglected transverse

correlations and the potential for non-linear space charge forces because we assumed the

fields are linear, so the model is not fully kinetic. Underfocusing transversely makes

it easier to achieve the thermal energy spread limit. These realistic effects offset the

analytically ideal case, but the approach remains effective when RF non-linearities are

not fully compensated, for instance, if the beamline lacks access to a cavity of a higher

harmonic than the buncher. It is easier to achieve the uncorrelated energy spread limit

when not utilizing transverse focusing, which makes sense.

While this work shows promise in producing short bunch lengths, the challenge of tem-

porally resolving sub-femtosecond (sub-fs) bunch lengths in practice remains. Achieving

a tight transverse focus is critical for most techniques that would be used to time-stamp

the bunch, such as coherent transition radiation (CTR) or THz streaking [108, 109].

These methods are currently the most viable candidates for measuring the bunch length

at Pegasus.

In the case of CTR, the bunch length is comparable to optical wavelengths. However,

the transverse extent of the beam suppresses the CTR’s spectral content far into the

infrared (IR) range unless the beam can be focused to achieve a unit aspect ratio at

the point of impingement [110]. A potential solution to reestablish the spectral content

involves using a tilted foil structure, which can remove the dependence on the transverse

form of the beam [111].

Another proposed technique is coherent Thomson scattering, which provides feedback

on the quality of beam compression, as the degree of coherence is a direct measure of the

bunching quality [112].

Alternatively, a THz streak camera offers a promising solution. By using a portion of

the drive laser to generate the THz field that excites the streaking mode, synchronization

is simplified. These streak cameras have proven effective in measuring sub-10 fs bunches

and hold the potential for achieving sub-fs resolution [113].
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CHAPTER 4

Space-Charge aberrations in axially symmetrical

lenses for time-resolved electron microscopy

4.1 Introduction

While static snapshots of samples at nanometer and subnanometer resolutions offer sub-

stantial insights, introducing time as a fourth dimension to electron microscopy promises

groundbreaking advancements. This significant enhancement would enable researchers

to observe how sample structures, compositions, and properties evolve in response to

external stimuli [8]. This chapter delves into the specific challenges associated with this

advancement, focusing on quantifying the trade-offs between temporal and spatial reso-

lution that arise from collective space charge effects in modern microscopes.

When a sample’s dynamics are irreversible and cannot be continuously replicated,

it becomes necessary to utilize single-shot illumination—deploying all electrons in one

bunch, with the bunch’s duration determining the microscope’s exposure time[114, 11,

115]. Currently, these techniques are confined to nanosecond-scale studies. However,

extending resolution into the 10-100 ps range would enable the examination of phenomena

such as defect motion and dislocation dynamics in materials science, as well as the effects

of material heterogeneity in ultrafast phase transitions. In biology, advanced ultrafast

high-energy TEMs could observe cells and viruses in aqueous environments. Single-

shot illumination is particularly vital in scenarios where electron dosage might preclude

repeated exposures on the detector [116]. In these single-shot scenarios, the peak current

is dramatically higher than in conventional TEM modes. For instance, 108 electrons in a

10 ps bunch equates to peak currents exceeding 1 A, under which space-charge effects can

severely impair image quality. Recent advancements suggest that elevating the electron

beam’s energy to the megaelectron-volt range can leverage relativistic effects to mitigate
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space-charge forces, thereby enhancing spatial resolution in the microscope [43, 117].

Two primary space-charge interactions—smooth mean field effects described in chap-

ter 2, and binary collisions—crucially affect electron beam distributions in transmission

electron microscopes (TEMs). Notably, stochastic Coulomb interactions scale with the

square root of the charge density [118], while smooth space-charge effects increase pro-

portionally with beam current. Therefore, in high-current scenarios typical of single-shot

TEM applications, smooth space-charge effects tend to dominate beam dynamics. Al-

though existing studies [118, 119, 43] primarily use numerical methods to investigate how

stochastic binary collisions affect image quality in standard TEM configurations, their

focus on specific setups limits their broader applicability. Developing analytical formulas

and scaling laws would enable the rapid assessment of spatiotemporal resolution limits

across diverse microscope configurations, differing markedly in electron energies and peak

currents.

This chapter further develops the analytical framework to calculate space-charge-

induced aberrations in the relativistic regime. We validate our approach with particle

tracking simulations [120] that include smooth and stochastic binary effects. We use a

perturbation method to assess how a smooth space-charge field, acting as a defocusing

lens, affects electron trajectories and introduces aberrations similar to those in magnetic

lenses, as noted in studies by Hawkes and others [121, 122]. This study quantifies these

effects and examines the spatial and temporal resolution trade-offs at various beam ener-

gies. Additionally, we discuss compensation techniques for optimizing beam distribution

and the potential use of multipole electron optics for correction, although their complexity

may limit practical implementation.

The chapter is structured as follows: We examine the single particle dynamics of

charged particles in axially symmetric magnetic focusing systems up to third order. Em-

ploying Green’s function method discussed in Chapter 2, we evaluate aberrations analyt-

ically. We compare our results with particle tracking simulations for scenarios without

space-charge effects, specifically addressing spherical and chromatic aberrations in mag-

netic round lenses. We then explore the impact of space-charge-induced nonlinearities

on particle transport, developing analytical expressions for space-charge aberration coef-

ficients. While dependent on the shape of the initial beam phase space, these formulas
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provide useful estimates for aberrations in straightforward cases such as uniform and

Gaussian distributions, enabling quantitative analysis of the trade-offs between spatial

and temporal resolution in various electron column designs. The insights from this study

aim to guide the development and performance expectations of single-shot time-resolved

TEM and their range of scientific applications.

4.2 Single Particle Dynamics in a Solenoid Field

The goal of this research was to develop accurate analytical framework for evaluation

of space charge aberration coefficients in axially symmetric systems. Before addressing

the self-consistent effects, we review the dynamics of a single particle in a solenoid field,

considering a first-order expansion of the magnetic field, showcasing that even if the field

is linear in r, the dynamics are still of higher order. Close to the axis, the magnetic field

can be Taylor expanded, characterized by:

B = B(s)ẑ− B′(s)r

2
r̂ (4.1)

where B(s) represents the axial magnetic field, typically measured using an axial Hall

probe [123].

The particle’s velocity in cylindrical coordinates is expressed as:

v = ṙr̂ + rθ̇θ̂ + żẑ (4.2)

Applying the Lorentz force law in the absence of electric fields, dp
dt

= qv×B, we derive

the following coupled differential equations:

γm(r̈ − rθ̇2) = qrθ̇B (4.3)

γm(2ṙθ̇ + rθ̈) = −qżrB
′

2
− qṙB (4.4)

γmz̈ =
qr2θ̇B′

2
(4.5)

By manipulating Equation 4.4 and multiplying by r, we convert it into a total time

derivative, thereby revealing a conserved canonical angular momentum:

d

dt

(
γmr2θ̇ +

qr2B

2

)
= 0 =⇒ Pθ = γmr2θ̇ +

qr2B

2
(4.6)
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Figure 4.1: Planes (screens) and time: Aberrations are assessed by analyzing the trans-

port between planes. In scenarios involving finite beams where collective effects are

significant, it is crucial to differentiate the methods used to develop the equations of

motion. One approach references particle positions relative to the beam centroid, while

the other tracks a single particle, using its z-coordinate as a plane reference.

Here, Pθ represents the canonical angular momentum. Consequently, the angular velocity

θ̇ is given by:

θ̇ =
Pθ

γmr2
+ ωL(s) (4.7)

where ωL(s) = − qB
2γm

is the Larmor frequency, which, for particles having no initial

angular momentum, represents the particle’s precession rate around the magnetic field

axis.

In principle, once we know the evolution of r, we also know the angular frequency of

revolution of the azimuthal angle. We can eliminate θ̇ from the longitudinal and radial

equations to obtain:

z̈ = −Pθω
′
L

γm
− ωLω

′
Lr

2 (4.8)

r̈ + ω2
Lr =

P 2
θ

γ2m2r3
(4.9)

In its current form, the radial equation is independent of z and θ, which allows us

to derive all subsequent equations once it is solved. However, the equation still depends
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on time. To consistently compare the initial and final planes for all particles, we must

shift the independent variable from t to s. This change is crucial because particles,

depending on their initial conditions, traverse from the object to the image plane in

varying durations. Standardizing the reference planes is essential for accurate aberration

assessment. This approach contrasts subtly with our method of parameterizing particle

coordinates relative to the beam centroid in Chapter 2, where one perspective focuses on

a fixed screen while the other considers time, the latter being valuable for analyzing beam

compression as illustrated in Fig. 4.1. Moving forward, while we develop the third-order

ray equation under the assumption of a continuous beam, it is important to note that

the equations of motion would differ if we continued to reference the beam centroid.

To achieve this, we normalized Equation (4.9) by ż2, allowing us to write

r̈

ż2
= r′′ +

z̈

ż2
r′ = −ω

2
Lr

ż2
+

P 2
θ

γ2m2ż2r3
(4.10)

The total velocity is fixed, and for a monochromatic beam, all the total velocities of

all the particles within the beam are equal to cβ0. So, we can write

ż2

c2β2
0

=
1− r2θ̇2/c2β2

1 + r′2
(4.11)

. we can expand to second order in r and r′:

c2β2
0

ż2
≈ 1 + r′2 + r2θ̇2/c2β2

0

This allows us to write the third order ray equation:

r′′ =
c2β2

0

ż2

(
P 2
θ

p20r
3
− κr − z̈

c2β2
0

r′
)

=

(
1 + r′2 + r2

(
Pθ

p0r2
+
ωL

cβ0

)2
)(

P 2
θ

p20r
3
− κr +

(
Pθω

′
L

p0cβ0
+
κ′

2
r2
)
r′
)

where κ = ω2
L/c

2β0.

If we consider meridional rays, which are those that begin with no initial angular

momentum, then Pθ = 0, and the third-order ray equation for rays of this type can be

rearranged as:
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r′′ + κr = −κr′2r + κ′

2
r′r2 −

(
κ2 − 1

2
κ

(
B′′

0

B0

))
r3, (4.12)

which agrees with the result in [?] for a first-order field expansion. The left-hand side of

this equation represents Hill’s equation, while the right-hand side consists of third-order

components, which are assumed to be small for the trajectories. Therefore, they are

considered perturbations, and the methodology discussed in Chapter 2 for evaluation of

aberrations from these higher-order terms is applicable. Note that we have included the

next highest term in the magnetic field expansion, appearing as the final term on the

right (∝ B′′
0 ).

4.3 Calculating lens aberrations of meridional rays

The unperturbed meridional ray equation governing the linear trajectory of an electron

in a solenoid field characterized by the focusing strength κ(z) is:

r′′ + κr = 0 (4.13)

Here, κ(z) =
(

B0(z)
2[Bρ]

)2
defines the focusing strength, where B0(z) represents the profile

of the axial magnetic field of the lens, and Bρ = m0cβγ/e denotes the magnetic rigidity

of the beam. If the axial width of the solenoid field is sufficiently short so that r is

effectively unchanged in the lens, then for a ray entering the lens having no slope, the

slope at the exit is related to the lens focal length as r′/r = −
∫
κdz = 1/f , where f is

the focal length, r′ is the exit angle, and r is the radial offset at the exit of the lens.

In Chapter 2, we derived the general solution to this equation using a symplectic map:

r
r′

 =

C(z) S(z)

C ′(z) S ′(z)

r0
r′0

 (4.14)

In this formulation, C(z) and S(z) represent the two linearly independent solutions

to Eq. 4.13, which satisfy the initial conditions C(0) = 1, C ′(0) = 0, S(0) = 0, and

S ′(0) = 1. The behaviors of the cos-like and sine-like rays, as they are transported

through the solenoid detailed in Table. 4.1, are depicted schematically in Fig. 4.2.
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We now outline the numerical method employed to derive the matrix transport for

arbitrary axial field distributions. The function κ(z), representing an arbitrary bump

function, can be fit with analytical functions 1

The matrix propagator technique is employed to compute the transport map af-

ter determining the focusing strength function κ(z). Within a narrowly defined region

(zi−∆z/2, zi+∆z/2), where κ(zi) ≡ κi is essentially constant, a small step size ∆z = L/N

facilitates the construction of the differential mapping ∆Mi. Here, L is the total propa-

gation distance and N is the number of steps. The differential mapping is given by:

∆Mi =

 cos
(√

κi∆z
)

sin
(√

κi∆z
)
/
√
κi

−√
κi sin

(√
κi∆z

)
cos
(√

κi∆z
)
 .

The overall transport matrix M for the entire stage of length L is then calculated as:C(z) S(z)

C ′(z) S ′(z)

 = lim
N→∞

N−1∏
i=0

∆MN−i.

This formulation ensures that the cumulative effects of focusing across successive small

intervals are integrated to yield the complete transport map for the specified transport

interval.

For optimal focusing and imaging over a distance L, the conditions C(L) = M and

S(L) = 0 must be satisfied, where M signifies the magnification factor. These conditions

are critical to ensure that the transport map facilitates imaging, effectively rendering the

final position a magnified, angle-independent replica of the initial position.

Throughout the discussion, we will allow the space-charge forces whenever present to

modify the linear transport, but notably assume that the nonlinearities associated with

deviation from design energy, large angles, space-charge, etc., induce only small image

plane deviations and the transport can be well approximated by the first-order linear

optics [124].

To analyze aberrations, we apply the Green’s function method outlined in Chapter 2

to evaluate aberrations and solve the driven Hill equation governing electron transverse

motion through an objective lens. At the imaging plane, where S(L) = 0 and C(L) = −M

1For example, as a superposition of Gaussians: κ(z) =
∑N

n=1 an exp
(
− (z−bn)

2

c2n

)
, where an, bn, and

cn respectively denote the amplitude, center, and width of each Gaussian component.
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Figure 4.2: Sin-like and cos-like trajectories within a solenoid imaging transport system,

adjusted to be displayed on a unified set of axes.

(with M representing the system’s magnification), the Green’s function for the image

plane takes the form G(L, s) = MS(s). This formulation allows us to express image

plane deviations as:

δr(L) =M

∫ L

0

S(s)f(s)ds (4.15)

4.3.1 Chromatic aberration example

The first instance of image plane deviation we explore arises from chromatic aberration. If

a particle’s energy is slightly higher or lower than the design value for the optical column,

it will experience a focusing kick slightly weaker or stronger than the reference particle.

For a small relative momentum deviation δp/p, the corresponding focusing strength on

this particle can be approximated as:

κ

(
1

1 + δp
p

)2

≈ κ

(
1− 2

δp

p

)
(4.16)

At first order, the equation for the deviation from the reference trajectory becomes:
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Figure 4.3: GPT output of image plane deviations normalized by magnification for three

different deflection angles, plotted as a function of rms energy spread.

δr′′ + κδr = 2κ
δp

p
rc (4.17)

This equation can be solved using the Green’s function method described earlier. For

sine-like reference trajectories rc(z) = r′0S(z), the image plane deviation is given by:

δr(L) =Mr′0
δp

p

∫ L

0

κS(s)2

2
ds =Mr′0

δp

p
Cc (4.18)

This expression allows us to evaluate the chromatic aberration coefficient Cc. In Table

4.1, we list the nominal optical and beam parameters for the simulation results presented

throughout this paper, unless indicated otherwise. In this analysis, the model equation

for the on-axis field of the solenoid lens is given by:

B0(z) =
µ0

2

NI

d

 z + d
2√(

z + d
2

)2
+R2

−
z − d

2√(
z − d

2

)2
+R2

 (4.19)

Here, d = 0.015 m, R = 0.008 m, and N = 1720. The resulting lens has an effective

length of 1.4 cm and, at around 20 amps, a focal length of 1.5 cm for a 4.3 MeV beam.

The lens images over a distance of 0.2 m with a magnification of ×8.5.

In Fig. 4.3, the chromatic aberration coefficient Cc = 3 cm, calculated using Eq. 4.18,
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aligns remarkably well with the imaging plane deviation derived from General Particle

Tracer (GPT) simulations [120]. These simulations were conducted with space-charge

effects disabled, across different beam divergence angles and input energy spread levels.

It’s important to note that we normalize the image plane deviations by the magnification

factor in all subsequent plots to establish their relationship with object plane distances.

Table 4.1: Nominal parameters for single solenoid lens stage GPT simulations.

Parameter Value

Full Width Pulse Length 10 ps

E-beam kinetic energy 4.3 MeV

E-beam charge 250 fC

Peak Dose at sample 0.5 e/nm2

Spotsize/Edge Radius 1 µm

Beam Divergence 3 mrad

RMS Energy Spread < 10−5

Lens Focal Length 1.5 cm

Object to Image plane distance 20 cm

Magnification 8.5

When energy spreads approach zero, a slight inconsistency between the analytical

prediction and the simulation results becomes evident. This disparity arises from the

imperfect imaging, even in the absence of chromatic aberrations, attributable to the

finite beam divergence and the presence of the spherical aberration term. We delve into

this analysis in the subsequent section.

4.3.2 Spherical aberration example

Whenever the energy spread of the beam can be kept sufficiently low to minimize the chro-

matic effects, the main contributions to the trajectory deviation from the ideal imaging

condition will be associated with the radial dependence of the focusing field in magnetic

round lenses (spherical aberrations). Non linear effects arise due to the longitudinal veloc-

ity variation through the lens and higher order terms in the magnetic field components.
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Following the description in Reiser [46] (and again assuming that these terms can be

treated as perturbation), we can write for the driven Hill equation:

δr′′ + κδr = −κr′2c rc +
κ′

2
r′cr

2
c −

(
κ2 − 1

2
κ

(
B′′

0

B0

))
r3c

= f(rc, r
′
c, B0)

For a general trajectory having initial position and angle offset rc = r0C + r′0S the

deviation at the image plane due to the radial dependence of the lens field can be written

as:

δr(L) =M
(
r30Cp + 3r20r

′
0Cq + 3r0r

′2
0 Cr + r′30 Cs

)
(4.20)

where the coefficients with subscripts p, q, r and s are related to the classical distortion,

coma, image curvature and spherical aberration terms respectively [121].

The spherical aberration coefficient Cs can be extracted by setting r0 = 0. Then

convolution with the Green function at the imaging plane yields:

δr(L) =Mr′30

∫ L

0

S4

(
κ′

2

(
S ′

S

)
+

1

2
κ

(
B′′

0

B0

)
− κ2 − κ

(
S ′

S

)2
)
ds =Mr′30 Cs (4.21)

In Fig. 4.4 we show a comparison for the image plane deviations obtained using the

analytical results from Eq. 4.21 and the numerical GPT simulation for a monochromatic

beam with no space-charge (and other parameters as listed in Table 4.1). The beam

distribution at the object plane is assumed uniform within a 1 µm hard-edge radius and

a 2 mrad rms gaussian angular spread. The excursions from the ideal reference trajectory

plotted as a function of the initial ray deflection show an excellent agreement between the

calculated Cs = 3 cm cubic dependence and the particle tracking output. As an example,

for incidence angles of 3 mrad, the particular lens employed in our simulation (i.e. Eq.

4.19) contributes to a blurring in the image plane of 0.81 nm. Similarly to the chromatic

aberration coefficient Cc, it is also typical for Cs to be comparable with the lens focal

length. Appropriately crafting the longitudinal on axis magnetic field profile can reduce

the spherical aberration.

An astute observer would notice that while the cubic dashed line accurately captures

the overall trend of the perturbed trajectories, there’s an additional widening of the image
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(a)

(b) (c)

Figure 4.4: (a) Image plane deviations in a GPT simulation output without energy

spread and space-charge effects. The analytical cubic function, illustrating spherical

aberration, is shown with a dashed line. Particles are color-coded by initial angular

velocity to demonstrate the effect of handkerchief aberration. (b) Image plane output

plotted against r0θ
′ after compensating for the cubic dependence of spherical aberration.

(c) GPT simulation depicting the handkerchief distortion on a 10mm hash symbol with

a bar width of 125 µm.

deviations noted in the particle tracking simulation. This broadening arises from another

form of lens aberration and warrants a separate discussion. In our simplified treatment

of electron dynamics within the cylindrically symmetric column, we’ve disregarded az-

imuthal motion. However, the combined effect of solenoid Larmor rotation and radial

aberrations in Eq. 4.20 can induce a deviation in the image plane proportional to the

square of the particle’s initial angular velocity r0θ
′
0, or alternatively the square of initial

angular momentum (as indicated by the color coding in the left figure and more explicitly

depicted in Fig. 4.4(b), where the image plane deviation with the cubic spherical aberra-

tion subtracted is illustrated). Additionally, we present the results of a GPT simulation
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aimed at elucidating this effect, commonly referred to as ”handkerchief aberration,” in

Fig. 4.4(c). A significantly large field of view is employed to visualize the handkerchief

distortions in the image plane. Generally, this effect can be disregarded when assessing

the imaging performance limit at very minute transverse offsets from the optical axis.

4.4 Space-Charge Aberration

In this section, we apply the theoretical framework developed above to estimate the

third-order space-charge-induced deviations from the unperturbed trajectories.

As discussed in Chapter 2, consider an electron bunch with a very long length Lb,

characterized as having a cigar-shaped aspect ratio in the beam’s rest frame. In scenarios

where the input charge density satisfies 1
ρ
∂ρ
∂z

≪ 1
Lb
, the space-charge field is predominantly

two-dimensional, and longitudinal components can be effectively neglected.

In such cases, for a known charge density distribution within a cylindrically symmetric

optical system, the transverse electric field can be derived using the cylindrically symmet-

ric form of Gauss’ Law in integral form, as shown in Chapter 2; Er(r; s) =
1
r

∫ r

0
ρ(ξ;s)
ϵ0

ξdξ,

which can be off-axis expanded in axial derivatives of charge density. Here, ξ serves

as a dummy variable for radial integration, while s specifies a plane that parametrizes

the evolution of the transverse density. This parametrization directly correlates a plane

with the radial space charge field when the beam is centered on that plane, effectively

representing the average position of the charge distribution in the TEM column.

Our approach to calculating third-order space-charge aberrations is as follows:

1. Compute the evolution of the transverse charge density using the method of char-

acteristics.

2. Once the evolved transverse density is determined, calculate the first and third-

order space-charge fields using Gauss’ law.

3. Integrate the third-order field, weighted by the Green’s function, over the column.

This integration yields the deviations from the linear trajectories at the image plane

and the corresponding aberration coefficients.
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Assuming that nonlinear space-charge forces represent only a minor perturbation to

particle motion, the particles in the beam will evolve along characteristic orbits described

by the linear transport map w = Rw0, where w = (x, x′, y, y′)T . The dynamics of this

system are governed by the 4 × 4 symplectic matrix R, which encapsulates the linear

uncoupled dynamics in the Larmor frame:

R =


C S 0 0

C ′ S ′ 0 0

0 0 C S

0 0 C ′ S ′

 (4.22)

Given that the dynamics are Hamiltonian, the initial distribution remains stationary

in phase space. Consequently, at any point along the optical column, the distribution

function can be defined as f(R−1w) = f(w0), where f(w0) is the initial distribution.

Extending the kinetic approach described in Chapter 2, while disregarding longitudi-

nal emittance, the space-charge density at any position in the optical column is calculated

by integrating over the transverse momentum space:

ρsc(x, y; z) =

∫∫
dudv

C(z)2
f

(
x− S(z)u

C(z)
, u,

y − S(z)v

C(z)
, v

)
(4.23)

Here, the substitutions u = C(z)x′ − C ′(z)x and v = C(z)y′ − C ′(z)y facilitate the

integration by transforming coordinates to the initial momentum space.

In cylindrical symmetry, the lowest-order space-charge-induced corrections are de-

rived up to the third-order. Substituting the on-axis derivatives into Gauss’s law, the

electric field is calculated up to the third order. Similar to the approach in the previous

section, space-charge aberrations are computed from the convolution of the nonlinear

field evaluated along the reference trajectory with the Green’s function of the driven Hill

equation:

δr(L) =
eM

γ3mc2β2

∫ L

0

S(z)ρ(2)(z)
rc(z)

3

8ϵ0
dz (4.24)

Here, the relativistic factor γ3 in the denominator accounts for the effects of relativistic

mass increase and beam magnetic field forces. The electron’s longitudinal velocity, ex-

pressed as cβ, transforms the radial acceleration time derivatives into spatial derivatives.

The linear space-charge defocusing field’s effect is precisely incorporated by modifying
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the linear transport trajectories C(z) and S(z), alongside adjustments in lens strength

to maintain the imaging condition.

Substituting rc(z) = r0C(z) + r′0S(z) provides the space-charge-induced image plane

deviation terms, akin to Eq. 4.20:

δrsc(L)

M
= r30C

(p)
e + 3r20r

′
0C

(q)
e + 3r0r

′
0
2C(r)

e + r′0
3C(s)

e (4.25)

The aberration coefficients are given explicitly as:

C(p)
e =

e

8ϵ0γ3mc2β2
0

∫ L

0

ρ(2)(z)C(z)3S(z)dz (4.26)

C(q)
e =

e

8ϵ0γ3mc2β2
0

∫ L

0

ρ(2)(z)C(z)2S(z)2dz (4.27)

C(r)
e =

e

8ϵ0γ3mc2β2
0

∫ L

0

ρ(2)(z)C(z)S(z)3dz (4.28)

C(s)
e =

e

8ϵ0γ3mc2β2
0

∫ L

0

ρ(2)(z)S(z)4dz (4.29)

4.4.1 Space-charge aberrations in the uniform illumination case.

We will first examine the behavior of the aberration coefficients when the sample is

uniformly illuminated by a beam with a Gaussian angular distribution. Assuming the

beam is focused to a waist at the specimen location, the initial phase space distribution

is represented as:

f(x, x′, y, y′) =


Q

πR2
0Lb

1
2πσ2

θ
exp

(
− (x′2

0 +y′20 )

2σ2
θ

)
if r20 < R2

0

0 if r20 > R2
0

(4.30)

where Q is the total charge of the beam, R0 is the initial edge radius, σθ is the root-

mean-square (rms) beam divergence at the object plane, and Lb is the bunch length.

Using the results from the previous section, we invert the transport map to express

the initial coordinates in terms of the final coordinates within the distribution function.

We then integrate over the momentum space to ascertain the evolution of charge density

along the optical transport. The charge density and its second derivative evaluated on-

axis are given by:

ρ(0)(z) =
Q

πσ2
θS

2Lb

1− exp
(
−p2

2

)
p2

(4.31)
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(a)

(b)

Figure 4.5: (a) Plot of the non-linearity coefficient of the charge density distribution

from the object plane to the image plane, with the red vertical dashed line indicating the

sampled position along the column. (b) Comparison of the radial electric field experienced

by each particle at its radial position in the beam against the analytical estimate used to

derive the space-charge aberration coefficients, with particles color-coded based on their

longitudinal position within the beam.

ρ(2)(z) = −
Q exp

(
−p2

2

)
2πσ4

θS
4Lb

(4.32)

The variable p = R0C(z)
σθS(z)

serves as an indicator, revealing whether the transverse spa-

tial distribution transitions to Gaussian or remains uniform. A high p value suggests

dominance of the initial spatial distribution, manifesting as a uniform beam profile. Con-

versely, a low p value indicates that the initial distribution is primarily angular, which

leads to a more Gaussian spatial profile. Such a Gaussian profile typically exhibits a more

pronounced non-linear characteristic in the space-charge field.

We begin by observing that as p→ 0 (i.e., when C → 0), the expression
1−exp

(
− p2

2

)
p2

→
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1
2
. Consequently, the zero-order density ρ(0) approaches Q

2πS2σ2
θLb

, which corresponds to

the on-axis density of a Gaussian profile with an rms spot size defined by Sσθ. Conversely,

when S → 0, such as at an object or image plane, ρ(0) converges to Q
πR2

0C
2Lb

, representing

the density of a uniformly charged cylinder.

With the second derivative of the on-axis space-charge density known, we utilize the

formulas from the previous section to calculate the aberration coefficients:

C(p)
e = − K

8σθR3
0

∫ L

0

p3 exp

(
−p

2

2

)
dz (4.33)

C(q)
e = − K

8σ2
θR

2
0

∫ L

0

p2 exp

(
−p

2

2

)
dz (4.34)

C(r)
e = − K

8σ3
θR0

∫ L

0

p exp

(
−p

2

2

)
dz (4.35)

C(s)
e = − K

8σ4
θ

∫ L

0

exp

(
−p

2

2

)
dz (4.36)

where the perveance factor K = 2I
IAγ3β3 , with I = Qcβ

Lb
representing the beam current, and

IA ≈ 17kA denoting the Alfven current.

For minor deviations of trajectories from the axis, or when the field of view is confined

to a small area around the axis, the primary contributor to image plane deviations will

be the term associated with Eq. 4.36.

In scenarios where R0

σθf
≪ 1, the beam predominantly maintains a Gaussian profile,

leading to
∫ L

0
exp

(
−p2

2

)
dz ≈ L. For larger initial spot sizes or smaller focal waists, the

Gaussian profile becomes localized primarily around the back focal plane of the lens.

According to the electron beam and lens parameters listed in Table 4.1, the validity of

this approximation is illustrated in Fig. 4.5, where exp
(
−p2

2

)
is plotted for three different

beam divergences. In these instances, we have a beam current I = 25 mA, a perveance

K = 3.6 × 10−9, and C
(s)
e = 1 m, which is significantly larger than contributions from

any other aberrations. Thus, this effect is expected to be dominant at the image plane.

Furthermore, linear space-charge forces alter C(z) and S(z), consequently amplifying the

lens spherical aberration. However, as subsequent analysis will demonstrate, third-order

space-charge effects overwhelmingly surpass third-order lens effects by nearly two orders

of magnitude for a beam current of 25 mA.
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(a)

(b)

Figure 4.6: (a) GPT output of image plane deviations and δr
M

= C
(s)
e r′30 +

∆zr′0
M2 , with

M≈ 8.5 and C
(s)
e ≈ 1m, plotted with respect to the initial angle for three different

defocus conditions ∆z = −1 mm, −0.5 mm and 0 mm. The latter corresponds to the

linear transport image plane. (b) Corresponding histograms for each defocus position.
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Figure 4.7: FW50 and standard deviation of image plane excursions plotted with respect

to image plane placement. Linear transport is tuned so that the screen at 20 cm exactly

satisfies the imaging condition (∆z = 0).

We continue to validate our model and estimates for δrsc/M using the General Particle

Tracer (GPT). Specifically, we employ the ”spacecharge3Dmesh” algorithm, which solves

Poisson’s equation on a mesh in the beam’s rest frame [125]. This method utilizes a

Lorentz transformation to the co-moving frame, capturing the fields interacting with

particles at each timestep. While this approach offers computational efficiency—scaling

linearly with the number of particles—it does not fully capture the granularity of the

particle distribution, which could impact the precision of the simulation.

Further validation will be presented later in the paper, where we compare these smooth

field simulation results with those obtained from ”spacecharge3D.” This alternative GPT

algorithm models all Coulomb interactions among particles, providing a more detailed

examination of inter-particle effects.

In Fig. 4.5b, we illustrate the transverse electric field experienced by particles at a

specific location along the beamline (marked by the dashed line in Fig. 4.5a), and compare

it with the third-order polynomial derived from our analytical model. The concordance

between the two is excellent, with notable deviations occurring only at the beam’s head

and tail, where the assumption of an infinitely long beam does not hold.
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The GPT simulation results, depicted in Fig. 4.6, show image plane deviations that

largely conform to the expected cubic dependence. For instance, using the parameters

listed in Table 4.1, particles impinging on the sample at 3 mrad are predicted to deviate

by 30 nm from the ideal imaging condition. A comparison of the y-scale with that in

Fig. 4.4 highlights the substantial impact of space-charge-induced aberrations on the

instrument’s spatial resolution.

In Fig. 4.6(a), color coding reveals that, despite space-charge effects, handkerchief

distortions remain pronounced. These distortions are significantly magnified by space-

charge forces, as evidenced by comparing this figure with Fig. 4.4(a). This amplification

stems from our analysis being conducted in the Larmor frame, which inherently captures

only radial distortions or meridional rays in the image plane. In the laboratory frame,

the beam’s rotation due to the solenoid lens field results in handkerchief distortions of a

magnitude comparable to the radial deviations.

The spatial resolution of the instrument can be assessed by examining the width of the

histogram of image deviations. It is crucial to acknowledge that by optimizing the linear

defocus of the lens, we can significantly reduce the width of the projected distribution—by

nearly a factor of two compared to its width at the image plane, as demonstrated in Fig.

4.7.

This approach aligns with the Scherzer defocus theorem [126]. To quantitatively

understand the impact on image plane deviations, consider adjusting the output plane

slightly by ∆z. Taking into account the spherical aberration term, the output plane

deviations are described by:

δr =
∆z

M
r′0 +MC(s)

e r′30 (4.37)

Without defocus (∆z = 0) and assuming a Gaussian angular distribution, the rms spread

of the image plane deviations is:√
⟨(δr/M)2⟩ =

√
15C(s)

e ⟨r′20 ⟩
3
2 (4.38)

However, by introducing a small defocus ∆z = −3M2C
(s)
e ⟨r′20 ⟩, we minimize the rms

spread of the image deviations by a factor of
√

6
15

= 0.6325:√
⟨(δr/M)2⟩

min
=

√
6C(s)

e ⟨r′20 ⟩
3
2 (4.39)
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While rms is commonly used to estimate beam width in accelerator physics, it tends

to overweight outliers. Therefore, in TEM literature, the FW50 (full width containing

50% of the beam distribution) is often preferred. In our case, the minimum FW50 is

14 nm, significantly smaller than the rms width at the image plane as depicted in the

defocus scan in Fig. 4.7.

Given these insights, we approximate the instrument’s spatial resolution for the fol-

lowing section as:

Rsc(I, γ, L, σθ) ≈
1

2
C(s)

e σ3
θ
∼=

KL

16σθ
. (4.40)

This approximation produces a value of 14.5 nm in our example, closely aligning with

the GPT simulation results. If the lens is sufficiently thin, and the space-charge modified

magnification approaches the zero-charge magnification, then L ≈ Mf0, where f0 is the

lens focal length, suggesting that smaller focal length optics could reduce space-charge

aberrations.

The perveance, scaling as γ−3, and the lens focal length, scaling as γ2 for a fixed

magnetic field profile, dictate that the space-charge contribution to resolution will scale

as IM/γσθ. This assumes that focal length reductions proportional to γ2 are feasible,

which may be limited by existing magnet technology capabilities.

4.5 Trade-offs between spatial and temporal resolution

This analytical estimate of space-charge aberration allows us to approximate the spatial

resolution of a time-resolved single-shot transmission electron microscope, considering

factors such as beam energy, beam current, spot size at the sample, and maximum opening

angle. Given that the cumulative effect of spherical, chromatic, space-charge, and dose

resolution limits surpasses the diffraction limit Rd = 1.22λ
θ
, where λ is the electron De

Broglie wavelength, we do not include this term in our estimates. Notably, for beam

energies exceeding 700 keV, where λ is less than 1 pm, even a semicollection angle of up

to 5 mrad yields a diffraction limit smaller than a Bohr radius.

Assuming the contributions from different sources are independent, the overall res-

olution is estimated by summing the squares of all deviations from the ideal imaging
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(a) (b)

(c) (d)

Figure 4.8: Analytical/numerical matrix propagator calculations of resolution.

(a)Scanned dependence of resolution on illumination geometry for 4.3 MeV kinetic en-

ergy and 25 mA peak current. (b) Optimal resolution as a function of beam current and

energy. The lens, image and object plane position are held constant in this plot. For

each energy and beam current, the illumination parameters are chosen to optimize the

resolution. (c) Optimized resolution for varying beam charge and bunch length for a 4.3

MeV kinetic energy beam. The illumination geometry is optimized at each point and the

corresponding required geometric emittance is shown in (d).
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condition and the resolution limit set by specimen illumination:

d =

√(
Cc
δγ

γ
σθ

)2

+ (Csσ3
θ)

2
+R2

sc +
SNR2

Dose
(4.41)

Here, we neglect the diffraction limit, SNR = 5 is the minimum signal-to-noise ratio

required by the Rose criterion to distinguish features visually [127], and Dose represents

the time-integrated electron particle density at the object plane (e/area). This addi-

tional final term underscores that insufficient electron beam charge results in inadequate

electrons per resolution pixel to resolve low contrast (20%) features statistically.

The formula for d in Eq. 4.41 serves as a preliminary approximation to gauge the

resolution in a single-shot time-resolved TEM. It aids in understanding the trade-offs

among various parameters but does not account for correlations between deviations from

the imaging condition, which are not strictly independent. Detailed numerical simulations

are still necessary to accurately determine the ultimate resolution limit. We treat Eq.

4.41 as a multivariate cost function to optimize within a reasonable range of beam and

lens parameters for optimal imaging performance.

Optimizing the spot size and beam divergence at the sample plane using the condenser

lens can enhance resolution. The scaling of space-charge aberration in Eq. 4.36 and

its inverse dependency on beam divergence illustrate that increasing beam divergence

reduces Rsc and thereby improves resolution until spherical aberrations predominate.

Likewise, enlarging the illumination spot size boosts space-charge resolution but reduces

the illumination dose, potentially degrading image quality due to the Rose criterion. An

optimal balance can be struck based on given peak current and beam energy.

In practice, spot size and divergence at the sample are interdependent given a specific

beam emittance from the electron gun. It’s important to note that the typical contrast

mechanism used in imaging intercepts scattered electrons with an aperture. Thus, exces-

sive angular divergence at the sample diminishes contrast by mixing the scattered electron

distribution with the transmitted distribution, obscuring object features. A lower beam

emittance would enhance contrast by reducing intrinsic beam divergence.

In Fig. 4.8(a), we plot the estimated resolution for a 4.3 MeV energy and 25 mA peak

current TEM as a function of spot size and divergence at the object plane. Divergence is

varied between 2-8 mrad and spot size between 10 nm and 8 µm. The resulting contour
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map, generated using Eq. 4.41, shows that nearly 10 nm resolution is achievable if the

beam is focused to a 1 µm spot size with a divergence of 4 mrad. GPT simulations confirm

this, showing a FW50 resolution of 12 nm for the optimized illumination geometry.

In Fig. 4.8(b), we illustrate the optimal resolution as a function of beam energy and

current. This analysis is pertinent as various electron sources are being considered for

ultrafast TEM operations [128, 129, 130, 131, 132]. Higher beam energies are generally

preferable, although achieving a focal length as short as 1.5 cm becomes increasingly

challenging at higher energies due to magnet technology constraints.

The optimization of illumination geometry is also feasible for different pulse lengths

and charges, provided the beam aspect ratio is sufficient to satisfy the 2D limit ap-

proximation. In Fig. 4.8(c), the illumination geometry is optimized across various bunch

lengths and charges, with the beam kinetic energy held constant at 4.3 MeV. Lower beam

charges and longer pulse lengths generally improve resolution. However, each point in the

plot reflects a re-optimization of beam divergence and illuminated area, demonstrating

that higher beam charges allow a larger field of view but at a reduced spatial resolution.

Sub-5 nm resolution is achievable with bunch lengths exceeding 100 ps and emittances

below 5 nm.

4.6 Mitigation effects. Reshaping the Distribution.

In many time-resolved TEM applications, trading off temporal resolution for spatial reso-

lution may not be desirable. In this section, we explore the potential resolution enhance-

ments achievable by modifying the functional dependence between momentum space and

real space. This can be implemented practically by utilizing the condenser lens to refocus

the beam post an overfilled aperture, thereby creating a uniform illuminating momentum

distribution while forming a Gaussian spatial distribution at the sample. By inverting

the spatial and momentum space configurations in this manner, the second derivative of

the space-charge density is altered to:

ρ(2)(z) = −Q exp(−p−2/2)

2πσ4
rC

4Lb

(4.42)
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(a) (b)

Figure 4.9: (a) Deviations at the image plane as a function of initial beam angles for a

Gaussian spatially illuminated beam with a uniform angular distribution. (b) Histogram

of the beam’s projected distribution within the central 0.5 µm of the object space.

where p = σrC(z)
θ0S(z)

, with σr and θ0 representing the Gaussian rms spot size and the hard-

edge angular deflection at the object plane, respectively. Consequently, the aberration

coefficients are recalculated as follows:

C(p)
e = − K

8σ3
rθ0

∫ L

0

exp (−p−2/2)

p
dz (4.43)

C(q)
e = − K

8σ2
rθ

2
0

∫ L

0

exp (−p−2/2)

p2
dz (4.44)

C(r)
e = − K

8σrθ30

∫ L

0

exp (−p−2/2)

p3
dz (4.45)

C(s)
e = − K

8θ40

∫ L

0

exp (−p−2/2)

p4
dz (4.46)

This specific object plane distribution yields a stronger non-linear dependence on r0 and

a suppressed dependence on r′0.

Fig. 4.9 showcases GPT simulation results of the linear image plane deviations. The

simulation parameters, detailed in Table 4.1, use a uniform angular distribution up to

3 mrad at the object plane instead of a Gaussian beam divergence. The perveance and

peak dose remain consistent with those used in the beam simulated in Fig. 4.6. In Fig.

4.9(a), output image plane deviations are color-coded according to the initial position,

r0. Particles farther from the optic axis, moving toward the core, exhibit the largest
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deviations. Sparse residual smearing, uncorrelated with r0, instead correlates with r0θ
′
0.

Alongside the output deviations, the predicted spherical aberration curve is plotted. The

notable discrepancy from the cubic trend in Fig. 8, compared to Fig. 5, stems from the

pronounced influence of other space-charge aberration coefficients such as C
(p)
e , C

(q)
e , and

C
(r)
e . The theoretical curve accurately predicts the behavior of particles as r0 → 0, but

higher-order contributions in the Taylor series expansion of the charge density account

for the residual discrepancies at larger r′0. In Fig. 4.9(b), a histogram of the core outputs

within a 0.5 µm offset from the optical axis shows an FW50 spatial resolution of 5 nm,

nearly three times better than the corresponding uniform/Gaussian phase space distribu-

tion case. This indicates that significant improvements can be achieved by appropriately

shaping the illumination in single-shot time-resolved TEMs.

Figure 4.10: Comparison of FW50 measures between the ‘spacecharge3Dmesh‘ and

‘spacecharge3D‘ simulation models in General Particle Tracer (GPT).

4.7 Stochastic Scattering

To enhance the understanding of the analytical estimates we’ve discussed, we executed a

final series of simulations using the GPT’s ”spacecharge3D” algorithm. This algorithm,

which models binary interactions between particles, allows us to compare the deviations

at the image plane observed in our smooth space-charge model with those in a more
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general scenario. Due to the computational intensity, which scales quadratically with the

number of particles (O(N2)), we limited our simulations to a small segment of the beam.

Utilizing the continuous beam approximation, where fields remain relatively constant

along the z-coordinate—especially true in the center of flat-top current distributions—we

focused on just a 100 fs slice of the beam’s central section. While this reduced sample

size does not satisfy the Rose criterion, it still permits an assessment of spatial resolution

by analyzing the FW50 of the image plane deviations. Despite the relativistic effects

stretching the spatial dimensions in the beam’s rest frame, we effectively approximated

the space-charge field on average.

The findings are illustrated in Fig. 4.10, where we assess the FW50 across different

beam currents using two distinct space-charge algorithms from GPT. We adjusted the

number of particles for each simulation so that each macroparticle represents a single

electron. Aside from charge, the parameters listed in Table 4.1 were employed to config-

ure the beams for this study. Notably, the FW50 results are primarily influenced by the

linear impacts of smooth space-charge effects. Including binary interactions only slightly

increases the FW50 within the simulated current range. However, at lower beam currents,

binary interactions become relatively more significant and ultimately determine spatial

resolution limits. This observation underscores that mitigating smooth space-charge ef-

fects remains a considerable challenge in advancing single-shot time-resolved TEMs.

4.8 Multiple Magnification Stages

Previously, our discussion centered on aberrations associated with a single magnification

stage. We now extend our analysis to consider the cumulative effect of space charge

aberrations across multiple magnification stages. This analysis leverages a realistic optical

setup incorporating MeV solenoids currently under development at SLAC by Electron

Optica. Although technical details and schematics are not included here because they

are proprietary, the results presented are derived from applying our formalism to the

axial field data from actual lenses in the setup.

The Electron Optica optical column consists of an objective lens positioned at z=0mm,

with the sample located at z=-23 mm. A weaker lens is positioned at z=500 mm, forms an
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intermediate image, and transfers it to the first projector lens, providing a magnification

of 2-3. and three projector lenses further downstream at z=1010 mm, 1290 mm, and 1570

mm, respectively, with the final screen at z=2000 mm. The system achieves a maximum

magnification of about 2500x when all lenses run at full power.

The system under consideration is designed for electrons with a kinetic energy of 3.9

MeV. Consistent with earlier discussions, the initial electron distribution at the object

plane assumes a Gaussian transverse profile, with a uniform angular spread. This distri-

bution is characterized by an rms spot size of 0.5 µm, a maximum angular divergence of

3.5 mrad, and a total charge of 250 fC distributed over a duration of 10 ps.

The cumulative aberration (normalized by magnification) at any desired plane is given

by:

δr(z) = − e

γ3mc2β2

∫ z

0

S(s)ρ(2)(s)
rc(s)

3

8ϵ0
ds (4.47)

Here, δr represents a critical component of the trajectory correction in imaging transport

systems relative to the object plane. Although this expression omits another term typi-

cally included, it vanishes near image planes because it is proportional to S(z), thus not

relevant to the assessment of aberrations. To evaluate the quality of an imaging trans-

port system, δr is computed throughout the transport, together with the charge density

evolution. This methodology facilitates pinpointing areas within the microscope where

image quality is most adversely affected.

Figure 4.11(a) illustrates the rms spot size evolution through the system, overlaid with

the axial field distribution indicated by a dashed black line. Additionally, a solid black

line depicts an equivalent defocusing distribution resulting from the linear space charge

force. The positions of each lens are marked by the vertical dashed lines. Figure 4.11(b)

details the increasing resolution along the column primarily at the end of the second

magnification stage. A solid black line represents the function exp (−p−2/2) plotted to

indicate whether the charge density distribution is Gaussian or transitions to uniform.

Significantly, the resolution deterioration is most pronounced near the first and sec-

ond image planes, with 10 nm and 30 nm increases, respectively. This degradation could

potentially be mitigated by reconfiguring the weaker second lens to match the specifi-

cations of the objective lens or projector lenses, decreasing both the focal length of the
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(a) (b)

Figure 4.11: (a) Evolution of the rms spot size through the Electron Optica magnification

stages, overlaid with the axial field distribution (dashed line) and the defocusing effect

from linear space charge forces (solid black line). (b) Resolution along the column (blue),

with the solid black line marking the transverse spatial distribution, showcasing the

transition from Gaussian to potentially uniform charge density. These plots emphasize

the difficulties in preserving resolution under the system’s mechanical design constraints.

intermediate lens and the distance between objective and projection optics. However, the

mechanical constraints of the current design prevent this modification. It is crucial to

note that the column layout, not initially optimized for single-shot imaging, had already

progressed to the fabrication phase when this numerical assessment was conducted.

4.9 Summary

In summary, by utilizing the Green’s function technique to solve the driven Hill equa-

tion, we have evaluated the smooth space-charge-induced aberrations in single-shot time-

resolved TEMs and derived analytical expressions that estimate spatial resolution based

on relevant beam parameters.

Our analysis holds primarily in the perturbative regime, where space-charge nonlin-

ear effects are minor compared to the linear forces acting on the beam. Despite this

limitation, our findings have been validated through benchmarking against comprehen-

sive particle tracking simulations. These formulas facilitate rapid assessments of the

trade-offs between spatial and temporal resolution in single-shot time-resolved TEMs, as

detailed in Section IV. Our results demonstrate that single nanometer spatial resolution
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is achievable with relativistic beam energies, pulse durations in the tens of picoseconds,

and precisely engineered spatial distributions.

To fully leverage the advantages of relativistic beam energies, there is a pressing need

to innovate in electron optics, particularly through the development of elements with ex-

tremely short focal lengths. It’s important to note that this analysis primarily addresses

deviations from ideal imaging conditions. Additional factors must be considered when

setting the optimal energy level for the instrument. At higher energies, the electron in-

teraction cross-section decreases, which reduces contrast but permits the use of thicker

samples due to greater penetration depths. In terms of diffraction contrast, it is crucial

to fine-tune the beam divergence to minimize space-charge forces without exceeding the

Bragg scattering angles. Moreover, although electron microscope detectors have been tra-

ditionally optimized for 100-300 keV, there are promising developments in direct electron

detection for MeV energies [133].

Complex optical setups, including quadrupole and multipole lenses, could also be

explored to further mitigate smooth space-charge aberration effects. Ultimately, the res-

olution limit of the instrument will be determined by stochastic blurring due to coulomb

collisions between electrons in the beam post-sample.

This work aims to highlight the capabilities of single-shot time-resolved TEMs and to

inform the development of future instruments for time-resolved microscopy applications.
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CHAPTER 5

High energy UED instruments with tunable camera

lengths

5.1 Introduction

Ultrafast Electron Diffraction (UED) provides a powerful means to observe the dynamic

changes in materials at the atomic level, both spatially and temporally. This technique

starts by exciting a sample with an ultrafast laser pulse and follows by probing its struc-

ture with a highly concentrated electron burst. This process captures detailed snapshots

of the material’s reciprocal space, reflected as diffraction patterns on a distant screen

[134, 135, 136]. UED’s capability to elucidate atomic-scale structural dynamics has been

proven in various applications, from studying ultrafast phase transitions and warm-dense

matter to examining gas and liquid phase phenomena [137, 138, 139, 140].

The initial applications of UED operated with non-relativistic electron energies [141,

142, 74]. However, it was soon realized that using relativistic electrons could substantially

improve experimental outcomes, particularly in managing space charge effects, which

either limit the electron count or the duration of electron bursts [75, 143, 144]. Modern

UED systems have seen significant advancements, thanks to the integration of accelerator

physics techniques like RF compression [145], cutting-edge cathode designs [146], phase

space manipulations [147, 148], and enhanced detectors [149, 150].

A critical area of innovation in UED has been the development of magnetic optics.

Prior to the sample interaction, robust lenses focus the high-brightness electron beam

to sub-micron sizes, which is essential for analyzing minute or diverse samples [151,

78]. Following the sample interaction, preliminary tests have shown improvements in

reciprocal space resolution through the use of magnetic lenses [152, 153], although many

systems still rely on simple propagation drift to translate scattering angles into spatial
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offsets at the detector.

Enhancing the energy range of UED instrumentation is also a focus. Traditionally,

relativistic UED systems were capped at kinetic energies below 4 MeV due to constraints

like available RF power and the accelerating gradient in RF guns. High energy beams

face challenges such as reduced scattering angles requiring longer drifts for separating

scattered electrons on detector screens [136]. Yet, increasing the beam energy has several

advantages, such as deeper penetration through thicker samples, which could significantly

broaden the experimental scope of UED, including applications in liquid cells and shock

dynamics studies.

This chapter, through simulations and experimental demonstrations at the UCLA

Pegasus beamline, the integration of post-sample optics to extend UED energies to 8

MeV [81, 136]. By employing a dual-lens telescope system, where a strong permanent

magnet-based quadrupole (PMQ) triplet is used to enhance diffraction contrast and an-

gular magnification, we demonstrate the potential for tunable diffraction camera lengths

and improved reciprocal space resolution. This system opts for quadrupole triplets over

round solenoidal lenses, as achieving short focal lengths at energies exceeding 5 MeV

with solenoids would require extremely high magnetic fields and the use of bulky, often

superconducting, coils [154].

Beginning with an examination of quadrupole dynamics, then we discuss specific

optimization strategies of quadrupole transport for angular mangification, followed by

detailed descriptions of experimental alignment techniques for the PMQ triplet, ensuring

minimal beam steering effects while achieving optimal optical focusing. Experimental

results with the high brightness beam from the Pegasus beamline, which showcase tunable

magnification of a diffraction pattern from a crystalline gold sample at 8.2 MeV over a 1-

meter distance, further substantiate our approach. Additionally, by studying diffraction

pattern distortions as the optical system’s alignment varies, we evaluate the imaging

performance of the quadrupole triplets. Cross-referencing these observations with 3D

magnetostatic simulations reveals the factors contributing to lens quality, offering insights

into the underlying mechanisms affecting performance.
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Figure 5.1: Ray diagram showing a angular magnification telescope. Initially, parallel

rays converge to the same position at the detector with a magnified offset compared to

the objective’s back focal plane.

5.2 Thin lens transfer matrix description of an angular magni-

fication transport

The magnification of the optical system after the UED sample can be easily understood

using thin lens transport matrices. Consider two stages; the first is an objective lens, with

focal length fo, followed by a drift distance equal to its focal length, which transports

to the back focal plane. The second is an eyepiece lens, with focal length fe, which

images the back focal plane of the objective lens to a downstream detector plane with

magnification m. The matrix transport relating initial coordinates (x0, x
′
0) to the final

coordinates (xf , x
′
f ) is given by: xf

x′f

 =

 m 0

m′ 1
m

 1 fo

0 1

 1 0

− 1
fo

1

 x0

x′0

 (5.1)

where m′ is the axial derivative of m at the image plane [155]. A ray diagram of this

transport is shown in Fig. 5.1.

If the eyepiece lens is imaging over a total distance L, the object and image distances

p and q can be expressed in terms of L and fe as
L
2

(
1±

√
1− 4fe/L

)
respectively. For

a strong eyepiece lens (i.e. fe << L), we can approximate the magnification m ≈ −L/fe.

In this case, the relationship between the final position on the detector screen to the
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initial diffraction angle can be written:

xf = mfox
′
0 ≈ −L (fo/fe)x

′
0. (5.2)

clearly showing how a tunable diffraction camera can be obtained by adjusting the focal

lengths for the eyepiece and objective in the angular magnification telescope.

This analysis, though focused on motion within a single transverse plane, highlights

the broader objective. The challenge is to optimize a complex, quadrupole-based optical

system to achieve consistent transport configurations across both planes. To ensure

focusing in all directions, it is crucial to arrange quadrupole lenses into multiplets, such

as triplets. This arrangement is necessary because while an individual quadrupole lens

focuses in one plane, it simultaneously defocuses in the perpendicular plane.

5.3 Enhancing diffraction resolution by increasing angular mag-

nification through the use of post-sample optics

To assess the impact of magnification on the resolution of reciprocal space in diffraction

patterns, it is beneficial to introduce the concept of a diffraction contrast ratio, denoted

as R = σ/q. Here, σ represents the root mean square (RMS) size of the beam at the

detector, and q is the distance between a Bragg peak and the direct beam. The separation

of the Bragg peak, q, is related to the Bragg angle θB and the angular magnification S via

the equation q = SθB. Since θB varies with the specific plane of reciprocal space being

examined, normalizing the diffraction contrast ratio by the lattice periodicity provides

the momentum transfer or q-resolution:

σQ =
σ

Sλ
(5.3)

where λ is the De Broglie wavelength of the electrons used to illuminate the sample.

Assuming that the transverse phase space of the beam at the sample is uncorrelated

(this is typically the case with nearly parallel beam illumination), the width of a Bragg

peak at the detector is influenced by the initial beam conditions at the sample, expressed

as:

σ =
√
C2σ2

0 + S2σ2
θ + PSF 2 (5.4)
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where σ0 and σθ represent the initial RMS spot size and angular divergence of the beam

at the sample, respectively, and PSF denotes the point spread function of the detector.

Inserting the above into the formula for relative q-resolution yields:

σQ =
σθ
λ

√
1 +

(
Cσ0
Sσθ

)2

+

(
PSF

Sσθ

)2

(5.5)

In the absence of post-sample optics, S equates to the drift length and C = 1. To

enhance resolution, increasing the drift distance is advantageous as it reduces the con-

tributions in the quadrature sum that multiply σθ/λ. Longer drifts are necessary for

high-energy beams, where the intrinsic beam divergence scales as βγ−1 to achieve near-

ideal resolution.

The significant benefit of using post-sample optics is the ability to configure them with

C = 0 at the detector plane. In this configuration, especially at higher beam energies,

increasing the angular magnification S effectively nullifies the impact of the PSF.

As shown in Fig. 5.2, adding an objective triplet in the middle cartoon sharpens

the diffraction pattern by effectively nullifying C. The inclusion of a PMQ eyepiece

in the bottom cartoon magnifies the pattern expanding the separation of Bragg peaks

potentially far beyond the PSF.

5.4 PMQ Triplet Specifications

In this implementation, we utilize two quadrupole triplets, serving as the objective and

the eyepiece, respectively. For the eyepiece, it is crucial to employ the strongest lenses

possible to maximize magnification over a given distance. Therefore, we use high-gradient

permanent magnet quadrupole (PMQ) lenses, known for their short focal lengths of just

a few centimeters at MeV electron energies [156].

A significant advantage of quadrupole-based lenses is their ability to manipulate rays

in the horizontal and vertical planes independently. This feature allows for various imag-

ing solutions with different magnifications, achievable through minor translations of the

components within the eyepiece triplet. This adaptability is vital due to the fixed gradi-

ents of the PMQ lenses.

Each PMQ used in this experiment is a 16-sector Halbach-style array featuring an
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Figure 5.2: Illustration of the angular magnification telescope concept implemented using

two quadrupole triplets at the Pegasus UED beamline. The cartoon is based on a start-

to-end simulation.

inner radius of 1.75 mm and an outer radius of 3.5 mm, with each magnetized sector

having a remnant magnetization of M0 = 1.21T [45]. These magnets are constructed by

assembling segmented permanent magnet pieces, where the magnetization vector rotates

through 4π as it travels around the azimuth. Specifically, the magnetization segmentation

is designed to approximate the continuous distribution M = M0(ρ̂ sin(2θ) + θ̂ cos(2θ)),

where θ is the azimuthal angle, and ρ̂ and θ̂ are the orthogonal unit vectors in the radial

and azimuthal directions, respectively, of the polar coordinate system.

The magnets are based on the design introduced in [157], which provides a convenient

Table 5.1: PMQ parameters measured by Hall probe

Gradient (T/m) Effective Length (mm)

First Quadrupole 510 6.16

Second Quadrupole 518 6.16

Third Quadrupole 417 3.9
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(a) (b)

(c)

Figure 5.3: (a) Halbach style quadrupole with 16 slices; the magnetization is shown in

blue and is the source for the quadrupole field within the aperture. (b) Expected gradient

profiles from RADIA for the long and short PMQs. (c) Technical drawing of the PMQs

as mounted on the flexure stage.
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estimate for the gradient, assuming the Halbach quadrupole has a continuously changing

magnetization (not segmented) and an infinite axial extent. The estimated peak gradient

is G0 ∼ 2M0

(
1
rin

− 1
rout

)
≈ 690T/m. However, since the lengths of the quadrupoles in

the triplet are finite and comparable to the aperture size, the actual gradients are weaker.

Specifically, the triplet consists of two thick PMQs, each 6 mm in length, and one thin-

ner PMQ, 3 mm in length. Figure 5.3(a) shows the magnetization profile of the 16-slice

design and the resulting aperture field obtained from magnetostatic RADIA simulations

[158]. The predicted gradient profiles for both PMQs are shown in Figure 5.3(b).

The actual magnets were formed using wire electrical discharge machined N35SH

NbFeB. The PMQ triplet is positioned on a flexure-based mounting stage, which keeps

the central quadrupole fixed in position relative to the stage but allows fine-tuning of

both upstream and downstream PMQ spacings (refer to Figure 5.3(c)). This design

theoretically allows us to achieve optimal imaging conditions by precisely adjusting the

longitudinal distances between the quadrupoles.

5.5 Residual multipole components

The permanent magnet quadrupoles in the experiment exhibited significant aberrations

due to a residual octupole component. To provide a comprehensive understanding, we

will briefly delve into the theoretical origins of these aberrations.

At higher energy, quadrupoles are preferred because they achieve comparable focus-

ing in a compact footprint. The individual quadrupole magnets are designed based on

fundamental solutions to the Laplace equation, ∇2ψ = 0. These solutions conventionally

assume that the elements extend infinitely along the axial (z) direction. In practical

applications, however, these elements are of finite length. This is especially critical in

quadrupoles where the theoretical expectation of producing linear fields is compromised.

The finite dimensions of the quadrupole alter the expected linear relationship between

the fields and the transverse coordinates, leading to the emergence of nonlinear forces

and aberrations, which we seek to discuss in detail in this section.

In the design of charged particle magnetic lenses, it is common practice to approximate

the magnetic field to the transverse plane, simplifying the complex 3D behavior to 2D.
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Initially, solutions are sought for the 2D Poisson equation, which are then extended to

be compatible with Maxwell’s equations in a 3D context.

This can be achieved by converting the 2D Laplace equation to complex variables, let-

ting z = x+iy and z̄ = x−iy, where the Laplace equation becomes∇2
⊥ψ =

(
∂2x + ∂2y

)
ψ =

4∂z̄∂zψ = 0. This implies the scalar potential is the sum of a function of z and another

of z̄, i.e., ψ = A(z) +B(z̄). For simplicity, if we consider a scalar potential that is only a

function of z, then it can be expanded in a power series, ψ =
∑∞

n=1 iCnz
n, where either

real or imaginary parts are solutions.

(a) (b)

Figure 5.4: The magnetic scalar potential and vector field of a regularly oriented (a)

quadrupole and (b) octupole.

A regularly oriented quadrupole field is derived from the second harmonic term in the

expansion. We can identify the constant as being related to the field gradient C2 = G/2 so

that ψ2 = iC2z
2 = iG(x2−y2)

2
−Gxy. Taking the real part, we obtain a normal quadrupole

field Re(ψ2) = −Gxy, which is depicted in Fig. 5.4(a) and yields desirable magnetic field

components B⊥ = −∇⊥Re(ψ2) = Gyx̂ + Gxŷ, and hence linear transverse forces for a

charged particle moving in the ẑ direction.

Typically, when a quadrupole magnet is manufactured to meet design criteria, its

properties are verified in the laboratory using a Hall probe. This probe measures the

magnetic field along lines passing through the quadrupole parallel to its symmetry axis,

with the probe oriented to detect either horizontal or vertical field components. If mea-

surements reveal a linear trend across each plane, a gradient function G(z) can be as-
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signed.

Assuming that to leading order as (x, y) → (0, 0), the quadrupole potential approxi-

mates to ψQuad ≈ −G(z)xy, we extend the 2D solution to 3D, ensuring Laplace’s equation

is satisfied, given the linear field gradient G(z) from measurements. We assume a sepa-

rable series solution of the form ψQuad = −Gxy+
∑∞

n=1 Wn(x, y)Vn(z). Applying the 3D

Laplacian to ψ yields a suggestive equation:

∇2ψQuad = −G′′xy + V1∇2
⊥W1 +

∞∑
n=2

(
V ′′
n−1Wn−1 + Vn∇2

⊥Wn

)
= 0 (5.6)

So ψ is a solution, provided that we set V1 = G′′, solve ∇2
⊥W1 = xy, then subsequently

have for n > 1 that Vn = V ′′
n−1 and ∇2

⊥Wn = −Wn−1. So the series is determined by a

sequence of successive solutions to the 2D Poisson equation. Again, by exploiting complex

variables, the subsequent Wn, satisfy ∂z̄∂zWn = −Wn−1

4
, and in particular ∂z̄∂zW1 =

(z2 − z̄2)/16i. We obtain W1 = (z3z̄ − zz̄3)/48i = (x3y + xy3)/12, then subsequently all

later terms in the series can be generated to yield:

ψQuad = −Gxy +G′′(x3y + xy3)/12−G′′′′(x5y + 2x3y3 + xy5)/384 + · · · (5.7)

Design imperfections often lead to higher-order multipole moments within the focusing

aperture. The short Halbach PMQs exhibit strong fringe fields and a significant fourth-

order octupole moment. A regularly oriented octupole is derived from the real part of

the potential, Re(ψ4) = Re(iC4z
4) = 4C4(xy

3 − x3y), as shown in Fig. 5.4(b). Here,

H = 4C4 represents the octupole gradient function.

Extracting an octupole gradient function from a Hall probe measurement can be

challenging, especially if the field resolution is poor. The field resolution is determined by

the Hall probe’s active area and its positioning’s precision. However, it is straightforward

to measure these moments in the post-processing of magnetostatic simulations using

Fourier analysis at each axial plane. This procedure was actually utilized to validate

the octupole moment post-experiment and is discussed in more detail at the end of this

chapter.

The first term in the series expansion for the full solution approximates ψOct ≈

H(xy3−x3y) near the axis. Extending this procedure, the complete octupole solution is:

ψOct = H(xy3 − x3y)− H ′′(x5y − xy5)

5
+
H ′′′′(x2 − y2)(x2 + y2)2

240
+ · · · (5.8)
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When magnetic boundaries closely follow the potential contours of the designated 2D

scenario, non-designated multipoles are suppressed. However, due to their finite axial

extent, PMQs exhibit octupole moments in the aperture. Thus, it is useful to combine the

3D axial expansion solutions of the quadrupole and octupole moments for superposition,

ψ = ψQuad + ψOct.

5.6 Linear transport through quadrupole optics and expressions

to calculate relevant aberrations

The optimization of the quadrupole strengths in the objective lens and the positioning of

the eyepiece PMQs is informed by a matrix representation of the transport process from

the sample to the detector. The focusing matrices account for quadrupole fringe fields,

modeled by an Enge function [159] that describes the gradient for each quadrupole as

follows:

G(z) =
G0

2

[
tanh

(
b

2

(
l

2
− z

))
+ tanh

(
b

2

(
l

2
+ z

))]
, (5.9)

where l is the effective length of the quadrupole, b represents the steepness parameter,

approximately half the quadrupole gap radius, and G0 is the nominal peak magnetic field

gradient [160].

Within the paraxial approximation, the linearized transverse equations derived from

the results in Chapter 2 yield the quadrupole focusing strength κ(z) = G(z)
[Bρ]

, where [Bρ] =

p
e
represents the axial momentum normalized by the electron charge [124]. Interestingly,

this focusing strength scales more favorably compared to a round solenoid, which is

inversely proportional to the square of [Bρ].

The general solution to the system of ray equations in linearized quadrupole fields is

represented as: 
xc

x′c

yc

y′c

 =


Cx Sx 0 0

C ′
x S ′

x 0 0

0 0 Cy Sy

0 0 C ′
y S ′

y




x0

x′0

y0

y′0

 (5.10)

In this matrix, the functions Cx, Cy, Sx, and Sy denote the cosine and sine-like trajectories

through the optical system. The principal planes of the quadrupole optics are identified
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Table 5.2: Octupole Aberration Coefficients

U1111

∫ z

z0
GxhC

3
x ds U3113 −3

∫ z

z0
GyhC

2
xCy ds

U1112 3
∫ z

z0
GxhC

2
xSx ds U3123 −6

∫ z

z0
GyhCxSxCy ds

U1122 3
∫ z

z0
GxhCxS

2
x ds U3223 −3

∫ z

z0
GyhS

2
xCy ds

U1222

∫ z

z0
GxhS

3
x ds U3333

∫ z

z0
GyhC

3
y ds

U1133 −3
∫ z

z0
GxhCxC

2
y ds U3114 −3

∫ z

z0
GyhC

2
xSy ds

U1233 −3
∫ z

z0
GxhSxC

2
y ds U3124 −6

∫ z

z0
GyhCxSxSy ds

U1134 −6
∫ z

z0
GxhCxCySy ds U3224 −3

∫ z

z0
GyhS

2
xSy ds

U1234 −6
∫ z

z0
GxhSxCySy ds U3334 3

∫ z

z0
GyhC

2
ySy ds

U1144 −3
∫ z

z0
GxhCxS

2
y ds U3344 3

∫ z

z0
GyhCyS

2
y ds

U1244 −3
∫ z

z0
GxhSxS

2
y ds U3444

∫ z

z0
GyhS

3
y ds

where these functions equal zero; for instance, a focal plane corresponds to C = 0, and

an imaging plane arises wherever S = 0. The optimal optical conditions for diffraction

are achieved when C = 0 and S is maximized, enhancing reciprocal space resolution.

If we include the leading order octupole term in the magnetic scalar potential, then

(neglecting axial derivatives) we can obtain the next leading order in the equations of

motion from the potential:

ψ ≈ −Gxy +H(x3y − xy3). (5.11)

The equations of motion in the combined potential are given by:

x′′ + κx = h(x3 − 3xy2) (5.12)

y′′ − κy = h(y3 − 3x2y). (5.13)

h = H/ [Bρ] and H is the octupole gradient function.

Utilizing the Green’s function method corrections to the linear transport are computed

by integrating third-order driving terms in linear order, weighted by the green’s function.

The corrections corresponding to the octupole are as follows:

δx =

∫ z

z0

(x3c − 3xcy
2
c )hGxds (5.14)

δy =

∫ z

z0

(y3c − 3x2cyc)hGyds (5.15)
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In this context, z0 denotes the objective’s back focal plane, while z signifies the position

of the detector or any point in between. By substituting and expanding the third-order

polynomial, we obtain third-order terms that are proportional to combinations of product

trios involving x0, y0, x
′
0, and y′0. The coefficients of each term are also proportionally

related to integrals involving trios of principal rays associated with their respective initial

conditions. These coefficients are labeled as Uijkl where i takes on either 1 or 3. The

indices j, k, and l range from 1 through 4; for example, 1 and 2 points to Cx and Sx,

while 3 and 4 points to Cy and Sy. The superscript corresponds to the plane on which

the corrections are applied. Examples of all the relevant octupole aberration coefficients

are provided in Table. 5.13

5.7 Diffraction imaging conditions: numerical optimization

The linear optical transport’s matrix representation was employed to numerically fine-

tune the quadrupole gradients/currents and PMQ spacings, aiming for equal angular

magnifications at the detector plane. The parameters obtained from the first phase

optimization of the linear transport were subsequently used in comprehensive GPT sim-

ulations, which incorporated actual 3D field maps from magnetostatic simulations of the

quadrupoles. The simulation outcomes aligned to linear order with the predictions of the

idealized fringe field matrix model.

Figures 5.5(a) and (b) illustrate the optical layout, positions, and physical lengths of

the magnets, showcasing the optimized configurations for cosine-like and sine-like trajec-

tories, respectively. These shapes determine the matrix-based transport. During opti-

mization, the back focal planes were strategically positioned just ahead of the eyepiece,

located 0.8 m downstream from the sample (defined as z = 0 in this context), while the

detector screen was set at z = 1.6 m. Constraints were imposed on the currents in the

objective triplet to prevent overheating and magnetic saturation in the yoke. Similarly,

adjustments to the spacing of the PMQs were limited to millimeter ranges due to their

flexure-based mounting stage.

At the final screen, the system achieved an S value of -20 m, significantly surpassing

the magnification possible without post-sample optics. At this magnification, a Bragg
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(a) (b)

(c) (d)

Figure 5.5: (a) The cosine-like ray traverses an optimized optics setup, with the green

quadrupole triplet positioning back focal planes just in front of the PMQ triplet, which

then forms images at the downstream detector at z = 1.6 m. (b) The sine-like ray

undergoes significant magnification at the detector. (c) An optimization scan for angular

magnification was performed for a nearby screen, with symmetric back focal planes set at

varied positions while maintaining the PMQ triplet’s imaging capabilities at z = 1.02 m.

(d) The back focal planes are manipulated using the green quadrupole triplet, and the

spacings of the PMQ triplet are fine-tuned to ensure symmetric imaging at z = 1.02 m.
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angle of 0.5 mrad results in a displacement of 1 cm, necessitating a substantially large

detector screen to capture most diffraction peaks. Consequently, the experiment was

conducted on a closer screen located at z = 1.02 m, where lower magnification levels

allowed for the accommodation of multiple Bragg peaks on the detector screen.

Two approaches were explored to adjust the magnification for a fixed distance from

the sample to the detector. One method involved varying the quadrupole currents to align

both back focal planes of the green triplet objective lens at the same longitudinal position

along the PMQ triplet. The results of this method are illustrated in Figure 5.5(c), where

ξ marks the position of the objective back focal planes. In each scenario, the eyepiece

was optimized to focus onto the detector, allowing for adjustable angular magnification

at the z = 1.02 m location. However, this method requires long range motion of the

PMQ stage, which is impractical within the beamline’s vacuum constraints.

Alternatively, by keeping the central position of the PMQ triplet fixed and varying

the spacings between the PMQs, it was possible to image asymmetric objective back focal

planes onto the detector with equal magnifications. The outcomes of this strategy are

depicted in Figure 5.5(d), where δ indicates the separation between the two objective lens

back focal planes around a fixed ξ = 0.75 m. The eyepiece spacings were then adjusted

to achieve balanced angular magnification.

5.8 PMQ triplet alignment

Attaining the desired imaging conditions required precise pre-alignment of the PMQ

triplet on the stage. The mounts for the upstream and downstream PMQs were equipped

with horizontal and vertical fine adjustment micrometers. To ensure the relative align-

ment of the triplet elements, we utilized the pulsed-wire method [161, 162].

As illustrated in Fig.5.6, a 50µm diameter beryllium-enhanced copper wire is threaded

through the aperture of the PMQ triplet and tightened. Next, a pulse generator transmits

a square-wave electric signal through the wire. The PMQs’ magnetic fields cause the wire

to experience a force, the magnitude of which depends on its distance from the PMQ

centers. This force travels along the wire and is captured by a laser-photodiode system,

which translates the movement into a voltage signal displayed on an oscilloscope.
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Figure 5.6: Setup of the pulsed-wire alignment technique. A beryllium-enhanced copper

wire is threaded through the PMQ triplet aperture, tightened, and subjected to a square-

wave electric signal. The wire displacement caused by the PMQmagnetic fields is detected

by a laser-photodiode system.

First, a long 1 ms current pulse is applied, so the photodiode trace reflects the second

integral of the field, essentially mapping the trajectory of the electrons. Adjusting the

PMQ holders’ positions results in a linear relationship between the peak signal height

of the kick and the PMQ position, as the field increases linearly off-axis. Thus, the

PMQs can be aligned by flattening the signal trace. The pulsed-wire method’s accuracy

is influenced by factors such as photodiode conversion gain, string tension, power supply

jitter, and oscilloscope read-out error. As shown in Fig.5.7 (a), there is a linear correlation

between signal height and actual PMQ offset. With an oscilloscope read-out jitter of 5 mV

after averaging over 128 data points, we estimate the alignment accuracy to be within

25 µm. Post static alignment, we verify the alignment during axial translation of the

upstream and downstream PMQs. Fig.5.7 (b) shows that the PMQs remain generally

aligned, with a minor horizontal offset detected in the last PMQ. The maximum signal

recorded is 34 mV, corresponding to a misalignment limit of 50 µm.

Then, shorter (<100µs) pulses are employed, which proxy the first integral of the

field. This signal results from the effective velocity kick in the PMQ fields. Fig.5.7 (c)

shows the output signals for various transverse offsets. These traces can be numerically

analyzed to reconstruct the field profiles at different wire positions. Fig.5.7 (d) presents

the fields derived from the photodiode traces using a 10µs pulse. As expected, the peak

field changes sign and its magnitude increases with the wire’s offset from the alignment

axis. Further inspection reveals a linear relationship between the peak fields and the

161



(a) (b)

(c) (d)

Figure 5.7: Pulsed-wire alignment results: (a) Calibration of the oscilloscope signal’s

central peak with PMQ displacement, showing a linear relationship. (b) Oscilloscope

signal changes when the first and third PMQs are moved. (c) Signal traces for different

transverse offsets, with timing on the bottom axis and distance on the top axis. (d)

Retrieved PMQ field profiles using a 10µs pulse, showing peak field changes based on

wire offset from the alignment axis.

transverse offset in the quadrupoles.

5.9 Results/observations from experimental run

The experimental activities were conducted at UCLA’s Pegasus Laboratory, home to a

high-brightness beamline powered by a high-gradient 1.6 cell S-band RF photo-injector

gun [163]. A detailed, to-scale top-down view of the PEGASUS beamline configuration is

depicted in Fig.5.8. The photo-injector, operating with a low charge of 0.5 pC per bunch

as verified by an integrated current transformer (ICT) at the gun’s exit, focused a laser

spot normally on an alkali antimonide photocathode using a 0.75 m focal length lens to

achieve a spot size of 150 µm. This setup allowed the gun to rapidly accelerate the electron
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Figure 5.8: Portion of the Pegasus beamline relevant to the experiment. A technical

drawing showing the main elements of the beamline used in the experiment.

beam to 3.2 MeV, effectively counteracting the degradation of transverse phase space due

to space charge effects. Subsequent acceleration to 8.2 MeV was facilitated by a dual-slot

resonantly coupled linac with high shunt impedance. A waveguide switch could be used

to cut the RF power supplied to the linac. The beam’s RMS angular spread at the sample

plane was minimized through the coordinated use of a gun solenoid and a quadrupole

triplet. A 30 nm-thick single crystal gold foil sample, mounted on a 3 mm TEM grid

holder, was strategically positioned 3.1 m downstream from the cathode. Additionally,

a HeNe laser, co-propagating with the electron beam, was utilized for precise alignment

of the sample and the optical axes of the objective and eyepiece lenses. As illustrated in

Fig. 5.5, the center of the green triplet is located 0.19 m from the sample, and the PMQ

triplet, functioning as the eyepiece to enhance the magnification of the objective lens’s

back focal plane, is situated 0.81 m from the sample plane.

Comprehensive start-to-end simulations of the beamline were performed using the

General Particle Tracer (GPT) software [164], which accurately models space charge

effects and incorporates actual field maps of the beamline components, thereby account-

ing for higher-order aberrations. These simulations account for the beam’s acceptance

through the PMQ triplet aperture. Diffraction modeling at the sample involved the ap-

plication of diffractive kicks to the simulated phase space distribution of the beam at the

sample plane. As depicted in Fig. 5.9, these simulations provide a detailed view of the

evolution of the RMS transverse beam sizes and kinetic energy, extending all the way to

the final detector plane.
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Figure 5.9: Comprehensive start-to-end simulation results of the Pegasus beamline con-

ducted using General Particle Tracer (GPT) software, illustrating the impact of the RF

gun, linac, and space charge effects on beam dynamics. Displayed are the root mean

square (RMS) horizontal (solid blue line) and vertical (dashed line) beam envelopes along-

side the beam’s kinetic energy trajectory (shown in red) up to the detector.

During the experimental campaign, we adhered to the optimization strategy formu-

lated during the simulation phase. Initial diffraction images were obtained with the linac

deactivated, capturing the beam at a kinetic energy of 3.1 MeV within the vacuum box,

as illustrated in Fig.5.10 (a). This served as a baseline reference. Subsequently, the linac

was set to operate at the accelerating phase, which elevated the beam energy to 8.2 MeV,

concurrently minimizing the energy spread. Fig. 5.10 (b) displays the diffraction pattern

achieved under this configuration without post-sample optics.

Further adjustments were made as shown in Fig. 5.10 (c), where the green quadrupole

triplet was optimized to align the back focal plane with the first DRZ screen, positioned

22 cm downstream of the PMQ triplet. Continuous monitoring of this screen facilitated

further refinements to the green triplet, effectively aligning the back-focal planes directly

in front of the eyepiece before the PMQ triplet was introduced into the beam path. Sub-

sequent fine-tuning of the spacings between the PMQs symmetrically adjusted the final

image, yielding a significantly magnified diffraction pattern displayed in Fig. 5.10 (d).

The notable increase in magnification by the eyepiece is evident. However, it is observed

that only six Bragg peaks were transmitted through the constrained PMQ aperture, align-

ing with the simulation predictions once the actual clearance of the PMQ was accounted
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(a) (b)

(c) (d)

Figure 5.10: Single-shot diffraction patterns obtained at the z = 1.02 m fluorescent

screen, showcasing varying focusing conditions and beam energies. (a) Captured with

the linac deactivated, showing the beam at a kinetic energy of 3.1 MeV, with the green

quadrupole triplet finely tuned for optimal focus onto the detector. (b-d) Recorded with

the linac activated, elevating the beam energy to 8.2 MeV: (b) illustrates the diffraction

pattern without any post sample focusing adjustments, (c) demonstrates the pattern with

focusing, and (d) displays enhanced magnification.
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Figure 5.11: Comparative analysis of integrated cross sections for gold (Au) across an

energy range from 0.01 to 100 MeV. The total cross-section is depicted by the red curve,

while the blue and green curves represent the integrated cross sections up to the first

and second Bragg orders, respectively. The black curve illustrates the integration of

cross sections over forward-directed angles, specifically limited to 1 mrad, highlighting

directional scattering intensities.

for.

In an ideal cylindrically symmetric system, one would expect to detect the eight

lowest order Bragg peaks of the cubic gold lattice on the detector screen. However,

the astigmatic transport induced by the quadrupole lenses and the specific rotation of

the sample resulted in only two out of four 200 Bragg peaks clearing the narrow PMQ

aperture, thus not reaching the detector screen. By employing a steering magnet at the

entrance of the vacuum box, we manipulated various segments of the diffraction pattern

through the PMQ triplet, effectively showcasing different areas of the reciprocal space.

In the analysis of high-energy ultrafast electron diffraction (UED) images, it is essen-

tial to first examine the energy dependence of the scattering cross-section, a key parameter

for predicting the intensity of diffraction patterns at elevated energies. The differential

cross-section for elastic scattering from an atom can be expressed as a function of the

atomic number Z and the momentum transfer s = 4π sin(θ/2)/λ:

dσ

dΩ
=

4Z2

s4a20

1− β2 sin2(θ/2)

1− β2

[
1− F (s)2

]2
(5.16)
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(a)

(b)

(c)

Figure 5.12: Results from spatial adjustments in the PMQ triplet, showing the impact

of varying spacing. In (a) and (b), the spacing of the upstream and downstream PMQs

is systematically reduced starting from 3mm, illustrating the adjustments’ effects on

beam dynamics. Panel (c) depicts the horizontal Q-resolution observed throughout these

spacing changes.
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where a0 is the atomic Bohr radius, and F (s) =
∑3

i=1
Aiα

2
i

s2+α2
i
represents a function de-

pendent on the details of the screened atomic potential. For gold (Z = 79), the constants

are αi = [22.864, 3.6914, 1.4886] Å−1 and Ai = [0.2289, 0.6114, 0.1597] [136, 165, 166].

Considering the structure factor of the crystalline lattice, the cross-section is predom-

inantly influenced by forward-directed rays at Bragg angles, as depicted in Fig. 5.11.

This figure compares the total cross-section with those integrated up to integer multiples

of λ/a, representing the intensity of Bragg peak orders. Additionally, integration up to

a specific angle of 1 mrad illustrates how the solid angle, into which most particles are

scattered, narrows as the energy increases.

Crucially, cross-sections normalized by the momentum factor γβ across different an-

nuli remain constant, suggesting minimal variation in the intensities of Bragg orders when

the beam energy is increased from 3.1 to 8.2 MeV. This was substantiated by measuring

the relative intensity of first-order Bragg peaks compared to the central beam at both

energy levels, with pixel counts around these peaks being summed on the detector screen.

The first-order peaks at high and low energy levels displayed intensities of 5.2% ± 1.0%

and 5.6% ± 0.9%, respectively, aligning with experimental expectations and lying within

the uncertainty range of each other.

Adjustments were made to the spacings of the PMQ triplet eyepiece on the flexure

stage to explore the effects on magnification and q-resolution in the x and y directions.

The axial position of the upstream PMQ was adjusted between 1.5 mm and 3 mm, while

the downstream PMQ spacing was varied from 0 to 3 mm. During these adjustments,

the centroid of the main beam consistently remained within a 500 µm radius on the

detector. Considering the 1.8 cm focal length of the downstream PMQ and its 17.5 cm

distance from the detector, the alignment offset was calculated to be approximately 50

µm, corroborating the pulse-wire alignment data expectations. The outcomes of these

spacing adjustments are depicted in Fig. 5.12 (a) and (b), illustrating the results for the

upstream and downstream PMQs respectively. The data points are color-coded based on

the positions of the other quadrupoles, with simulation results superimposed for compar-

ison. Consistent with both simulation and linear transport calculations, the positioning

of the upstream PMQ predominantly influences the y-angular magnification, while the

downstream PMQ impacts the horizontal magnification more significantly. The optimal
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symmetric configuration, achieving an average magnification factor of 4, was established

with both quadrupoles set at the 3 mm mark.

The q-resolution corresponding to each magnification setting was deduced by analyz-

ing the ratio of the width of Bragg peaks to their separation from the main beam. This

q-resolution, particularly in the horizontal direction along the x-axis, is plotted as a func-

tion of the downstream PMQ position in Fig. 5.12 (c). Consistent with the relationship

described in (5.5), the data show that q-resolution improves in proportion to the increase

in magnification.

The accuracy of the data is further validated through a simulation fit, which incorpo-

rated the measured spot size at the sample (530µm) and an estimated rms intrinsic beam

angular divergence of 30 µrad. Additionally, a point spread function of 50 µm for the

detector screen was assumed in the analysis. This model effectively captures the observed

trends and alignments in the data, underscoring the predictability and stability of the

optical system’s performance.

It’s essential to recognize that q-resolution is influenced by factors beyond the beam-

line optics, such as beam emittance, energy spread, and the screen’s point spread func-

tion, none of which were optimized in this UED experiment. Therefore, the data mainly

demonstrate the potential improvements in resolution enabled by post-sample magnifi-

cation optics rather than achieving optimal absolute resolution. According to Eq. 5.5,

the ultimate q-space resolution heavily depends on beam quality. For example, a tenfold

reduction in the sample’s spot size would require a corresponding tenfold decrease in

source emittance to maintain the same q-resolution.

5.10 Measured PMQ aberrations

We observed noticeable distortions in the diffraction patterns as the beam navigated

through the PMQ aperture, steered by an upstream magnet. We quantified the dominant

lens aberration coefficients by altering the steering setpoints and capturing images at each

adjustment. These were then compared to the influences expected from higher-order

multipole moments, as predicted by the Radia model of the PMQs. Fourier analysis of

the transverse fields in Radia revealed a residual octupole moment, a result of the finite
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(a) (b)

Figure 5.13: (a) Displays the quadrupole and octupole Fourier components and their

axial variations for the 3mm and 6mm PMQs, highlighting the axial dependency of these

higher-order magnetic field elements. (b) An overlay of horizontally steered diffraction

beamlet centroid positions, as recorded on the detector, juxtaposed with a third-order

aberrated representation of an initially square grid of rays. This overlay illustrates how

the initial positions of the square grid reasonably coincide with the regions expected for

the first-order Bragg peaks at the objective lens’s back focal plane, effectively mapping

the distortion effects on the diffraction pattern.

number of sharply magnetized wedges in the Halbach configuration. Given the standard

orientation of the PMQs and their inherent magnetization symmetry, it was anticipated

that the x-component of the magnetic field would expand in terms of sine functions,

and the y-component in terms of cosine functions. This hypothesis was validated by the

projections from the Radia field map:

by,n(r, z) =
1

π

∫ 2π

0

By(r, θ, z) cos(nθ) dθ (5.17)

In particular, the Fourier decomposition at r = 1.4 mm across each axial plane, illustrated

in Fig. 5.13(a), shows that while the quadrupole term dominates, a non-zero bx,3 = by,3 =

b octupole moment is also present. These non-linear fields contribute to third-order ray

equations and a third-order transport map:

x = Cxx0 + Sxx
′
0 + U1111x

3
0 + U1133x0y

2
0 + . . . (5.18)

y = Cyy0 + Syy
′
0 + U3333y

3
0 + U3311x

2
0y0 + . . . (5.19)
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where the coefficients U1111 = 0.25 mm−2, U1133 = 2.20 mm−2, U3333 = −11.80 mm−2, and

U3311 = −1.18 mm−2 represent third-order transport terms, calculable via the Green’s

function method detailed in the appendix. Given that the beam is collimated at the ob-

jective’s back focal plane, angle-dependent terms at the eyepiece location are minimized.

The appendix Table 5.2 lists all ten unique third-order aberration coefficients for both

transverse planes.

Figure 5.13(b) overlays the positions of the Bragg peaks at each steering setpoint

with the theoretical transport predictions, including third-order components. This vi-

sualization demonstrates how a grid of axial rays distorts in a manner that aligns both

qualitatively and quantitatively with the observed Bragg peak distortions. As these peaks

are steered horizontally across the PMQ entrance, they delineate a path on the detector

screen (marked by dashed lines in Fig. 5.13(b)) that illustrates the pincushion distortion

characteristic of U3311, validating our analysis of the PMQ field map.

While it is feasible to account for these aberrations in post-processing, various strate-

gies can be employed to reduce their influence. One approach involves optimizing the

PMQ design by enlarging the aperture to diminish the influence of higher-order moments

in the magnetic field, which also helps avoid clipping of Bragg peaks and expands the

reciprocal space field of view. Alternatively, adjusting the defocus of the imaging stage

can mitigate the effects of third-order terms on resolution, a technique often employed

to manage spherical aberration in Transmission Electron Microscopes (TEMs) [126, 167].

However, this approach alone cannot fully counteract the non-linearities in the transport;

achieving comprehensive aberration correction would require the integration of higher-

order optical elements.

5.11 Summary

In conclusion, we have investigated the performance of a compact optical system utilizing

permanent magnet quadrupole (PMQ) optics for ultrafast electron diffraction, achieving

high angular magnifications within a confined space. The precise alignment and motion

control of the PMQs enhance the system’s flexibility and tunability, presenting opportuni-

ties for innovative engineering solutions. The high focusing gradients introduce challenges,
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such as limited beam acceptance due to the optics’ small aperture and distortions from

higher-order field components. Despite these issues, the system achieves magnification

factors up to 8 and improved q-resolution, which are essential for observing dynamics at

small scattering vectors.

Although the PMQs were not originally intended as projection lenses, their apertures

were not optimized for this application. For a dedicated machine, a better selection of

PMQs can be fabricated, demonstrating that optimal multiplets can be produced cost-

effectively. However, designing the motion control requires additional care, a challenge

that can be effectively addressed by a team of mechanical engineers. This approach

enables economical focusing solutions, making high-energy diffractometers more widely

accessible.

This system marks a departure from conventional diffraction techniques that typically

do not employ post-sample optics. By integrating strong lenses, particularly at higher

energy levels, our system addresses the challenge of achieving adequate separation at

diminishing Bragg angles over short distances. This is vital for clear diffraction patterning

at 8.2 MeV kinetic energy, nearly double that of existing relativistic UED beamlines.

The increased beam kinetic energy enhances diffraction resolution due to shorter elec-

tron wavelengths, reduced geometric emittance, and deeper sample penetration, enabling

more detailed sample analysis. Additionally, higher energies reduce space charge effects

and facilitate advanced phase space manipulations, paving the way for future UED in-

struments with shorter beams and smaller spot sizes.
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Katharina E. Priebe, Till Domröse, J. Gregor Gatzmann, Stefan Rost, Jakob
Schauss, Stefanie Strauch, Reiner Bormann, Murat Sivis, Sascha Schäfer, and Claus
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