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Intertumoral Heterogeneity within Medulloblastoma Subgroups

A full list of authors and affiliations appears at the end of the article.

SUMMARY

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of 

heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-

wide DNA methylation and gene expression data across 763 primary samples identifies very 

homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After 

integration of somatic copy-number alterations, and clinical features specific to each cluster, we 

identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further 

delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through 

analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog 

medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes 

identified through integrative clustering have important implications for stratification of future 

clinical trials.
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INTRODUCTION

Genomics has substantially advanced our understanding of medulloblastoma (Northcott et 

al., 2012a; Ramaswamy et al., 2011). While historically considered one entity, it is now 

clearly accepted that medulloblastoma comprises at least four distinct entities: WNT, SHH, 

group 3, and group 4; as reflected in the current revision of the WHO classification (Louis et 

al., 2016; Ramaswamy et al., 2016a). These four subgroups have distinct transcriptional 

profiles, copy-number aberrations, somatic mutations, and clinical outcomes (Morrissy et 

al., 2016; Northcott et al., 2012a; Ramaswamy et al., 2016b; Ramaswamy et al., 2013). 

Indeed, current clinical trials and risk stratification biomarkers incorporate the four 

molecular subgroups (Ramaswamy et al., 2016a), as do preclinical modeling and the 

development of novel therapeutics (Pei et al., 2016). However, the extent to which there are 

additional layers of heterogeneity within the medulloblastoma subgroups is unknown, and a 

concerted global effort to analyze a very large cohort of tumors will be needed to resolve the 

question.

WNT and SHH medulloblastomas are clearly identifiable and separable across the majority 

of transcriptional and methylation profiling studies, demonstrating minimal overlap with 

other subgroups (Taylor et al., 2012). Clear heterogeneity exists within the SHH subgroup, 

which includes infants, children, and adults, although the extent and nature of the 

substructure is not clearly defined (Northcott et al., 2011; Kool et al., 2014; Lafay-Cousin et 

al., 2016). The transcriptomes of group 3 and group 4 medulloblastoma are more similar to 

each other, and several cytogenetic features, such as isochromosome 17q (i17q), are found in 

both groups (Taylor et al., 2012). In response to this, the recent revision of WHO 

Classification of CNS Tumors has assigned groups 3 and 4 as provisional entities, and a 

recent consensus on high-risk medulloblastoma left this question unresolved (Louis et al., 

2016). Establishing the nature of the boundary between group 3 and group 4 is of clinical 
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importance as outcomes differ, particularly in the setting of upfront metastatic dissemination 

(Ramaswamy et al., 2016a, 2016b; Thompson et al., 2016).

Genome-wide transcriptional arrays and/or genome-wide methylation arrays are the current 

gold standard for medulloblastoma subgrouping (Ramaswamy et al., 2016a). These 

approaches have been used independently with the underlying assumption that they identify 

similar, perhaps even identical patient clusters. However, the subgroups identified using the 

two data types in isolation have not been compared head to head. More recently, methods of 

integrative clustering that analyze multiple data types in aggregate have been developed, 

including similarity network fusion (SNF) (Wang et al., 2014). Integrative approaches using 

multiple data types have been suggested to provide superior results compared with the 

analysis of single data types in isolation. SNF creates a unified view of patients based on 

multiple heterogeneous data sources, as it can integrate both gene- and non-gene-based data. 

SNF avoids the bias of genes or features pre-selection, is robust to different types of noise, is 

highly scalable, and has been shown to outperform other approaches for data integration 

(Wang et al., 2014).

Prior reports have recognized the existence of additional substructure within the four 

consensus subgroups, particularly within groups 3 and 4 (Cho et al., 2011). Consequently, a 

medulloblastoma consensus conference established that subdivisions within the known 

subgroups would be defined as subtypes, and labeled α, β, γ, δ, ε, etc. (Taylor et al., 2012). 

In this study our goal was to resolve intra-subgroup heterogeneity and identify biologically 

distinct and clinically relevant medulloblastoma subtypes by studying a very large cohort of 

primary tumor samples.

RESULTS

Integrated Clustering of Primary Medulloblastomas Recovers the Four Subgroups and 
Further Separates Group 3 from Group 4 Tumors

Through the Medulloblastoma Advanced Genomics International Consortium, we assembled 

a cohort of 763 primary frozen medulloblastoma samples with high-quality DNA and RNA, 

and generated genome-wide methylation and expression profiles. Of these, 491 had DNA 

copy-number profiles generated by Affymetrix SNP6 microarrays (Northcott et al., 2012b). 

Clinical data including age, tumor histology, metastatic status, and survival were available 

on 95.7%, 76.9%, 75.2%, and 82% of cases, respectively (Table S1). Arm-level somatic 

copy-number aberrations (SCNA) were inferred from methylation arrays in 100% of cases.

To these samples, we applied SNF to integrate both gene expression and DNA methylation 

data, followed by spectral clustering ranging from 2 to 12 groups. At k = 4, four distinct 

subgroups are clearly identified. Those groups correspond clinically and structurally to the 

previously described consensus subgroups: WNT (n = 70), SHH (n = 223), group 3 (n = 

144), and group 4 (n = 326) (Figures 1A–1C and S1A–S1F) (Taylor et al., 2012).

Groups 3 and 4 are more similar to each other than to SHH and WNT (Figures 1B and 1C). 

We tested the stability of these core subgroups, by counting samples that switch subgroup 

affiliation when the number of clusters increases (Figure 1A). Following each sample from k 

Cavalli et al. Page 3

Cancer Cell. Author manuscript; available in PMC 2018 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 4 to k = 12, no sample changed affiliation between WNT and SHH, while a small minority 

of samples moved between groups 3 and 4.

To determine the degree of overlap between groups 3 and 4, we undertook unsupervised 

clustering of 470 group 3 and 4 tumors using DNA methylation array data only, and then 

subsequently using transcriptional profiling data only. Both k-means and non-negative 

matrix factorization (NMF) consensus clustering revealed a small subset of tumors (2.9%–

8.9%) that switched subgroup between k = 2 and k = 3 as determined through analysis of 

either transcriptional or methylation data (Figures S1G and S1H). Strikingly, the set of 

“ambiguous group 3–4 tumors” identified by gene expression profiling had very little 

overlap with those identified by DNA methylation profiling (Figure 1D) suggesting that the 

identification of the ambiguity may be a limitation of the particular type of measurement or 

data, rather than the identification of a truly distinct biological subtype. Examination of 

tumors within the “overlap” group does not reveal any demographic, clinical, or genetic 

commonalities, suggesting that it could be an artifact rather than a biologically discrete, 

clinically important group. Subsequent application of SNF and spectral clustering to this 

cohort of group 3 and 4 samples demonstrates that only 13/470 (2.8%) of samples change 

subgroup between k = 2 to k = 3, and of these 13 only 3 (0.64%) do not track back to their 

original subgroup when k > 3 (Figures 1E and S1I). We conclude that group 3 and group 4 

medulloblastomas are stable, mostly non-overlapping molecular subgroups, and that SNF 

followed by spectral clustering is a more robust method of delineating subgroups than using 

a single data type in isolation.

Integrated Clustering Identifies 12 Medulloblastoma Subtypes

We applied SNF and spectral clustering within each of the four subgroups as defined by k = 

4 across the entire cohort to determine the extent and nature of intra-subgroup heterogeneity. 

SNF and spectral clustering were selected to reduce the noise introduced by biased feature 

selection, and to leverage the full spectrum of our dataset. We identified clusters from k = 2 

to k = 8 within each subgroup. In addition, we applied seven different machine-learning 

classifiers to predict the SNF subtypes. Cluster assignments from spectral clustering on the 

SNF fused similarity matrix was used as the “ground truth” subtype assignments. We split 

the dataset into a 70% training set and 30% testing set, trained the various classification 

models in 5-fold cross-validation on the training set and repeated the procedure 100 times 

(Table S2). We then applied the following criteria a priori to select the optimal number of 

subtypes: (1) how similar are the SNF clusters on the sample-to-sample heatmap? (2) How 

subtype specific are the broad and focal SCNA? (3) How relevant are the clinical 

associations? (4) How robustly can these subtypes be predicted using supervised machine 

learning? Using these criteria, we identified 12 subtypes: two WNT, four SHH, three group 

3, and three group 4. For each solution, we identified focal SCNA from SNP6 data and arm-

level copy-number gains and losses using copy-number states inferred from the methylation 

arrays.

For each subgroup, we identified the top associated genes and methylation probes that best 

support the final subtypes. Analysis of the top 1% of the associated genes and methylation 

probes for each subgroup demonstrates that the subgroups are supported by specific gene 
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sets and methylation probes that vary substantially across subtypes (Figures 2A, 2B, and 

S2A–S2D; Table S3). We evaluated the relationship between the associated genes and 

methylation probes in each subgroup. We first evaluated the number of associated genes that 

had methylation probes in their promoter region. Then we identified the subset of associated 

genes for which those probes were subgroup associated, and finally checked if we could 

detect an anti-correlation between the associated gene expression and the associated probe 

methylation levels. Only 3.7%, 8.3%, 6%, and 13% of WNT, SHH, group 3, and group 4 

associated genes, respectively, follow all the criteria described above (Figure 2C). Therefore, 

only a small percentage of the associated genes are directly affected by DNA methylation. 

This is in support of both DNA methylation and gene expression contributing to the 

heterogeneity observed within each subgroup.

Integrative Clustering of DNA Methylation and Gene Expression Overcomes Discrepancies 
in Single Dataset Analysis at Defining Subtypes

To determine whether analysis of a single data type in isolation yielded similar results, we 

performed NMF clustering using gene expression or DNA methylation data individually. 

Using NMF clustering of the most variable expressed genes and methylated probes, we 

found that the two different types of data yield discordant subtypes as defined by both the 

cophenetic coefficient and silhouette value (>0.9) criteria (Figures S3A–S3D). In addition, 

the group memberships between the two modalities are divergent, indicating a lack of 

agreement between expression and methylation when analyzed in isolation (Figures S3E–

S3H). When compared with the SNF subtypes, we found important differences, suggesting 

that both methylation and expression signatures contribute significantly and differently to 

define heterogeneity within the four subgroups; the data types provide distinct but 

complementary signals that improve over single-modality analyses. The subtypes identified 

by SNF are truly a combination of information present in both datasets, and therefore both 

data types are required to gauge the true intertumoral heterogeneity of medulloblastoma. For 

example, we observe that SHH α is mainly supported by the methylation data, but the 

defined group does not contain all SHH α samples (61%, Figure S3B). SHH δ is strongly 

supported by both the expression and methylation data (Figure S3B). In addition, groups 3β 
and 3γ are mainly defined by the signatures found in the expression data and do not separate 

well using the methylation data alone (Figure S3C). Finally, group 4γ is very well supported 

by the methylation data, and corresponds to a group obtained with the expression data, but 

this latter group is missing 24.4% of group 4γ samples (Figure S3D). Group 4β is well 

supported by both data types (Figure S3D). We conclude that methylation and expression 

data are complimentary, and an integrated approach allows a unified view of the underlying 

groups that is very valuable in elucidating heterogeneity within subgroups.

SHH Subtypes

Applying SNF and spectral clustering on SHH subgroup samples at k = 4 identified four 

clinically and cytogenetically distinct groups: SHH α (n = 65), SHH β (n = 35), SHH γ (n 

= 47), and SHH δ (n = 76) (Figures 3A, S4A, and S4B). SHH α tumors primarily affect 

children aged 3–16 years (Figure 3B), have the worst prognosis (p = 0.03, log rank test, 

Figure 3C), and are enriched for MYCN amplifications (SHH α 8/37, β 3/23, γ 0/29, δ 
1/48; p = 0.0034 Pearson’s chi-square test), and GLI2 amplifications (SHH α 6/37, β 0/23, 
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γ 0/29, δ 0/48; p = 0.0002 Pearson’s chi-square test, Figure S4C; Table S4). Specific CNAs 

including 9q loss (SHH α 42/65, β 8/35, γ 11/47, δ 17/76; p = 2.94 × 10−7 Pearson’s chi-

square test), 10q loss (SHH α 29/65, β 6/35, γ 7/47, δ 6/76; p = 1.54 × 10−5 Pearson’s chi-

square test), 17p loss (SHH α 24/65, β 5/35, γ 3/47, δ 8/76; p = 3.44 × 10−5 Pearson’s chi-

square test, Figure 3D), and YAP1 amplifications (SHH α 3/37, β 0/23, γ 0/29, δ 0/48; p = 

0.04 Pearson’s chi-square test, Figure S4C; Table S4) are also enriched in SHH α. The 

recent WHO classification includes SHH-activated TP53 mutant tumors as a distinct 

category based on studies showing this group as being very high risk (Louis et al., 2016; 

Ramaswamy et al., 2016a; Zhukova et al., 2013). To further explore this association, TP53 
was sequenced across 145 SHH samples. TP53 mutations are highly enriched in SHH α 
(SHH α 14/40, β 2/27, γ 2/31, δ 6/47; p = 0.0026 Pearson’s chi-square test, Figure 3E; 

Table S5). When survival is analyzed stratified by TP53 mutation and SHH α subtype, TP53 
mutations are only prognostic in SHH α (HR TP53 mut versus WT: SHH α 6.006 [95% CI: 

1.586–22.75; p = 0.00832] and non-SHH α 1.222 [95% CI: 0.2795–5.342; p = 0.79, Cox 

proportional hazards, Figure 3F]).

Interestingly, infant SHH tumors are mainly distributed across SHH β and SHH γ (age < 3: 

SHH α 5/65, β 23/35, γ 34/47, δ 0/76; p = 2.2 × 10−16 Pearson’s chi-square test, Figure 

3B), with disparate outcomes and copy-number profiles. SHH β tumors are frequently 

metastatic (33.3% versus 9.4% in SHH β and γ; p = 0.027 Pearson’s chi-square test, Figure 

3G), harbor focal PTEN deletions (25% in SHH β versus none in γ), have multiple focal 

amplifications (Figure S4C; Table S4), and have a worse overall survival compared with 

SHH γ (HR of SHH β versus γ: 2.956 95% CI: 0.908–9.63; p = 0.059 Cox proportional 

hazards, Figure 3C). The difference in outcomes between SHH β and γ is possibly related to 

the increased rate of metastatic dissemination in SHH β, as there is a clear trend toward 

metastases being a marker of poor outcome within SHH β (HR of SHH β metastatic versus 

non-metastatic: 3.621 95% CI: 0.798–16.44; p = 0.096 Cox proportional hazards). 

Conversely, SHH γ have a relatively quiet copy-number landscape, with no recurrent 

amplifications, only one low-level recurrent focal deletion, and no significant arm-level 

gains (Figures 3D and S4C). Moreover, SHH γ are enriched for the MBEN 

(medulloblastoma with extensive nodularity) histology (20.9%; p = 2.34 × 10−5, Pearson’s 

chi-square test, Figure 3H), which is known to portend more indolent clinical behavior 

(Rutkowski et al., 2010). Although almost all SHH tumors with MBEN histology (n = 10) 

were assigned to it, only a minority of SHH γ tumors have MBEN histology, demonstrating 

that histology alone is an inadequate surrogate to identify SHH γ tumors. The survival 

difference of SHH γ patients is not statistically significant between MBEN and non-MBEN 

tumors, suggesting that subtype affiliation is a more powerful biomarker than histopathology 

in infants with SHH medulloblastoma (p = 0.268, log rank test, Figure 3I). SHH δ are 

primarily composed of adults, have a favorable prognosis, and are strongly enriched for 

TERT promoter mutations (SHH α 6/34, β 2/22, γ 7/26, δ 38/42; p = 8.13 × 10−13, 

Pearson’s chi-square test, Figure 3J).

To interrogate other possible solutions and to present the full results (Figures S5A–S5E), we 

also compared SHH subtypes when divided into three or five SNF groups. We refer to the 

clusters obtained by SNF for other numbers of groups (k = 3, k = 5 here) as c1, c2, c3, etc. 

(see Figures S4A and S4B). When comparing k = 4 with k = 3, SHH α and δ correspond 
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closely to c2 and c1, respectively, with c3 representing a group of infants comprising SHH β 
and γ (Figures S4A, S4B, and S5A). SHH k = 5 reveals an additional group comprised 

primarily of a subset of SHH α patients with a group (c3) enriched for 9q loss with a good 

prognosis and a second group (c5) with a poor prognosis enriched for anaplasia (Figures 

S4B and S5C–S5E). Several machine-learning classifiers using both data types suggest poor 

confidence (<80%) in predicting the c5 group. The machine-learning classifier with the best 

performance, elastic net (Zou and Hastie, 2005), is able to distinguish between four groups 

with >90% accuracy (Table S2). The identification of two groups of infant medulloblastoma 

with distinct clinical behavior allows for more precise and rational planning of clinical trials 

for infants with SHH medulloblastoma (Lafay-Cousin et al., 2016).

WNT Subtypes

We identify two WNT subtypes, WNT α (n = 49) and WNT β (n =21) (Figures 4A, S6A, 

and S6B); WNT α is comprised mainly of children (Figure 4B), has similar survival as 

WNT β (p = 0.5, log rank test, Figure 4C), and has ubiquitous monosomy 6 (WNT α 48/49, 

β 6/21; p = 2.365 × 10−10 Pearson’s chi-square test, Figure 4D). WNT β is enriched for 

older patients (p = 4.013 × 10−6, Kruskal-Wallis test, Figure 4B) who are frequently diploid 

for chromosome 6 (Figure 4D). Monosomy 6 has previously been described as a defining 

WNT medulloblastoma feature; clearly, patients with WNT β will be misdiagnosed if this 

criterion is used alone. Prior reports suggesting that adult WNT medulloblastoma might 

have a different biology and worse prognosis than childhood WNT medulloblastoma, are 

supported by our current analysis (Remke et al., 2011; Zhao et al., 2016). At k = 3, we 

observe a new group, comprised primarily of WNT β without monosomy 6 (Figures S6A 

and S6B); however, in the absence of any other defining feature or clear clinical relevance, 

we chose k = 2 as our preferred solution.

Group 3 Subtypes

Three very distinct subtypes of group 3 emerge from our analysis, each with characteristic 

copy-number and clinical variables: group 3α (n = 67), group 3β (n = 37), and group 3γ (n 

= 40) (Figures 5A, S6C, and S6D). A total of 60% of infants under the age of 3 years are in 

group 3α (age < 3: group 3α 14/63, 3β 4/36, 3γ 5/36; p = 0.021, Kruskal-Wallis test, 

Figure 5B). Clinically, groups 3α and 3β have a more favorable prognosis compared with 

group 3γ (Figure 5C). Group 3β are slightly older (p = 0.021, Kruskal-Wallis test, Figure 

5B), and are infrequently metastatic (group 3α 23/53, 3β 5/25, 3γ 15/30; p = 0.058 

Pearson’s chi-square test, Figure 5D). Group 3α and 3γ have a similar frequency of 

metastatic dissemination at diagnosis (Figure 5D). Chromosome 8q (MYC locus at 8q24) 

loss is more frequent in group 3α and gain more frequent in group 3γ (8q gain: group 3α 
0/67, 3β 3/37, 3γ 22/40; p = 2.2 × 10−16 Pearson’s chi-square test, Figure 5E), group 3β 
tumors have a higher frequency of activation of the GFI1 and GFI1B oncogenes, previously 

shown to be drivers of group 3 through a process termed enhancer hijacking via focal gains 

and losses on chromosomes 1 and 9, with a paucity of arm-level chromosomal gains and 

losses (GFI1 or GFI1B activation: group 3α 1/67, 3β 26/37, 3γ 3/40, p < 2.2 × 10−16 

Pearson’s chi-square test, Figures S7A and S7B) (Northcott et al., 2014). OTX2 
amplifications are also enriched in group 3β, as are losses of DDX31 on chromosome 9; 

previously described to lead to activation of GFI1B through enhancer hijacking (OTX2: 
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group 3α 0/35, 3β 6/28, 3γ 0/24; p = 0.0013; DDX31 deletion: group 3α 1/35, 3β 9/28, 3γ 
0/24; p = 0.0031 Pearson’s chi-square test, Figure S7A; Table S4). Group 3γ have the worst 

prognosis (p = 0.036 log rank test, Figure 5C), a trend to enrichment of i17q (group 3α 
17/67, 3β 5/37, 3γ 10/40; p = 0.32 Pearson’s chi-square test, Figure 5E) and frequently 

harbor increased MYC copy number (group 3α 0/35, 3β 2/28, 3γ 5/24; p = 0.012, Figures 

5F and S7A; Table S4), without other focal aberrations (Taylor et al., 2012). Group 3γ have 

a poor prognosis independent of MYC amplification, expanding the group of high-risk 

group 3 tumors beyond just MYC status (p = 0.026, log rank test, Figure 5G).

We find less support for other solutions of group 3, specifically k = 2 and k = 4 (Figures 

S6C, S6D, S7C, and S7D). At k = 2, we observe a group enriched for MYC amplification 

(c1 0/38, c2 7/48; p = 0.014 Pearson’s chi-square test), and GFI1 family of oncogene 

activations cluster together (GFI1/1B activation: c1 1/71, c2 29/73; p = 1.14 × 10−8 

Pearson’s chi-square test) without any meaningful clinical differences (Figure S7C). At k = 

4, group 3α splits into two groups with minor contributions from the other two groups 

without any new meaningful clinical or copy-number enrichment (Figures S6D and S7D). In 

addition the elastic net classifier performs strongly at k = 3 (89%–98.8% per-group 

accuracy), while at k = 4 one group is less reliably predicted (72% accuracy, Table S2).

Group 4 Subtypes

Group 4 is the most prevalent subgroup comprising >40% of all medulloblastomas; 

previously described features include i17q, tandem duplications of SNCAIP, and high-level 

amplifications of MYCN and CDK6 (Northcott et al., 2012b). We observe clear enrichment 

of key focal and arm-level SCNA at k = 3: group 4α (n = 98), group 4β (n = 109), and 

group 4γ (n = 119) (Figures 6A, S8A, and S8B). Clinically we observe group 4β have a 

slightly higher median age at diagnosis (8.22, 10, and 7 years for groups 4α, 4β, and 4γ; p = 

1.34 × 10−5 Pearson’s chi-square test, Figure 6B); however, there is no statistically 

significant difference in the overall survival (Figure 6C) or rate of metastatic dissemination 

at diagnosis (groups 4α 30/75, 4β 35/86, 4γ 36/94; p =0.94 Pearson’s chi-square test, 

Figure 6D). Group 4α are enriched for MYCN amplifications (11/66, compared with none 

in group 4β and 4γ; p = 2.46 × 10−6 Pearson’s chi-square test, Figure S8C; Table S4). Group 

4α and 4γ are strongly enriched for 8p loss (group 4α 47/98, 4β 24/109, 4γ 87/119; p = 

1.22 × 10−13 Pearson’s chi-square test) and 7q gain (group 4α 57/98, 4β 9/109, 4γ 62/119; 

p = 9.5 × 10−31, Pearson’s chi-square test, Figure 6E). Group 4β are strongly enriched for 

SNCAIP duplications (group 4α 4/66, 4β 11/74, 4γ 0/73; p = 0.0019 Pearson’s chi-square 

test) and almost ubiquitous i17q (group 4α 40/98, 4β 87/109, 4γ 31/119; p = 9.75 × 10−16 

Pearson’s chi-square test) with a paucity of other SCNA (Figures 6E and S8C; Table S4). In 

addition, groups 4α and 4γ are enriched for focal CDK6 amplifications (group 4α 4/66, 4β 
0/74, 4γ 6/73; p = 0.051 Pearson’s chi-square test, Figure S8C; Table S4). Previous studies 

have suggested GFI1 and GFI1B activation to be present in group 4, however we see GFI 

activation to be largely restricted to group 3β (Figure S8D).

At k = 2, we observe groups 4α and 4γ forming one group, and group 4β being largely 

preserved (Figures S8A, S8B, and S8E). At k = 4, group 4β continues to segregate from the 

other groups; however, no new groups emerge with any significant clinical or copy-number 
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differences (Figures S8A, S8B, and S8F). Due to the enrichment of key SCNA at k = 3, we 

chose this as our preferred solution. Moreover, our classifier exhibits a decline in confidence 

at k = 4, suggesting these groups are not as robust as k = 3 (Table S2).

Comparable Subtypes with Key Clinical Differences Are Identified by Other Integrative 
Analyses

Two other integrative clustering methods have been employed by the The Cancer Genome 

Atlas (TCGA) consortium in previous studies of other cancer histologies. We applied both 

methods to our dataset; when applying the cluster of clusters (COCA) method used by 

TCGA in low-grade glioma and pan-cancer studies (Brat et al., 2015; Hoadley et al., 2014) 

we observed that the method was quite limited in the potential to leverage information from 

our two data types in the current manuscript. The COCA subgroups were driven by the 

samples that agree or disagree between the two data types clustered in isolation, which is the 

COCA input. COCA failed to identify one SHH infant subtype or group 3β.

iCluster was used successfully by TCGA to identify relevant subtypes (Collisson et al., 

2014). When applying iCluster to our dataset, at k = 4, the four groups did not have the 

demographics and SCNA consistent with the four previously described groups. When 

comparing the four iCluster groups with those defined by SNF, WNT and group 3 do not 

separate, and SHH comprises two groups. When we analyze the iCluster results for five 

groups, we recover two SHH groups, plus WNT, group 3, and group 4, which in this case 

corresponds very well to the SNF subgroup (when considering the two SHH groups 

together). We then asked if we could recover similar subtypes to SNF using iCluster. As we 

could not recover the four main groups, subgroups defined by SNF were then individually 

analyzed using iCluster. We observe a near 80% concordance with the SNF subtypes. The 

childhood and the adult SHH subtypes as well as the group 4 subtypes are recapitulated 

(along with a single SHH infant group). However, we identified key differences particularly 

within the WNT, SHH, and group 3 subgroups. Only one WNT group is identified, the two 

infant SHH subtypes are not identified, and the two distinct group 3 subtypes with MYC 
amplifications and GFI1 activation are not observed. Clearly, the SNF method is superior at 

leveraging information of multiple datasets to identify meaningful groups of patients in a 

cancer cohort, specifically in a medulloblastoma cohort.

Differential Pathway Activation Defines Subtypes across All Four Medulloblastoma 
Subgroups

Pathway enrichment analysis was performed for each of the identified subtypes across all 

four subgroups using the top 10% of associated genes across each subtype. We observe 

several significantly enriched pathways for all identified subtypes (adj. p value < 0.05), 

supporting subtype-specific biological processes and transcriptional networks (Figures 7A–

7D). In particular, in SHH we observe several pathways enriched in SHH β and γ, with 

developmental pathways more enriched in SHH γ over β (Figure 7A). Genes involved in 

DNA repair and cell cycle are significantly enriched in SHH α. Several actionable pathways, 

as defined by the availability of approved drugs, are subtype specific. Specifically, 

sumoylation is enriched in SHH α, ion channels are enriched in SHH β and γ, and telomere 

maintenance is enriched in SHH α and δ. Receptor tyrosine kinase signaling is enriched in 
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SHH γ and, to a lesser extent, in β. DNA repair pathways are enriched in SHH α, 

suggesting that strategies to inhibit the DNA damage response and increase replicative stress 

are more likely to be effective in this group.

Group 3α tumors are enriched for photoreceptor, muscle contraction, and primary cilium-

related genes (Figure 7B). Pathways involved in protein translation are enriched in groups 

3β and 3γ, which are potentially actionable using modulators of protein synthesis such as 

proteasome inhibitors. Telomere maintenance is also more enriched in group 3γ, suggesting 

that telomerase inhibition may only be effective in one group. Several pathways are 

identified across group 4 subtypes, which, coupled with subtype-specific copy-number 

enrichment, further supports the existence of three group 4 subtypes (Figure 7C). Actionable 

pathways restricted to particular subtypes include MAPK and FGFR1 signaling in group 4β 
and PI3K-AKT signaling and ERBB4-mediated nuclear signaling in group 4γ. Cell 

migration pathways are more enriched in group 4α.

DISCUSSION

Our study identifies and delineates the intertumoral heterogeneity present within 

medulloblastoma subgroups. Leveraging a large cohort of medulloblastomas profiled by 

combined gene expression and DNA methylation, we have identified different subtypes 

within each of the four core subgroups. These subtypes have particular clinical and copy-

number features, which allow for a refinement in our understanding of the genomic 

landscape of medulloblastoma (Figure 8). Combining expression and methylation data using 

SNF adds further proof that groups 3 and 4 are largely different biological entities. The 

deeper we go in clustering medulloblastoma samples, the less consistent the groups become. 

This is exemplified by poor predictability of putative subtypes when a large number of 

subtypes is assumed. Defining clinical features and CNAs also tend to lose their distinctive 

profiles as we increase the number of clusters, suggesting that heterogeneity is bounded by a 

discrete number of optimal groups.

Comparison of SNF with consensus clustering of either gene expression or DNA 

methylation data analyzed in isolation clearly suggests that an integrated approach provides 

a much more refined and accurate classification. This is particularly striking when 

evaluating the boundary between groups 3 and 4, where samples that are deemed 

indeterminate using gene expression and DNA methylation in isolation are largely non-

overlapping. Moreover, in elucidating the heterogeneity within subgroups, we observe 

significant disagreement between gene expression and DNA methylation in isolation, 

suggesting that each data type makes a unique and non-redundant contribution to defining 

the subtypes. The very low number of samples that change subgroup affiliation using SNF 

strongly advocates that definition of these two groups is largely enhanced using an 

integrative approach. A limitation of our approach is the bulk analysis of samples. At a 

subclonal level, a greater degree of overlap across groups 3 and 4 cannot be discounted. 

More detailed analysis at a cellular level, specifically applying single-cell methods, will help 

delineate the full subclonal structure, potentially uncovering subsets of group 3 and 4 

samples with common mechanisms and cellular origins. Further studies integrating 

emerging technologies such as long non-coding RNA, proteomics, and histone modifications 
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may allow an even more refined description of the medulloblastoma landscape; however, the 

large cohorts of frozen tissue required for these studies are presently not available.

The identification of subtypes has significant biological and clinical implications. Several 

previously described copy-number alterations within medulloblastoma subgroups such as 

amplifications/gains of MYC, MYCN, OTX2, CDK6, SNCAIP, and ACVR1, as well as 

several arm-level events including i17q clearly segregate between subtypes (Northcott et al., 

2012b). Our identification of unique cytogenetic aberrations that occur in concert, as well as 

specific biological pathways enriched within specific subtypes, will serve to inform creation 

of rational preclinical models that closely mirror the human diseases. Several of these 

aberrations are actionable and largely restricted to subtypes, which will also allow for a more 

personalized treatment approach. Several subtypes, particularly in SHH and group 3, have 

clear and drastic clinical and prognostic differences, which will allow for more robust risk 

stratification in future clinical trials. Furthermore, a major hurdle to clinical trial design has 

been the overlap of groups 3 and 4 in current studies, which if applied today would make 

strata assignment difficult. The next generation of clinical trials for high-risk 

medulloblastoma will involve subgroup-specific therapies. The inability to stratify 10% of 

patients to either groups 3 or 4 has the potential to either deprive a patient of an innovative 

therapy or, of more concern, expose a child to an inappropriate escalation or de-escalation of 

therapy.

Clinically, our observed groups have immediate implications. It has been shown that TP53 
mutations are highly prognostic in SHH. We extend these findings whereby TP53 mutations 

are not only enriched in SHH α but also only prognostic in SHH α. This is highly relevant 

for clinical trial design, where TP53 mutant SHH has been identified as a very-high-risk 

group to be prioritized for novel therapies in both Europe and North America (Ramaswamy 

et al., 2016a); clearly, the observation that TP53 mutations are highly enriched and 

prognostic in SHH α has significant implications. A limitation of this is the absence of 

germline status, which, based on previous studies, are likely TP53 mutant enriched in SHH 

α.

The identification of two infant SHH groups has clear and immediate clinical significance. 

Currently, infant medulloblastomas are stratified by the presence or absence of desmoplastic 

morphology. However, several reports have suggested that infant SHH as a whole have a 

favorable prognosis independent of morphology. Our results suggest that clinical risk 

stratification can be refined by incorporation of integrated subtypes, whereby SHH γ are 

clearly a very low-risk group and could be spared the toxic effects of high-dose 

chemotherapy. Our observation that MBEN histology is almost exclusive to SHH γ, but 

represent a minority of cases within SHH γ, has significant implications for clinical trials. 

Current infant clinical trials stratify patients based on either classic or desmoplastic/MBEN 

histology. Indeed, the frequency of desmoplastic histology is similar across all four SHH 

subtypes, despite significant differences in survival between SHH subtypes. The most recent 

infant medulloblastoma study from the Children’s Oncology Group ACNS1221 

(NCT02017964) was closed prematurely due to an excess of relapses. This study selected 

infants with a “desmoplastic” morphology for treatment de-escalation, of which the vast 

majority are SHH. Indeed, our identification of two infant subtypes of SHH represents an 
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example where more robust risk stratification has the potential to accurately select patients 

for de-escalation of therapy in future clinical trials. Overall, this further supports the idea 

that the incorporation of molecular stratification rather than subjective morphology alone has 

the potential for immediate clinical benefit.

Similarly, for group 3, we identify a high-risk group that is enriched for MYC amplification, 

but for which not all patients are MYC amplified. Interestingly, the majority of in vitro cell 

lines of medulloblastoma do not represent the clear intertumoral heterogeneity, but rather are 

MYC-amplified or MYC-activated models that actually represent only group 3γ. The 

identification of significant heterogeneity across group 3 underlies the urgent need to 

develop preclinical models that faithfully recapitulate the different subtypes within each 

subgroup. In group 4, there are currently no robust preclinical models, and the subgroups we 

describe, specifically the mutually exclusivity of MYCN amplifications and SNCAIP 
duplications, may help with future modeling.

Taken together, our results highlight the power of combining multiple data types compared 

with the use of single data types in isolation. This approach has identified that there may be 

a limit to the degree of substructure across medulloblastoma samples; however, only a study 

with a much larger cohort could fully assess the extent of intertumoral heterogeneity within 

the subgroups. We identify clinically important substructure within subgroups, which will 

allow further refinement of our biological and clinical risk stratification schemes. The 

identification of homogeneous subtypes may simplify the identification of targets for 

therapy, and could allow for therapies effective across subtypes. The development of reliable 

biomarkers to identify subtypes will provide much needed prognostic information for patient 

stratification, particularly in regard to SHH and group 3 medulloblastoma.

STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

763 primary 
medulloblastoma samples

This paper N/A

Deposited Data

Expression and methylation 
array raw and analyzed data

This paper GEO: GSE85218

Expression array data (285 
samples) (included as well in 
GSE85218)

Northcott et 
al., 2012b

GEO: GSE37382

SNP6 data Northcott et 
al., 2012b

GEO: GSE37384

Oligonucleotides

Primer for P53 see Table S5 Zhukova et 
al., 2013

N/A

TERT forward primer, 5′-
CAG CGC TGC CTG AAA 
CTC-3′

Remke et al., 
2013

N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

TERT reverse primer, 5′-
GTC CTG CCC CTT CAC 
CTT C-3′

Remke et al., 
2013

N/A

Software and Algorithms

Affy R Biocondcutor 
package

Gautier et al., 
2004

http://bioconductor.org/packages/release/bioc/html/affy.html

custom chip definition file 
(CDF) hugene11sthsensgcdf 
(v19.0.0).

Dai et al., 
2005

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/19.0.0/ensg.asp

arrayQualityMetrics R 
Bioconductor package 
(v3.22.0)

Kauffmann et 
al., 2009

https://www.bioconductor.org/packages/release/bioc/html/arrayQualityMetrics.html

minfi R Bioconductor 
package (v1.6.0) including 
SWAN normalization method

Aryee et al., 
2014; 
Maksimovic 
et al., 2012

http://bioconductor.org/packages/release/bioc/html/minfi.html

NMF R package (v0.20.6) Gaujoux and 
Seoighe, 
2010

https://cran.r-project.org/web/packages/NMF/index.html

conumee R Bioconductor 
package (v0.99.4)

Hovestadt et 
al., 2013; 
Sturm et al., 
2012

http://bioconductor.org/packages/release/bioc/html/conumee.html

GISTIC2 method (v6.2) Mermel et al., 
2011

http://portals.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=216&p=t

ConsensusClusterPlus R 
Bioconductor package 
(v1.24.0)

Wilkerson 
and Hayes, 
2010

https://www.bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html

SNFtool R package (v2.2.0) Wang et al., 
2014

https://cran.r-project.org/web/packages/SNFtool/index.html

MethylMix R Bioconductor 
package (2.0.0)

Gevaert, 2015 https://www.bioconductor.org/packages/release/bioc/html/MethylMix.html

Infinium DNA Methylation 
BeadChip (450K) probe 
annotation on hg38

Zhou et al., 
2016

http://zwdzwd.github.io/InfiniumAnnotation

StratomeX tool as part of the 
Caleydo suite (v3.1.5)

Streit et al., 
2014; Lex et 
al., 2012

http://caleydo.org/tools/stratomex/

g:profiler Reimand et 
al., 2016

http://biit.cs.ut.ee/gprofiler/

Cytoscape (v3.2.0) Shannon et 
al., 2003

http://www.cytoscape.org/

Cytoscape Enrichment map Merico et al., 
2010

http://apps.cytoscape.org/apps/enrichmentmap

IClusterPlus R Bioconductor 
package (v1.10.0)

Mo et al., 
2013

https://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Michael D Taylor (mdtaylor@sickkids.ca).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Acquisition of Patient Samples—All medulloblastoma samples were collected at 

diagnosis after obtaining informed consent from subjects as part of the Medulloblastoma 

Advanced Genomics International Consortium. Approval was obtained from institutional 

research ethics boards at the following institutions: The Hospital for Sick Children, 

Children’s Hospital of Pittsburgh, Seoul National University Children’s Hospital, The 

Children’s Memorial Health Institute, Institute of Pediatric Hematology and Oncology, 

Mayo Clinic, The Chinese University of Hong Kong, John Hopkins University School of 

Medicine, University of Alabama at Birmingham, Seattle Children’s Hospital, University of 

California San Francisco, Burdenko Neurosurgical Institute, McMaster University, Erasmus 

University Medical Center, Asan Medical Center, Kitasato University School of Medicine, 

Hospital Pediatría Centro Médico Nacional Century XXI, Masaryk University, Fondazione 

IRCCS Istituto Nazionale Tumori, Emory University, Osaka National Hospital, University of 

Debrecen, University of Naples, Washington University School of Medicine, Montreal 

Children’s Hospital, Hospital Sant Joan de Déu, Virginia Commonwealth University, 

Chonnam National University Hwasun Hospital and Medical School, Children’s Health 

Queensland Hospital and Health Service, University of Calgary, University of Sao Paulo, 

Cincinnati Children’s Hospital Medical Center, Hospital de Santa Maria, Lisbon, University 

of Arkansas for Medical Sciences, Catholic University Medical School, David Geffen 

School of Medicine at UCLA, The University of Sydney, Kumamoto University Graduate 

School of Medical Science, Saint Louis University School of Medicine, Hospital Infantil de 

Mexico Federico Gomez, Rainbow Babies & Children’s Hospital. Patients were selected 

only if their treatment plan required surgical resection. Samples were obtained as fresh 

frozen tissue from the time of diagnosis and stored at −80°C until processed for the 

purification of nucleic acids. Tumor isolates were partitioned for both DNA and RNA 

extraction. Using all information in our hands, we selected only primary tumor 

medulloblastoma samples for this study and removed duplicates. The sex and gender of the 

763 medulloblatoma patients used in this study are presented in Table S1.

METHOD DETAILS

Nucleic Acid Extraction—DNA extraction was performed by incubation with proteinase 

K overnight at 55°C followed by three sequential phenol extractions and ethanol 

precipitation. Total RNA was isolated using the TriZol method where tissue was 

homogenized in a Precellys 24 tissue homogenizer (Bertin Technologies, France) in Trizol 

using strict RNAase free conditions. DNA was quantified using the Picogreen method and 

RNA quantified using a NanoDrop 1000 instrument (Thermo Scientific) and integrity 

assessed by agarose gel electrophoresis (DNA) or Agilent 2100 Bioanalyzer (RNA) at the 

Centre for Applied Genomics (TCAG) at the Hospital for Sick Children in Toronto, Canada. 

RNA with an RNA integrity number of 7 or higher was required for analysis by Affymetrix 

Gene Arrays.

Expression and Methylation Data—To generate gene expression array profiling, 400ng 

of total RNA was processed and hybridized to the Affymetrix Gene 1.1 ST array at the 

Centre for Applied Genomics (TCAG) at the Hospital for Sick Children (Toronto, Canada) 

according to manufacturers instructions. In addition, all samples were analyzed on the 
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Illumina Infinium HumanMethylation450 BeadChips at TCAG (Toronto, ON) according to 

manufacturer’s instructions.

TERT Promoter and TP53 Sequencing—TERT promoter mutational status was 

determined using direct sanger sequencing and genotyping as previously described where 

sufficient DNA was available (Remke et al., 2013). Two primers (forward primer, 5′-CAG 

CGC TGC CTG AAA CTC-3′; reverse primer, 5′-GTC CTG CCC CTT CAC CTT C-3′) 

were designed to amplify a 163-bp product encompassing C228T and C250T hotspot 

mutations in the TERT promoter—corresponding to the positions 124 and 146 bp, 

respectively, upstream of the ATG start site. Two fluorogenic LNA probes were designed 

with different fluorescent dyes to allow single-tube genotyping. One probe was targeted to 

the WT sequence (TERT WT, 5′-5HEX-CCC CTC CCG G-3IABkFQ-3′), and one was 

targeted to either of the two mutations (TERT mut, 5′-56FAM-CCC CTT CCG 

G-3IABkFQ). Primer and probes were custom designed by Integrated DNA Technologies 

(Coralville, Iowa, USA) using internal SNP design software, and sequence homogeneity was 

confirmed by comparison to all available sequences on the GenBank database using BLAST 

(). Primers were optimized to avoid for hairpins and homo- and heterodimers. Primers and 

probes were obtained from Integrated DNA Technologies.

Real-time PCR was performed in 25 μl reaction mixtures containing 12.5 μl of TaqMan 

Universal Master Mix II with UNG (Applied Biosystems), 900 nM concentrations of each 

primer, 250 nM TERT WT probe, 250 nM TERT MUT probe, and 1 μl (25 ng) of sample 

DNA. Thermocycling was performed on the StepOnePlus (Applied Biosystems) and 

consisted of 2 min at 50°C, 10 min at 95°C, and 40 cycles of 95°C for 15 s and 60°C for 1 

min.

Analysis was performed using StepOne Software, version 2.1. Samples were considered 

mutant if they had CT values of ≤ 39 cycles. Each sample was verified visually by 

examining the PCR curves generated to eliminate false positives due to aberrant light 

emission. End-point allelic discrimination genotyping was performed by visually inspecting 

a plot of the fluorescence from the WT probe versus the MUT probe generated from the 

post-PCR fluorescence read.

TP53 mutational status was determined using direct sanger sequencing as previously 

described where sufficient DNA was available (Zhukova et al., 2013). We used amplitaq 

gold and after purification with ampure beads, forward and reverse sequencing primers using 

dGTP BigDye Terminator v3.0 Cycle Sequencing Ready Reaction Kit (Life Technologies), 

and 5 % DMSO on the ABI3730XL capillary genetic analyzer (Life Technologies). The 

sequencing primers are the same as the PCR primers. The TP53 primers along with the 

melting temperature are presented in Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microarray Gene Expression Analysis—To generate gene expression array profiling, 

400ng of total RNA was processed and hybridized to the Affymetrix Gene 1.1 ST array at 

TCAG according to manufacturer’s instructions. Two hundred and eighty-five arrays were 

previously generated (GEO accession GSE37382) and included in the analysis. Expression 
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data were analyzed in the R environment (v3.1.1). We used the affy package (v1.44.0) 

(Gautier et al., 2004) and the custom chip definition file (CDF) hugene11sthsensgcdf 

(v19.0.0).

(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/19.0.0/ensg.asp) 

(Dai et al., 2005) to load and summarize the expression of 21,641 Ensembl (ENSG) genes 

and process the data. Samples flagged by the arrayQualityMetrics Bioconductor package 

(v3.22.0) (Kauffmann et al., 2009) were removed due to low quality. Expression data were 

normalized using the rma method.

Unsupervised clustering using NMF using top 10,000 most variably expressed genes 

(determined by the standard deviation) was carried out using the NMF package (v0.20.6) 

(Gaujoux and Seoighe, 2010). We reselected the top most 10,000 variably expressed genes 

for each subset of samples on which we ran NMF.

Genome Wide Methylation Analysis—All samples were analyzed on the Illumina 

Infinium HumanMethylation450 BeadChips at TCAG (Toronto, Ontario) according to 

manufacturer’s instructions. Bisulfite conversion was performed using the EZ DNA 

Methylation™ Kit (Zymo, Irvine, CA). Samples were processed as per manufacturer’s 

instructions. Raw data files (.idat) generated by the Illumina iScan array scanner were 

processed in the R statistical environment (v3.0.0 and 3.1.1) using the minfi (v1.6.0) (Aryee 

et al., 2014) and IlluminaHumanMethylation450kmanifest (v0.4.0) R Bioconductor 

packages. We checked all samples for unexpected genotype matches by pairwise correlation 

of the 65 genotyping probes on the 450k arrays, allowing us to remove remaining duplicates. 

We ran the detectionP function from the minfi package to identify probes and samples with 

low quality. Samples were removed if more than 1% of their probes had a p value above 0.01 

and probes were removed if their p value was above 0.01 in at least 5% of samples. We 

removed probes on sex chromosomes as well as those located on or close to known single 

nucleotide polymorphisms (SNP). We retained a total of 321,174 probes for the analysis. 

The data was normalized using the SWAN method as part of the minfi package (Maksimovic 

et al., 2012). We generated both the beta and logitB values matrix values. Unsupervised 

clustering using the top 10,000 most variably methylated probes defined by the standard 

deviation was carried out using the NMF package (v0.20.6). We reselected the top most 

10,000 variably methylated probes for each subset of samples on which we ran NMF.

Methylation Array Copy Number Analysis—Copy number inference from 

methylation arrays and identification of recurrent broad events. Copy number segmentation 

was performed from genome wide methylation arrays using the conumee package (v0.99.4) 

in the R statistical environment (v3.2.3) as previously described (Hovestadt et al., 2013; 

Sturm et al., 2012). Segment files were generated for each subgroup and subtype.

Identification of recurrent broad copy number events (arm level chromosomal events) was 

performed from segmented copy number derived from methylation data (as described 

above). The log2 R ratio (LRR) of each chromosome was calculated using a size-weighted 

mean of all segments mapping to the chromosome. A chromosome was declared gained if its 

LRR was greater than 0.2, lost if the LRR was less than −0.2, and balanced otherwise. 
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Unlike GISTIC, gained and lost broad events were analyzed together. The significance of the 

frequency of each broad event was tested using the exact binomial test. Each broad event 

frequency was compared to the background frequency, which was determined from a robust 

regression of the observed frequencies with respect to gene content (i.e. number of RefSeq 

genes) across all chromosomes. This approach was motivated by GISTIC’s broad event 

analysis.

SNP6 Copy Number Analysis—Affymetrix SNP6 CEL files were processed as 

previously described (Northcott et al., 2012b) (GEO accession GSE37384). Copy number 

states were estimated as described previously using the hg18 reference genome. Segmented 

copy number estimates from SNP6 arrays were processed for input with the GISTIC2 

method (v6.2) using the default parameters (Mermel et al., 2011) for the identification of 

recurrent focal copy number events.

Clinical Correlation and Survival Analysis—Progression-free survival and overall 

survival was right-censored at 5 years and analyzed by the Kaplan-Meier method and p 

value were reported using the log-rank test. Associations between covariates and risk groups 

were tested by the Fisher’s exact test. Continuous variables were tested using non-

parametric measures, specifically the Mann-Whitney U test or Kruskal-Wallis test. The 

significance of chromosome arm frequencies were evaluated using the exact binomial test, 

comparing the observed frequency to the expected frequency derived from a robust 

regression of event frequency and gene content, in a similar manner to the ‘broad analysis’ 

in GISTIC2. All statistical analyses were performed in the R statistical environment (v3.2.3), 

using R packages survival (v2.37-7), and ggplot2 (v1.0.0).

Group 3 and Group 4 Analysis—K-means clustering was performed using the top 

10,000 most variable methylation probes (determined by median absolute deviation) of 

Group 3 and Group 4 samples (n=470). Consensus clustering was obtained using the 

ConsensusClusterPlus R Bioconductor package (v1.24.0) (Wilkerson and Hayes, 2010) with 

1,000 repetitions in the R statistical environment (v3.2.2). Similar approach was used on the 

top 10,000 most variable genes of this set of 470 Group 3 and Group 4 samples. In addition, 

the NMF method was run (as described above) for both expression and methylation data on 

the same set of Group 3 and Group 4 samples.

We identified the outlier samples moving from Group 3 to Group 4 from the gene expression 

and DNA methylation NMF results using the following rule. We identified at k=2 the Group 

3 and Group 4 clusters using the known subgroups of the samples (each group had a larger 

proportion of samples of a particular subgroup). At k=3, we identified which cluster(s) are 

largely composed of Group 3 and Group 4 (two Group 3 and one Group 4 clusters for the 

expression data, and one Group 3 and two Group 4 clusters for the DNA methylation data, 

Figure S1G). Then we counted the number of samples that were initially considered to be of 

a particular subgroup for k=2 and moved to be in another subgroup at k=3 (Figure 1D). 

Similar approach has been used to detect the outlier samples moving from Group 3 to Group 

4 in the k-means consensus clustering (Figures 1D and S1H).
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Similarity Network Fusion Analysis (SNF)—The Similar Network Fusion (SNF) 

method was run on 763 primary tumor samples using both gene expression and DNA 

methylation data (Wang et al., 2014). The SNF method does not require any prior feature 

selection so we used the full matrix of gene expression (21,641 genes) and the full matrix of 

methylation data (logitB values, 321,174 probes). We used the SNFtool R package (v2.2.0) 

with the parameters K = 50, alpha = 0.6, T = 50. Spectral clustering implemented in the 

SNFtool package was run on the SNF fused similarity matrix to obtain the groups 

corresponding to k=2 to 20.

We obtained four cluster at k=4 corresponding to the four medulloblastoma subgroups; 

WNT (n= 70), SHH (n=233), Group 3 (n=144), Group 4 (n=326). For each of these four 

subgroups we then ran the SNF method independently with the following parameters and 

clustered the resulting fused similarity matrix with spectral clustering using k=2 to 8.

Parameters:

WNT: K = 10, alpha = 0.6, T = 50

SHH: K = 40, alpha = 0.6, T = 50

Group 3: K = 40, alpha = 0.6, T = 50

Group 4: K = 60, alpha = 0.6, T = 50

Group 3 and Group 4: K = 80, alpha = 0.6, T = 50

We identified the top associated genes and methylation probes that have the largest 

agreement with the final fused network structure. To do so we computed the Normalized 

Mutual Information (NMI) score (as part of the SNFtool package) for each feature (i.e each 

gene and methylation probe). For each feature, we constructed a patient network based on 

the feature alone and subsequently used spectral clustering. We then compared the result of 

the resultant clustering to the one obtained from the whole fused similarity matrix by 

computing the NMI score as previously described (Wang et al., 2014). As mentioned in this 

paper, a score of 1 indicates the strongest feature and shows that the network of patients 

based on the given feature leads to the same groups as the fused network. A score of 0 

means that there is no agreement between the groups that can be derived from the feature 

and the fused network groups. We therefore ranked all features according to their NMI 

scores that represent their importance for the fused network. We then selected a list of top 

1% and top 10% features (also called associated genes and methylation probes) for each 

dataset (Figure 2 and S2A–S2D) for subsequent analysis. Those top features have expression 

or methylation patterns that are the most informative when determining our final subtypes 

using individual features.

Groups Visualization Using Stratomex—We used the StratomeX tool as part of the 

Caleydo suite (v3.1.5) to visualize the grouping of samples and the relationship between the 

groups resulting from different datasets, methods and/or parameterization of clustering 

(Streit et al., 2014; Lex et al., 2012). Sample group labels obtained by spectral clustering of 

the SNF fused similarity matrix or independent NMF clustering was imported to StratomeX 

software. The groups were colored according to the subgroup or subtype (if any) and 
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reordered to show the relationship between the different clustering results (columns). In this 

study, we only used StatromeX for visualization and did not use its analytical functionalities.

Network Visualization with Cytoscape—From the fused similarity matrix returned by 

the SNF method, we retrieved all the patient pairs for which the values (W) was superior to 

the median values of all W pairs and imported those paired in Cytoscape (v3.2.0) (Shannon 

et al., 2003). We used the edged-weighted Spring embedded layout with the W values for 

visualization showing the edges in Figure 1B, and hiding the edges to only show the nodes 

(i.e patients) for Figures 3A, 4A, 5A, and 6A.

Relationship between Associated Genes and Probes—We evaluated the 

relationship between the gene expression features and the DNA methylation probe features 

in each subgroup. We applied the MethylMix R Bioconductor package (Gevaert, 2015) 

developed to identify potential cancer driver genes affected by hypo or hypermethylation 

changes, i.e. looking for anti-correlation between the methylation level and gene expression 

levels across samples. We obtained the probes annotations for hg38 from Zhou et al. (Zhou 

et al., 2016, Online supplemental data, http://zwdzwd. github.io/InfiniumAnnotation). We 

focused on probes within 1500 bp of the transcription start site (TSS) and identify 1342, 

1573, 1673 and 1673 candidate driver genes for WNT, SHH, Group 3 and Group 4, 

respectively. Among those, 8, 18, 13 and 28 WNT, SHH, Group 3 and Group 4 genes, 

respectively, where in our features genes and had anti-correlated probes present in the top 

DNA methylation features, representing therefore only 3.7, 8.3, 6 and 13% of the feature 

genes (Figure 2C).

Pathway Enrichment Analysis—Pathway enrichment analysis was performed with 

g:Profiler and visualized as Enrichment Map in Cytoscape (Reimand et al., 2016; Merico et 

al., 2010; Shannon et al., 2003). We considered the top 10% associated genes (as described 

above) that were the most relevant for the final subtypes. For each subtype, we ranked up-

regulated genes by their z-scores and analyzed the resulting gene lists with the ordered query 

setting of g:Profiler using pathways and processes with more than 5 and up to 1000 genes. 

Multiple testing correction was conducted with the default method of g:Profiler. Biological 

processes from the Gene Ontology, pathways from Reactome and KEGG, and protein 

complexes from CORUM were included in the enrichment analysis and other data sources 

were excluded. Electronic annotations (IEA) from Gene Ontology were excluded to only 

cover high-confidence gene annotations. Processes and pathways with g:profiler FDR 

corrected q values <0.05 were considered significant. Enriched categories were further 

filtered: pathways and processes with less than three associated genes were discarded.

Enrichment maps represent biological processes and pathways enriched in subtype-specific 

up-regulated genes. Each node represents a process or pathway; nodes with many shared 

genes are grouped and labeled by biological theme. Nodes sizes are proportional to the 

number of genes in each process, in each subgroup. Process and pathways connected by 

edges have genes in common, shorter edges represent stronger edges with Jaccard and 

Overlap coefficient combined by the Enrichment Map app of Cytoscape at cutoff value 0.66. 

Nodes are colored according to the subtype in which the process is enriched; processes 

enriched in more than one subtype have multiple colors.
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Enrichment map visualization was manually curated to group functionally similar groups of 

pathways and to remove redundant groups and singletons. Connected nodes and 

unconnected but actionable nodes are shown.

Classifier Description—In this study, we used seven classifiers based on diverse machine 

learning approaches. Ridge logistic regression (labeled as Ridge LR) is a regression model, 

assigning weight to each feature to make a binary prediction. L2 regularization shrinks the 

weights to avoid overfitting. Lasso logistic regression (labeled as Lasso LR) works the same 

way as Ridge but uses L1 regularization instead, which sets some of the weights to zero, 

effectively performing feature selection again to avoid overfitting. Elastic net logistic 

regression (labeled as Elastic Net) also works similarly to Ridge but uses a linear 

combination of L1 and L2 regularizations and is able to select correlated features (through 

L2) while still performing feature selection (setting some of the weights to zero) through L1. 

Decision tree (labeled as Decis.Tree) utilizes a tree-structured graph with inner nodes 

representing decision rules and end nodes representing the classification decisions. Each 

path from root to a leaf in such a tree represents a classification rule. The individual decision 

rules are selected according to the information gain criterion. Random forest (labeled as 

Rand.Forest) uses an ensemble of decision trees to make classification predictions. Each 

decision tree uses a random subset of features trained on a bootstrapped set of samples. The 

output is the mode of the classification from all decision trees in the random forest. Support 

Vector Machines (SVM) make classification predictions by first transforming the data 

according to a chosen kernel and then constructing a maximum margin classifier such that 

the different classes are separated by the decision hyperplane as much as possible. SVM 

with linear kernel (labeled as SVM lin) performs a linear transformation of the data, whereas 

SVM with radial basis function kernel (labeled as SVM rbf) performs a Gaussian 

transformation of the data.

Prior to training any of the classifiers, we used Kruskal-Wallis H test, also know as “one-

way ANOVA on ranks” to constrain the feature space. This way we selected top 1% of genes 

(resulting in 216 genes) and top 1% of CpG methylation probes (resulting in 3212 

methylation probes) whose expression and methylation, respectively, is most predictive of 

the cluster assignment (done by the spectral clustering on the SNF fused similarity matrix) 

of samples in the training set. This feature selection procedure was repeated in each training/

testing split of the data set, using the training set only.

All analyses were performed in R version 3.2.3. We used the glmnet package for Elastic Net, 

Lasso, and Ridge; the rpart package for Decision tree; the randomForest package for 

Random forest, the kernLab package for SVM. Training of Random forest and SVM was 

done using the caret package. The AUPRC (area under the precision-recall curve) values 

were calculated using the PRROC package.

Training and Selection of the Classifiers—We performed five classification tasks: the 

medulloblastoma subgroup classification, and then subtype classification within each of the 

four medulloblastoma subgroups. Cluster assignment by spectral clustering on the SNF 

fused similarity matrix was taken as the ground truth label assignment for the study cohort 

subgroup and subtype classification. For each of these tasks we trained 7 classification 
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models using the concatenation of the top 1% expression and the top 1% methylation 

features as feature set.

For each task, we split the study cohort data set randomly to 70% training set and 30% 

testing set splits. The top 1% feature selection procedure, as described above, was then run 

on the training set. The selected features were used for both training and testing of the 

classifiers. Individual classification models were subsequently trained in 5-fold cross 

validation on the training set. On the testing set we measured the performance of the 

classifiers in the terms of classification accuracy and the area under the precision-recall 

curve (AUPRC). The entire described procedure was repeated 100 times. We report AUPRC 

and accuracy means and standard deviation over these 100 runs, as well as the average 

percentages of subtype predicted for the reference subtypes (Table S2).

COCA Analysis—We performed the COCA analysis as described in the TCGA pan 

cancer paper (Hoadley et al., 2014). We applied NMF clustering on gene expression and 

DNA methylation data individually for each subgroup. We proceeded to create a matrix of 0 

and 1 with all the samples (as column) and the different groups (as row, one row per group 

obtained for each clustering). 1 indicated the presence of a sample in a group. This matrix 

was then clustered with k-means consensus clustering as performed in the TCGA pan cancer 

paper.

iCluster Analysis—We also performed multi-platform clustering using iCluster. We 

applied the R Bioconductor IClusterPlus package (the newest version of iCluster) to perform 

the analysis (Shen et al., 2009; Mo et al., 2013). It is necessary to select a set of features for 

each dataset to run iCluster. We tested selection of features on the maximum variance and on 

the MAD (median absolute deviation) and different percentages of features. We selected the 

top 15% most variable expressed genes and 1% most variable methylated probes as defined 

by median absolute deviation. We chose these numbers to allow for an equal representation 

of variable genes and methylated probes, which resulted in 3000 features per dataset. We 

performed multiple clusterings with different values of the lambda parameter and settled on 

Lambda =1. After performing the clustering, we confirm that almost all features are used to 

some degree in the model which implies that the results are not entirely driven by one data 

type. Indeed, this reassured us that the parameters we selected would allow for a robust 

multi-platform integrated analysis.

When applying iCluster across the entire dataset, we are unable to recover the 4 subgroups 

of medulloblastoma at k=4. When comparing the demographics of these 4 groups, and cross 

referencing to the SNF subgroups, WNT and Group 3 cluster together with two SHH groups 

emerging. When we increased to 5 groups we are able to clearly split WNT and Group 3. To 

determine the congruence between iCluster and SNF in defining the subtypes of subgroups, 

we first defined the subtypes using SNF, and then applied iCluster individually to each 

subgroup. Overall the subtypes as defined by iCluster were in agreement with SNF/Spectral 

clustering groups in 72–84% of instances. When we take into account that in some 

instances, iCluster recovered similar subtypes at a different number of groups, then the 

agreement increases to 74–90% (for example, some groups in iCluster split in two but 

correspond strongly to one cluster by SNF).
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DATA AND SOFTWARE AVAILABILITY

The expression and methylation array data has been deposited in GEO under the accession 

number GSE85218. The previously published data is available in GEO under the accession 

numbers GSE37382 and GSE37384.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Medulloblastoma comprises 12 subtypes; 2 WNT, 4 SHH, 3 group 3, and 3 

group 4 groups

• Heterogeneity within subgroups accounts for previously unexplained variation

• Groups 3 and 4 medulloblastoma are molecularly distinct entities

• Clinically and biologically relevant subtypes exist for each subgroup
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Significance

While medulloblastoma is widely recognized as comprising four distinct subgroups, the 

degree of heterogeneity within the four subgroups, and the extent of overlap between the 

four subgroups is unknown. Applying similarity network fusion to integrate gene 

expression and DNA methylation profiling, we demonstrate that the degree of overlap 

between groups 3 and 4 is minimal after accounting for both expression and DNA 

methylation data. We identify medulloblastoma subtypes within each of the subgroups 

that have distinct somatic copy-number aberrations, differentially activated pathways, and 

disparate clinical outcomes. Integrated analysis has refined the boundaries between the 

four medulloblastoma subgroups, and identified clinically and biologically relevant 

subtypes, which will inform and improve preclinical modeling, as well as refine our 

current clinical classification.
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Figure 1. Clear Separation of the Four Medulloblastoma Subgroups through Integrative SNF 
Clustering
(A) Tumor clusters obtained by spectral clustering (for k = 2 to 8 groups) on the SNF 

network fused data obtained from both gene expression and DNA methylation data on 763 

primary medulloblastomas. Relationships between tumors are indicated by the gray bars 

between columns. k = 4 (red box), defines the four recognized subgroups.

(B) Network representation of the relationships between tumors (k = 4). The shorter the edge 

between samples (nodes) is the more similar the samples are (only edges with a similarity 

value above the median value of all patient to patient similarity values are displayed).
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(C) Heatmap representation of the sample-to-sample fused network data sorted by cluster for 

k = 4. Sample similarity is represented by red (less similar) to yellow (more similar) 

coloring inside the heatmap.

(D) Venn diagram showing the number of samples intermediate between groups 3 and 4 

when using k-means or NMF clustering method on just expression or just methylation 

datasets of group 3 and 4 tumors (n = 470) between k = 2 and 3.

(E) Tumor clusters obtained through spectral clustering on the SNF network fused data of 

group 3 and 4 samples (n = 470). A small minority of samples (n = 13, 2.8%) that were 

initially classified as group 3 samples at k = 2, subsequently move to group 4 at k = 3. Only 

3/470 (0.64%) samples remain in group 4 after k = 5. These samples are tracked up to k = 8 

(orange).

See also Figures S1, S3 and Table S1.
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Figure 2. Differential Set of Associated Genes and Methylation Probes across the 12 Subtypes
(A and B) Heatmap of the top 1% most associated genes (A) and the top 1% most associated 

methylation probes (B) for the subtypes inside each subgroup (left side color bar), 

respectively. Top color bars indicate the subgroup and subtype sample affiliation. Samples 

are ordered by subtype.

(C) Percentage of genes associated for each subgroup; (1) that have methylation probes in 

their promoter region, (2) for which those methylation probes are in the top 1% associated 

probes of the respective subgroup, and (3) for which an anti-correlation can be detected 
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between the gene expression and methylation probes levels inside the subgroup. The 

numbers of genes in each category are indicated.

See also Figure S2 and Tables S2 and S3.
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Figure 3. Clinical and Genomic Characteristics between Four SHH Medulloblastoma Subtypes
(A) Network representation map of k = 4 SNF-derived subtypes.

(B) Age at diagnosis for SHH subtypes at k = 4 (Kruskal-Wallis test). Boxplot center lines 

show data median; box limits indicate the 25th and 75th percentiles; lower and upper 

whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, 

respectively. Outliers are represented by individual points.

(C) Overall survival of SHH subtypes (log rank test). + indicates censored cases.
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(D) Frequency and significance of broad cytogenetic events across the four SHH subtypes. 

Darker bars show significant arm-level copy-number event (q ≤ 0.1, chi-square test). * 

indicates key statistically significant arm gain or deletion.

(E) Distribution of TP53 mutations across SHH subtypes (Pearson’s chi-square test).

(F) Overall survival stratified by TP53 mutation within SHH α and non-SHH α (log rank 

test). + indicates censored cases.

(G) Incidence of metastatic dissemination at diagnosis across the four SHH subtypes (chi-

square test).

(H) WHO histological classification at diagnosis across the four SHH subtypes (chi-square 

test).

(I) Overall survival within SHH γ stratified by MBEN histology (log rank test). + indicates 

censored cases.

(J) Distribution of TERT promoter mutations across SHH subtypes (Pearson’s chi-square 

test).

See also Figures S4, S5; Tables S2, S4, and S5.
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Figure 4. Clinical and Genomic Characteristics between Two WNT Medulloblastoma Subtypes
(A) Network representation map of k = 2 SNF-derived subtypes.

(B) Age at diagnosis for WNT subtypes at k = 2 (Mann-Whitney U test). Boxplot center 

lines show data median; box limits indicate the 25th and 75th percentiles; lower and upper 

whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, 

respectively. Outliers are represented by individual points.

(C) Overall survival comparing WNT α with WNT β (log rank test). + indicates censored 

cases.

(D) Frequency and significance of broad cytogenetic events across the two WNT subtypes. 

Darker bars show significant arm-level copy-number events (q ≤ 0.1, chi-square test). * 

indicates key statistically significant arm gain or deletion.

See also Figure S6.
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Figure 5. Clinical and Genomic Characteristics between Three Group 3 Medulloblastoma 
Subtypes
(A) Network representation map of k = 3 SNF-derived subtypes.

(B) Age at diagnosis of group 3 subtypes at k = 3 (Kruskal-Wallis test). Boxplot center lines 

show data median; box limits indicate the 25th and 75th percentiles; lower and upper 

whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, 

respectively. Outliers are represented by individual points.

(C) Overall survival of group 3 subtypes (log rank test). + indicates censored cases.
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(D) Incidence of metastatic dissemination at diagnosis for the three group 3 subtypes (chi-

square test).

(E) Frequency and significance of broad cytogenetic events across the group 3 subtypes. 

Darker bars show significant arm-level events (q ≤ 0.1, chi-square test).

* indicates key statistically significant arm gain or deletion.

(F) Distribution of MYC amplifications across group 3 subtypes (Pearson’s chi-square test).

(G) Overall survival of group 3 subtypes without MYC amplifications for each subtype 

compared with MYC-amplified tumors (log rank test). + indicates censored cases.

See also Figures S6 and S7; Tables S2 and S4.
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Figure 6. Clinical and Genomic Characteristics of the Three Group 4 Medulloblastoma Subtypes
(A) Network representation map of k = 3 SNF-derived subtypes.

(B) Age at diagnosis of group 4 subtypes at k = 3 (Kruskal-Wallis test). Boxplot center lines 

show data median; box limits indicate the 25th and 75th percentiles; lower and upper 

whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, 

respectively. Outliers are represented by individual points.

(C) Overall survival of group 4 subtypes (log rank test). + indicates censored cases.

(D) Incidence of metastatic dissemination at diagnosis across the three group 4 subtypes 

(chi-square test).

(E) Frequency and significance of broad cytogenetic events across the three group 4 

subtypes. * indicates key statistically significant arm gain or deletion. Darker bars show 

significant arm-level events (q ≤ 0.1, chi-square test).

See also Figure S8 and Tables S2, S4.
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Figure 7. Subtype-Enriched Pathways
(A–D) Enrichment maps representing biological processes and pathways enriched in 

subtype-specific upregulated genes for SHH subtypes (A), group 3 subtypes (B), group 4 

subtypes (C), and WNT subtypes (D). Each node represents a process or pathway; nodes 

with many shared genes are grouped and labeled by biological theme. Processes and 

pathways connected at edges have genes in common. Nodes are colored according to the 

subtype(s) in which the process is enriched; processes enriched in more than one subtype 

have multiple colors. Nodes sizes are proportional to the number of genes in each process, in 
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each subgroup. Enriched processes were determined with g:Profiler (FDR-corrected q value 

< 0.05) and visualized with the Enrichment Map app in Cytoscape. Connected nodes and 

unconnected but actionable nodes are shown.
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Figure 8. Graphical Summary of the 12 Medulloblastoma Subtypes
Schematic representation of key clinical data, copy-number events, and relationship between 

the subtypes inside each of the four medulloblastoma subgroups. The percentages of patients 

presenting with metastases and the 5-year survival percentages are presented. The age 

groups are: infant 0–3 years, child >3–10 years, adolescent >10–17 years, and adult >17 

years.
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