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Molecular surface-free continuum model for electrod-
iffusion processes

Benzhuo Lu†‡∗, J. Andrew McCammon†‡§¶

† Howard Hughes Medical Institute, ‡ Center for Theoretical Biological Physics, §

Department of Chemistry and Biochemistry, ¶ Department of Pharmacology, University
of California at San Diego, La Jolla, CA, 92093-0365.

Abstract
Incorporation of van der Waals interactions enables the continuum model

of electrodiffusion in biomolecular system to avoid the artifacts of introduc-
ing a molecular surface and the painful task of the surface mesh generation.
Calculation examples show that the electrostatics, diffusion-reaction kinet-
ics, and molecular surface defined as an isosurface of a certain density dis-
tribution can be extracted from the solution of the Poisson-Nernst-Planck
equations using this model. The molecular surface-free model enables a
wider usage of some modern numerical methodologies such as finite element
methods for biomolecular modeling, and sheds light on a new paradigm of
continuum modeling for biomolecular systems.

1 Introduction
Continuum description is commonly used in computational biophysics and chem-
istry, such as solvation energy prediction, molecular transport studies, signal trans-
duction and metabolism networks simulations. We have recently developed a nu-
merical framework for electrostatics and diffusion modeling for biosystems with
realistic spatiotemporal resolution [1]. To use modern numerical methods such as
finite element method (FEM) or boundary element method (BEM), generations
of the volume mesh and especially the molecular surface mesh are prerequisites.
However, mesh generation is a long standing problem and hinders the wide appli-
cation of the FEMs and BEMs to biomolecular systems due to the very irregular
shape of biomolecules. Many tools are available for volume mesh generation
once the domain boundary mesh (qualified enough) is given. But to our knowl-
edge, there is still almost no convenient and efficient tool so far for biomolecular
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surface mesh generation that not only maintains the molecular “shape” but also
satisfies the mesh quality requirement for numerical solution of the related equa-
tions, albeit we have supplied a temporary solution for this in our previous paper
[1]. And even for the widely used finite difference method (FD), it still needs to
identify the molecular surface (no matter if an explicit or implicit surface mesh is
generated) to define the solute and solvent regions. The surface mesh requirement
is purely due to the convenience for model description and/or visualization. Dif-
ferent types of molecular surface are used in continuum modeling [2]. However,
any type of molecular surface is an artifact, and it is recognized that the energy cal-
culation is very sensitive to the choice of surface definition, resulting in variations
far beyond the range of chemical accuracy. Moreover, the surface discretization
(mesh) introduces further approximation to the surface. Therefore, besides caus-
ing the pain to generate a “qualified” molecular surface mesh, the surface itself is
an error source in molecular computations.

In this approach, the van der Waals interactions between biomolecule and sol-
vent molecule, mobile ions or other diffusing particles if involved are incorpo-
rated into the continuum model that describes a coupled system of electrostatics
and diffusion process. One advantage of this treatment is that the van der Waals
interaction as a key ingredient of hydrophobic interaction is included in the con-
tinuum studies of particle diffusion, solvent structure and electrostatic field. The
other advantage lies in that the molecular surface is then not necessary, because
the the van der Waals interaction prohibits penetration of the solvent molecules
and the other diffusing species into the solute and serves as a natural substitute
for the hard-wall approximation (molecular surface). This avoids the difficulties
of surface mesh generation, as well as the resulting errors. The latter advantage
makes many of state-of-the-art numerical methods applicable to the biomolecular
modeling community.

In the latter part of this paper, some calculation examples are performed to
show that this molecular surface-free continuum model is able to give a right de-
scription of system’s electrostatics, ionic densities, and diffusion-reaction kinetics.
Moreover, a novel type of molecular surface defined as an isosurface of a certain
density distribution can be as an output of this model. Because no surface exists,
the reactivity model introduced in this work (volume-based) differs from the pre-
vious surface-base model (reactive surface). This model also gives an interesting
profile of diffusion-reaction kinetics that violates the Debye-Hückel limiting law
found in our recent work.
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2 Methods
As done in our former work[1], to study the diffusion of small molecules (or ions)
around a biomolecule, all the charged species in solution are treated as diffusing
particles in the model, and the diffusions are influenced by the electrostatic reac-
tion field determined by all the mobile particles and the macromolecule. In that
model as well as in many other continuum models, a molecular boundary is re-
quired to separate the high and low dielectric regions, and to identify the diffusion
region and impenetrable region. The molecular surface serves as a boundary for
accessibility of water molecules and other particles (supposed the same), and is
equivalent to a wall with infinite potential. This can be considered as a simpli-
fication of van der Waals potential between solute and water. From this point,
if water molecule is also considered as one of the diffusive species, and the van
der Waals interactions are introduced into the model, the density profiles of all
species in solution will be automatically determined by the potential field. This is
a more realistic situation. As a post-processing, the molecular surface can also be
extracted as an isosurface of the density distributions if necessary.

Therefore, the Poisson-Nernst-Planck equations (PNP) describing the cou-
pling of potential field (electrostatics and van der Waals) and diffusion-reaction
processes can be modified as follows:

∂pi(r, t)
∂t = ∇ · {Di(r)e−βV i(r,t)∇(eβV i(r)pi(r, t))}+αi(r)pi(r, t), r ∈ Ω, i = 1...K,

(1)
∇ · ε(r)∇φ(r, t) = −ρ f (r)−∑

i
qipi(r, t), r ∈ Ω, (2)

where pi(r, t) is the density distribution function of the diffusing particles of the
i-th species with diffusion coefficient Di(r) and charge qi, ρ f is the fixed source
charge distribution (usually, the atomic charges of the biomolecule(s) in the sys-
tem), K is the number of species considered, β is the inverse Boltzmann energy, ε
is the dielectric coefficient, V i is the potential that imposes driving forces on the
i-th diffusing species, which includes both electrostatic and van der Waals contri-
butions V i = qiφ +V i

vdw. φ is determined by the Poisson equation Eq. (2). V i
vdw

is a summation from all of the pair-wise Lennard-Jones (LJ) interactions between
the i-th species and the macromolecular atoms. The LJ parameters for any pair
interaction can be obtained from the force field. In former work, the reaction is
described through certain boundary conditions on the “reactive molecular surface
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patch” [1, 3, 4]. Instead, here the last term is added to describe the reaction event,
in which an intrinsic reaction rate αi(r) is nonzero in the “reactive region” and
zero in the nonreactive region. The intrinsic rate should be large in the diffusion-
controlled reaction processes.

The Nernst-Planck (NP) equations (also called Smoluchowski equations) Eqs.
(1) describe the diffusion processes. Now there is one species in this model used
for the water modeling. Water molecule is neutral, hence no electrostatic interac-
tion is considered for water diffusion in current work. The force field of single-
site model of water has been recently developed[5], in which the LJ parameters
are available. As mentioned above, the goal of including water in this work is to
identify the molecular surface, which is implicitly done by relating the dielectric
coefficient to the water densities. The dielectric coefficient ε has complex depen-
dencies on pressure, temperature, and the density, which is definitely a concern in
future exploration but out of our current focus. We take a simple linear form here
in this work

ε = εp +
pw

pw
0
∗ (εw− εp), (3)

where εp, εw are the dielectric coefficients of solute and solvent respectively, pw

is water density and pw
0 is the bulk density which is 55.5 M in standard state. A

simple explanation for this form is that the induced dipole moment on the water is
approximately proportional to its density. Due to the short range property of LJ in-
teraction, the water density , thereby the ε, actually only varies in a limited region
around the molecular boundary. In interior, pw ∼ 0 (no water penetrates), then
ε ∼ εp; in a wide exterior region pw ∼ pw

0 , hence ε ∼ εw. This captures the main
features in previous electrostatic modeling works, and allows more reasonable di-
electric structures (heterogeneous solvent environment) near molecular boundary
in this model.

Similarly, the other diffusing species (ions, substrates, ligands) are also sub-
ject to the van der Waals interactions with the solute, and will be prohibited to
penetrate into solute interior, therefore, no molecular surface is needed.

The numerical approach and volume-mesh generation for solution of the PNP
equations have been described in our previous work[1], which used a hybrid
FEM/BEM method. In this molecular surface-free continuum model, only FEM
is applied. The FEM involves the use of a fairly sophisticated adaptive method
within the general finite element modeling library FETK [6].

Generally, the dynamical diffusion process of water can also be studied. The
goal in this work is only trying to use its density pw to naturally identify the differ-
ent dielectric regions for electrostatic calculations. Therefore, water is supposed
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to be in equilibrium state, and only the steady-state NP equation for water needs to
be solved once to obtain pw(r), which is then plugged in the Poisson equation. In
this specific case, the solution pw(r) actually follows the Boltzmann distribution
pw(r) = pw

0 exp(−βVvdw), which can be directly obtained, rather than through the
solution of the NP equation [1]. However, to keep consistency of using the nu-
merical framework, the pw is also obtained by solving the NP equation for water.

3 Results
In the following, we’ll show examples for the steady-state PNP calculations de-
scribed above on electrostatic field, ionic densities around a single or two charged
atoms, and the reaction rate coefficient for a spherical reactive region. For the
Poisson equation, because the boundary of Ω is normally far away from the so-
lute, the easily calculated Debye-Hückel screening potential (induced by the total
source charges) on the boundary ∂Ω is taken as the (Dirichlet) boundary condition.
For the NP equation, Dirichlet boundary conditions are used on ∂Ω to simulate the
bulk conditions of different species.

The first test is performed on a single atom (solute) with charge +e immersed
in 1:1 salt, and no reaction is considered. An adaptive mesh with 41532 vertices
and 259267 tetrahedra is generated. The boundary of the whole spherical mesh
has a radius of 100 Å, where the boundary condition is set with the bulk density
of each species (co-ion, counter-ion, and water) respectively. The LJ parame-
ters are set as ε = 0.3 kcal/mol, σ = 1.0 Å for all the species (solvent molecule,
ions, and the solute atom) in our test system. For the vdw interaction between
each pair of species, the LJ parameter ε and σ are obtained by employing arith-
metic mean combining rule and geometric mean combining rule, respectively. For
biomolecular application, the combining rules should be consistent with the force
field adopted. Two cases with ionic strengths of zero, and 50 mM are compared.
Figure 1(a) shows the electrostatic and van der Waals potentials around the solute.
The exact electrostatic potential for a unit sphere case (with molecular boundary
and no vdw interaction considered) is also plotted for comparison (green points),
where the interior dielectric constant takes εp, the exterior takes εw, and the ionic
strength is zero. In most region away from the atom, the electrostatic potential
calculated in present molecular surface-free model is nearly similar to that in the
unit sphere case, which is reasonable because the water density, thereby the di-
electric coefficient, is almost the same as the bulk water density due to the short
range character of van der Waals interaction. This agreement indicates that in
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the long range region, the two models lead to similar electrostatic influences on
particle diffusions. While in the vicinity of the atomic van der Waals surface, the
electrostatic potential of current model is found lower than in the unit sphere case.
This is caused by the higher water density, thereby a higher dielectric coefficient,
around the solute atom because of van der Waals interaction. This higher density
in a narrow band (a similar case can be seen in Figure 2) corresponds to the first
peak of the radial distribution function observed widely in molecular dynamics
simulations and experimental studies. In the ionic solution, this model also gives
reasonable electric potential (blue points, Figure 1(a)), which is lower than that in
the case without ionic screening (red points).

Figure 1(b) shows the counter-ion and co-ion density distributions in the 50
mM ionic solution, which captures the features of ion density distribution studied
in previous models and also clearly shows the automatically vanishing of density
in the “solute region” by introducing the van der Waals interaction.

Figure 2 shows the water density around two atoms separated by 3 Å. All the
parameters are the same as above. Again, the density as a numerical solution of
the steady-state PNP equation system follows a Boltzmann distribution in equilib-
rium state. In the small middle region, the density is a little bit higher than that in
the same relative location of the single atom case, which is due to the addition of
LJ potentials from two atoms. The two green circles around the blue regions cor-
responding to 55500 mM of bulk water density are proximate to the atomic vdw
surfaces. An isosurface of water density with a value 60000 mM is also shown,
which has similar shape as the solvent accessible molecular surface. This indi-
cates that the method through solving the diffusion equation in the vdw potential
field can also be used to define a type of molecular surface as an isosurface of
density of water (or other diffusing particles).

The PNP is also used to describe the diffusion-reaction processes and reaction
rate calculation. In former models using molecular surface representation, the re-
action is modeled by using certain boundary condition, such as a sink, applied to
a specific “reactive patch” (active site) on the surface [1, 3, 4]. In this model, it
is also convenient to implement the diffusion-reaction simulations. The reactive
site is now represented by a properly selected “reactive region”, and a reaction
term as in Eq. 1 is applied in this region. Diffusion-reaction simulations are per-
formed on above single sphere model, in which one reactive species diffuses in a
1:1 salt around the reactive unit sphere with different bulk densities kept on the
domain boundary. The intrinsic reaction rate α is taken as 1.0× 105us−1. The
reaction rate coefficient is calculated through

R

r<1 α(r)p(r)dv/pbulk for the reac-
tive species. It is observed that the rate coefficients strongly depend on both the
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Figure 1: (a) Electrostatic potential φ and van der Waals potential around a single
atom (+e) at ionic strength I = 0 mM and I = 50 mM conditions, (b) ion density
distributions as a function of radial distance.
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Figure 2: Water density around two atoms. The isosurface value is 60000 mM.

ionic strength and the concentration of the reactive species (see Figure 3). The
Debye-Hückel limiting law that predicts an exponential decay of the diffusion-
controlled reaction rate constant with increase of ionic strength is obviously vio-
lated when the (charged) substrate concentration is not small (> 1 mM). For high
substrate concentration, the reaction rate coefficient can be even increased by the
ionic screening effect in certain range of the strengths due to the competition be-
tween the favored substrate-receptor (electrostatic) attraction and the unfavored
substrate-substrate (electrostatic) repulsion, both of which interactions are weak-
ened by ionic screening. Similar phenomena was also observed in our recent
surface-reaction model [1, 7].

4 Conclusions and discussion
The artificial molecular surface is removed in this FEM continuum model. In
addition to accuracy improvement, the main benefit is to avoid all the technical
concerns about the molecular surface. The similar treatment is also applicable to
the widely used FD continuum models. Further improvements can be made to
achieve more accurate and realistic description of the water density around the
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Figure 3: Reaction rate coefficients for a unit sphere reactive region. The solid
line is for a bulk substrate concentration of 1 mM, the dotted line is for 50 mM
and the dashed line is for 300 mM.

boundary regions of biomolecules. One consideration is to incorporate the inter-
action between water and electric field due to the polarizability of water molecule.
Consistent with above mentioned single-site water model, the dipole, quadrapole,
and octapole interactions have been parameterized in the force field [5]. These in-
teractions can be absorbed into the diffusion equation and make correction to the
density distribution of water and the dielectric coefficient. Another consideration
is the correlation between water molecules, which includes the size effects. For
instance, in Figure 2, when the space between two spheres is small and can not
tolerate inserting of a water molecule, there would be no water density in the small
space, but this feature can not be captured in current continuous model due to the
lack of size effects in this model. the model can be extended to cover the size-
effect using similar idea given by Borukhov et al.[8]. Further work is underway
to take into account more general correlation effects in numerical solutions of the
PNP for all involved particles including water, ions and other existing particles.

Once accurate solvent and ionic density distributions are obtained, the en-
tropy associated with solvent rearrangement around biomolecule can be calcu-
lated, which together with the van der Waals and electrostatic interactions in-
volved, could account for the solvation free energy. Therefore, the model supplies
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a potential tool to quantitatively analyze the hydrophilicity, hydrophobicity, and
solvation energies of (rigid) biomolecules. The Hofmeister effects of ion bind-
ing are also expected to be predicted in this model because the individual ionic
properties, such as van der Waals interaction and size effect, could be included.
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