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Abstract

Stereoselective synthesis of two fluorine-bearing drug-like scaffolds, dihydroquinazolone and 

benzooxazinone, has been accomplished through asymmetric fluorocyclization reactions initiated 

by the fluorination process. The reaction employs double axially chiral anionic phase-transfer 

catalysts to achieve high diastereo- and enantioselectivities, and a wide range of fluorine-

containing dihydroquinazolones were obtained (>20:1 dr, up to 98% ee).
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The correlation between a molecule's carbon bond saturation ratio (Fsp3) and the existence 

of chiral centers with the success of drug candidates as they proceed from discovery to 

clinical development1 makes the asymmetric construction of saturated, conformationally 

constrained rings an important objective in modern medicinal chemistry. Furthermore, the 

incorporation of fluorine into potential drugs has been identified as one of the most effective 

ways to optimize pharmacological properties,2 for example, improving metabolic stability,3 

lowering pKa values of proximal amino groups,4 or tuning molecular conformations.5 

Asymmetric fluorocyclization is an attractive strategy because it can provide direct access to 
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saturated rings bearing fluorine from readily accessible olefin substrates. Although a variety 

of fluorocyclization protocols have been developed,6 further catalytic asymmetric variants 

await development.7

In recent years, protocols for the asymmetric synthesis of two such pharmaceutically 

privileged scaffolds, dihydroquinazolone and benzooxazinone,8 have been reported. These 

involve the chiral phosphoric acid-catalyzed reactions between anthranilamide or 

salicylamide and a range of aldehydes, as shown in eq 2.9 Given that the dihydroquinazolone 

and benzooxazinone (N,N- and N,O-aminal moieties) are metabolically labile,10 it is of 

interest to explore the properties of their fluorinated analogues.11 However, these 

compounds cannot be accessed using the current methodology due to the relative instability 

of the required α-fluoroaldehyde starting materials.12,13 Recently, our group implemented 

chiral anion phase-transfer catalysis achieving excellent enantioselectivity in a variety of 

fluorination reactions by employing lipophilic phosphate anions as catalysts that can 

undergo solubilizing anion metathesis with otherwise insoluble halogen sources such as 

Selectfluor (eq 1).14 As an alternative, we envisioned that replacement of the protonation by 
fluorination might enable access to the fluorinated variants of these important heterocycles. 

The phase transfer fluorination of enamide would generate an iminium-intermediate that 

would be intercepted by a tethered nucleophile to provide the drug-like scaffolds (eq 3).

Initially, dimethylenamides (eq 3, R2 = Me) bearing suitable nucleophiles at the ortho 
positions were chosen as substrates in the hope that the nucleophiles would attack a 

transiently generated α-fluoroiminium ion and ion-paired intermediate to furnish the desired 

fluorocyclized product. The potential chiral phosphoric acid catalysts (R)-PhDAP, (R)-C8-

TRIP, and (S)-VAPOL phosphoric acid (PA)15 were investigated in view of their success in 

our previous asymmetric enamide fluorinations,14b,c and the reported asymmetric amination 

of imines.15

(1)
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(2)

(3)

Molecular sieves (MS) were added to prevent potentially competitive fluorohydration 

reactions (Table 1).14c

Reaction of a substrate bearing a free amino nucleophile (1e) with (S)-VAPOL PA or (R)-

C8-TRIP produced intermolecular fluoroaminated product 2e in low yield and 

stereoselectivity, but use of (R)-PhDAP increased the enantioselectivity to 87% ee albeit 

with low (13%) yield (entry 3). In attempts to favor

the desired intramolecular reactivity, the N-methylated substrate 1f was subjected to the 

reaction conditions, affording the desired fluorocyclization product at ambient temperature. 

The best result (72% yield, 84% ee, entry 6) was obtained using (R)-PhDAP. Under the 

optimized reactions conditions, substrate 1l with a phenolic nucleophile furnished the 

desired oxyfluorinated product in high yield but with disappointing enantioselectivity, 55% 

ee and 36% ee using (R)-PhDAP and (R)-C8-TRIP, respectively (entries 8 and 9), given our 

previous results on oxyfluorination using the same catalysts.14c A catalyst screen revealed 

that both the previously reported (R)-OCyDAP16 and (S)-VAPOL PA afforded high yields 

and excellent enantioselectivities, 71% yield and 98% ee, 76% yield and 96% ee, 

respectively (entries 12 and 14).17

Next, the scope of amine nucleophiles was examined (Table 2).18 Reaction with carbamate 

substrate 1a resulted in fluorohydrated product despite the addition of molecular sieves 

(entry 1). The analogous sulfonamide substrates afforded the products of fluorocyclization 

but gave low enantioselectivities (entries 2–4), reflecting the low nucleophilicity of the 

amide moieties. However, a wide range of N-monoalkylated substrates gave the desired 

fluorocyclized products in moderate yields (34–72% yield) and with high 
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enantioselectivities (84–94% ee), (entries 5, 6 in Table 2 and entry 6 in Table 1).19 With the 

N-phenyl substrate (1i), the reaction proceeded with excellent (90%) yield and 

stereoselectivity (98% ee, entry 7).20 Both electron-donating and -withdrawing substituents 

on the phenyl ring were well tolerated (entries 8 and 9). The absolute stereochemistry of the 

products was unambiguously established as R by X-ray crystallographic analysis of 

compound 2f (Supporting Information).

Having established the broad nucleophile scope, we next directed our attention to 

substitution of the anthranilamide scaffold (Table 3). A variety of electron-donating, neutral, 

and electron-withdrawing substituents at C4, C5, and C6 of this scaffold were well-tolerated 

(55–93% yield, 89–97% ee, entries 1–6).

We next investigated whether unsymmetrically substituted enamides could be employed in a 

previously challenging12b–d,14c enantio- and diastereoselective fluoroamination reaction 

(Table 421). Fluoroamination using the readily accessible (E)-phenylmethyl enamide (1s) 

under homogeneous conditions22 afforded the desired product as a 5:2 mixture of 

diastereomers. In contrast, the phase-transfer approach, using (R)-PhDAP as the catalyst, 

produced the desired product with excellent diastereoselectivity and moderate 

enantioselectivity (>20:1 dr, 57% ee, entry 1). By modifying the reaction conditions, using 4 

Å molecular sieves in xylene, higher enantioselectivity (72% ee) was observed using (R)-

PhDAP (entry 2). In attempts to further improve the selectivity, we prepared (R)-4-Ph-

PhDAP, which features a biphenyl moiety at the 4 and 4′ positions of the privileged bis-

BINOL backbone, presumably generating a more confined chiral pocket by further 

extending the chiral information. Using this novel catalyst, product 2s was obtained with 

high diastereo- and enantioselectivity (>20:1 dr, 87% ee, 42% yield, entry 2). Substitution of 

the phenyl ring at the para position was well-tolerated with both (R)-PhDAP and (R)-4-Ph-

PhDAP providing high selectivities (>20:1 dr, 70–86% ee, 40–55% yield, entries 3 and 4). 

Finally, replacement of the phenyl with a thiophene ring showed promisingly high 

enantioselectivity (>20:1 dr, 72% ee, entry 5).23

Substrates 1t and 1v decomposed when exposed to a homogeneous solution of Selectfluor in 

acetonitrile;22 however, the phase-transfer conditions afforded the desired products 2t and 

2v, highlighting the ability of this strategy to suppress undesired background reactivity. 

Fluoroamination under homogeneous conditions22 or the use of other catalysts such as (R)-

C8TRIP showed diminished diastereoselectivity, reflecting that the stereocontrol by (R)-

PhDAP and (R)-4-Ph-PhDAP is crucial to achieving high diastereoselectivity.24

In summary, two kinds of pharmaceutically privileged fluorine-bearing scaffolds have been 

synthesized using chiral anionic phase-transfer catalysts. Importantly, high selectivities are 

not dependent on the fluorination generating a fluorine stereocenter and therefore imply that 

fluorination may be replaced by protonation in the processes, which were previously 

established under phosphoric acid catalysis. Further studies to disclose this hypothesis are 

ongoing and will be reported in due course.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Screening of Catalysts for Fluoroamination and Oxyfluorination

entry X catalyst product yield (%)
a

ee (%)
b

1 NH (1e) (S)-VAPOL PA ent-2e 37
c

1
c

2 NH (1e) (R)-C8-TRIP 2e 34
c

21
c

3 NH (1e) (R)-PhDAP 2e 13
c

87
c

4 NMe (1f) (S)-VAPOL PA 2f 
d 59 27

5 NMe (1f) (R)-C8-TRIP 2f 
d 65 55

6 NMe (1f) (R)-PhDAP 2f 
d 72 84

7 NMe (1f) (R)-PhDAPNHTf 2f 
d 58 55

8 O (1l) (R)-PhDAP 2l 84 55

9 O (1l) (R)-C8-TRIP 2l 80 36

10 O (1l) (R)-TRIP 2l 79 17

11 O (1l) (R)-Taddol PA 2l 92 67

12 O (1l) (R)-OCyDAP 2l 71 98

13 O (1l) (S)-VANOL PA ent-2l 83 34

14 O (1l) (S)-VAPOL PA ent-2l 76 96

a
Isolated yields after chromatography on silica gel.

b
Determined by HPLC.

c
Yield and ee of dimeric product 2e.

d
The absolute configuration of 2f was determined by X-ray crystallography.
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Table 2

Scope of Amine Nucleophile in Fluoroamination

entry X product yield (%)
a

ee (%)
b,c

1 Boc (1a) 2a -- ---

2 Ms (1b) 2b 42 5

3 Ts (1c) 2c 39 11

4 Mbs (1d) 2d 59 16

5 Bn (1g) 2g 60 84

6 Cy (1h) 2h 34 94

7 Ph (1i) 2i 90 98

8 4-OMe-Ph (1j) 2j 65 97

9 4-NO2–Ph (1k) 2k 43 95

a
Isolated yields after chromatography on silica gel.

b
Determined by HPLC.

c
The absolute configurations were tentatively assigned by analogy of 2f.
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Table 3

Scope of Fluoroamination

entry R1 product yield (%)
a

ee (%)
b,c

1 4-Cl (1m) 2m 84 89

2 5-Me (1n) 2n 78 97

3 5-OMe (1o) 2o 55 94

4 5-F (1p) 2p 93 96

5 5-Cl (1q) 2q 74 97

6 6-F (1r) 2r 84 92

a
Isolated yields after chromatography on silica gel.

b
Determined by HPLC.

c
The absolute configurations were tentatively assigned by analogy with 2f.
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Table 4

Enantio- and Diastereoselective Fluoroamination

(R)-PhDAP (R)-4-Ph-PhDAP

entry R2 product yield (%)
a

ee (%)
b,c

yield (%)
a

ee (%)
b,c

1 Ph (1s) 2s 58
f

57
f

55
f

63
f

2 Ph (1s) 2s 74 72 42 87

3 4-iPr-Ph (1t) 2t 46 70 49 77

4 4-tBu-Ph (1u) 2u 55 86 40 84

5 2-thienyl (1v) 2v 51
g

72
g

53
g

58
g

a
Isolated yields after chromatography on silica gel.

b
Determined by HPLC.

c
The absolute configurations of the aminal stereocenter was assigned by analogy of 2f. The relative configuration of 2s was determined by X-ray 

crystallography.

d
Determined by 19F-NMR analysis of the crude reaction mixture.

e
Mixture of isomers was used as a solvent.

f
Toluene and 5 Å MS were used instead of the standard condition.

g
5 Å MS was used instead of the standard condition.
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