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Asymmetric Additions to Dienes Catalyzed by a 
Dithiophosphoric Acid

Nathan D. Shapiro*, Vivek Rauniyar*, Gregory L. Hamilton, Jeffrey Wu, and F. Dean Toste†

Department of Chemistry, University of California, Berkeley, California 94720

Abstract

Chiral Brønsted acids have become an invaluable tool for achieving a variety of asymmetric 

chemical transformations under catalytic conditions while avoiding the use of toxic and expensive 

metals1–8. While the catalysts developed so far are remarkably effective at activating polarized 

functional groups, chemists have not yet been able to use organic Brønsted acids to catalyze 

highly enantioselective transformations of unactivated carbon-carbon multiple bonds. This 

deficiency persists despite the fact that racemic acid-catalyzed “Markovnikov” additions to olefins 

are a well-established part of the chemist’s toolbox. Here we show that chiral dithiophosphoric 

acids catalyze the intramolecular hydroamination and hydroarylation of dienes and allenes to 

generate heterocyclic products in exceptional yield and enantiomeric excess. To help rationalize 

the unique success of this catalytic system, we present a mechanistic hypothesis that involves the 

addition of the acid catalyst to the diene followed by SN2′ displacement of the resulting 

dithiophosphate intermediate. Mass spectrometry and deuterium labelling studies are presented in 

support of the proposed mechanism. The catalysts and concepts revealed in this study should 

prove applicable to other asymmetric functionalizations of unsaturated systems.

It has been known for over a century that strong Brønsted acids can catalyze the addition of 

alcohols and other protic nucleophiles to simple olefins. The ability to predict the 

regioselectivity of these reactions is taught in every introductory organic chemistry course as 

Markovnikov’s rule. However, successful approaches to asymmetric variants have relied on 

metal catalysts rather than organic Brønsted acids, particularly in the area of amine addition 

reactions9–12. Although metal-free Brønsted acids can catalyze additions to unactivated 

olefins with yields comparable to metals13–15, the lone example of an attempted 

enantioselective variant of this reaction using a chiral acid resulted in poor selectivity (17% 
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enantiomeric excess)16. Although a number of structurally diverse strong Brønsted acid 

catalysts have been developed, the highly enantioselective reactions reported to date are 

restricted to the activation of an electrophilic carbon-heteroatom or heteroatom-heteroatom 

multiple bond, usually an imine or a carbonyl1–8.

This unfortunate limitation can perhaps be explained by considering the different 

intermediates generated by protonation of an imine or carbonyl versus an olefin (Fig. 1A). 

Protonation of an imine or carbonyl generates a species that can hydrogen bond with the 

conjugate base of the chiral Brønsted acid. This hydrogen bond serves as an anchor to keep 

the chiral information close to the reactive electrophile and also contributes to the molecular 

organization that favours one particular diastereomeric transition state. On the other hand, 

protonation of an olefin leads to a carbocation. Although the conjugate base of the chiral 

acid can still be held in proximity to the carbocation through electrostatic interactions, the 

lack of rigidity in this association presumably results in poor discrimination between the 

enantiotopic faces of the carbocation. In fact, a recent review on chiral Brønsted acid 

catalysis goes as far as to say that “The key to realizing enantioselective catalysis using a 

chiral Brønsted acid is the hydrogen bonding interaction between a protonated substrate and 

the chiral conjugate base”3. Clearly, a conceptually different approach is needed to achieve 

the desired enantioselective additions to olefins.

We considered that this problem could be overcome for nucleophilic additions to dienes by 

using a chiral Brønsted acid with a nucleophilic conjugate base that could form a covalent 

bond with the carbocation (Fig. 1B). In a second step, the nucleophile could displace the 

chiral leaving group in SN2′ fashion. Because the chiral catalyst is directly bound to the 

substrate in the nucleophilic addition step, we hypothesized that this mechanistic scenario 

might facilitate a highly enantioselective transformation. Notably, two of the most important 

modes of organocatalysis, enamine and iminium catalysis, also take advantage of “covalent 

catalysis” mechanisms.17

A challenge in implementing such a strategy is finding an acid that is strong enough to 

protonate an olefin but also possesses a nucleophilic conjugate base. We considered that 

dithiophosphoric acids might be ideal candidates to fulfil both criteria18. The increased 

polarizability of sulfur (2.90) versus oxygen (0.802) makes dithiophosphoric acids more 

acidic and nucleophilic than their oxygenated analogs19–21. For the purpose of our desired 

reaction, it was promising to note that the addition of achiral dithiophosphoric acids to 

dienes is known to proceed efficiently with Markovnikov regioselectivity under radical free 

conditions22. We suspected that the challenge in reaction development would therefore arise 

in achieving a highly selective reaction, especially given that the single previously reported 

reaction using a chiral dithiophosphoric acid catalyst proceeded with low diastereo- and 

enantioselectivity (7:3 dr, 63% ee)23

Putting our idea into practice, we found that chiral dithiophosphoric acid 3a catalyzed the 

intramolecular hydroamination of diene 1 to form the desired pyrrolidine product 2 with 

excellent yield and moderate enantioselectivity (Table 1, entry 1). As expected, the 

oxygenated phosphoric acid analogue 3b did not promote the reaction at all (entry 2). We 

also found that an N-triflyl thiophosphoramide catalyst of the type reported by Yamamoto6 
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catalyzed the reaction with comparable ee (entry 3), while the corresponding oxygen 

analogue 3d did not give any desired product (entry 4). Attempts to optimize the catalyst 

structure by synthesizing more sterically encumbered N-triflyl thiophosphoramides resulted 

in unacceptably low yields, so we continued our investigation with dithiophosphoric acids.

Changing the 3,3′ substituents to bulkier anthracenyl groups led to a substantial boost in 

enantioselectivity, as did using a catalyst with a partially hydrogenated backbone (entry 5). 

We also noted that performing the reaction in fluorobenzene as solvent in the presence of 4A 

molecular sieves at a slightly reduced temperature (15 oC) further improved the selectivity 

(entry 6). Finally, based on the proposed SN2′-type mechanism in which the incoming 

nucleophile is some distance away from the chiral dithiophosphate, we hypothesized that 

extending the catalyst structure could lead to even better results by more effectively 

“projecting” the chiral information. Consistent with this proposal, addition of an aromatic 

substituent at the 10-position of the anthracene moiety allowed us to achieve excellent 

enantioselectivity (entries 7–9). Notably, the mesityl catalyst 3h provided exceptional 

enantioinduction even at room temperature. Because in some cases one catalyst offered 

slightly better selectivity than the other, we used both 3g and 3h for exploring the scope of 

the reaction.

A number of structural modifications could be made to the substrates while preserving the 

excellent yield and enantioselectivity of the catalytic hydroamination (Table 2). The sulfonyl 

group on the amine can be varied while maintaining the excellent yield and 

enantioselectivity of the reaction (entries 1 and 2). The terminal olefin can also be freely 

substituted with cyclic or acyclic groups (entries 3 and 4). Diene 4d showed selectivity for 

the E-isomer of the product, although both geometric isomers were formed with high 

enantioselectivity and had the same absolute configuration at the newly formed stereogenic 

centre. Interestingly, complementary selectivity for the Z-olefin could be achieved by using 

the isomeric diene 4e (entry 5). In both cases, the major product was obtained in higher 

enantiomeric excess than the other olefin isomer. With regard to functional group tolerance, 

it is remarkable to note that a primary tert-butyldimethylsilyl (TBS) ether was stable in the 

presence of the strongly acidic catalyst in spite of the general acid lability of this protecting 

group (entry 6). The tendency of the dithiophosphate to add covalently to the diene rather 

than remain free in solution may explain this surprising chemoselectivity. Additionally, the 

tether between the nucleophile and the diene can be varied to generate spirocyclic products 

(entries 7 and 8).

In considering our mechanistic hypothesis, we realized that we should be able to access the 

same type of allylic dithiophosphate ester intermediate from addition of the Brønsted acid 

catalyst to allenes (1,2-dienes). We found that allene substrate 4i was indeed converted to 

the pyrrolidine product 2 with essentially the same yield and enantioselectivity as was 

observed starting from the corresponding 1,3-diene (Table 2 entry 9, cf. Table 1 entry 8). 

This observation also held true for other substrates. Although sulfonyl-pyrrolidines are 

themselves useful compounds from a medicinal chemistry standpoint24,25, we also wanted to 

prepare products where the nitrogen substituent could be cleaved under mild conditions. 

Toward this end, we found that a nosyl-protected amine could be synthesized with only a 

modest decrease in enantioselectivity (entry 10, 90% ee). Perhaps unsurprisingly, a more 
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drastic change to a phosphinyl protecting group resulted in a slightly greater drop in 

selectivity (entry 11). Hydroxylamines also proved to be useful substrates for the reaction, 

providing isoxazolidine products with very good enantioselectivities (entries 13 and 14). 

Although in general we obtained the best results with substrates that possess geminal 

disubstitution in the alkyl tether, an observation likely attributable to the Thorpe-Ingold 

effect, the high enantioselectivity obtained using allene 4n demonstrates that this is not 

strictly necessary for the success of our reaction.

A number of additional experiments were performed in order to further elucidate the 

mechanism of this transformation (Fig. 2). We began by analyzing aliquots taken during the 

course of the catalytic reaction of 1 using time-of-flight mass spectrometry (TOF-MS). A 

new peak that was fully consistent (m/z and isotopic distribution) with proposed 

intermediate 6 was observed (Fig. 2A, Supporting Figs. 4 and 5). The proposed formation of 

this intermediate is also supported by the fact that the addition of dithiophosphoric acids 

across alkenes and dienes is a well-established process20,22,26,27.

An investigation of the diastereoselectivity of the protonation and nucleophilic addition 

steps revealed some more insights regarding the mechanism. A deuterated achiral 

dithiophosphinic acid added across acenaphthylene, a cyclic olefin often used as a 

stereochemical probe, with a very high level of syn-stereoselectivity (Fig. 2B). No 

epimerization of the product was observed even after a prolonged reaction time with heating 

(50 °C, 72 h). Thus, at least in this case, the dithiophosphinate ester intermediate does not 

ionize under conditions harsher than those used in the catalytic reaction. We next examined 

the reaction of a cyclic diene-tethered sulfonamide substrate using a deuterated racemic 

catalyst (Fig. 2C). The obtained spirocyclic product was substantially enriched (4:1 dr) in 

the isomer where the sulfonamide nucleophile and the deuterium have a cis orientation. 

Taken together, these two experiments suggest that this observed syn diastereoselectivity is a 

result of initial syn-addition of the dithiophosphoric acid across the distal olefin, followed by 

a syn-SN2′ displacement (Fig 2D). Excluding metal-mediated processes, SN2′ reactions are 

known to proceed preferentially though syn pathways28,29.

At this point we cannot say with certainty as to the degree of bonding between the 

nucleophile, allylic system, and dithiophosphate in the SN2′ displacement step. This step 

may be concerted, or it may involve the formation of an allylic carbocation-dithiophosphate 

tight ion pair that is rapidly trapped by the tethered sulfonamide. In either mechanism, the 

remarkable feature is that the catalyst is able to mediate the attack of the nucleophile on the 

carbon electrophile with sufficient organization to greatly favor one diastereomeric 

transition state. In addition, it should be noted that cyclization of stereochemical probe 8 
using catalytic deuterated triflic acid proceeds with no diastereoselectivity (Fig. 2C). This 

result strongly supports the notion that the dithiophosphoric acid catalyzed reaction is 

mechanistically distinct from simple Brønsted acid catalysis.

To demonstrate the generality of this approach, we examined indoles as useful carbon 

nucleophiles that would be structurally and mechanistically distinct from the sulfonamides 

used in the rest of the study. Although a large number of efficient additions of indoles to 

imine and unsaturated carbonyl derivatives have been discovered, the envisioned 
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organocatalytic enantioselective hydroarylation of an unactivated carbon unsaturated system 

has not been demonstrated30. When indole substrates were subjected to our reaction 

conditions, the hydroarylations proceeded readily to afford the tetrahydrocarbazole products 

in good to excellent enantiomeric excess (80–91% ee) (Fig. 2E). An X-ray structure of a 

crystalline sample of the brominated derivative confirmed the structure and revealed the 

absolute configuration of the products (Supplementary Figure 11 and Supplementary Table 

1).

The high enantioselectivity of this carbon-carbon bond forming reaction is particularly 

striking because the N-alkylated indole substrates do not possess any apparent hydrogen 

bond donors to assist in the catalyst-substrate organization. As previously mentioned, the 

presence of hydrogen bonding functionality has been a signature of nearly all of the 

previously demonstrated chiral Brønsted acid catalyzed reactions3. It is possible that in our 

system, the covalent attachment of the catalyst eliminates the need for the hydrogen bonding 

that is typically required for reactions that proceed by an ion pair mechanism. We believe 

the applicability of these catalysts and concepts to this different type of bond formation 

augurs well for the scope of future developments.

In spite of the remarkable developments in the field of asymmetric catalysis, there are still a 

great number of important transformations that are beyond the reach of current synthetic 

approaches. We have reported here a method using dithiophosphoric acids that enables 

metal-free catalytic asymmetric nucleophilic additions to all-carbon π-systems. In addition 

to serving as a useful means of obtaining valuable chiral hetero- and carbo-cyclic products, 

the hydroamination and hydroarylation of dienes are fundamentally distinct from those that 

have been previously achieved using chiral organocatalysts. Finally, we have presented 

experimental evidence that is most consistent with a unique covalent catalysis mechanism.

Methods Summary

General procedure: to a 1-dram screw cap vial was added the diene or the allene substrate 

(0.1 mmol, 1.0 equiv) followed by the dithiophosphoric acid catalyst 3f, 3g or 3h (0.01 

mmol, 0.1 equiv) and activated 4 Å molecular sieves (20 mg). To the mixture was added 

fluorobenzene (0.5 mL) at room temperature. The vial was sealed and allowed to stand for 

48 h at the indicated temperature. After the reaction was complete, the entire mixture was 

loaded onto silica gel and the product was eluted with EtOAc/hexanes. For complete 

experimental details, including procedures and full characterization (1H and 13C NMR, 

HRMS) of all new compounds, see the Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A possible solution to the mechanistic challenge of asymmetric acid-catalyzed additions 
to olefins
(a) Protonation of an imine with a chiral Brønsted acid (X*–H) leads to a hydrogen bonded 

intermediate, while protonation of an olefin results in a carbocation that cannot form a 

hydrogen bond. (b) Proposed mechanism wherein a nucleophilic chiral acid adds to a diene 

then undergoes enantioselective SN2′ displacement.
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Figure 2. Experiments to elucidate the reaction mechanism and application to indole 
nucleophiles
(a) Proposed reaction mechanism involving a covalently bound catalyst-substrate 

intermediate that undergoes SN2′ displacement. (b) Addition of an achiral dithiophosphinic 

acid across an olefin proceeds with syn stereoselectivity. (c) Reaction of a cyclic substrate 

using deuterated catalyst reveals 1,4-syn-stereoselectivity. (d) The overall mechanistic 

picture suggested by these experiments involves initial syn-addition of the S-H(D) bond 

across the olefin, followed by syn-SN2′ displacement. R = SO2(4-CH3O-C6H4). (e) 
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Dithiophosphoric acid-catalyzed hydroarylation of indole derivatives; MS = molecular 

sieves.
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