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ABSTRACT 

We show that an SU(N) quark-gluon gauge theory is consistent 

in two Euclidean spacetime dimensions. Using Lorentz-invariant 

quantization surfaces, an axial gauge, the 1/N expansion and the 

analog of a principal value infrared cutoff, we solve exactly the 

Dyson self-dimension equation for a quark with zero bare mass. We 

thus evade the inconsistency present in the t:ime-like gauge Minkowski-

space approach to the theory. 

* 
This res.earch was performed tmder the auspices of the Division of 

Physical Research of the U. S. E.nergy Research and Development 

Administration. 

** Research supported by the National Science Foundation, grant 

PHY-75-18444. 
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1 
Introduction. 't Hooft has investigated SU(N) quark-gluon 

gauge theory in two spacetime dimensions using the 1/N expansion. 

+( + -) In the light-like axial gauge Aa x , x o, the Dyson equations for 

the fermion self-energy are solvable using a principal value cutoff; 

the Bethe-8alpeter equation for the meson bound-state invariant mass 

then takes a simple form. Frishman, 8achrajda, Abarbanel and 

Blankenbecler2 have pointed out that in the time-like axial gauge, 

1 
Aa(t,x) = 0, the Dyson equations are inconsistent for vanishing bare 

quark mass if the principal value cutoff is employed. Furthermore, 

they find a noncovariant bound-state equation. Subsequently, Hanson, 

Peccei and Prasad3 examined the Dyson equations and the covariance of 

the bound-state equation for the large bare quark mass (or, equiv-
1 -

alently, weak coupling) in the Aa (t,x) = 0 gauge and found complete 

+( + -) consistency with 't Hooft 's Aa x , x = 0 gauge results. 

In this letter, we investigate a third approach to SU(N) 

quark-gluon gauge theory. Using the techniques of Fubini, Hanson and 

4 Jackiw, we formulate the theory in two Euclidean spacetime dimensions 

and carry out equal-radius quantization in the corresponding axial 

gauge, A:(r,9} = 0. The 

to those occurring in the 

resulting Dyson equations are quite similar 

1 A (t,x} = 0 approach, except that the 
a 

continuation from Minkowski to Euclidean space induces an effective 

2 sign change in g , the coupling constant squared. Because of this 

sign change, the Dyson equations for the self-dimension of the quark 

are solvable for zero bare quark mass and the theory is consistent. 
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The Euclidean Theory. Our continuation from Minkowski to 

Euclidean space is defined by t ~ -ix1, z ~ x2 . This convention 

assures us that the Minkowski action functional i ~ becomes -SE' 

. where the Euclidean action SE .is positive definite and therefore the 

Feynman weight exp(-SE) is bounded from above. The Lagrangian of, 

our Euclidean SU(N) gauge theory (see Refs. (3) and (4)) is 

(1) 

where lf-1.2. 

and the gamma matrices are related to the Pauli matrices cri by 

:rl = 01' :r2 = 02' :r5 = 0 3' For any two-vector v we define the 
1.1 

radial component v = ~·v/1~1 together with an angular component ve r 

by the transformation 

(:~) 
cos 9 -sin 9 

(V ) 

sine cos 9 L: . (2) 

where x1 = r cos 9, x2 = r sin 9 with 0 ~ 9 ~ 2n and 0 < r < oo. 

We now choose to quantize in Euclidean space on the manifestly 

Lorentz-invariant surfaces r = 1~1 = constant, so that r replaces 

the time as the dynamical variable and dimension eigenvalues take the 

place of energy eigenvalues. The natural analog of the axial gauge 

in this quantization scheme is 

0 . (3) 
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It is now convenient to convert to dimensionless quantities. 

We define T tn r, replace our Euclidean integration measure by 
"' 

dT d9, and redefine ~ = r 2 cfE' ~ = ) ljr, giving the effective 

axial gauge Lagrangian 

c~ = l [ :rr(oT - ~) + :r9o9 + mr + igr ~ "ha :rr A~]*+~ (o9 A~)2 
(4) 

The dynamical "Hamiltonian" operator generating displacements in the 

"time" T = tn r is the dilatation operator, 

where 

i D = -
/

1{ did X X l8f 
1.1 \1 j.l\1 

0 

(gr) Ja • + i(gr) 
r 

d~G(9-9') 5(9- 9'). 

4 

+ mr) ~: 

(5) 

(6) 

In deriving Eq. (5), we assumed that Aa(r,e) and its derivatives were 
r 

periodic in 9 with period 21t. Note that the real eigenvalues of 

the hermitian operator . t::.( T) are the dynamical dimensions of the 

states examined and that the T-dependence of t::.( T) reflects the 

existence of dimensionful parameters in this theory. 

The dependent field A~ .has been eliminated from Eq. (5) 

using the Green's function G(e- G'). We note, however, that we may 

,., 
,_., 
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replace G(e- 9') 

G:<e-e•) 
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by the modified Green's fUnction 
+co 

_ 
2
1• L ~2 0 in(9-B') 

(n~O) 

~ I e - e ' I - it; ( e - e • )
2 

_ ~ , {7) 

obeying o~ G(Q- Q') = 5(9- 9')- l/2rr, provided we restrict 

ourselves henceforth to color neutral states: 

2rr 

Qa = J dQ J: ( 9) = 0 • ( 8) 

0 

We mention the important point that omitting n = 0 from the sum in 

Eq. (7) is our analog of the principal value cutoff procedure used in 

the Minkowski problem. 

The free quark Green's fUnction is found by solving the Dirac 

equation 

(9) 

The "angular momentum" generator L = L
12 

= Lr9 commutes with the 

dilatation I::J., so we may expand ~ simulataneously in "angular 

momentum" and "dilatation" eigenstates: 

o, ± 1, ± 2, ..• 

(10) 

where 
2 1 2 2 

w = (t +2) + (mr) on "dimension-shell." Thus the free 

spinor propagator in {w, t) space is 

s = ~w:rr + i:re(t + ~) - mr 
0 2 1 2 2 

- ( t + 2) - (mr ) + 

(11) 
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Equations (7), (11) and the quark-gluon vertex (-ig ~~a :r~), found 

by expanding exp(-sEl' define the Feynma.n rules in the (w, t) space 

conjugate to the (r,9) coordinate space. Explicit functions of r 

appear in {w, t) space to provide a length scale in our non-

conforma.lly-invariant theory. 

Fermion Self-Dimension. The exact fermion propagator is 

defined as 

{ 

w:rr + i:r9(t + ~ + B(t,r)) (A(t,r) + m)r } . (l2) 

2 1 2 2 2 
w - (t + 2 +B) (A + m) r + i€ 

s 

In the 1/N expansion only rainbow diagrams c·ontribute to the Dyson 

equations for the "self-dimension," 

E{t,r) - +A(t,r)r + 1B(t,r):r
9 

where C i N{gr )
2 /Bl. Thus A and B satisfY 

A( t, r) -irr c \ 

~ 

B( t, r) 

A(t',r) + m 

B(t',r) 

(t -

1 
+ t' + 2 

vhoro w0( <) • + {lA + ml2 
r

2 
+ IB + t + ~ l2 

} i . 

(13) 

(14) 

It is instructive to evaluate Eqs. (14) to lowest order in C 

for m = 0. Setting A = B = 0 on the right-hand sides, we find that 



A(t,r) o, 

where 

1 
f( t) = 2 t 

n=-oo 
(rJt) 
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B( t, r) N(gr )
2 

( 4n f 1 f(t) 

E(n + ~) 
2 (t - n) 

t 

+~ 

0 

-t-1 

l: 
1 

l/n
2 

l/n2 

(15) 

t > 0 

• t o, -1 

t < -1 

Further iterations produce no change in A( t, r) and B( t, r). The 

lowest order solution of the Dyson equations is therefore the exact 

solution. 

The dimension eigenvalues UJO appeari~ in Eqs. (14) thus 

take the form UJO = {' (B(t,r) + t + ~ J
2 ~~ with B(t,r) given 

. 2 
by Eq. (15). If we exp3.nd UJ

0 
to lowest order in (gr} , we find 

It+ ~I ' 1 
+ E(t + 2) B(t,r) , (16) 

which agrees with the lowest order fermion dimension eigenvalue found 

by using the free field expansion for * in Eq. (5). This calcula­

tion double-checks the crucial signs in Eqs. (13) and (14). 

Conclusion. In the time-like gauge treatment, the analogs of 

Eqs. (14) are inconsistent for vanishing bare fermion mass m. Howeve; 

as noted by Hanson, Peccei and Prasad, 3 a unique exact solution can be 

found.if one replaces g by ig in the time-like system. Going to 

Euclidean space effectively accomplishes this replacement. For m = 01 

we have shown that the Euclidean Dyson equations (14) are consistent 

and possess the (apparently unique) solution (15). The transition 

from Minkowski to Euclidean space has essentially Wick-rotated the 

coupling constant to avoid the singularities giving the inconsistency 

2 discovered by Frishman et al. Our observation supplements the 

mounting evidence in favor of formulating field theories in Euclidean 

s:r:ace. It appears that the Euclidean continuation of a Minkowski 

space-field theory provides important information not otherwise 

available. 5 

The Euclidean Bethe-Salpeter equation for the dynamical 

dimensions of the bound states in the 1/N approximation can now be 

formulated for m = 0 without difficulty using our solution for 

E(t,r). However, it is not especially elegant because the theory 

is not scale-invariant and factors of r appear even in (UJ,£) space. 

Perhaps conformally invariant theories with essential Euclidean space 

properties, such as 4-dimensional gauge theories, would be better 

suited to the quantization scheme examined here. 

' ! 
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