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Abstract

Land Use in Renewable Energy Planning

by

Grace C Wu

Doctor of Philosophy in Energy and Resources

University of California, Berkeley

Professor Margaret S. Torn, Chair

All forms of energy generation can have intensive or extensive land use requirements, causing
habitat and biodiversity loss in sensitive and diverse ecosystems globally. With the rapid
transformation and growth of the energy sector in countries worldwide, understanding the
impacts of past practices and charting the trajectory of future development projects is im-
perative for preventing negative environmental consequences. This dissertation contributes
modeling strategies for integrating environmental impacts in renewable energy planning pro-
cesses and spatially-explicit empirical methods for identifying and quantifying land use and
land cover impacts related to renewable energy development.

To explore land use and energy conflicts in a jurisdiction that is in the midst of a large-
scale low-carbon energy transition, I ask the following: (1) is it possible to meet California’s
ambitious renewable energy targets without using high conservation-value land? (2) what are
the system costs of low-impact renewable energy development? I find that while trade-offs
between conservation value and renewable resource quality exist, restricting development to
low-impact land is not only possible, but incurs only negligible economic cost increases. Given
this possibility, I use California as a case study to identify decision-making opportunities in
energy planning processes for integrating conservation and land use values and avoiding
conservation-climate conflicts.

Extending the spatial methods developed for California to countries in Africa that are
planning renewable energy expansion, I ask, what is the potential for low-environmental-
impact, socially-responsible, and cost-effective development of wind and solar energy in
emerging economies in Africa? Using a multi-criteria analysis approach, I find that “no-
regrets” options—specifically areas that are low-cost, low-environmental impact, and highly
accessible—exist such that significant fractions of demand can be quickly served with low-
impact resources without large additional cost.

Despite the magnitude and pace of hydropower expansion in highly biodiverse aquatic and
terrestrial ecosystems in Southeast Asia, Africa, and Latin America, the potential indirect
land use and land cover change resulting from hydropower development is poorly understood.
To fill this gap, I ask, what are the indirect deforestation and land use impacts of utility-scale
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hydropower development in the Brazilian Amazon? Do siting choices and pre-existing land
use and land cover affect the extent of the impact? Using scalable remote sensing and spatial
econometric methods for causal inference, I find a 11-59% increase in indirect deforestation
due to hydropower development. These findings can contribute to estimates of potential
future terrestrial impacts from the hundreds of hydropower plants planned and proposed in
relatively intact areas of the Brazilian Amazon.
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To my teachers, advisers, and mentors

“What I stand for is what I stand on” – Wendell Berry

“Never lose a holy curiosity” – Albert Einstein
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Chapter 1

Land use in renewable energy planning

“Buy land, they’re not making it anymore” — Mark Twain

“Location, location, location” — Unknown

1.1 The scale and extent of land-energy connections
To date, the greatest drivers of land use change and habitat loss have been agriculture,
forestry, mining, and urbanization (Ellis, 2011); energy land-use requirements have thus far
been low—standing at about 2% of land globally (Fritsche et al., 2017). Yet, ambitious low-
carbon transitions are underway in many developed countries—requiring expansion of renew-
able energy generation facilities—and the growth in energy demand in emerging economies
is being met with rapid energy development—increasingly of renewable technologies such
as wind, solar, and bionergy. These recent developments suggest the potential for “energy
sprawl” (McDonald et al., 2009) to be another significant driver of habitat and biodiversity
loss world-wide (Trainor, McDonald, and Fargione, 2016). From 2011 to 2016, the amount of
renewable energy capacity additions exceeded fossil fuel generating capacity globally (IEA,
2017). In 2016, the share of newly installed renewable capacity (biomass, geoethermal, hy-
dropower, solar, wind) was 61.5% of the total in the U.S. (FERC, 2016). Studies suggest
that if the U.S. is to meet deep decarbonization targets of 80% reduction in greenhouse
gas emissions by 2050, the transition will require approximately 1500 GW of wind capacity
and 750 MW of solar photovoltaic (PV) capacity—or about the land area of South Dakota
including spacing between turbines and assuming all ground-mounted solar PV (Williams,
Haley, et al., 2014). Thanks in large part to declining wind and solar costs and its widespread
potential, the future of energy looks to be increasingly renewable (IEA, 2017).

In anticipation of the rapid rise of renewable technologies globally, an understanding
of renewable energy’s potential for changing large-scale land use patterns will be critical
for mitigating any negative impacts. The direct land requirements of energy facilities is
often used in life-cycle studies that compare the environmental impacts of energy systems
(Fthenakis and Kim, 2009; Berrill et al., 2016). However, the direct land footprint of energy
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facilities and feedstocks is an imperfect proxy for ecological impacts. It does not account
for habitat fragmentation, microclimatic modifications, or indirect land use changes. For
all technologies, siting of energy facilities to avoid or reduce impacts to important wildlife
migration routes and critical habitat will largely dictate its impact to biodiversity (Lovich
and Ennen, 2011). Proper siting, design, and operation of energy facilities are imperative
for avoiding and mitigating negative impacts to biodiversity and other ecosystem services
(UNEP, 2017). The case for responsible siting practices must consider and account for the
trade-offs between conservation and other ecosystem values and project costs. Yet little is
known about the degree to which potential high quality renewable energy—and hence, lower
cost—resource areas conflict with high conservation value land.

The location of renewable energy facilities determine multiple important dimensions of re-
newable energy integration, including the performance, operations, direct costs, and system-
wide costs. First, the total amount of electricity generated on an annual or longer-term basis
is determined by an area’s long-run average resource quality, which could vary significantly
over geographic space. For example, the average wind speed (e.g., m/sec), insolation (e.g.,
MWh/m2/day), or stream flow and hydraulic head (e.g., m3/sec and meters) dictates how
much absolute MWh of electricity can be extracted. Given that revenue from selling electric-
ity is directly tied to quantity generated, project developers consider average resource quality
one of the most important siting criteria. Second, the amount of renewable energy generation
can vary considerably in time at multiple time scales (e.g., minutes, hourly, daily, or sea-
sonally). Temporal variability of renewable resources plays an important role in large-scale
renewable energy integration because the supply of electricity must be temporally balanced
with the demand for electricity. Lastly, the location of generators—specifically, whether
or not they are close to the place where electricity is ultimately consumed—determine the
amount of other supporting infrastructure projects such as transmission lines and roads.
Several studies have found that electricity systems with higher shares of variable renewable
energy have more transmission capacity requirements (MacDonald et al., 2016; Berrill et al.,
2016).

The choice of siting criteria could lead to dramatically different project locations, each
having their own set of land-use and conservation impacts. In some cases, areas with the
highest average resource quality may not be those whose temporal generation patterns are
favorably matched with the temporal pattern of demand. In other cases, the highest average
resource quality areas may be much further away from existing transmission infrastructure.
Depending on the distribution of wildlife and important habitat across the landscape, conser-
vation considerations can reinforce or conflict with energy-planning criteria. The balancing
of siting criteria nuance the argument that scaling up renewable energy is only a matter of
balancing risks between climate change threats to biodiversity and direct threats of habitat
loss from infrastructure siting (Allison, Root, and Frumhoff, 2014). Frameworks proposed to
address the conflicts between conservation, land use, and large-scale renewable energy has
thus far failed to leverage the fact that different siting criteria are important to different
energy planners and actors. This dissertation attempts to chart the missing linkages be-
tween multiple siting criteria including direct costs, system costs, land use, and conservation
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impacts. It provides approaches for examining if and where energy development decision
criteria are compatible with conservation criteria.

Human transformation of the landscape through energy extraction and its impacts on key
ecosystem services are poorly understood and accounted for in the energy planning process.
As regions undergo large-scale transitions from conventional and fossil fuel energy to renew-
able resources, information about environmental impacts and electricity generation trade-offs
and synergies will be necessary to avoid environmentally damaging outcomes while meeting
climate change goals. The goal of this dissertation is to characterize and quantify
past and possible future consequences of renewable energy power plant siting
on land use and electricity-system costs. This dissertation quantitatively assesses and
compares the land use requirements and conservation-energy trade-offs of various low-carbon
pathways (Chapter 2); develops an approach to integrate conservation considerations into
existing renewable energy planning processes (Chapter 3); provides a methodology for ex-
amining the impact of various siting criteria for wind and solar energy on system-wide costs
(Chapter 4); and evaluates the importance of difficult-to-quantify dimensions of indirect land
use and land cover impact from hydropower development (Chapter 5).

The dissertation is focused on three key utility-scale technologies for renewable electricity
generation—wind, solar, and hydropower. The chapters cover multiple geographic areas at
various regional (Eastern and Southern Africa in Chapter 4) and subnational scales (Califor-
nia in Chapters 2-3, Brazilian Amazon in Chapter 5), with the choice of study area largely
determined by the stage, ambition, and most prominent technologies in each jurisdiction’s
renewable energy transition. All study areas are on the cusp of either a significant growth
in new energy development via renewable technologies (African countries, Brazil) or an am-
bitious fossil-to-renewable transition (California). Chapters 2-4 are modeling studies that
combine geospatial information systems (GIS) approaches with renewable energy and power
systems methods to anticipate the scale of land use impacts of future renewable energy
systems (Chapters 2,3) and to examine the interlinkages of land use and energy-systems
investment costs (Chapters 3,4). Chapter 5 is an empirical study using remote sensing and
statistical, econometric techniques to estimate land use impacts of large-scale hydroelectric-
ity generation in the Brazilian Amazon, a biodiversity and hydropower development hotspot.
Taken together, the dissertation aims to inform the early stages of energy planning processes
so as to simultaneously reduce land use and land cover impacts of renewable energy infras-
tructure and reduce siting barriers to achieving lower impact renewable energy development.

1.2 Land use of low-carbon electricity pathways and
integrating land use in energy planning

The large-scale transition from conventional to low-carbon generation technologies presents
new non-GHG environmental challenges. Historically, under a conventional-generation-
dominated power system, land use and electricity occupied separate planning spheres. This
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may have been due to the operational phase for conventional generation being spatially dis-
aggregated, with the siting of power plants typically independent of the location of upstream
processes such as mining (Kaza and Curtis, 2014; Smil, 2005). Because the land use footprint
of a conventional power plant is minuscule relative to the energy it generates (Fthenakis and
Kim, 2009), large-capacity conventional power plants could be sited with few constraints
(primarily air quality related). Renewable energy technologies, on the other hand, spatially
concentrate their operational phases, making their power plant footprints larger, and have
generation characteristics that are inherently tied to location and siting choices, making their
rapid growth as much a landscape integration problem as it does a grid integration problem
(Smil, 2005; Outka, 2011). These new challenges of renewable energy development require
revisions to the way that land use is considered in energy planning. Chapters 2 and 3 provide
one way to integrate land use and conservation considerations in the energy planning process
and identify key challenges and tradeoffs between land use and energy planning.

Limited land in areas where low-carbon electricity will be in high demand could constrain
cost-effective or ecologically sound energy infrastructure development. Chapter 2 contributes
an understanding of land-use related constraints and challenges of achieving low-carbon
transitions. With legally binding renewable energy generation targets of 33% by 2020 and
50% by 2030, and a target currently in legislation of 100% by 2050, California is used as
a case study because of the strong policy imperative. The large number of failed permit
applications for siting utility-scale solar and wind energy projects in California due to a
broad range of aesthetic and ecological siting concerns strengthens the need for strategies
to balance competing land uses (Kahn, 2000; Shirley, Shmidt, and Rogers, 2012). In a
study conducted by the Division of Ratepayer Advocates, the average contract failure rate
for renewable projects in California was 23% from 2002-2009, with siting and permitting
reported as the cause for one-third of these failures (Shirley, Shmidt, and Rogers, 2012).
Renewable resource patchiness in ways that poorly coincide with electricity load centers
will require transmission line and substation expansion that have their own aesthetic and
ecological challenges (Vajjhala and Fischbeck, 2007). California, with a human population
of nearly 40 million, more species and more endemic species than any other state in the
U.S., and the largest share of agricultural profits in the U.S., is ripe for land use competition
related conflicts. In this chapter, I ask the following: (1) how much land is required to
achieve different low-carbon generation scenarios in 2050 for California and is it possible to
achieve renewable energy targets by avoiding land of conservation value? (2) To what extent
do economic costs and conservation value conflict in these future scenarios? (3) To what
extent will high resource quality land overlap between technologies?

Chapter 3 extends the scope and nearer-term policy value of Chapter 2 by asking whether
and how California can simultaneously meet its conservation and climate goals by 2030 and
importantly, explores the system cost implications of possible solutions. It develops a frame-
work for integrating and evaluating land use and conservation considerations into a decision-
support tool—the Renewable Portfolio Standard (RPS) Calculator—used by the California
Public Utilities Commission (CPUC) for planning renewable energy projects. Chapter 3’s
analytical approach was developed after an informal charting of the multiple decision-making
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points in renewable energy development in California, the key stakeholders, and their main
decision criteria. An understanding of how energy development projects are conceived is nec-
essary for better understanding how and why siting-related environmental impacts succeed
or fail in being factored into the planning process (Mulvaney, 2017).

The initial charting process identified the critical role of transmission planning in the
siting of new renewable energy projects in California. The portfolios of future generation
projects necessary to meet California’s renewable energy targets dictated where investments
in transmission extensions and upgrades would be made. The RPS Calculator stood out as
a key modeling tool for facilitating transmission planning efforts between multiple California
energy agencies and actors. Without detailed environmental constraints on the renewable
resources available for development, the RPS Calculator created energy portfolios with the
majority of new solar PV projects sited in the desert southwest of California, an ecologically
intact area relative to other suitable sites for development. These overall observations from
the RPS Calculator—that unconstrained energy build-outs are more concentrated in the
desert—are consistent with results from Chapter 2 regarding the possible locations of future
renewable energy power plants. The goal of Chapter 3 is to understand how environmental
constraints impact renewable resource availability, the spatial distribution of resources, and
overall system costs, as well as assess the land-use related conservation impacts of entire
energy portfolios, which can be used in the portfolio selection process.

1.3 Strategic siting of wind and solar projects to meet
multiple objectives

Chapter 4 examines to what extent key challenges to renewables integration can be addressed
by strategic, low-impact, and equitable siting of wind and solar power plants. In Chapter
4, I ask the following: (1) what is the potential for low-impact or cost-effective renewable
energy development in Southern and Eastern Africa? (2) How does the consideration of
multiple siting criteria—including land use—affect direct and system-wide costs? (3) What
is the role of an international energy market in enabling optimal site selection and lowering
system costs?

The case for multi-objective renewable energy siting in the African context rests on
system costs and efficiency. In capital-strapped developing countries, the analysis, tools,
and capacity to implement ‘soft’ and information-driven solutions to address the challenge
of variable renewable energy integration, such as strategic siting and resource sharing through
integrated electricity markets, are severely lacking yet much needed. As a region, Africa is
in an unparalleled energy crisis rife with electricity deficiency, lack of access, and high costs
(World Bank, 2014). How African countries and the international community tackle this
crisis in the coming decades will have large social, environmental, and climate implications.
One route is to continue financing large hydropower dams and fossil fuel power plants.
Another route is to pursue renewable alternatives like wind and solar power in earnest. But
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what will it take for wind and solar energy to be credible, lower-impact, and cost-competitive
alternatives? Chapter 4 determines whether countries in the Eastern and Southern African
Power Pools can pursue low-carbon electricity development in a cost-effective and low-impact
way, and if so, where and how. Using a unique spatially- and temporally-explicit supply and
demand dataset, the chapter evaluates solar and wind resource potential and its siting trade-
offs for 21 countries in the Southern and Eastern Africa region.

1.4 Indirect land use impacts of hydropower siting
Chapter 5 examines the indirect deforestation and agricultural land use expansion impacts
of utility-scale hydropower development, using the Brazilian Amazon as a case study region.
Brazil has the second largest installed capacity of hydropower in the world, and energy plan-
ning since the mid 2000s has identified the Amazon as Brazil’s final frontier for hydropower
development (EPE, 2016). However, development of hundreds of planned hydropower plants
in the Amazon could have severe and long-term unintended indirect environmental conse-
quences. The siting of relatively “greenfield” hydropower plants and ancillary transmission
and road infrastructure in areas of intact primary or secondary forest cover can play an
important role in the opening up of the frontier for other land uses such as logging and agri-
culture (Barber et al., 2014). The vast majority of the existing literature on hydropower’s
freshwater and terrestrial impacts examines the direct loss of habitat resulting from flooding
or river flow modifications (Benchimol and Peres, 2015; Alho, 2011), but little is known
about the scale of indirect land use impacts of greenfield hydropower development projects.
In Chapter 5, I ask the following question: How much indirect deforestation has resulted
from hydropower development in the Brazilian Amazon?

Interest in drivers of indirect land use change (LUC) from energy development has thus
far been restricted to bioenergy. Yet, the definition of indirect LUC from bioenergy is
restrictive in that it specifically refers to LUC that occurs elsewhere (distal, not proximal)
due to bioenergy crops displacing food crops, and LUC impacts are primarily driven by
price effects or are market mediated. In the case of hydropower, indirect LUC could occur
close to or far from the project location, depending on the mechanism, which may nor may
not be market mediated. Previous studies on deforestation drivers in the Brazilian Amazon
have shown that migrant workers who enter into short-term contracts during the construction
phase of a hydropower project engage in exploitative activities such as illegal logging following
project completion (Fearnside, 2008). As an example of displacement driven land use change,
other studies have shown that reservoirs or flooding around the river could cause indirect
land use change due to re-settlements or the substitution of river-based livelihoods disrupted
by hydropower development (Orr et al., 2012; Tefera and Sterk, 2008).

Indirect LULC impacts of resource extractive activities such as mining and hydropower
(Sonter, Barrett, et al., 2015) have been poorly quantified beyond single case study ex-
amples, precluding their use in quantitative estimates of proposed projects’ impacts (see
Sonter, Herrera, et al., 2017 for an exception). A consistent weakness of environmental im-
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pact assessments (EIAs) is lack of quantitative projections for negative ecological and social
consequences, particularly as dams are known to have spatially diffuse impacts that are only
observable in the medium to long term (Andrade Meireles et al., 2013). Research of past
projects is needed to support EIAs. Projections are most reliable when based on region-
ally generalizable trends situated within geographic contexts and trends best determined
through analysis of large samples of past projects, which is typically cost or computationally
prohibitive.

Large-scale spatial analysis and data collection from remotely sensed imagery is now pos-
sible due to the revolution in parallel computer processing and data storage on the cloud.
Google Earth Engine (GEE) is one such scalable remote sensing analysis and image reposi-
tory platform that allows rapid preprocessing and analysis of entire satellite mission archives
(Gorelick et al., 2017). GEE overcomes desktop processing, storage, and human labor lim-
itations, making it now possible to generate dense satellite image time series datasets over
multiple, large areas. These datasets enable researchers to leverage spatial causal inference
methods that are powerful yet data-intensive—requiring long time series, large samples,
and/or matched controls. In Chapter 5, I use GEE and econometric methods to quantify
deforestation and land use impacts of utility-scale hydropower plants in the Brazilan Amazon
developed from 1984 to 2017, or within the Landsat mission time frame.
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Chapter 2

Land use of low-carbon electricity
pathways for California 1

The land-use implications of deep decarbonization of the electricity sector (e.g., 80%
below 1990 emissions) have not been well-characterized quantitatively or spatially. We
assessed the operational-phase land-use requirements of different low-carbon scenar-
ios for California in 2050 and found that most scenarios have comparable direct land
footprints. While the per MWh footprint of renewable energy (RE) generation is ini-
tially higher, that of fossil and nuclear generation increases over time with continued
fuel use. We built a spatially-explicit model to understand the interactions between
resource quality and environmental constraints in a high RE scenario (>70% of to-
tal generation). We found that there is sufficient land within California to meet the
solar and geothermal target, but areas with the highest quality wind and solar re-
sources also tend to be those with high conservation value. Development of land with
lower conservation value results in lower average capacity factors and higher generation
costs, but also provides opportunity for co-location of different generation technologies,
which could significantly improve land-use efficiency and reduce permitting, leasing,
and transmission infrastructure costs. Basing siting decisions on long-term RE build-
out requirements produces significantly different results, including better conservation
outcomes, than implied by the current piecemeal approach to planning.

1This chapter was originally published as:
Wu, G.C., M.S. Torn, J. Williams. 2015. Incorporating Land-Use Requirements and Environmental
Constraints in Low-Carbon Electricity Planning for California. Environmental Science and Technology.
10.1021/es502979v
The main content of the published paper has been placed in its entirety in the main body of the
dissertation and the supporting information has been placed in its entirety in the Appendix of the
dissertation.

https://pubs.acs.org/doi/abs/10.1021/es502979v
https://pubs.acs.org/doi/abs/10.1021/es502979v
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2.1 Introduction
Recent studies indicate that incorporating very high (>70%) penetrations of low-carbon
generation into the electricity grid by 2050 is both necessary to achieve deep economy-wide
greenhouse gas (GHG) reductions, and feasible from a technical and cost perspective (Nelson
et al., 2012; Williams, DeBenedictis, et al., 2012; Mai et al., 2012; Fripp, 2012; [EWIS]
European Wind Integration Study, 2010; Bird and Milligan, 2012). However, these studies
have not systematically explored the resource requirements and non-GHG environmental
impacts of these scenarios, including land use.

Current land-use planning for electricity

Several energy resource potential and zoning studies have been conducted in the U.S. to
anticipate and coordinate transmission expansion requirements in the next 10-15 years and
also to increase the efficiency and speed of renewable energy (RE) development (California
Public Utilities Commission [CPUC], 2009; Black & Veatch Corp. and NREL, 2009; Elec-
tricity Reliability Council of Texas (ERCOT), 2008; U.S. BLM and U.S. DOE, 2012. To
facilitate “environmentally responsible” development on public land, several federal agencies
have collectively produced a Solar Programmatic Environmental Impact Statement (Solar
PEIS) for southwestern states (U.S. BLM and U.S. DOE, 2012). For strategic resource and
load centers, efforts have recently been focused on higher resolution, regional studies, such
as the landmark Desert Renewable Energy Conservation Plan (DRECP), a joint initiative
charged with overseeing the siting of 22 GW-worth of RE projects in Southern California
(Desert Renewable Conservation Plan, 2012). Stoms, Dashiell, and Davis (2013) developed
an energy “compatibility index” metric based on degree of habitat degradation as a proxy for
identifying valuable ecological resources (Stoms, Dashiell, and Davis, 2013). Although these
and other studies (Stoms, Dashiell, and Davis, 2013; Kiesecker et al., 2011; Cameron, Co-
hen, and Morrison, 2012) have advanced integrated energy planning, their short-to-medium
term planning horizon is a significant limitation in light of more recent, long-term deep-
decarbonization goals. With few associated physical constraints, five to fifteen year imple-
mentation plans have historically been the norm in the electricity sector.

Low-carbon studies of California point to the electrification of many uses, especially in
transportation, such that even with unprecedented energy efficiency, total electricity demand
could increase by 50-100% (Williams, DeBenedictis, et al., 2012; Wei et al., 2013). For
example, if this electricity demand is met with mostly RE, installed capacity of utility-
scale photovoltaic (PV) and thermal concentrating solar power (CSP) could be 30 - 35 GW
and 20 - 90 GW by 2050, respectively (Williams, DeBenedictis, et al., 2012; Mai et al.,
2012). Based on published ranges for solar land-use factors (Ong, Campbell, and Heath,
2012; Ong, Campbell, Denholm, et al., 2013; R. R. Hernandez, Hoffacker, and Field, 2014),
or the installed capacity per unit area, this would call for the conversion of 1400 to 3570
km2 of land. Given the potential land-use impacts of solar and wind generation (Copeland
et al., 2009; R. Hernandez et al., 2014; National Research Council, 2007) the integration
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of such large quantities of new generation into the landscape, combined with competing
demands for residential and agricultural land plus the conservation imperative for diverse
and unique ecosystems, poses a challenge for ecologically sensitive land-use and electricity
planning (Shirley, Shmidt, and Rogers, 2012; Kahn, 2000). Having one of the most ambitious
RE targets in the U.S., California must be able to anticipate long-term land-use challenges
and the dynamics of scaling up generation technologies to identify robust solutions. Policy
and siting strategies that address potential conflicts in advance could expedite low-carbon
development and reduce environmental impacts.

Given that deep-decarbonization goals will require sector-wide transformation, it is cru-
cial that analyses treat the electricity sector as part of an integrated system, which calls for
spatially incorporating multiple generation technologies, other electricity infrastructure, and
conservation priorities into a single model. Previous publications on land-use impacts have
treated technologies in isolation (Aydin, Kentel, and Duzgun, 2010; Dawson and Schlyter,
2012). In contrast, an integrated, scenario-based approach would allow evaluation of alter-
native build-outs—reflecting not only trade-offs and complementarity among technologies,
but also different conservation value and land-use prioritization according to different stake-
holders.

Objectives

The goal of this paper is to develop an integrated assessment of the land-use requirements
for deep-decarbonization electricity scenarios and anticipate the land-use implementation
challenges and opportunities of a high RE build-out in a spatially-explicit manner. We apply
this approach to address three questions that have broad technical and policy relevance for
any region that is planning high RE integration. California is used as the case study because
of data availability and the policy imperative.

First, how much land is required to meet different low-carbon generation scenarios, and
can California’s goals be met primarily by RE without developing on environmentally sen-
sitive lands? To understand the extent to which land could be a constraining factor, we
estimate electricity land-use using operational-phase land-use factors and compare them
with land availabilities modeled under different environmental constraint scenarios using a
multi-criteria geographic information system (GIS) approach.

Second, how spatially distinct are RE development areas selected based on economic ver-
sus environmental criteria? Using resource quality and transmission distance as an indicator
for economic costs, we assess the degree to which conservation and cost-effective develop-
ment goals may conflict by characterizing differences in environmental constraint scenarios
and the spatial relationship between resource quality, environmental sensitivity, and trans-
mission and road connectivity. This analysis determines whether meeting conservation goals
could warrant more proactive planning or if additional land may be needed for development.

Third, to what extent do suitable development areas for different technologies overlap
under various sets of environmental constraints? We explore if and where areas can support
deployment of multiple technologies, which could inform the choice of generation technology
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Table 2.1: Environmental scoring classification scheme based on the WECC classification
system for transmission30 and environmental constraint scenarios

“Ex” indicates scores excluded from each scenario.
Scoring Scheme Environmental Con-

straint scenarios
Score Description Least

Strin-
gent

3rd
most

2nd
most

Most
Strin-
gent

4
Legal Exclusions: Areas with legal restrictions against energy
development, regardless of GAP status. This score strictly
follows exclusions from previous planning studies.7,8,30,31

Ex Ex Ex Ex

3.5 High Biodiversity Risk: All remaining GAP status 1 or 2
areas not included under Score 4 (private or public). Ex Ex Ex

3

High Environmental Risk: Areas with some restrictions on
energy development in order to maintain natural
characteristics, areas of important cultural or historical value
(mixed natural and human landscapes), and prime
agricultural land. This score includes some GAP statuses 3
and 4 areas, and all “avoid” and “Category 2” areas identified
in WREZ8 and RETI7 studies, respectively.

Ex Ex

2

Medium Environmental Risk: Lands not listed as avoidance
or Score 2 but have ecological or social value, including
recreational areas, national forest land, other agricultural
land, important bird areas (for wind only).

Ex

1 No known restrictions on energy development.

or motivate innovative strategies such as co-location of technologies to produce hybrid wind-
solar power plants.

2.2 Methods

Operational land-use requirements

We selected one recent study with which to examine probable electricity build-out scenarios
for California in 2050 (Williams, DeBenedictis, et al., 2012). The study estimates generation
and installed capacity using aggressive learning curves for the following corner scenarios:
Baseline, Mixed, High Nuclear, High Renewables (RE), and High Carbon Capture and Se-
questration (CCS). All low-carbon scenarios achieve 80% CO2e reduction from 1990 levels
(or a reduction to 85 Mt CO2e from Baseline emissions of 875 Mt CO2e) and are comparable
in total generation, but produce at least an additional 120 TWh yr-1 of electricity over Base-
line primarily due to the electrification of transportation (Williams, DeBenedictis, et al.,
2012). Installed capacity is similar across the low-carbon scenarios, but is highest in the
High RE scenario. See Supporting Information (Appendix A) Figure A.1 for estimates of
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generation and installed capacity (Williams, DeBenedictis, et al., 2012). Appendix A Figure
A.2 provides a visual overview of the methods in the present study.

To estimate annual average, operational-phase land requirements of the nine largest elec-
tricity generation technologies (Figure 2.1), we used annual generation estimates under each
build-out scenario2 and empirical land transformation land-use factors for electricity gen-
erated (m2 GWh-1) assuming a 30-year plant lifetime (Appendix Table A.1; highlighted in
yellow) (Fthenakis and Kim, 2009; Ong, Campbell, and Heath, 2012; Denholm, Hand, et
al., 2009; Jordaan, 2010). All land-use factors represent operational-phase activities, which
excludes indirect land impacts associated with energetic inputs or the production, manufac-
turing, or transportation of capital goods. Included are direct land use associated with the
power plant; mining, drilling, and extraction of fuels; and the pipeline transport of the fuel.
For non-bioenergy renewable technologies, the power plant’s land use represents the entire
operational-phase land use. All reported values in this present study represent “land trans-
formation,” or land that is “altered from a reference state” per unit of electricity generation
(m2 GWh-1) or installed capacity (m2 GW-1). We do not apply land occupation metrics,
which account for the duration that the land is under use (e.g. m2 y GWh-1), due to the
highly variable assumptions regarding recovery periods (Fthenakis and Kim, 2009).

The renewable technologies land-use literature distinguishes between “direct” and “total”
land use, with the former being land that is transformed from one state to another, and
the latter being the entire area of the power plant. Available Life Cycle Assessment (LCA)
literature provide estimates of “land transformation” for conventional generation, which sug-
gests that these are estimates of “direct” land use (Fthenakis and Kim, 2009; Jordaan, 2010;
National Energy Technology Laboratory, 2014). Given this lack of specificity for natural
gas, coal, and nuclear, conventional generation estimates are compared with both direct and
total land use of renewable technologies (Figure 2.2).

Generation potential of renewable technologies

To estimate available land for RE development in California under various environmental
constraints, we developed suitability models for geothermal, PV, CSP, and wind technologies
using Python, ArcGIS 10.1, and the following types of datasets: physical (slope, elevation,
water), socio-economic (population, military, airports), technical (resource), natural disas-
ters (flood, earthquake, landslide), agricultural (cropland, prime farmland), environmental
(ecological, cultural, historic areas) (Appendix Tables A.2-A.4). Using specifications for
thresholds and buffer distances from previous studies (Appendix Tables A.2, A.3) (Califor-
nia Public Utilities Commission [CPUC], 2009; Black & Veatch Corp. and NREL, 2009;
WECC EDTF, 2011; Lopez et al., 2012), we applied GIS map algebra techniques to create
binary maps of areas that meet the technical, socio-economic, and environmental criteria for
energy development.

To construct environmental constraint scenarios, we assigned each land type one of four
environmental impact scores (Table 2.1) based on its conservation interest, biodiversity man-
agement designations, and legal restrictions against energy development (Table A.4). The
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scoring scheme is loosely based on risk categories in the Western Electricity Coordinating
Council’s (WECC) Environmental Recommendations for Transmission Planning (ERTP) re-
port (WECC EDTF, 2011). We modified the land area classifications in previous stakeholder-
based studies using the U.S. Geological Survey’s (USGS) National Gap Analysis Program
(GAP) status code system that ranks the biodiversity management intention for protected ar-
eas, to serve as a proxy for areas with conservation interest that have legal recognition (Table
2.1, Table A.4). Statuses 1 and 2 have legal protection against permanent natural land cover
disturbance and also meet the definition of “protected” by the International Union for Con-
servation of Nature (Appendix A). However, land areas with GAP statuses 3 or 4 may still
have conservation interest and are scored based on previously reported stakeholder-agreed
categories. See Table A.4 for all land areas included in the analysis, their environmental
scores, and classifications used in previous studies. The four environmental scenarios that
result from this are Least Stringent, Second-most Stringent, Third-most Stringent, and Most
Stringent (Table 2.1). The Third- and Most-stringent scenarios, in particular, represent dif-
ferent degrees of land conservation above and beyond legal and biodiversity management
protections. See Figure A.3A for locations of environmental scores across WECC for solar.

To refine the suitability maps (Figure A.4), potential areas in each environmental sce-
nario were divided to represent utility-scale “development areas” between 100 and 1-1.2 GW
in capacity, which serve as a spatial unit of analysis consistent with sizes of potential RE
zones (Table A.2). The potential installed capacity of each development area was estimated
using total operational-phase capacity-based land-use factors (MW km-2) for the four RE
technologies (Table A.1; highlighted in blue). Our initial results from modeling nuclear, coal,
and natural gas land availability revealed vast suitable areas to site power plants within Cal-
ifornia that greatly exceeded demand, which is consistent with a previous study (Omitaomu
et al., 2012). However, the site suitability of conventional power plants’ is not the same
as its “potential capacity”, as is the case for renewable energy (excluding biomass), because
the land footprint of fuel is distinct from that of the power plant (Omitaomu et al., 2012).
Although operational-stage land-use factors exist for extraction and mining (Fthenakis and
Kim, 2009), we do not spatially model the potential of coal, natural gas, and nuclear because
we lack sufficient information to estimate the energy extracted per unit of land with the de-
gree of confidence comparable to estimates for wind and solar resources. The fuel cycles of
these technologies also lie largely outside of the California study area. We have included
geothermal in our analysis because it does not have upstream and geographically distinct
fuel stages, and spatial data on “geothermal feasibility” were publicly available (Table A.3).

Multi-criteria selection

To select development areas that meet 2050 demand, we developed a multi-criteria selection
process that maximizes resource quality (e.g., insolation) and minimizes environmental im-
pact of additional transmission and road connection, a process that minimizes km2 MWh-1.
Using a transmission “cost surface” based on WECC’s ERTP (WECC EDTF, 2011), we cal-
culated the optimal, least-environmental-cost path connecting each development area to the
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nearest road and transmission corridor (see Figure A.3B for the transmission cost surface
map and Appendix A for more details about transmission calculations). For each devel-
opment area, we calculated the average annual electricity generation by multiplying the
installed capacity by 8760 hours and the capacity factor, which was calculated from the
area-weighted average resource quality (equations in Appendix A). We ranked each criterion
(resource quality, environmental impacts of transmission and road connection) and summed
the individual ranks to calculate an equally weighted, multi-criteria score with which to
choose the best overall development areas that meet demand.

Spatial interactions

To estimate the proportion of resource quality classes within each environmental constraint
scenario, we sampled the resource quality value of each 500m cell and classified values into
representative ranges. For solar, these ranges were based on quartiles of resource quality
in the Least Stringent environmental scenario. We classified wind classes into the following
classes: 3, 4-6, and 7. Since geothermal suitability assessment considered two classes, values
were classified into feasibility scores of 9 and 10. For each class, we calculated the total area
and the potential installed capacity.

To assess co-location potential and possible siting trade-offs between technologies, we
quantified the pairwise overlapping area between technologies within each build-out and
environmental constraint scenario. To assess the divergence of build-outs between environ-
mental constraint scenarios, we calculated the overlapping area between scenarios for each
technology.

2.3 Results

Land-use requirements in build-out scenarios

Direct land-use estimates are similar between High RE, High CCS, and Mixed scenarios,
but High Nuclear and Baseline scenarios require about 20% and 25% less land, respectively
(Figure 2.1). The Baseline scenario requires the least land because its total installed capacity
is lowest due to the lack of transportation electricity demand, and the majority of capacity
comprises of natural gas-combined cycle, which has high average land-use efficiency. The
High Nuclear scenario is the second-least land-intensive because of nuclear’s higher land-use
efficiency (140 m2 GWh-1 vs. approx. 400 m2 GWh-1 for solar, NGCC-CCS, and coal).
However, values reported here are for land transformation; land occupation values for the
operational phase of nuclear power is very high ( 300, 000 m2 y GWh-1) because of the
assumed recovery times of land from nuclear waste (Fthenakis and Kim, 2009). Due to the
reliance on out-of-state deposits of coal, natural gas, and uranium—fuels that dominate the
Baseline and High Nuclear scenarios—and since the land requirements for natural gas and
coal dwarf those for power plants, the vast majority of the land requirements in these two
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scenarios would be outside California (Fthenakis and Kim, 2009). Total land use estimates
are significantly greater than direct land use in the High RE build-out, primarily as a result
of wind power (Figure 2.1B).

Figure 2.1: Direct and total energy land use requirements for California.
Annual average direct (A)and total (B) land use change for electricity generation necessary to
meet the 2050 demand for 30 years (the assumed power plant lifetime) for each low-carbon
scenario and its average land area (km2) per unit generation (TWh) weighted across all
technologies. *Figure 2.1 (B) shows total power plant land use (transformation) for only wind,
PV, CSP, and geothermal technologies and direct land use for all other technologies since no total
land-use factors could be confidently identified in the literature for conventional generation
technologies. Land transformation land-use factors applied here do not account for duration of
land recovery from uses associated with electricity generation, as is typically captured in land
occupation metrics. Land occupation estimates are not reported in this present study.
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Renewable generation potential of environmental constraint
scenarios

We compared each technology’s potential installed capacity with its expected capacity in 2050
(Figure 2.2) for different sets of environmental constraints. Although the amount of land
available for development decreases with increasingly stringent environmental constraints, we
found that generation potential within California is sufficient to meet 2050 demand under all
build-out scenarios for PV and geothermal technologies. Wind development in California is
constrained by the availability of suitable areas in all low-carbon build-out scenarios, using
the current average total land-use factor assumed here (Table A.1); higher land-use factors,
which would allow sufficient wind energy to be generated in-state, are theoretically achievable
(Denholm, Hand, et al., 2009). Figure 2.2A also shows the amount of wind potential in the
WECC under the Most Stringent environmental constraint scenario, which vastly exceeds
California’s requirement for wind energy, though out-of-state resources would have greater
transmission needs.

In these results, technologies are not required to have mutually exclusive areas of resource
potential. If co-location cannot be achieved, these capacity estimates here would be lower.
Notably, because wind and CSP suitable areas overlap, if all suitable areas for wind are
developed exclusively for wind generation, the most stringent environmental constraints
could preclude the development of approximately 10 GW of CSP, and wind development
in California would still be insufficient to meet 2050 High RE scenario targets (Figure 2.2A).

Interactions between conservation value and renewable resource
quality

With increasing environmental constraints, the available land with the highest resource qual-
ity for all technologies decreases (Figure 2.2). Although all technologies show a reduction in
available land with increasing environmental stringency, this trend is stronger for wind and
solar technologies because a disproportionate percentage of the reduction occurs in areas
with the highest resource quality (Figure 2.2B). The covariance of resource and environmen-
tal quality is also reflected in the spatial distribution of modeled build-outs for solar. For
CSP and PV development areas under the High RE build-out, there is 45% and 33% overlap,
respectively, between the Least and Most Stringent environmental scenarios; thus, 55% and
67% of all development areas selected for high resource quality and low transmission and
road impact are sited in different locations, depending on the stringency of environmental
constraints (Figures 2.3, 2.4). Under the Least Stringent scenario, CSP and PV are mostly
concentrated in the Mojave Desert and east of the Sierra Nevada (Figure 2.4A), whereas un-
der the Most Stringent scenario, relatively more development is located in the Southeast and
Colorado Desert, where PEIS Solar Energy Zones have been identified (Figure 2.4B) (U.S.
BLM and U.S. DOE, 2012). In the Most Stringent scenario and at high RE penetration,
the system-wide capacity factor will be lower and diurnal generation profiles likely different
compared with the Least Stringent scenario.
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Table 2.2: Characteristics of the multi-criteria model-selected development areas that meet
demand in three electricity build-out cases and under the Least (L) and Most (M) Stringent
environmental scenarios.

Mean envi-
ronmental
impact2

Mean
resource
quality 3

Total transmis-
sion environ-

mental impact 4

Total road
environ-
mental
impact

In-state
generation
area (km2)

L M L M L M L M L M
Wind Baseline 1.7 1 5.25 4.51 0 0 0 0 248 272

High CCS 2.35 1 3.88 3.60d 0 0 0 0 2403 1465d
High RE 5 2.29 1 3.67 3.6 565,500 365,300 6000 5000 4600 1465

CSP Baseline 3.05 1 8.58 8.39 0 0 0 0 13 13
High CCS 2.34 1 8.22 8.04 2000 124,900 0 0 1253 1281
High RE 2.09 1 8.08 7.81 358,900 4,827,200 0 0 3259 3371

PV Baseline - - - - - - - - - -
High CCS 2.63 1 5.93 5.9 0 0 0 0 797 802
High RE 2.29 1 5.92 5.88 0 500 0 0 1399 1408

Geo-
thermal

Baseline 1.36 1 10 10 0 2500 0 0 76 76

High CCS 1.33 1 9.59 9.6 23,800 94,300 0 0 240 240
High RE 1.34 1 9.61 9.62 23,800 93,300 0 0 233 233

The overall generation area and transmission impacts for CSP differ between Least and
Most Stringent scenarios. While the Most Stringent, High RE build-out requires only 112
km2 (3% of total CSP area) more land than the Least Stringent scenario to generate the
same amount of electricity due to exclusion of higher insolation areas, it has an order of
magnitude greater transmission impact due to the need to develop some CSP in locations
far from existing lines (Table 2.2).
2Environmental impact values were calculated using the scoring scheme detailed in Table 2.1
3wind expressed in units of wind classes (1-lowest, 7-highest); CSP expressed in units of solar direct nor-

mal radiation (DNI), kWh m-2 day-1; PV expressed in units of solar global horizontal radiation (GHI),
kWh m-2 day-1, geothermal expressed in units of geothermal feasibility score.

4Transmission and road costs are in units of environmental impact score (Table 2.1) and area of land. The
total impact reported constitutes the impact per grid cell of transmission (0.25 km2) summed across
all lengths of additional transmission required under each scenario following classifications in Table
A.4.

5Demand exceeds supply; all criteria reported are for all potential sites in California (no project selection
was performed) after applying environmental exclusions.
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Figure 2.2: Renewable energy generation potential across environmental constraint scenarios.
(A) Renewable electricity generation capacity potential (GW) under various environmental
constraint scenarios (orange bars) compared with scenarios of California’s technology-specific
generation in 20502 (grey bars). The horizontal line shows the estimated potential of wind power
capacity under the Most Stringent environmental scenario for the entire Western Electricity
Coordinating Council (WECC) within the U.S. (B) Stacked blue bars show the relative proportion
of renewable energy generation capacity that falls within each resource quality class (vertical axis)
under each environmental constraint scenario (horizontal axis; Table 2.1). Values in each stacked
bar indicate the potential in gigawatts (GW). For PV and CSP technologies, the class sizes follow
quartiles of resource quality values under the Least Stringent environmental scenario. Due to the
skewed distribution of wind classes, classes are approximate quartiles for wind capacity, and for
geothermal, percentage of installed capacity is shown by the two highest geothermal feasibility
scores (9, 10).
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Figure 2.3: Percentage overlap of multi-criteria, model-selected development areas between
electricity generation technologies and environmental constraint scenarios for the High Re-
newable Energy (RE) and High CCS build-outs.
Values indicate percentage overlap between generation technologies for development areas chosen
under the Least (orange) and Most (blue) Stringent environmental scenarios. Columns indicate
the technology used as totals in percentage calculations. For example, in the Least Stringent, High
RE scenario, 13% of all CSP development areas overlap with selected wind development areas and
9% of all wind development areas overlap with CSP development areas. Values in grey show
percentage overlap between the two environmental exclusion scenarios for each technology. For
example, there is 45% overlap in High RE CSP development areas between the Least and Most
Stringent scenarios. Wind percentage overlaps are not provided because not enough wind
potential exists within California to meet the demand in the build-out cases.

Interactions between technologies

In some cases, land is suitable for multiple generation technologies (Figure 2.4). As envi-
ronmental stringency increases, the overlapping area between technologies increases, which
demonstrates that developers and planners may be faced with trade-offs between technology
options under increasingly constrained build-outs (Figure 2.3). In the Least Stringent, High
RE build-out scenario, 420 km2 of development areas overlap between wind and CSP and
770 km2 between PV and CSP, significant portions of each technology’s total area. In this
scenario, overlap between wind and CSP account for 9% and 13% of each technology’s total,
and for PV and CSP overlap is 55% and 23%, respectively (Figure 2.3). CSP’s 13% overlap
with wind represents an area exceeding the additional CSP land (3% of all CSP) required
under the Most Stringent, High RE build-out scenario (vs. the Least Stringent). Thus, even
if co-location of wind and CSP is pursued for 3% of all installed CSP capacity, it would offset
the additional land use requirements that arise under the Most Stringent scenario.
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Figure 2.4: Maps of renewable energy build-out for the High-Renewable Energy scenario
Potential renewable energy development areas under the Least (A1-C1) and Most Stringent (A2-C2) environmental scenarios
for the High Renewable Energy (RE) build-out. Areas of overlap between technologies are shown in solid colors (quantified in
Figure 2.3). Sites suitable for single technologies are shown in diagonal lines. Yellow symbols indicate locations of operational
wind, solar, and geothermal power plants, with symbol size specifying online capacity in megawatts (Source: California
Energy Commission; California Energy Commission-Siting, Transmission and Environmental Protection Division, 2012). The
Department of Energy and Bureau of Land Management’s Programmatic Environmental Impact Statement (PEIS) Solar
Energy Zones (SEZs; U.S. BLM and U.S. DOE, 2012) for California are shown in yellow diagonal lines. Percentage overlap by
technology between maps (A1-C1) and (A2-C2) are provided within the grey boxes in Figure 2.3.
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2.4 Discussion
The recent suite of studies on low-carbon energy transitions at state, national, and inter-
national levels (Sustainable Development Solutions Network (SDSN) and Institute for Sus-
tainable Development and International Relations (IDDRI), 2013) has been complemented
by renewable resource potential assessments, but there has not been spatially-explicit con-
sideration of the land-use challenges as technologies are scaled up (California Public Utili-
ties Commission [CPUC], 2009; Black & Veatch Corp. and NREL, 2009; Cameron, Cohen,
and Morrison, 2012; Aydin, Kentel, and Duzgun, 2010; Lopez et al., 2012; Haaren and
Fthenakis, 2011; Ramachandra and Shruthi, 2007; J. Clifton and Boruff, 2010). To inform
policies that mitigate trade-offs between environmental and economic goals, our study in-
vestigates potential conflicts and opportunities by accounting for multiple land-use values,
energy technologies, and generation scenarios.

Land use in low-carbon scenarios

Annual average land requirements for the four low-carbon scenarios of approximately 250
km2 were not significantly different given the variability in published land-use factors and
lack of consistent metrics for comparison of both direct and total land use. Wind had
limited generation potential in California in our analysis, but it was based on current average
assumptions about land-use efficiency and minimum resource requirements. With recent
developments in wind technologies achieving higher performance at lower wind speeds and
enabling installations at greater hub heights and on steeper slopes, innovation is increasing
the generation achievable from the same land footprint as well as expanding areas suitable
for wind development (R. H. Wiser and Bolinger, 2013). Even with innovation, some level
of limitation on wind development by ecologically or recreationally valuable areas is likely
to persist.

Fair comparisons of renewable and non-renewable technologies capture impacts over, at
minimum, the lifetime of a power plant, often assumed to be 30 years in the LCA liter-
ature. The longer the time horizon examined, the more favorable renewable technologies’
land-use efficiency becomes since total generation, which increases over time, is averaged
over a consistent land footprint while non-renewable technologies require a continuous fuel
supply (Fthenakis and Kim, 2009; Jordaan, 2010). The type of land impacts also differs by
generation technology. For example, landscape fragmentation due to natural gas pipelines
and dispersed wellheads is greater than that due to solar electricity (Jordaan, 2010). To im-
prove overall land-use efficiency, policies can promote efficient, sustained use of land for RE
development. For example, decommissioning policies could enforce removal of old equipment
such that land can be released to other developers, and “re-powering” policies could encour-
age technical upgrades of (RE or conventional) power plants to increase installed capacity
and capacity factors, and reduce environmental impacts.
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Co-location of wind and solar technologies could address multiple
siting challenges

A notable proportion of low-environmental-impact land in California is suitable for multiple
RE technologies. Most studies have evaluated siting for only one technology at a time; yet
applying results of independent studies without reconciling overlap would overestimate the
available land resource. Moreover, we find that higher RE penetration and/or environmental
constraints increase the magnitude of the overestimate. Therefore, resource assessments will
be more accurate, and planning and permitting more efficient, if land value of all suitable
technologies is considered simultaneously when evaluating different technology options, in-
cluding technology-specific natural resource impacts such as habitat degradation and water
consumption.

At the same time, suitability overlap presents an opportunity for co-location and increased
land-use efficiency. Although research quantifying the efficiency gains from co-location is in
the nascent stages (Sioshansi and Denholm, 2013), recent studies estimate that well-designed
co-located wind-PV systems could double electricity generated on a given area, with shad-
ing from turbines resulting in a loss of only 1-2% of total PV production, and have better
economies than single-technology plants (SolarPraxis and Reiner Lemoine Institute, 2013).
Because transmission capacity and land can be shared, benefits include reduced transmission
and substation footprint, reduced associated right-of-way challenges, and lower permitting
costs and barriers per MWh produced (Loftis, 2013; Del Franco, 2014). Additionally, the
seasonal and diurnal complementarity of wind and solar generation profiles would increase
utilization of electricity infrastructure (Sioshansi and Denholm, 2013; Peterseim et al., 2014).
In fact, we find that if co-location were achieved in just half of the identified overlapping
areas, it would be possible for California to avoid development on valuable conservation
areas (i.e., apply strict environmental constraints) and develop less land—compared with a
no co-location outcome that applies the least environmental constraints (i.e., gives the most
flexibility in location). Thus, co-location reconciles the potential land conflict between re-
source quality and conservation value at high RE penetrations. Because retrofitting existing
single-technology plants, especially solar, is more difficult than constructing new co-located
plants, these opportunities are most cost-effective when implemented sooner.

The need for consistently defined environmental exclusions

Inconsistencies among previous studies’ designation of land area as restricting or allowing
energy development, as well as in the definition of land types, create barriers to effective
comparison across studies (Table A.4; California Public Utilities Commission [CPUC], 2009;
Black & Veatch Corp. and NREL, 2009; WECC EDTF, 2011). We addressed existing
discrepancies by (1) developing different levels of environmental constraints, (2) exclud-
ing areas with permanent legal protection, (3) using official management designations for
biodiversity and landscape protection (GAP status) to inform what should be excluded
from development but had not previously been excluded, and (4) applying environmental
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datasets that have been identified through stakeholder processes (US. Geological Survey
and National Gap Analysis Program, 2013). The DRECP represents a milestone in com-
piling and achieving consensus for biologically-informed datasets in the desert region of
Southern California (Desert Renewable Conservation Plan, 2012). Replicating such an ini-
tiative state-wide would require generation of similar stakeholder-accepted conservation and
management-based datasets.

Synergistic land-use and electricity planning for high RE
penetration

Our findings are similar to other estimates of renewable generation potential on low-conservation-
value land in California that report about 80 GW solar (Stoms, Dashiell, and Davis, 2013)
and 6.2 GW wind (Kiesecker et al., 2011). These and other studies14 have highlighted the
feasibility of “win-win” strategies for climate and conservation that restrict development to
disturbed lands. However, ad hoc, market-driven development is more likely to result in
environmental evaluation hurdles or additional transmission costs that increase expenses for
developers, utilities, and ratepayers.

Our research reveals a trade-off between resource quality of energy and conservation
interest for CSP, PV, and wind in a high RE penetration scenario. The low percentage of
overlap between high and low environmental impact build-outs suggests that at some point
(in time or in space), actions based on either conservation value or simple determinants of
cost-effectiveness, (resource quality and transmission distance) could be at the cost of the
other. This demonstrates that ecologically sensitive development must be actively pursued
if California is to meet both its conservation and low-carbon goals, implying the need to
encourage desired development patterns through coordinated energy and land-use planning.
Analysis of economic and environmental spatial relationships could also help avoid conflict by
identifying no-regret technology and siting choices, estimating the land and natural resource
value of reallocation of generation capacity to distributed PV, or reducing demand through
energy efficiency measures.44 Additionally, current electricity planning processes sequentially
site generation and transmission, yet potential generation-transmission land-use trade-offs
suggest that transmission-focused environmental recommendations (e.g., WECC Regional
Transmission Expansion Planning30) should be incorporated in the prioritization scheme in
RE zoning studies.

Limitations

This study does not spatially model land use of conventional generation or bioenergy, nor
does it estimate the indirect land use associated with renewable technologies. Other criteria
for site selection, such as how generation profiles vary spatially or the economic cost of land,
were beyond the scope of the study. Also, differences in economic cost of infrastructure
requirements between scenarios were not estimated, but would be useful better understand
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the degree of conservation and economic trade-offs. Non-land resource requirements, par-
ticularly water, should also be considered for a fully comprehensive evaluation of resource
constraints on low-carbon pathways.

Conclusion

With respect to the three objectives, we found that (1) California can meet high RE de-
mands without the use of protected land, though wind energy may come from out-of-state.
However, (2) because cost-effective development and conservation goals may conflict in some
instances, we found that the most efficient and lower-impact build-out requires coordina-
tion of generation and transmission siting with conservation land-use priorities. (3) Because
greater overlap between suitable areas for different RE technologies occurs with increasing
environmental constraints, co-location of generation technologies could be an effective sit-
ing strategy to reduce conflicts between development and conservation. Spatially-explicit,
forward-looking land-use models of multiple technologies, like that presented here, can an-
ticipate the challenges and opportunities of electricity planning under multiple land-use
constraints and inform official planning tools and processes. Hence, Outka (2011; Outka,
2011) gives a timely call to action, that “early in the expansion of renewable energy, when
most of the infrastructure remains to be built, is the time to begin working as well as we
can with the tools we have,” for the immediate conservation benefits and because “siting well
may be the most effective way to streamline power projects.” (Outka, 2011).
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Chapter 3

Integrating Land Conservation and
Renewable Energy Goals in California:
A Study of Costs and Impacts 1

Currently, there is a lack of understanding of the environmental impacts and economic
costs of potential renewable energy (RE) siting decisions that achieve ambitious RE
targets. Such analyses are needed to inform policy recommendations that minimize
potential conflicts between conservation and RE development. For these policies to be
effective, they must be integrated into existing regulatory processes. The California
Public Utilities Commission’s (CPUC) Renewable Portfolio Standard (RPS) Calcula-
tor is a crucial first-order planning tool for RE procurement and transmission planning
within the state. We developed the Optimal Renewable energy Build-out (ORB) model
to generate input data for the RPS Calculator that reflects the renewable energy po-
tential under various environmental constraints and to examine the land, conservation,
water, and electricity cost impacts of the resulting environmentally constrained gener-
ation portfolios. We find that imposing environmental constraints on RE development
achieves lower conservation impacts and results in development of more fragmented
land areas. With increased RE and environmental exclusions, generation becomes
more widely distributed across the state, which results in more development on herba-
ceous agricultural vegetation, grasslands, and developed urban land cover types. More
ambitious RE targets result in higher water consumption, but under more environmen-
tal exclusions, this water demand is also more geographically dispersed. We find land

1This chapter was originally released as a report as:
Wu, G., N. Schlag, D. Cameron, E. Brand, L. Crane, J. Williams, S. Price. 2015. Integrating Land
Conservation and Renewable Energy Goals in California: A Study of Costs and Impacts Using the
Optimal Renewable Energy Build-Out (ORB) Model. Technical Report. 34 pages plus appendices.
The main content of the published paper has been placed in its entirety in the main body of the
dissertation and the supporting information has been placed in its entirety in the Appendix of the
dissertation.

https://www.scienceforconservation.org/products/integrating-land-conservation-and-renewable-energy-goals
https://www.scienceforconservation.org/products/integrating-land-conservation-and-renewable-energy-goals
https://www.scienceforconservation.org/products/integrating-land-conservation-and-renewable-energy-goals
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use efficiencies of RE technologies are relatively inelastic to changes in environmental
constraints, suggesting that cost-effective substitutions that reduce environmental im-
pact and achieve RE goals is possible under most scenarios and exclusion categories.
At very high RE penetration that is limited to in-state development, cost effectiveness
decreases substantially under the highest level of environmental constraint due to the
over-reliance on solar technologies. This additional cost is removed once the in-state
constraint is lifted. Minimizing both negative conservation impacts and electricity
costs at very high RE penetration will require California to utilize a combination of
in-state and out-of-state RE resources, since it is possible to achieve 50% renewable
energy generation by 2030 in the WECC-wide scenario under the most stringent set of
environmental constraints while incurring only a 2% cost premium.

3.1 Background and Motivation
California has ambitious renewable energy targets, including a recently announced goal of
50 percent electricity derived from renewable sources by 2030. The state also has abundant
undeveloped wind, geothermal, concentrating solar power (CSP) and solar photovoltaic (PV)
resources. But many undeveloped landscapes with high renewable resource potential also
have high conservation value, creating the potential for conflict between renewable energy
development and conservation goals. These potential conflicts matter. If renewable energy
projects proceed in environmentally sensitive areas, they can unnecessarily degrade the habi-
tat, biodiversity and other values of natural landscapes. Conversely, environmental concerns
can seriously impede renewable energy development by subjecting projects to multi-year
delays, major cost increases and in some cases abandonment.

Despite these high stakes, the land use and water use implications of the state’s re-
newable energy objectives have not been well characterized quantitatively or spatially. In-
formation about these implications would help to clarify barriers to renewable energy de-
velopment, evaluate the potential effects of proposed renewable energy policies and inform
long-term energy planning. California has multiple long-term planning processes for trans-
mission and renewable energy procurement, including the California Public Utilities Com-
mission (CPUC) Long-Term Procurement Plan (LTPP), the California Independent System
Operator (CAISO) Transmission Planning Process (TPP) and others. Although Califor-
nia and federal agencies have led multiple landscape-level planning initiatives to encourage
environmentally-sensitive renewable energy development, the results from these studies have
yet to be integrated into planning and procurement processes. Many transmission and long-
term procurement planning decisions are informed by output from the California Renewable
Portfolio Standard Calculator version 6.0 (RPS Calculator). Most importantly, CAISO uses
the portfolio from the RPS Calculator to prioritize transmission investments necessary to
meet renewable energy goals. Transmission availability is a critical factor for renewable en-
ergy developers when selecting potential project sites. Additional transmission availability
through the planning of new lines or upgrades in turn encourages new generation projects
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in those locations. As a result, the use of the Calculator in transmission planning has direct
implications on the geographic regions where renewable energy projects will be proposed and
developed, and, consequently, on the land and water impacts of those projects.

The RPS Calculator receives input data on transmission availability, renewable energy
resource potential, and other factors. From this information, it produces the lowest-cost
portfolio of future renewable energy projects—for multiple technologies and organized by
Super Competitive Renewable Energy Zone (Super CREZ)2—that meets the renewable “net
short” requirement, which is the difference between the RPS compliance target and the
generation from existing and commercial3 projects.

The RPS Calculator accounts for prohibitions on renewable energy development in some
areas, such as national parks4, but it does not account for the many areas where renewable
energy development will impact sensitive resources and generate significant conflict with
resource agencies and environmental stakeholders, increasing the risk of project delays or
failure. As a result, the RPS Calculator may overstate the potential capacity for renewable
energy development in areas where projects are likely to be infeasible due to, for instance,
poor alignment with land-use planning designations or biodiversity conservation priorities.
By the same token, overly conservative assumptions about land availability could lead the
RPS Calculator to understate the potential for low-impact renewable energy development in
some areas. While the RPS Calculator helps to analyze one policy goal—increased renewable
energy development—it does not provide the information needed to improve planning by
avoiding impacts to important natural habitats. Incorporating environmental constraints
into the Calculator would provide a more realistic estimate of the potential for renewable
energy generation in each Super CREZ. It also provides a basis for analyzing how to meet
multiple state goals: RE development and protection of natural resources.

Objectives and Approach

To demonstrate how land conservation values can be integrated transparently into renewable
energy procurement and transmission planning and examine the environmental outcomes of
scenarios, we developed the Optimal Renewable energy Build-out (ORB) model. The model
generates input data for the RPS Calculator that reflects the renewable energy potential in
each Super CREZ when certain lands are excluded due to their conservation value. With
this input, the RPS Calculator generates portfolios of future renewable energy production
using the CPUC’s “least-cost, best-fit” approach, given the resource availability and other
constraints in each Super CREZ.
2Super Competitive Renewable Energy Zones are roughly county-scale energy planning units for which renew-

able resource potential, transmission capacity and renewable energy project costs have been estimated.
The maps in this report show the Super CREZ boundaries.

3“Commercial” projects are those that have a CPUC-approved power purchase agreement (PPA).
4The full list of areas excluded from renewable energy development in the RPS Calculator has not been

released for public review.
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The ORB model then takes these environmentally-constrained portfolios from the RPS
Calculator and models the spatially-specific optimal locations of the utility-scale wind, PV,
CSP and geothermal projects that would make up each portfolio based on each possible
project’s resource quality and distance to nearest transmission line or substation.5

From this information and the RPS Calculator’s outputs, we assess the following impacts
of each portfolio:

1. The relative contribution of each RE technology in resulting RPS Calculator portfolios
2. Total land area required for renewable energy development and overall land-use effi-

ciency;
3. Land cover type, conservation value, and geographic distribution of land developed for

renewable energy;
4. Spatial distribution of water demand for renewable energy generation;
5. Relative cost of electricity production compared to the RPS Calculator base case.

This report presents portfolios generated at four different levels of environmental ex-
clusion, from least restrictive to most restrictive. The exclusion categories are based on
conservation interest, management designations and legal restrictions related to energy de-
velopment. Each level of exclusion is evaluated under four 2030 renewable energy build-out
scenarios: 33% of generation in-state; 40% in-state; 50% in-state; and 50% generation from
a combination of in-state and out-of-state sources (anywhere within the Western Electricity
Coordinating Council, or WECC, region).

This study is intended to be a proof of concept for integrating environmental exclu-
sions into renewable energy planning models and decision-making in California. In order to
demonstrate how this integration could be accomplished and why it may be valuable, the
study employs a tool—the RPS Calculator—that the state currently uses to inform planning
and long-term procurement decision-making. As of this writing, the RPS Calculator is under
public review and active revision; this report is not meant to endorse the assumptions in the
version of the RPS Calculator used in this study or to imply that the build-outs generated
by the ORB model represent the full suite of options for achieving California’s renewable
energy goals.6

3.2 Methods

Data and scenarios

Site suitability and environmental impact data

Data representing the following categories of spatial characteristics were compiled from var-
ious sources: physical (slope, elevation, water bodies), socio-economic (population centers,
5By contrast, the RPS Calculator models only the total renewable generation and technology type within

the boundaries of each Super CREZ; it does not specify project locations for generic future projects.
6The RPS Calculator Version 6.0 does not include load outside of the CAISO balancing authority area.
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military zones, rail, roads, airports, mines), technical (renewable resources), agricultural
(prime farmland), environmental (ecological, natural resources), and cultural (historic ar-
eas). Additionally, housing density, land cover type and water demand data were collected
to estimate impacts of each build-out scenario. The sources of all exclusion and environmen-
tal impact data are listed in Appendix Table B.1.

Environmental exclusions and data

In order to assess the environmental and cost impacts of excluding RE development from
areas with different levels of conservation value, we developed four environmental exclusion
scenarios based on categories in Wu, Torn, and Williams (2015) (Chapter 2). The following
categories increase in environmental stringency and level of administrative or legal protection,
with Category 1 being the least stringent and Category 4 being the most stringent. The
categories are additive in their use as exclusions levels—e.g., Category 3 Exclusion Level
includes all Categories 1 and 2 lands.

Category 1 (Legally Excluded): Areas where legal restrictions preclude en-
ergy development. This category strictly follows exclusions from previous plan-
ning studies (i.e., Western Renewable Energy Zones (WREZ) Black & Veatch
Corp. and NREL, 2009, Renewable Energy Transmission Initiative (RETI) Cali-
fornia Public Utilities Commission [CPUC], 2009, Solar Programmatic Environ-
mental Impact Statement (SPEIS) U.S. BLM and U.S. DOE, 2012).
Category 2: Areas with administrative and legal designations by public agencies
in order to protect ecological and social values. In some cases these areas already
have some restrictions on energy development. This category includes all “avoid”
and “Category 2” areas identified in WREZ (Black & Veatch Corp. and NREL,
2009) and RETI (California Public Utilities Commission [CPUC], 2009) studies,
respectively.
Category 3: Lands with ecological, economic or social value, including many
conservation organizations’ priority conservation areas, Prime Farmland, and
lands proposed for designation as Wilderness.
Category 4: Lands with broad-scale ecological value based on regional models
and studies, including contiguous high quality suitable habitat and ecologically
intact lands. Datasets and sources that compose each Environmental Exclusion
Category are listed in Appendix Table B.2.

Incorporating Environmental Constraints in the RPS Calculator

To assess cost impacts of imposing environmental constraints on RE development in Cal-
ifornia, we created environmentally-constrained RPS Calculator scenarios. To do so, we
calculated the megawatts of potential installed capacity for each technology under each En-
vironmental Exclusion Level by Super Competitive Renewable Energy Zone (CREZ) using
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the site suitability models. Super CREZs are geographic areas within which resource po-
tential, transmission capacity, and costs have been estimated (see Appendix Figure B.1 for
a reference map showing labeled locations of Super CREZs). They are also the geographic
unit at which PV generic projects are selected by the RPS Calculator. For each tech-
nology, we compared the estimated environmentally-constrained potential for each Super
CREZ with the base case potential (no environmental exclusions) used in the unmodified
RPS Calculator (v 6.0). These potential values are tabulated for each technology in the
Appendix (Tables B.4, B.5, B.6, B.7). Because the environmentally-constrained potential
estimates represent total potential, they needed to be corrected for existing and commercial
RE power plants in each Super CREZs to create “net” resource potential. To create the
2030 portfolios, the Calculator selected generic projects to meet the renewable net short
from this environmentally-constrained set of “net” resource potential. As an example of how
this correction was performed, consider the following: the nearly 4 GW of operational or
commercial wind projects that already exist in the Tehachapi Super CREZ were removed
from the estimated total potential of 6.78 GW and 5.56 GW under the Category 1 and 2
Exclusion Levels, respectively, to create a net resource potential of 2.78 GW and 1.56 GW,
respectively (Table B.4). For each Environmental Exclusion Level scenario, we modified the
RPS Calculator using the lower of the environmentally-constrained and the unconstrained
potential values (MW). For example, since the modeled potential under Category 4 wind
exclusions (536 MW) for the Round Mountain Super CREZ was greater than the base case
RPS Calculator potential (220 MW), the modified RPS Calculator Category 4 Exclusion
Level scenario used 220 MW as the wind potential for Round Mountain.7

We generated technology-specific in-state portfolios for the following four unique 2030
RE targets in the RPS Calculator v6.0: 50% in-state, 40% in-state, 33% in-state, and
50% WECC-wide (Table 1). The RPS Calculator’s least-cost, best-fit approach to portfolio
creation may select different amounts of generation from each renewable energy technol-
ogy, depending on its availability under different environmental exclusions. The resultant
environmentally-constrained RPS Calculator portfolios (Table 1) and their contribution by
Super CREZ were subsequently used as inputs for the optimal site selection process (see Fig-
ure 3.1 for the process flow diagram of analysis and data inputs/outputs). For assumptions
and methods used in the RPS Calculator, refer to CPUC’s published documentation.8

7However, an important caveat in the way the inputs to the RPS Calculator were modified is that the
lower of the potential values (the RPS Calculator default and the ORB site suitability results) were
used. As such, there may be more opportunities to develop in a low conservation value area than
was made available to the Calculator in the present study. As such, the results reported here may
be more conservative than what is possible. To accurately assess whether more opportunities for low
impact development exist, a systematic comparison of the non-environmental exclusions will need to
be conducted between the RPS Calculator’s default potential inputs and ORB model’s site suitability
results.

8http://www.cpuc.ca.gov/PUC/energy/Renewables/hot/RPS+Calculator+Home.htm
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Table 3.1: RPS Calculator technology-specific generation targets (GWh)

RPS Calculator scenario Environmental
Exclusion
Level

Wind PV CSP Geothermal Total

50% in-state Base 31288 38656 4095 19231 93270
40% in-state Base 19779 26884 4095 16637 67395
33% in-state Base 18469 21901 4040 8467 52877
50% WECC-wide Base 30176 34267 4095 19231 87769
50% in-state Category 1 25795 41123 3989 16114 87021
40% in-state Category 1 19650 26540 3989 13431 63610
33% in-state Category 1 17699 21885 3934 5718 49236
50% WECC-wide Category 1 24899 30605 3934 13431 72869
50% in-state Category 2 23198 42818 3989 16073 86078
40% in-state Category 2 19043 26954 3989 13624 63610
33% in-state Category 2 17587 21856 3934 5719 49096
50% WECC-wide Category 2 21340 34210 3989 13624 73163
50% in-state Category 3 18721 50077 3989 16341 89128
40% in-state Category 3 16490 29451 3989 13892 63822
33% in-state Category 3 16253 23079 3934 5718 48984
50% WECC-wide Category 3 16837 30760 3989 16208 67794
50% in-state Category 4 16266 50561 18234 8604 93665
40% in-state Category 4 16068 33385 3989 8604 62046
33% in-state Category 4 15235 23502 3989 6146 48872
50% WECC-wide Category 4 15586 27382 3989 8604 55561

Optimal Renewable energy Build-out model (ORB model)

The Optimal Renewable energy Build-out (ORB) model is a spatially-explicit site selection
model that identifies installation locations for each RE technology by minimizing total gen-
eration and transmission land area given a set of technology-specific generation targets and
constraints. The ORB model consists of a spatial site-suitability model that identifies all
land areas appropriate for renewable energy development and a linear integer optimization
problem. To anticipate possible build-outs under multiple 2030 RPS Calculator scenarios
and to assess their environmental impacts, we modified the original model Wu, Torn, and
Williams (2015) for this present study to constrain the geographic selection of sites by Su-
per CREZ, as specified by the RPS Calculator (Figure 3.1), and to account for overlapping
suitable areas between multiple technologies.

Site suitability model

To identify all technically possible locations for renewable energy development in California,
we created site suitability models for wind, PV, CSP, and geothermal using the methods
established in Wu, Torn, and Williams (2015). Binary suitability maps were created using
map algebra functions and datasets listed in Table B.2 by applying threshold and buffer
specifications for each technology (Table B.3). The raster-based site suitability model was
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programmed in Python using the arcpy module (ESRI ArcGIS 10.2, Redlands, CA) and ran
using a spatial resolution of 500 m. We created a site suitability model for each technology
for each of four Environmental Exclusion Levels, generating a total of 16 model outputs. The
resulting potential estimates (MW) for each Super CREZ were estimated using the land use
factors in Table 3.2, without applying any discounts to account for unforeseen development
restrictions or for areas that may already have RE development. These values are tabulated
in Appendix Tables B.4 - B.7.

Development zone creation. To prepare the site suitability outputs for the site se-
lection process, we overlaid the technology-specific site suitability areas under each Envi-
ronmental Exclusion Level and determined areas where four, three, and two technologies’
suitability overlapped. All non-overlapping areas were identified and designated as those
suitable for only one type of generation technology. All contiguous areas suitable areas
greater than 20 km2 were divided using a 4 km x 4 km grid, and contiguous areas smaller
than 2 km2 were excluded from further analysis since these fall below minimum area speci-
fications for utility-scale projects. We refer to the resulting areas ranging from 2 to 20 km2

Figure 3.1: Methods flowchart
The flowchart shows the complementary roles of the ORB and RPS Calculator models in assessing
the impacts of environmental constraints on renewable energy development.
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Table 3.2: Technology-specific parameters

Wind PV CSP Geothermal
Land use factor (MW km-2) – average
literature values

6.1 9 30 10 3011 25.512

Water demand (gal MWh-1) – median
literature values

0 26 13 78 14 135 15 (binary or
≤ 80% CF); 10 16

(flash or > 80% CF)

as “development zones,” which serve as the spatial unit of analysis and site selection. We
merged all overlapping and single-technology development zones to create a feature class
of all possible development zones with attributes that indicate the technologies for which a
development zone are suited.

Development zone criteria. We calculated the following criteria for each development
zone and for each technology: generation land area (km2), Euclidean distance to nearest
transmission line (km), Euclidean distance to nearest substation (km), interconnection land
area (km2), total land area (km2), area-weighted resource quality (insolation, geothermal
feasibility score), capacity factor (CF; %), annual average generation (MWh). The Wind
Integration National Dataset (WIND) Toolkit from the National Renewable Energy Labora-
tory provides direct estimates of annual average capacity factors.17 (J. King, A. Clifton, and
Hodge, 2014), See Appendix Section B.1 for equations and details about estimating capacity
factors for solar PV, solar CSP, and geothermal and estimating annual average electricity
generation for each development zone and technology (Eq 4 in Appendix section B–2) using
the zone and technology-specific CF and land use factor (Table 3.2).

Whether a development zone interconnects to the nearest substation or nearest transmis-
sion line is determined using the following heuristic: if the distance to the nearest substation
is less than 37.5 km,18 a new project would interconnect to the nearest substation; if it is
greater than 37.5 km, it would connect to the nearest transmission line. Distances to either
substation or transmission line were scaled up by a rule-of-thumb factor of 1.3, to account
9(Denholm and Margolis, 2008)
10(Ong, Campbell, Denholm, et al., 2013)
11(Ong, Campbell, Denholm, et al., 2013)
12(Ong, Campbell, and Heath, 2012)
13(Macknick et al., 2011)
14(Macknick et al., 2011)
15(Macknick et al., 2011)
16(Macknick et al., 2011)
17The WIND Toolkit data are in the form of point locations representing the average capacity factor of a

2 km x 2 km area around the point. To transform these data into the form usable as an input to the
raster-based site suitability model, we generated a raster with 500 m cell size using inverse distance
weighted interpolation of the data points.

18Typically the range for connecting to an existing substation is 25 – 50 km, beyond which a new line would
be extended or a new substation built. The figure of 37.5 km is simply the median distance of this range.
These values and the rule-of-thumb transmission line multiplication factor were provided by Jack Moore
at Energy and Environmental Economics, San Francisco, California, USA.
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for additional length resulting from topography, and then multiplied by a line width of 0.076
km to estimate interconnection land area (km2). To avoid systematically reducing the total
land use efficiency (MWh km-2) of smaller development zones as a result of a fixed inter-
connection area, we applied a correction factor to the interconnection area using the ratio
of the development zone area (as small as 2 km2) to the largest possible development zone
area (20 km2). This correction results in a fixed generation-to-interconnection area ratio for
development zones of different sizes that are the same distance from the nearest transmission
line or substation and have the same resource quality

Site-selection using integer linear optimization

Relaxing site suitability estimates. The installed capacity of existing and commercial
RE projects in a subset of Super CREZs exceeded the estimated potential under the more
restrictive Environmental Exclusion Levels. For example, no potential installed capacity of
solar CSP remain in the Kramer Super CREZ under the Category 4 Exclusion Level, but
1150 GWh of solar CSP generation need to be sited in Kramer due to existing or commercial
power plants that cannot be excluded from the portfolio. We chose to model the entire
build-out (both existing and commercial, as well as generic) for two key reasons. First, the
electricity costs estimated in the RPS calculator reflect the entire portfolio, not just the
“net short” build-out. Impacts (land use efficiency, environmental impact score) modeled
using the net short build-out would not correspond to the electricity costs. Second, because
locations of existing and commercial projects could not be made publicly available, we could
not exclude them from the site suitability models. As a result, modeling only the net short
build-out (i.e., generic projects) could select sites where current existing and commercial
projects may be located.

In order to model the entire build-out of an RPS Calculator portfolio, including exist-
ing or commercial projects, we relaxed the environmental exclusions only for those Super
CREZs with insufficient modeled potential to meet its RPS Calculator specified generation
requirements. Exclusions were relaxed to the category that would allow sufficient generation
to be sited. For example, a total of eight Super CREZs under the Category 4 Exclusion Level
needed to be relaxed to Category 3 and three needed to be relaxed to Category 2 Exclusion
Levels, in order to model the Super CREZ-specific generation portfolio (Figure 3.3). We
prevented any additional generation from being sited in Super CREZs where the environ-
mentally constrained potential was less than the generation from existing and commercial
projects within those Super CREZs (see section 2.2 for a description of how these environ-
mentally constrained portfolios were generated). We excluded from the site selection process
Super CREZs with minimal (<5 GWh) generation targets in the RPS Calculator scenarios
and that had no potential under any Environmental Exclusion Levels based on our site suit-
ability models. These Super CREZs include: Los Angeles County, San Diego County, Orange
County, and Santa Clara County. Additionally, due to the lack of geothermal potential in
our site suitability model even under the most relaxed Environmental Exclusion Level, RPS
Calculator-specified geothermal targets in Lassen North, Mono County, and Owens Valley
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Super CREZs were not modeled in this study. The overlap of legal environmental exclusions
with areas of high geothermal feasibility preclude identification of suitable sites in Owens
Valley. Mono County geothermal site suitability is precluded by the slope exclusion (>1500
m).

Optimization problem construction. We constructed an integer linear optimization
problem in order to optimally select development zones that meet the 2030 RE targets.
Solving the optimization problem identifies both the sites and the technology for each site
that minimizes total (generation and transmission) area used for electricity generation in
each scenario, as shown in the objective function (Eqn. (B.1)). By specifying binary decision
variables (xt,z), constraint (Eqn. (B.2)) restricts the development status of each development
zone to “no development” (xt,z = 0) or “complete development (xt,z = 1). Because each
development zone (z) may be suitable for any combination of examined technologies (t),
the optimization problem must choose to develop no more than one technology per zone, as
enforced with constraint (Eqn. (B.4)), while ensuring that the build-out meets technology-
specific targets (dt), as enforced with constraint (Eqn. (A.4)). To align the geographic-
specificity of the RPS Calculator with the ORB site selection process, constraint (Eqn.
(A.5)) restricts the total MWh of generation for each technology within each Super CREZ
to be greater than or equal to 90% of the Super CREZ-specific RPS Calculator targets (gc,t).
We restricted development by Super CREZ using a minimum generation equal to 90% of the
values specified by the RPS calculator, but imposed no maximum generation, in order to
provide some flexibility to account for the following differing assumptions between the ORB
model and the RPS calculator: 1) differences in capacity factors that result in differences
in generation estimates, 2) the overlap of suitable sites between technologies that could
not be accounted for in creating environmentally constrained potential values for the RPS
calculator, which could have the effect of over-estimating the technology-specific potential
in a given Super CREZ, and 3) differences in minimum project size that would prevent the
ORB model from finding a solution if a maximum generation value were imposed from the
RPS calculator that was less than the minimum project size in the ORB model.

We programmed the integer optimization problem in the optimization programming lan-
guage (OPL) using the IBM c© CPLEX Optimization Studio. We solved the optimization
problem for each of the four RPS Calculator build-out scenarios (Table 1) under each Envi-
ronmental Exclusion Level (Section 2.1.2). However, we only report results for maintaining
the current California RPS target of 33% by 2030 and the newly announced target of 50%
by 2030 for both in-state and WECC-wide.
Nomenclature

Indices:
z development zone index where z ∈ 0...Z
t technology where t ∈ wind, PV, CSP, geothermal
c Super CREZ index where c ∈ 0...C

Variables:
xt,z selection status ∈ 0, 1 of development zone z, technology t
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Parameters:
az,t total generation and transmission area of development zone z,technology t
ez,t electricity generation (MWh) of development zone z, technology t
dt annual generation target (MWh) for technology t from the RPS Calculator
gc,t annual generation target (MWh) for technology t within super CREZ c
iz,c assignment ∈ 0, 1 of zone z to super CREZ c

Objective function and constraints
Minimize: total (generation and transmission) land use

f(xt,z) =
Z∑
z=1

T∑
t=1

az,txz,t (3.1)

Subject to:
xt,z ∈ 0, 1 (3.2)

T∑
t=1

xz,t ≤ 1 ∀z ∈ 1, ..., Z (3.3)

Z∑
z=1

ez,txz,t ≥ dt ∀t ∈ 1, ..., T (3.4)

Z∑
z=1

iz,cez,txz,t ≥ 0.9gc,t ∀t ∈ 1, ..., T , ∀c ∈ 1, ..., C (3.5)

Impact analysis

In addition to estimating total generation and land area characteristics of each scenario, the
following impact metrics were estimated: area-weighted average environmental impact score,
total water consumption by scenario (annual household-equivalents) and disaggregated by
groundwater basin, average housing density (households km-2), and land cover type. See
Table B.1 for sources of datasets used to estimate impacts.

Environmental impact score. We created an environmental impact scoring system
by assigning each of the environmental exclusion categories a score that is the inverted value
of its category (section 2.1.2), such that Category 1 areas were assigned a value of 4 and
Category 4 areas assigned a value of 1. This scoring is based on the assumption that siting
in areas with less legally stringent conservation values (e.g. Category 4) will be lower impact
than if development occurred on land areas with more stringent values (e.g. Category 2).
All areas outside of Categories 1-4 exclusions were assigned an environmental impact score
of 0. Since all Category 1 areas are legally protected and excluded from all environmental
scenarios, possible environmental impact scores (EIS) range from 3 to 0.
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We calculated the average EIS for the build-out of an RPS Calculator portfolio by area-
averaging the EIS of all selected development zones. The average environmental impact score
is a measure of the ecological and social conservation value of the land developed. It ranges
from 0 to 3 with a score of 3 indicating that development projects have high conservation
impact. An average EIS of zero implies no development in areas of environmental concern,
whereas an average EIS score of 2 implies that on average, the selected build-out occupies
areas with “medium environmental impact.” For example, an average EIS of 2 could result
from the ORB model siting 25% of development zones on land with “high environmental
conflict” (score 3), 55% on land with “medium environmental conflict” (score 2), 15% on
land with “low environmental conflict” (score 1), and 5% on land with “no environmental
conflict” (score 0). The environmental impact score under Category 4 Exclusion Level could
never actually be zero due to the relaxations of environmental constraints for existing and
commercial RE projects. Additionally, we calculated the total area (km2) of each EIS for
each scenario.

Water consumption. Total water consumption estimates rely on the literature com-
pilation of technology-specific water consumption values reported in Macknick et al. (2011)
(Table ??). Using the median value (gallons MWh-1) and the annual MWh generated per
technology, we estimated annual water consumption values in gallons, which were converted
to annual average household water demand-equivalents (HWDeq). A unit of HWDeq is equal
to 146,000 gallons of water, which is calculated using the average household water use of
400 gal d-1 (U.S. EPA: WaterSense). We report HWDeq values across the entire state and
spatially disaggregated for each groundwater basin.

Landscape fragmentation and land cover. Average housing density is used as a
proxy for landscape and habitat fragmentation (Radeloff et al., 2010). According to Radeloff
et al. (2010) housing growth is one of the best indicators of threat to the biodiversity and
ecosystem health of protected areas in the U.S. In order to understand how habitat and
vegetative communities impacted change under different sets of environmental exclusions,
we used the U.S. Geological Survey’s GAP land cover data, which follows the National
Vegetation Classification System, to determine the area of land cover type converted under
each build-out scenario.

3.3 Results

Site suitability and optimal build-out

The site suitability models show the spatial distribution of technically and environmentally
feasible resources across the state, and the optimally selected build-outs show areas of highest
resource quality and close to existing or planned transmission. As the area of environmental
exclusions increase from Category 1 to 3, the area of suitable sites reduce in a spatially
homogenous fashion throughout the state (Figure 3.2). Under the Category 4 Exclusion
Level, suitable sites are largely located in the Central Valley, particularly the Westlands, Los
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Banos, Central Valley North, and Solano Super CREZs. Areas in Southern California with
the largest areas of remaining potential under Category 4 Exclusion Level are the Riverside
East, Imperial, Palm Springs, and San Bernardino Lucerne Super CREZs (see Appendix
Figure B.1 for a reference map showing labeled locations of Super CREZs).

Using the relaxed site suitability areas in Figure 3.3, the ORB model identified selected
sites to meet the Super CREZ-specific and state-wide generation targets for each technology.
We constrained this site selection process in order to produce a build-out that best spatially
represents the RPS Calculator portfolio within the limitations of the ORB model. That is,
the ORB model attempts to spatially allocate generation to each Super CREZ according
to RPS Calculator portfolio specifications. Figure 3.4 shows the optimally selected sites
to meet the 50% in-state by 2030 target in the RPS Calculator. For selected sites of all
RPS Calculator scenarios, see the accompanying layered PDF map that allows toggling of
individual layers, including transmission lines and substation locations (Map B. 1). Under
the Category 4 Exclusion Level in the 50% in-state, with solar PV replacing most of the
reduced wind generation in the overall RE portfolio, the distribution of solar PV extends
much more into the Central Valley (Carrizo North Super CREZ) and northern California
(Solano, Central Valley North, and Sacramento River Valley Super CREZs) and out of the
Mojave (Tehachapi, Kramer Super CREZs; Figure 3.4). Wind development in the Solano
and Tehachapi Super CREZs remain relatively unchanged across environmental exclusion
categories, but is significantly reduced in the Sacramento River Valley Super CREZ in Cat-
egories 3 and 4 Exclusion Levels. These technology-specific trends are similar for the 50%
WECC-wide 2030 scenario (Map B. 1), except significantly less solar PV is required within
California under Category 4 Exclusion Level (Table 1). For 33% in-state, almost no wind
is sited in the Sacramento River Valley Super CREZ across all environmental exclusion sce-
narios, and solar PV is more widely distributed in the Central Valley region under Category
3 and 4 Exclusion Levels (Map B. 1).

Electricity generation and land use efficiency

Generation mix—Overall results show that the more ambitious the RE integration target,
the stronger the effect of environmental constraints on the in-state generation mix. In RPS
Calculator portfolios that achieve 33% in-state RE generation by 2030, environmental con-
straints had little impact on the in-state electricity generation of each technology (Figure
3.5A). The reduction in wind generation with increasing environmental constraints is offset
by a proportional increase in solar PV generation (Figure 3.5A). In the 50% by 2030 in-state
and WECC-wide scenarios, generation portfolios change more dramatically in response to
the environmental exclusions imposed. If out-of-state (WECC-wide) imports are allowed,
increasing the area of environmental exclusions drives down in-state wind generation, which
under the Category 2 Exclusion Level, can be addressed cost-effectively with additional in-
state solar PV. Under Category 3 and 4 Exclusion Levels, out-of-state wind generation is able
to compensate for reduction in in-state wind and solar PV, as observed in the drop in solar
PV generation and the overall in-state generation decline (Figure 3.5A). If electricity must
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Figure 3.2: Suitable sites for the development of wind, solar PV, solar CSP, and geothermal
Colors indicate the number of technologies for which an area is suitable. For example, dark green
areas are those that are suitable for any possible combination of three out of the four technologies
(i.e., wind, solar PV, solar CSP). The maps show suitable sites for Category 1 through 4
Environmental Exclusion Levels, with Category 1 being legal baseline exclusions and Category 4
having the most extensive exclusion criteria.
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Figure 3.3: Suitable sites for the development of wind, solar PV, solar CSP, and geothermal
under relaxed environmental exclusions.
Colors indicate the number of technologies for which an area is suitable. The maps show suitable
sites under Category 1 through 4 Environmental Exclusion Levels. The difference between these
maps and those in Figure 3.2 is the relaxation of particular Super CREZs in order to meet the
generation targets of existing or commercial projects in the RPS Calculator portfolio. The color of
each Super CREZ indicates the Environmental Exclusion Level to which the site suitability has
been relaxed, with white fill being no relaxation. The suitable area within relaxed Super CREZs
corresponds to the Exclusion Level to which it has been relaxed.
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Figure 3.4: Development zones selected to meet the RPS Calculator’s 2030 “50% in-state”
renewable energy target
Maps show the optimally selected build-out for each technology using the relaxed site suitability
models under the Category 1 through 4 Environmental Exclusion Levels (Figure 3.3). The ORB
model selects development zones from the site suitability model by minimizing the total
generation and transmission land area while meeting the RPS calculator portfolio’s Super
CREZ-specific technology generation requirements.
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be generated within California (in the 50% in-state scenario), the same reduction in available
wind generation under Category 2 and 3 Exclusion Levels must be offset by in-state solar
PV. Under Category 4 Exclusion Level in the 50% in-state scenario, a dramatic increase
in solar CSP generation largely compensates the reduction in both wind and geothermal
generation (Figure 3.5A).

Land area—The total California land area needed for wind generation decreases at
the higher exclusion levels, as generation mixes shift to more solar PV and CSP, and to
out of state wind in the WECC-wide scenario (Figure 3.5C). The area in the in-state 50%
scenario for solar PV increases with exclusion levels, and for CSP at the Category 4 Exclusion
Level due to the need for over-development of solar technologies beyond demand resulting in
solar generation curtailment. However, it may be acceptable to develop more areas of lower
conservation value in exchange for avoided impacts in higher quality areas.

Land use efficiency—Reductions in generation land use efficiency (GWh km-2) across
Environmental Exclusion Levels and RPS scenario targets are gradual and low, with a few
exceptions at high RE penetration and under high environmental constraints (Figure 3.5C).
The decrease in land use efficiency is most notable for solar PV, solar CSP, and geothermal
between Category 3 and 4 Exclusion Levels in achieving 50% in-state targets. Land use
efficiency for wind decreases most drastically between Category 2 and 3 Exclusion Levels to
meet the 33% in-state target. The relative inelasticity of land use efficiency across combi-
nations of RPS targets and environmental exclusion categories is in large part due to the
way the RPS Calculator builds portfolios. The Calculator selects the generation mix that
minimizes costs, which is directly and largely determined by a development zone’s renewable
resource quality and thus the zone’s land use efficiency. Higher resource quality translates
into higher capacity factors and more generation per unit land area (e.g., GWh km-2). De-
spite the gradual reduction in land use efficiency for each technology as RE penetration
and environmental constraints increase, the overall—“all technologies”—land use efficiency
increases (Figure 3.5C) since solar PV generation increasingly substitutes wind generation
(Figure 3.5A), and the land use factor (e.g., MW km-2) of solar PV is significantly greater
than that of wind (Table 3.2). However, the land use areas reported for each technology rep-
resent the “total” project land use, which represents the entire area of a wind or solar power
plant, as opposed to the direct land use, which represents the land transformed or altered
from its natural state due to the presence of the power plant (i.e., just the land footprint of
the infrastructure). The direct land use for wind power is significantly lower than that of
solar power due to the footprint of wind turbines and roads

Conservation, water, and land cover impacts

Conservation impacts—To compare the conservation impacts of imposing environmental
constraints on RE build-out, we developed an area-weighted average environmental impact
score (EIS) and calculated the area of land falling within each EIS, where higher EIS values
indicate greater conservation impact (Figure 3.6B, Figure 3.7). See methods section 2.4 for
an explanation of the EIS metric. Across all generation technologies as well as an entire
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Figure 3.5: In-state generation and potential land area impacts of 2030 modeled build-out
scenarios
The ratio of in-state electricity generation in GWh (A) to in-state generation land area in km-2

(B) is the land use efficiency in GWh km-2 (C). These generation and land area metrics are
provided for each renewable energy technology or for “all technologies” combined within a
particular scenario (e.g., 33% in-state RPS target under Category 1 Environmental Exclusion
Level). Generation values and land areas do not include distributed solar PV or distributed wind.
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RPS portfolio (“All technologies”), results show a decline in average EIS with increasing
environmental constraints, which suggests that fewer environmentally sensitive areas would
be selected for RE development (Figure 3.6B). This trend is also clearly observed in the
reduction of land areas rated as EISs 3, 2, and 1 with increasing environmental exclusions
(Figure 3.7). The entire RE build-out under the Category 4 Exclusion Level to meet the
50% in-state target has less than 200 km2 in EIS 2 areas and nearly 1000 km2 in EIS 0 areas
compared to nearly 600 and 360 km2, respectively, under the Category 1 Exclusion Level
(Figure 3.7).

For solar PV in particular, average EIS decreases substantially and consistently with
increasing environmental exclusions, indicating that for solar PV, land impacts can be largely
avoided by applying development exclusions. Under the Category 4 Exclusion Level for
all RPS scenarios, more than half of all solar PV land areas are sited on land with low
conservation value (EIS 0). The average EIS of a large solar PV build-out, such as in the
50% in-state scenario, can be less than that of any other RE technology. The differences in
average EIS between Category 3 and 4 Exclusion Levels for wind and solar CSP are negligible,
but these scores are significantly lower than those under Category 1 and 2 Exclusion Levels
(Figure 3.6B). Solar CSP under the Category 4 Exclusion Level and in the 50% in-state
scenario has a large share of development on EIS 1 land areas (due to the need to relax
constraints described in section 2.3.2) but also substantially more development is sited on
EIS 0 land area compared to other Environmental Exclusion Levels (Figure 3.7).

Environmental constraints appear to have lower impacts on geothermal resource quality
compared to other technologies, as the ORB model sited geothermal in areas with lower
conservation value (average EIS is less than 1) even under the more relaxed environmental
constraints. This indicates that some of the highest quality geothermal resources are also in
locations that have lower conservation value. The average EIS for geothermal was relatively
invariant to changes in environmental constraints, until Category 4 Exclusion Level, an ob-
servation that is also consistent with a previous study.4 Also, geothermal did not experience
the same intensity of environmental constraints, since the Imperial Super CREZ, in which a
large share of total in-state geothermal generation is sited by the RPS Calculator, needed to
be relaxed for three of the four Environmental Exclusion Levels due to the insufficient wind
and solar generation (Figure 3.3).

Landscape fragmentation—Trends in housing density, which is used as a proxy metric
for landscape fragmentation (see methods section 2.4), are consistent with and complement
trends observed in environmental impact scores (Figure 3.6C). Across all technologies, an
increase in the area of environmental exclusions generally results in development on more
fragmented land, which is consistent with environmentally sensitive or high conservation
value lands as being more intact and less disturbed by human development (Figure 3.6C).

Water use—Water consumption is directly proportional to the amount of generation,
with the exception of geothermal, which differs by sub-technology depending on the capacity
factor of the site (Table 3.2). Total water consumption across the state will be less than
13,000 annual household-water-demand-equivalents (HWDeq) for all but the most environ-
mentally constrained and highest RE penetration scenario (Figure 3.6D). Results of spatially
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disaggregating all technologies’ water demand by groundwater basin are shown in Figure B.2.
Spatial disaggregation shows that no groundwater basin will sustain more than 3,000 HWDeq
of demand from RE development. As RE penetration increases, additional basins—Salinas,
Sacramento Valley, Modoc Plateau, Lucerne Valley, and Lower Mojave River Valley—may
begin to experience water demand from RE generation (Figure B.2). Due to the multi-fold
increase in solar CSP generation under the Category 4 Exclusion Level in the 50% in-state
generation scenario, several basins experience a significant shift in water demand, with basins
like Imperial Valley, Chuckwalla Valley, San Joaquin and Upper Mojave River Valley dou-
bling in water demand, but basins like Antelope Valley reducing water demand by 50% due
to a reduction in estimated renewable energy generation in this region. However, under the
50% WECC-wide scenarios, in-state water consumption is reduced across the state, with no
single groundwater basin experiencing more than 1000 HWDeq from all RE development
(Figure B.3). Though water demand increases under the Category 4 Exclusion Level in the
50% in-state scenario, the additional demand is distributed across more ground water basins
(Figure B.3).

Land cover type—Analysis of land cover types impacted in each modeled build-out
shows that development of wind, solar PV, and solar CSP will predominantly be on warm
semi-desert scrub and grassland (Figure 3.8). However, the dominance of solar PV devel-
opment on warm semi-desert scrub and grassland declines gradually with increasing envi-
ronmental constraints in the 33% in-state and 50% WECC-wide scenarios. This results in
more development on herbaceous agricultural vegetation, Mediterranean grassland and forb
meadow, and developed and urban land cover types as we exclude more areas of conserva-
tion value. Due to the increase in solar PV generation targets, solar PV in the 50% in-state
scenario even more strongly demonstrates this trend of shifting spatial development pat-
terns from highly concentrated in the southern deserts to greater state-wide dispersion as
we impose more environmental constraints (Figure 3.9). The largest changes in land cover
type for wind occur in herbaceous agricultural vegetation, Mediterranean grassland and forb
meadow, and warm temperate forest, all of which experience less land transformation from
wind development with increasing environmental constraints at 50% in-state and WECC-
wide targets. Geothermal is largely sited in agricultural and cool temperate forest lands,
which is consistent with the locations of existing geothermal projects.

Electricity cost impacts Results of applying environmental exclusions in the RPS Cal-
culator show that the level of in-state RE targets is what largely dictates the economic cost
impact of increasing environmental constraints (Figure 3.10). As California’s grid integrates
more RE, the greater the electricity cost premium of applying environmental constraints
becomes. Total revenue requirement is invariant to increases in environmental constraints in
the 33% in-state scenario, with only a 0.2% cost premium under the Category 4 Exclusion
Level. The maximum cost premium for the 50% WECC-wide scenario—under the Category
4 Exclusion Level—is still only 2%, with Category 1 through 3 Exclusion Levels resulting
in no greater than a 0.6% electricity cost increase. It is only at the most environmen-
tally constrained and highest in-state RE target scenario that the cost premium increases
dramatically—from 2% to 12% between Category 3 and 4 Exclusion Levels.
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Figure 3.6: Environmental impacts of 2030 modeled build-out scenarios
In-state generation (A) is provided as another possible explanatory variable for the trends
observed across environmental exclusion categories, RPS scenarios, and technologies. The average
environmental impact score (EIS) (B) of a build-out scenario is the area-weighted average EIS
occupied by the selected development zones. Average EIS values closer to zero indicate lower
conservation impact; larger values indicate higher conservation impact. Error bars show each
scenario’s standard deviation. Average housing density (C) is used as a proxy for the degree of
fragmentation, with areas of higher housing density having greater landscape fragmentation.
Household water demand equivalents (D) is the annual water consumption of an average
household in the U.S., or 146,000 gal. See section 2.4 for a description of impact metrics.
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Figure 3.7: Environmental impact scores of 2030 modeled build-out scenarios’ generation
land area
Stacked bars show the area of land falling within each environmental impact score. EIS values
closer to zero indicate areas with lower conservation impact; larger values higher conservation
impact. The average environmental impact score reported in Figure 3.6B is the area-weighted
average of an entire scenario.
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Changes in electricity costs, which reflect both in-state and out-of-state generation and
transmission costs incurred by the utility (but do not include mitigation or permitting costs
that are specific to particular sites), can be in part explained by changes in total in-state RE
generation (Table 1, Figure 3.5A). The amount of in-state generation steadily increases in the
50% in-state scenario, as more environmental constraints are imposed. This growth is almost
entirely attributed to solar PV, which comprises a larger part of the generation portfolio as
a result of reduced wind generation. Under Category 4 Exclusion Level in the 50% in-state
scenario, curtailment of solar PV during low-demand hours explains the need for overall
generation increase to meet the same amount of demand in 2030. Additionally, distributed
PV generation (i.e., small scale) contributes approx. 12,000 GWh in the Category 4 Exclusion
Level 50% in-state scenario and is not included in the RE generation values reported in Table
1, Figure 3.5A, or Figure 3.6A since the ORB model was not designed to model the build-out
of distributed generation. As such, the combination of adding more costly distributed solar
PV generation, curtailing utility-scale solar PV generation, and large increases in more costly
solar CSP generation explains the large cost premium of the Category 4 Exclusion Level,
50% in-state scenario. The 50% WECC-wide scenario avoids the need for a large build-out

Figure 3.8: Area of land cover type impacted in each modeled build-out scenario
Note that the limits of the y-axis differ between generation technologies. Land cover types follow
the National Vegetation Classification System (NVCS). Figure 3.9 depicts the land cover types as
they occur throughout California.
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Figure 3.9: Land cover types in California
This map is a reference for Figure 3.8. As such, it only depicts land cover types impacted by
modeled renewable energy build-out scenarios.
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of solar electricity under the Category 4 Exclusion Level by taking advantage of out-of-state
wind resources with higher marginal production value compared to in-state solar.

Additional transmission expansion and upgrade costs also contribute to cost increases,
since the share of transmission in the total revenue requirement increases steadily from ap-
proximately 10.5% (Category 1) to 11.2% (Category 4) for the 50% in-state target. However,
this rate of increase does not keep pace with the rate of increase of total electricity costs
between Category 1 and 4 Exclusion Levels for the 50% in-state target. With increasing
environmental constraints, transmission costs account for a smaller share of the cost differ-
ences between scenarios—it accounts for 32% of the cost difference between Category 1 and
2 Exclusion Level, 17% between Categories 2 and 3, and 16% between Categories 3 and 4.

3.4 Discussion of key results
RPS Calculator generation portfolios: The RPS target within California largely
determines the extent to which the generation mix changes as a result of environ-
mental constraints. Increasing the area of environmental exclusions reduces both
the availability and cost of wind generation more consistently and substantially
than any other technology examined (Figure 3.5).

By modifying the available potential under different tiers of environmental constraints
within each Super CREZ, we created “environmentally preferred” generation portfolios within
the RPS Calculator. Depending on the availability and cost of resources under each set of
environmental constraints, these portfolios differ in their generation mix. The percentage
target of RE largely determines the extent to which a portfolio changes as a result of environ-
mental constraints. For the 33% in-state target, there is little variation in the generation of
each technology except for wind, which consistently declines with increasing environmental
exclusions. To achieve 50% in-state and WECC-wide targets, wind generation reduces in
response to increasing environmental constraints. If all generation must be in-state, geother-
mal generation also decreases under the Category 4 Exclusion Level, with the difference
largely made up by solar PV and solar CSP. The overall RE generation also increases with
greater environmental constraints in this scenario due to the curtailment of solar electricity.
However, if WECC-wide generation can be sourced to meet the 50% by 2030 target, in-
state wind and solar PV generation that would be excluded under increasing environmental
constraints would be substituted by out-of-state wind. As such, the most salient impact of
imposing environmental constraints for California land areas in a 50% WECC-wide scenario
is the overall reduction in within-state RE generation. This may result in a shift of envi-
ronmental impact to out of state resources as creating environmentally constrained suitable
sites for the entire WECC region was beyond the scope of the study. This suggests the need
to coordinate land use and electricity planning at a regional scale to ensure the best climate
and conservation outcomes.

Land area and land use efficiency: High renewable resource quality exists
in environmentally sensitive areas, which results in a slight reduction in each
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Figure 3.10: RPS Calculator estimated electricity costs of each Environmental Exclusion
Level
The bar plot corresponds to the primary (left) y-axis indicating the total revenue requirement
(total electricity costs) of each RPS Calculator portfolio (note that the left y-axis begins at 30,000
MM USD). The x-axis shows each Environmental Exclusion Level for each RPS target
scenario—33% in-state, 50% WECC-wide, 50% in-state by 2030—in increasing order of in-state
RE generation. The secondary (right) y-axis and the scatterplot show the electricity cost premium
(in percent increase) of imposing an environmental exclusion above the base case. The RPS
Calculator’s environmental base case is the unmodified Calculator v6.0, which does not
incorporate environmental exclusions developed in this present study.
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generation technology’s land use efficiency as more environmental exclusions are
imposed. However, the relative inelasticity of land use efficiencies to additional
environmental constraints suggests that cost-effective substitution of RE tech-
nologies is possible under most scenarios and environmental Exclusion Levels
(Figure 3.5).

The general trend is a reduction in land use efficiency with increasing environmental
constraints and higher electricity generation. However, the decline in land use efficiency is
typically slight, which is likely an effect of the cost-minimizing method in which the RPS
Calculator builds a generation portfolio, but is also importantly indicative of the ability
for different RE technologies to cost-effectively substitute each other to meet RPS targets,
at least until the most stringent Environmental Exclusion Level at highest RE penetration.
Within a particular RPS target, the greatest decline (1 GWh km-2) in total land use efficiency
occurs between Category 3 and 4 Exclusion Levels for solar PV. That is, after the Category 3
Exclusion Level in the 50% in-state scenario, it becomes increasingly more costly to substitute
the reduction in wind and geothermal with solar PV and CSP.

While the differences in land use efficiency have been quantified and compared, a better
comparison would be of the resultant economic costs of these differences. It is otherwise
difficult to meaningfully understand the impact of a 1 GWh km-2 loss in land use efficiency
or a particular amount of additional area required to meet targets.

Conservation and land use benefits of environmental exclusions: Imposing
environmental constraints on RE development achieves lower environmental im-
pacts and results in development of more fragmented land areas (Figure 3.6,
Figure 3.7).

Sites optimally selected under only legal exclusions (Category 1 Exclusion Level) are
associated with higher environmental impact compared to sites selected under more environ-
mental exclusions. Given that the RE build-outs are spatially modeled by minimizing gen-
eration and transmission land area, this result suggests that opportunities for development
of high quality resources close to transmission and substations exist within environmentally
sensitive areas, a finding that agrees with Wu, Torn, and Williams (2015) recent study using
different sets of environmental exclusions. These areas of high conservation value and high
quality resources are likely to be developed if they are not actively protected. Thus, the
incorporation of environmental constraints in RPS planning and siting will be necessary to
achieve both conservation and clean energy goals.

Land cover types and geographic diversity: With increased renewable en-
ergy generation and environmental exclusions, generation becomes more widely
distributed across the state, which results in more development on herbaceous
agricultural vegetation, grassland and forb meadow, and developed and urban
land cover types (Figure 3.8).

For solar PV and CSP, which increase in generation under more ambitious RPS 2030 tar-
gets, the general trend with increased environmental constraints is a geographic shift of mod-
eled installations from the desert south to other parts of the state, largely northern Mojave,
the Central Valley, and Northern California. This geographic dispersion of RE development
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is more favorable compared to spatially concentrated development from conservation, grid
reliability, and system cost standpoints, since geographic heterogeneity reduces aggregate
variability of generation and additional generation capable of ramping (Mills, 2010). Also,
a shift towards disturbed land areas (agricultural vegetation and developed and urban land
cover types) reduces the burden of development on fragile and intact desert and scrubland
ecosystems.

Water consumption: Since renewable energy water demand is directly pro-
portional to increases in generation, more ambitious renewable energy targets
result in higher water consumption from renewable generation. However, overall
electricity water demand will likely reduce due to the substitution of natural gas
combined cycle, which is a more water-intensive generation technology. Under
more environmental exclusions, this demand is also more geographically dis-
persed (Figure 3.6).

Water demand for electricity generation in any single groundwater basin does not exceed
the annual water demand equivalent to 3,000 households, with most groundwater basins
experiencing no more than 1000 household water demand equivalents. Under the Category
4 Exclusion Level, the water demand for WECC-wide and 33% in state scenarios of any single
groundwater basin does not exceed the annual water demand equivalent to approximately
1000 households. Although water requirements from the four technologies examined in this
study do increase with increasing RE penetration, the total water demand from electricity
generation is likely to decrease since RE displaces conventional thermal technologies such as
nuclear and natural gas that are much more water intensive per MWh of generation.

Electricity costs and balancing the benefits of land conservation: Minimizing
both negative conservation impacts and electricity costs at high renewable en-
ergy penetration may require California to utilize WECC-wide renewable energy
resources (Figure 3.10).

Meeting the 50% in-state target by 2030 under the Category 4 Exclusion Level is pos-
sible and would result in a 60% reduction in average environmental impact score or a 40%
reduction in development on land areas with EIS 1, 2, and 3, compared to the build-out
under the Category 1 Exclusion Level. However, doing so would incur an 82% increase in
water consumption and a 12% increase in costs over the Category 1 Exclusion Level case. If
environmental exclusions were reduced to Category 3 Exclusion Level to achieve the same
50% in-state target, the water and cost impacts would drop dramatically—to 20% increase
in water consumption and a 2% cost premium—but it would only achieve a 47% reduction in
average EIS or a 17% reduction in development on EIS 1-3 land areas. If the RPS portfolio
could include WECC-wide resources, it would be possible to meet the most ambitious RPS
target of 50% under the most stringent set of in-state environmental exclusions for only a
2% cost premium. The 50% WECC-wide build-out under the Category 4 Exclusion Level
also uses less water and achieves more than 50% reduction in average environmental impact
score or a 44% reduction in development on EIS 1-3 land areas, compared to the build-out
under the Category 1 Exclusion Level.

Selecting the appropriate set of environmental constraints, which may be a combination of
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technology-specific stringencies, will need to balance cost impacts with conservation, water,
and grid benefits. Without monetary valuation of the total avoided ecosystem, ecological,
and land use costs, as well as costs associated with permitting, delays, and mitigation, un-
der each set of environmental exclusions, it is difficult to objectively determine whether the
economic value of the environmental benefits justify a 2% or a 12% premium in electricity
costs—i.e., whether the benefits exceed the costs in each scenario. As such, the results as
they are presented in this study are inadequate for an objective decision within a traditional
cost-benefit framework. Using a cost-effectiveness framework (e.g., USD per unit conserva-
tion value) could improve the tangibility of these conservation benefit vs. electricity cost
comparisons.
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Chapter 4

Strategic renewable energy siting using
multi-criteria spatial analysis1

Recent forecasts suggest that African countries must triple their current electricity gen-
eration by 2030. As the first multi-criteria assessment of wind and solar potential for
large regions of Africa, our study is the first to show how economically-competitive and
low-environmental-impact renewable resources can significantly contribute to meeting
this demand. We created the Multi-criteria Analysis for Renewable Energy (MapRE)
framework to map and characterize solar and wind energy zones in 21 countries in the
Southern and Eastern Africa Power Pools (SAPP and EAPP) and find that potential is
several times greater than demand in many countries. “No-regrets” options—or zones
that are low-cost, low-environmental impact, and highly accessible—exist such that sig-
nificant fractions of demand can be quickly served with low-impact resources without
large cost impacts. Because “no-regrets” options are spatially heterogeneous, interna-
tional interconnections are necessary to help achieve low-carbon development for the
region as a whole, and interconnections that support the best renewable options may
differ from those planned for hydropower expansion. Additionally, interconnections
and selecting wind sites to match demand reduces the need for SAPP-wide conven-
tional generation capacity by 9.5% in a high-wind scenario, resulting in a 6-20% cost
savings depending on the avoided conventional technology. Strategic selection of low-
impact and accessible zones is more cost-effective with interconnections compared to
solutions without interconnections. Overall results are robust to multiple load growth
scenarios. Together, results show that multi-criteria site selection and deliberate plan-

1This chapter was originally published as:
Wu, G.C.*, R. Deshmukh*, K. Ndhlukula, T. Radojicic, J. Reilly-Moman, A. Phadke, D. Kammen,
D.S. Callaway. 2017. Strategic siting and grid interconnection key to Africa’s low-carbon electricity
future. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1611845114
*authors contributed equally.
The main content of the published paper has been placed in its entirety in the main body of the
dissertation and the supporting information has been placed in its entirety in the Appendix of the
dissertation.

http://www.pnas.org/content/early/2017/03/21/1611845114
http://www.pnas.org/content/early/2017/03/21/1611845114
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ning of interconnections may significantly increase the economic and environmental
competitiveness of renewable alternatives relative to conventional generation.

4.1 Introduction
As a region, Africa has the lowest per capita electricity consumption in the world, due in
large part to lack of generation and transmission infrastructure development at both the
national and regional levels (Eberhard et al., 2011). Yet, the average cost of electricity in
most African countries is at least twice that of other non-OECD countries (Eberhard et al.,
2011). For the region to successfully meet goals to increase affordable electricity access and
reduce demand curtailment, electricity generation will need to grow exponentially. By some
estimates, demand in the Eastern and Southern African Power Pools (EAPP and SAPP),
which encompass more than 50% of the continent’s population, may collectively exceed 1000
terawatt-hours by 2030, or nearly triple their electricity consumption in 2010 (Eastern Africa
Power Pool et al., 2011; Southern Africa Power Pool and Nexant, 2007).

To meet energy goals, decision-makers are looking to fossil-fuel and hydropower as fa-
miliar and under-tapped resources (Eastern Africa Power Pool et al., 2011; Southern Africa
Power Pool and Nexant, 2007; Eberhard et al., 2011). With the insecurity and high costs
of fossil fuels, the planning paradigm has become increasingly hydropower-centric (Eastern
Africa Power Pool et al., 2011; Southern Africa Power Pool and Nexant, 2007; Eberhard
et al., 2011). Yet climate vulnerability (Cervigni et al., 2015), international cooperation
barriers and transboundary water rights issues, large cost overruns (Sovacool, Gilbert, and
Nugent, 2014), and high socio-environmental impacts (Winemiller et al., 2016) plague this
paradigm and perpetuate risks of hydro-dependence. Among the alternatives, geothermal is
considered under-developed but geographically limited with long lead times, and wind and
solar have historically been dismissed as too expensive and temporally variable (Collier and
Venables, 2012; Eberhard et al., 2011).

However, costs of utility-scale wind and solar generation are rapidly declining (Taylor
et al., 2015). Levelized cost of wind energy is competitive with that of hydropower in Kenya
and Ghana (A. Pueyo, Bawakyillenuo, and Osiolo, 2016). Wind and solar photovoltaics (PV)
are now South Africa’s cheapest and third cheapest form of generation, respectively (Bofin-
ger, Mushwana, and Bischof-Niemz, 2015). As a result of these competitive costs, renewable
energy deployment is growing in a handful of African countries (South Africa Department
of Energy, Eskom, and National Energy Regulator of South Africa, 2016; Renewable Energy
Policy Network for the 21st Century, 2015; Lake Turkana Wind Power, 2015). Yet, contribu-
tion of wind and solar in each power pool remains below 1%, likely due to multiple perceived
risks of resource quality, interconnection availability, and high investment costs.

Multi-criteria resource mapping can minimize risk by enabling strategic site selection. To
identify ‘no-regrets’ siting options–or those that are low-cost, low-impact, highly-accessible
and thus can be justified from multiple stakeholder perspectives of risk–large amounts of
data across large spatial scales must be synthesized (Black & Veatch Corp. and RETI Coor-
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dinating Committee, 2009) and incorporated in a multi-criteria framework. Comprehensive
wind and solar energy assessments and integration analyses have highlighted their poten-
tial to contribute to energy transitions in many countries (McElroy et al., 2009; Davidson
et al., 2016), yet roughly half of the EAPP and SAPP countries lack even the most basic
spatially-explicit wind and solar assessments. Existing studies typically omit critical cost,
interconnection, socio-environmental impact information (Hermann, Miketa, and Fichaux,
2014).

To address this gap, we developed the first large-scale multi-criteria resource assessment
of grid-connected wind, solar PV, and concentrating solar power (CSP) and integrated it
into a new suite of tools—Multi-criteria Analysis for Planning Renewable Energy (MapRE).
The resource mapping approach is based on techno-economic criteria, generation profiles
(for wind), and socio-environmental constraints. The suite of MapRE spatial models and
tools (http://mapre.lbl.gov) give any stakeholder the ability to weigh multiple siting
criteria—e.g., generation cost, distance to transmission lines and load centers, and possi-
ble conservation impact—and examine their trade-offs. Siting using these criteria reduces
difficult-to-monetize barriers, such as ecological impacts or challenging transmission exten-
sions and upgrades, which often stall projects (Fischlein et al., 2013).

In addition to these factors, strategic siting of wind and solar energy can address the
temporal variability of generation, a major challenge for grid integration, particularly in
countries without strong institutional capacity and infrastructure. Technological solutions
for balancing variability—such as excess reserve generation capacity, fast generators, and bat-
tery storage—are expensive (Cochran et al., 2012) and are significant barriers to economies
with limited access to capital. Strategic spatial diversification of sites is an alternative, po-
tentially more cost-effective strategy for managing variability (Mills and Ryan Wiser, 2012;
Katzenstein, Fertig, and Apt, 2010; Drake and Hubacek, 2007; Reichenberg, Johnsson, and
Odenberger, 2014; Roques, Hiroux, and Saguan, 2010); however, no study has examined the
grid value of geographic diversification in large regions of Africa.

Studies in other parts of the world suggest that extensive interconnections can strengthen
spatial diversification (MacDonald et al., 2016), and other studies have found that it is sig-
nificantly cost-effective to support energy trade in Africa (Graeber, Spalding-Fecher, and
Gonah, 2005; Bowen, Sparrow, and Yu, 1999; Rosnes and Vennemo, 2012; Sanoh et al., 2014;
Saadi, Miketa, and Howells, 2015). However, those studies that examined renewable energy
(Sanoh et al., 2014; Saadi, Miketa, and Howells, 2015) lacked the spatial (country-level) and
temporal (annual) resolutions necessary for modeling integration of highly temporally and
spatially variable renewable energy. The EAPP and SAPP are considering new intercon-
nections, but to exchange future conventional and hydroelectric generation (Eastern Africa
Power Pool et al., 2011; Southern Africa Power Pool and Nexant, 2007). Those required to
support renewables may be substantially different.

We provide the first comprehensive multi-criteria assessment of wind and solar resources
in EAPP and SAPP and identify ‘no-regrets’ options. We also examine the importance of
strategic siting for managing temporal variability of generation by increasing hourly corre-
lation between aggregate wind production and electricity demand, specifically whether in-

http://mapre.lbl.gov
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ternational interconnections enable cost-effective deployment of wind capacity in the SAPP.
The power pools include the following 21 countries: Angola, Botswana, Burundi, Djibouti,
Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Lesotho, Libya, Malawi, Mozam-
bique, Namibia, Rwanda, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia, and
Zimbabwe.

We apply the MapRE approach to examine trade-offs between wind and solar resource
quality and multiple siting criteria, including transmission connectivity, distance to the near-
est demand center, and ecological intactness of potential project areas. Using a unique
dataset of hourly demand profiles for nine SAPP countries and hourly wind profiles, we
optimally select wind sites to minimize conventional capacity, with and without intercon-
nections and with and without consideration of multiple siting criteria. We examine wind
specifically because it is currently more cost competitive than solar in Africa and exhibits
more spatio-temporal variability. We compare this approach with the prevailing practice of
selecting sites to minimize the levelized cost of wind electricity.

4.2 Methods

MapRE model overview

To estimate renewable resource potential and spatially-specific criteria important for site
selection, we developed the Multi-criteria Analysis for Planning Renewable Energy (MapRE)
spatial model using Python and R programming languages and the arcpy spatial analysis
module (Appendix C, Fig. C.5). The framework is founded in previous resource assessment
and zoning studies (Lopez et al., 2012; Black & Veatch Corp. and RETI Coordinating
Committee, 2009; Black & Veatch Corp. and NREL, 2009), but improved and adapted
to account for data availabilities of the study region. We used a combination of global
or continental data and country-provided datasets that can be broadly categorized into
the following: physical (slope, elevation), socio-economic (population density, built-areas),
technical (resource quality), and environmental (land cover, protected areas) (Appendix C,
Table C.2). We applied thresholds and buffer distances used in previous studies (Lopez et al.,
2012; Black & Veatch Corp. and RETI Coordinating Committee, 2009; Black & Veatch Corp.
and NREL, 2009) (Appendix C, Table C.2), but adjusted within an economically viable range
for each country depending on the projected demand and the resource quality (Appendix
C, Table C.3). We created maps of suitable areas for renewable energy development and
further divided large areas into 5x5 km spatial units, or project opportunity areas (POA).
For each POA, we estimated multiple siting criteria values, including component and total
levelized cost of electricity (LCOE). Using a statistical regionalization technique (Spatial
Kluster Analysis by Tree Edge Removal), we spatially clustered POAs into “zones” (30 km2

to 1000 km2 in size) based on the homogeneity of resource quality (W/m2) of each POA. We
then area-weighted averaged POA siting criteria to generate zone criteria values.
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Criteria estimates

We estimated the following site selection criteria for each POA and zone: slope; elevation;
population density; resource quality; distance to nearest major load center, transmission
line, substation, road, surface water body, existing and proposed wind, solar, and geother-
mal energy projects; land cover type; total land area, human footprint score (Appendix
C, S1.2.1 and Table C.4). We collected country-specific transmission and substation spatial
data, and where unavailable, we used the continental dataset from the African Infrastructure
Country Diagnostic initiative (Appendix C, Table C.4). In addition, load center locations
were collected from countries individually. These criteria values were then used to calcu-
late the following additional criteria for each POA and zone: capacity factor (Appendix C,
S1.2.2), annual electricity generation, transmission or substation LCOE, generation LCOE,
road LCOE, and total LCOE. Cost estimates relied on various assumptions about fixed and
variable specific to the technology and subtechnology (Appendix C, S1.2.3, Table C.6).

Wind build-out scenarios for 2030

To understand the implications of different zone selection approaches and availability of
interconnections, we modeled various wind energy build-out scenarios for SAPP in 2030
(Appendix C, S1.3). We acquired hourly wind speed profiles from Vaisala Inc. for 233 wind
locations and solicited at least one year’s (2013) worth of hourly electricity demand data from
each country to create 2030 load forecasts (Appendix C, S1.3.1, Table C.7). Using these two
datasets, we constructed a linear optimization problem to select wind zones that minimize
the hourly peak net demand (min-net-demand) with and without interconnections. We
compared the results of this approach to a scenario that minimizes wind LCOE. For each
scenario, we compared the maximum net demand (i.e., the installed capacity required in
addition to wind power), total annual net demand (i.e., the generation required in addition
to wind power), average wind LCOE, and approximate system costs (Appendix C, S1.3.3).

4.3 Results and Discussion

Wind and solar resources are heterogeneous in quality and quantity,
but sufficient ‘no-regrets’ potential exist in each power pool

After excluding areas on the basis of physical, technical, and socio-economic suitability for
large-scale renewable energy development (Appendix C, Table C.2), the resulting quantity
(TWh) of wind, solar PV, and CSP resources that exist within the EAPP and SAPP collec-
tively exceed the projected 2030 demand 2-5 fold (Fig. 4.1, Appendix C, Fig. C.1 for power
pool supply curves). However, these resources, particularly high-quality resources (e.g., high
insolation or wind speed) that meet multiple siting criteria, are unevenly distributed between
and within countries.
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Figure 4.1: Location and potential (TWh) of each country’s renewable resources within the
Southern and Eastern Africa Power Pools.
(A) Maps show the location and quality of renewable energy potential. (B) Corresponding bar
charts for each technology show the generation potential (TWh) of each resource quality range (in
kWh/m2d for insolation and m/s for wind speed) for each country. Countries are sorted by the
total abundance of generation potential (high, medium, low). The 2030 demand for each country,
as projected by the EAPP and SAPP Master Plans, is provided as a reference point (Southern
Africa Power Pool and Nexant, 2007; Eastern Africa Power Pool et al., 2011).
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Examining just resource quality and quantity alone, results show that high-quality re-
sources in a majority of countries are one or two orders of magnitude greater than their
projected 2030 demand (Fig. 4.1B). Although about one-fifth of all countries in the study
region (Angola, Democratic Republic of Congo, Rwanda, and Burundi) lack sufficient high
quality wind resources, their neighboring countries have wind resources that exceed their
projected demand (Tanzania, Zambia, and Namibia). Nearly all countries have large and
high quality solar PV potential (Fig. 4.1B). CSP is the most spatially limited of the three
technologies, with potential significantly less than the projected 2030 demand in at least six
countries. The distribution of resource availability and quality support the need for resource
sharing to cost-effectively achieve low-impact electricity development regionally.

To examine trade-offs between economic costs and other siting barriers, we selected re-
source areas across the entirety of each power pool that are in the top 20% and 50% of areas
closest to transmission infrastructure, closest to load centers, and that have the highest
human footprint score. The multiple dimensions to consider in prioritizing energy projects–
resource sufficiency, cost, and other siting barriers–are represented in the shape of each
supply curve (Fig. 4.2; Appendix C, Fig. C.1).

Distances to load centers and transmission infrastructure account for the institutional
and time barriers associated with connecting multiple distributed generation projects, which
are often not fully captured in the transmission component of the levelized cost of electricity.
Transmission availability is often cited as the greatest challenge to greater wind energy
development (Fischlein et al., 2013), with some studies showing that it is often more cost-
and time-effective to develop lower wind speed projects closer to transmission than attempt to
interconnect high quality sites far from existing lines and load centers (Hoppock and Patiño-
Echeverri, 2010). The distance to load center is a proxy for investments in transmission
infrastructure required to deliver electricity from generators to load centers. Lastly, we used
the human footprint score as a proxy for the degree of human “disturbance” from natural,
unaltered states (Sanderson et al., 2002).

For solar PV, numerous countries have sufficient potential for ‘no-regrets’—low-cost,
low-impact, easily accessible—development, but a subset of these countries would require
domestic or international transmission infrastructure to achieve 2030 targets. Specifically,
Tanzania, Zimbabwe, Botswana, and Lesotho can meet 30% of their projected 2030 demand
with low-impact solar PV (thick lines represent the top 20% of all sites), with Tanzania able
to export up to 20 TWh of inexpensive and low-impact solar electricity to neighboring coun-
tries (Fig. 4.2A). In the EAPP, Ethiopia, Sudan, Uganda, and Tanzania can most favorably
achieve 30% solar PV generation targets domestically (Fig. 4.2B). For these countries, sites
with the lowest ecological impact and are closest to load centers and existing infrastructure
also have high resource quality. This is not the case for all countries. Democratic Republic of
Congo, Zambia, Angola, South Africa, Egypt, Kenya, and Libya possess some cost-effective
sites that should receive high prioritization, but are not in the top 20% primarily due to
limited transmission access. For these countries, meeting an ambitious 2030 target would
require investing in transmission extensions to access lower cost PV resources or importing
from neighbors. For CSP, the pattern of project prioritization is very similar to that of
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length = quantity

steepness = quality/cost

divergence = other siting criteria

Figure 4.2: Multi-criteria project opportunity area supply curves for countries in the South-
ern and Eastern Africa Power Pools.
Supply curves show the cumulative potential of wind, solar PV, and CSP project opportunity
areas that meet the top 20% and 50% of criteria values and all available zones within the Southern
(A) and Eastern (B) Africa Power Pools. Project opportunity areas are sorted by generation
levelized cost of electricity (LCOE). Vertical lines show 30% of each country’s projected electricity
demand in 2030. Criteria values include transmission distance, distance to nearest load center, and
human footprint score. For example, the quantities of CSP potential in the top 50% and all sites in
Uganda meet 2030 targets, and the difference between solar PV supply curves shows that though
the top 20% of sites are limited in Uganda, they are sufficient to meet 2030 targets. Note that the
x-axis varies between countries whereas the y-axis is fixed. For countries with large potential, the
maximum value of the y-axis is six times the anticipated 2030 demand. Tanzania is a member of
both power pools. The top 20 or 50% of zones are selected relative to other zones within the
power pool. Assumptions for LCOE, including discount rate, are consistent across countries.

solar PV, but with fewer countries meeting all sufficiency, low-cost, and other siting criteria
dimensions.

Wind resource supply curves are generally steeper and more divergent than those for solar
technologies, indicating larger within-country cost and quality heterogeneity (Fig. 4.2). The
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least-cost wind resource areas are distributed across several countries, including Malawi,
Lesotho, Zambia, Djibouti, Ethiopia, Kenya, Libya, South Africa, Egypt, and Tanzania.
However, these low-cost, high-quality wind sites generally score low in other siting criteria,
as is seen in the large divergence between the supply curves within these countries. Tanzania,
Swaziland, Djibouti, and Libya are exceptions in being able to meet 30% of their demand
with accessible, low-impact, and cost-effective wind sites. Although trade-offs between cost
and other siting factors appear to be greater for wind power leaving fewer ‘no-regrets’ areas,
generation cost is not the only important determinant of wind resource quality. Selecting sites
with wind speed regimes that generate most during the highest demand hours will increase
their value (Mills and Ryan Wiser, 2012), a consideration we address in the following section.

International transmission interconnections enable least-cost wind
deployment and greater displacement of conventional generation by
wind

With hourly electricity demand data for nine countries in the SAPP (Appendix C, S1.3.1), we
selected wind zones using four approaches: (1) min-net-demand : minimizing the maximum
hourly net electricity demand (i.e., demand remaining after accounting for wind generation)
across an entire year using all zones (Appendix C, S1.3.2); (2) min-LCOE : minimizing the
annual average generation LCOE of wind using all zones ; and (3, 4) top 50% : performing
approaches (1) and (2) using a subset of zones that meet the top 50% of siting criteria
within a power pool, as described in the previous section. For a given investment or installed
capacity target, themin-LCOE approach maximizes wind generation, which reduces the need
for conventional energy, whereas the min-net-demand approach reduces integration costs by
minimizing need for non-wind, typically conventional generation capacity. We selected wind
zones with and without international interconnections, referred to as Interconnected and
Isolated scenarios, respectively. Each scenario installs a total of 61 GW of wind capacity, the
amount needed to meet a 30-33% wind energy target by 2030 across the SAPP (Appendix
C, Table C.6).

We compared the distribution of selected wind zones and found that the min-net-demand,
Interconnected, top 50% scenario results in the most even distribution of capacity across
countries (Fig. 4.3A). Instead of meeting South Africa’s large demand domestically, a fully
Interconnected SAPP allows for a large portion of its demand to be met internationally, in
areas where wind generation profiles are better matched to SAPP’s demand profile. When
using the top 50% approach, many countries—Swaziland, South Africa, Malawi, Zambia, and
Zimbabwe—see an increase in their share of wind capacity because of their more favorable
sites, while others—Namibia, Mozambique, Tanzania—reduce their share relative to the all
zones approach (Fig. 4.3A). With interconnections, the prevailing min-LCOE approach
significantly increases capacity in Tanzania at the expense of capacity in other countries
with lower capacity factors (Fig. 4.3A).

Results show a trade-off between selecting sites to maximize wind generation (min-
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Figure 4.3: Wind build-out scenarios for the Southern African Power Pool (SAPP) in 2030.
(A) Distribution of installed wind capacity among countries in the SAPP. (B) Conventional
installed capacity needed to meet the highest hourly net demand within a year. (C) The hourly
net electricity demand in gigawatts (GW) sorted from highest to lowest compared to the projected
2030 electricity demand. (D) The percentage of annual electricity from wind and non-wind
generation (primary y-axis and bar plot) compared with the average levelized cost of electricity
(LCOE) of wind generation (secondary y-axis and horizontal lines).

LCOE ) and minimize additional conventional capacity (min-net-demand ; Fig. 4.3A), though
system costs are on the whole lower for the min-net-demand approach. (Fig. 4.4A). With
interconnections, the min-LCOE, all zones approach generates 12% (24.5 TWh) more wind
energy than the min-net-demand, all zones approach, resulting in 11% reduction in average
wind LCOE (Fig. 4.3D), yet it requires 15% more, or 9.4 GW, conventional capacity (Fig.
4.3B). We estimated system costs assuming the extra conventional capacity needed would
be met by natural gas combustion turbine (CT), scrubbed coal, or hydropower, as these are
the technologies that have high priority status in the SAPP (Appendix C, S1.3.3). Costs
show that the min-net-demand, Interconnected, all zones scenario leads to 0.4 - 2.5 billion
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Table 4.1: Coefficient of variation of hourly net-demand and hourly site-averaged wind ca-
pacity factor for all site selection approaches and interconnection scenarios.

Site selection approach
min-net-demand min-LCOE

Hourly time series

Interconnection scenarioNet-demand
Wind
capacity
factor

Net-demand
Wind
capacity
factor

Integrated, all zones 0.197 0.320 0.283 0.426
Integrated, top 50% 0.199 0.334 0.258 0.426
Isolated, all zones 0.224 0.354 0.280 0.440
Isolated, top 50% 0.223 0.357 0.256 0.442

USD/yr in cost savings over the min-LCOE, Interconnected, all zones approach depending
on the technology assumption (Fig. 4.4A, Fig. 4.5). These costs savings account for 3.5%
- 19% of the total annual costs of wind capacity (Fig. 4.4A). Assuming hydropower or coal
capacity would be avoided, selecting sites to minimize peak net demand is more cost effective
from the systems perspective than selecting sites to minimize wind LCOE.

Other, non-monetized system benefits of the min-net-demand approach include reduc-
tion in the temporal variability of hourly wind capacity factors and net demand (20% -
30% reduction in the coefficients of variation; Table 4.1). In contrast, there are little or
no differences in the coefficient of variation between Interconnected and Isolated scenarios
when selecting sites to minimize LCOE (Table 4.1). That is, the main factor determining
temporal variability of wind generation is the site selection approach, not the presence or ab-
sence of interconnections. For example, two countries with existing wind farms sited based
on minimizing LCOE that later interconnect may not see reductions in the variability of
generation or net demand. Interconnections, however, do increase the diversity of available
sites, allowing a min-net-demand siting approach to further reduce variability. This find-
ing that increasing the geographic diversity of wind sites decreases coefficient of variation is
consistent with empirical studies examining interconnection scenarios of wind plants (Fertig
et al., 2012).

Lower aggregate net demand variability reduces the need to ramp up or down conven-
tional generators to balance the variability (see Appendix C, Fig. C.2 for hourly ramp rate
distributions), and a flatter load curve allows for more efficient use of base-load generators
(Fig. 4.3C). Therefore, a site selection process based only on minimizing wind LCOE may
not minimize system-wide costs and may not maximize the cost-savings of interconnections
compared to a site selection approach that best matches wind generation with electricity
demand.

Comparisons between Interconnected and Isolated scenarios show that interconnections
reduce system costs regardless of site selection approach or assumptions about the conven-
tional generation technology wind may displace (Fig. 4.4B). Compared Isolated, the Inter-
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Figure 4.4: Cost differences between wind build-out scenarios.
Cost differences are expressed as percentage of total annual wind capacity cost, which is
consistent across scenarios. Actual cost differences in millions USD per year are labeled
above each bar for the base case. Positive percentage and cost values indicate cost savings
of Scenario 1 compared with Scenario 2, and negative values indicate additional costs of
the Scenario 1 compared with Scenario 2 in each panel. Costs were estimated assuming
three different possible conventional capacity technologies—natural gas combustion turbine,
hydropower, and scrubbed coal (x-axis). (A) The cost savings of the min-net-demand over
the min-LCOE site selection approach. Positive values indicate that min-net-demand is
more cost-effective. (B) The cost savings of the Interconnected over the Isolated scenario.
Positive values indicate that the Interconnected scenario is more cost-effective. (C) The cost
savings of the top 50% over the all zones site selection. Positive values indicate that the
top 50% scenario is more cost-effective. The set of points for each bar shows results from
load sensitivity analyses of four plausible future load growth scenarios: “Climate - extreme
warming”, “Climate - warming”, “Daily peak increase”, and “South - Africa hybrid”. See
Appendix C, section S1.3.4 and Figs. C.10 and C.11 for descriptions of the load growth
scenarios.
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connected scenario using the min-net-demand, all zones approach results in avoiding close
to 10% or 6.3 GW of conventional generation capacity in the SAPP (Fig. 4.3B, Fig. 4.3C).
The annual cost savings of interconnections combined with the min-net-demand approach is
particularly large when assuming additional coal (2.2 - 2.6 billion USD or 14-20% of annual
wind capacity costs) or hydropower capacity (1.2 - 1.5 billion USD, 9-12%; ranges represent
top 50% and all zones approaches, respectively; see Fig. 4.4B).

Using SAPP’s recent wheeling charges as a proxy for transmission capital costs per MWh
traded (Appendix C, section 1.3.3), we find that interconnection costs in the Interconnected
scenario are 1.6-1.8% of the amortized annual cost of wind capacity for the min-net-demand,
all zones site selection approach, and 0.4 – 0.44% for the min-LCOE, all zones approach
(Appendix C, Table C.1). These percentage cost ranges are less than the range of potential
savings from avoided conventional capacity under these same scenarios (6-20% for min-net-
demand and 4-16% for min-LCOE ; Fig 4.4B). When international interconnection costs are
included, interconnections would save 4.3% at worst (assuming combustion turbine capac-
ity) and 18% at best (assuming scrubbed coal capacity) in avoided conventional capacity,
represented as percentage of amortized annual wind capacity costs (Fig. 4.4B).

Multi-criteria site selection is not significantly more costly, and for the min-LCOE sce-
narios assuming hydropower or scrubbed coal capacity displacement, yield cost-savings (Fig.
4.4C). This is because sites selected using multiple siting criteria (top 50% ) and the min-
LCOE approach result in lower net peak demand compared to the all zones approach,
reducing conventional capacity costs. Nearly all cost differences between the top 50% and
all zones site selection scenarios are <5% of the annual cost of wind capacity (Fig. 4.4C).
When examining ranked cost differences across all scenarios, results show that the min-net-
demand, Interconnected, top 50% scenario is the second-most cost-effective option by a large
margin when the avoided conventional technology is hydropower or coal (approx. 1 billion
USD; Fig. 4.5). Regardless of the conventional technology, interconnections reduce the sys-
tem costs of multi-criteria selection relative to all scenarios without interconnections (Fig.
4.5).

Load sensitivity analysis and limitations

Because only one year of load data were available and load profiles in 2030 are highly un-
certain, we performed a sensitivity analysis using four future load growth trajectories that
represent load responsiveness to climate change, economic structural changes, and grid-
connected electrification and reduced load curtailment (see Appendix C, Fig. C.10-C.11 and
section S1.3.4 for detailed scenario descriptions). Results show that the cost-effectiveness of
Interconnected scenarios and the min-net-demand site selection approaches are sensitive to
different load growth trajectories, but the range of results suggests that the baseline load
scenario is in the middle (Fig. 4.4-4.5). Despite the trajectories being fairly extreme scenar-
ios of load growth, on the whole, they do not change the conclusion that interconnections
are very likely to reduce system costs from avoided conventional capacity (Fig. 4.4B, Fig.
4.5).
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Figure 4.5: System cost additions compared to least-cost scenario.
For each technology, the bars show the difference in system costs between each scenario and the
least-cost scenario (min-net-demand, Interconnected, all zones). System costs include the
additional energy and/or conventional capacity required in each scenario. The set of four points
for each bar shows results from load sensitivity analyses of four plausible future load growth
scenarios (Appendix C, Fig. C.10 and C.11).

The “South Africa-hybrid” scenario, which represents economic structural changes, is very
similar to that of the baseline (unmodified) load growth profile. The two “climate-warming”
scenarios increase the conventional generation capacity requirements for the Interconnected
scenario, but decrease it for the Isolated scenario, with a smaller yet still positive avoided
capacity difference between interconnected and isolated scenarios compared to baseline (Ap-
pendix C, Fig. C.4). For the “Daily peak increase” load growth scenario, both the In-
terconnected and Isolated capacity requirements increase, but the avoided capacity of the
Interconnected scenario is larger relative to baseline (Appendix C, Fig. C.4). These results
suggest that the cost-effectiveness of the Interconnected scenario is highly dependent on the
annual peak demand. We posit that the two climate load growth scenarios represent fairly
extreme load responses to climate change such that the entire seasonal pattern disappears
or inverts (Appendix C, Fig. C.10C and Fig. C.10D), without the counterbalancing like-
lihood of increased electrification or reduced curtailment, which has the effect of elevating
demand during the daily peak hours. On the whole, the Interconnected scenario remains
the more cost-effective choice, with load growth uncertainty reducing the confidence of this
result only if natural gas combustion turbine were to be the avoided conventional technology
under the “Climate-warming” load growth scenario (Fig. 4.5). Otherwise, for hydropower
and coal, the differences in additional costs of the Isolated scenario remain large even under
“Climate-warming” scenarios (1 – 3 billion USD/yr; Fig. 4.5) and the differences would be
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very significant under the “Daily peak increase” scenario (1.9 – 5.6 billion USD/yr; Fig. 4.5).
These costs would be adjusted downward by 0.04 – 0.24 billion USD/year, depending on site
selection approach) due to transmission costs (Appendix C, Table C.1).

Currently, hydropower and coal appear to be the marginal generation technologies in
the SAPP, though recent discoveries of natural gas in Mozambique may change this trend.
However, transport of natural gas through a pipeline network would add significant capital
costs that have not been considered in the cost estimates for combustion turbine capacity.

This study does not examine the effect of solar generation in the SAPP on system costs,
but it is expected to alter net demand patterns. We relied on one year of modeled wind
speed data, which may have interannual variability. However, previous analysis using 10
years of meso-scale wind data shows that the wind regime during peak hours in the region is
stable (Wu, Deshmukh, et al., 2015), though wind patterns may change in the future. Such
potential changes underscore the importance of incorporating multi-criteria analysis in siting
decisions on an ongoing basis. Due to limited power systems data availability across multiple
countries, our model examines only the extreme ends of SAPP’s future–either complete grid
isolation with no energy trade or complete interconnection such that the entire SAPP region
operates like a coordinated, single balancing area without transmission constraints. Because
generator-specific time series and constraint data needed for a production cost model and
capacity expansion model could not be acquired across multiple countries, our model does
not account for flexibility or responsiveness of other generators in the system. For the same
data limitation reasons, we could use a capacity expansion model or a model that minimizes
system costs to generate a scenario that balances conventional capacity and energy trade-offs.

4.4 Conclusions
Results demonstrate the large potential for utility-scale wind and solar energy development
in many EAPP and SAPP countries, with particular countries possessing sufficient low-cost,
accessible, and low-impact potential sites that can rapidly provide ‘no-regrets’–or low-cost,
low-impact, and highly accessible–low-carbon electricity. However, spatial heterogeneity of
the most competitive resources that reduce system costs underpins the need for regional
coordination and transmission infrastructure to enable resource sharing. Our study demon-
strates how spatio-temporal models can be used to assess opportunities and address barriers
for renewable energy development in countries where data are limited and where the load
growth trajectory is highly uncertain.

By providing the institutional structure for electricity trade, the power pools in Africa
can lay the groundwork for power plant siting to minimize regional system costs. Currently,
the emphasis on large hydropower in a small handful of EAPP and SAPP countries could
result in a set of interconnection plans that fail to support the development of plentiful ‘no-
regrets’ solar and wind options across multiple countries. Our results show that wind and
solar electricity can be cost competitive and have a much larger role to play in Africa’s energy
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transition, especially if the benefits of strategic siting and international interconnections are
considered.
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Chapter 5

Deforestation and agricultural expansion
resulting from hydropower development
in the Brazilian Amazon

Hydropower is often favored as a low cost, low carbon, and high return technology
for meeting rising electricity demand and fueling economic growth. Despite the mag-
nitude and pace of hydropower expansion in the Brazilian Amazon, there is a lack
of understanding of land use and land cover change (LULCC), particularly indirect
LULCC, resulting from hydropower development. This study uses remote sensing,
and quasi-experimental matching and panel regression methods to estimate the effect
of hydropower development on indirect deforestation and agricultural land use in the
Brazilian Amazon. Using gathered data on existing hydropower plants in the Brazilian
Amazon and their matched control sites >1MW, we estimate an 11.3% - 59% percent
increase in indirect forest loss due to hydropower siting, in any given year for any given
site. Hydropower development increased agricultural land use by 7% - 50% percent,
though these estimates are weakly statistically significant, and insignificant in some re-
gression models. These results suggest that continued hydropower development is likely
to cause significant unintended indirect forest conversion, aiding in the advancement
of the arc of deforestation in the Brazilian Amazon.

5.1 Introduction

Hydropower development in the Brazilian Amazon

The capacity of new hydropower being planned or under construction globally—1,700 GW,
or nearly double the current installed capacity of 930 GW—is anticipated to affect one-fifth
of all remaining free-flowing large rivers (Zarfl et al., 2015). Much of this new capacity is
concentrated in the most biodiverse river and terrestrial ecosystems on earth, including the
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Amazon, which sustains more than half of the world’s remaining tropical forest area (Wine-
miller et al., 2016). The Amazon also contains the largest remaining hydropower potential
capacity in Brazil (Machado et al., 2004). The history of Brazilian hydropower development
shows an unprecedented explosion of hydropower projects in the Brazilian Amazon in the
2010s (Moretto et al., 2012), and if government energy plans proceed as documented (MMA
2012) to meet the projected 2.2% annual increase in energy demand (EPE, 2016), the Ama-
zon will continue to be the frontier of hydropower development. In the Brazilian Amazon
alone, there are more than 100 planned, proposed, or inventoried dams with capacity greater
than 30 MW (ANEEL 2016, Major Dams database).

Hydropower projects have long been vexed by a wide range of environmental and social
impacts including fisheries reduction (Barthem, Brito Ribeiro, and Petrere, 1991; Fearn-
side, 2014), flooding of indigenous and rural community lands, carbon dioxide and methane
emissions (Fearnside and S. Pueyo, 2012), and loss of terrestrial and freshwater habitat and
biodiversity (Magalhães and F. Hernandez, 2009). Yet, river regulation, inundation, and
economic activity associated with or enabled by a hydro-power project could also generate
a cascade of changing socio-economic conditions and hence trigger changes in land use, land
cover, and hydrological dynamics in the watershed. These resulting indirect LULCC effects
are poorly studied, though anecdotal evidence and the few empirical studies in the literature
on mining activities strongly suggests that they have a disproportionate impact relative to
the direct land use requirements (Sonter, Herrera, et al., 2017; Edwards et al., 2014; Weng
et al., 2013).

Most research underestimates the land use change resulting from small-scale, “intensive
land use” activities (Sonter, Barrett, et al., 2015). Sonter, Barrett, et al. (2015) defined
intensive land uses as those that “occupy a small proportion of the landscape but indirectly
drive land use change dynamics through their operation.” While the authors find significant
indirect land use associated with mining, hydropower can also be expected to have similar
indirect LULCC impacts. Because hydropower is often sited in intact, relatively undeveloped
areas due to specific and requisite hydrological and topographic characteristics, its potential
to impact sensitive ecosystems and biodiversity can be disproportionate to the land area
directly and indirectly affected. This phenomenon has been well documented, frequently
through remote sensing and statistical methods, for road extensions and upgrades (Mertens
and Lambin, 2000; Cropper, Puri, and Griffiths, 2001; Chowdhury, 2006).

Like roads, indirect land use change resulting from hydropower is likely to occur through
spatial dependence and within some proximity of the dam itself. Agricultural activity can be
increased through irrigation, and resettlement of displaced communities is often in the same
watershed but typically at higher elevation. Hydropower’s disruption of livelihoods previ-
ously dependent on river-provided ecosystem services could lead to environmental impacts
from the substitute livelihood. For example, the lost fish protein from disruption of fisheries
due to anticipated dam construction in the Mekong Basin is projected to cause a 19-63%
increase in land usage for agriculture in affected countries (Orr et al., 2012). Hydropower
reservoirs can also encourage increased urbanization of downstream areas due to reduced
flood risk and increased development activity. These direct and indirect land use changes
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can be directly observable, and with quasi-experimental methods, could be ascribed to hy-
dropower development. However, depending on the causal mechanism, LULCC impacts may
occur across multiple temporal and spatial scales.

Deforestation in the Brazilian Amazon and causal mechanisms
linking hydropower and deforestation

Barbier, Burgess, and Grainger (2010) lay out a three-phase process of agricultural land ex-
pansion and forest loss in the frontier. The first phase involves the opening up of the frontier
by large-scale, typically short-term extractive activities such as logging, mining, commercial
agriculture, and the objective is to maximize short-term profits. The second phase is marked
by opportunistic forest clearing by smallholders or migrants, since previously inaccessible ar-
eas are now open. Lack of land rights and enforcement in this phase leads to widespread
forest clearing. Finally, in the third phase, wealthier land owners begin to establish property
rights. These larger land owners benefit from government agriculture subsides, access to
markets, and credit, and they drive out early settlers, who then migrate to other frontier
regions. In this three-phase process, hydropower projects can play a role in frontier develop-
ment as key actors in the first and third phases—first, as greenfield development projects to
harness hydropower potential in remote areas, and third, through the continued provision of
services that enable economic growth such as electricity, flood control, and river navigation.

The drivers of deforestation in tropical countries, and specifically in Amazonia, have
been well studied (Pfaff, 1999; W. F. Laurance, Albernaz, et al., 2002; Barber et al., 2014;
Hargrave and Kis-Katos, 2013). Key proximate drivers and predictors of deforestation in-
clude human population density, highways, dry season severity, and navigable rivers. The
earliest of these studies identified the importance of roads, but also clearly distinguished “de-
velopment projects” as having independent effects that significantly increased deforestation,
though the study does not specify the types of development projects more likely to cause
deforestation (Pfaff, 1999). Certainly, hydropower projects, as part of larger development
schemes, have intentional land use and land cover impacts that are associated with economic
development. However, many unintended, inter-related social and LULCC consequences of
hydropower development have been documented. The best documented cases of this are
consequences resulting from opportunistic migration.

As an example, the Tucuruí dam along the Tocantins River constructed in the late 1970s
and early 1980s in the Amazon aggravated social dynamics in the surrounding region by ac-
celerating territorial occupation and triggering a flood of migration (Fearnside, 1999). Valeça
(1992) noted that the dam attracted new activities and changed the regional structure of
the value of land, effectively causing new patterns of land use including new urban spaces
upstream of the dam. As noted by Tundisi, Santos, and Menezes (2003), “small-scale naviga-
tion was substituted by road transportation; there was also a change in the macro economy:
large scale industrial and forestry projects, agribusiness projects.” In a recent news article
about deforestation due to hydropower planning, a Brazilian researcher provides the follow-
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ing cause of forest loss during and after the construction of the Tucuruí dam: “There is a
great inflow of laborers looking for work, but not all are taken in...This intensifies conflicts,
with the sprawling of [squatters into formerly rural] locations that have no infrastructure to
support them” (Farah, 2016). In the same article, another Brazilian researcher interviewed
comments on plans to construct a large hydropower plant—São Luiz do Tapajós—on the
Tapajós river:

On the one hand, the hydropower plant brings progress. On the other, it attracts
people interested in illegal logging. It is inevitable. But the overseeing bodies
have to be prepared for more intense [criminal] activity...[should the hydropower
plant become a reality] it would heat up the market for land, which is regulated
by violence and predatory exploitation of natural resources, which is in and of
itself frightening.

In yet another documented example of possible widespread LULCC resulting from hy-
dropower development, Fearnside (2005) describes how the temporary exception to a law
prohibiting export of raw logs for the flooding of the Samuel reservoir in Rondônia coincided
with a boom in illegal logging throughout the Western Amazon region.

Research questions and approach

The tendency has been to allow locations of “untapped” potential to guide siting practice and
development planning. Yet, mitigation actions in the past that have failed to compensate
for direct, let alone diffuse and indirect damages. A better understanding of the unintended
social and environmental consequences associated with LULCC induced by hydropower de-
velopment can help inform more comprehensive and low-impact model for energy planning
in countries with transitioning or growing energy portfolios.

This study examines the indirect land use and land cover impacts of siting hydropower
projects in the Brazilian Amazon. We ask the following questions: What is the proxi-
mate effect of hydropower development on indirect forest loss and agricultural land use in
the Brazilian Amazon within 50 km of hydropower plant locations? How does the effect
vary spatially and temporally? Using a quasi-experimental design, we combine statistical
matching approaches to identify “control” sites, remote sensing classification methods to de-
tect forest loss 1984-2017, and panel regressions to control for long-term unobserved drivers
of LULCC. For assessing agricultural land use, we rely on a spatially-explicit longitudinal
dataset based on agricultural census data (Dias et al., 2016).

5.2 Methods
We combined remote sensing, spatial analysis, and causal inference methods to estimate
indirect forest-loss resulting from hydropower development in the Brazilian Amazon. Our
approach consisted of the following key steps: (1) Data collection and preprocessing; (2)
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statistical matching of existing hydropower sites (treatment) with planned, proposed, and
inventoried sites (controls); (3) forest loss detection 1984 - 2017 within 50 km of existing
(treatment) and planned/proposed (control) hydropower locations using scalable remote
sensing techniques; (4) regression analyses to estimate the average forest-loss and agricultural
land use effect of siting a hydropower plant. Forest loss estimates are directly calculated using
image compositing and classification methods, whereas agricultural area estimates rely on a
secondary, published dataset (Dias et al., 2016). See Figure 5.1 for a visual overview of the
methods.

Data and preprocessing

We collected the following three categories of data: (1) existing and proposed hydropower
plant locations; (2) spatially-explicit covariates; (3) remote sensing imagery (Landsat 4-8)
and the Hansen Global Forest Change dataset.

Hydropower locations. Several country-specific, regional, and global hydropower plant
locations datasets are publicly available. Since no single dataset was complete in either the
power plant location or other attribute information, we compared and combined four such
datasets (Table 5.1). Where the operational start year or installed capacity was missing for
a hydropower plant, we manually filled these gaps by searching on the internet for articles,
press releases, or government or corporate information. If the name of a hydropower plant
appeared more than once across the datasets, we chose the location and attribute information
from the Brazilian power regulatory agency, Agência Nacional de Energia Elétrica (ANEEL),
but also visually inspected the location and attribute information (e.g., name of river) by
overlaying the data on high resolution Google Earth imagery. After data cleaning and quality
assessment, we identified 66 existing hydropower plants over 1 MW (51 over 20 MW), and
277 proposed or inventoried plants over 1 MW in the Legal Amazonian Area. After removing
all proposed and inventoried sites within 80 km of an existing hydropower plant, 180 sites
over 1 MW remained available for matching. Due to challenges of automating land cover
change detection using satellite imagery in the Cerrado, the tropical open savanna biome, we
restricted regression analyses to just the 29 existing power plants in the Brazilian Amazon
biome. For each hydropower plant with less than 1 GW of installed capacity, we created a
50 km radius circular buffer around the dam site within which we estimated forest-loss. For
power plants greater than or equal to 1 GW in capacity, we used a 100 km radius.

Covariate and ancillary data. We collected spatially explicit datasets to be used as
matching variables, chosen based on their ability to predict the likelihood that a particular
location would be developed for hydropower or deforested. Such datasets include protected
and indigenous areas, and locations of urban areas (Table 5.1). We could not include other
potentially useful predictors such as road network or population density as these datasets
were not available for multiple time periods or for before 1990. However, we used a secondary
dataset as a proxy for human settlement and development—a unique spatial annual time-
series dataset of cropland and pastureland area per 1 km x 1 km grid-cell for all of Brazil from
1950-2014 (Dias et al., 2016). It uses 30 m remote sensing data for year 2010 to spatially
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Figure 5.1: Workflow overview.

Green boxes indicate key remote sensing processes performed using Google Earth Engine (GEE),
red boxes indicate statistical analyses performed using R, and yellow boxes indicate processes
using Python modules.

disaggregate to 1 km resolution a time series of agricultural census data reported at the
municipal level. We used the Dias et al. (2016) dataset both as a matching variable and as
the response variable in a set of regression models (see Matching section below).
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Table 5.1: Datasets used in the analyses

Data cate-
gory

Source Description Datatype Use

Hydropower
locations

Agência Nacional de Ener-
gia Elétrica (ANEEL)

Government records of utility-scale hy-
dropower plants in Brazil.

Points control or
treatment
sites

Hydropower
locations

dams-info.org Location and attribute data were com-
piled by Fundación Proteger, Interna-
tional Rivers, and ECOA, to provide a
database on dams in operation, under
construction or planned for the Ama-
zon basin. Planned locations have ei-
ther had a feasibility study started, or
for which “clear indications of a govern-
ment’s intentions to move forward with
the project.”

Points control or
treatment
sites

Hydropower
locations

Major dams (Interna-
tional Rivers)

This dataset of dam location and at-
tribute data was distributed in 2014.
International Rivers compiled the data
from multiple sources and corrected it
for location errors. Available on http:
//data.globalforestwatch.org/

Points control or
treatment
sites

Hydropower
locations

The Global Reservoir and
Dam Database (GRanD)
(WWF)

This database contains locations of
dams and reservoirs globally and was
compiled in 2011.

Points control or
treatment
sites

Protected ar-
eas

Brazil’s Ministério do
Meio Ambiente (MMA)

Officially recognized conservation and
indigenous areas

Polygon matching
variable

Urban areas Schneider, Friedl, and
Potere (2009)

urban area Polygon matching
variable

Biomes WWF Biome Polygon matching
variable

Agricultural
areas

Dias et al. (2016) This is a 1 km x 1 km gridded time se-
ries of hectares of agricultural area in
Brazil. Total cropland data area avail-
able for 1950 - 2014, and pasturelands
(natural and planted) are available for
1940 - 2012.

Raster matching
variable and
response
variable

Matching

Matching is a suite of methods that aims to balance the distribution of covariates between the
treated group and the observational “control” group (Stuart, 2010). It essentially attempts to
replicate randomized trial conditions using observational (non-randomized) data by selecting
or weighting individuals based on their covariate values. We developed our own customized
routines and used various packages in the R statistical software (R. Core Team, 2017) to
produce matched controls using various distance and matching methods.

http://data.globalforestwatch.org/
http://data.globalforestwatch.org/
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Variable selection

The general guidance on variable selection in matching is to include variables associated
with treatment assignment (suitability for hydropower development) and/or the outcome
(forest or other land use change). By limiting the range of possible control units to pro-
posed, planned, or inventoried hydropower projects in the Brazilian Amazon, we effectively
performed an exact match on variables determining treatment assignment; that is, proposed,
planned, and inventoried projects meet several suitability criteria for development (e.g., hy-
draulic head, accessibility). For addressing bias related to the outcome (land use change), we
matched on the following variables (short-hand covariate names are provided in quotation
marks):

1. Generation capacity in MW (“capacity”): The size of the hydropower plant affects
the ancillary infrastructure (e.g., roads, transmission lines), the construction duration
and scale (e.g., staging area, laborers), the reservoir and flooded area (depending if
the power plant is a run-of-river or reservoir), and the amount of services provided
(electricity generation). All of these could affect the amount of land use and land
cover change in an area.

2. Percent of agricultural land pre-hydropower-development (“pre-dam agricultural land”):
Human activity in an area, which is correlated with amount of deforestation some
tropical countries (Harrison, 1991). Because we lacked historic spatially-explicit data
for population or migrant density over our study time period, we use the amount
of agricultural land as its proxy. We used the Dias et al. (2016) annual (1950 - 2014)
gridded dataset of cultivated and pastured area to match on the percentage of 5- and 10-
year pre-hydropower agricultural land in each study area. Because this covariate value
changes for each set of controls, depending on the treatment unit being considered, we
needed to apply a panel-matching approach. We describe the process of accounting
for treatment-specific agricultural land use in selecting control units in the following
section.

3. Distance to the nearest conservation or indigenous area (“distance to nearest protected
area”): Protected areas (both conservation and indigenous areas) have been shown to
inhibit deforestation in the Brazilian Amazon (Soares-Filho et al., 2010).

4. Distance to the nearest urban area (“distance to nearest city”): Proximity to commodity
markets is a key driver of deforestation in tropical regions (Pfaff, 1999; Barbier and
Burgess, 2001; Chomitz and Gray, 1995). We use the euclidean distance from each
control and treatment unit to the nearest urban area (Schneider, Friedl, and Potere,
2009).

5. Biome: The biome is used as a gross proxy for vegetative cover type and density and
climate. Within the Legal Amazon region, there are three biomes—Amazon, Cerrado,
and Pantanal. Also, the remote sensing techniques developed for this study perform
differently across these biomes, making this matching covariate important for reducing
possible systemic bias from change detection methods.
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6. Spatial proximity to the matched treatment unit: Given that deforestation and other
land use changes are highly heterogeneous processes in the Brazilian Amazon, using
spatial proximity as a proxy for these spatially-dependent processes may be important
for reducing bias in our treatment effect estimate. We use spatial proximity as a proxy
for regionally or locally-specific social and political forces that may not be adequately
captured individually in spatially-explicit datasets (e.g., state-level or municipal-level
land use or economic policies and their enforcement). We describe how spatial prox-
imity is used in each matching approach below.

Though the role of roads is well documented in land use change and deforestation in the
tropics (Chomitz and Gray, 1995), we did not include distance to roads as a matching variable
because we lacked historic road-density data over our study time period and because variables
that may be affected by the treatment (hydropower development) should not be included
the matching process (Stuart, 2010).

Matching approaches

Given the importance of matching approaches for bias reduction in causal inference, we apply
and compare three matching techniques that vary in their treatment of spatial proximity,
time-dependent covariates, and distance measures, as described below. Additionally, given
that existing hydropower plants in our sample have different operational start years, we
needed to employ panel-matching methods in order to match on pre-intervention covariates
with values specific to each treatment site.

1. Distance adjusted propensity score matching (DAPSm): DAPSm, developed by Pa-
padogeorgou, Choirat, and Zigler (2018), incorporates spatial proximity in standard
propensity score (p-score) matching. Papadogeorgou, Choirat, and Zigler (2018) de-
veloped this approach to use spatial proximity as a proxy for addressing unmeasured
confounding effects in matching. Using the DAPSm package in R (Papadogeorgou,
Choirat, and Zigler, 2018), we calculate p-scores and determine the spatial weights that
best balance p-score matching with spatial proximity. In order to match using the “5-
and 10-year pre-dam agricultural land” covariate, we performed DAPSm for treatment
sites grouped by decade of their operational start year. For example, for hydropower
plants which started generating electricity any year between 1981 and 1990, we used
the percent of agricultural land in 1975 as the “5- and 10-year pre-dam agricultural
land” matching covariate for both control and treatment units. We match without re-
placement in chronological sequence, such that controls units that were matched in an
earlier decade were excluded from consideration in DAPSm for subsequent decades. We
exclude distance to the nearest city and the percent of agricultural land 10-years pre-
hydropower-development due to challenges of estimating p-scores with small sample
sizes. Only two and three treatment units had operational start years in the 1971-1980
and 1981-1990 decades, respectively. The more variables that are included in calculat-
ing the p-score, particularly as the number of observations decreases, the more likely
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the control p-scores will ratchet to zero. Recent studies have demonstrated that this
phenomenon leads to greater, not less, imbalance of matches, resulting in the “p-score
paradox” (G. King et al., 2011). Due to the imperfect temporal matching of pre-dam
agricultural land from decadal binning and the p-score paradox, we developed our
own routine based on Mahalanobis distance, which is more appropriate for pair-wise
matching and does not suffer from the curse of dimensionality (G. King et al., 2011).

2. Mahalanobis distance with geographic covariates (MD): In order to match based on the
5- and 10-year pre-hydropower percentage of agricultural land, which varies between
treatment sites, we developed a routine in R statistical software that sequentially cal-
culates the Mahalanobis distances between each treatment site and all control sites.
That is, we used the year of the treatment site’s operational start to create two vari-
ables representing the 5- and 10-year pre-dam percentage of agricultural land for the
site itself as well as all possible controls. We used all the covariates described in the
previous section in calculating the Mahalanobis distance, but specifically included each
site’s geographic latitude and longitude coordinates. To simplify subsequent statistical
analyses, once a control was matched to a treatment, the control was no longer eligible
to be matched with another treatment (no replacement). As a result, the order with
which we matched treatments to controls matters. To find the optimal set of con-
trol matches, we performed the Mahalanobis distance matching without replacement
routine 200 times, each time randomizing the sequence of treatment dams (following
the method of Nielsen and Sheffield, 2009). We chose the order of treatment dams
that minimized the sum of Mahalanobis distances between all treatments and matched
controls.

3. Optimal propensity score matching (Opt PS): We use 1-1 optimal propensity score
matching through the MatchIt package in R (Ho et al., 2011). We use all the covariates
described in the previous section, but do not include any geographic covariates or
weights and do not dynamically match using each treatment site’s pre-dam agricultural
land area. We simply used the percentage of agricultural land in 1968 (before any of
the hydropower plants in our sample were constructed) for all sites.

A comparison of the locations of matched pairs shows that the three matching approaches
differ in terms of how spatial proximity was used in the matching process (5.2). Figures
5.2b and 5.2c show that the MH method, by giving geographic proximity equal weight in the
matching process, generated pairs that were further apart compared to DAPSm matches,
which considered spatial proximity independently of the p-score estimation, leading to more
spatially proximate matched pairs. Figure 5.2d shows that for the most part, optimal p-
score matches are geographically much further apart compared to either DAPSm or MH
approaches. The means and standard deviations of the matched controls show that all three
approaches improved the covariate balance compared to all controls (5.2). However, MD
controls were better matched on generation capacity and percentage of agricultural land in
1968, while Opt PS controls were better matched on distance to protected areas (5.2).
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Table 5.2: Summary of balance of covariates in matched controls

Comparison of mean and standard deviation of covariates across matching approaches indicating
degree of covariate balance (DAPSm: distance-adjusted propensity score matching; MD:
Mahalanobis distance with geographic covariates; Opt PS: optimal propensity score matching).
Percentage of agricultural land in 1968 is shown here as a substitute for the pair-specific covariate,
percent of agricultural land 5- and 10-year pre-hydropower-development. Percentage of
agricultural land in 2014 was not used as a matching covariate and is provided here to indicate the
effect of matching on the means of an outcome variable.
Dataset Summary

statistic
Generation
capacity
(MW)

Distance
to conser-
vation or
indigenous
area (m)

Percentage
of agricul-
tural land
in 1968

Distance
to nearest
urban

area (m)

Percentage
of agricul-
tural land
in 2014

Treated Mean 1123 21204 0.00555 282621 0.209
All controls Mean 433 9269 0.00607 248681 0.137
DAPSm matches Mean 626 16552 0.00481 290776 0.196
MD matches Mean 971 16222 0.00515 268269 0.163
Opt PS matches Mean 903 19627 0.00464 273605 0.132
Treated Stdev 2635 21161 0.00539 237801 0.155
All controls Stdev 981 15612 0.00730 94578 0.127
DAPSm matches Stdev 2112 23844 0.00428 92351 0.145
MD matches Stdev 2476 23340 0.00536 122880 0.133
Opt PS matches Stdev 1719 22633 0.00498 108403 0.139

Forest-loss detection using remote sensing techniques

To quantify forest loss within the circular buffers of treatment and matched control sites,
we used the Google Earth Engine remote sensing platform (GEE; Gorelick et al., 2017)
to perform all processing and analysis of Landsat 4-8 satellite imagery. GEE’s parallel
processing on the cloud capabilities allowed us to increase the scalability of remote sensing
analysis. The GEE team provided additional asset storage space, enabling analysis of more
than 100 hydropower locations.

Image preprocessing and compositing

Due to frequent and heavy cloud cover in the Amazon, we created three-year moving average
composites for each buffered study area using Landsat imagery for years 1984 - 2017. To
reduce cloud contamination, reduce inter-annual differences due to phenology, and maximize
change detection, we first identified the 3-5 months during which vegetation had the lowest
scene-averaged normalized vegetation difference index (NDVI) using the MODIS 16-day
average NDVI product. Because MODIS scenes are available daily, at least one cloud-free
scene per month is available across all sites. For producing the composites, we used only
Landsat scenes captured within the time frame of the months identified. We combined
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(a) All controls (c) Mahalanobis distance

(b) DAPSm (d) Optimal P-score

Figure 5.2: Map of matched treatment and control sites.

Map of matched treatment and control sites. We identified matched controls for 29 existing
(treatment) sites using planned, proposed, and inventoried sites as possible controls within the
Brazilian Amazon biome (a) using the following three matching approaches: distance-adjusted
propensity score matching (DAPSm) (b), Mahalanobis distance (MD) matching using geographic
coordinates as covariates (c), and propensity score using optimal matching with no consideration
of geographic proximity (d). Lines indicate matched treatment and control sites and numerical
labels indicate the match identification number unique to each matching approach. All proposed
(control) sites shown and used for matching are greater than 80 km from any existing (treatment)
site.

simple cloud score, FMask, and modified Temporal Dark Outlier Mask (TDOM) methods
(Housman et al., 2015) to create cloud and cloud-shadow masks for each Landsat top-of-
the-atmosphere (TOA) image. We then applied these mask to the corresponding Landsat



CHAPTER 5. DEFORESTATION AND AGRICULTURAL EXPANSION RESULTING
FROM HYDROPOWER DEVELOPMENT IN THE BRAZILIAN AMAZON 83

surface reflectance (SR) images for use in downstream analyses as SR images have been
atmospherically corrected. Because Landsat 8 Operational Land Imager (OLI) bands capture
comparable, but different, ranges of wavelengths with respect to Thematic Mapper (TM),
we calibrated OLI images to match TM images (Landsat 4-7; Roy et al., 2016). Using the
calibrated brands, we calculated the Tasseled Cap Indices (Kauth and Thomas, 1976) of all
scenes using coefficients from the literature (Baig et al., 2014; Huang et al., 2002; Liu et al.,
2015; Crist, 1985). Finally, we created a composite from the collection of processed Landsat
images over a three-year time period using the median value per pixel.

Classification and change detection of composites

Despite using surface reflectance images, we observed differences in quality and radiometric
correction over the long time series of composites. This reduces the accuracy of using band
differencing for change detection (Song et al., 2001). As a result, we chose a post-classification
approach for change detection (Tewkesbury et al., 2015). To train the classifier, we used the
Hansen Global Forest Change v1.4 dataset’s forest cover map for year 2000 (Hansen et al.,
2013). After comparing Classification And Regression Tree (CART) and Support Vector
Machine (SVM) classification methods, we determined that SVM produced more accurate
results.

Parameterization of SVM classifiers. For each site, we used a 5-fold cross validation
method to parameterize polynomial SVM classifiers. Using the composite image with median
year 2000 (spanning 1999-2001), we sampled 1000 points from each of the two (forest and
non-forest) land cover classes, randomly selected 80% of the points to train the classifier
under a combination of hyperparameters, and used the remaining 20% to test the classifier
and calculate a percent accuracy. We repeated this process five times per set of parameter
values to calculate an average percent accuracy per set of hyperparameter values. We used
these average percent accuracy values to select the best combination of hyperparameter
values in the final classifier. We identified the best combination of values for the following
hyperparameters and from the following parameter values: cost (0.01, 0.1, 1, 5, 10), gamma
(0.01, 0.1, 1, 10, 50), and degree (1, 2, 3, 4, 5). For training the classifier, we chose the
following band indices: un-normalized Tasseled Cap Disturbance Index (TC angle; Healey et
al., 2005), Green Atmospherically Resistant Index (GARI; Gitelson, Kaufman, and Merzlyak,
1996), normalized difference between the short-wave infrared band (SWIR) 1 and SWIR band
2 (TM57), and the normalized difference between the near infrared (nir) and SWIR band 1
(TM54; Lu et al., 2004). These features’ values range from -1 to 1, which means they are
sufficiently “normalized” for use in SVM methods. We chose to use bands processed using a
within-pixel normalizing approach, as opposed to subtracting the mean and dividing by the
standard deviation of all pixels in the scene (or “soft” normalizing) more commonly used in
preparing data for use in SVMs. This approach yields more accurate classified image time
series because the mean and standard deviation of a band could vary or drift over time due
to land use change.

Pseudo-invariant feature method for classification of time series composites.
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We developed a pseudo-invariant feature method for classifying a time-series of image com-
posites using a single year’s training image (year 2000). The challenge of using only a single
year to train many other years’ composite also has to do with differences in quality and
radiometric correction between images, and hence, between composites. Compared to ap-
plying a classifier trained using a different year’s composite (i.e., 2000), a classifier trained
using values from the composite year to be classified (the target) will naturally lead to bet-
ter results. To do this using just one training image, we identified pixels that are spectrally
similar (pseudo-invariant pixels or PIP) between pairs of composites (the training image and
a target image) and limited random sampling of points for training the classifier to only
these pixels. To automate the process of identifying PIPs, we conducted a principle compo-
nents analysis (PCA) for each pair of images on an index-by-index basis, and selected the
pixels where principle component 2 had values less than a certain threshold (Du, Teillet,
and Cihlar, 2002). Only the pixels that overlapped better all the index-specific PIPs were
used to randomly select points for training the classifier. Given the high variance of values
for SWIR band 2, we used only TC angle, GARI, and TM54 to identify PIPs. To reduce
computational demands, only four pairs of composites (year 2000 paired with years 1984,
1992, 2012, 2017) and were used to create PIPs and applied in classifying sub-groups of
composites (1984-1991, 1992-1999, 2007-2012, 2013-2017). Composites for years 2000-2006
used the classifier trained with the composite and training image for year 2000.

After classifying each composite, the area of forest and non-forest was calculated at 10,
20, 30, 40, and 50 km (and 100 km for plants greater than 1 GW) buffer radii. To reduce the
impacts of misclassification on the overall time trend, the forest area classified in the earliest
composite was used a mask in all calculations of forest area loss in subsequent classified
composite. As a result, our change detection method does not capture reforestation of areas
deforested prior to 1984.

Panel regression analyses

Several methods are available for panel regression, and the choice between them rests on a
battery of specification tests. Given the results of these specification and robustness tests, we
use the following panel models: Random Effects (RE), Fixed Effects (FE), First Differences
(FD), and Generalized Method of Moments (GMM).

First, we used a Random Effects model for estimating the forest-loss effect of hydropower
development, as specified through the Hausman test. A RE model is also appropriate for
examining the treatment effect when there is reason to believe that differences between
individuals (hydropower plants) affect the outcome (forest loss)

yit = α + βXit + εit (5.1)

Second, we used a two-way Fixed Effects model for estimating both forest-loss and
agricultural-land-use effect of siting a hydropower plant, where the site (the existing or
proposed hydropower plant) and the year are the two fixed effects. Effectively, a fixed-effects
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model generates a dummy variable for each “fixed effect” or intercept—that is, for each site
and for each year. The standard two-way fixed effects model is as follows:

yit = αi + βXit + µit + εit (5.2)

To account for serial autocorrelation, we use a First Differences (FD) estimator for both
forest loss and agricultural land use where ∆Xit = Xit+1 −Xit:

∆yit = β∆Xit + ∆µi + ∆εi (5.3)

Finally, to address serial autocorrelation directly using a dynamic panel regression, we
use Generalized Method of Moments (GMM) estimator with two-step correction:

yit = γ1yit−1 + γ2yit−2 + βXit + µi + εi (5.4)

As well as GMM with a lagged independent variables:

yit = γ1yit−1 + γ2yit−2 + β1Xit + β2Xit−1 + µi + εi (5.5)

In all five regressions above, yit is the percentage of forest loss since base year (1984) for
site i and time t when fitting the model using the Landsat derived data, or the percentage
of agricultural land (pasture and cultivated area) when fitting the model using Dias et al.
(2016) data; Xit is a matrix of time varying explanatory variables, including a time-varying
dummy variable indicating whether there is hydropower development on a site (i.e., the
treatment variable); β is a vector of estimated coefficients; αi is the individual or site-
specific intercept term representing the time-invariant site-specific effect (otherwise known
as unobserved heterogeneity between individuals); γ1 and γ2 are coefficients for the first
and second order lagged dependent variables yit−1 and yit−2; µi is the time-specific intercept
term representing changes over time that affect all sites similarly (which can be thought of
as disturbances); and εi is the error term.

We performed all regressions using R 3.4.3 (R. Core Team, 2017). We used the plm R
package (Croissant and Millo, 2008) for fixed and random effects regressions and the sandwich
package for standard error corrections. We performed a series of specification tests to deter-
mine whether the data meet each model’s assumptions. Results of the Durbin-Wu-Hausman
test for whether a random or fixed effects model is appropriate, determined that only the
fixed effects model is consistent with the data. Using the F-test and Lagrange Multiplier Test,
we determined the need to include a time fixed effect (i.e., two way model). The Augmented
Dickey-Fuller Test established that the time series data residuals are stationary (i.e., there is
no unit root). Both the Breusch-Pagan (B-P/LM) and Parsaran CD tests identified cross sec-
tional dependence and heteroskedasticity. The Breusch-Godfrey/Wooldridge test identified
serial correlation. We corrected the coefficients and standard errors for heteroskedasticity
and serial correlation in the two-way fixed effects model using the Heteroskedasticity and
Autocorrelation Consistent (HAC) covariance matrix estimator in the sandwich R package
(Zeileis, 2006) by converting the fixed effects model into a linear model by de-meaning the
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variables. We compared these estimates HAC clustered standard errors to the Heteroskedas-
ticity Consistent (HC) covariance matrix estimator using the Arellano method that is robust
to autocorrelation. We found that the HC-Arellano clustered errors are higher and thus
report these in the results. To address the heteroskedasticity and the serial autocorrela-
tion directly, we use a Generalized Method of Moments model with and without a lagged
treatment variable.

A note about model specification. Each model has its strengths and weaknesses,
based on the types of assumptions it requires about the data. For example, First Differences
models assume that the “intervention” has an immediate effect on the outcome, in other
words, it evaluates short-run effects. If the effect is leading or lagged, then taking first
differences can result in biased estimates. There is reason to believe that hydropower projects
can have a gradual, leading, or lagged effect on forest loss–and that these effects are may
differ across individuals (examples provided in the Discussion section). It is possible to deal
with the endogeneity arising from serial autocorrelation in two ways: (1) correcting for it in
the error structure and estimating robust standard errors (bias correction) or (2) addressing
it directly using dynamic panel models like GMM or lagged dependent variables. The factors
that should determine the choice between these two general methods are ambiguous in the
literature. It is known that endogeneity resulting from the error term being correlated with
the dependent variable is an issue when the number of time periods (T) is small relative to
the number of individuals (N), and the recommended way for addressing this is a GMM.
However, if T gets larger relative to N, then GMM suffers from small sample properties
(Baltagi, 2015). Breitung (in Baltagi, 2015) recommend that both methods—bias correction
and GMM—can be appropriate for moderate T.

5.3 Results

Average effect of hydropower plant development on spatially
proximal indirect forest loss

We find that the effect of hydropower plant development on forest cover loss as detected
using Landsat imagery is significant—with the average effect size ranging from a 2.4% to
8.6% percentage point increase in forest-cover loss in any given year, depending on the
estimator used (Tables 5.3, 5.4, D.1, D.3). Using the Hausman test for percent forest cover
loss as the response variable, we find that both random and fixed effects are consistent, in
which case, a random effects (RE) estimator is more efficient. However, given that the fixed
effects model is more resistant to missing data, an issue in this study arising from frequent
cloud cover, we also report the fixed-effects summary. Due to omitted-variable bias, we
believe that the fixed-effect estimates may be more robust.

Using a two-way random effects (RE) estimator, we find that hydropower plant siting
has a significant average effect of increasing forest loss by 5.4% (95% CI [0.1, 10.7]) and 6.8%
points (95% CI [1.1, 12.5]) in any given year for the DAPSm and MD matching approaches,
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respectively (Table 5.3 models (3), (4)). When the time trend is excluded from the RE
regression, the coefficients increase to 7.7% (95% CI [1.1, 12.5]) and 8.6% (95% CI [2.0,
14.5]), respectively (5.3 models (1), (2). The robust standard errors are high for all RE
estimates, resulting in large confidence intervals.

In univariate fixed effects (FE) regressions with only the treatment variable, the average
effects of siting a hydropower plant are significant and very similar to estimates from the
multivariate random effects model, with the key difference being lower Arellano clustered
standard errors corrected for serial (time) and cross-sectional (individual) correlation (5.5%
with 95% CI [2.0, 9.0] and 6.8% points (95% CI [3.5, 10.1]; Table 5.4 models (1), (2)).
With time trend and other covariate interactions added, the coefficient does not change
with DAPSm controls, though the standard errors are slightly higher, but the coefficient
with MD controls reduces from 6.8% to 5.5% (95% CI[2.2, 8.8] (Table 5.4 models (3), (4)).
The coefficient of the interaction of the treatment with the time trend is negative for both
matching approaches, suggesting that the effect of hydropower siting on forest loss diminishes

Table 5.3: Random effects regression summary for percent loss of 1984 forest estimated from
Landsat imagery.

“treatment_time” is a time-varying dummy variable for presence or absence of a
hydropower plant. Its coefficient is the main treatment effect of hydropower development.

Dependent variable:

Percent loss of 1984 forest cover
DAPSm MD DAPSm MD

(1) (2) (3) (4)

treatment_time 0.077∗∗∗
(0.029)

0.085∗∗∗
(0.029)

0.054∗∗
(0.027)

0.068∗∗
(0.029)

time_trend 0.009∗∗∗
(0.001)

0.008∗∗∗
(0.001)

DistProtArea_km 0.002∗∗∗
(0.001)

0.002∗∗∗
(0.001)

0.002∗∗∗
(0.001)

0.002∗∗∗
(0.001)

CapacityMW 0.00001∗
(0.00000)

0.00001∗∗∗
(0.00000)

0.00001∗∗
(0.00000)

0.00001∗∗∗
(0.00000)

existingDam_dist_km −0.0002
(0.0002)

−0.0002
(0.0002)

−0.0002
(0.0002)

−0.0003
(0.0002)

city_dist_km −0.00004
(0.0001)

−0.0001
(0.0001)

−0.00005
(0.0001)

−0.0001
(0.0001)

Constant 0.124∗∗∗
(0.033)

0.132∗∗∗
(0.034)

−0.008
(0.031)

0.011
(0.029)

Observations 1,631 1,760 1,631 1,760
R2 0.174 0.215 0.458 0.452
Adjusted R2 0.172 0.213 0.456 0.450
F Statistic 67.660∗∗∗ 95.480∗∗∗ 228.187∗∗∗ 239.350∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.4: Fixed effects regression summary for percent loss of 1984 forest cover estimated
from Landsat imagery

“treatment_time” is a time-varying dummy variable for presence or absence of a
hydropower plant. Its coefficient is the main treatment effect of hydropower development.

Dependent variable:

Percent loss of 1984 forest cover
DAPSm MD DAPSm MD DAPSm MD

(1) (2) (3) (4) (5) (6)

treatment_time 0.055∗∗∗
(0.018)

0.068∗∗∗
(0.017)

0.055∗∗∗
(0.020)

0.055∗∗∗
(0.017)

0.101∗∗
(0.049)

0.096∗
(0.053)

treatment_time:time_trend −0.002
(0.002)

−0.002
(0.002)

time_trend:DistProtArea_km 0.0001∗∗∗
(0.00003)

0.0001∗∗∗
(0.00003)

0.0001∗∗∗
(0.00003)

0.0001∗∗∗
(0.00003)

treatment_time:CapacityMW −0.00000
(0.00001)

0.00000
(0.00000)

−0.00000
(0.00001)

0.00000
(0.00000)

time_trend:existingDam_dist_km 0.00000
(0.00001)

−0.00001
(0.00001)

−0.00000
(0.00001)

−0.00001
(0.00001)

time_trend:city_dist_km 0.00000
(0.00000)

−0.00000
(0.00000)

−0.00000
(0.00000)

−0.00000
(0.00000)

Observations 1,631 1,760 1,631 1,760 1,631 1,760
R2 0.055 0.082 0.198 0.238 0.211 0.248
Adjusted R2 0.004 0.034 0.153 0.196 0.166 0.206
F Statistic 89.451∗∗∗ 149.092∗∗∗ 76.394∗∗∗ 104.213∗∗∗ 68.627∗∗∗ 91.407∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

over time, though the interaction is not significant (Table 5.3 models (5), (6)).
As a conservative approach, we also fit the data using First Differences (FD) and General-

ized Method of Moments (GMM) estimators which directly account for serial autocorrelation.
The FD estimates of the average effect of the hydropower development on forest loss is pos-
itive and statistically significant for both matching approaches and regardless of whether a
lagged dependent variable was included as a regressor (Table D.1, models (3), (4)). The
effect size ranges from 1.3 - 1.6% percentage points, with very small standard errors (Table
D.1. These coefficient estimates are much lower than either RE or FE estimates, though a
comparison of coefficient values with their confidence intervals (CI) shows that the upper
end of FD CIs are similar to the lower end of RE and FE CIs (Figure 5.6a). GMM coefficient
estimates for hydropower development are all highly statistically significant and similar to,
but slightly higher than FD estimates with lower standard errors (D.3 models (1) and (2);
Figure 5.6a).

Pairwise comparisons of matched control and treatment sites show that for the majority
of control-treatment pairs, treatment periods experienced visibly higher rates of forest loss
compared to the matched control periods (15 out of 26 or more than half of the DAPSm
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matches, and 19 out of 27 or more than two-thirds in the MD matches; Fig. 5.3a, 5.3b). For
the remaining pairs, the control sites experienced higher rates of forest loss (3 out of 29 in
both the DAPSm and MD matches) or experienced very similar rates of forest loss (8 out
of 26 for DAPSm and 5 out of 28 for MH). When aggregated across pairs, forest loss trends
over time show similar elevated levels for treatment sites (Fig 5.4a, 5.4b).

Other covariates. Of the four other site-specific covariates included in the RE models,
only distance to protected area and generation capacity are statistically significant, with each
kilometer further from a protected area resulting in 0.2% percentage points more forest loss
and with each megawatt (MW) increase in generation capacity resulting in a small 0.001%
percentage point increase in forest loss (Table 5.3). Time trend is also strongly significant,
with each additional year resulting in a 0.9% percentage point increase in forest loss (Table
5.3). For the multivariate FE models with the time trend interacted with time-invariant
covariates, only distance to the nearest protected area had a significant effect on forest loss
over time, with each additional year and additional km away from a protected resulting in
a 0.01% percentage point increase in forest loss (Table 5.4). There appears to be no time
trend and generation capacity interaction. FD model estimates for regressors are similar to
RE and FE estimates, though the effect of generation capacity is only significant for MD
matches (Table D.1).

Effect differences due to distance from hydropower plant site. To understand
whether hydropower development affects indirect land use in a spatially-dependent way, we
compared FE estimates of hydropower effect size at the 50 km buffer radius baseline against
estimates for study areas with 10 km, 20 km, 30 km, and 40 km buffer radii. For both
DAPSm and MH matches, we find that the effect is positive and statistically significant
across all buffer distances (Tables D.4, D.5). Estimates at 50 km radius are among the
lowest, with the highest effect within 20-40 km of the dam location.

Average effect of hydropower plant siting on agricultural land
expansion

Overall, we find that the effect of hydropower development on indirect agricultural land
use change is lower and less statistically significant than that observed for forest loss. We
report estimates from two-way fixed effects regressions (Table 5.5), given that results of
the Hausman test suggest that a fixed effect model is more appropriate. However, due to
the presence of serial autocorrelation, we also apply a First Differences (FD) with a lagged
dependent variable as well as a Generalized Method of Moments (GMM) estimator.

In univariate FE regressions with only the treatment variable, the average effects of sit-
ing a hydropower plant on percentage of agricultural land is positive across all matching
methods, but only significant for MD and Opt PS methods (Table 5.5, models (1-3)). How-
ever, when other covariates are included, only Opt PS remains statistically significant with
a 2% percentage point increase (95% CI [-0.16, 4]) in agricultural land in any given year
due to hydropower development (Table 5.5, models (4-5)). Like with forest loss, when hy-



CHAPTER 5. DEFORESTATION AND AGRICULTURAL EXPANSION RESULTING
FROM HYDROPOWER DEVELOPMENT IN THE BRAZILIAN AMAZON 90

Ta
bl
e
5.
5:

F
ix
ed

eff
ec
ts

re
gr
es
si
on

su
m
m
ar
y
fo
r
D
ia
s
et

al
.(
20

16
)
es
ti
m
at
ed

pe
rc
en
t
of

ag
ri
cu
lt
ur
al

la
nd

D
ep

en
de

nt
va

ri
ab

le
:

P
er
ce
nt

of
ag
ri
cu
lt
ur
al

la
nd

D
A
P
Sm

M
D

O
pt P
S

D
A
P
Sm

M
D

O
pt

P
S

D
A
P
Sm

M
D

O
pt

P
S

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

tr
ea
tm

en
t_

ti
m
e

0.
02
1

(0
.0
14
)0.

03
0∗

∗

(0
.0
13
)0.

03
9∗

∗∗

(0
.0
14
)

0.
01
1

(0
.0
13
)

0.
01
3

(0
.0
12
)

0.
02
0∗

(0
.0
11
)

0.
07
3∗

∗∗

(0
.0
23
)

0.
07
1∗

∗∗

(0
.0
24
)

0.
06
3∗

∗

(0
.0
25
)

tr
ea
tm

en
t_

ti
m
e:
ti
m
e_

tr
en
d

−
0.
00
3∗

∗∗

(0
.0
01
)
−
0.
00
3∗

∗

(0
.0
01
)
−
0.
00
2∗

(0
.0
01
)

ti
m
e_

tr
en
d:
D
is
tP

ro
tA

re
a_

km
0.
00
01

∗∗
∗

(0
.0
00
02
)
0.
00
01

∗∗
∗

(0
.0
00
02
)
0.
00
01

∗∗
∗

(0
.0
00
02
)
0.
00
01

∗∗
∗

(0
.0
00
02
)
0.
00
01

∗∗
∗

(0
.0
00
02
)
0.
00
01

∗∗
∗

(0
.0
00
02
)

tr
ea
tm

en
t_

ti
m
e:
C
ap

ac
it
yM

W
−
0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)

ti
m
e_

tr
en
d:
ex
is
ti
ng

D
am

_
di
st
_
km

−
0.
00
00
1

(0
.0
00
01
)
−
0.
00
00
1∗

∗

(0
.0
00
00
)
−
0.
00
00
1∗

∗∗

(0
.0
00
00
)
−
0.
00
00
1

(0
.0
00
01
)
−
0.
00
00
1∗

∗

(0
.0
00
00
)
−
0.
00
00
1∗

∗∗

(0
.0
00
00
)

ti
m
e_

tr
en
d:
ci
ty
_
di
st
_
km

0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)
−
0.
00
00
0

(0
.0
00
00
)

O
bs
er
va
ti
on

s
91
2

92
8

92
8

91
2

92
8

92
8

91
2

92
8

92
8

R
2

0.
01
6

0.
04
0

0.
05
9

0.
31
2

0.
40
0

0.
51
1

0.
35
6

0.
44
5

0.
53
4

A
dj
us
te
d
R

2
−
0.
06
8−

0.
04
2−

0.
02
1

0.
25
0

0.
34
6

0.
46
7

0.
29
6

0.
39
5

0.
49
1

F
St
at
is
ti
c

13
.9
39

∗∗
∗ 35
.5
29

∗∗
∗ 53
.9
13

∗∗
∗ 75
.7
75

∗∗
∗
11
3.
42
5∗

∗∗
17
7.
90
2∗

∗∗
76
.8
18

∗∗
∗
11
3.
68
1∗

∗∗
16
2.
01
3∗

∗∗

N
ot

e:
∗ p

<
0.
1;

∗∗
p<

0.
05
;∗

∗∗
p<

0.
01



CHAPTER 5. DEFORESTATION AND AGRICULTURAL EXPANSION RESULTING
FROM HYDROPOWER DEVELOPMENT IN THE BRAZILIAN AMAZON 91

dropower development is interacted with the time trend, the coefficient for the interaction is
significantly negative across all matching approaches, meaning that the effect of hydropower
development on agricultural land expansion has reduced over time (Table 5.5 models (7-9)).
With the treatment and time trend interaction term in place, the treatment coefficient also
becomes significant (Table 5.5), which suggests that any significant effect of hydropower
development on agricultural land use is not generalizable over time.

On the whole, FD estimates are nearly an order of magnitude lower than FE estimates
of the effect of hydropower development on agricultural land use (Table D.2). However, only
MD and Opt PS matches show significant effects, which become insignificant when lagged
dependent variables were included as regressors (Table D.2 models (4)-(6)). GMM estimates,
which include two lagged periods of the dependent variable and one lagged period for the
treatment variable, show that the effect size of hydropower development on agricultural land
use is similarly insignificant (Table D.3 models (3), (4)).

These trends in regression estimates are consistent with trends seen in plots of pairwise
and aggregate changes in percent of agricultural land over time (Figures 5.3c, 5.3d, 5.5b).
Several control and treatment pairs show nearly overlapping trends (10 out of 29 for both
DAPSm and MD; 4 out of 29 for Opt PS), with a sizable number of treatment sites showing
lower percent agricultural land than than its paired control (4 out of 29 for DAPSm; 7 out
of 29 for MD; 6 out of 29 for Opt PS). In aggregate, the differences between treatment and
control sites are not visibly pronounced (Figures 5.4c, 5.4d, 5.5d).

5.4 Discussion

Effect of hydropower development on land use and land cover

Our results suggest that hydropower development in the Brazilian Amazon results in signifi-
cant indirect deforestation. There is inconsistent or poor evidence that hydropower develop-
ment also causes expansion of agricultural land. Though it is unclear which estimator is most
appropriate for modeling forest loss, past studies have suggested combining Fixed Effects and
Lagged Dependent Variables (LDV) or another dynamic panel method as a bracketing strat-
egy, with the the dynamic panel regression providing the lower-end estimates (Guryan, 2001).
Using this guidance, the average effect of hydropower plant siting on indirect forest loss is
1.3 - 6.8% percentage point increase in any given year within a 50 km radius of the plant
itself. Since the mean forest loss across all years for control sites is about 11.5 - 13% of 1984
forest cover (Appendix D Figure D.1), the effect range can be expressed as an 11.3% - 59%
increase in indirect forest loss due to hydropower siting, in any given year for any given site.
Though only weakly statistically significant, and insignificant in some models, hydropower
development increases agricultural land use by 0.03 - 2.0% percentage points. This large
range can be interpreted as a 0.7% - 50% increase in percent agricultural land use, assum-
ing the average percent agricultural land use of all control values across all years, or about
4%. Inconsistency of results between forest loss and agricultural expansion are likely due
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Figure 5.3: Pairwise control-treatment plots of changes in forest loss and agricultural land
over time for DAPSm and MD matches.

Plots show the change in the dependent variables, percent of 1984 forest loss (a, b) and percent of
agricultural land (c, d), over time of treatment and control pairs matched using the density
adjusted propensity score matching (DAPSm; a,c) and Mahalanobis distance (MD; b,d)
approaches. Yellow points indicate when a hydropower plant was developed in a treatment site.
Grey points indicate locations without hydropower development across time. Though they are
shown in the plots, points greater than 1.5 times the interquartile range are considered outliers
and were removed from regression analyses. Sites missing data for its paired control or treatment
site were excluded from regression analyses.
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Figure 5.4: Aggregated plots of changes in forest loss and agricultural land over time for
DAPSm and MD matches

Aggregated plots show the the change in dependent variables, percent of 1984 forest loss (a, b)
and percent of agricultural land (c, d), over time of treatment and control units matched using the
density adjusted propensity score matching (DAPSm; a,c) and Mahalanobis distance (MD; b,d)
approaches. Panels compare existing sites against matched planned, proposed, and inventoried
sites. The left hand “Existing site (treatment)” panel is the same for each dependent variable (a
and b, c and d). Yellow points indicate when a hydropower plant was developed in a treatment
site. Grey points indicate locations without hydropower development across time. Though they
are shown in the plots, points greater than 1.5 times the interquartile range are considered outliers
and were removed from regression analyses.
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Figure 5.5: Pairwise and aggregated plots of agricultural land use over time for optimal
propensity score matches.

Pairwise (a) and aggregated plots (b) show the change in percent of agricultural land over time for
treatment and control sites matched using optimal propensity score matching (Opt PS). These
plots have similar properties as Figures 5.3 and 5.4.

to differences in the methods used to generate the two datasets—with forest loss estimated
directly from imagery and agricultural area estimated from spatially disaggregated census
data.

Heterogeneity between sites

The large standard errors for the average treatment effect, particularly for Fixed and Random
Effects estimates, are largely explained by the significant spread of forest loss values within
hydropower-developed sites, ranging from more than 60% to 1% loss of 1984 forest cover
(Figure 5.4). A closer examination of those hydropower plants that experienced negligible
indirect forest loss despite being developed pre-2000, provides case-specific explanations for
their land use history. The development of the Balbina 250 MW hydropower plant (match
ID 4 in Fig. 5.3a and match ID 11 in Fig. 5.3b) in 1985 created significant and highly
controversial social and environmental damages, resulting in the establishment of a biological
reserve to protect the reservoir and its islands as a mitigation strategy; the surrounding
areas are protected by two other reserves established within a couple of years of Balbina’s
operational start date (Fearnside, 1989). Recent studies reveal that what happened with
Balbina is more an exception than the norm; it is much more common for a hydropower
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Figure 5.6: Comparison of treatment coefficients for forest loss and agricultural land

Estimates of the treatment effect on percent of 1984 forest loss (a) and percent of agricultural land
(b) are plotted for multiple estimators and matching approaches. 95% confidence intervals
calculated using clustered standard errors are shown. Note that several coefficient estimates for
hydropower development effects on percent of agricultural land are insignificant. Refer to Tables
5.5, D.2, and D.3 for p-values. GMM estimates are missing for DAPSm matches because
collinearity issues with the data caused the model to fail to solve.

plant to cause protected area degazettement, downsizing, or downgrading (PADDD) (Pack
et al., 2016). In fact, Pack et al. (2016) found that hydropower plant siting is the leading
cause of all PADDD in Brazil, accounting for 39% of all enacted PADDD events. Pitinga
(match ID 6 in Fig. 5.3a and match ID 13 in Fig. 5.3b), a 20 MW dam northeast of Balbina,
was developed specifically to serve the needs of the large Pitinga tin mine. Two other existing
dams with negligible forest loss in 2017 are Santo Antonio do Jari (not included in the plot or
regressions due to the severity of cloud contamination in image composites) and Cachoeira
Caldeirao (match ID 19 in Fig. 5.3a, match ID 16 in Fig. 5.3b) began operations in 2014
and 2016, respectively, with little time post-development to assess impacts. The final dam
with negligible change over time is the first dam to be built in the Amazon, Coaracy Nunes
(electricity generation started in 1975). The cloud contamination is severe for this site,
with a handful of years in the 1990s missing images due to complete cloud cover. However,
comparison of the earliest images in the mid 1980s show characteristic deforestation patterns
emerging starting in the 1990s and steadily continuing into the 2000s, with pasture-land
covering much of the southwestern portion of the study area before 1986 (Figures D.2)
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Temporal and spatial dynamics

Findings suggest that the timing of hydropower development plays a role in its effect on
forest loss. Since timing is largely related to the prevailing local or regional deforestation
rates, this also suggests that the size of the impact of hydropower development on forest
loss is related to background deforestation trends. We found significant negative coefficients
for regression models with treatment interacted with the time trend, which indicate that
the average effect of hydropower development on forest loss attenuates over time. We could
interpret this at face value, meaning that more recently developed hydropower plants have
had lower indirect deforestation impacts. However, the median operational start year is
2008, such that half of the existing hydropower plants in our sample were installed after
2008. If there is a delayed or gradual response of forest loss to hydropower development,
then this trend over time could be explained by the relative lack of data during a power
plant’s operational years.

Other time-related dynamics can be observed from examining the data directly. The
pairwise plots of forest loss indicates that significant forest loss appears to precede the esti-
mated construction start in some cases. One plausible explanation for this is that in these
cases, non-hydropower drivers of deforestation are more significant, and the added interven-
tion of hydropower development only contributes rather than triggers forest loss. Another
explanation could be that for larger dams, the estimated 5-year construction time is an un-
derestimate, and the onset of the intervention actually occurred earlier in time. A recent
study found that large dams take on average 8.6 years to construct (Ansar et al., 2014). Yet
another plausible explanation is that just the impending construction of a hydropower plant
in an area via an public announcement by the utility can lead to elevated human activity
and deforestation. Media coverage of controversial planned dams in the Amazon have doc-
umented that just prioritizing dam construction projects in the planning phase can trigger
illegal deforestation in the surrounding area. For example, plans for the São Luiz do Tapajós
dam in Pará, Brazil have led to a rise in illegal squatting and deforestation, as reported by
homestead farmers in the region who have been under increasing threat by illegal loggers
seeking to appropriate their land (Farah, 2016). According to the article, “A network of
illegal loggers is using the homestead projects to confer ’legitimacy’ to their illicit cutting
of trees in protected areas. The loggers claim homestead lands to be the source of illegally
harvested timber to trick government enforcers.”

The possibility of lagged or leading effects of hydropower development on forest loss
is also consistent with the results of dynamic panel regressions. In the GMM regressions,
both the dependent variable (forest loss) and the treatment variable (presence or absence
of a hydropower plant) were lagged by two and one time-steps, respectively. We found that
the non-lagged treatment effect is only significant in the presence of a lagged treatment
variable, whose coefficient is also statistically significant. With no treatment variable lags,
the treatment variable is no longer significant. This suggests that whether or not a site had
hydropower development in the previous year significantly informs the effect of the dam in
the current year. In other words, the history of development matters for its impact in a given
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year. However, since the use of small samples with GMM models cause unstable regressions,
results of GMM should be interpreted with caution (Baltagi, 2015).

Findings also suggest that the effects of hydropower development on forest loss is spatially
dependent. Compared to The baseline treatment effects using a study area size with a 50
km radius, the treatment effect estimates for 20 - 40 km radii study areas are higher. Effects
estimated at 10 km are more similar to the 50 km estimate, which could be due to the
reservoir, which is excluded from deforestation change detection and in several existing sites,
encompassing a significant area of a 10 km buffer study area. These spatial trends, with the
exception of the 10 km radius, are consistent with previous studies’ findings that deforestation
has a distance-decay relationship around proximate drivers of deforestation such as roads
(Barber et al., 2014; W. F. Laurance, Goosem, and S. G. W. Laurance, 2009).

We designed our matching approaches to vary the spatial similarity of matched control
and treatment sites, as well as the quality of pairwise (vs. sample-wide) matching. We find
that the DAPSm and MD matches yielded similar estimates of forest loss, with the MD
matches yielding slightly higher treatment effect estimates or lower standard errors (Figure
5.6). The trend for Fixed and Random Effects regression coefficients show an increase in
the treatment effect with reduced spatial constraints in matching, with the Opt PS, which
has no spatial constraints, yielding the highest and only statistically significant treatment
effect estimate (2% 95% CI [-0.16, 4]). Both sets of results suggest that the further control
sites are from treatment sites, while increasing balance for other covariates, the higher the
treatment effect estimates. Knowing that the balance on other covariates improved with
relaxed spatial constraints (e.g., controls were more similar to treatments in terms of being
further from protected areas and having lower initial agricultural land use; Table 5.2), this
finding suggests that hydropower development on LULC changes may act across larger dis-
tances than examined in this study (50 km). The consequence is that the LULC histories
of control sites close to existing hydropower plants may already be affected by hydropower
development, thus reducing the estimated treatment effect.

Differences between forest loss and agricultural land area changes

In the Brazilian Amazon, typical land use patterns before the early 2000s were marked by
a cascade of transitions, first from forest to clearing due to logging or subsistence agricul-
ture, then from clearing or subsistence agriculture to large-scale pasture for cattle ranching
(Fearnside, 2005). Since the early 2000s, pasture to mechanized cropland transitions and
direct forest to mechanized cropland conversions have been the increasingly dominant land
use patterns (Morton et al., 2006; Hecht and Cockburn, 2010; Arima et al., 2014). As such,
we would expect our results for forest loss and agricultural land expansion to be very similar,
albeit with a transitional lag for agricultural—pasture and cropland—expansion. The re-
sults are only weakly consistent this expectation. Without comparing the treatment effects
themselves, since one dataset is measuring forest loss since 1984 and the other is measur-
ing absolute percentage of agricultural land cover, we find that effect estimates on forest
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loss are consistently significant across modeling approaches, whereas the effect estimates on
agricultural land use is weakly significant or insignificant.

A close comparison of these two datasets reveals some disagreements within the same
pairs of control and treatment sites. Several pairs in which the treatment site experienced
distinctly higher loss of 1984 forest cover shows either the opposite relationship or overlap-
ping trends for percent of agricultural land use (e.g., pairs 8, 14, 16, 18, 21 for DAPSm
matches; pairs 9, 10, 20, 25, 28 for MD matches; Figure 5.3). However, differences in the
ways that the two datasets were generated may be significant enough to prevent direct com-
parison. Because the Dias et al. (2016) dataset is derived from municipal level census data
of land area under cultivation and pasture, the spatial disaggregation method will play a
large role in how those hectares will be allocated across space. Thus, any limitations this
dataset has stems largely from its spatial down-scaling process, and perhaps from possible
inaccuracies of the underlying agricultural census data themselves. We generated the forest
loss data specifically for this study and used spatially-explicit, native-resolution methods for
assessing land cover change. Inaccuracies stemming from cloud contamination, phenology,
and classification methods are its major limitations. Although the use of a three-year moving
averages increase confidence in the overall time trend, it does not prevent noise from from
increasing the standard errors of the regression estimates.

Limitations and remaining challenges

This study applied multiple matching approaches, datasets, and regression models to in-
crease the robustness and certainty of the effect estimates. However, there are a number of
limitations in our ability to capture and account for the variability of the effect of hydropower
on LULC that may affect results. First, the LULC impacts of infrastructure development
projects are temporally and spatially diffuse. This is particularly true when examining indi-
rect land use changes. Given the anecdotal evidence for pre-construction human activity and
forest loss due to planned hydropower projects, the use of planned projects as control units
may underestimate the effect of hydropower development on forest loss. Secondly, given
lack of information for half of the existing hydropower plants on construction start years,
we relied on a five-year approximation, which could overestimate the effect for smaller dams
and underestimate the effect for larger dams. Third, while the Landsat 5-8 missions provide
33 years of continuous land cover coverage (use of Landsat 1-3 requires manual processing
and analyses, making them unsuitable for use in large scale studies), at least two of the
more controversial hydropower projects, Samuel and Tucuruí, started construction before
1984. This means that we lacked pre-development forest loss data for these treatment sites,
reducing their contribution to Fixed Effects estimates, which rely on “within” site variation
in the treatment and response variables. Since these are treatment sites, this missing data
issue could cause coefficients to be underestimated. Fourth, missing data due to poor Land-
sat imagery quality disproportionately affects treatment and control sites located “deeper”
in the Amazon basin, which generally have lower rates of deforestation. This could bias the
treatment effect estimate positively or negatively. Fifth, the choice of estimator strongly
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affects the average treatment effect estimates. RE and FE coefficient values are similar, but
they differ from FD and GMM coefficient values. The data is structured in a such a way
that no one estimator is entirely apt.
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(a)

(c)

Figure A.1: Generation (A) and nameplate capacity (B) mix of each 2050 scenario in the
California low carbon futures study chosen for this paper.

Figures 1a and 1b are reproduced Figures S20 and S22, respectively, in supplementary materials of
Williams et al. (2012; Williams, DeBenedictis, et al., 2012).
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Table A.1: Operational-phase life-cycle land-use factors based on 30-year plant lifetime
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Table A.2: GIS exclusion criteria and buffer distances to assess suitable sites
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Table A.3: Data sources
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Table A.4: Comparison of environmental classifications in previous studies with chosen clas-
sifications in the present study

Land areas are classified as legally excluded (Ex) and the equivalent of Category 4 in the present
study, or avoid (Av) with sensitivity score (corresponding to Categories 3.5, 3, 2, 1 in the present
study; see Table 1 in main paper). Brackets in the first column indicate the studies in which the

land area type was applied as an exclusion or avoidance layer.
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Figure A.2: Process flow diagram of methods.

Land use demand estimate results are shown in Figure 1, resource potential and quality results are
show in Figure 2, site suitability maps are shown in Figure S4, build-outs maps are shown in
Figure 3, overlapping area values are shown in Figure 4, and additional land requirements are
tabulated in Table 2. Generation and capacity land-use factors are found in Table S1, Figure S1
shows the 2050 generation by technology, Figure S3B shows the transmission cost surface map,
and Figure S3A shows the mapped environmental constraint scores.
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(a) (b)

Figure A.3: Generation (A) and nameplate capacity (B) mix of each 2050 scenario in the
California low carbon futures study chosen for this paper.

Environmental scoring for generation (A) and transmission siting (B). Environmental (ecological,
cultural, historical) areas were compiled from the USGS PAD-US database and various BLM
sources. Each protected parcel was assigned an environmental score indicating suitability of land
for generation (A) and transmission (B) infrastructure. The latter is also known as a “transmission
cost surface.” These layers were used as criteria for determining suitable sites for power plants and
additional transmission requirements. Higher values indicate greater environmental impacts and
risks.
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(a) (b)

Figure A.4: Site suitability maps for solar (A) and wind, geothermal (B) technologies in
WECC under the Least Stringent environmental scenario.
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A.1 Additional methods

Overview of environmental constraints used in previous studies

The high variability of assumptions amongst studies in environmental criteria and constraints
for energy development is further confounded by the differences in designations and defini-
tions of the same land criteria (see Table S4 for comparison of RETI and WREZ studies).
This is in part due to the differing land use regulations across state and federal government
agencies and the complexity of the way in which public land is owned, managed, and desig-
nated. Land parcels have primary designations that may not agree with secondary or local
designations. State agencies oftentimes have state-specific land use regulations that are also
specific to and differ between energy technologies. But in many of these studies—both aca-
demic and government mandated—-there appears to be a general mismatch between theory
and practice in environmental criteria assumptions. With the exception two studies11,12
which focus on ecological siting criteria and specifically on “disturbed” land, many studies
rely on legal “exclusion” areas—parcels of land for which there is a clear legal restriction
against energy development—and generally include areas that are likely risky for project
development, but can be achieved under mitigation arrangements. Moreover, notions of
“legal protection” against development are inconsistent, particularly between what studies
have considered legal exclusions and what government agency designations suggest are legal
protections. The U.S. Protected Areas Database (PAD-US) compiled by the U.S. Geological
Survey (USGS) assigns a “Gap Analysis Program” (GAP) Status code of 1-4, with Statuses
1 and 2 being areas with legal protection against permanent natural land cover disturbance
and meet the definition of “protected” by the International Union for Conservation of Na-
ture (IUCN) Thus, all Gap Status 1 or 2 land areas are also assigned an IUCN protection
category. Below are the official USGS definitions for Statuses 1-4:

Gap Status 1: An area having permanent protection from conversion of natural
land cover and a mandated management plan in operation to maintain a natural
state within which disturbance events (of natural type, frequency, intensity, and
legacy) are allowed to proceed without interference or are mimicked through
management.

Gap Status 2: An area having permanent protection from conversion of natural
land cover and a mandated management plan in operation to maintain a primarily
natural state, but which may receive uses or management practices that degrade
the quality of existing natural communities, including suppression of natural
disturbance.

Gap status 3: An area having permanent protection from conversion of natural
land cover for the majority of the area, but subject to extractive uses of either
a broad, low-intensity type (e.g. logging, OHV recreation) or localized intense
type (e.g. mining). It also confers protection to federally listed endangered and
threatened species throughout the area.
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Gap status 4: There are no know public or private institutional mandates or
legally recognized easements or deed restrictions held by the managing entity to
prevent conversion of natural habitat types to anthropogenic habitat types. The
area generally allows conversion to unnatural land cover throughout or manage-
ment intent is unknown.

There are land parcels that PAD-US has indicated as being Status 1 or 2, but are given
either “avoidance” or no classification in the WREZ and RETI studies. Two notable examples
of this are Areas of Critical Environmental Concern and non-California state forests, both
considered “avoidance” categories by the WREZ study, but have GAP statuses of 1 or 2.
Additionally, most private property owned by non-government organizations such as The
Nature Conservancy, do not have federal legal protections, but are assigned GAP statuses
of 1 or 2 because the property owners themselves manage those land parcels with the goal
of permanent protection. The inconsistency of assumptions and the regional specificity
of studies and available datasets is a challenge for producing future energy development
scenarios of larger geographic scope.

Annual electricity generation calculations

Wind:
Pavg = 1.91(

1

2
)pAbladeV

3
s,i)avg (A.1)

ew,s,i = 8760PavgECrP
−1
r aw,s,i (A.2)

Where Pavg = average power output of a turbine in Watts; p = air density (1.225 kg m-3

at 15 C and 1 atm), 1.91 is Rayleigh’s correction factor for average wind speeds; Ablade= swept
area of turbine blades in m2; vs,i = wind velocity in m s-1; ew,s,i= annual electricity generation
of wind zone i of scenario s; E=average efficiency factor (30%); Cr = rated installed capacity
per unit of land in MW km-2 , Pr = rated power per turbine in MW/turbine; and aw,s,i =
area of zone i in scenario s in km2 . All wind generation calculations assume a 1.5 MW
turbine with 70 m blade diameter. Additionally, because turbines are now designed at a hub
height of 80 m or higher, NREL wind speed data at 50 m hub height was extrapolated to 80
m using the 1/7 power rule of thumb, which states that the ratio of the unknown wind speed
to known wind speed is equal to the ratio of the two sub heights, raised to the one-seventh
power.

Solar PV
epv,s,i = 365IGHI,s,iCrapv,s,i(1− η) (A.3)

Where epv,s,i = annual electricity generation of each PV zone; IGHI,s,i = is the global
horizontal insolation (instant solar radiation) in kWh m-1d-1 of zone i in scenario s; Cr =
rated installed capacity per unit of land in MW km-2 (see Table 1); and apv,s,i= area of
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zone i in scenario s in km2; η= the re-rating factor (difference between rated and actual
performance). The de-rating factor used in this study is 20%. Though insolation is in units
of kWh m-1d-1, it represents the number of “peak sun” hours per day, assuming a PV input
rating and peak solar radiation of 1kW/m2.

CSP:
ecsp,s,i = 365IDNI,s,iCracsp,s,i(1− η) (A.4)

Where ecsp,s,i = annual electricity generation of each CSP zone; IDNI,s,i = is the direct
normal insolation in kWh m-1d-1 or the number of peak sun hours per day of zone i in
scenario s; Cr = rated installed capacity per unit of land in MW km-2 (see Table 1); and
acsp,s,i = area of zone i in scenario s in km2; η= the re-rating factor (10%). Note that
this calculation assumes a solar multiple (ratio of solar field to nominal capacity) typical of
CSP systems with no or little thermal storage, which is between 1-1.5. Even with greater
prevalence of thermal storage, the total electricity generated should be the same per unit of
land since the generator capacity will be smaller per unit of land due to the increasing solar
multiple. Installed capacity per unit of land should diminish as the solar multiple increases,
thus, while the capacity factor increases due to the solar multiple (thermal storage) for the
plant, the installed capacity decreases, meaning the energy generated per unit of land should
remain the same. The land use factor used in this study is derived from CSP systems in
place today with a generation weighted average solar multiple closer to 1.5 (SI Table S1) (see
Ong et al. 2013).13 While this calculation may underestimate the generation per project
by assuming a lower capacity-based land use factor, this may compensate for the energy
conversion losses involved in systems with more thermal storage and hence may still be an
appropriate simplification for future CSP generation.

Geothermal:
egeo,s,i = 8760Crageo,s,iCF (A.5)

Where egeo,s,i = annual electricity generation of each geothermal zone; Cr = rated installed
capacity per unit of land in MW km-2 (see Table 1); and ageo,s,i= area of zone i of scenario
s in km2; CF= average capacity factor (Williams et al. 2012).

Additional methods for transmission estimates

In order to estimate associated transmission land use of each development project, we gener-
ated a transmission cost surface indicating each grid cell’s difficulty or riskiness of obtaining
right-of-way for transmission lines (SI Figure S2B). This was accomplished by assigning a
“Null” classification to all physical exclusion areas and an environmental score of 3 or 4 to
other technical, socio-economic, and natural hazard zones (SI Table S2). This output was
then merged with a raster dataset of environmental transmission classification assignments
compiled in WECC’s ERTP report (SI Table S4), and all remaining non-classified, low-risk
parcels of land were assigned a score of 1.
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B.1 Methods: Estimation of capacity factors for PV,
CSP, and geothermal development zones.

Solar PV:
CF =

GHI

Imax
do (B.1)

Where GHI is the global horizontal insolation (average daily solar radiation) in kWh
m-2d-1. Imax is the peak insolation or 2400 kWh m-2d-1, assuming a PV input rating and
peak solar radiation of 1 kW m-2. The efficiency loss factor is d and the outage rate is o;
both are assumed to be 0.96 in this study.

CSP:
Assuming a no-storage system with a solar multiple of 1.3, we ran the National Renewable

Energy Laboratory’s System Advisor Model (SAM) generic CSP model for 22 locations in
central and southern California and plotted the DNI of each location against the estimated
CSP capacity factor (CF; Figure B.1). The logarithmic function that was fitted to the data
(eq B.2) was used to predict the CF of each CSP development zone resulting from the site
suitability models.

CF = 24.518log(DNI)− 18.326 (B.2)

We assumed no storage in this analysis due to the limitations of empirical studies quan-
tifying the land use factor (MW km-2) of existing CSP plants in the U.S. (Ong, Campbell,
Denholm, et al., 2013). Only one or two CSP plants with storage were quantified, compared
to more than a dozen CSP plants without storage. However, given that installed capac-
ity and capacity factor are roughly inversely proportional, the total electricity generated
of storage and no-storage system should be very similar per unit of land. This is because
generator capacity of storage systems will be smaller per unit of land due to the increasing
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Figure B.1: Capacity factor of generic CSP power plant vs. DNI.

solar multiple necessary for storage systems, but the capacity factor increases since storage
enables the generator to be used for many additional hours of the day.

Geothermal:
CF = 0.87

RQ

10
(B.3)

RQ is the resource quality of geothermal and is a unit-less measure of geothermal feasi-
bility that ranges from 1 to 10, where 10 represents the most feasible geothermal sites. 0.87
is the average capacity factor assumed for geothermal in Williams et al. (2012; Williams,
DeBenedictis, et al., 2012)

Electricity generation estimation:

et,z = CtazCFz,th (B.4)

The annual average electricity generation ez,t for zone z and technology t. Ct is the rated
installed capacity per unit of land or the land use factor in units of MW km-2 for technology
t. The land area of zone z in km2 is az, the capacity factor of zone z and technology t is
represented by CFz,t, and h is the number of hours in a year, or 8760.
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Table B.1: Data sources



APPENDIX B. APPENDIX FOR CHAPTER 3 118



APPENDIX B. APPENDIX FOR CHAPTER 3 119

Table B.2: Classification of environmental and ecological data into environmental exclusion
categories.

See legend below table for explanation of color scheme.
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Table B.3: GIS exclusion criteria and buffer distances to assess suitable sites.
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Table B.4: Wind potential (MW) within each Super CREZ under each Environmental Ex-
clusion Level
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Table B.5: Solar PV potential (MW) within each Super CREZ under each Environmental
Exclusion Level
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Table B.6: Solar CSP potential (MW) within each Super CREZ under each Environmental
Exclusion Level
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Table B.7: Geothermal potential (MW) within each Super CREZ under each Environmental
Exclusion Level
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Figure B.2: Location of Super Competitive Renewable Energy Zones (CREZ), counties, and
partial counties in California
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Figure B.3: Total water demand of each 2030 build-out scenario spatially disaggregated by
ground water basin
Household water equivalents is the annual water consumption of an average household in the U.S.,
or 146,000 gallons.
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Figure B.4: Histogram of water demand (in household water demand equivalents) for each
2030 RPS target under each environmental Exclusion Level
Household water equivalents is the annual water consumption of an average household in the U.S.,
or 146,000 gallons.
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C.1 Materials and Methods

Data inputs

A comprehensive zoning process requires various types of physical, environmental, economic,
and energy data in both specific spatial and non-spatial formats. We relied on a combination
of global or continental default spatial data (Table C.2) and country-provided datasets. The
former serve the purpose of filling in missing country data and provide spatial uniformity
for critical physical characteristics (e.g., elevation, wind speed). Country-specific datasets
ensure consistency with similar past and ongoing national efforts, and in some cases, greater
accuracy. We collected these data for 21 participating countries in the Eastern and Southern
Africa Power Pools through a combination of stakeholders and country contacts at govern-
ment agencies, utilities, and industries. The full zoning analysis could not be completed for
Libya and Djibouti (both part of the Eastern Africa Power Pool) because these countries
lacked requisite country-specific datasets (e.g., transmission infrastructure). As a result, we
examined the Southern Africa Power Pool in more detail for the site selection process, using
countries for which we could collect both transmission and demand data.

Data access Nearly all globally datasets in Table C.2 are freely available and downloadable
using the website links provided. LandScan (gridded global population density) and Vaisala’s
hourly wind data are the two exceptions, but data may be purchased by contacting the vendor
directly via the website links provided. A free and open source alternative to LandScan
is Worldpop (http://www.worldpop.org.uk/). Hourly demand data and transmission or
substation data were acquired for each country individually. Data availability and sources
are tabulated for each country in Appendix A of the MapRE report (Wu, Deshmukh, et al.,
2015) and Table C.5.
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Project opportunity area and zone criteria estimates

Human Footprint Score

The Human Footprint Score is a metric for degree of human influence in a defined land area,
and it is used in this study as a proxy for degree of human “disturbance” from natural, un-
altered states (Sanderson et al., 2002). We estimated this metric following Sanderson et al.
(2002) methods, using the following datasets that indicate the degree of human influence
and access: population density, land use/land cover, road and railway access, and surface
water (rivers and oceans). Datasets were coded into standardized scores ranging from 0
(least influenced) to 10 (most influenced) (Table C.4). We did not include the power infras-
tructure criteria in Sanderson et al. (2002), which relies on nighttime light visibility spatial
data. Assumptions about electric power infrastructure’s use as a proxy for population distri-
bution and correlation with human settlements is based on developed countries’ widespread
electricity availability, which is not the case for many parts of our study region.

We summed the scores for each dataset to create a Human Influence Index. These scores
were normalized within global terrestrial biomes (Olson et al., 2001), since absolute scores in
one ecoregion may have a different effect compared to scores in another ecoregion. Within
each ecoregion, the lowest Human Influence Index was assigned a Human Footprint Score
of 0 and the largest index value a human footprint score of 100. The resulting Human
Footprint Score represents the relative human influence within an ecoregion as a percentage
of the maximum value. For example, a score of 1 within the Central Zambezian Miombo
woodlands suggests that the area is the top 1% least disturbed or most wild area within
the ecoregion. Since we calculated the human footprint score for each 500 m grid cell, we
averaged the scores across every grid cell in each project opportunity area.

Capacity factor estimation

Solar PV To estimate solar PV capacity factors (rsolar), we extracted and spatially av-
eraged the resource quality (q) (solar irradiance W/m2) of each project opportunity area
for solar PV (Eq. C.1). Since land use factors that we applied are specified for MWac, we
further applied outage rates (ηo), and inverter and AC wiring efficiencies (ηι) to estimate
the capacity factor for solar PV (Table C.6). We assume an incident power density of 1000
W/m2 to produce an output at the rated capacity of the plant.

rsolar =
(1− ηo) (1− ηι) q

1000
(C.1)

Solar CSP Apart from the type of collector technology (parabolic trough, compact linear
Fresnel reflector or heliostat solar tower), the capacity-based land use factor (e.g., MW/km2)
of solar CSP depends on two interdependent variables: the solar multiple and thermal stor-
age. The design capacity of the solar CSP plant is based on the design output of the power
turbine block. The solar multiple is the ratio of the actual size of the power plant’s solar
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field to the size of the solar field that would be required to drive the turbine at its nominal
design capacity assuming standard solar irradiance of 1 kW/m2 at standard temperature and
pressure.

Thermal storage can significantly improve the capacity factor of the plant and its ability
to generate when the value of electricity is greatest, which is the greatest advantage of
thermal storage. Thermal storage can enable a CSP plant to store heat during high solar
insolation hours and generate electricity during the evening, night or other hours when the
sun is not shining. Power plants with thermal storage can have solar multiples of up to
3-5 (IRENA, 2013a). While such plants have a higher cost per MW due to the additional
thermal storage equipment and a larger solar field (i.e., higher solar multiple), they have
higher capacity factors compared to plants without thermal storage. CSP plants with no
storage are typically designed to have a solar multiple between 1.1 – 1.5 (IRENA, 2013a),
which is greater than 1 in order to generate electricity during the morning and evening hours
when insolation is lower than threshold requirements, at the expense of losing some excess
energy during the peak sun hours.

More thermal storage results in higher capacity factors (CF), but it reduces the land
use factor (MW/km2) due to the increasing solar multiple required. Given the near linear
trade-off between thermal storage and land use factor, the generation-based land use factor
(MWh/km2) should be invariant to thermal storage assumptions. Nonetheless, we estimate
CFs assuming both storage and no storage. Due to lack of empirical land use factor data for
thermal storage systems, we use average empirical land use factors for no-storage CSP plants
examined in the USA, which are more robust (as measured by number of data samples), and
applied the ratio of storage to no-storage solar multiples to estimate land use factors for CSP
plants with thermal storage (Table C.6) (Ong, Campbell, Denholm, et al., 2013).

Models of CSP power plant generation are complex and difficult to approximate using
only design calculations and average direct normal insolation (DNI) values. Instead, we used
the National Renewable Energy Laboratory’s System Advisory Model to simulate the CF
for 45 locations throughout the study region in Africa and five locations in California and
Arizona (in order to achieve greater representation of higher DNI regions) for two generic
CSP plants with the following assumptions: (1) no storage and a solar multiple of 1.2; (2)
6 hours of storage and a solar multiple of 2.1. Weather data for both U.S. and African
locations were available from the U.S. Department of Energy Simulation Software database,
a compilation of weather data from multiple sources (U.S. Department of Energy, n.d.).
We linearly regressed each location’s CF against its DNI, wind speed, temperature, and
latitude, and determined that DNI was the only statistically significant explanatory variable
for trends in CF. We plotted CF against DNI and chose to fit a logarithmic equation to
the data because of known increased efficiency losses at the higher end of the DNI range
(Figure C.6). We used these fitted equations (Figure C.6) to estimate the CF for the spatially
averaged DNI in each project opportunity area for both no-storage and 6-hr-storage CSP
power plant design assumptions.
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Wind The capacity factor of a wind turbine installation depends on the wind speed dis-
tribution at the wind turbine hub height, the air density at the location, and the power
curve of the turbine. We used spatially-averaged shape and scale parameters for the Weibull
distribution provided by 3Tier Inc. (now Vaisala Inc.) to generate a wind speed probability
distribution per 3.6 km grid cell (the resolution of 3Tier data).

Air density is inversely related to elevation and temperature. It decreases with increasing
elevation or temperature, and as a result, can significantly affect the power in the wind
for a particular wind speed regime. Wind turbine power curves provided by manufacturers
typically assume an air density of 1.225 kg/m3, which is the air density at sea level and 15oC.
An increase in elevation from sea level to 2500 m can result in 26% decrease in air density.
Changes in temperature produce a smaller yet significant effect on air density compared to
elevation. A temperature increase from 0oC to 25oC can result in a drop of 8% in air density.
To account for the effect of air density on power generation, we first estimated the air density
for each grid cell, and then applied power curves modified for different air densities to the
wind speed distributions.

For air density, we first estimated the pressure (p) for each grid cell from the elevation
and temperature of those grid cells (see Table C.2 for data sources), the air pressure at sea
level (po: 101325 Pa), the gravitational acceleration (g: 9.807 kg/m3), and the gas constant
(R: 287.04 J/kg-K) (Eq. C.2) (Gipe, 2004). We then estimated the air density (ρ) from the
estimated pressure (p), the gas constant and temperature of the grid cell (Eq. C.3).

p = ρ · e
−Zg
RT (C.2)

ρ =
p

RT
(C.3)

On-shore wind turbines are generally classified into three International Electrotechnical
Commission (IEC) classes depending on the wind speed regimes. We used normalized wind
curves for the three IEC classes developed by the National Renewable Energy Laboratory
(J. King, A. Clifton, and Hodge, 2014) (see Figure C.7), and scaled these to a 2000 kW rated
wind turbine. Adopting an approach similar to (R. Wiser et al., 2012), we assumed the IEC
Class III and II turbines to be viable in sites up to the reference wind speeds of 7.5 m/s
and 8.5 m/s respectively, as defined by the IEC. For sites with average wind speeds above
8.5 m/s, we assumed the IEC Class I turbine to be suitable. In reality, depending on the
site-specific gust, turbulence, and air density, IEC Class II and III turbines could be placed
at sites with higher average wind speeds than those assumed in our analysis, in order to
extract more energy from the wind (R. Wiser et al., 2012).

For each of the three turbine classes, we adjusted the power curves for a range of air
densities by scaling the wind speeds of the standard curves according to the International
Standard IEC 61400-12 (IEC, 1998; Svenningsen, 2010). In Equation C.4, vadj is the adjusted
wind speed, vstd is the wind speed from the standard power curve, ρstd is the standard air
density of 1.225 kg/m3, and ρadj is the estimated air density of the grid cell.
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vadj = vstd

(
ρstd
ρadj

)1/3

(C.4)

Since the resulting power curve (vadj, Pstd) is evaluated at the adjusted wind speed values,
vadj, we needed to interpolate the Padj at discrete wind speed values (vstd) in order to plot
the air-density-adjusted power curve (vstd, Padj) (Svenningsen, 2010). The resultant adjusted
power curves show that air density can significantly affect the wind turbine power curves,
and subsequently, the expected capacity factors at a site (Figure C.8).

To compute the capacity factor for each 3.6 km grid cell, we selected the appropriate
air-density-adjusted power curve given the average wind speed, which determines the IEC
class, and the air density, which determines the air-density adjustment within the IEC class.
For each grid cell, we then discretely computed the power output at each wind speed given
its probability (determined by the Weibull distribution parameters provided by 3Tier) and
summed the power output across all wind speeds within the turbine’s operational range to
calculate the mean wind power output in W (P ). The capacity factor (rwind) is simply the
ratio of the mean wind power output to the rated power output of the turbine (Pr or 2000
kW), accounting for any collection losses (ηa) and outages (ηo) (Eq. C.5).

rwind =
(1− ηa) · (1− ηo) · P

Pr
(C.5)

Levelized cost of electricity (LCOE) calculations

The LCOE is a metric that describes the average cost of electricity for every unit of electricity
generated over the lifetime of a project at the point of interconnection. Using the size
(km2) (ax) of the project opportunity area x and its associated land use factor (lt) for
technology t, land use discount factor (ft) for technology t, distance to nearest substation
(or transmission line; di,x) and road (dr,x) from area x, and economic parameters listed
in Table C.6, we calculated the generation, interconnection and road components of the
levelized cost of electricity (LCOE in USD/MWh). Note that the size (km2) of a project
opportunity area (a) and its associated land use factor (lt) and land use discount factor (ft)
cancel out in the LCOE equations, but are included for completeness to show the ratio of
cost to electricity generation (Eqs. C.6 - C.8).

Road LCOE was estimated using a fixed capital cost per km of additional road needed
to service the project, and is expressed per unit of electricity output from the project. Since
road capital costs do not scale according to installed capacity of a project, unlike generation
and interconnection costs which increase with each additional MW of capacity, the size of
a project opportunity area affects the road cost. That is, a POA within 10 km of existing
road infrastructure will have a higher road cost than another POA within the same distance
of the nearest road if it is comparatively smaller in land area. In order to allow road LCOEs
to vary only by each POA’s road connection distance and resource quality, we assumed 50
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MW of capacity per POA regardless of size (Eq. C.8). We assumed that one road will be
built for every 50 MW capacity project, which is a reasonable size for a utility-scale project,
and roughly equal to the potential capacity of a project opportunity area.

Total LCOE is simply the sum of the generation, interconnection, and road cost compo-
nents. We prioritize distance to nearest substation in estimating transmission LCOE when
high quality spatial data for substations were available, but we also estimated transmission
LCOE costs based on distance to the nearest transmission line. Refer to Table C.6 for values
used in LCOE calculations.

LCOEgeneration,t,x =
axlt (1− ft) (cg,ticr + of,g,t)

8760 · axlt (1− ft) rt,x
+ ov,g,t (C.6)

LCOEinterconnection,t,x =
axlt (1− ft) (di,x (ciicr + of,i,t) + csicr)

8760 · axlt (1− ft) rt,x
(C.7)

LCOEroad,t,x =
dr,x (cricr + of,r)

8760 · rt,x · 50MW
(C.8)

Where cg,t is the capital cost of generation for technology t; ci is the capital cost of
interconnection (i); cs is the capital cost of substation (s); cr is the capital cost of road; rt,x is
the capacity factor of technology t and area x; of,g,t is the fixed operations and maintenance
cost of generation for technology t; of,i,t is the fixed operations and maintenance cost of
interconnection (i) for technology t; ov,g,t is the variable (v) operations and maintenance
cost of generation (g) for technology t; ov,i,t is the variable (v) operations and maintenance
cost of interconnection (i) for technology t; of,r is the fixed (f) operations and maintenance
cost of roads (r). The capital recovery factor (icr) converts a present value to a uniform
stream of annualized values given a discount rate and the number of interest periods (Eqn.
C.9). We have assumed a real discount rate (i) of 10% that reflects the high cost of capital
in Africa. n is the number of years in the lifetime of a power plant.

icr =
i (1 + i)n

(1 + i)n − 1
(C.9)

Although LCOE assumptions were selected to be as representative of current conditions
and costs, these LCOE estimates are best used to compare costs within a single technology
since LCOE values may be higher or lower than others reported in the literature given the
dynamic nature of the industry. Further, the discount rate can significantly affect the LCOE,
and can vary across countries.

System integration costs or balancing costs are not included in LCOE estimates. These
can vary across countries based on their electricity generation mix. For example, hydro
capacity with storage is considered more flexible than coal power plants that typically incur
a higher penalty for cycling in order to balance both variable renewable energy and load (net
load).
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The LCOE does not account for differences in the value of electricity generated by dif-
ferent technologies in a particular location. Generation at different times of the day or year
have different economic value depending on the demand and the available generation at that
time.

LCOE estimates are based on present existing and planned transmission and road infras-
tructure. In this study, we did not value a project opportunity area sequentially based on
the utilization of infrastructure that may be built earlier for another nearby planned project.

Wind build-out scenario analysis

Input load and wind generation data

We created load profiles for the year 2030 (d2030,t) using the projected annual demand in 2030
(Eastern Africa Power Pool et al., 2011; Southern Africa Power Pool and Nexant, 2007) by
multiplying the load in each hour t (d2013,t) by the ratio of the 2030 annual load (D2030; Table
C.7) to the 2013 annual load (Eq. C.10). This simple load projection technique assumes that
load profile shapes will remain the same between 2013 and 2030, with an equal proportional
increase in energy demand across all hours. See section C.1 for methods used to conduct a
sensitivity analysis of load profiles.

d2030,t = d2013,t
D2030∑T
t=1 d2013,t

(C.10)

For the Southern Africa Power Pool (SAPP) countries, we procured mesoscale modeled
hourly wind generation profiles for each of 233 wind locations, selected within zone extents
based on resource abundance, resource quality, representation across countries, and spatial
representation within a country. Using these profiles, we created hourly capacity factor (cz,t)
profiles for all 738 wind zones in the SAPP by adjusting the hourly wind capacity factor
(cm,t) of the mesoscale modeled profile using the ratio of zones’ (cz) and modeled (cm) pro-
files’ annual average capacity factors (Eq. C.11). We matched each zone to the nearest
location for which we acquired mesoscale modeled wind profiles.

cz,t = cm,t
cz
cm

(C.11)

Min-net-demand site selection approach

To select wind zones and the amount of capacity to install in each zone (xz), we minimized
the maximum hourly net demand, or the difference between the hourly load and the hourly
wind generation (Eq. C.12). This hourly net demand is the amount of energy non-wind
generators would need to supply each hour. Therefore, the maximum hourly net demand
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within a year is the amount of non-wind installed capacity that must be available to ensure
that demand is met across all hours of the year. The objective function (Eq. C.12) was
minimized subject to installing a specified amount of wind capacity across the region or
country (Eq. C.13) (Table C.7) and selecting no more than the available potential capacity
of each zone (Eq. C.15). We used the projected 2030 demand (Table C.7) to calculate the
target wind capacity (i), assuming wind will generate 30% of total annual electricity demand
and have an average capacity factor of 30%. The resulting target installed capacity (i) of 61
GW across all of SAPP was consistent across scenarios.

The integer optimization problem was programmed in Python using the Pyomo module
and solved using IBM CPLEX. We used this optimal wind site selection method for the
following four scenarios: 30% wind penetration for each country in SAPP using only domestic
wind zones (Isolated scenario), and 30% wind penetration across the entire SAPP region
(Interconnected scenario), and the Isolated and Interconnected scenarios using only the top
50% of zones across three selection criteria (see the results section of the main text).

Linear optimization

Indicies
z Zone identifier ∈ {z...Z}
t Hour ∈ {1, ..., 8760}

Variables
xz Capacity to install (MW) in zone z

Parameters
cz,t Capacity factor of zone z hour t
d2030,t Electricity demand (MWh) of hour t in year 2030
pz Potential installed capacity (MW) of zone z
i Target capacity (MW)

Objective function
Minimize

max(d2030,t −
Z∑
z=1

cz,txz) (C.12)

Constraints
Subject to
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Z∑
z=1

xz = i (C.13)

xz ≥ 0 ∀z ∈ {z, ..., Z} (C.14)

xz ≤ pz ∀z ∈ {z, ..., Z} (C.15)

Scenario comparisons

Peak net demand calculations. Typically, conventional generation capacity is sized to
meet demand. Because wind power plants are “must-run” generators, conventional genera-
tion capacity is instead sized to meet the net demand, or the difference between the demand
and amount of wind generation in each hour. Therefore, to meet demand in all hours,
conventional generation capacity must equal the annual peak net demand. For the Inter-
connected scenario, the conventional generation capacity is simply the coincident peak net
demand,Wc (Eq. C.17), or the peak net demand calculated by adding the net demand across
all countries for each hour. For the Isolated scenarios, both coincident and non-coincident
peak net demand were calculated (Eq. C.16, Eq. C.17). Non-coincident net demand, Wnc,
represents the total amount of conventional capacity across the SAPP needed if each country
met its net demand separately (C.16). Non-coincident net demand is always greater than or
equal to the coincident net demand. The difference between these two values represents the
avoided conventional capacity due to interconnection alone, as opposed to the balancing of
wind variability through optimal site selection. This value is represented by the gray bars
(“Avoided capacity due to coincident net demand”) in Fig. 3B in the main text. Therefore,
the coincident peak net demand represents the conventional capacity needed to balance the
net demand due to the wind profile variability.

Wnc =
Y∑
y=1

[max(wy,t) ∀y ∈ {y...Y }] (C.16)

Wc = max[
Y∑
y=1

wy,t ∀t ∈ {1...8760}] (C.17)

where

wy,t = dy,2030,t −
Z∑
z=1

cy,z,txy,z (C.18)

y country ∈ {y...Y }
wy,t net demand of country y for hour t
Wnc non-coincident peak net demand across all countries in the SAPP
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Wc coincident peak net demand across all countries in the SAPP
xy,z Capacity installed (MW) in zone z in country y
cy,z,t Capacity factor of zone z hour t in country y
dy,2030,t Electricity demand (MWh) of hour t in year 2030 for country y

Cost difference calculations. To compare approximate system costs, we monetized dif-
ferences in (1) energy needs and (2) conventional capacity needs between scenarios. For
(1), we assumed that any additional energy needs would be generated using hydropower
or coal technologies, using the marginal cost of electricity (Table C.8). Because additional
energy is needed in the min-net-demand scenarios and its supply curve shows that the extra
energy needed is during low-net-demand or baseload hours (Fig. 3C in the main text), it
is more likely that coal or hydropower, rather than natural gas, will be used to supply the
extra energy required. For (2), we assumed that any extra conventional capacity needed
could be met using natural gas combustion turbine (CT), hydropower, or coal (see Table C.8
for cost inputs). We use the non-coincident net peak demand (see Eq. C.16) to represent
the needed conventional capacity. We represent cost additions or savings relative to the
amortized annual capital cost of wind power, which is consistent across scenarios.

Inteconnection cost estimates. A bottom-up estimate of interconnection infrastructure
costs rely on knowing the lengths and voltages of new lines. A high resolution spatio-temporal
‘capacity-expansion’ model of the power pool’s entire power system (current and future gen-
erators, their locations, and current and future transmission availability and capacity) would
be needed to generate such estimates. To approximate these interconnection infrastructure
costs given the lack of access to data needed to build a power systems model, we use a
top-down approach that relies on the interconnection costs reported for energy trade within
the SAPP. Using the MWh of energy traded in the SAPP and the revenue from wheeling
charges reported in the SAPP annual reports (http://www.sapp.co.zw/areports.html),
we calculated the wheeling cost per MWh. These wheeling costs are $2.46/MWh for 2014 -
2015, $2.31/MWh for 2012-2013, and $2.62/MWh for 2011 - 2012. (Southern Africa Power
Pool, 2014; Southern Africa Power Pool, 2015). Wheeling is the transport of electricity from
within a grid to serve demand outside of the grid. One of the central reasons for wheeling
charges is to recover the capital and maintenance costs of transmission infrastructure. For
each Interconnected wind build-out scenario, we calculated the net energy traded in the
SAPP by summing the difference between wind electricity generated under the Isolated and
the Interconnected scenarios for each country and halving the total amount. We applied the
range of wheeling fees charged by the SAPP ($2.31/MWh - $2.62/MWh) to calculate the
wheeling charges per scenario. We then represented the wheeling charges as percentage of
the amortized annual capital cost of wind power in order to compare interconnection costs
with conventional energy and conventional capacity cost differences (see section C.1 above).

http://www.sapp.co.zw/areports.html


APPENDIX C. APPENDIX FOR CHAPTER 4 141

Load profile sensitivity analysis

We created four load growth scenarios that maintain the same level of energy consumption
but differ in the load profile shapes. See Fig. C.10 for each scenario’s hourly load profiles
averaged across each month and Fig. C.11 for the load duration curve across an entire year
for all four scenarios. A load duration curve is the load for each hour sorted from highest to
lowest. We modified each country’s load profiles separately and aggregated them to create
the Southern Africa Power Pool-wide load profile. The scenarios are as follows:

• “Climate – warming”: relative to baseline, peak summertime (November through March)
demand increases by 5% and wintertime (May through September) demand decreases
by an appropriate amount to maintain the same level of energy across the year. For
most SAPP countries, the annual peak demand occurs in the winter, during the months
of July or August, due to heating demand and other appliance usage. Previous studies
have shown that load in South Africa is extremely sensitive to climate (Chikobvu and
Sigauke, 2013), and under likely climate change scenarios, wintertime and summertime
temperatures are expected to increase (Niang et al., 2014; Department of Environ-
mental Affairs, South African National Biodiversity Institute, and GIZ, 2013). This
scenario represents greater air conditioning load increase in response to rising summer
temperatures under climate change. According to Eskom, South Africa’s largest util-
ity, air conditioning load is fairly uniformly across all day-time hours and some early
evening hours. Therefore, we uniformly increased summertime load from 10:00 to 22:00
from November to March. These modifications create monthly hourly average profiles
that have similar daily peak demand across the year (see Fig. C.10d) and reduce the
annual peak demand (see Fig. C.11). Tanzania’s and Mozambique’s load profiles were
not altered in this scenario because their load profiles do not show a seasonal pattern,
unlike that of the remaining seven SAPP countries.

• “Climate – extreme warming”: relative to baseline, peak summertime demand increases
by 8% and wintertime demand decreases by an appropriate amount to maintain the
same level of energy across the year. Like the “Climate - warming” scenario, this
scenario also anticipates strong summertime warming and increased AC load. The
greater increase in summertime load inverts the current, baseline seasonal trend of
annual peak load occurring in the wintertime for most SAPP countries (Fig C.10a) to
one that shows annual peak demand occurring in the summer (Fig C.10e). This has
the effect of slightly reducing the annual peak demand relative to baseline, but not as
significantly as in the “Climate - warming” scenario (Fig. C.11).

• “South Africa - hybrid”: the daily hourly profiles averaged across a month for each
country are combined with that of South Africa’s using 50%-50% weighted averaging.
This scenario represents economic structural growth in load curves to resemble that
of South Africa’s (Fig. C.10c and C.11). Although the monthly average hourly load
profiles and the load duration curve do not appear to differ from that of the baseline
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scenario, this is primarily because South Africa contributes 85% of the demand in the
SAPP. Differences in load profiles at the country-level are more discernible.

• “Daily peak increase”: Increase in daily peak hours by 5-7% across all days of the year
(Fig. C.10b). This scenario represents increased electrification leading to increased
load from appliance ownership and usage. It also represents reduced curtailment, as
load shedding typically occurs during both summer and wintertime peak hours, de-
spite summertime peak demand being less than wintertime peak demand. According
to Eskom, this is because less capacity is available in the summer due scheduled main-
tenance. This scenario effectively increases the annual peak demand (Fig. C.11).

Each of the future load growth scenarios were generated by modifying each monthly
average hourly demand profile. This was done by calculating the difference between each
hour’s demand and the unmodified monthly average for that hour and then adding this
difference to the growth scenario’s generated monthly average for that hour.
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C.2 Supporting figures and tables

Figures and Tables for results

Figure C.1: Technology supply curves for the Eastern (A) and Southern (B) Africa Power
Pools.
For each technology, each supply curve shows all project opportunity areas and those that meet
the top 10% - 50% of siting criteria values (shortest distance to transmission infrastructure,
shortest distance to load center, and greatest human footprint score). The black vertical lines
show 25% of the projected demand in 2030 (Eastern Africa Power Pool et al., 2011; Southern
Africa Power Pool and Nexant, 2007). Supply curves show whether it is possible to achieve a
particular generation target in each power pool under particular levels of siting criteria constraints
and at what marginal total levelized cost of electricity.
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Figure C.2: Distribution of hourly ramp rates for the Interconnected wind build-out scenar-
ios.
Ramp rates were calculated by taking the inter-hourly differences in net demand. They
indicate the amount of energy that conventional generators need to produce or reduce
hour-to-hour to balance the variability of wind generation. Given the range of ramp rates
of conventional generators (2%/min for coal, 5% for combined cycle, and 8.3% for gas
turbine (Veatch and NREL, 2012), 100% of available up-ramp capacity can be dispatched
within an hour. If day-ahead scheduling commits enough capacity to meet the forecasted
daily peak demand, there will be sufficient capacity to ramp up, regardless of the ramp
requirement calculated for each scenario. However, a wider distribution of ramp rates
indicates the need for more conventional generation flexibility and cycling, increasing the
rate of wear-and-tear on conventional generators and increasing the system costs due to a
higher demand for flexibility services.
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Figure C.3: Distribution of installed wind capacity among countries in the SAPP using
the baseline load profile and four future load growth profiles for “Interconnected, min-net-
demand, all zones” (a) and “Interconnected, min-net-demand, top 50% ” scenarios (b).
Figure C.10 and C.11 and section C.1 for descriptions of future load growth profiles.
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Figure C.4: Conventional installed capacity needed to meet the highest hourly net demand
within a year using baseline load profiles and four load growth projections for “all zones” (a)
and the “top 50%” of zones (b).
Note that the range of the y-axis does not begin at zero in order to highlight the differences
between scenarios. See Figures C.10 and C.11 for details on the load growth scenarios.
“mnd” = “min-net-demand” and “ml” = “min-LCOE”.
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Table C.1: Transmission costs for “Interconnected” wind build-out scenarios

Scenario Annual
wheeling
fees (Mil-
lion USD)

Wheeling fees
as percentage
of annual wind
capital costs

Fraction
of wind
energy
traded

Net energy
traded
(TWh)

Min-net-demand, all zones 210 - 240 1.6 - 1.8% 40.4% 91
Min-net-demand, top 50% zones 140 - 160 1.0 - 1.2% 28.2% 60
Min-LCOE, all zones 52 - 59 0.40 - 0.44% 9.1% 23
Min-LCOE, top 50% zones 42 - 48 0.32 - 0.36% 8.2% 18
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Figures and tables for methods

Figure C.5: The MapRE zoning methodology flow chart.
The chart shows the stages of analysis and the required inputs. Interactive PDF maps and
zone ranking tool outputs are available on http://mapre.lbl.gov.

http://mapre.lbl.gov
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Figure C.6: Relationship between capacity factor, land use factor, and Direct Normal Inso-
lation (DNI) for CSP.
Capacity factors were simulated using specifications for a generic CSP plant in the National
Renewable Energy Laboratory’s System Adviser Model for 45 locations throughout the study
region in Africa and five locations in California and Arizona, USA. Logarithmic equations were fit
to the simulated capacity factor data to statistically model the relationship between capacity
factor and DNI. Land use factors (MW/km2) on the secondary axis were estimated for each
location’s capacity factor assuming an installed capacity land use efficiency of 30 MW/km2 for no
storage and 17 MW/ km2 for 6 hours of storage.
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Figure C.7: Normalized wind turbine power curves for different IEC class turbines repro-
duced from (J. King, A. Clifton, and Hodge, 2014).

Figure C.8: Adjusted IEC Class II turbine wind power curves for air densities ranging from
1.275 kg/m3 to 0.775 kg/m3 (from left to right, respectively).
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(a) (b)

Figure C.9: Relationship between average wind speed and estimated capacity factor (A) and
levelized cost of energy for wind (B) across the Eastern and Southern Africa Power Pools.
Capacity factors and LCOEs estimated using the wind-speed-appropriate Class I, II and III
turbine power curves are represented by red, blue and green points respectively. Capacity
factors and LCOEs estimated using just the Class II turbine power curve are also represented
by grey points across the wind speed regimes.
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Figure C.10: Unmodified monthly mean daily load profiles of the Southern Africa Power
Pool (A) and modified load profiles under the following growth scenarios.
Plots show the following modifications: (B) increase in the daily peak hours, (C) 50% structural
shift in individual country load shapes to resemble South Africa’s, (D) climate warming that
increases peak summertime demand by 5%, (E) climate warming that increases peak summertime
demand by 8%. The total demand is the same across load growth scenarios. The y-axis of all load
curves have the same scale.
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Figure C.11: Annual load duration curves for the Southern Africa Power Pool under various
load growth scenarios.
A load duration curve is the load for each hour sorted from highest to lowest. “Daily peak
increase” shows greater growth in the daily peak hours, “South Africa - hybrid” shows a
50% structural shift in individual country load shapes to resemble South Africa’s, “Climate -
warming” shows increases in peak summertime demand by 5%, “Climate- extreme warming”
shows increases in peak summertime demand by 8% in countries that have seasonally varying
load profiles. The total demand is the same across load growth scenarios.
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Table C.3: Adjusted resource quality thresholds for each country.

Country Wind
W/m2

Solar
PV GHI
W/m2

Solar
CSP DNI
W/m2

Eleva-
tion

Slope Popula-
tion

LULC

Angola 200
(lower)1

250 (PP)2 280 (PP)

Botswana 200 (lower) 250 (PP) 280 (PP)
Burundi 200 (lower) 230 (lower) 260 (lower) 2500 m 20%

(wind
and solar)

200 per-
sons per
km2

Include
“Tree
Open”
category

DRC 200 (lower) 210 (PP) 260 (lower) 2500 m
Djibouti 300 (PP) 250 (PP) 260 (lower)
Egypt 200 (lower) 230 (lower) 270 (lower)
Ethiopia 200 (lower) 250 (PP) 280 (PP) 3000 m
Kenya 250 (lower) 250 (PP) 270 (lower) 2500 m
Lesotho 200 (lower) 250 (PP) 280 (PP) 2500 m
Libya 300 (PP) 250 (PP) 280 (PP)
Malawi 200 (lower) 240 (PP) 260 (lower) 2500 m
Mozambique 200 (lower) 230 (PP) 260 (lower)
Namibia 200 (lower) 250 (PP) 280 (PP)
Rwanda 200 (lower) 230 (lower) 260 (lower) 2500 m 10%

(wind)
200 per-
sons per
km2

Include
“Tree
Open”
and
“Mixed
Cropland”
categories

South Africa 300 (PP) 250 (PP) 280 (PP) 2000 m
Sudan 250 (lower) 250 (PP) 280 (PP)
Swaziland 250 (lower) 210 (lower) 260 (lower)
Tanzania 250 (lower) 250 (PP) 280 (PP) 2000 m
Uganda 200 (lower) 250 (PP) 260 (lower) 2500 m
Zambia 200 (lower) 250 (PP) 260 (PP) 2000 m
Zimbabwe 200 (lower) 250 (PP) 280 (PP)

1Threshold that is lower than the Power-Pool-wide (PP) resource threshold indicated in Table C.2
2Power-Pool-wide (PP) threshold values
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Table C.4: Human Influence Index scoring system for Human Footprint datasets

Dataset Scoring system
Population density Score increased linearly from 0 to 10 persons/km2; all densities

greater than 10 were assigned a score of 10.
Land use land cover 10 – built environments, 9 – cropland and paddy fields, 7 – crop-

land/mosaic vegetation, 0 – for all other land use land cover cate-
gories

Roads and railways Areas within 1 km of roads and railways were assigned a score of
10, and those areas between 1 and 15 km assigned a score of 4.

Oceans and rivers Areas within 1 km of rivers or the ocean oceans were assigned a
score of 10, and those areas between 1 and 15 km assigned a score
of 4.

Table C.5: Transmission and substation spatial data availability and sources

Country Default transmission dataCountry-specific substations Country-specific transmission lines
Angola AICD3 N/A N/A
Botswana AICD Botswana Power Corporation N/A
Burundi AICD N/A N/A
Djibouti N/A N/A N/A
DRC AICD N/A N/A
Egypt CBI4 N/A N/A
Ethiopia AICD N/A N/A
Kenya AICD KETRACO KETRACO
Lesotho AICD N/A N/A
Libya N/A N/A N/A
Malawi AICD ESCOM ESCOM
Mozambique AICD Ministry of Energy N/A
Namibia AICD NamPower NamPower
Rwanda AICD REDC REDC
South Africa AICD Eskom Eskom
South SudanCBI N/A N/A
Sudan CBI N/A N/A
Swaziland AICD Swaziland Electricity Company (SEC) Swaziland Electricity Company (SEC)
Tanzania AICD N/A TANESCO (partially complete)
Uganda AICD UNEP UNEP
Zambia AICD ZESCO N/A
Zimbabwe AICD ZETDC N/A

3Africa Infrastructure Country Diagnostic, an African Development Bank Initiative
4Cross Border Information and African Energy, 2015. African Energy Atlas 2015. http://www.africa-

energy.com/african-energy-atlas
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Table C.6: Parameters in levelized cost of electricity estimates

Parameters Wind Solar
PV

Solar
CSP
No-
storage

6 hr
storage

Land use factor [MW/km2](l) 91 302 302 173

Land use discount factor (f) 75% 90% 90%
Costs Class

I
Class
II

Class
III

No-
storage

6 hr
storage

Generation – capital [USD/kW] (cg) 12504 14504 17004 20004 37005 74005

Generation – fixed O&M [USD/MW/y]
(of,g)

600004 500004 500004

Generation – variable O&M [USD/MWh]
(ov,g)

- 49 -

Transmission – capital [USD/MW/km] (ci) 9906 9906 9906

Transmission – fixed O&M [USD/km] (of,i) - - -
Substation – capital [USD / 2 substations

(new transmission)] (cs)
710006 710006 710006

Road – capital [USD/km] (cr)
4070007 4070007

4070007

Road – fixed O&M [USD/km] (of,r) - - -
Economic discount rate (i) 10%8 10%8 10%8

Outage rate (ho) 2%9 4%9 4%9

Inverter efficiency and AC wiring loss (hi) - 4%8 -
Array and collection loss (ha) 15%10 - -
Lifetime [years] (n) 258 258 258

1 Mean of U.S. empirical values (3 MW/km2) (Ong, Campbell, and Heath, 2012) and theoretical land use factors (Black
& Veatch Corp. and RETI Coordinating Committee, 2009)
2 (Ong, Campbell, and Heath, 2012)
3 Estimated from no-storage land use factor by multiplying by the ratio of no-storage to 6-hr-storage solar multiples (2.1/1.2)
4 For Class II turbine: (Veatch and NREL, 2012). See (Institute, 2011) for decrease in Class I turbine cost, and (Lantz, Ryan
Wiser, and Hand, 2012; R. Wiser et al., 2012) for increase in Class III turbine costs, relative to Class I turbine costs.
5 (IRENA, 2013a)
6 (Veatch and NREL, 2012)
7 (Africon, 2008)
8 (IRENA, 2013b)
9 Default value in the System Advisor Model (SAM) by NREL
10 (Tegen et al., 2013)
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Table C.7: Projected 2030 electricity demand

Country 2030 Demand
(GWh)

Peak demand
(MW)

Wind capacity
to install by
2030 to meet
30% RPS
(MW)5

Angola 20294 - N/A 6

Botswana 7730 578 882
Burundi 622 - N/A
Democratic Republic Of Congo 21225 - N/A
Djibouti 764 - N/A
Egypt 455525 - N/A
Ethiopia 21363 - N/A
Kenya 20646 - N/A
Lesotho 1309 - N/A
Libya 5420 - N/A
Malawi 3667 475.9 419
Mozambique 8840 761 1009
Namibia 5420 546 619
Rwanda 788 - N/A
South Africa 453069 35360 51720
Sudan 58754 - N/A
Swaziland 1952 223 223
Tanzania 10923 898.79 1247
Uganda 9313 - N/A
Zambia 18003 1794.6 2055
Zimbabwe 25153 1621 2871

5Renewable Portfolio Standard, or a target amount of renewable energy
6N/A: Optimal wind site selection was not performed for this country
7All natural gas values are from (U.S. Energy Information Administration, 2016).
8All coal cost values are (U.S. Energy Information Administration, 2016).
9Costs used to calculate annual amortized cost of wind capacity assume Class II turbine using values from

Table C.6
10From (Taylor et al., 2015) (Figure 7.3, pg 118). This value is the average capital cost of African hydropower

plants.
11U.S. Energy Information Administration, 2016
12(U.S. Energy Information Administration, 2016)
13Calculated using the above fuel inputs
14(U.S. Energy Information Administration, 2016)
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Table C.8: Cost inputs for comparing wind build-out scenarios

Natural gas
combustion
turbine (CT)7

Scrubbed
Coal8 Hydropower Wind9

Capital cost ($/MW) 922,000 2,726,000 1,500,000 10 1450000
Fixed O&M ($/MW-yr) 5,260 31,160 15,150 11 60000
Variable O&M $/MWh 15.44 5 5 12 -
Heating value (BTU/lb) - 10000 - -
Fuel cost ($/MMBTU or $/MT) - 50 - -
Heat rate BTU/kWh - 8800 - -
Aux Consumption (%) - 10 - -
Discount rate (%) 10 10 10 10
Plant lifetime (yrs) 25 25 25 25
Marginal cost of generation
($/MWh) - 23.2 13 5 14 -
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Appendix D

Appendix for Chapter 5

D.1 Additional Figures
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Figure D.1: Annual average percent loss of 1984 forest cover for control and treatment values

Plots show the annual average percent loss of 1984 forest cover for DAPSm and MD matched
controls. Note the treatment averages are the same between panels.

D.2 Additional Tables
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(a) (b)

(c) (d)

Figure D.2: Three-year Landsat composites of the Coaracy Nunes Dam

Composite correspond to the following median years: 1987 (a), 1991 (b), 2001 (c), 2016 (d).
Composite quality is extremely poor in the earlier decades due to heavy cloud cover and
contamination. Note the emerging deforestation patterns north of the dam visible in the 2000s.
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Table D.1: First differences regression summary for Landsat estimated perfect loss of 1984
forest cover with and without a lagged dependent variable

Dependent variable:

Percent loss of 1984 forest cover
DAPSm MD DAPSm MD

(1) (2) (3) (4)

treatment_time 0.013∗∗∗
(0.005)

0.012∗∗∗
(0.005)

0.016∗∗∗
(0.005)

0.015∗∗∗
(0.005)

lag(percent1984ForestLost_50km_R,
1:2)1

0.216∗∗∗
(0.055)

0.210∗∗∗
(0.054)

lag(percent1984ForestLost_50km_R,
1:2)2

0.025
(0.041)

0.020
(0.028)

time_trend 0.005∗
(0.003)

0.006∗∗
(0.003)

0.001
(0.003)

0.001
(0.003)

treatment_time:CapacityMW −0.00000
(0.00000)

−0.00000∗∗
(0.00000)

−0.00000
(0.00000)

−0.00000∗∗∗
(0.00000)

time_trend:DistProtArea_km 0.0001∗∗∗
(0.00003)

0.0001∗∗∗
(0.00003)

0.0001∗
(0.00004)

0.0001∗
(0.00004)

time_trend:existingDam_dist_km 0.00000
(0.00001)

0.00000
(0.00001)

0.00001
(0.00001)

0.00001
(0.00001)

time_trend:city_dist_km 0.00000
(0.00000)

−0.00000
(0.00000)

0.00001
(0.00000)

0.00001
(0.00000)

Observations 1,579 1,704 1,460 1,579
R2 0.002 0.003 0.034 0.029
Adjusted R2 −0.001 −0.0004 0.029 0.025
F Statistic −4.059 −3.857 4.225∗∗∗ 3.384∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D.2: First differences regression summary for percent of agricultural land with and
without a lagged dependent variable

Dependent variable:

Percent of agricultural land
DAPSm MD Opt PS DAPSm MD Opt PS

(1) (2) (3) (4) (5) (6)

treatment_time 0.003
(0.002)

0.004∗∗
(0.002)

0.004∗∗
(0.002)

0.001
(0.001)

0.001
(0.001)

0.001
(0.001)

lag(percent_nonForested, 1:2)1 0.803∗∗∗
(0.038)

0.811∗∗∗
(0.045)

0.801∗∗∗
(0.041)

lag(percent_nonForested, 1:2)2 0.053
(0.034)

0.046
(0.036)

0.052
(0.033)

time_trend:DistProtArea_km 0.0001∗∗∗
(0.00003)

0.0001∗∗∗
(0.00003)

0.0001∗∗∗
(0.00002)

0.00002∗∗∗
(0.00001)

0.00001∗∗∗
(0.00001)

0.00002∗∗∗
(0.00001)

treatment_time:CapacityMW −0.00000
(0.00000)

−0.00000
(0.00000)

−0.00000
(0.00000)

−0.00000∗∗
(0.00000)

−0.00000∗∗
(0.00000)

−0.00000∗
(0.00000)

time_trend:existingDam_dist_km0.00001
(0.00000)

0.00000
(0.00000)

−0.00000
(0.00000)

0.00000
(0.00000)

0.00000
(0.00000)

−0.00000
(0.00000)

time_trend:city_dist_km 0.00001∗∗∗
(0.00000)

0.00001∗∗
(0.00000)

0.00000∗∗∗
(0.00000)

0.00000∗∗∗
(0.00000)

0.00000∗∗∗
(0.00000)

0.00000∗∗∗
(0.00000)

Observations 855 870 870 741 754 754
R2 0.178 0.199 0.312 0.757 0.756 0.779
Adjusted R2 0.174 0.195 0.309 0.755 0.754 0.777
F Statistic 30.543∗∗∗ 29.510∗∗∗ 80.223∗∗∗ 379.956∗∗∗382.724∗∗∗435.185∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D.3: Generalized Method of Moments (GMM) regression summary using both percent
of forest loss and agricultural land as dependent variables

Dependent variable:

Percent loss of 1984 forest cover Percent of agricultural land
DAPSm MD MD Opt PS

(1) (2) (3) (4)

lag(percent1984ForestLost_50km_R,
1:2)1

1.025∗∗∗
(0.043)

1.005∗∗∗
(0.043)

lag(percent1984ForestLost_50km_R,
1:2)2

−0.080∗
(0.044)

−0.061
(0.040)

lag(percent_nonForested, 1:2)1 1.376∗∗∗
(0.069)

1.306∗∗∗
(0.081)

lag(percent_nonForested, 1:2)2 −0.396∗∗∗
(0.071)

−0.317∗∗∗
(0.087)

lag(treatment_time, 0:1)0 0.016∗∗∗
(0.006)

0.013∗∗
(0.005)

0.001
(0.001)

0.0003
(0.001)

lag(treatment_time, 0:1)1 −0.011∗
(0.006)

−0.011∗∗
(0.005)

−0.0002
(0.001)

−0.0001
(0.001)

Observations 52 56 58 58

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D.4: Fixed effects regression summary for Landsat estimated percent loss of 1984 forest
cover at different buffer distances from the treatment or control site for DAPSm matched
controls

Dependent variable:

Percent loss of 1984 forest cover
10 km 20 km 30 km 40 km 50 km

(1) (2) (3) (4) (5)

treatment_time 0.059∗∗
(0.026)

0.072∗∗∗
(0.027)

0.074∗∗∗
(0.027)

0.067∗∗
(0.027)

0.055∗∗∗
(0.020)

time_trend:DistProtArea_km 0.0001∗∗∗
(0.00004)

0.0001∗∗∗
(0.00004)

0.0001∗∗∗
(0.00003)

0.0001∗∗∗
(0.00004)

0.0001∗∗∗
(0.00003)

treatment_time:CapacityMW 0.00001
(0.00001)

0.00000
(0.00001)

0.00000
(0.00001)

0.00000
(0.00001)

−0.00000
(0.00001)

time_trend:existingDam_dist_km−0.00001
(0.00001)

−0.00000
(0.00001)

−0.00000
(0.00001)

0.00000
(0.00001)

0.00000
(0.00001)

time_trend:city_dist_km 0.00000
(0.00000)

0.00000
(0.00000)

0.00000
(0.00000)

0.00000
(0.00000)

0.00000
(0.00000)

Observations 1,664 1,664 1,664 1,664 1,631
R2 0.139 0.134 0.134 0.134 0.198
Adjusted R2 0.092 0.086 0.087 0.087 0.153
F Statistic 51.064∗∗∗ 48.843∗∗∗ 48.964∗∗∗ 48.899∗∗∗ 76.394∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D.5: Fixed effects regression summary for Landsat estimated percent loss of 1984
forest cover at different buffer distances from the treatment or control site for Mahalanobis
matched controls

Dependent variable:

Percent loss of 1984 forest cover
10 km 20 km 30 km 40 km 50 km

(1) (2) (3) (4) (5)

treatment_time 0.051∗∗
(0.024)

0.058∗∗
(0.026)

0.064∗∗
(0.025)

0.067∗∗∗
(0.025)

0.055∗∗∗
(0.017)

time_trend:DistProtArea_km 0.0001∗∗
(0.00004)

0.0001∗∗∗
(0.00004)

0.0001∗∗∗
(0.00004)

0.0001∗∗∗
(0.00003)

0.0001∗∗∗
(0.00003)

treatment_time:CapacityMW0.00001∗∗∗
(0.00000)

0.00001∗∗
(0.00000)

0.00000
(0.00000)

0.00000
(0.00000)

0.00000
(0.00000)

time_trend:existingDam_dist_km−0.00001
(0.00001)

−0.00001
(0.00001)

−0.00001
(0.00001)

−0.00000
(0.00001)

−0.00001
(0.00001)

time_trend:city_dist_km 0.00000
(0.00000)

−0.00000
(0.00000)

−0.00000
(0.00000)

−0.00000
(0.00000)

−0.00000
(0.00000)

Observations 1,792 1,792 1,792 1,792 1,760
R2 0.129 0.121 0.134 0.144 0.238
Adjusted R2 0.083 0.074 0.087 0.098 0.196
F Statistic 50.445∗∗∗ 46.885∗∗∗ 52.500∗∗∗ 57.045∗∗∗ 104.213∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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