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Abstract

In this paper our goal is to explain the distribution of the sample coefficient

of determination in the simple regression case. We do this by using its rela-

tionship to the noncentral F distribution. But first we introduce a new term,

the true coefficient of determination. In a simulation study it is feasible to

know the true coefficient of determination because the variance of the error

term is known. The usefulness of the true coefficient of determination is in the

built of relationships with predetermined strength. It answers the question:

How much error should we add? The answer depends on how strong we want

the association in the simple regression model to be. Once we determine this

we can compute the noncentrality parameter and explain the distribution of

the sample coefficient of determination. It is a simple way of explaining the

distribution of the sample coefficient of determination and it is interesting at

least from the educational point of view.

1 Introduction

We discuss the distribution of the sample coefficient of determination R̂2 and its

relationship to the noncentral F distribution. The calculation of R̂2 is a basic result

in the method of regression analysis. However in teaching regression analysis, we

almost never get into the details of its distribution. Its relationship to the noncen-

tral F distribution has an interesting result that we discuss here. The noncentral F
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distribution which is taught in a mathematical statistics course in connection with

the power of the F test in analysis of variance gives us the tools to explain easily the

distribution of R̂2. We need to define a new term - the true (or population) coeffi-

cient of determination (R2). In computing the regression of Y on x using the simple

regression model yi = β0 + β1xi + εi, we should always calculate the sample R̂2. The

true R2 is simply the measurement of the true linear association between Y and x

when the variance of the error term is known. Franklin (1992) used simulated data

to estimate the parameters of the above model when the error term follows normal

distribution. Lee (1971) discussed the sampling distribution of the multiple corre-

lation coefficient. In this paper we present a simple way to explain the distribution

of R̂2 through the noncentral F distribution, and we introduce the idea of the true

R2. The true R2 enables us to compute the true strength of the association between

Y and x when different amounts of error are added into the model. First we define

the true R2 and how it is computed and we describe how the simulations were per-

formed. We then present the results and at the end we explain the distribution of R̂2.

2 Computing the true R-squared

We call true R2 the population R-squared and we define it as the squared correlation

coefficient between y and x. That is

R2 =
cov2(y, x)

σ2
xσ

2
y

where cov(y, x) is the covariance between y and x. Because yi = β0 + β1xi + εi it is

easy to see that cov(y, x) = β1σ
2
x and var(y) = β2

1σ
2
x + σ2

ε . Substituting these two

expression into R2 we get

R2 =
(β1σ

2
x)

2

σ2
x(β

2
1σ

2
x + σ2

ε )
=

β2
1σ

2
x

β2
1σ

2
x + σ2

ε

(1)

2



The previous result is true when X is random and also X and ε are independent.

The sample squared coefficient of correlation is define as R̂2 =
s2
xy

s2
xs2

y
where

sxy =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1

(xi − x̄)yi

=
1

n − 1

n∑
i=1

(xi − x̄)(β0 + β1xi + εi)

= β1s
2
x +

1

n − 1

n∑
i=1

(xi − x̄)εi = β1s
2
x + sxε

and

s2
y =

1

n − 1

n∑
i=1

(
β1(xi − x̄)2 + (εi − ε̄)

)2
= β2

1s
2
x + 2β1sxε + s2

ε

Therefore

R̂2 =
(β1s

2
x + sxε)

2

s2
x(β

2
1s

2
x + 2β1sxε + s2

ε)

This R̂2 converges to the true R2 because s2
x converges to σ2

x and sxε = 0.

Therefore in a simulation study we can choose how much R2 we want and this will

tell us how much error we must add to the signal. From (1) above we find that

σ2
ε =

β2
1σ

2
x(1 − R2)

R2
(2)

Clearly from the previous expression we can see that when we put R2 = 1 there is no

noise in the model (σε = 0). By doing this the student can see the impact of adding

more error and how this affects the relationship between y and x. Even though x is

random below we work conditionally on the x values. Therefore when the x values

are given the distribution of the sample R̂2 follows the non-central F distribution as

we will see later.

3 Simulations

The first step is to use a deterministic model yi = β0 + β1xi. Suppose we choose

to use β0 = 2, β1 = 2 and xi = 1 + 0.1i, i = 1, · · · , 10. The variance of these data
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Model True R2 (%) σ2
ε

1 90 0.0407

2 80 0.0917

3 70 0.1571

4 60 0.2444

5 50 0.3667

6 40 0.5500

7 30 0.8556

8 20 1.4667

9 10 3.3000

Table 1: True R2 and the variance of the error term.
.

is σ2
y = β2

1σ
2
x = 22σ2

x = 0.36667. We can see from the scatterplot on Figure 1 (a)

that the points fall on a straight line. There is no surprise here that for this perfect

relationship R2 = 100%. This is because R2 = ( cov(x,y)
σyσx

)2 = ( β1σ2
x

β1σxσx
)2 = 1. However,

because in statistics we are interested in relationships that are not perfect let us add

some error to the above model. The model becomes yi = β0 + β1xi + εi, where we

assume normal distribution for the error term. But how much error do we want to

add? This depends on how strong we want the relationship between y and x to be.

For example, if we want true R2 = 90% then according to (2) above σ2
ε = 0.0407.

Similarly for other choices of the true R2 we construct Table 1. Also on Figure 1 b-i

the scatterplots of y on x are shown for true R2 = 0.90, (0.10), 0.20. The purpose

of these simulations is to show to students that when we generate data there is

an inherent strength between the dependent and the independent variables. This

strength is measured by the true R2 as defined in (1). This true R2 also exists in real

data but there it cannot be computed because we do not know the true variance of

the error term. After we generate the data we have only available the observed values

of y and x. Using the method of least squares we will try to find the relationship

that generated these data.
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Figure 1: Simulated (a to i) scatterplots of y on x for true R2 = 20% − 100%
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4 Results

After the data generation we have data on y and x. Let us pretend now that we

know nothing about the relationship that exists between the two variables. Using the

method of least squares we obtain for each model (one for each case that corresponds

to Table 1) estimates of the parameters. We generated 1000 different data sets for

each case to obtain estimates on β0, β1, σ
2, and R2 showing on Table 2. This R̂2 is

the usual coefficient of determination. The mean, median, first and third quartiles of

these estimates are presented in Table 2. An interesting comment can be made here

that if the sample variance of the n generated error terms happens (unlikely though)

to be equal to the true variance of the error term the usual R2 will be exactly equal

to the true R2. In Table 2 we observe the following: The R̂2 always overestimates

the true R2 with increasing overestimation as the variance of the noise increases.

This is not a surprise! Consider the extreme situation where R2 = 0. Even in this

situation R̂2 will never be zero (unless β1 = 0). As we know always 0 < R̂2 < 1. We

also observe that σ̂2
ε underestimates the true σ2

ε . In addition to the above results we

constructed the frequency distributions for each estimate (using the 1000 values).

The results are shown on Figures 2-5. As expected, the histogram of the 1000 values

of σ̂2
ε resembles the χ2 distribution (Figure 3). This is consistent with the theory that

the estimate of σ2
ε follows the χ2 distribution with n − 2 degrees of freedom. Also,

from theory we know that the estimates of β0 and β1 follow the normal distribution.

This can be seen on Figures 4 and 5. However, the most interesting distribution is

that of the R̂2 (Figure 2). We observe that when there is little amount of noise in

the model (this corresponds to high values of true R2) the distribution of the R̂2

is left-skewed, while when there is large amount of noise (this corresponds to low

values of the true R2) the distribution of R̂2 is right-skewed. This can be explained

intuitively first. Consider for example the case when the true R2 is very high (say

90 %). Most of the time the value of R̂2 will be around 90%. We know that R̂2 is

bounded by 0 and 1, so there is enough room to the left of 90% and this can explain
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R̂2 σ̂2

Model True R2 (%) σ2
ε Q1 Median Q3 Mean Q1 Median Q3 Mean

1 90 0.0407 0.89 0.92 0.94 0.91 0.0255 0.0370 0.0526 0.0381
2 80 0.0917 0.75 0.83 0.88 0.81 0.0564 0.0822 0.1208 0.0854
3 70 0.1571 0.64 0.74 0.81 0.72 0.0999 0.1449 0.2017 0.1495
4 60 0.2444 0.51 0.65 0.75 0.62 0.1548 0.2253 0.3172 0.2293
5 50 0.3667 0.40 0.55 0.67 0.53 0.2383 0.3519 0.4844 0.3581
6 40 0.5500 0.27 0.45 0.61 0.44 0.3430 0.4946 0.7122 0.5188
7 30 0.8556 0.18 0.35 0.52 0.36 0.5454 0.7862 1.0795 0.7969
8 20 1.4667 0.08 0.24 0.39 0.26 0.9526 1.3428 1.8627 1.3988
9 10 3.3000 0.04 0.14 0.29 0.19 2.1404 3.0730 4.3193 3.1702

β̂0 β̂1

Model True R2 (%) σ2
ε Q1 Median Q3 Mean Q1 Median Q3 Mean

1 90 0.0407 1.791 2.024 2.236 2.018 1.841 1.985 2.134 1.989
2 80 0.0917 1.698 2.030 2.406 2.038 1.741 1.979 2.187 1.974
3 70 0.1571 1.556 1.987 2.419 1.996 1.725 2.014 2.283 2.004
4 60 0.2444 1.402 1.973 2.5889 2.004 1.630 2.040 2.369 2.000
5 50 0.3667 1.222 1.939 2.697 1.971 1.588 2.042 2.493 2.023
6 40 0.5500 1.081 1.987 2.841 1.967 1.465 2.008 2.560 2.019
7 30 0.8556 0.904 1.946 3.060 1.986 1.370 2.033 2.695 2.011
8 20 1.4667 0.663 1.993 3.456 2.047 1.037 2.014 2.811 1.966
9 10 3.3000 -0.221 1.879 4.066 1.884 0.695 2.117 3.394 2.074

Table 2: results

the left skewness. However, we will try more formally to explain this behavior of R̂2

in the next section.

5 Explaining the distribution of R̂2

One possible way to explain the distribution of R̂2 is through its density f(R̂2). This

density is a complicated function and we will avoid using it here (Lee 1971, 1972).

A nice way to explain this distribution is by using the fact that the ratio

F =
R̂2

1 − R̂2
(n − 2) (3)

under the alternative hypothesis that β1 6= 0 follows the noncentral F distribution

with noncentrality parameter γ2 =
(n−1)σ2

Xβ2
1

σ2
ε

and degrees of freedom 1 for numerator

and n − 2 for denominator (Hogg and Craig 1998). Rearranging (3) we get R̂2 =

F
F+n−2

. Suppose now that we want to compute the probability that R̂2 is less than
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Figure 2: Frequency of R̂2 for true R2 = 20% − 90%
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Figure 3: Frequency of σ̂2
ε for true R2 = 20% − 90%
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Figure 4: Frequency of β̂0 for true R2 = 20% − 90%
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Figure 5: Frequency of β̂1 for true R2 = 20% − 90%
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P (a < R̂2 < b)
True R2 γ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00 .000 .627 .178 .094 .051 .028 .014 .006 .002 .000 .000
0.10 1.000 .435 .189 .135 .097 .066 .041 .022 .009 .002 .002
0.20 2.250 .275 .173 .156 .135 .108 .077 .047 .022 .006 .002
0.30 3.857 .151 .136 .151 .155 .144 .119 .083 .044 .014 .002
0.40 6.000 .067 .087 .121 .150 .166 .161 .131 .081 .030 .004
0.50 8.999 .021 .041 .074 .116 .160 .190 .187 .139 .061 .010
0.60 13.502 .004 .011 .029 .062 .114 .179 .231 .223 .126 .020
0.70 21.006 .000 .001 .005 .016 .045 .108 .212 .306 .254 .052
0.80 35.987 .000 .000 .000 .001 .004 .020 .085 .265 .456 .170
0.90 81.081 .000 .000 .000 .000 .000 .000 .001 .023 .334 .642

Table 3: Percentiles of the R̂2 distribution

ζ, where 0 < ζ < 1. We can do this using:

P (R̂2 < ζ) = P
(

F

F + n − 2
< ζ

)
= P

(
F <

ζ

1 − ζ
(n − 2)

)

Therefore this probability can be computed simply by using a table of the noncentral

F distribution. For each model we computed the noncentrality parameter and then

we found P (R̂2 < ζ) for ζ = 0.1 (0.1) 1.0. Using these results we can construct Table

3 which gives the percentiles of the distribution of R̂2. The entries in the table are

the exact probabilities that R̂2 is between two consecutive values of ζ. For example

let us consider the case when the true R2 = 0.40. The noncentrality parameter is

computed to be γ = 6. Then the exact probability that R̂2 is between 10% and

20% is 0.087. Also, 20% is the 0.067 + 0.087 = 0.154 or the 15.4th percentile of the

distribution of R̂2. If we now look at the frequency distribution of R̂2 when the true

R2 = 0.40 (Figure 2) we can find that about 95 cases out of 1000 or 0.095 have R̂2

between 10% and 20%. This compares very well with the exact probability. Similarly

the other entries can be matched to the bars of the frequency distribution.
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6 Conclusion

In this paper we explained the distribution of the coefficient of determination (R̂2)

and how this is related to the noncentral F distribution. We usually never go into

the details about this important statistic but here we present some characteristics of

it. We see how it is related to the population R2 (the true R2) and conclude that it

overestimates it. Under the null hypothesis that the slope is zero (H0 : β1 = 0) the

distribution of R̂2 is related to that of the central F . Under the alternative hypothesis

(Ha : β1 6= 0) it is related to the noncentral F distribution. Therefore we can use

both of them to compute the power for different values of R2. We also see that the

shape of distribution of R̂2 varies depending on how much error is added to the model.

Students must first understand what a strong relationship between two variables is.

Starting with a deterministic model and showing that R2 = 1 then we can create

data that come from models with less R2 by changing the variance of the error term.

This proposed method of teaching regression analysis assumes that the students must

be familiar with correlation, random errors, probabilistic and deterministic models.

We would also agree with Mills (2002) that these methods of teaching regression

analysis would probably be more useful for students in a more advanced regression

course rather than an introductory course. A student can appreciate more what a

simulation can offer if he is familiar first with some concepts of modeling. Putting

this aside, we believe that the idea of the term true R2, which is not mentioned in

most (if not all) textbooks it is important to help students understand the difference

between population and sample in the regression case.
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