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of the system with n magnons Ē(n) relative to the energy of n

2
non-interacting

pairs n
2
Ē(2) for J2 = 0.7 and J2 = 0.5 in a 16 × 8 cylinder. (d) The h–J2

phase diagram for the states with fixed number of magnons n = 2, 4, 6, 8 in
a 16 × 8 cylinder. For J2 > 0.61, magnon pairs are repulsive and the leading
instability is the single-pair-BEC (n = 2), while for J2 < 0.61 the magnon
pairs are attractive, which leads to the multi-pair instabilities with narrowing
J2 steps that resemble a devil’s staircase. . . . . . . . . . . . . . . . . . . . . 81

4.8 DMRG non-scan results for J2 = 0.45, see Fig. 5 in the main text. (a) The
ground state at h = 0.140 is a strongly canted AFM state as is indicated by the
magnetization ⟨Sz

i ⟩ (left axis), and by the dipolar, ⟨S−
i ⟩2, and quadrupolar,

⟨S−
i S

−
i+y⟩, order parameters (right axis). (b) The h = 0.143 state is a fully

saturated FM state. We apply small pairing and canting fields on the left and
right edges, as is described in the main text. . . . . . . . . . . . . . . . . . . 83

5.1 The classical (a) and quantum (b) phase diagrams of the XXZ J∆
1 –J3 model

(5.1) with the ferromagnetic (FM), zigzag (ZZ), spiral (Sp), double-zigzag
(dZZ), and Ising-z (Iz) phases. The solid lines are phase boundaries inter-
polating transition points (diamonds) inferred from the DMRG scans along
J3 (red) and ∆ (yellow). The vertical and dashed lines are classical and
MAGSWT phase boundaries, respectively. Spins are in-plane for all phases
except Iz, see also Fig. 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

x



5.2 Long-cylinder scans of the J∆
1 –J3 model (5.1) vs J3 in the (a) Heisenberg

(∆=1) and (b) XY (∆=0) limit. The arrows show the local ordered moment
⟨Si⟩. FM, ZZ, and Iz phases are indicated and transitions are determined as
described in text. The honeycomb lattice is in the xy plane while spins shown
in the figure are in the xz plane. . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 (a) Ordered moments in the 16×16 non-scan cluster for J3=0.24, showing dZZ
pattern. (b) Energies of the three competing phases vs J3, crosses are DMRG
results and higher-energy states are metastable. Lines are extrapolated ener-
gies, ⟨ψi|H(J3)|ψi⟩, where ψi are the three states at J3 =0.24. . . . . . . . . . 92

5.4 Long-cylinder ∆-scans of the J∆
1 –J3 model (5.1) for (a) J3 = 0.25 and (b)

J3 =0.4. Notations are as in Fig. 5.2. . . . . . . . . . . . . . . . . . . . . . . 93
5.5 DMRG J3-scans for ∆=0.5, 0.4, and 0.3 in the J∆

1 –J3 model. The scans for
∆=0.5 and 0.3 are on the 12×32 cylinders while the ∆=0.4 scan is on the
16×40 cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 The quantum S= 1
2

phase diagrams of the full XXZ J∆
1 –J∆

3 model (5.1), c.f.
Fig. 5.1(b). See text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 DMRG J3-scans in the J∆
1 –J∆

3 model for ∆=0.5, 0.25, and 0 on the 12×32
cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 (a) and (b) 12×12 XC cylinder non-scans for ∆ = 0.4 and J3 = 0.3 in the
J∆
1 –J3 model showing: (a) nearly-zero ordered moment and nearest-neighbor

⟨S⃗i · S⃗i+δ⟩ (thickness of the bond), and (b) spin-spin correlation ⟨S⃗i0 · S⃗j⟩,
denoted by the length and direction of the arrow, with i0 site shown by the
green oval. The arrow on i0 is of length 0.25. (c) Same as (a) on the 16×16
cylinder. (d) Same as (b) on the 8×32 YC cylinder for ∆=0.25 and J3 =0.32
in the J∆

1 –J∆
3 model. (e) Ordered moment in (d) under the Iz pinning field

of 0.5 on both edges. (f) The 1/Ly-scaling of the Iz ordered moment in the
center of the cylinder with the edge pinning fields from (e) and the XC and YC
cylinders having the aspect ratio 2, which mimics the 2D limit closely—see
Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 (a) Spin pattern in the 12×12 DMRG cylinder and (b) spin components in
the ground state of the generalized XXZ J∆1

1 -J∆3
3 model model from Ref. [9]. 101

5.10 The quantum S = 1
2

phase diagram of the K-J-Γ-Γ′-J3 model in the J-J3
plane with fixed K =-7.567, Γ =4.276, Γ′ = 2.362 (in unit of meV). Phases
include ferromagnetism (FM), zigzag (ZZ), out-of-plane antiferromagnetism
(z-AFM) and two non-collinear (NCO) out-of-plane counter-rotating spirals
with different ordering vectors. The green region is the possible parameter
region for α-RuCl3 constrained by experimental observations including critical
in-plane fields denoted by the dotted lines. . . . . . . . . . . . . . . . . . . . 103

xi



5.11 In a 12× 12 XC cylinder with K,Γ,Γ′ fixed as in Fig. 5.10 and J=-3.0 meV,
J3=2.7 meV, (a) the local ordered moments ⟨Si⟩ represented by the arrows.
Spins in sublattice A and B are in red and blue, respectively. The honeycomb
lattice is in the xy plane, and spins are in the yz plane that form an out-of-
plane counter-rotating spiral with its Q⃗ along the x direction. (b) Squared
norm of the Fourier transform of Sy for spins in sublattice B, which has a
maximum at Q⃗ that is along the Γ-M direction. (c) Three components of the
ordered moments for the spins in sublattice A, averaged over the y direction
and plotted along the plotted along the x direction. (d) Sy of spins in different
sublattices averaged over the y direction and plotted along the x direction.
Spins in two sublattices that have the same lx are denoted by green ellipse in
(a). For (c) and (d), the cross markers are the data points and lines are fitted
sine functions. (e) The ordered moments of spins in the Sy-Sz plane (spins on
edges are excluded). The straight arrows from the center point to the ordered
moments of the spins in the rounded black rectangle in (a). The curved arrows
indicate the rotating orientation of the spins along the propagation direction
of the spiral Q⃗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



LIST OF TABLES

Page

3.1 Parameters for the Wannier single-band model from downfolding the three-
band model. h and e correspond to hole and electron doping of 0.15. tpd is
nominally 1.5eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



ACKNOWLEDGMENTS

Reflecting on this unforgettable journey of PhD studies, first and foremost I would like to
express my profound gratitude towards my advisor, Steve White. Steve’s insights into physics
and simulations have been vastly inspiring throughout my graduate career, and set a role
model for how a computational physicist should approach problems. I am also exceedingly
thankful to Steve for offering exceptional support and flexibility in research, which enables
me to explore my own interests and establish collaborations across a variety of topics. I
cannot imagine attaining my current status as an independent researcher in physics without
Steve’s inspiration, guidance and support.

I am indebted to my long-time collaborators and mentors, Doug Scalapino and Sasha Cherny-
shev, from whom I have learned an abundance of physics and beyond. Doug’s dedication
to the problem of high temperature superconductivity has largely inspired me, and I can
hardly quantify how much I have gained from daily conversation with Sasha. They have
supported me through the ups and downs in my graduate studies with their kind mentorship
and advice. Undoubtedly, their roles in my PhD studies have ascended to the equivalent of
co-advisors.

I would also like to extend my gratitude to my collaborators: Judit Romhányi, Mike Zhito-
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The density-matrix renormalization group (DMRG) invented by Steven R. White is a varia-

tional algorithm to search for the ground states of quantum many-body systems. Using the

entanglement entropy as its organizing principle, DMRG stands as one of the most power-

ful methods in simulating two-dimensional (2D) quantum systems, and is especially useful

for investigating strongly correlated systems that are otherwise challenging for analytical

approaches. This thesis presents the applications and developments of DMRG and related

tensor network methods in studying a variety of 2D doped and frustrated systems as well

as their model reductions. Chapter 1 lays out the fundamentals of DMRG and tensor net-

work states, along with multiple techniques for studying 2D systems. Chapter 2 presents our

DMRG studies of the ground state phase diagram of the extended t-J models. We found that

while the models are consistent with the cuprates in antiferromagnetism and charge order, su-

perconductivity nevertheless appears absent or marginal in hole-doped systems. Motivated

by this discrepancy between the models and the cuprates, in Chapter 3 we carried out a

DMRG-based downfolding of the parental three-band Hubbard model, seeking possible fixes

to the previously studied single-band models. An effective model was derived via Wannier

construction, which includes novel density-assisted hopping terms that appear to be impor-

tant in enhancing hole-doped superconductivity. In Chapter 4, we examined the quantum
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spin nematic phase in the paradigmatic S = 1/2 square-lattice J1-J2 ferro-antiferromagnetic

Heisenberg model, employing a combination of DMRG and analytics. Our findings revealed

that many-body effects induce significant contraction of the nematic phase compared to the

näıve expectation. Chapter 5 presents a study of the anisotropic J∆
1 -J3 model on the hon-

eycomb lattice, which is believed to be the fundamental model for many Kitaev material

candidates upon adding bond-dependent terms. This chapter also includes my contribution

to a study of the generalized Kitaev-J3 model for α-RuCl3.
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Chapter 1

Introduction

1.1 Simulating strongly correlated many-electron prob-

lems

Strong interaction among electrons can lead to a plethora of novel emergent phenomena that

are fundamentally different from the behaviors of individual particles. The most prominent

example is perhaps the high temperature superconductivity in the cuprates, which has not

been fully resolved thirty years after its discovery [15, 16]. Another related area is frustrated

magnetism [17], where strong interaction between electrons results in effective frustrated

spin exchanges, and the quantum fluctuation induced thereof gives rise to exotic phases such

as the quantum spin liquid [18]. Other celebrated cases of strong correlation include the

fractional quantum hall effect [19] and the recently discovered twisted bilayer graphene [20].

The richness of the phenomena is intrinsically associated with the buildup of entanglement

among electrons due to strong interactions, which alters its behavior from the weak coupling

picture of individual quasiparticles. On the other hand, entanglement also complicates the
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representations of wavefunctions. This poses a challenge to analytical approaches, and in-

creases the importance of numerical simulations to provide unbiased pictures of the strongly

correlated physics.

In the 1980s and early 1990s, much of the best numerical numerical work on strongly corre-

lated systems utilized exact diagonalization or quantum Monte Carlo [21–23]. Exact diago-

nalization (ED) seeks to determine the state vector within the entirety of the Hilbert space.

Although the computational cost of ED inevitably involves exponential scaling relative to

the system size, it imposes almost no restrictions on the form of Hamiltonian. Usually only

the ground state or the low-energy spectrum is of interest, and thus iterative algorithms such

as the Lanczos algorithm [24] are most useful. The Lanczos algorithm solves the eigenvalue

problem iteratively within the Krylov subspace that is generated by the Hamiltonian and an

initial guess. Its accuracy improves as the Krylov subspace enlarges. As an example, state-

of-the-art ED is able to simulate the low-energy spectrum of a frustrated Heisenberg model

on a triangular cluster of N = 48 sites [25]. Quantum Monte Carlo is also numerically exact

and features only polynomial scaling with respect to the system size, if only the notorious

sign problem is absent. The sign problem occurs when the integral has positive and negative

parts largely cancelling each other, which prohibits its efficient evaluation through Monte

Carlo sampling. This happens in doped fermionic systems at low temperature as well as in

many frustrated spin systems. It is important to note that the sign problem is NP-hard [26]

and can not be circumvented for some types of problems1.

In the early 1990s, Steven White invented the density-matrix renormalization group (DMRG)

as a variational algorithm for finding ground states of quantum many-body systems [29].

Using entanglement as the organizing principle, DMRG effectively reduces the the computa-

tional cost by one dimension compared to exact diagonalization, i.e., the cost scales linearly

1There are techniques to mitigate the sign problem such as the constrained-path auxiliary field Quantum
Monte Carlo. However one needs to ensure that the constraint imposed is unbiased, which often requires a
benchmark from other methods. See Ref. [27, 28] for related studies.
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with the system size for one-dimensional (1D) systems and scales exponentially only to the

width of 2D systems. It is also free of the sign problem. Because of these exceptional ad-

vantages, DMRG has demonstrated unparalleled computational power for 1D problems, and

also stands as one of the most powerful methods in simulating 2D systems [2]. The key

to the success of DMRG is that the ground states of local Hamiltonians are subject to the

“area-law” for entanglement entropy [30] and are only moderately entangled. Therefore,

it is highly efficient to search for these ground states using DMRG in the tensor network

framework.

The remaining of this chapter is organized as follows: Sec. 1.2 provides a historical overview

of the development of DMRG and tensor network methods. Sec. 1.3 introduces the concept

of entanglement entropy and the way to represent a quantum many-body wavefunction with

Matrix Product State (MPS). Sec. 1.4 lays out the basics of the DMRG algorithm. Sec. 1.5

introduces the fundamentals of studying 2D systems with DMRG. In Sec. 1.6 we argue

that DMRG spontaneously breaks symmetry in a way that mimics the 2D systems, and

the method to obtain 2D order parameter using finite-size scaling with edge pinning field is

described in Sec. 1.7. Finally, Sec. 2.4 presents the DMRG scan calculations as an efficient

way to obtain the ground phase diagram.

1.2 Historical development of DMRG and tensor net-

work states

The density-matrix renormalization group was invented by Steven R. White at UC Irvine

in 1992 [29] as a variational algorithm to find the ground states of quantum many-body

systems. DMRG surpasses the limitations of Wilson’s numerical renormalization group [31]

by taking the environment into account and truncating the system’s degrees of freedom
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according to its reduced density matrix in the renormalization group process. Its power was

first demonstrated by solving the ground state of the 1D Heisenberg chain to unprecedented

precision [29].

After the invention of DMRG, people began to realize the connection of the algorithm to

tensor network states (TNS) [32]. The concept of TNS was initially employed in classical

systems [33, 34]. The precursor of the application of TNS in quantum systems emerged in the

context of numerical renormalization group for the Kondo problem [31, 35]2. It was not until

the 1990s that TNS began to be recognized as an efficient representation of quantum many-

body wavefunctions, partially propelled by the invention of DMRG [36]. The essence of TNS

is to organize and compress wavefunctions based on the entanglement entropy, and DMRG

can be viewed as a variational algorithm to optimize a specific type of TNS called a Matrix

Product State [37]. From this point of view, it becomes evident that the DMRG’s success lies

in the fact that the ground states of local Hamiltonians only have a limited entanglement

that obeys the “area-law” for entanglement entropy [30, 32, 38, 39]. Consequently, these

wavefunctions can be efficiently represented and optimized using TNS and alleviates the

exponential computational cost of general quantum problems.

It is worth mentioning that there have been development of tensor-network methods in

several other directions beyond DMRG, such as time evolution [40–42] and finite tempera-

ture [43–45] algorithms, as well as other types of tensor network ansatz including projected

entangled pair states (PEPS) for 2D systems [46] and multi-scale entanglement renormaliza-

tion ansatz (MERA) for critical systems [47].

2In this case, the derivation of the wavefunction when enlarging the system size in the renormalization
group process resembles a Matrix Product State.
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1.3 Entanglement entropy and matrix product state

representation of quantum many-body wavefunc-

tions

Entanglement entropy is a measure of the degree of entanglement in a quantum system. A

commonly used one is the Von Neumann entanglement entropy, which quantifies the level

of entanglement between the two subsystems partitioned from an entire quantum system.

Specifically, for a system divided into parts A and B, its wavefunction |ψ⟩ can be written in

the following way using the Schmidt decomposition:

|ψ⟩ =
m∑
i=1

ci |ui⟩A ⊗ |vi⟩B, (1.1)

where |ui⟩A and |vi⟩B are orthonormal states defined on subsystem A and B, respectively.

The Von Neumann entanglement entropy S in this case is defined as:

S(A|B) = −
m∑
i=1

c2i ln(c2i ). (1.2)

Another equivalent way to calculated the Von Neumann entanglement entropy is through

the reduced density matrix of the subsystem A computed by tracing out the other subsystem

B:

ρ(A) = TrB|ψ⟩⟨ψ|. (1.3)

ρ(A) can be expressed by its eigenvalues ci and corresponding eigenvectors |ui⟩:

ρ(A) =
m∑
i=1

c2i |ui⟩⟨ui|, (1.4)
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which are essentially the same ci and |ui⟩ as in Eq. 1.1. The the Von Neumann entanglement

entropy is calculated using the same equation Eq. 1.2.

It becomes evident that if A and B are unentangled, then |ψ⟩ is merely a product state

of |u1⟩A and |v1⟩B, in which case the entanglement entropy is zero. (Note that |u1⟩A and

|v1⟩B themselves can be entangled and are not necessarily product states). Entanglement

entropy lies at the core of tensor network states, as will be exemplified below in the MPS

representation of wavefunctions.

Any quantum many-body wavefunction |ψ⟩ on a lattice of N sites can be expressed as a

superposition of basis states made from a tensor product over the local basis,

|ψ⟩ =
∑

s1,s2...,sN

ψs1,s2...,sN |s1⟩|s2⟩...|sN⟩, (1.5)

where |si⟩ denotes the local basis states, e.g., |si⟩ ∈ {| ↑⟩, | ↓⟩} for a spin-1/2 system. The

wavefunction ψs1,s2...,sN can be regarded as a rank-N tensor with a graphical representation

shown in the left part of Fig. 1.1:

|𝜓⟩

𝑆2 𝑆𝑁

.......... ..........

𝑙1 𝑙2 𝑙𝑁−1

𝑆1 𝑆2 𝑆𝑁𝑆1

Figure 1.1: Decomposition of a rank-N tensor ψs1,s2...,sN that represents a wavefunction
into a MPS made of N -2 rank-3 tensors in the bulk and two rank-2 tensors on the edges:
ψs1,s2...,sN =

∑
l1,l2,...ln

As1
l1
As2

l1,l2
...AsN

lN−1
.

The MPS representation decomposes the rank-N tensor into a network made of N -2 rank-3

tensors in the bulk and two rank-2 tensors on the edges, with the internal indices to be
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contracted over, as shown in Fig. 1.1:

ψs1,s2...,sN =
∑

l1,l2,...ln

As1
l1
As2

l1,l2
...AsN

lN−1
, (1.6)

The biggest dimension of the internal indices l1, l2...lN−1 is called the bond dimension of

the MPS and denoted by m. Usually a more entangled wavefunction requires a larger bond

dimension for its MPS representation, and any wavefunction can be accurately represented

given large enough m.

As has been mentioned before, “area-law” for the entanglement entropy states that for the

ground states of local Hamiltonians, the leading term in the Von Neumann entanglement en-

tropy is proportional to the area of the boundary between the two partitions [30, 46]. There-

fore for gapped 1D systems, where the gap eliminates any log corrections, the entanglement

entropy is a constant, implying a constant bond dimension m for its MPS representation, if

smaller correction terms are ignored. As a result, MPS facilitates a significant reduction in

the data storage of the ground states, from exponential scaling in system size O(dN) (d is

the local degrees of freedom) to a polynomial scaling O(Ndm2).

1.4 Formulating the DMRG algorithm using matrix

product states

While the original formulation of DMRG did not discuss matrix product states, it was later

pointed out by Ostlund and Rommer [37] that the wavefunction implicitly used by DMRG is

an MPS. It is more straightforward to formulate DMRG using MPS [48]. Later, McCulloch

introduced matrix product operators (MPOs) [49], which generalize MPS to operators such
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as the Hamiltonian. The MPS-MPO formulation of DMRG is more straightforward than

the original formulation.

The MPO representation of the Hamiltonian is

H
s′1,s

′
2...,s

′
N

s1,s2...,sN =
∑

l1,l2,...ln

B
s1,s′1
l1

B
s2,s′2
l1,l2

...B
sN ,s′N
lN−1

, (1.7)

as shown in the following diagram:

𝐻

𝑆2′ 𝑆𝑁′

.......... ..........

𝑙1 𝑙2 𝑙𝑁−1

𝑆1′

𝑆2 𝑆𝑁𝑆1 𝑆2 𝑆𝑁𝑆1

𝑆2′ 𝑆𝑁′𝑆1′

Figure 1.2: Decomposition of the Hamiltonian H as a rank-2N tensor to a MPO whose bulk
is made of rank-4 tensor.

The MPO representation of Hamiltonians for 1D systems with only local interactions has a

very small bond dimension which does not depend on length.

The goal of DMRG is to optimize the individual tensors in the MPS |ψ⟩ to reach the lowest

variational energy ⟨ψ|H|ψ⟩. Despite being in the compressed tensor network form, it remains

costly trying to optimize all the tensors simultaneously. Instead, DMRG optimizes two

neighboring tensor at a time while holding all the other tensors fixed, which is equivalent to

solving the ground state problem in a reduced basis. For example as shown in Fig. 1.3, when

optimizing the tensors i and i+1, one forms the reduced basis of {|Li−1⟩|Si⟩|Si+1⟩|Ri+2⟩}. |Si⟩

and |Si+1⟩ include the full local degrees of freedom, while the “left (right)” |Li−1⟩ (|Ri+2⟩)are

states previously kept in the MPS that are projected from the Hilbert space corresponding

to sites 1 to i − 1 (i + 2 to N). The reduced Hamiltonian Hreduced is formed by projecting

the original Hamiltonian H onto this reduced basis. In the tensor network language, this

corresponds to contracting the MPO H with the MPS |ψ⟩ on both sides but leaving out
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the two tensors to be optimized. After that, exact diagonalization such as the Lanczos

algorithm is used to obtain the eigenvector with the lowest eigenvalue of Hreduced. The

eigenvector is reshaped into a rank-four tensor, then split and truncated into two rank-three

tensors through singular-value decomposition, which subsequently updates updates the MPS.

DMRG proceeds to optimize the subsequent two tensors, sweeping through the MPS back

and forth (“DMRG sweep”) until convergence is achieved.

𝐻reduced = = 𝑆𝑖 |𝑆𝑖+1⟩

|𝐿𝑖−1⟩ |𝑅𝑖+2⟩

Figure 1.3: Construction of the reduced Hamiltonian Hreduced by projecting the original H
on the basis of {|Li−1⟩|Si⟩|Si+1⟩|Ri+2⟩}.

The cost of DMRG scales as o(Nm3), where N is the system size and m is the bond dimension

of the MPS. Therefore, the efficiency of DMRG largely depends the m required to accurately

represent the ground state wavefunction. Several factors can help reach the convergence of

DMRG calculations. If the Hamiltonian possesses certain symmetry such as particle number

conservation, then quantum numbers (QN) can be implemented in DMRG, which turns

the tensors into a sparse block-diagonal form, substantially accelerating the computation. In

some cases, one may also choose not to use quantum numbers in order to target spontaneously

symmetry-breaking states, the details of which will be discussed later in Sec. 1.6. Typically

the initial state can be set as a classical or meanfield solution of the Hamiltonian, such as

the Néel state for the Heisenberg antiferromagnet or a Hartree-Fock state for the Hubbard

model. For a Néel state, the initial state is a product state, corresponding to bond dimension

1. A Hartree-Fock state is only a product state in momentum space, so its real-space

representation may require a significant bond dimension. If QNs are used, one needs to

ensure the initial state lies in the desired QN sector. This also provides a convenient way

to compute ground states as well as excited states that have definite QNs. The accuracy
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of DMRG calculations improves upon increasing the number of states m kept. It is more

efficient to increase m in a gradual fashion, since DMRG sweeps at small m are capable

of directing the state into the right direction without large computational cost. The risks

of getting stuck in metastable states—a key issue in 2D calculations—can be alleviated

in many ways, including comparing calculations with different initial conditions, applying

external fields and performing DMRG scans. The details of these methods will be discussed

in the following sections.

1.5 Studying two-dimensional systems with DMRG

The DMRG algorithm is most natural for 1D problems, not just because of the structure of

the algorithm that sweeps through the 1D MPS, but more importantly, because 1D ground

state only has a constant or nearly constant bond dimension. As will be discussed below,

although DMRG encounters more challenges in 2D, other algorithms also face various limi-

tations. Therefore, DMRG has become one of the most powerful approaches for simulating

2D quantum systems.

Figure 1.4: Mapping a 2D square lattice to a 1D MPS using the snake path. The leading
bipartite entanglement entropy of the ground state is linear to the system width as illustrated
by the red cut.

The first step for 2D DMRG is to map the 2D system onto a 1D MPS path. A common

approach is to use the “snake path” as shown in Fig. 1.4. Because of the area-law for

entanglement entropy [30], the bipartitle entanglement entropy of the ground state is no

10



longer a constant, instead it scales linearly with the width of the 2D system (potentially

with logarithmic corrections [46]). As a result, the bond dimension required to approximate

the ground state scales exponentially with the system width. On the other hand, the constant

scaling of the required bond dimension with respect to the length of the system is retained,

similar to the 1D case. Such geometrical dependence of the entanglement entropy motivates

the usage of cylindrical or rectangular clusters with the width longer than the length in 2D

DMRG.

While this exponential scaling with the system width is indeed a limitation, other methods

also face similar or even more severe challenges in 2D. Exact diagonalization scales exponen-

tially with the total number of sites, not just the width in DMRG. Sign problems still exist

for many systems of interest when using Quantum Monte Carlo. Recent advancements in

2D tensor network methods, most notably the projected entangled pair state (PEPS) [46],

in principle allow for the representation of ground states with a constant bond dimension

D typically around 10. However, its optimization is more complicated compared to DMRG.

The computational cost has a somewhat large exponent on D ranging from D7 [50] to D12 [2]

depending on the network and algorithm used 3, as opposed to the m3 scaling in DMRG.

Over the past decade, DMRG has been applied to studying a variety of 2D systems, yielding

many significant results. One of the most active areas is simulating strongly correlated

electronic systems such as the doped Hubbard model or the t-J model, which unveils a

delicate interplay of charge order, magnetic order and superconductivity. More details will be

presented in Chapter. 2. Another area where DMRG has been extensively used is frustrated

magnets that potentially host exotic phases such as the quantum spin liquid [18, 53]. A

celebrated example is the discovery of the spin liquid ground state for the nearest-neighbor

Heisenberg model on the Kagome lattice [54–56]. Other notable systems include the J1-J2

3For example, the isometric tensor network [50] has a relatively small D7 scaling, but the isometric
constraint may limit its expressiveness and additional errors can occur when gauging the network. There
are other methods with smaller exponent, such as D5 for the simple update introduced in Ref. [51] and D6

by combining Monte Carlo sampling [52], with extra check on convergence needed.
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model on the square lattice [57–59] and triangular lattice [60, 61], as well as more generalized

models with real material correspondences [62–64].

When carrying out 2D DMRG, many useful techniques can be employed to ensure conver-

gence and to mitigate finite size effects. A comprehensive review of these techniques are laid

out in Ref. [2]. In the following sections, several concepts and methods that are frequently

invoked throughout this thesis will be presented.

1.6 Spontaneously broken symmetry in DMRG calcu-

lations

In the limit of a bond dimension of m = 1, a MPS is a simple product state, and DMRG

represents a simple sort of mean field theory. The resulting state breaks symmetry, like

mean-field techniques in general. As the bond dimension increases, the MPS approaches the

result of an exact diagonalization. Thus it is useful to think of DMRG as interpolating in

some sense between mean field theory and exact diagonalization. In 1D systems, one is often

very close to the exact diagonalization side of this, so one can usually ignore questions of

broken symmetry. For 2D systems, it is important to be aware of how DMRG may or may

not break symmetries.

How DMRG can break symmetry depends on what quantities are conserved in the calcula-

tion. Consider the antiferromagnetic Heisenberg model on a square lattice. Say we use U(1)

symmetry, i.e. we conserve total Sz. To get the ground state, we choose the Sz = 0 sector,

and for m = 1, DMRG gives one of the two Néel states oriented in the spin z direction. A

Néel state oriented in another direction does not have definite Sz. Now suppose we increase

m, but not too much. The system then tries to reduce the energy subject to having low
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entanglement, since m controls the entanglement that can be captured when one splits the

system in two.

The easiest way to decrease the energy is to build in local spin fluctuations, but to stay

close to one Néel state. Any superposition of Néel states would produce larger entanglement

with little benefit in energy. These effects increase with system size. Thus, a U(1) DMRG

calculation will show a broken spin orientation symmetry along the z direction. As one

increases m, at first the local spin fluctuations become better and better, and one may

approach a plateau near |⟨Sz
0⟩| or M̃ ≈ 0.307, where M is the bulk magnetization. The

accuracy of this plateau depends on system size. As one increases m farther, eventually

the energy optimization notices that different directions of the order can be mixed, and one

tends to ⟨Sz
i ⟩ → 0, the exact diagonalization result for an even number of sites, satisfying

the Lieb-Mattis theorem.[65]. Figure 1.5 shows ⟨Scenter
z ⟩ at a center site for 6x6, 8x8 and

10x10 clusters as a function of the number of states (or bond dimension m). One can see

that ⟨Scenter
z ⟩ has a plateau around ⟨S0

z ⟩ before approaching the exact solution of a spin-

singlet. The bond dimension required to form the overall spin-singlet increases rapidly with

the width of the system.

If one does not use U(1) symmetry, the system could form a Néel state in any direction.

Using U(1) speeds up the calculation considerably, so we avoid leaving it out except in special

cases, such as applying a spin-twist boundary condition. Some DMRG programs conserve

SU(2), but not ITensor, the library used here. In an SU(2) calculation, the ground state

calculation is constrained to the singlet sector and it cannot break spin symmetry. Keeping

SU(2) means that one keeps more states for the same computational cost, but this is offset

to a varying extent, in terms of how low the energy is, by having to construct a superposition

of Néel states. Thus either SU(2) or U(1) calculations are more effective depending on what

one is studying.
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Figure 1.5: For the Heisenberg model, well-converged spin moment ⟨Scenter
z ⟩ for the center

spin as a function of bond dimension m in 6 × 6, 8 × 8 and 10 × 10 systems, using Sz

conservation (U(1) symmetry). The blue dashed line is ⟨S0
z ⟩ = 0.307, the known broken

symmetry magnetization for an infinite system[1]. At bond dimension 1, DMRG mimics a
simple mean field theory, and gives a perfect Néel order parameter of 0.5. At very large bond
dimension, DMRG gives the exact result of zero (overall spin singlet) for any finite system
with an even number of sites. In between, we see a plateau around the 2D broken symmetry
value which sharpens with increasing system size.

If symmetry is not broken, then determining the order parameter requires measuring a

correlation function. Correlation functions tend to converge slowly with the bond dimension

in DMRG, compared to local quantities. Correlation functions also produce the square of

the order parameter, which, if the order parameter is small, causes further inaccuracy. It

can be much more effective to measure order parameters by strongly pinning the edges of a

cylinder and measuring the local order parameter in the center[3]. This can be very accurate

if one adjust the aspect ratio of the cylinder to cancel leading finite size effects[3]. However,

14



if one is not trying for a quantitative determination of the 2D order parameter, one gets good

results from measuring the local order due to the self-pinning of limited symmetry DMRG.

For a potentially superconducting system, one may or may not conserve the number of

fermions modulo 2. One cannot turn off the number conservation completely, since this

breaks the fermion parity and interferes with putting in the right statistics. We refer to

these two choices as conserving or not conserving particle number. If the system is su-

perconducting, a mean field theory such as BCS would break symmetry to give a definite

phase, making a superposition of different numbers of particles. If one conserves parti-

cle number, one cannot have a definite phase. In this case, in order to measure pairing,

one would have to use correlation functions. Since the order parameters tend to be small,

measuring its square with DMRG is inaccurate, both because of the small quantity being

measured and the inaccuracy of correlation functions. If one turns off number conservation,

then one can have a phase. However, usually, for efficiency, we use only real wavefunctions.

In this case the allowed broken symmetry reduces from U(1) (the phase) to Z2 (+ or −).

The advantages associated with measuring local quantities rather than correlation functions

makes the non-particle-conserving approach highly preferred. Indeed, recently it has been

reported that turning off particle number conservation is more efficient in probing d-wave

superconductivity [66].

In contrast to the magnetic case, a system which is superconducting may not break number

symmetry at low bond dimension, particularly if the pairing is relatively weak. The sys-

tem may get stuck in a particle-conserving state, even if non-particle conserving states are

allowed and are lower in energy for a fixed bond dimension. However, one can turn on a

pairing/proximity-effect field ∆+∆† for a few sweeps to get it unstuck, and then see if the lo-

cal pairing grows in subsequent sweeps, approaching an approximate plateau. Alternatively,

one can apply pairing fields on the edges and measure the response in the center. If the
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pairing is quite strong, then one is very likely to see a robust spontaneous broken-symmetry

pairing without applying any temporary or edge fields.

1.7 Finite-size scaling of local order parameters

Since 2D systems tend to spontaneously break symmetry, an important goal for 2D DMRG is

to obtain the 2D order parameter with a systematic finite-size scaling. While the spontaneous

symmetry breaking described in the previous section provides a convenient estimation, a

more precise way is through applying strong pinning fields on the edges of the clusters [3].

Using cylinders of different sizes with an appropriate aspect ratio, the order parameter in

the center provides an excellent agreement with the 2D order parameter after 1/Ly scaling.

This section provides a brief overview of this method described in Ref. [3].

The application of edge pinning fields mimics the spontaneous symmetry breaking in 2D.

One can imagine embedding the finite cylinder in a 2D system with a finite order. In

this scenario, interactions between the cylinder edges and the surrounding environment act

as effective pinning fields on the edges. It is often useful to apply strong pinning fields.

For example, in the case of square-lattice Heisenberg antiferromagnet, the magnitude of the

pinning field is chosen to be 0.5J , equivalent to interacting with classical AFM spins. Further

increasing the pinning fields has saturating effect since they only affect the edges.

The importance of choosing an appropriate aspect ratio for the finite size scaling is demon-

strated in Fig 1.6, using square-lattice Heisenberg antiferromagnet as an example. The

ordered moment can be overestimated if the aspect ratio (length over width) is too small as

in Fig. 1.6(a), in which case the proximity to the strong pinning fields leads to excessive ef-

fects. On the other hand, if the aspect ratio is too big as in Fig. 1.6(b), the system becomes

quasi-1D and the central spins hardly feel the symmetry-breaking field. The appropriate
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Figure 1.6: Ground states of the S=1/2 Heisenberg antiferromagnetic model on (a) 8×4, (b)
2×8, and (c) 4×8 cylinders. The length of the arrow is proportional to the local magne-
tization ⟨Sz

i ⟩. There is a staggered pinning field of magnitude J/2 applied on both edges.
Figure is reproduced from Fig.7 in [2].

aspect ratio in this case is around 2 as shown in Fig. 1.6(c), where the ordered moment in

the center ⟨Sz⟩ ≈ 0.28 is already close to the actual 2D value of 0.307 [1] even without 1/Ly

finite-size scaling. While the optimal aspect ratio depends on the specific model, setting it

to two usually yields a reasonable estimation.

After choosing the appropriate aspect ratio, one can proceed with finite-size scaling by

extrapolating the order in the center of the cylinder with 1/Ly. This is shown below in

Fig. 1.7. In this aspect ratio of Lx/Ly = 2, the ordered moment approach the 2D value from

below in a slightly curved line. The optimal aspect ratio according to spin-wave theory is

1.67 [3]. Indeed, using aspect ratio of 1.5 provides a better extrapolation with an almost flat

curve, i.e., the ordered moment is already very close to 2D value on small cylinders. One can
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Figure 1.7: Finite-size scaling for the square-lattice Heisenberg AFM using different cylinders
with aspect ratio Lx/Ly = 2. The ⟨Sz⟩ is extracted from the center of the cylinder with
staggered pinning field of 0.5J on both edges. The finite-size scaling converges to the AFM
order in 2D [1] denoted by the dashed line. Figure is reproduced from Ref. [3].

also estimate the order by comparing results using different aspect ratios. A more detailed

analysis is presented in the original paper Ref. [3].

This method of finite-size scaling of order parameter with applied edge fields has been fre-

quently utilized throughout the thesis: for the magnetic order in the electron-doped t-t′-J

model in Fig. A.1; for the nematic order in the square-lattice J1-J2 ferro-antiferromagnetic

model in Fig. C.3; as well as for detecting the narrow Ising-z phase in the honeycomb-lattice

J∆
1 -J∆

3 ferro-antiferromagnetic model in Fig. 5.8.

1.8 DMRG scan calculations

One of the generic problems studied in condensed matter physics is the ground state phase

diagram. The conventional approach is to carry out a series of DMRG calculations, each with

a set of parameters corresponding to a data point in the phase diagram. Near the phase
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boundaries where different phases compete, comparing calculations with different initial

configurations is necessary to determine the true ground state.

An efficient alternative approach to map out the phase diagram is DMRG scan calcula-

tions [60, 62, 67–69]. Utilizing the fact that the computational cost of DMRG scales only

linearly with the length of the system, a long cylindrical system is used wherein the Hamil-

tonian gradually varies along the length the cylinder. For a cylinder with length Lx, the

Hamiltonian takes the form:

H(lx) = H(λ⃗1) + [(H(λ⃗2)) −H(λ⃗1)]
lx − 1

Lx − 1
, (1.8)

where λ⃗1 and λ⃗2 correspond to two points in the phase diagram, and lx = 1, 2...Lx. In this

setup, a line in the phase diagram connecting points λ⃗1 and λ⃗2 is scanned through with a

single DMRG calculation. One often encounters two or more phases in the scan, and the

phase boundaries are automatically adjusted with DMRG sweeps, which reduces the risk

of metastable states. After convergence is reached, the phases and their boundaries can be

directly extracted from their positions on the cylinder.

In Fig 1.8 we show an example of using DMRG scans to construct the phase diagram (detailed

studies are presented in Chapter. 5). Here the parameters for the phase diagram are ∆ and J3.

In Fig. 1.8(b) we show a scan calculation with J3 varying from 0.1 to 0.7 at fixed ∆=0. One

can directly read the three phases and their boundaries along the cylinder, which becomes

the ∆=0 line in the phase diagram Fig. 1.8(a). With multiple DMRG scans including some

with fixed J3 and varying ∆, we eventually map out the 2D phase diagram as shown in

Fig. 1.8(a).

The DMRG scans are very powerful and efficient as the first exploratory measures to in-

vestigate the phase diagram. They can be followed up with either zoom-in scans (focusing

on a narrower range of parameters) or conventional non-scan calculations for more precise
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determination of the phase boundaries. The zoom-in scans are also useful in determining

the order of the phase transition, since first-order transitions will remain “scale-invariant”

in zoomed-in scans, see Fig. 4.5.
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0 0.1 0.2 0.3 0.4 0.5 0.6

J3

0.0

0.2

0.4

0.6

0.8

1.0
∆

Iz

dZZ
ZZ

Iz

FM

dZZ

S

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7J3

(b)

FM ZZIz

Figure 1.8: (a) Ground state phase diagram of the anisotropic J∆
1 -J3 model (see Chapter 5).

(b) A DMRG scan calculation with fixed ∆=0 and varying J3, which includes the ferromag-
neti c(FM), Ising-z (Iz) and zigzag (ZZ) phases.
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1.9 Organization of the thesis

This thesis is a collection of several self-contained projects that apply and adapt DMRG

for studying a variety 2D systems as well as their model reductions. It is organized as

follows: Chapter 2 presents our DMRG studies of the ground state phase diagram of the

extended t-J models. We found that while the models are consistent with the cuprates

in antiferromagnetism and charge order, superconductivity nevertheless appears absent or

marginal in hole-doped systems. Motivated by this discrepancy between the models and

the cuprates, in Chapter 3 we carried out a DMRG-based downfolding of the parental three-

band Hubbard model, seeking possible fixes to the previously studied single-band models. An

effective model was derived via Wannier construction, which includes novel density-assisted

hopping terms that appear to be important in enhancing hole-doped superconductivity.

In Chapter 4, we examined the quantum spin nematic phase in the paradigmatic S =

1/2 square-lattice J1-J2 ferro-antiferromagnetic Heisenberg model, employing a combination

of DMRG and analytics. Our findings revealed that many-body effects induce significant

contraction of the nematic phase compared to the näıve expectation. Chapter 5 presents

a study of the anisotropic J∆
1 -J3 model on the honeycomb lattice, which is believed to be

the fundamental model for many Kitaev material candidates upon adding bond-dependent

terms. This chapter also includes my contribution to a study of the generalized Kitaev-J3

model for α-RuCl3.
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Chapter 2

Ground state phase diagram of the

extended t-J models

2.1 Introduction

There has been considerable recent progress in numerical simulations of the models associ-

ated with the cuprate superconductors—the 2D Hubbard and t-J models, and their vari-

ants [27, 70–89]. Like the materials themselves, these models have been found to exhibit

a rich variety of phenomena, ranging from uniform antiferromagnetism(AFM) and d-wave

superconductivity(SC) to charge and spin stripes. Some previously controversial issues have

been mostly resolved, such as the existence of stripes. Striped states were first found as a

Hartree Fock solution to the doped Hubbard model [90–93], and in the late 1990’s two of

us used the density matrix renormalization group [94, 95] and found stripes as the ground

state of the t-J model[96]. At that time this result was controversial, since other powerful

simulation methods, such as variational Monte Carlo, could not confirm our results [97, 98].

In the last few years, with progress in a variety of methods combined with the use of several
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simulation methods together, striped ground states have been confirmed not just in the t-J

model [76, 81, 82, 99], but also the Hubbard model [70, 73–75, 83, 100, 101].

While d-wave singlet pairing has consistently been favored over other types of pairing in

many approaches, it has been less clear in both the t-J and Hubbard models whether the

ground state is superconducting or not. The role of stripes in competing against or enhanc-

ing pairing has also been difficult to determine. It has long been clear, however, that next

nearest neighbor hopping t′ has a crucial influence on the pairing. With a −tij sign conven-

tion for hopping, our early DMRG for the t-J model found that a positive t′ stabilizes the

commensurate (π, π) antiferromagnetic correlations and enhances the d-wave pairing corre-

lations, whereas a negative t′ seemed to disfavor these correlations [84, 102]. Other work

has suggested instead that a negative t′ is important in destabilizing stripes so that SC can

occur [73].

While DMRG has not changed fundamentally since the 1990’s, there has been steady im-

provements in techniques, software, and computers since then. Here we have used these

developments to return to a study of the t-t′-J model. We report here a detailed description

of the ground state phase diagram as a function of t′ and doping x, based on L× 8 cylinders

with L up to 50, with confirmation of the qualitative features using width 6 cylinders. Note

that this model can be used to describe both the hole and electron doped cuprates: for

t′/t < 0 it describes a hole doped system with electron filling ne = 1 − x, while for t′/t > 0,

based on a particle-hole transformation, one has an electron doped system with ne = 1 + x.

Two important results of our study are (1) the finding of a coexistent antiferromagnetic

d-wave SC and induced π-triplet p-wave SC regime in the electron doped system and (2) the

lack of long range SC order in the hole doped case.

This paper is organized as follows: in Sec. 2.2 we introduce the t-t′-J model, the DMRG

methods used, and the main observables that we study. In Sec. 2.3 we show the t′−x ground
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state phase diagram for J/t = 0.4 obtained from the 8 × L cylinder calculations. Here the

spin, charge and d-wave pairing strength for t′/t = ±0.2 are shown as the doping x varies

slowly along the length of the cylinder. Combined with similar calculations with doping x

fixed and t′ slowly varying along the length of the cylinder, these results(details shown in

Sec. 2.4) are used to determine the t′ − x ground state phase diagram.

The resulting phase diagram exhibits four distinct regions. In Sec. 2.5 we examine the

lightly(x ≲ 0.14) electron doped region in which there is coexisting AFM and strong d-wave

pairing order. In addition there is necessarily also a p-wave triplet pairing component with

center of mass momentum (π, π). This order parameter does not depend upon a p-wave

pairing interaction, but is dynamically generated by coexisting AFM and d-wave SC order

parameters[103–107]. While it has the same form as the generator of infinitesimal rotations

between AFM and SC order parameters in the SO(5) theory[104], it appears here as an

additional order parameter. Its strength relative to the AFM and d-wave order will be

discussed. In the more heavily doped electron region discussed in Sec. 2.6 we find stripes

with local AFM, and weaker d-wave and p-wave triplet pairing. In Sec. 2.7 we discuss the

t′ < 0 part of the phase diagram where we find conventional stripes and an unconventional

width-3 stripe phase (W3 stripe) region but negligible pairing. In Sec. 2.10 we discuss the

relationship of the sign of t′ to the electron and hole doped cuprates and compare our results

to experiments. Sec. 2.12 contains our conclusions.
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2.2 Model and method

We study the t-t′-J model on a square lattice, with Hamiltonian

H =
∑
⟨ij⟩σ

−t(c†iσcjσ + h.c.) +
∑
⟨⟨ij⟩⟩σ

−t′(c†iσcjσ + h.c.)

+J
∑
⟨ij⟩

(S⃗i · S⃗j −
1

4
ntot
i ntot

j ) − µ
∑
i

ntot
i

(2.1)

here ntot
i = ni↑ + ni↓ is the total particle density on site i. ⟨ij⟩ denotes nearest neighbor

pairs of sites and ⟨⟨ij⟩⟩ denotes next nearest neighbor pairs of sites. Doubly occupied states

are specifically excluded in the Hilbert space. For all calculations we set t=1 and J=0.4. A

chemical potential µ is used to control the doping level in some of the calculations; in others

the number of particles is fixed. We study cylinders, with open boundary conditions in the x

direction and periodic boundary conditions in the y direction. We study width-6 and width-8

cylinders with lengths up to 50. Our primary focus is on the width-8 systems. Behavior in

width 6 is similar and provides an indication that our width 8 results are relevant for 2D.

We use finite system DMRG using the ITensor library[108]. For this size system, keeping

about 3000-4000 states is sufficient to measure local properties, provided that the calculation

is not stuck in a metastable state. To control this issue, we perform a variety of simulations

with different starting states and temporary pinning fields, comparing energies and conver-

gence of different states, to gain an understanding of the low energy states and their orders.

Some of the details of this process in subtle cases are discussed below. In many cases, such

as a conventional striped state, starting in a product state with the holes near where they

end up is all that is necessary, but one should try different fillings and spacings of the stripes.

For example, 8 holes in a striped state might make either two 4-hole stripes or four 2-hole

stripes. In such a case we would try both possibilities and compare energies.
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We focus on local measurements of the density, the magnetization, and pairing. The hole

density and magnetization are measured using Sz = 1
2
(ni↑ − ni↓) and nhole = 1 − ni↑ − ni↓.

To detect the superconducting order and structure in the grand canonical ensemble, we use

the singlet (s) and triplet (t) link pairing operators

∆†
s,t(l) =

1√
2

(c†l1,↑c
†
l2,↓ ± c†l2,↑c

†
l1,↓) (2.2)

where the + and − are for singlet and triplet, respectively, and l1 and l2 are the two sites of

link l.

The expectation value ⟨∆†+∆⟩ gives the local pairing strength. For a d-wave superconductor,

⟨∆†
s + ∆s⟩ switches sign between bonds in the x and y directions[109].

2.3 Phase diagram

We begin by presenting the approximate phase diagram of the model in the doping (x)–next

nearest neighbor hopping (t′) plane, the detailed features of which are explained later. A

key distinction is the difference between positive and negative t′. The t-J model cannot be

doped above half-filling, so it does not appear that one can simulate electron-doped cuprates.

However, a particle-hole transformation of the single band Hubbard model maps electron

doping to hole doping, but with a change in the sign of t′. One can then view the t-J model

as a low energy description of this particle-hole transformed Hubbard model. We discuss

this in more detail in Sec. 2.10. The key point is that we can view t′ ≈ −0.2 as applicable

to the hole-doped cuprates, while t′ ≈ 0.2 is applicable to the electron doped cuprates. We

will refer to the regions of the phase diagram using this terminology.

Our most useful tool in determining the phase diagrams are scan calculations, where in a

long cylinder we slowly vary one parameter of the model, either t′ or the chemical potential
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Figure 2.1: Approximate phase diagram in the x − t′ plane, where x is the doping and t′

is the next-nearest neighboring hopping, for width-8 cylinders. The six gray lines indicate
the location of parameter-varying “scan” calculations on long cylinders which were the main
tool to determine the phase diagram. The green indicates commensurate AFM order; the
beige represents conventional stripes, which modulate π-phase shifted domain walls in the
AFM order. The slanted lines indicate d-wave pairing order. The simultaneous presence of
d-wave pairing and AFM correlations induces weaker momentum-(π,π) p-wave order.

µ, to scan a whole line of the phase diagram. These lines are shown in gray in Fig. 2.1.

These scans are detailed in the next section. Much of the phase diagram is taken up by

a phase with conventional stripes. These stripes are lines of increased hole density two or

three sites wide which act as domain walls to π-phase shifted AFM (or at least significant

local AFM correlations). Although the holes in these stripes correlate into pairs, the pairs

tend to lack phase coherence, and pairing correlations are weak. Significantly, negative t′ is

found to decrease the pairing correlations. This phase makes up most of the t′ < 0 side of

the diagram.

There is also a novel type of striped phase in a small region of the phase diagram with

t′ < 0. In this W3 striped phase, the stripes are predominately one site wide with exactly
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two rows of mostly undoped sites between them acting as a spin-ladder. The holes within

stripes are unpaired with a spacing of about 4 between holes. The Heisenberg two-leg ladder

is spin-gapped, with very short range spin correlations[110], and the “ladders” in the W3

phase behave similarly. The stripes in W3 do not induce a π phase shift to the spins on

either side, probably due to the combination of low doping within the stripe and the short

range spin correlations. Instead of acting as a domain walls, they decouple the spin ladders.

The W3 phase appears to have substantial decoupling between the undoped ladders and the

doped chains, and the transverse period is locked at 3 lattice spacings. The W3 phase (like

a t-J chain[111]) does not exhibit pairing. For t′ < 0, commensurate AFM order is present

only very close to zero doping; stripes break up the AFM order very quickly on doping.

For t′ positive above a small threshold, one enters a very different low-doped phase. This

phase has three types of order simultaneously. The two dominant forms of order are AFM

and d-wave superconductivity, which have also been found in recent studies of the Hubbard

model with positive t′ [85]. There are no signs of stripes at low doing, and the magnetic

order is commensurate at Q = (π, π). The d-wave order is robust; unlike in previous studies

at t′ = 0 where determining whether the system is superconducting or not requires careful

scaling, here its presence is very clear. These two dominant orders, d-wave pairing and

AFM, combine to form a weaker triplet p-wave order at wavevector Q = (π, π)[103, 112–

115, 115–117]. This order comes about because the AFM order breaks SU(2) symmetry, so

that singlet and triplet pairing are no longer distinct, and the nonzero wavevector reflects

the wavevector of the AFM order. There is no separate attractive conventional interaction

in the p channel; this derivative order is purely a consequence of the other two orders.

In the higher-doped t′ > 0 region, a superconducting striped phase appears. This phase looks

locally much like the lower doped phase, but with stripes. The stripes look like conventional

stripes in most respects, but they exhibit significant d-wave pairing, unlike the t′ < 0 striped

phase. The stripes act as domain walls to the AFM order, and locally one sees derivative
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Figure 2.2: Local properties (left) and a high-probability product state (right) of systems
in different phases. The left panels show conventional local measurements for ground states
in three different phases. The length of the arrows and the area of the circles represent ⟨Sz⟩
and local doping respectively. The spins are colored to indicate different AFM domains.
The right panels show particular product states which occurred with maximum probability
in a particular search within the corresponding state (see text). (a) and (b): electron low
doped phase with t′ = 0.2, x = 0.12, with simultaneous pairing and AFM order. The highest
probability configuration of a pair of holes is diagonal-next-nearest neighbor. (c) and (d):
Conventional stripe phase at t′ = 0, x = 0.07, where half-filled stripes form, and pairing is
visible within the stripes, but lacking phase coherence. (e) and (f): W3 striped phase at
t′ = −0.2, x = 0.07, with holes unpaired within the stripes.

πp triplet order as well, modulated by the stripes. The pairing overall is somewhat weaker

in the higher doped phase, probably because of the stripes. But while the stripes somewhat

compete with superconductivity, the main driver against pairing appears to be negative t′

itself, rather than t′ acting through stripe formation. A likely mechanism for this is that

positive t′ directly increases the mobility of pairs[118], making it easy for them to phase

cohere and to avoid becoming locked into stripes.

In Fig. 2.2 we show non-scan simulations of three of the phases, emphasizing their differences.

An alternate view is given by the high-probability product state plots shown in the right
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panels. These product states are determined from the ground state by a limited search for

the most probable product state. One way to search for a probable spin configuration is to

sequentially go through the sites of the lattice, and at each site, pick the most probable spin

state. After each spin is picked, the wavefunction is projected to reflect this, just as a physical

measurement of spin i (say finding the up state) would leave the wavefunction projected into

the associated up-i space. However, this approach fails in the presence of holes, since at

low doping there are far fewer holes than spins, and the holes end up appearing at the end

of the search path, i.e. mostly on the right side of the system, which is a low probability

configuration. Instead, here we will search for the hole positions separately, finding the

most probable position for a hole over all sites at each step, using the hole density of the

projected wavefunction. After the holes are found, then we perform a determination of the

spin configuration with a fixed path through the rest of the sites, optimizing each spin and

projecting.

This gives a view of the states that is hard to see in local measurements or correlation

functions. In particular, in the d-wave phase in panel (a)-(b), one sees the holes grouped in

pairs, with the most probably configuration of a pair being diagonally next-nearest neighbor,

as found in earlier work[119]. In panel (b) one sees an apparent diagonal stripe, but there is

no sign of this in the ordinary measurements of panel (a). It may be that this is only slightly

more likely than many other different configurations.

In the conventional striped state shown in panels (c)-(d), pairs of holes appear as the most

probable state, but the state has only short ranged pairing correlations and the small hole

probability between the stripes suggests that the binding of the pairs to the stripes is sup-

pressing superconductivity. In the W3 striped state shown in panels (e) and (f), the most

probable state has the holes at their maximum separation within the stripes, with domain

walls visible in the vertical direction across the holes, instead of the horizontal. This con-
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figuration is consistent with the idea that the stripes here imitate the 1D t− J chain [111],

and that one can view the holes as holons living in a squeezed Heisenberg chain of spins.

2.4 Scans varying doping and t′

We now discuss the scan calculations which were used in constructing the phase diagram.

As shown in Fig. 2.3, in one set of scans, t′ was fixed and the doping x was slowly varied

along the length of the cylinder while in another set x was fixed and t′ was varied. A linear

variation of the chemical potential with the length lx down the cylinder gave an essentially

linear increase of the doping x. A similar application of a gradient in the chemical potential

has also been utilized in cold-atom experiments[120]. However, for the t′=0.2 scan, it was

necessary to vary the chemical potential slowly in the low doping region where AFM, d-wave

and π − p-wave triplet pairing appeared. In the t′ varying case, the chemical potential also

needed to be adjusted to keep the doping approximately constant across the system1.

A key feature of the scan calculations is to reduce the problem of metastable states. For

fixed parameters (i.e. a non-scan calculation) one may happen to be near a phase boundary,

and determining which side one is on may involve small energy differences. In contrast, using

a scan one is likely to pass through the phase boundaries, and the system will automatically

adjust the location of the boundaries to account for the energies. The calculations are

stabilized by the parts of the cylinder where the system is well within one phase or another.

In non-scan calculations where one is looking for a particular order, it is common to “pin

the edges” with a corresponding field applied to the edge sites. This is not so clear-cut a

procedure for a scan going through different phases, but, in fact, often in a DMRG calculation

1The chemical potential is of form µ(lx) = µ0+a
√
1 + (b|2lx − Lx|/Lx)2 with a and b to be adjusted and

different for left and right half. This form of chemical potential varies slower and connects smoothly in the
middle.
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𝒕′ = 𝟎. 𝟐

𝒙 =

Figure 2.3: A doping-varying scan on a 50×8 cylinder with t′=0.2, appropriate for electron-
doped cuprates. Spin, charge are shown in the upper plot in the same way as in Fig. 2.2.
The lower plot shows the d-wave singlet pairing with its sign/amplitude indicated by the
color/thickness of bonds. The numbers on the middle axis indicate the approximate local
doping. No pair field is applied. In the underdoped region (x ≲0.13) the system exhibits
AFM with strong d-wave pairing. In the overdoped region (x >0.13) stripes are present,
with pairing persisting to about x ≈ 0.25 − 0.3.

pinning fields are not necessary. Instead, DMRG can self-pin in a large 2D system. This

aspect of DMRG calculations is well-known among DMRG experts, but less so by others, so

we give a detailed explanation of this effect in Sec. 1.6. The gist is that DMRG tends to break

a continuous symmetry and develop an order parameter just as a real experimental sample

does. The broken symmetry goes away in the limit of large bond dimension, but for a range of

moderate bond dimensions the system develops an order parameter similar in magnitude to

that of the 2D thermodynamic limit. The required bond dimension to eliminate the broken

symmetry increases rapidly with system size. Attempts to converge beyond this broken

symmetry plateau can be counter-productive, since in the symmetric phase the order can

only be seen through correlation functions, and one can miss unexpected orders. In addition,

correlation functions are inherently much less accurate than local measurements [3]. In our

scans, we use this effect to our advantage: in systems where there does appear to be robust

d-wave superconductivity(SC), we do not pin it with an external field but rather we allow

the system to self-pin. In systems where d-wave SC is suppressed, we apply a weak global

pairing field. In this case, we may get some false positive signals of SC, but its absence is
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a clear sign that a superconducting state is not a low energy state. In some cases we also

apply a magnetic pinning field on one or both edges to reduce edge effects [2]. It should be

pointed out that such fields have almost no effect on the magnetic order in the bulk which

appear as long as we are in the “broken symmetry plateau”.

Figure 2.3 shows an x-varying scan with a fixed t′ = 0.2 corresponding to electron-doped

cuprates. In the underdoped region we find coexisting uniform AFM, strong d-wave singlet

pairing and (π, π) p-wave triplet pairing (detailed discussion later in Sec. 2.5). As one

increases doping away from half-filling, the pairing increases rapidly and |⟨Sz⟩| decreases

slowly. When the doping is further increased beyond x ∼ 0.14, conventional-looking stripes

emerge. The transition to stripes is rather sharp. The stripes still have robust pairing,

but the magnitude of the order parameter is reduced. The point of optimal doping, where

pairing is maximum, is near x = 0.14, in the uniform phase. Within the striped phase, pairing

decreases with higher doping. It eventually disappears in a smooth way near x ∼ 0.25 − 0.3

𝒕′ = −𝟎. 𝟐

𝒙 =

Figure 2.4: A doping-varying scan on a 50×8 cylinder with t′=-0.2, appropriate for hole-
doped cuprates. A staggered magnetic pinning field of 0.03 is applied on the left edge. A
global d-wave pair field of 0.005 is applied to measure the pairing response. The system
exhibits stripes across the whole doping range shown here with minimal pairing response to
the applied pairing field.

Figure 2.4 shows a similar x-varying scan but with t′ = −0.2, corresponding to hole-doped

cuprates. Other than a small region showing signs of the W3 striped phase around x ∼ 0.06,

the whole scan shows conventional stripes. As one increases doping, the magnitude of the
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density oscillations first increases until around x = 0.2, and then decreases. Pairing is almost

completely suppressed despite a global d-wave pairfield of 0.005. Pairing remains weak even

if the pairfield is made rather strong, say, 0.03. In terms of the pairing response and the

applicability of the t-t′-J model to the cuprates, Figure 2.3 and Fig. 2.4 indicate a clear

contradiction: pairing is much stronger in the hole doped cuprates than we find in the t-t′-J

model.

𝒕′ = 𝟎

𝒙 =

Figure 2.5: A doping-varying scan on a 50×8 cylinder with t′=0. A staggered magnetic
pinning field of 0.05 is applied on the both edges. A global d-wave pairfield of 0.005 is
applied to measure the pairing response. The system is striped and pairing response peaks
near x=0.15, but in non-scan calculation without applied field the system shows no local
pairing and the pair-pair correlations die rapidly with separation.

Figure 2.5 shows an x-varying scan with t′ = 0. While this case does not directly map to

the cuprates, it has been studied often because of its simplicity. We find a hole density and

spin pattern similar to the t′ = −0.2 scan. Around x ∼ 0.07 there are again some signs of a

W3 striped phase, but separate calculations with fixed doping find this W3 stripe is meta-

stable and higher in energy (o(0.001t) per site) than the conventional striped phase at t′ = 0.

Despite a similar striped structure, the pairing response with t′ = 0 is much stronger than

at t′ = −0.2. Under a global d-wave pairfield of 0.005, the pairing peaks around x = 0.15

with a value ⟨∆† + ∆⟩ ∼ 0.06. If the pairfield is turned off, pairing decays slowly. We find

that at t′ = 0, the paired state is not the ground state when comparing its energy with the

non-paired state. In the global phase diagram, the boundary line where pairing appears is
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at slightly positive t′. This closeness of the boundary helps explain why in previous studies

at t′ = 0, it has been very difficult to determine if the ground state is superconducting.

𝒙~𝟎. 𝟎𝟗

𝒕′

Figure 2.6: A t′-varying scan on a 42×8 cylinder with doping x ∼ 0.09.A staggered magnetic
pinning field of 0.03 is applied on both edges. No pair field is applied. For t′ > 0 we see the
AFM-d/πp phase, while in the region with negative t′ we find a conventional stripe phase
and pairing is suppressed.

We now show another three scans where we keep x approximately constant and vary t′ from

0.3 to -0.3. Figure 2.6 shows a low doping case, x ∼ 0.09. The contrast between positive

and negative t′ is striking. For t′ > 0 we find the AFM-d/πp phase with uniform AFM and

strong pairing. For t′ < 0 we find conventional stripes and a rapid and strong suppression

of the pairing response.

Figure 2.7 shows a medium doping x ∼ 0.13. Here the boundary of uniform density versus

stripe order has shifted to t′ ∼ 0.1. The striped state for t′ > 0 has pairing, although it is

weaker than in the AFM-d/πp phase.

Figure 2.8 shows a high doping case with x ∼ 0.19. In this case there are stripes for the

whole range of t′. However, pairing order is only present for t′ ≳ 0.1.

35



𝒙~𝟎. 𝟏𝟑

𝒕′

Figure 2.7: A t′-varying scan on a 40×8 cylinder with doping x ∼ 0.13. No pair field is
applied. A staggered magnetic pinning field of 0.03 is applied on both edges. For t′ > 0 we
see the AFM-d/πp phase which becomes striped for smaller t′. In the negative t′ region the
stripes continue but without pairing.

𝒙~𝟎. 𝟏𝟗

𝒕′

Figure 2.8: A t′-varying scan on a 40×8 cylinder with doping x ∼ 0.19. No pair field is
applied. A staggered magnetic pinning field of 0.03 is applied on both edges. There are
stripes across the whole system, but pairing only for larger positive t′.
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2.5 Electron low-doped phase with coexisting uniform

AFM, d-wave singlet and (π, π) p-wave triplet pair-

ing (AFM-d/πp)

We now consider the individual phases in detail, starting with the phase with three order

parameters at low doping and t′ > 0. This region corresponds to electron-doped cuprates.

There are two dominant orders: uniform AFM and a strong d-wave singlet pairing. As a

result of these two orders there is also a (π, π) p-wave triplet pairing. We call this phase

AFM-d/πp, and it exists in a broad region defined roughly by t′ > 0 and x < 0.14. Details

of this phase for a non-scan calculation at x = 0.12 and t′ = 0.2 are shown in Fig. 2.9. In

parts (a) and (b) we show the doping, spin, and singlet pairing expectation values. All these

quantities are uniform across the system. No applied pairing field was used. The presence of

nonzero pairing order helps the density become more uniform, counteracting any oscillations

due to the open boundaries. The magnitude of the pairing order is ⟨∆†
s + ∆s⟩ = 0.081,

and the difference in sign between vertical and horizontal bonds signifies d-wave order. We

judge the size of the order parameter to be quite large; in particular, if one does apply

a pairing field, one cannot readily make it much larger. Also, the simulations are clear

and unambiguous; there do not appear to be any other competing states. Starting from

a non-pairing initial product state, the system spontaneously breaks particle-conservation

symmetry and produces the pairing order. As mentioned before, Sec. 1.6 has a detailed

discussion for spontaneously broken symmetry in DMRG.

As shown in Fig. 2.9(c) we also observe a smaller (π, π) p-wave triplet pairing in addition to

the strong d-wave singlet pairing. It is uniform in amplitude and has (π, π) px − py form:

⟨∆t(lx, ly)⟩ = eiπ(lx+ly)[⟨∆t(lx, ly, x)⟩ − ⟨∆t(lx, ly, y)⟩] (2.3)
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Figure 2.9: The AFM-d/πp phase at fixed t′=0.2 and x =0.12. (a) and (b) show spin,
charge, and d-wave singlet pairing as in previous plots. In (c), we show triplet link pairing,
where we find (π, π) p-wave order. For (d), we plot singlet and triplet pairing, as well as
the spin expectation value (left-axis scale), for systems which have had a global staggered
magnetic field h applied; each value of h is a different simulation. The singlet pairing is
nearly independent of h while the triplet pairing and magnetization both increase with h,
but the indicated ratio (black crosses, right axis) is nearly constant.

with ∆t(lx, ly, x/y) being a triplet pairing on a horizontal/vertical link with left/lower site(lx, ly).

The overall phase of triplet pairing is determined by the overall phase of the AFM order and

d-wave pairing. This triplet order is a consequence of the other two orders, not a competing

order. As mentioned before, The existence of AFM order breaks SU(2) spin symmetry, so

that singlet and triplet pairing are no longer distinct, making the d-wave pairing have a triplet

component. The nonzero wavevector reflects the wavevector of the AFM order. The magni-

tude of the triplet pairing is roughly proportional to the singlet pairing: ⟨∆t⟩/⟨∆s⟩ ≈ 0.4, if

no magnetic field is applied, and this ratio is mostly t′ independent.

To further study the interplay of AFM, singlet and triplet pairing, we applied a global

staggered magnetic field to the system which directly enhances the AFM order. Figure 2.9(d)

shows that under this field, both magnetization and triplet pairing are enhanced while singlet

pairing is mostly unchanged. It is interesting that there is no competition between strong
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AFM order and d-wave pairing; they happily coexist, but as a consequence of increased AFM

order the triplet order gets larger. Defining A(x) through the following relation between these

three quantities:

⟨∆t⟩ = A(x)⟨∆s⟩⟨Sz⟩, (2.4)

we find that A(x) varies slowly with doping (2.3 for x = 0.12, 2.0 for x = 0.065). We further

verify that this relation holds when a global d-wave singlet pairfield is applied. This relation

is qualitatively consistent with several studies where there is coexistence of AFM, d-wave

singlet pairing and (π, π) p−wave triplet pairing[106, 107, 113]. This further implies that

this (π, π)p-wave triplet pairing is purely parasitic and relies on the existence of both AFM

and d-wave singlet pairing.

2.6 Higher electron doping phase: stripes with d-wave

singlet and striped p-wave pairing

In the electron overdoped, t′ > 0 region of the phase diagram we observe a striped phase with

roughly uniform d-wave singlet pairing and modulated p-wave triplet pairing. In Fig. 2.10(a-

c) we show local expectation values for a point in this phase at x = 0.20 and t′ = 0.2. The

striped phase looks like stripes at t′ < 0 if one only looks at the charge and spin. Unlike

that case, here we have clear d-wave pairing, although not as strong as at lower doping. In

this case, starting in a product state, the system can get stuck in an unpaired state, but

applying a pairfield for a few sweeps allows it to go to the lower energy (by about o(0.001t)

per site) paired state with a singlet pairing order⟨∆†
s +∆s⟩=0.044. (In a width 6 system, the

unpaired state is not metastable; starting from a product state, the DMRG sweeps readily

find the paired state. More comparisons with width 6 systems are made in Sec. 2.9. The
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Figure 2.10: Higher doped positive t′ phase with stripes and pairing. The doping is x = 0.20
and t′ = 0.2. (a), (b), and (c) are as in the previous figure. In (c), we see that the p pairing
is modulated by the domain walls in the antiferromagnetism. This is apparent in (d), which
shows the singlet pairing and the triplet pairing multiplied by −1lx versus lx. The singlet
pairing has small modulations with peaks at the stripes, while the triplet pairing oscillates
with nodes at the stripes.

pairing is only slightly larger on the domain walls compared to the region in-between them,

as shown in Fig. 2.10(d).

Because there are local AFM regions between the stripes, one would expect also a triplet

pairing component to appear. Figure 2.10(c) shows the p-wave triplet pairing for this system.

Interestingly, the p-wave triplet pairing ⟨∆t⟩ which is modulated by stripes shows a wave-like

amplitude as one can see more clearly in Fig. 2.10(d). In contrast to the ∆s which is only

slightly bigger at the domain walls, the ∆t order has nodes at the domain walls, reflecting

its parasitic dependency on the AFM order.
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2.7 Conventional stripe phase and low-dopedW3 stripe

phase

While the striped phase described in the previous section has a ground state with pairing,

in a broader parameter region which includes the whole t′ < 0 part except for extreme low

doping, stripes still form but the ground state has no pairing. This phase is the conventional

striped phase.

The hole and spin pattern of conventional stripes without pairing is very similar to stripes

with pairing. One small difference, which one can see by comparing Fig. 2.3 and Fig. 2.4,

is that the stripes at t′ = 0.2 are homogeneous in hole density and spin along the stripes,

while at t′ = −0.2 there is a small modulation along each stripe. The difference in pairing is

much more significant: the conventional striped state is non-superconducting. A state with

pairing is nearby for t′ near 0, and it can be seen as a metastable state in DMRG, but its

energy rises as t′ is made more negative and it is no longer metastable. For t′ = −0.2, even

a strong global pairfield triggers only a weak pairing response and the pair-pair correlation

function shows exponential decay.

The W3 striped phase is distinct from the conventional striped phase, although both occur

for t′ < 0. Figure 2.11 shows non-scan results for the W3 phase, at a doping of 0.08, at

t′ = −0.2. The key to understanding the W3 phase is a Heisenberg two-leg ladder. A two

leg ladder has a spin gap of about J/2, and we can think of this gap not just as the raising

of excited state energies, but also the lowering of the ground state energy, making width

two undoped ladder regions favored. The two-leg Heisenberg spin ladder has short-range

spin correlations, with a correlation length of about 3.19[110]. This is in contrast to, say,

a three leg ladder which is gapless with power law spin correlations. We do not find a W4

phase similar to the W3 phase but with 3-leg ladders; the two-leg ladder W3 configuration

is the only such phase found. The stripes themselves resemble t-J chains, with one hole
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Figure 2.11: W3 striped phase on a 32 × 8 cylinder at x = 0.08, t′ = −0.2. In (a) only
the local doping is shown; the local spin measurements are zero. The stripes are strongly
associated with single columns. In (b) we show the nearest neighbor spin-spin correlations,
which are much stronger in the undoped width-two “ladders”. Longer distance spin-spin
correlations are measured to decay rapidly. In (c) we show the link hopping, which is very
strong along the stripes but also exhibits limited hops onto the ladders. The results together
suggest significant decoupling between the chains and ladders.

per about four lattice spacings; holes are unbound, and there is strong hopping along the

chain. There is also transverse hopping onto the ladders but this seems predominantly a

single hop away from the chains. In the spin-squeezed picture of the t-J chain[111], the holes

act as mobile domain walls in a Heisenberg chain; thus, for example, instantaneous singlet

spin correlations are present across each hole. There is no attraction between holes. All

these features seem to also describe the stripes in the W3 phase. The W3 phase seems even

farther from superconducting than the conventional striped phase: there is no sign of paired

holes(see also Fig. 2.2(f)).

In the W3 phase the spin correlations are short ranged in both directions. The low doping

of each stripe and the weak transverse hopping make them unable to create π phase shifts

in the local AFM correlations. There are negligible spin correlations between the ladders.
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Within the ladders, vertical-separation spin-spin correlations are also short ranged, with a

much more rapid decay compared to the conventional striped phase.

The W3 stripe shown in Fig. 2.11 is at its ideal filling for a width 8 cylinder: two holes per

three columns or a doping of x = 2
24

= 0.0833. If we decrease the doping the phase does

not change in a smooth way on width 8. Two holes per stripe and two-leg-ladder undoped

regions are both favored in a quantized way. Decreasing the doping on width 8 causes defects

(see Fig. 2.16) : limited regions which have wider spacing so that most of the cylinder can

maintain a spacing of 3 between stripes. If the two-leg Heisenberg ladder picture is correct

for the W3 phase, then the spacing of 3 would hold on any width cylinder. However, there

is nothing in this picture that says the spacing of holes along a stripe must be exactly 4. We

do not expect an odd number of holes per stripe, as that would require a spin excitation.

But one might have different spacings on a much wider cylinder: for example, one might

find four-hole stripes not just on a width-16 cylinder, but also, say, 14 and 18.

Another system where we can see the W3 phase is a width 6 cylinder, where the stripes run

along the length of the cylinder. This is shown in Fig. 2.15(b). In this case two stripes and

two ladders just fit. In the width 6 cylinder, we do find the spacing of holes on each stripe

can be varied away from 4 slightly by adjusting the doping, consistent with the discussion

above for wide cylinders.

2.8 Energy gaps

We can get further insight into the nature of the phases by studying their energy gaps

associated with adding or removing particles. A generic formula for this sort of energy gap

is

∆En = [E(N0 + n) + E(N0 − n) − 2E(N0)]/2, (2.5)
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for adding or removing n particles at a time, where E(N) is the ground state energy with

N particles. This formula exhibits finite size effects due to the finite size of the system. The

finite length manifests as an overall curvature of E(N), which can be viewed as a shift in

the chemical potential with N . In an infinite system, the chemical potential would not shift

when adding a finite number of particles.

𝒏 = 𝑵 − 𝑵𝟎

𝑬(𝑵𝟎 + 𝒏) − 𝑬(𝑵𝟎) − 𝝁(𝒏)

AFM- 𝒅/𝝅𝒑
𝒕′ = 𝟎. 𝟐

Conventional stripe
𝒕′ = 𝟎

W3 stripe
𝒕′ = −𝟎. 𝟐

Figure 2.12: Energy versus number of particles, from which one can read off various gaps.
The overall curvature is the result of using a finite length cylinder (32× 6); the orange curve
shows a quadratic fit to the points touching it. The chemical potential has been set to make
the slope at the midpoint zero. Left: AFM-d/πp phase with t′=0.2 at x ∼ 0.08. Middle:
conventional striped phase with t′=0 at x ∼ 0.08. Right: W3 striped phase with t′ = −0.2
at x ∼ 0.07. Here the W3 stripe runs horizontally on width 6, displayed in Fig. 2.11.

Rather than extrapolations in system size, we find it more convenient to plot E(N) directly,

and fit the lower envelope of points to a quadratic function. This is shown in Fig. 2.12. The

gaps are then measured by how many points rise above the quadratic fit. These calculations

were done on a width 6 system for higher accuracy. For the W3 stripe calculations on width

6, two stripes run in the horizontal direction as shown in Fig. 2.15(b). Changing the number

of particles changes the filling of these two stripes.

In the AFM-d/πp phase, we see that an odd number of particles is higher in energy. This is

because in this superconducting phase, an odd-N system has an extra quasiparticle, and we

interpret the associated gap as the superconducting gap. Here, this is about 0.12. There is

no sign of gaps associated with higher numbers of particles. In contrast, in the conventional

stripe phase, we see two gaps involved. Systems with odd N exhibit the highest energies,

corresponding to broken pairs. However, we also see that in the even-N sector, multiples of
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four are lower in energy than non-multiples of four. This is because the stripes in this system

have four holes, composed of two pairs, which are bound. A non-multiple of four must have

an isolated pair (see Fig. 2.15(a)) , with an energy higher by about 0.05.

In the right panel showing a W3 striped phase, we see a smaller single particle gap compared

to the previous two cases. This state is unpaired but the energy is still sensitive to having

half-integer total spin. One would expect an extra hole mainly living in a stripe, since a t-J

chain is gapless but a Heisenberg ladder has a large spin gap. It is not clear whether the

finite gap seen is a consequence of the finite length, the even circumference of the cylinder,

or some other effect.

2.9 Comparisons with width-6 cylinders

In this section we report results for two doping-varying scans in width-6 cylinders which

support the qualitative features of the ground state phase diagram in Fig. 13. We also show

some details on the higher energy states which determine the energy gaps in Sec. 7.

𝒕′ = 𝟎. 𝟐

𝑥 =

Figure 2.13: A doping-varying 50× 6 cylinder with t′ = 0.2 which simulates electron-doped
cuprates. The numbers on middle axis indicate the averaged local doping. A staggered
magnetic pinning field of 0.03 is applied on the left edge. No pair field is applied. At low
doping there is AFM order which continuously transition to stripe and then uniform pattern
at higher doping.
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Figure 2.13 shows a doping-varying scan with fixed t′ = 0.2, corresponding to the electron-

doped cuprates. Similar to what is seen on width-8 cylinders, there is a coexisting AFM-d/πp

phase at low doping, and a striped phase with pairing at higher doping. Quantitatively there

are several differences. The AFM-d/πp phase has a narrower doping range with weaker AFM

order compared to the width-8 system. The transition between the AFM-d/πp phase and

the striped phase is less sharp in the width-6 system. Pairing in the width-6 system exists

over a wider doping range than in the width-8 system.

𝒕′ = −𝟎. 𝟐

𝑥 =

Figure 2.14: A doping-varying 50 × 6 cylinder with t′ = −0.2 which simulates hole-doped
cuprates. A staggered magnetic pinning field of 0.03 is applied on the left edge. A global
pair field of 0.005 is applied to measure the pairing response. There’s stripe pattern across
all doping with pairing suppressed

Figure 2.14 shows a doping-varying scan with fixed t′ = −0.2. This is similar to the width-8

results other than the lack of the W3 striped phase at low doping. A single vertical W3

stripe with two holes on width 6 has a substantially different doping per unit length than

on width 8, where we do see the W3 stripes.

In determining the energies shown in Fig. 12, some of the states have unusual configurations,

such as defects in the stripe pattern. For example, when one removes two holes from a

striped calculation, the missing holes are likely to be removed from one particular stripe.

Figure 2.15(a) shows an example of this, with two holes removed from the third stripe from

the left. The state is higher in energy because of the binding of pairs into stripes. We expect

there to be other similar states at nearly the same energy, and a more precise calculation

would show superpositions of these configurations.
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(a)

(b)

Figure 2.15: (a) A conventional striped phase with two holes removed from the third stripe
from the left. (b)A W3 phase with the stripes running horizontally in a width-6 cylinder at
a doing of x = 0.083.

Figure 2.15(b) shows a W3 phase with the stripes running horizontally in a width-6 cylinder.

This configuration allows one to vary the number of holes to get the energies in Fig. 12. On

this width, there are some noticeable spin moments and a slightly charge variation along the

stripes due to the open boundaries.

Figure 2.16: A W3 striped phase with a defect.

Figure 2.16 shows a W3 striped phase on width 8, where changing the doping has produced

a defect. Each of the four stripes shown has two holes, but the overall length of the cylinder

is too long for a perfect W3 configuration. In the figure, the third stripe from the left has

increased its width and the ladder in between it and the second stripe has increased to width

3. The width-3 region shows longer spin-spin correlations, as expected.
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2.10 Comparison to the cuprates

𝒕′ = 𝟎. 𝟐

𝒕′ = −𝟎. 𝟐
𝒕 − 𝒕′ − 𝑱

𝒕 = 𝟏. 𝟎, 𝑱 = 𝟎. 𝟒

AFM
SC
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CO

CO

T
e

m
p
e

ra
tu

re

𝑥 =

cuprates

electron doped hole doped
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Figure 2.17: Upper panel: Experimental phase diagram of a typical cuprate superconductor,
following[4], with antiferromagnetic(AFM), charge ordered(CO) and superconducting(SC)
phases. The vertical axis is temperature and horizontal axis indicates electron doping (left
side) and hole doping (right side). Lower panel: Antiferromagnetic, superconducting and
charge-density wave order parameters at zero temperature in the t-t′-J model from DMRG
calculations. Solid lines are for width-8(W8) cylinders and dashed lines are for width-6(W6)
cylinders.

To test the applicability of our model to cuprates, we first look at the momentum distribution

function n(k⃗) by measuring the single-particle Green’s function in real space and Fourier

transforming it. The results are shown in in Fig. 2.18. Both cases are for a fermion doping

of x ≈ 0.125 of the t-t′-J model. In the left figure with t′ = −0.2, x represents the hole

doping and n(k⃗) is the momentum occupation of the electrons for a hole doped system with

n = 1 − x ∼ 0.875 electrons per site. This Fermi surface is similar to what is seen in the

hole-doped cuprates. In the right part of Fig. 2.18 with t′ = 0.2, the fermions occupy a

circular region centered at the origin. Under a particle-hole transformation, k⃗ is shifted by

(π, π) and these fermions represent holes in a region centered about (π, π). In this case, the
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system is electron doped with n = 1 + x ∼ 1.125 electrons per site, and has a Fermi surface

that is similar to what is seen in the electron-doped cuprates.

𝒕′ = −𝟎. 𝟐
𝒏 = 𝟎. 𝟖𝟖

𝒕′ = 𝟎. 𝟐
𝒏 = 𝟎. 𝟖𝟖

P-H
𝒕′ = 𝟎. 𝟐 → −𝟎. 𝟐

𝒏 = 𝟏. 𝟏𝟐

𝒌𝒙/𝝅

𝒌𝒚
/𝝅

Figure 2.18: Momentum space occupancy n(k⃗) for a single spin in the width-8 cylinder.

The left figure shows n(k⃗) for the fermions in the t-t′-J model with t′ = −0.2 and n=0.88
fermions per site. This corresponds to the momentum distribution for the electrons in a hole
doped system. The center figure shows the momentum distribution of the fermions in the t-
t′-J model with n=0.88 fermions per site and t′ = 0.2. Under a particle-hole transformation,
which includes a (π, π) shift of the origin, one obtains the figure on the right. Here n(k⃗)
represents the momentum occupation of the electrons for an electron doped system with
t′ = −0.2 and n=1.12 electrons per site.

If we collect the antiferromagnetic(AFM), charge ordered(CO) and superconductivity(SC)

pairing from the various scans with t′ = 0.2 and t′ = −0.2, we can construct a zero-

temperature order parameter diagram as shown in the lower panel of Fig. 2.17. This can be

compared to the nominal cuprates phase diagram in the upper panel taken from [4], where

here the vertical axis is temperature. We see several similarities: a much broader AFM

dome on the electron doped side than the hole doped side and a charge ordered region at

intermediate doping on both sides. However, contrary to the cuprate phase diagram, the

SC pairing is significantly suppressed on the hole doped side with t′ = −0.2, whereas in the

hole doped cuprates there is a broad SC dome. Moreover, on the electron doped side with

t′ = 0.2, we find that the t-t′-J model exhibits a broad range of doping over which there is

coexisting AFM, d-wave SC and π-triplet-p-wave SC order, contrary to what is observed in

the cuprate phase diagram.
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In this paper we have set J = 0.4. However, for J = 1/3 we have checked four key points

in the phase diagram, and find the same four phases: the AFM-d/πp phase at low electron

doping (t′ = 0.2, x = 0.0625), the stripes with pairing at high electron doping (t′ = 0.2, x =

0.19), the W3 stripe phase at low hole doping (t′ = −0.2, x = 0.0833), and the conventional

stripe without pairing phase at high hole doping (t′ = −0.2, x = 0.19).

Thus we conclude that one must go beyond the t-t′-J model to understand superconductivity

in the cuprates. This immediately suggests an important question: would a Hubbard model

with t′ do better? In renormalizing away the two particle states to go from the Hubbard

to the t-t′-J model, there are terms that are of the same order as J that are omitted[121].

It could be that these terms are important for representing the physics of the cuprates.

Alternatively, it may be that other interactions are needed to represent superconductivity

properly.

2.11 Inclusion of the third nearest neighbor hopping t′′

The first thing we checked that beyond the t-t′-J model is the inclusion of the third nearest

neighbor hopping t′′, which is thought to be roughly the same size as t′ in the cuprates [5–8].

For the case of the hole-doped cuprates, it reflects the extended nature of the orthogonalized

Zhang-Rice singlet [122] of the 3-band CuO2 model [121]. Can the addition of t′′ fix the

discrepancy?

We use DMRG to investigate pairing properties of the t-t′-t′′-J model at a doping level

x ≈ 0.1. Our main conclusion is that t′′ does not resolve the discrepancy. As shown in

Fig. 2.19, we find that the parameters used for the electron-doped cuprates (t′ > 0, t′′ < 0)

enhance superconductivity, both individually and in combination. However the ones used

for the hole-doped cuprates (t′ < 0, t′′ > 0) suppress it. In most of the region with pairing
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there is coexisting antiferromagnetic(AFM) order and uniform electron/hole density, i.e. an

absence of charge stripes. These results imply that the extended t-t′-t′′-J model fails to

capture the superconducting phase of the hole-doped cuprates.

pairing

non-pairing

𝒕′′

𝒕′

AFM uniform density
𝒙 ≈ 𝟎. 𝟏

AFM nonuniform density

approximate 

boundary of 

pairing

𝒕′′/𝒕′ = 𝟐/𝟑

𝒕′′/𝒕′ = −𝟐/𝟑

Electron 

doped

hole 

doped

Figure 2.19: An approximate phase diagram in the t′ − t′′ plane at doping x ≈ 0.1. The
lines are “scans” with the blue/red color denoting the parameter range with/without pairing.
The dotted green line shows the extrapolated pairing phase boundary based on the scans.
The light/dark gray regions have AFM order with uniform/nonuniform hole density while
the white background is striped. Square [5], diamond [6, 7] and circle [8] markers indicate
the (t′, t′′) values proposed in several studies with solid markers for electron doped systems
and hollow markers for hole doped systems.

2.12 Summary

In summary, we have carried out large scale ground state DMRG calculations for the extended

t-J cylinders with width six and eight which approximate the behavior of 2D systems. We

have established an approximate phase diagram for this model.

In the parameter region that corresponds to electron doped cuprates, at low doping we

find an AFM-d/πp phase with coexisting uniform AFM and strong d-wave singlet pairing.

As a result of these two orders, there also exists (π, π), p-wave triplet pairing. Pairing in
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this electron low-doped region is strong and unambiguous. At higher doping there is a

striped phase with relatively weaker d-wave singlet pairing, as well as triplet pairing with an

amplitude modulated by the stripes.

In the parameter region corresponding to hole doped cuprates, there is a broad striped phase.

States with pairing go from being meta-stable and only slightly higher in energy near t′ = 0

to significantly suppressed with t′ = −0.2. At low doping, near x = 0.08, we find a novel

width-3 stripe phase that has chains of unpaired holes separated by two-leg spin ladders. The

hole chains behave like 1D t-J chains while spins on two-leg ladders mimic the short-ranged

spin correlations seen in two-leg Heisenberg ladders. For t′ < 0, AFM order only exists for

a very narrow doping range near half-filling.

Despite the fact that the extended t -J model manages to capture several aspects of the

electron and hole-doped cuprates, including the broad AFM dome on the electron side and

a much more narrow one on the hole side, as well as charge order on both sides, the su-

perconducting properties exhibit significant discrepancies with respect to the cuprates. The

hole doped cuprates exhibit strong superconductivity while the corresponding region of the

model does not. In contrast, for the electron doped region of the model we find strong

superconductivity over a broader doping range than in the cuprates, and for a substantial

range of doping this pairing coexists with AFM and triplet p-wave superconductivity.

Note added. After the publication of this paper [10], there have been other studies on

the ground state phase diagram of both the t-t′-J model and the t-t′ Hubbard model [28,

66, 123, 124]. While studies have converged regarding the existence of superconductivity

on the electron-doped side, superconductivity on the hole-doped side appears to be more

complicated.
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Chapter 3

DMRG-based downfolding of the

three-band Hubbard model:

Importance of density-assisted

hopping

3.1 Introduction

What is the minimal model that captures the important physics of the high-temperature

cuprate superconductors? This has been a central question ever since the discovery of the

cuprates. It has been argued that the single-band Hubbard and t-J models, in their simplest

forms, are sufficient to describe the physics of high Tc superconductivity. Unexpectedly,

recent numerical simulations find that superconductivity in the ground state of these single-

band models appears to be quite delicate. For example, in the pure Hubbard and t-J

models (t′, t′′ = 0), superconductivity is found to be absent [10, 27]. While the presence
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of a t′ > 0 can induce superconductivity [10, 123–127], this corresponds to electron doping

and the question regarding the presence of hole-doped superconductivity (t′ < 0) is not

completely resolved [10, 28, 123, 124, 126]. The greatest delicacy appears to be associated

with the superconductivity; other aspects of the models, including antiferromagnetism(AFM)

as well as intertwined spin and charge order, appear to be in qualitative agreement with the

cuprates [10, 11, 72, 75, 128–131].

This subtleness of pairing in the single-band models calls for a re-examination of the down-

folding process used to derive them, since modest errors could have significant effects. This

downfolding is a two-step process, where first one constructs from density functional meth-

ods the intermediate-level three-band Hubbard (or Emery) model [132], which includes Cu

dx2−y2 , O px and O py orbitals. Since the three-band model is closer to an all-electron

Hamiltonian of the cuprates, one expects it to be more reliable than a one-band model—

but also more difficult to simulate. There is evidence that the three-band model captures

various aspects of the cuprates, particularly magnetic and charge density wave properties

[133–140], with greater uncertainty about the pairing properties. To downfold to a single

band model, Zhang and Rice argued that holes on oxygen sites bind to holes on copper

sites to form local singlets [122]. The Zhang-Rice singlet picture has gained support from

experiments [141–143] as well as calculations [134, 135, 144, 145], and motivated studies of

various single-band Hubbard [70, 74, 79, 80, 83, 86, 87, 92, 100, 101, 112, 123, 146–153] and

t-J models [11, 76, 78, 81, 82, 99, 125, 127, 154–156].

Here we demonstrate an alternative way to downfold the three-band Hubbard model based on

a density-matrix renormalization group (DMRG) [29] construction of Cu-centered Wannier

functions. The general idea of constructing effective models using ab initio calculations

has been explored in various contexts [157–161]. Our approach uses DMRG to compute

the natural orbitals of the three-band model, and from those construct Wannier functions,

similar to a recent work that downfolds hydrogen chains into Hubbard-like models [162]. The
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resulting single-band model includes additional two-site density-assisted hopping terms tn

whose magnitude is comparable to t. On a mean-field level, these new terms simply reduce

the ratio U/teff , with teff = t + tn⟨n⟩, where ⟨n⟩ is the average number of holes per CuO2

unit cell. However, beyond mean-field, the tn terms capture the doping-asymmetric carrier

mobility, and, as revealed by a measurement of the superconducting phase stiffness, further

enhance the pairing in the hole-doped single-band model.

3.2 The three-band Hubbard model

We present the lattice structure and the terms in the three-band Hubbard model in Fig. 3.1(a).

Each CuO2 unit cell consists of three orbitals: Cu dx2−y2 , O px and O py. We study clusters

with cylindrical boundary conditions. For an Lx by Ly cylinder, there are NCu=LxLy Cu

sites and NO=(2Lx + 1)Ly O sites. In the undoped insulator at half-filling, there is one hole

per unit cell, and the model is written in the hole picture with d†iσ or p†jσ creating a hole with

spin σ on a Cu site i or O site j. Hole doping corresponds to ⟨n⟩ > 1 while electron doping

corresponds to ⟨n⟩ < 1. The three-band Hamiltonian is:

HTB = −tpd
∑
⟨ij⟩σ

(d†iσpjσ + h.c.) − tpp
∑
⟨⟨ij⟩⟩σ

(p†iσpjσ + h.c.)

+ Ud

∑
i

nd
i↑n

d
i↓ + Up

∑
i

np
i↑n

p
i↓ + ∆pd

∑
iσ

p†iσpiσ

(3.1)

where tpd/tpp hops a hole between nearest-neighbor Cu-O/O-O sites, and the summation

⟨ij⟩/⟨⟨ij⟩⟩ runs over all relevant pairs of sites. We have chosen a gauge for the orbitals as

shown in Fig. 3.1(a) so that all hoppings are negative; Ud and Up are the on-site repulsion

term on the Cu and O sites; ∆pd=ϵp − ϵd is the energy difference for occupying an O site

compared to occupying a Cu site. We set the energy scale with tpd = 1.0, and take tpp = 0.5,

Ud = 6.0, Up = 3.0, and ∆pd = 3.5, unless otherwise noted, which appropriately describes
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a charge-transfer system where Ud > ∆pd and ∆pd > 2tpd. Estimates for tpd range from

1.1eV [163] to 1.5eV [164]. Comparing with previously used parameters [137, 164], here we

increase ∆pd to incorporate the effect of Vpd, and choose a somewhat smaller Ud for a stronger

pairing response (see Appendix. B). Systems h1 and e1 have hole and electron dopings of

0.15. Another hole-doped case h2 with Ud=3.5 and ∆pd=5.0 describes a Mott-Hubbard

rather than charge-transfer system 1. The calculations are carried out using the ITensor

library [108]. We typically perform around 20 sweeps and keep a maximum bond dimension

of 7000 to ensure convergence with a maximum truncation error of O(10−5).
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Figure 3.1: (a): The three-band Hubbard model and our phase convention for the orbital
basis. (b): Charge and spin structure on a 12×5 cylinder at a hole doping ∼ 0.15. The length
of the arrows and the diameter of the circles represent ⟨Sz⟩ and local doping, respectively.
The spins are colored to indicate different AFM domains. There are weak magnetic pinning
fields applied on the boundary sites in the dotted boxes. (c): Average orbital-resolved local
doping pCu/O along the length of the cylinder with ptot=pCu + 2pO (d) and (e): Pairing order

⟨∆†
ij + ∆ij⟩ between neighboring Cu sites i and j. The thickness/color of the bond indicates

the magnitude/sign of the pairing. The pairing orders away from the edges are similar for
(d) which has pairfields applied on the shaded left edge and (e) which spontaneously breaks
symmetry.

1See Ref.[165] for detailed definitions of a charge-transfer insulator and Mott-Hubbard insulator.
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Previous studies of the three-band model have identified features consistent with the cuprates,

including doping asymmetry, formation of stripes on the hole doped side and commensu-

rate AFM on the electron-doped side [136, 137]. There is evidence for d-wave pairing for

both electron and hole doping, with the dominant component between nearest neighbor Cu

sites [134, 135, 139, 166, 167].

Of particular concern for finite size effects is the quantization of stripe filling around a short

cylinder [137]; here we choose a width-5 cylinder so that one stripe can form lengthwise; see

Fig. 3.1(b). The Cu-Cu pairing is shown in Fig. 3.1(e). Along the stripe an additional pair-

ing modulation reflects an edge-induced charge density oscillation, as shown in Fig. 3.1(c).

Similar pairing occurs whether it is pinned by edge pair fields [Fig. 3.1(d)] or allowed to arise

spontaneously as a finite bond dimension broken symmetry [10] [Fig. 3.1(e)]. The existance

of pairing for a hole-doped three-band model has also been reported in a recent infinite

projected entangled-pair states study [168].

3.3 Downfolding into a Wannier single-band model

The occupied bands in the DMRG wavefunctions are identified by measuring the single-

particle correlation matrixMαβ =
∑

σ⟨C†
ασCβσ⟩, with {C†} = {d†, p†x, p†y}, whose eigenvectors

and eigenvalues define the natural orbitals (NOs) and their occupancies, respectively. In a

non-interacting system, the NO occupancies make a step function at the Fermi level. Here,

this step near i ∼ 35 is completely smeared out [Fig. 3.2(a)], reflecting the strong correlation

in the system. However, there is a sharp drop in occupancies at i = 60, the total number of

Cu sites, indicating the end of the first band. Beyond the first band, the total occupancy

is < 2%, and for the electron doped case, < 0.4%. This provides a strong justification for

downfolding into a single-band, which would be exact if the higher-band occupancies were

zero. We observe similar sharp drop-offs for narrower width 2 and 4 systems. This indicates
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that the drop-off is due to short-range physics involving the Cu and surrounding O orbitals,

which can be seen clearly on small systems. We observe a similar sharp drop-off for a range

of three-band parameters, including in the Mott-Hubbard regime.
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Figure 3.2: At a hole doping of 0.15 (a): occupancies of the natural orbitals obtained by diag-
onalizing the single-particle correlation matrix Mαβ =

∑
σ⟨C†

ασCβσ⟩ , with C† = {d†, p†x, p†y}.
The natural orbital states/occupancies correspond to the eigenvectors/eigenvalues of Mαβ.
The inset is a zoom-in of the region that shows a sharp drop at the second band beyond
which occupancies are limited (< 2%). (b) and (c): Cu-centered Wannier functions at two
different locations constructed from the natural orbitals of the first band. Color/area of the
circles indicate the sign/magnitude of the local orbital component. (e): overlap of Wannier
functions (truncated to a 5 × 5 CuO2 unit cell) with their centers shifted to the same site,
showing they are almost translational invariant.

Given the accuracy of the truncation to a single band, we can derive an effective single-band

model through the standard Wannier construction with a simple single-particle transfor-

mation. We first localize the functions of this band into Cu-centered Wannier functions

(WFs).

Our construction of the Wannier functions and subsequent downfolding is patterned after

Ref. [162], with the key difference being that in our study we start with a three band

model rather than a continuum all electron calculation described by sliced basis functions.
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The goal is to form Wannier functions centered at Cu site j {ϕj(r⃗)} by linearly combining

the natural orbitals of the first-band {ψi(r⃗)}, with both i and j ranging from 1 to the

total number of Cu sites. We would like the Wannier functions to be: (1) orthonormal,

(2) translationally invariant, and (3) localized around Cu sites. These properties ensure

the downfolded Wannier Hamiltonian has short-ranged interactions with site-independent

magnitudes. While the translational invariance cannot be completely achieved because we

are dealing with cylindrical systems with open edges, we expect the Wannier functions in

the bulk to almost satisfy the above properties.

0.0 0.5 1.0 1.5 2.0

0.0 0.8634 0.2470 -0.0402 -0.0092 0.0061

0.5 0.2470 0.0093 -0.0039

1.0 -0.0402 0.0093 -0.0042 -0.0078 0.0027

1.5 -0.0092 -0.0078 0.0031

2.0 0.0061 -0.0039 0.0027 0.0031 -0.0034

Δ𝑙𝑥Δ𝑙𝑦

Figure 3.3: A Cu-centered Wannier function with the color/area of the circles denoting
the sign/magnitude of the local orbital components. The coefficients of the orbitals in the
lower-right quadrant are shown in the table, which have been averaged over the vertical and
horizontal directions. The Wannier function here is from downfolding the case h1 in the
main text.

First we construct functions {δj(r⃗)} localized around each Cu site j by superposing the

natural orbitals {ψi} with coefficients being their respective weight on Cu site j:

δj(r⃗) =
∑
i

ψi(r⃗ = r⃗j)ψi(r⃗) (3.2)

where r⃗j is the position vector corresponding to Cu site j. The functions {δj(r⃗)} are localized,

but not orthonormal. We orthonormalize them while preserving their locality using Löwdin

symmetric orthogonalization [169], which minimally orthonormalizes these functions (note
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O is a matrix):

ϕj(r⃗) =
∑
j′

[O− 1
2 ]jj′ δj′(r⃗),

withOjj′ = ⟨δj(r⃗) | δj′(r⃗)⟩.
(3.3)

The resulting Wannier functions {ϕj(r⃗)} are guaranteed to be orthonormal and are almost

translational invariant, as we show in Fig. 2(e) in the main text. We plot the structure of the

resulting Wannier function in Fig. 3.3. It is localized around one Cu site with its tail decaying

rapidly with the distance away from the center Cu site. Due to the width-5 cylinder used,

there are differences between the coefficient of orbitals in vertical and horizontal directions

at long distance. While we do not further modify the Wannier functions, so as to preserve

orthonormality, we do later average the terms over the two directions in the downfolded

Hamiltonian.

We show two representative WFs in Fig. 3.2(b) and (c), which are evidently highly localized.

Functions on different sites are almost identical; evidence for this translational invariance is

shown in Fig. 3.2(d).

To construct the effective Hamiltonian in the WF space, we first organize the WFs into a

NCu-by-(NCu + NO) real isometric matrix A (AA†=1) , with entry Aij being the weight of

the three-band orbital j in the Wannier function centered at Cu site i (The matrix elements

of A are listed in Fig. 3.3). The matrix A defines a single-particle transformation from the

three-band basis {C†} = {d†, p†x, p†y} to the WF basis {c†}:

c†i =
∑
j

AijC
†
j (3.4)
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We invert this relationship, taking:

C†
j =

∑
i

Aijc
†
i + higher bands (3.5)

where we omit the higher bands. The Wannier Hamiltonian is obtained by inserting Eq. 3.5

into the three-band Hamiltonian [Eq. 3.1]. The single-particle terms kαβ, which include the

tpd, tpp and ∆pd terms, become

kαβC
†
ασCβσ → kαβ

∑
ij

AiαAjβ c
†
iσcjσ. (3.6)

The two-particle terms Uα, which include the Ud and Up terms, become

Uαnα↑nα↓ → Uα

∑
ijkl

AiαAjαAkαAlα c
†
i↑cj↑ c

†
k↓cl↓. (3.7)

Although the Wannier Hamiltonian has O(N2) single particle and O(N4) two particle terms,

both the single-particle and two-particle terms decay quickly with the distance between sites.

Magnitudes of the single-particle hoppings beyond third-nearest neighbors are smaller than

0.01t and are truncated. The largest two-particle term is the onsite repulsion U . The

second largest is the nearest-neighbor density-assisted hopping tnc
†
j,σci,σniσ̄. We also keep

the second and third nearest-neighbor density-assisted hoppings (t′n and t′′n). All other two-

particle terms are less than 0.05t and are truncated. After these simplifications, we obtain

a truncated Wannier model:

H =
∑
i,δ,σ

−tδc†i+δ,σci,σ +
∑
i

Uni,↑ni,↓

+
∑
i,δi,σ

−tδn(c†i+δ,σci,σ + c†i,σci+δ,σ)niσ̄.

(3.8)
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Here i+ δ is the first, second, or third nearest neighbor of site i, with conventional hopping

amplitudes t, t′, and t′′, and with density-assisted hopping amplitudes tn, t′n, t′′n. The resulting

model parameters are summarized in Table. 3.1 for downfolding based on three different

three-band systems 2.

Table 3.1: Parameters for the Wannier single-band model from downfolding the three-band
model. h and e correspond to hole and electron doping of 0.15. tpd is nominally 1.5eV.

case (Ud,∆pd) t/tpd tn/t t′/t t′n/t t′′/t t′′n/t U/t
h1 (6.0, 3.5) 0.27 0.60 0.07 0.05 -0.04 -0.09 12.6
e1 (6.0, 3.5) 0.28 0.52 0.08 0.08 -0.05 -0.04 13.7
h2 (3.5, 5.0) 0.21 0.33 0.08 0.05 -0.03 -0.04 11.8

Note that the nearest-neighbor tn coefficients are almost twice the size of an effective exchange

coupling J ∼ 4t2/U ∼ 0.32. Given their substantial magnitude, it is surprising how rarely

these terms have been considered [170–173]. The existance of the tn term is guaranteed by

a finite component of the nearest-neighbor Cu orbitals in the Wannier function, which is

robust since regular Wannier functions must have those components to satisfy orthogonality.

Its magnitude is substantial mainly because of the large value of Ud. The tn term is much

larger for the cuprate-relevant charge-transfer case h1, compared with the Mott-Hubbard

case h2 that has a similar U/t ratio. This is directly tied to the higher O-occupancy in the

charge-transfer case, which makes the WFs more extended.

We also note that the WFs and thus the model parameters are similar for the hole and

electron doped cases, even if their parental three-band states are quite different in spin and

charge order, indicating that the downfolding is determined by the local physics. Just as the

sharp drop in occupancy after the first band shows little dependence on system size, we find

the Wannier Hamiltonian also exhibits little dependence on cluster size.

Two key questions now arise: (1) does the Wannier model Hamiltonian give the same prop-

erties as the three band model? Given the straightforward and robust nature of our down-

2The hopping coefficients are averaged over horizontal and vertical directions, which typically differ by
∼ 10%, but somewhat more (-0.07 and -0.11) in the case of t′′n in system h1.
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folding, we expect this to be so, and comparisons detailed in Appendix. B for moderate

system sizes support this. (2) Does a mean-field treatment of the tn terms, reducing the

system to a standard Hubbard model, also match the properties of the three-band model?

Although this may be largely true for the spin and charge degrees of freedom, we will argue

that the delicate nature of the pairing is not correctly captured by the mean field/standard

Hubbard treatment. In any case, the large magnitude of tn poses a potential difficulty for a

mean-field treatment since any deviations could be significant.

3.4 Effects of tn

We find that the tn terms have two primary effects: first, they reduce the effective interaction

strength U/teff ; and second, they enhance hole hopping, reducing the effective mass of pairs

on the hole-doped side and promoting phase coherence. The reduction of U/teff can be

understood from a mean-field treatment of tn where one replaces tnc
†
jσciσ(niσ̄ + njσ̄) by

tnc
†
jσciσ⟨n⟩, with ⟨n⟩ being the average density of holes per Cu site, adding to the conventional

hopping. This changes U/t ∼ 13 to U/teff ∼ 7.5 (for tn=0.6, n=1.15), close to U/t = 8,

which is often used for the cuprates.

Beyond mean-field, we consider specific hopping processes in Fig. 3.4(a-c), written in the

hole-picture. For a doped hole (i.e. a doublon) we expect process (a) to be relevant, where

the tn acts with magnitude 2tn. For undoped regions with AF particle-hole virtual hoppings,

process (b) acts with magnitude tn. On the electron doped side, process (c), tn has no effect.

It does not seem possible to capture these various properties correctly with a mean field

treatment.

We find that the resulting hole-pair mobility is enhanced with the tnc
†
j,σci,σniσ̄ term versus its

mean-field tnc
†
j,σci,σ⟨niσ̄⟩, 2.75t versus 2.27t. In contrast, the mobility of a pair of electrons
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Figure 3.4: (a),(b) and (c): action of the tn term, and resulting hopping strengths, depending
on the occupations of the sites involved. (d) On a width-4 cylinder, mobility of a pair of
holes/electrons (in unit of t) measured by the slope of pair energy versus 1/(Leff + 1)2, for
the t-tn-U model and the teff-U model.

with tn is much smaller, 1.49t, and reduced comparing to its mean-field 2.27t. Thus, the

increased mobility of a single pair hints at the possibility of enhanced pairing due to tn on

the hole doped side.

To probe for superconductivity, we apply edge pairfields to a 10×4 cylinder with and without

a π phase shift between the two edges, to measure the superconducting phase stiffness α. The

results are shown in Fig. 3.5. Note that α = 0 indicates the absence of superconductivity.

The applied fields make α proportional to an energy difference, α ∝ Lx

Ly
∆E, where ∆E can

be extrapolated using DMRG. At a hole doping of 0.11 (⟨n⟩ ≈ 1.11), the t-tn-U model gives

a stiffness α that is five times larger than the teff-U model 3. The pure Hubbard model

(without t′ terms) is thought to be non-superconducting [27]; our results hint that the tn

3In Appendix. B, we vary tn from 0 to 1.6 and find that the superconducting phase stiffness gets bigger
as tn increases, and the phase stiffness is greater compared to using a mean-field teff .
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Figure 3.5: Pairing response for the t-tn-U model in a 10 × 4 cylinder at a hole doping
∼ 0.11(n ≈ 1.11). Pair-fields have been applied to regions near both edges, denoted by
the black boxes, with the phases on the two ends (a) being the same and (b) having a π
shift. (c): extrapolation of the energies with the truncation errors for the two different
pairfield boundary conditions in (a) and (b). The energy difference is a measurement of the
superconducting phase stiffness. (d) Same as (c) for the teff-U model that incorporates the
effect of the tn term only in mean-field.

terms, even without t′, might tip the balance towards superconductivity. In a more realistic

model where t′ and t′n from Table. 3.1 are included, we also find a larger phase stiffness,

∆E = 0.012(4) with tn versus 0.002(4) with teff , for a system at a hole doping of 0.11.

3.5 Summary and discussion

We have revisited the Zhang-Rice downfolding of the three-band Hubbard model to a single-

band model, basing the downfolding on a DMRG simulation of the three band model. Our

results give strong support to the applicability of the one band approach, where the small

occupancy of higher natural orbital bands shows their irrelevance. However, our Wannier

function downfolding also shows that a density-assisted hopping term which is usually ne-

glected has a large coefficient. This term renormalizes the hopping in mean field, but mean
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field treatments are inadequate to capture the effects of this term on pairing. The density-

assisted hopping enhances hole mobility and hole-pair mobility. This leads to enhanced

superconducting pairing on the hole-doped side on width-4 cylinders.

Our results do not imply that the tn term is necessary for superconductivity—but it clearly

seems to help, and is directly generated by the three-band downfolding. Recent simulations of

the t-t′-U Hubbard model, combining auxiliary-field quantum Monte Carlo and DMRG and

extrapolating to the thermodynamic limit, indicate that the hole-doped Hubbard model is

superconducting [28]. However, the extrapolations are delicate, and it seems that this system

must be close to the boundary between pairing and non-pairing phases. The addition of a

tn term may push the model well into the pairing regime, both easing the difficulties of

simulating the model, and improving its applicability to the cuprates.
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Chapter 4

Quantum Spin Nematic in the

Square-Lattice J1-J2

Ferro-antiferromagnetic Heisenberg

Model

4.1 Introduction

Liquid crystals—which combine properties of a liquid and a solid that seem mutually exclusive—

were considered an exotic state of matter for nearly a century before becoming ubiquitous

in technology [174, 175]. Their quantum analogues have been hypothesized and pursued

in several contexts, such as electronic nematic states in strongly correlated materials [176–

179], spin nematics in frustrated magnets [180–190], and supersolids in He4 and cold atomic

gases [191–194]. Quantum spin nematics are particularly elusive, as they should interpo-

late between a magnetically ordered spin solid and a spin liquid, another exotic and elusive
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state [53, 195]. Like spin liquids, spin nematics lack conventional dipolar magnetic order, but

instead break spin-rotational symmetry with quadrupolar or higher-rank multipolar ordering

[196–198], making their experimental detection challenging [17].

An earlier study has proposed an intuitive view of the nematic states as of the Bose-Einstein

condensates (BECs) of pairs of spin excitations with a gap in the single-particle sector [198].

In a nutshell, a nematic state occurs if a conventional order due to a BEC of single spin

flips [199] is preempted by a BEC of their pairs. Since the bound states (BSs) of magnons

in ferromagnets (FMs) do not Bose-condense [200, 201], it was suggested that magnetic

frustration can facilitate nematic pair-BEC [198], a concept explored in several classes of

frustrated magnets theoretically [202–217] and experimentally [181–190].

One of the simplest paradigmatic models for this scenario is the J1–J2 ferro-antiferromagnetic

(AFM) S=1/2 Heisenberg model on a square lattice in external field,

H = J1
∑
⟨ij⟩1

Si · Sj + J2
∑
⟨ij⟩2

Si · Sj − h
∑
i

Sz
i , (4.1)

where ⟨ij⟩1(2) denotes the first (second) nearest-neighbor bonds, the field h=gµBH, J1 =−1

is set as the energy unit, and J2>0. The FM is a ground state for small J2; for large J2 it

is a stripe AFM [218]; see Fig. 4.1(a).

Prior studies on this model [202–204] have proposed the nematic state to intervene between

FM and AFM phases in a broad region similar to the one shown in Fig. 4.1(a). However,

this contradicts the robust numerical evidence of a direct FM-AFM transition in zero field

[218], highlighting a common pitfall of claiming the nematic state based on correlations that

are subsidiary to a prevalent dipolar order. It also shows that the nematic state of BEC

pairs may be superseded by other instabilities.
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Figure 4.1: (a) The näıve h–J2 phase diagram of model (4.1) based on the single spin-flip
and pair-BEC hc1 and hc2 lines. Lines and symbols show analytical and DMRG results,
respectively. (b) The actual phase diagram of the model (4.1) in the zoomed region of (a),
with the first-order, multi-pair, and pair-BEC transitions emphasized. (c) The zoomed sector
of (b) showing the extent of the nematic phase near pair-BEC field.

In this chapter, we combine analytical and numerical density-matrix renormalization group

(DMRG) approaches to provide unambiguous conclusions on the nematic state in the J1–J2

square-lattice model.

4.2 d-wave pair-BEC

Pairing is ubiquitous in physics [219, 220]. In model (4.1), the pairing of two spin flips

sharing an attractive FM J1-link occurs in the polarized state. Since the model is 2D, one

expects a BS in the s-wave channel for an arbitrarily weak attraction, or any J2, as in the
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Figure 4.2: (a) Magnon energies εk at h > hc2 for J2 = 0.7 and 0.4, schematics of magnon
pairing, and gaps ∆Q(0). (b) The pairing gap ∆ vs J2 from theory (lines) and DMRG (sym-
bols). (c) εk for J2 =0.7, nodes of the dx2−y2-wave harmonic (white lines), and schematics of
the d-wave. (d) The h–J2 phase diagram of the model (4.1) by DMRG, field h is relative to
hc2. Symbols mark the FM (black), nematic (red), and AFM (blue) phases. Phase bound-
aries are inferred from the midpoints between the data. Cyan circle marks a switch to the
pair-attraction and green circle to the first-order transition (solid line). Inset: Schematics of
the true h–J2 phase diagram in Fig. 4.1(b). The nematic region and the deviation from the
hc2-line are exaggerated.

Cooper problem for superconductivity [219]. Yet, the prior works give a finite J2-range for

the pairing [202, 203] and provide no insight into the pairs’ d-wave symmetry.

The paring of two spin flips can be solved by an exact formalism [200, 212]. It yields the

näıve phase diagram of the model (4.1) shown in Fig. 4.1(a), where hc1 =4J2−2 is the line of

the single spin-flip BEC and the FM-AFM border in the classical limit, which is preempted

by the pair-BEC at hc2 for any J2. DMRG energies for 16 × 8 cylinders with fixed numbers

of spin flips yield hc1 and hc2 values in nearly-perfect agreement (symbols).

The magnon pairing gap ∆, sketched in Fig. 4.2(a), is the difference of these fields, ∆ ≡

hc2−hc1, which agrees with the weak-coupling result of the Cooper problem [219]
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∆ ≈ J2 e
−πJ2 , (4.2)

for J2 ≫ 1, but in the d-wave channel. Fig. 4.2(c) explains the predominance of the d-

wave. The nodes of the dx2−y2 harmonic of the attraction potential, V d
q ∝ (cos qx−cos qy),

avoid crossing the magnon band minima at Q = (0, π)[(π, 0)], see Fig. 4.2(a), while the

nodes of other harmonics do cross them, rendering pairing in these channels unfavorable (see

Appendix. C). The spatial extent of the BS in (4.2) can be estimated as ξ∝
√
J2/∆∝eπJ2/2,

relating deviations of the DMRG from exact results in Fig. 4.2(b) at larger J2 to the finite-size

effect 1.

4.3 Phase diagram

With the pairing problem in the FM state solved exactly, its d-wave symmetry and J2-extent

elucidated, a nematic phase is expected to exist below the pair-BEC transition hc2 down to

the single spin-flip BEC hc1, where the single-particle gap closes and the AFM order prevails,

see the phase diagram in Fig. 4.1(a). However, as we demonstrate, the many-body effects

strongly alter some of these expectations, see Figs. 4.1(b), 4.1(c), and 4.2(d).

Generally, for a BEC condensate to form a superfluid phase its constituents must repel

[199, 221]. This is the case for the pair-BEC for large (repulsive) J2, implying that the

nematic phase must occur in some region below the hc2-line, which is unaffected by many-

body effects.

As the pair binding energy 2∆ increases for smaller J2, see Fig. 4.2(b), one also expects a

change of the pair-pair interaction from repulsive to attractive. With the numerical evidence

1For example, ξ≈4.8 for J2=1.0 (see Appendix. C)
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for that presented below, this change occurs at about J2 ≈ 0.6, marked by a cyan circle in

the phase diagrams in Figs. 4.1(b) and 4.2(d).

The pair-attraction has two effects. First, the FM-nematic phase boundary in Figs. 4.2(d)

and 4.1(b) is pulled above the hc2-line, superseded by a BEC of the multi-pair states 2.

Second, the nematic region shrinks as the critical pair density for a transition to the dipolar

state is reached more readily. Ultimately, at about J2 ≈ 0.5 (green circle in Figs. 4.2(d)

and 4.1(b)), the nematic phase ceases altogether. In a sense, while the pair-binding gets

stronger, the stiffness of the phase vanishes, leading to a first-order collapse of the FM into

AFM phase with a finite canting of spins, explaining the zero-field results of Ref. [218] and

substantiating the proposal of Ref. [222].

The most striking change concerns the näıve nematic-AFM phase boundary in Fig. 4.1(a).

The hc1-line corresponds to a closing of the single-magnon gap for the non-interacting

magnons. However, in the presence of the pair-BEC, this gap is strongly reduced due to

attraction to the pair condensate(discussed in Sec. 4.5), dramatically extending the AFM

phase above the hc1-line and leading to about an order-of-magnitude contraction of the näıve

nematic phase according to DMRG [223]; see Figs. 4.1 and 4.2(d).

Our Fig. 4.2(d) and Figs. 4.1(b) and 4.1(c) quantify all of the trends described above: the

narrow nematic region below the hc2-line, the change to the pair-attractive regime for J2 ≲

0.6 leading to multi-pair transitions and further narrowing of the nematic region, and first-

order transition for J2 ≲ 0.5 together with a shift of the FM-to-AFM boundary from the

hc2-line to smaller J2.

To reveal the resultant phase diagram in Figs. 4.1(b) and 4.1(c), we use iterative zooming

because the width of the nematic region and the shift of the transition lines are hard to

2The “true” multi-pair states are likely to occupy only a very narrow region below the hc>2 phase
boundary, while the nematic phase is also pulled above hc2, in analogy to the AFM state that expands above
the hc1-line.
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discern on the scale of Fig. 4.1(a). They are derived from Figure 4.2(d), which is based

on the DMRG results discussed below, with each symbol corresponding to an individual

simulation.

4.4 DMRG results

DMRG calculations are performed on the Lx×Ly-site square-lattice cylinders with mixed

boundary conditions, and width Ly =8. 3

We use three complementary approaches. The first is long-cylinder “scans,” in which the

magnetic field is varied along the length of the 40×8 cylinder, with different phases and

their boundaries coexisting in one system. These 1D cuts through the phase diagram are

very useful [60, 62, 67–69], allowing one to differentiate first- and second-order transitions by

varying the ranges of the scans. Since the parameter gradient can impose unwanted proximity

effects, we use such scans judiciously as the first exploratory measure of the nematic phase.

The second approach utilizes 20×8 cylinders, with an aspect ratio that approximates the 2D

behavior in the thermodynamic limit [3]. To obtain BEC boundaries in Fig. 4.1, the pairing

gap in Fig. 4.2(b), and multi-pair energies, we perform calculations for fixed numbers of spin

flips (fixed total Sz) as a function of h and J2.

Lastly, the same cylinders are simulated without fixing total Sz to allow for symmetry-broken

phases that are induced by weak edge fields. The broken symmetry allows us to measure

local order parameters instead of their correlation functions [60, 62, 67–69]. The decay of

the induced orders away from the boundary also serves as an excellent indicator of their

stability in the 2D bulk.

3Calculations are carried out using the ITensor library [108], typically performing 16 sweeps and reaching
a maximum bond dimension of about m=2000 to ensure good convergence with a truncation error <10−6.
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Figure 4.3: DMRG results in the 20×8 cluster for J2 = 0.55 and h = 0.445. (a) Ordered
moment ⟨S⟩ in the xz-plane with pairing field 0.1S−

i S
−
i+y (spin-flip field 0.1S−

i ) at the left
(right) edge. (b) Nearest-neighbor component of the pair wave-function; thickness (color) of
the bond corresponds to the value (sign) of ⟨S−

i S
−
i+x(y)⟩. (c) z-axis magnetization ⟨Sz

i ⟩≈⟨S⟩
(left axis), and nematic ⟨S−

i S
−
i+y⟩ and spin-canting ⟨S−

i ⟩2 order parameters (right axis) along
the cylinder.

Our Figure 4.3 showcases the described approach and its results for J2 =0.55 and h=0.445;

see the leftmost red circle in Fig. 4.2(d), just above hc2 =0.441 for this value of J2. Fig. 4.3(a)

shows the spin configuration, with arrows’ length equal to the local ordered moment ⟨S⟩.

In Fig. 4.3(b) bonds represent the nearest-neighbor pair wave-function ⟨S−
i S

−
i+x(y)⟩, which is

directly related to the quadrupole-moment order parameter [210], and Fig. 4.3(c) provides

a quantitative measure of them along the length of the cluster. A pairing field 0.1S−
i S

−
i+y

(spin-flip field 0.1S−
i ) is applied at the left (right) edge.

In order to avoid the pitfalls of the earlier work [202], an important step in the search for

the nematics is to rigorously rule out dipolar orders, since nematic correlations also exist in

them as a subsidiary of the multipole expansion. As one can see in Fig. 4.3(a) and 4.3(c), the

magnetization is markedly suppressed from full saturation away from the boundary, ⟨Sz⟩< 1
2
,

but shows no sign of canting. In the same region, the quadrupolar order parameter is clearly

developed, with ⟨S−
i S

−
i+y⟩ ≳ 0.1 and its d-wave character evident from the opposite sign of

the horizontal and vertical bonds in Fig. 4.3(b). On the other hand, the induced canting on

To avoid metastable states, we use different initial spin configurations and compare converged energies to
ensure the ground state is reached.
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the right edge decays away from it with no detectable ⟨S−
i ⟩ in the bulk; see Figs. 4.3(a) and

4.3(c), which indicate a gap to one-magnon excitations and the absence of the dipolar order.

Altogether, the analysis presented in Fig. 4.3 leaves no doubt for the presence of the d-wave

nematic state for the chosen values of h and J2. We point out again that without the pinning

field, the nematic state still exists and can be detected through the pair-pair correlations

instead of the local order parameter, but they are no more informative and less visual than

the results in Fig. 4.3.
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Figure 4.4: Long-cylinder scan in h from 0.85 to 1.05 for J2 = 0.7, with (a) spin pattern of
the ordered moments (field 0.1S−

i at the left edge), and (b) magnetization ⟨Sz
i ⟩ (left axis),

and pair ⟨S−
i S

−
i+y⟩ and spin-canting ⟨S−

i ⟩2 order parameters (right axis). (c), (d) and (e)
Fixed-parameter calculations as in Fig. 4.3(c) for h=0.9, 0.96, and 1.0, respectively.

In Figure 4.4, we show a long-cylinder scan for J2 =0.7 with varied h. From Fig. 4.1(a) one

expects to see the nematic phase from the single-magnon-BEC to the pair-BEC fields, from

hc1 =0.792 to hc2 =0.966. Instead, we observe a robust AFM phase with substantial dipolar

75



order ⟨S−
i ⟩ all the way up to a vicinity of hc2; see Figs. 4.4(a) and 4.4(b). Although ⟨Sz⟩

in Fig. 4.4(b) drops precipitously in a narrow field range near hc2, varying the limits of the

scan suggests second-order transition(s).

Fig. 4.4(b) shows that near hc2 the nematic order parameter dominates the dipolar one,

suggesting the presence of the nematic phase. This behavior is markedly different from

the case of the quadrupolar order occurring as a byproduct of the dipolar one in the pure

AFM mode (see Appendix. C). However, because of the proximity effects of the neighboring

phases, it is difficult to make definite conclusions on the extent of the nematic region based

solely on the results of Fig. 4.4(b), besides the fact that it is much narrower than suggested

näıvely in Fig. 4.1(a).

Thus, we carry out the fixed-parameter, 20×8 cluster calculation as in Fig. 4.3 for several

values of h along the path of the scan in Fig. 4.4(b). The results for three such fields, 0.9,

0.96, and 1.0, are shown in Figs. 4.4(c)-(e). Fig. 4.4(d) mirrors Fig. 4.3(c), clearly placing

h = 0.96 in the nematic region. The finite-size scaling of the nematic order shows little

change (see Appendix. C), indicating the near-2D character of our results. The h=1.0 point

in Fig. 4.4(e) shows saturated ordered moment and a decay of both pair and spin-canting

away from the boundaries, confirming a polarized FM state. The h=0.9 point in Fig. 4.4(c)

demonstrates a strong presence of both dipolar and quadrupolar orders—a sign of the AFM

phase. For all the (J2, h) data points contributing to the phase diagram in Fig. 4.2(d), we

performed the same type of analysis.

In Figure 4.5, we present the results of the same analysis for J2 = 0.45, with the scan in h

from 0.0 to 0.2. Unlike the case of Figure 4.4, where the evolution of magnetization suggests

second-order transitions, in Fig. 4.5(a) and 4.5(b) one can notice that the canting of spins

changes to a fully polarized state rather drastically. The transition is at about h≈0.14, which

is also noticeably higher than the pair-BEC value of hc2 = 0.12 from Fig. 4.1(a). Another

feature is the “scale-invariance” of the scan, demonstrated in Fig. 4.5(c) by zooming on the
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narrow field range of 0.12 to 0.16, suggesting the first-order character of the transition. The

fixed-parameter calculations described above also find no nematic region between the AFM

and FM states, supporting our scenario that pair attraction leads to a first-order collapse

of the multi-pair state directly into the dipolar instead of the nematic phase, in a broad

agreement with the proposal of Ref. [222].

The AFM-FM transition remains first-order down to zero field with the boundary shifting to

J2≈0.39 from the pair-BEC value of J2≈0.408, see Fig. 4.1(b), in agreement with J2 =0.394

from the earlier study [218].
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4.5 Reduction of the single-magnon gap in the pres-

ence of pairs

As is discussed above, the actual nematic phase occupies only a fraction of the näıvely

anticipated region between hc1 and hc2, with the rest of that region taken by the AFM phase.

Since hc1 corresponds to a closing of the single-magnon gap for the non-interacting magnons,

an expansion of the AFM phase above hc1 suggests that the single magnon-excitations can

reduce their gap due to interaction with the existing pair-condensate. Here, we substantiate

this picture by providing quantitative data for the reduction of the single-magnon gap based

on the DMRG calculations in the 16×8 cluster with fixed total Sz for the representative

value of J2 = 0.7.
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Figure 4.6: (a) The total energy of the system with n magnons relative to the magnon pairing
energy in a pair per magnon, 1

2
Ē2, times n vs n in the 16×8 cluster with fixed total Sz for

J2 = 0.7 and n from 1 to 10. Red line is the even-n sector and blue line is the odd-n sector.
(b) The single-magnon gap ∆E(nodd) vs n.

First, we look at the total energy relative to the magnon pairing energy, as is shown in

Fig. 4.6(a). The total energy of the n-magnon state Ē(n) is the energy relative to the

energy of the fully polarized state: Ē(n) = E(n) − E(0). Considering it relative to the

magnon pairing energy in a single pair per magnon times n, n
2
Ē(2), is similar to introducing

a chemical potential, so that energies of the states with a different magnon number can be
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compared. One can see in Fig. 4.6(a), that for the states with even values of n, in which

all magnons form pairs, the relative energy increases with n. This effect is simply due to

repulsion between magnon pairs in a finite cluster. However, for the states with the odd

n, in which there is one unpaired magnon, their energy decreases with n despite the pair-

repulsion, indicating an attraction of the single magnon to the pairs and a reduction of the

single-magnon gap.

In Fig. 4.6(b), we plot the single-magnon excitation gap, ∆Ē(n), defined as ∆Ē(n) =

(2Ē(n)− Ē(n− 1)− Ē(n+ 1))/2 for n=odd, which also corresponds to the average vertical

distance between a blue cross and two closest red circles in Fig. 4.6(a). Indeed, for n=1, the

value ∆Ē(1) is nothing but the magnon pairing gap ∆, see Fig. 2(a) of the main text, which

separates the lowest magnon energy from that of the pair. Generalizing it to n> 1, corre-

sponds to the energy of an extra magnon with respect to the background energy of magnon

pairs. As one can see in Fig. 4.6(b), this single-magnon excitation gap reduces significantly

upon increase of n, implying that the magnon is attracted to the magnon pairs already at

the level of one magnon–one pair, n= 3, and lowers its energy further by interacting with

multiple magnon pairs for larger n. The decrease of the single-magnon gap due to interaction

with the condensate of magnon pairs results in an expansion of the AFM phase above the

non-interacting phase boundary hc1.

4.6 Multi-pair states

For J2 ≲ 0.6 (left of the cyan circle in Fig. 4.2), spin-flip pairs attract each other and can

form multi-pair states. As a result, the actual transition from the FM phase is above hc2 and

is into the condensates of these multi-pair states. Furthermore, the quadrupolar nematic

phase also extends above the hc2 line, see Figs. 4.2(d) and 4.1(b), for the same reason the

dipolar AFM phase is pulled up above the hc1 line.
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In this chapter, we provide a comparison of the energies of the states obtained from the

DMRG calculations in the 16×8 cluster with fixed total Sz, which gives us the energies of

the multi-pair states as a function of J2. The energy of the n-magnon state is denoted as

E(n) and corresponds to the state with n spin flips from the fully polarized ferromagnet.

In the following, we consider only even values of n, because the states with odd values have

consistently higher energies than the nearest even ones, indicating that the gap to single-

magnon excitations is always present in the considered range of J2 > 0.39 and for the low

concentration of spin flips, n/Nsite ≪ 1.

In Fig. 4.7(a) and Fig. 4.7(b), we show two schematic plots of the total energy of the system

E(n) vs magnon number n for attractive and repulsive magnon pairs, respectively. The n=0

state is a fully polarized state and we do not include external field into consideration yet.

In either case, the energy is lowered by the increase of the magnon density because the fully

polarized state is a highly excited state in the regime where an antiferromagnetic state is

a ground state of the system in zero field. If magnon pairs are attractive, the (negative)

energy gain by n + 2 magnons is always greater than the sum of such energy gains by n

and 2 magnons separately. Therefore, the E(n) vs n curve should be concave, as is shown

in Fig. 4.7(a). In this case, the system can not be stabilized at a low magnon-pair density.

Depending on the magnetic field, the ground state is either a saturated FM state or a multi-

pair state with a large concentration of magnons, which is beyond the considered low-density

regime. On the other hand, if the magnon pairs are repulsive, the energy curve should be

convex, as is shown in Fig. 4.7(b), a state with a fixed magnon-pair density can be stabilized

by a field, and the magnon pair-density in the ground state will increase continuously upon

lowering of the field. In the following consideration, it is convenient to count the energy

E(n) from the energy E(0) of the fully polarized state, Ē(n) ≡ E(n) − E(0).

In Fig. 4.7(c) we show the energy of the system with n magnons, Ē(n), relative to the

energy of n
2

non-interacting pairs, n
2
Ē(2), for J2 = 0.7 and J2 = 0.5, obtained from DMRG
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(d) The h–J2 phase diagram for the states with fixed number of magnons n = 2, 4, 6, 8 in a
16 × 8 cylinder. For J2 > 0.61, magnon pairs are repulsive and the leading instability is the
single-pair-BEC (n = 2), while for J2 < 0.61 the magnon pairs are attractive, which leads
to the multi-pair instabilities with narrowing J2 steps that resemble a devil’s staircase.

calculations in a 16×8 cylinder. For J2 = 0.7, this energy is positive, indicating that adding

another pair to the already existing ones cost extra energy due to repulsion between pairs.

On the other hand, for J2 = 0.5, this energy is negative due to attraction between pairs.

To identify which multi-pair state has the leading instability with respect to the fully

polarized state, we calculate and compare the n-magnon instability field hcn, defined as

hcn =
(
E(0) − E(n)

)
/n=−Ē(n)/n, for n = 2, 4, 6, 8 in a 16 × 8 cylinder. In the schematic

plots in Figs. 4.7(a) and 4.7(b), the values of hcn corresponds to the discrete versions of the

(negative of the) slopes of the lines connecting E(0) and E(n). In the case of attractive

magnon pairs, if the multi-pair states are formed that still repel each other, the instabil-

ity field is achieved at hcn > hc2. The biggest achievable hcn corresponds to the leading

instability.
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In Fig. 4.7(d), we present the h–J2 phase diagram showing such instability fields for the

states with fixed number of magnons in a 16 × 8 cylinder for J2 from 0.5 to 0.7. To obtain

this phase diagram, we calculated the total energy of the system in magnetic field h as a

function of J2, Ẽn(h, J2) = En(J2) + nh, where En(J2) is the total energy of the system

with n magnons without magnetic field as above. For each (h, J2) point in this diagram,

the n-magnon state with the lowest Ẽn(h, J2) is chosen. The phase boundary between the

n-magnon state and the fully polarized state with n = 0 corresponds to the hcn(J2) discussed

above.

For J2 ≳ 0.61, magnon pairs are repulsive and the leading instability field is hc2. The states

with more pairs are stabilized at a lower field. For J2 ≲ 0.61, the leading instability changes

from hc2 to hc2n in steps of 2, with hc2n increasing as J2 is decreased. At the same time, the

J2-ranges in which each hc2n dominates shrink with the increase of n, resembling a devil’s

staircase of an infinite sequence of transitions with the ever decreasing width. Although the

shift of the leading instability away from the hc2 line in favor of the multi-pair hc2n in our

analysis is beyond doubt, the finite-size effects prevent a definite confirmation of the devil’s

staircase scenario.

In the attractive regime there are two scenarios. If multi-pair objects repel, the system will

be stabilized at hcn. Near the boundary of the two-magnon stability (J2 ≲ 0.61), this enables

nematic state to survive for a certain field range below hcn before entering the AFM state at

a lower field. For a yet smaller J2 (J2 ≲ 0.5), and stronger attraction, the multi-pair state

cannot be stabilized for any finite n and the system undergoes a first-order transition to a

strongly canted AFM state. This transition is discussed in Sec. 4.7 in more detail.

To summarize, in the regime associated with the pair-attraction, we identified condensations

from the FM phase into the states with four, six, and eight magnons in a 16×8 cluster. They

form a devil’s staircase of diminishing ranges of J2 before reaching the first-order transition

point at J2 ≈ 0.5, bearing a resemblance to the results of Refs. [210, 211]. However, an
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unambiguous confirmation of the higher-multipolar orders associated with the multi-pair

BECs is beyond the present study because of the finite-size effects and weak higher-order

pairing.

4.7 First order transition from FM to AFM at J2 = 0.45
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Figure 4.8: DMRG non-scan results for J2 = 0.45, see Fig. 5 in the main text. (a) The ground
state at h = 0.140 is a strongly canted AFM state as is indicated by the magnetization ⟨Sz

i ⟩
(left axis), and by the dipolar, ⟨S−

i ⟩2, and quadrupolar, ⟨S−
i S

−
i+y⟩, order parameters (right

axis). (b) The h = 0.143 state is a fully saturated FM state. We apply small pairing and
canting fields on the left and right edges, as is described in the main text.

In this section, we provide further evidence supporting the first-order nature of the FM to

AFM transition at J2=0.45, based on the calculations in the clusters with fixed parameters

(i.e., non-scan calculations). As is shown in Fig. 4.8, for the two very close magnetic fields,

h = 0.140 and h = 0.143, the ground states are very different. For h = 0.140, it is a strongly

canted AFM state, while for h = 0.143 it is a fully saturated FM. This discontinuity in the

ground state spin configuration is a clear indication of the first-order transition, consistent

with the scan calculations, shown in Fig. 5 of the main text.

Another general feature of the first-order transition is a possibility of the metastable states,

in which the two states that are separated by such a transition can appear stable beyond the

regions where they constitute global energy minima. We can observe such a metastability
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in DMRG calculations. As was mentioned in Sec. 4.6, in the attractive-pair regime, the

ground state is either a saturated FM state or a strongly canted AFM state with a large

magnon density. An implication of this two drastically different outcomes is that these states

remain local minima in terms of magnon density, even if they are not true ground states.

For example, in the h = 0.143 case (polarized FM ground state), we can initiate DMRG

calculation in the collinear Néel state, and the cluster will be stuck in the metastable canted

AFM state, showing correlations that are similar to the one in Fig. 4.8(a), but having a

higher energy. On the other hand, for the repulsive-pair regime (J2 > 0.6), where all phase

transitions are expected to be continuous, we do not detect such a metastability in our

DMRG calculations, in agreement with these expectations.

4.8 Summary

We have established the actual extent of the d-wave nematic phase in the phase diagram

of the paradigmatic J1–J2 model using analytical and DMRG insights. The nature of the

d-wave pairing is explained and the criteria for the existence of the pair-BEC are elucidated.

The sequence of the multi-pair BEC transitions is suggested to bridge the d-wave pair-BEC

and the first-order FM-AFM transition lines.

The nematic state is not stable at zero field and in the J2 region close to the FM-AFM border

because repulsive pair-pair interactions are generally required to ensure finite stiffness of the

pair-BEC state. A suppression of the single-spin-flip gap by an attraction to the pair-

condensate is shown to lead to a dramatic order-of-magnitude contraction of the nematic

phase compared to the näıve expectations. The hallmark of the remaining nematic region

is the significant drop in the magnetization in a very narrow field range near saturation

without any dipolar order. Our work provides vital guidance to the ongoing theoretical

and experimental searches of the elusive quantum spin-nematics, arming them with realistic
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expectations. The proposed scenario and the phase diagram can be expected to be valid for

a wide variety of models and materials.
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Chapter 5

Quantum Phases in Frustrated

Honeycomb Spin Models for Kitaev

Material Candidates

5.1 Introduction

Ever since the Anderson’s seminal work on the resonating valence-bond state [224], the

significant role that can be played by quantum fluctuations in magnets with competing in-

teractions has remained at the forefront of condensed matter physics, inspiring a multitude

of quests for exotic states, models that can realize them, and real materials that can host

them [18, 195, 225–228]. The elusive spin-liquid states with strongly entangled spins are

but one example [18]; others include valence-bond phases with spatial symmetry break-

ing [58, 199, 229–233], quantum multipolar spin nematics that are quantum analogues of

liquid crystals [13, 17, 234, 235], and an especially extensive class of unconventional mag-

netically ordered phases that do not appear in the classical solutions of the underlying spin
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models [236–245]. It is the latter group of phenomena that creates a broader context for the

present study.

The ordered phases that are not favored classically but are stabilized in the quantum S= 1
2

limit have attracted significant attention in the search for Kitaev magnets on the honeycomb

lattice [246–249]. Recently, this extensive experimental and theoretical effort has expanded

to the Co2+ materials [9, 250–262]. It appears that the minimal XXZ-anisotropic J1–J3

model with “mixed” ferro-antiferromagnetic (FM-AFM) couplings, given by

H =
∑
n=1,3

∑
⟨ij⟩n

Jn

(
Sx
i S

x
j + Sy

i S
y
j + ∆nS

z
i S

z
j

)
, (5.1)

provides a tantalizingly close description for many of these compounds [9, 260–265], calling

for its unbiased study. Here ⟨ij⟩1(3) stands for the first-(third-)neighbor bonds, J1 = −1

is the energy unit, J3 > 0, and 0 ≤ ∆n ≤ 1 are the XXZ anisotropies. We note that

earlier pre-Kitaev searches for exotic quantum states have focused on a pure AFM J1–J2–J3

honeycomb-lattice model [266–277], motivated by the expectation of stronger fluctuations

due to the lattice’s low coordination number and by the degeneracies in its classical phase

diagram [269].

The model (5.1) was studied in the 1970s [278], yielding the classical phase diagram repro-

duced in Fig. 5.1(a). These phases are independent of ∆n because all relevant classical states

are coplanar. The ground state is FM for small J3, while zigzag (ZZ) order is preferred for

large J3, and the ferrimagnetic spiral phase (Sp) continuously interpolates between FM and

ZZ.

In this chapter, we combine density-matrix renormalization group (DMRG) and minimally-

augmented spin-wave theory (MAGSWT) to obtain the groundstate phase diagram of the
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quantum S= 1
2

model (5.1). We focus on the partial XXZ version of the model (5.1), with

the J3-term left in the Heisenberg limit, ∆3 =1, referred to as the J∆
1 –J3 model. This choice is

motivated by real materials, in which further exchanges tend to be more isotropic [249, 279].

The standard version of the model with equal anisotropies, ∆1 = ∆3, referred to as the full

XXZ or J∆
1 –J∆

3 model, is considered too.

FM ZZ

FM ZZSp
(a)

(b)

J30 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
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0.6

0.8
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∆
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Iz
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dZZ
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Figure 5.1: The classical (a) and quantum (b) phase diagrams of the XXZ J∆
1 –J3 model

(5.1) with the ferromagnetic (FM), zigzag (ZZ), spiral (Sp), double-zigzag (dZZ), and Ising-z
(Iz) phases. The solid lines are phase boundaries interpolating transition points (diamonds)
inferred from the DMRG scans along J3 (red) and ∆ (yellow). The vertical and dashed lines
are classical and MAGSWT phase boundaries, respectively. Spins are in-plane for all phases
except Iz, see also Fig. 5.2.
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5.2 Phase diagram

Our phase diagram for the S = 1
2
J∆
1 –J3 model is given in Fig. 5.1(b). In a dramatic

deviation from the classical case, we find two unconventional phases stabilized by quantum

fluctuations—the double-zigzag (dZZ) and Ising-z (Iz) phases—as intermediary between the

FM and ZZ phases. The FM and ZZ phases also extend well beyond their classical regions

to completely supersede the non-collinear classical spiral phase.

The solid lines are phase boundaries interpolating transition points obtained from the DMRG

long-cylinder DMRG “scans” by varying J3 or ∆, as well as from the more precise measure-

ments. The dashed lines are phase boundaries of the same phases obtained by MAGSWT,

with both approaches described below.

The qualitative agreement between these approaches is quite remarkable. Both methods

produce the classically unstable dZZ and Iz phases, both expand the FM and ZZ phases

beyond their classical ranges, and both eliminate the Sp phase. These findings are also in a

broad agreement with order-by-disorder arguments [237, 244], which generally favor collinear

phases.

We note that recent studies of related models also found the Sp phase to be absent [280, 281].

However, our conclusions on the nature and extent of the quantum phases that replace it

differ substantially from theirs. For the details on these differences for the J1–J3 and other

models, see discussions below.

The U(1)-preserving Iz phase, with spins ordered Néel-like along the z axis, has been first

discovered in the XY J1-J2 AFM-AFM model [276], where Iz order is stabilized solely by

quantum effects with no exchange coupling favoring it. In our case, we find the z axis

component of the J3-exchange in the J∆
1 -J3 model crucial for stabilizing the Iz phase in a

wide range of parameters, see Fig. 5.1(b). In contrast to Ref. [281], we find only a very

89



narrow Iz phase in the J∆
1 -J∆

3 model. The spin-liquid phases in this model [280, 281] are

also not supported (see Sec. 5.7).

The dZZ phase has been recently reported experimentally [260] and found favored by the

bond-dependent extensions of the XY J∆
1 –J∆

3 model [9, 262]. Instead, we find the dZZ phase

already in the Heisenberg limit of the principal J1–J3 model (5.1), see Fig. 5.1(b).

5.3 DMRG calculations

DMRG calculations were performed on the Lx×Ly-site honeycomb-lattice open cylinders of

width Ly up to 16 (8 honeycomb cells), using the ITensor library [108]. The majority of

the results were obtained on the so-called X-cylinders (XC) [275], in which the first-neighbor

bond is horizontal, while both X- and Y-cylinders (YC) were used for more delicate phases 1.

We allow for a spontaneous breaking of the spin U(1) symmetry 2, enabling us to measure

the local ordered moment ⟨Si⟩ instead of the correlation function.

Our main exploratory tool is the long-cylinder “scans,” in which one parameter, J3 or ∆, is

varied along the length of the cylinder with Lx up to 40. It provides 1D cuts through the 2D

phase diagram [60, 62, 68, 69], see Fig. 5.2, which give approximate phase boundaries. By

narrowing parameter ranges of the scans one can determine the boundaries with increased

precision, distinguish first- and second-order transitions [13], and uncover hidden phases. In

cases when the phase boundary is less obvious, we utilize the fixed parameter (non-scan)

calculations on clusters up to 16×16, with the aspect ratio that closely approximates the 2D

thermodynamic limit [3].

1We typically perform 16 sweeps and reach a maximum bond dimension of m ∼ 3000 to ensure good
convergence with the truncation error of O(10−5).

2Such symmetry breaking in DMRG mimics the 2D system, see Sec. I of the SI in Ref. [10].
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Figure 5.2: Long-cylinder scans of the J∆
1 –J3 model (5.1) vs J3 in the (a) Heisenberg (∆=1)

and (b) XY (∆ = 0) limit. The arrows show the local ordered moment ⟨Si⟩. FM, ZZ, and
Iz phases are indicated and transitions are determined as described in text. The honeycomb
lattice is in the xy plane while spins shown in the figure are in the xz plane.

In Fig. 5.2, we present two long-cylinder scans for the J∆
1 –J3 model (5.1), one in the Heisen-

berg limit, ∆ = 1, and the other in the XY limit, ∆ = 0, vs J3. In the Heisenberg limit,

Fig. 5.2(a), the transition from FM to ZZ is very sharp and FM phase seems to terminate

right at the classical boundary of this state, J cl
3 =0.25. However, one would expect that the

FM phase should retreat from this boundary, as the competing ZZ state is fluctuating in

the Heisenberg limit, while the FM state is exact. The subsequent analysis reveals a hidden

intermediate dZZ state, discussed next. We note that the scan calculation in Fig. 5.2(a)

misses it not only due to the narrow region of the dZZ phase, but also because of the high

symmetry of the model in the Heisenberg limit, which requires additional effort to avoid

metastable states.

Fig. 5.2(b) for the XY limit shows transitions from the FM to Iz and from Iz to ZZ vs

J3. By using scans in the narrower ranges of J3, we verify that the spiral-like spin patterns

in the transition regions in Fig. 5.2(b) are proximity effects of the neighboring phases, not
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additional phases. The phase boundaries shown in Fig. 5.2(b) and used in the phase diagram

in Fig. 5.1(b) are the crossing points of the order parameters vs J3 (Appendix. D). The error

bars are the width of the transition region in the scans, where a discontinuous transition is

assigned a width equal to the parameter change over one lattice spacing.
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Figure 5.3: (a) Ordered moments in the 16×16 non-scan cluster for J3=0.24, showing dZZ
pattern. (b) Energies of the three competing phases vs J3, crosses are DMRG results and
higher-energy states are metastable. Lines are extrapolated energies, ⟨ψi|H(J3)|ψi⟩, where
ψi are the three states at J3 =0.24.

In the Heisenberg limit, the three states, FM, dZZ, and ZZ, compete in the proximity of

the classical FM boundary J3 =0.25. Because of the high spin-symmetry of the model, and

depending on the initial state, all three can be stabilized in the non-scan DMRG simulations,

such as the one shown in Fig. 5.3(a) for J3 = 0.24 in the 16×16 cluster. As is shown in

Fig. 5.3(b), the energy of the dZZ is the lowest, with the FM and ZZ being metastable,

suggesting that the transitions between the corresponding phases are first order. To identify

their phase boundaries, we compare the energies of these three states as a function of J3 using

extrapolations based on the spin-spin correlations extracted at J3 = 0.24 from the center of

the cluster for each of the states. While the FM line is exact in this limit, the extrapolated

energies for ZZ and dZZ are also very close to the ones given by a direct DMRG calculation

at a different value of J3, justifying the analysis, see Fig. 5.3(b). The dZZ phase is found to

be confined between J3=0.2333 and 0.2596.

The lower spin-symmetry away from the Heisenberg limit helps to reveal the dZZ phase more

readily, see Fig. 5.4(a) for a long-cylinder scan along the ∆ axis and fixed J3 =0.25, confirming
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Figure 5.4: Long-cylinder ∆-scans of the J∆
1 –J3 model (5.1) for (a) J3 =0.25 and (b) J3 =0.4.

Notations are as in Fig. 5.2.

the presence of this phase in an extended region of the phase diagram in Fig. 5.1. A similar

∆-scan for J3 =0.4 in Fig. 5.4(b) compliments the J3-scans in establishing boundaries of the

Iz phase.

In Fig. 5.5, we show additional J3-scans that are used to construct the phase diagram of the

J∆
1 –J3 model in Fig. 1(b) of the main text. In each scan, approximate transition boundaries

with error bars are indicated. In the ∆ = 0.5 scan, we observe a narrow phase intervening

between FM and ZZ, which is identified as the dZZ phase using non-scan calculations in the

region of J3 from 0.28 to 0.29 (not shown). The ∆ = 0.4 scan in Fig. 5.5 shows a direct

transition from FM to ZZ. The non-scans using smaller clusters in the vicinity of J3 = 0.3

have initially suggested a spin-liquid (SL) state discussed below, which turns into ZZ order

in the larger non-scan clusters. Although we cannot completely rule out the Iz state for

∆=0.4, it must be extremely narrow if it exists. The ∆=0.3 scan is similar to Fig. 2(b) of

the main text with an extended region of the Iz phase intervening between FM and ZZ.
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Figure 5.5: DMRG J3-scans for ∆=0.5, 0.4, and 0.3 in the J∆
1 –J3 model. The scans for

∆=0.5 and 0.3 are on the 12×32 cylinders while the ∆=0.4 scan is on the 16×40 cylinder.

5.4 Minimally-augmented spin-wave theory

The standard SWT is successful at accounting for quantum effects in the ordered states [282],

but cannot describe either the ordered phases that are not classically stable, or the shifts

of the phase boundaries by quantum fluctuations. An analytical approach to address this

problem, originally proposed for the classically unstable field-induced states in the transverse-

field Ising and frustrated Heisenberg models [283–285], can be successfully applied here.
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The method consists of introducing a local field in the direction of the ordered moment ni

for the proposed (unstable) classical spin configurations, leading to a shift of the chemical

potential in the bosonic SWT language

δH = µ
∑
i

(S − Si · ni) = µ
∑
i

a†iai, (5.2)

while leaving the classical energy of the state unchanged. The minimal value of µ is chosen

to ensure stability of the spectrum, i.e., that the squares of all eigenvalues of the SWT matrix

are positive definite. Then, the energy of the proposed spin state, E =Ecl + δE, with the

1/S-correction to the groundstate energy δE, is well-defined and can be compared with the

energies of the competing states calculated to the same O(S) order.

The power of the method, coined as the minimally augmented SWT (MAGSWT), is not

only in its simplicity, but in the form of Eq. (5.2), which guarantees that its contribution to

the Hamiltonian is positive for µ>0. In turn, this implies that the so-obtained groundstate

energy E is an upper bound for the energy of the suggested spin state to the order O(S).

This method allows one to consider the phase beyond its classical range of stability and

inspect states that are classically not competitive, but can lower their energy due to quantum

fluctuations. The new phase boundaries are determined from the crossings of the energies E

for the competing phases as a function of the varied parameter(s).

We note that MAGSWT may not be applied to an arbitrary classically-unstable state [285],

with the absence of the linear-bosonic terms in the 1/S-expansion for a given state being a

sufficient criterion of its applicability.
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5.5 MAGSWT results

In case of the XXZ J∆
1 –J3 model (5.1), all four competing phases of interest are collinear,

which guarantees the absence of the linear-bosonic terms, while the non-collinear Sp state is

not the subject of MAGSWT, as it corresponds to a minimum of the classical energy in its

entire possible range of existence.

The technical procedure of extracting minimal µ vs J3 and ∆ for each phase is discussed in

Appendix. D. We note that the limiting XY and Heisenberg cases and select momenta are

useful for obtaining analytical expressions for µ(J3,∆), eliminating the need of a numerical

scan of the momentum space for spectrum instabilities. With that, the energy surfaces

E(J3,∆) are readily obtained for each phase and the MAGSWT phase boundaries are drawn

from the intersections of such surfaces.

The resulting phase boundaries are shown in Fig. 5.1(b) by the dashed lines. Most, if not

all, of the features already discussed above are present. The noncollinear Sp phase is not

effective at benefiting from quantum fluctuations, in agreement with the order-by-disorder

arguments [237], and is wiped out. The classically-unstable dZZ and Iz phases are extensive

and both FM and ZZ expand beyond their classical borders. A close quantitative agreement

with the DMRG phase boundaries can also be observed, with most discrepancies concerning

the borders of the less-fluctuating FM phase (see Appendix. D). Otherwise, the entire picture

for the J∆
1 –J3 model in Fig. 5.1(b) is in rather astonishing agreement with the numerical

data.
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5.6 The J∆
1 –J∆

3 model

The phase diagram of the full XXZ model (5.1) with equal anisotropies in both terms,

obtained using the same methods as described above, is presented in Fig. 5.6. It repeats

most of the trends of the partial XXZ model in Fig. 5.1(b), such as the absence of the Sp

phase, expansion of the FM and ZZ, and the presence of the two unconventional phases, Iz

and dZZ.
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Figure 5.6: The quantum S = 1
2

phase diagrams of the full XXZ J∆
1 –J∆

3 model (5.1), c.f.
Fig. 5.1(b). See text.

In Fig. 5.7, we show DMRG J3-scans that are used to construct the phase diagram of the

J∆
1 –J∆

3 model in Fig. 5 of the main text. While the ∆=0.5 scan looks somewhat similar to

the scan for the same ∆ in Fig. 5.5, it has a direct FM-ZZ transition at J3 =0.30, with the

separate non-scan calculations showing no sign of the intermediate phase.

In the ∆ = 0.25 and ∆ = 0 scans, an intermediate region is suggested with the suppressed

ordered moments. As we discuss next, initial non-scans in these regions have shown strongly
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Figure 5.7: DMRG J3-scans in the J∆
1 –J∆

3 model for ∆=0.5, 0.25, and 0 on the 12×32
cylinders.

anisotropic correlations, with short correlations in one direction and FM-like in the other,

resembling the state that has been hypothesized as a spin liquid in Ref. [280]. Upon closer

inspection and finite-size scaling, they reveal a narrow region of the Iz phase. For ∆ = 0,

J3 =0.33 is in the FM phase, J3 =0.37 is in the ZZ phase, and J3 =0.35 is in the Iz phase by

that analysis, confining the Iz phase between J3 =0.34 and 0.36. For ∆=0.25, the Iz phase

is even narrower, between J3 =0.315 and 0.325.

In contrast to the recent studies [280, 281], our results do not support the proposed spin-

liquid states in the Heisenberg [281], or strongly-anisotropic (∆ = 0.25) nearly XY [280]
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limits. The J3-width of the quantum Iz phase in the same XY limit (∆=0) is also an order

of magnitude narrower in our case than the one suggested in [281].

While the first of the quantum phases, dZZ, missed by the previous works due to small cluster

sizes or an approximate nature of their approaches [281], is nearly the same in the partial

and full XXZ models in Fig. 5.1(b) and Fig. 5.6, respectively, the Iz phase is substantially

more tenuous. In fact, the initial DMRG scans have shown a direct FM-ZZ transition, with

some possible narrow intermediate state. Dedicated non-scans in that region did uncover

short-range correlations in both XC and YC clusters (sec. 5.7), not unlike the ones reported

in Ref. [280]. However, these spin-liquid-suspects either order on the cylinder width increase

(XC), or indicate a sufficiently robust Iz order in the range of J3=0.315-0.325 for ∆ = 0.25

and J3=0.34-0.36 for ∆=0, which we will discuss in details in the next session.

It is worth noting that MAGSWT in the XY limit of the full XXZ model shows a close,

but insufficient, competition of the strongly fluctuating Iz phase, rendering it absent from

its version of the phase diagram in Fig. 5.6.

5.7 Pseudo-spin-liquid state

In some of the transition regions discussed above for both versions of the XXZ J1–J3 model,

we have found regimes that can be taken as evidence for a spin-liquid state, similar to the

ones reported in Ref. [280]. These include nearly zero ordered moment at intermediate bond

dimension in DMRG calculations, for which the system is expected to spontaneously break

symmetry if it has an order, and the short-range spin-spin correlation in one direction, as

shown in Figs. 5.8(a) and 5.8(b). This anisotropy in correlations is suspicious, however, as

one would expect a “lock in” of such 1D-like correlations into some order in a larger system.
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Indeed, with the increase of the system’s width, one of the spin-liquid possibilities in the

J∆
1 –J3 model (∆=0.4), develops a ZZ order, see Fig. 5.8(c).

Another such suspect region is in the J∆
1 –J∆

3 model, ∆=0.25, near J3 =0.32, similar to the

one reported in Ref. [280], but it does not follow that trend. In fact, as is shown in Fig. 5.8(d),

the spin-liquid candidate looks even more realistic (less anisotropic) in the YC lattice. How-

ever, the system was tested with various boundary conditions and responded strongly to the

staggered pinning field (−1)ihSz
i , developing a substantial Iz order, see Fig. 5.8(e), with the

ordered moment nearly constant ⟨S⟩≈ 0.1 in the bulk. Following Ref. [3], we carry out an

1/Ly-scaling of the ordered moment, which gives a strong indication of the Iz order in the

thermodynamic limit, see Fig. 5.8(f).
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Figure 5.8: (a) and (b) 12×12 XC cylinder non-scans for ∆=0.4 and J3 =0.3 in the J∆
1 –J3

model showing: (a) nearly-zero ordered moment and nearest-neighbor ⟨S⃗i · S⃗i+δ⟩ (thickness

of the bond), and (b) spin-spin correlation ⟨S⃗i0 · S⃗j⟩, denoted by the length and direction of
the arrow, with i0 site shown by the green oval. The arrow on i0 is of length 0.25. (c) Same
as (a) on the 16×16 cylinder. (d) Same as (b) on the 8×32 YC cylinder for ∆ = 0.25 and
J3 =0.32 in the J∆

1 –J∆
3 model. (e) Ordered moment in (d) under the Iz pinning field of 0.5

on both edges. (f) The 1/Ly-scaling of the Iz ordered moment in the center of the cylinder
with the edge pinning fields from (e) and the XC and YC cylinders having the aspect ratio
2, which mimics the 2D limit closely—see Ref. [3].
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5.8 Generalized J∆1
1 -J∆3

3 model for BaCo2(AsO4)2

Extensive experimental and theoretical searches for the Kitaev magnets on the honeycomb

lattice have recently expanded to the Co2+, Seff = 1/2 materials. Among this family,

BaCo2(AsO4)2 has received significant attention [9, 253, 260–262]. Its minimal model de-

scription has currently coalesced to a generalized XXZ FM-AFM J∆1
1 –J∆3

3 model [9, 261,

262, 280] with additional Kitaev-like bond-dependent terms.

lx

yz

x

(a) (b)

Figure 5.9: (a) Spin pattern in the 12×12 DMRG cylinder and (b) spin components in the
ground state of the generalized XXZ J∆1

1 -J∆3
3 model model from Ref. [9].

One such model parametrization was advocated in Ref. [9], based on fitting experimental

excitation spectrum in high fields and assuming the spin-spiral ground state with a nearly

commensurate ordering Q-vector in zero field. Leaving the correctness of the latter assump-

tion aside [260], the model parameters in Ref. [9] were constrained to match the ordering

Q-vector of the planar spin spiral from the classical solution of the generalized XXZ J∆1
1 –

J∆3
3 model.

Since we find that such a spiral state does not survive at all in the quantum S=1/2 version of

the XXZ J1–J3 model, as it is overtaken by the collinear phases due to quantum fluctuations,

we have checked the validity of the key assumption made in Ref. [9] regarding the structure of

the ground state for their proposed set of parameters. The model used in Ref. [9] has strong

XXZ anisotropies for the J1 and J3 terms, but of different sign, ∆1≈0.16 and ∆3 = −0.34,
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and the ratio J3/J1≈−0.33 (see Eq. [13] of Ref. [9]). The model also contains two minimal

bond-dependent corrections in the J1 exchange matrix.

We have performed DMRG calculations for these parameters, including the bond-dependent

terms, on a 12×12 cylinder in order to see whether the opposite sign of ∆1 and ∆3, or the

bond-dependent terms, are able to stabilize the spiral state to avoid the fate we find for it in

the other models. As is shown in Fig 5.9, we find an FM ground state instead of the spiral

state, suggesting that the model parameters for BaCo2(AsO4)2 proposed in Ref. [9] are not

adequate to describe its ground-state spin configuration and require a reconsideration.

5.9 The generalized Kitaev-J3 model for α-RuCl3

α-RuCl3 has been one of the most promising candidate in the search for Kitaev spin liq-

uids [286]. The material features a honeycomb lattice emerging from a nearly perfect edge-

sharing RuCl6 octahedra, an ideal match for the realization of the exotic Kitaev Hamilto-

nian [287]. While experimental observations of phenomena such as the anomalous thermal

Hall effect [288, 289] and continuum in the excitation spectrum [290] provide encouraging

evidence supporting the Kitaev spin liquid, it has been argued that the presence of other

types of spin exchanges can substantially deviates the model away from the pure-Kitaev

limit while retaining consistencies with experiments [249, 263, 291, 292].

Despite of an enormous amount of theoretical researches, the effective spin model for α-RuCl3

has yet to be settled. Under the commonly used cubic reference frame, the symmetry-allowed

terms are the Kitaev K, the Heisenberg J , and the off-diagonal Γ and Γ′ exchanges. The

important role of the third-neighbor isotropic exchange J3 has also been pointed out [249].

Consensus has been reached regarding the minimal model of α-RuCl3 taking the form of the
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K-J-Γ-Γ′-J3 model, with its Hamiltonian written as:

H =
∑
⟨ij⟩γ

[JSi · Sj +KSγ
i S

γ
j + Γ(Sα

i S
β
j + Sβ

i S
α
j )

+Γ′(Sγ
i S

α
j + Sγ

i S
β
j + Sα

i S
γ
j + Sβ

i S
γ
j )],

(5.3)

However, the parameters of the model are still largely under debate [263].

In a forthcoming paper [293], we argue that the existing key phenomenological observations

impose strong natural constrains on the parameterization of the model for α-RuCl3. We

study the ground state phase diagram of the K-J-Γ-Γ′-J3 model focusing on the relevant

parameter region under such constraints. Employing a combination of exact-diagonalization,

semi-classics and DMRG, we obtain an extended phase diagram as shown below in Fig. 5.10.
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Figure 5.10: The quantum S= 1
2

phase diagram of the K-J-Γ-Γ′-J3 model in the J-J3 plane
with fixed K =-7.567, Γ =4.276, Γ′ = 2.362 (in unit of meV). Phases include ferromagnetism
(FM), zigzag (ZZ), out-of-plane antiferromagnetism (z-AFM) and two non-collinear (NCO)
out-of-plane counter-rotating spirals with different ordering vectors. The green region is the
possible parameter region for α-RuCl3 constrained by experimental observations including
critical in-plane fields denoted by the dotted lines.
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One of the highlights of this work is the detailed agreement between different methods on the

nature of the incommensurate phases that realize two distinct counter-rotating helical states

(denoted as NCO in fig: 5.10). In Fig. 5.11 we present the details of a DMRG simulation

showing a counter-rotating spiral with its ordering vector Q⃗ along the Γ-M direction, denoted

as the NCO1 phase in Fig. 5.10 (Q⃗ of the NCO2 phase is along the Γ-K direction). The

spins are in the yz plane which is perpendicular to the ordering vector Q⃗. Spins in different

sublattices rotates in opposite direction along Q⃗.
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Figure 5.11: In a 12 × 12 XC cylinder with K,Γ,Γ′ fixed as in Fig. 5.10 and J=-3.0 meV,
J3=2.7 meV, (a) the local ordered moments ⟨Si⟩ represented by the arrows. Spins in sub-
lattice A and B are in red and blue, respectively. The honeycomb lattice is in the xy plane,
and spins are in the yz plane that form an out-of-plane counter-rotating spiral with its Q⃗
along the x direction. (b) Squared norm of the Fourier transform of Sy for spins in sublattice

B, which has a maximum at Q⃗ that is along the Γ-M direction. (c) Three components of
the ordered moments for the spins in sublattice A, averaged over the y direction and plotted
along the plotted along the x direction. (d) Sy of spins in different sublattices averaged over
the y direction and plotted along the x direction. Spins in two sublattices that have the
same lx are denoted by green ellipse in (a). For (c) and (d), the cross markers are the data
points and lines are fitted sine functions. (e) The ordered moments of spins in the Sy-Sz

plane (spins on edges are excluded). The straight arrows from the center point to the ordered
moments of the spins in the rounded black rectangle in (a). The curved arrows indicate the

rotating orientation of the spins along the propagation direction of the spiral Q⃗.
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5.10 Summary

In this chapter, we have studied the emergence of the quantum phases that are not stable

classically within a simple model of great current interest. We have combined state-of-the-

art DMRG and analytical approaches to obtain conclusive phase diagrams of this model.

It is established beyond any reasonable doubt that the two unconventional quantum phases

occupy a significant portion of this diagram, with the known phases also extending well

beyond their classical regions and completely replacing the less-fluctuating non-collinear

phase. The results of the analytical MAGSWT approach are shown to be in a close accord

with the numerical DMRG data, providing additional insights into the energetics of the

quantum stabilization of the non-classical phases and offering a systematic path for the

explorations of similar models.

The proposed phase diagrams have direct relevance to a group of novel materials and provide

important guidance to the ongoing theoretical and experimental searches of the unconven-

tional quantum states.
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S. Krämer, M. Horvatić, A. Gazizulina, et al., Phys. Rev. B 102, 094414 (2020).

[189] K. M. Ranjith, F. Landolt, S. Raymond, A. Zheludev, and M. Horvatić, Phys. Rev. B
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[193] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T. Donner, Nature 543, 87
(2017).

[194] M. A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M. J. Mark, R. N. Bisset,
L. Santos, and F. Ferlaino, Nature 596, 357 (2021).

[195] J. Knolle and R. Moessner, Annu. Rev. Condens. Matter Phys. 10, 451 (2019).

[196] M. Blume and Y. Y. Hsieh, J. Appl. Phys. 40, 1249 (1969).

[197] A. F. Andreev and I. A. Grishchuk, Sov. Phys. JETP 60, 267 (1984).

[198] A. V. Chubukov, Phys. Rev. B 44, 4693 (1991).

[199] V. Zapf, M. Jaime, and C. D. Batista, Rev. Mod. Phys. 86, 563 (2014).

[200] M. Wortis, Phys. Rev. 132, 85 (1963).

[201] D. C. Mattis, The theory of magnetism made simple: an introduction to physical con-
cepts and to some useful mathematical methods (WorId Scientific Publishing, Singa-
pore, 2006), ISBN 981-238-579-7.

[202] N. Shannon, T. Momoi, and P. Sindzingre, Phys. Rev. Lett. 96, 027213 (2006).

[203] P. Sindzingre, L. Seabra, N. Shannon, and T. Momoi, J. Phys. Conf. Ser. 145, 012048
(2009).

[204] Y. Iqbal, P. Ghosh, R. Narayanan, B. Kumar, J. Reuther, and R. Thomale, Phys. Rev.
B 94, 224403 (2016).

[205] R. O. Kuzian and S.-L. Drechsler, Phys. Rev. B 75, 024401 (2007).

[206] T. Hikihara, L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B 78, 144404 (2008).

[207] T. Momoi, P. Sindzingre, and K. Kubo, Phys. Rev. Lett. 108, 057206 (2012).

[208] R. Shindou and T. Momoi, Phys. Rev. B 80, 064410 (2009).

[209] T. Momoi and N. Shannon, Prog. Theor. Phys. 159, 72 (2005).
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Appendix A

Supplemental materials for Chapter 2

A.1 Magnetic order in the AFM-d/πp phase

There are several types of approaches one could take to try to infer the broken symmetries of

the 2D system from our finite-bond dimension DMRG results on finite sized cylinders. For

the most part, our results in the main text seem clear-cut, with broken symmetries appearing

in fairly large cylinders with small changes as the bond dimension is increased. However, it

is clearly very useful to try to consider particular points in the phase diagram for a more

careful finite-sized analysis. In this section we consider the antiferromagnetic order in the

low-doped t′ > 0 system. In the recent paper[125], the authors found that in this regime

on width 6 cylinders strong d-wave pairing was indicated, but the authors did not clearly

conclude that there was AF order.

The DMRG studies in [125] used full SU(2) symmetry, and kept more states than we have

been able to. However, in DMRG calculations, correlation functions, which were used in

[125], are inherently less accurate than local quantities, which we used. The spin-spin cor-

relations decayed exponentially in[125], but the mere fact of exponential decay does not
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Figure A.1: (a): Decay of local magnetic order as one moves away from the left edge
where a weak staggered magnetic field of 0.03 is applied for different bond dimension m.
⟨Sz(lx)⟩ is extrapolated with truncation error(shown in inset) on a point by point basis. The
decay of magnetic order shows good agreement with correlation length ξ = 4.84 [125]. (b):
For a length/width=2 cylinder with strong staggered magnetic pinning field of 0.2 on both
edges[3], local magnetic order in the center extrapolated with truncation error. All three
cases are in the AFM-d/πp phase with t′ = 0.2. (c): Using the technique described in (b),
local magnetic order in the center for cylinders of different widths for t-t′-J model and the
Heisenberg model. For the Heisenberg model, the dashed line shows the precisely known
order parameter 0.307 from[1].

tell much about possible long-range order in 2D. For example, it is known that an even-leg

Heisenberg ladder always has exponential decay of correlations, but in 2D the model has

long range order. The crucial question is what is the decay length, and how does it scale

with width?

Spin-spin correlation lengths can also be determined through the static response to a pinning

field, allowing a local measurement. In Fig. A.1(a), we compare measurements of the spin-

spin correlation length of the width 6 system at a doping of x = 0.083 and t′ = 0.22, J =

1/3, J ′ = 0.016. The correlation length in [125] for this system was determined to be ξ =
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4.84. By extrapolating the local response to an edge field, we find a completely consistent

exponential decay with the same correlation length. The extrapolations in truncation error

for each local measurement are very well behaved, as shown in inset of Fig. A.1(a). Does

ξ = 4.84 on a width 6 cylinder correspond to long range 2D order? Correlation lengths were

shorter on width 4, but this information did not make it clear in [125] that there was long

range AF order in 2D.

Instead, we use the aspect ratio method discussed in reference[3]. In this case strong pinning

is applied to the ends of the cylinder and the order parameter is measured in the center.

The aspect ratio can be chosen to eliminate the leading finite size correction, making the

approach to the 2D order parameter very rapid. (In longer cylinders, the system looks more

1D-like, giving a smaller order parameter; in shorter cylinders, the strong pinning prevails,

giving an overestimate.) For the Heisenberg square lattice, Fig. A.1(c) shows how effective

this approach is for an aspect ratio of 2, which is a little larger than the ideal aspect ratio

near 1.9. With the slightly larger aspect ratio, the approach is from below as the width is

increased. We apply this approach to the low-doped t-J model at x = 0.0625, using 8 × 4,

12 × 6, and 16 × 8 cylinders. For width 6, the target doping corresponded to a non-integer

number of pairs, so a linear interpolation was made between two adjacent integral dopings.

The finite size behavior is not as flat as for the Heisenberg case, and the interpolation is

only a rough treatment, but nevertheless the results provide solid evidence for a nonzero AF

order parameter, roughly between 0.2 and 0.25.
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Appendix B

Supplemental materials for Chapter 3

B.1 The parameters choice for the three-band Hub-

bard model

⟨Δ
𝑙 𝑥
,𝑙
𝑥
+
Δ
𝑦

+
⟩

𝑙𝑥

𝑈𝑑 = 8.0, Δ𝑝𝑑 = 3.5

𝑈𝑑 = 6.0, Δ𝑝𝑑 = 3.5

Figure B.1: Pairing response of two different Udd with pairfields applied on two columns
(lx = 1, 2) on the left edge of a 12 × 5 cylinder, at a hole doping of 0.15 (n = 1.15). Both the
applied pairfields and the pairing responses are on nearest-neighbor vertical Cu-Cu bonds.

A common choice of the parameters for the three-band Hubbard model is: tpd = 1.0, tpp =

0.5, ∆pd = 3.0, Ud = 8.0, Up = 3.0, Vpd = 0.5 [164]. In a recent density-matrix embedding

theory study [135], the appropriate range of Ud is estimated to be 4.5-9.3 when fixing other
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parameters as in the common choice. While the common choice Ud = 8.0 falls in the upper

half of this range, we also consider another Ud = 6.0 in the lower half of this range. In

addition, we omit Vpd but increase ∆pd to 3.5 to incorporate its effect. A comparison of the

pairing responses of these two choices of Ud are shown in Fig. B.1, and Ud = 6.0 exhibits a

stronger pairing response, so we choose it for a clearer signal.

B.2 Calculations of the Wannier single-band model

After constructing of Wannier functions, we derive the downfolded single-band model by

projecting the three-band Hamiltonian on the Wannier basis and truncate terms with small

magnitude, as described in the main text.

(b)(a)

0.2

0.1

hole doping 0.11 electron doping 0.09

Figure B.2: Simulations of the Wannier model on width-6 cylinders for (a) hole doping of
0.11 and (b) electron doping of 0.09, respectively.

Simulations of the Wannier model (with parameters from the case h1) on a width-6 cylinder

for both hole and electron doping are presented in Fig. B.2. The occurrence of stripes

(hole doping) and commensurate antiferromagnetism (electron doping) is consistent with

the three-band model as well as the cuprates.

The validity of the Wannier model is verified by the consistency with the three-band model

in the local spin and charge order, the d-wave pairing order, as well as the single-particle

correlations, as shown in Fig. B.3. The minor differences in modulations of the hole density

and the pairing order along the y direction could be related to different finite size effects or

virtual processes involving higher bands, which appear to be unimportant.
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Wannier single-bandthree-band projected

⟨𝑐𝑗
+𝑐𝑖0⟩𝑖0

(b)(a)

𝑖0

(d)(c)

⟨Δ𝑖,𝑖+𝑥/𝑦
+ ⟩

0.2

0.1

0.03
−0.03

(f)(e)

Figure B.3: For the case h1, comparisons of physical properties for the three-band wave-
function projected onto the single-band space defined by the Wannier functions (left), and
a direct simulation the truncated Wannier model (right). (a) and (b): The local charge
and spin structure. The length of the arrows and the diameter of the circles represent ⟨Sz⟩
and local doping, respectively. (c) and (d): The d-wave pairing order ⟨∆†

ij + ∆ij⟩ between
neighboring sites i and j, with the color and thickness of the bond representing the sign and
amplitude of the pairing order. (e) and (f): Single-particle correlation functions with the
area and color of the circle on site j indicating the magnitude and sign of

∑
σ⟨C†

jσCi0σ⟩, with
i0 being the center reference site.

The biggest difference between the Wannier single-band model with the conventional model

is the nearest-neighbor additional density-assisted hopping term tnc
†
jσciσ(niσ̄ + njσ̄) with

tn ∼ 0.6t, which further enhances pairing comparing to its mean-field tnc
†
jσciσ⟨n⟩. In Fig. B.4,

we vary the magnitude of tn and find that it always produces a bigger superconducting phase

stiffness, compared with the mean-field treatment where the tn term is incorporated into an

ordinary effective hopping teff .
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Δ
𝐸

𝑡𝑛

12.6        7.56         5.67         4.54        3.94

𝑡eff − 𝑈

𝑡 − 𝑡𝑛 − 𝑈

𝑈/𝑡eff

Figure B.4: Superconducting phase stiffness measured by the energy difference for different
pairfield boundary conditions (see the main text) as a function of tn and the corresponding
mean-field teff . t = 1 is the energy unit and U = 12.6 for both models. System is at a hole
doping ∼ 0.11.
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Appendix C

Supplemental materials for Chapter 4

C.1 Multipolar order parameters

We are interested in quantum spin orders that break full rotational symmetry without dis-

playing dipolar ordering. These phases are characterized by multipole order parameters

such as quadrupole, octupole, etc. Higher quantum spins have larger local Hilbert spaces

and naturally exhibit higher-multipole degrees of freedom. In general, spins S allows for

on-site order parameters, which transform as rank-k tensor operators, with k taking values

of 0, 1, . . . , 2S.

A rank-k tensor operator T (k) has 2k+1 components that satisfy the commutation relations

[294]

[
Sz, T (k)

q

]
= qT (k)

q and
[
S±, T (k)

q

]
=

√
k(k + 1) − q(q ± 1) T

(k)
q±1 , (C.1)
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which enable a systematic construction of the multipole order parameters T
(k)
q with q ∈

[−k, k] for each k.

For example, the dipole operators correspond to the k = 1 multiplet with T
(1)
1 = S+,

T
(1)
0 = Sz, and T

(1)
−1 = S−, while the quadrupole operators form a rank-2 tensor with

T
(2)
2 = S+S+, T

(2)
1 = −S+Sz − SzS+, T

(2)
0 =

√
2
3

(
3SzSz − S(S + 1)

)
, (C.2)

T
(2)
−1 = T

(2)
1

†
, and T

(2)
−2 = T

(2)
2

†
. (C.3)

Octupolar operators can be generated from T
(3)
3 = S+S+S+ by the repeated application of[

S±, T
(k)
q

]
, see Eq. (C.1).

For the S = 1
2

systems, quadrupole (nematic) orders require a consideration of the two-spin

operators in the form of Sα
1 S

β
2 defined on bonds instead of the on-site spin-operators in

case of the higher spins. The decomposition of such bond operators consists of the trace,

that is the scalar operator S1 · S2, which is SU(2) invariant and commutes with the total

spin, the traceless antisymmetric part S1 × S2, which is a vector (rank-1 tensor), and the

traceless symmetric part corresponding to spin-quadrupole operators (rank-2 tensor) Qαβ
12 =

Sα
1 S

β
2 + Sβ

1S
α
2 − δαβ

2
3

(
S1 · S2

)
.

The quadrupole bond operators can be expressed in the time-reversal invariant basis

|s⟩ =
1√
2

(
|↑↓⟩ − |↓↑⟩

)
, |tx⟩ =

i√
2

(
|↑↑⟩ − |↓↓⟩

)
, (C.4)

|ty⟩ =
1√
2

(
|↑↑⟩ + |↓↓⟩

)
, |tz⟩ =

−i√
2

(
|↑↓⟩ + |↓↑⟩

)
, (C.5)

as Qαβ
12 = −1

2

(
|tα⟩⟨tβ|+ |tβ⟩⟨tα|

)
+ 1

3
δαβ

∑
γ |tγ⟩⟨tγ|. A bond nematic state can be written as a

linear combination of the triplet states |t⟩ =
∑

α t̄α |tα⟩ with real coefficients t̄α. Such a state
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is time-reversal symmetric, and has no dipole order, ⟨t|Sα
i |t⟩ ≡ 0, as only the quadrupole

matrix elements are finite.

While the expectation values of dipolar operators are zero in a purely quadrupolar state,

the reverse is not true; quadrupolar order parameters can be finite in a magnetic state. For

example, the magnetic state |↑↑⟩= 1√
2

(
|ty⟩ − i |tx⟩

)
gives ⟨Sz

tot⟩ = 1 and at the same time

⟨Qzz⟩ = 1
3
.

Bond-nematic phases in spin-half frustrated magnets can arise from a condensation of bound

magnon pairs in the field-polarized paramagnet. The two-magnon state is directly related

to the quadrupole operator T
(2)
−2 ij

= −S−
i S

−
j

∑
i,j

ψijT
(2)
−2 ij

| ↑↑ . . . ↑⟩ =
∑
i,j

ψij

(
Qx2−y2

ij − iQxy
ij

)
| ↑↑ . . . ↑⟩ , (C.6)

with the bound state in the Qx2−y2

ij and Qxy
ij channels. The orbital (lattice) symmetry of

the bound state is encoded in the ψij coefficients that are determined from the solution

of the two-magnon Schroedinger equation (SE) considered in the next Section. While the

nomenclature of the Qαβ
ij operators is reminiscent of that of the L = 2 orbital states, it is

unrelated to the d-wave nature of the bound states discussed below.

The ordering of the dipole and quadrupole moments can be expressed via the spin and

quadrupole structure factors, Sαβ(k) = ⟨Sα
k S

β
−k⟩ and Qαβ(k) = ⟨Qαβ

k Qαβ
−k⟩, respectively.

One expects finite Bragg peaks in both S(k) and Q(k) in the conventional magnetic phase,

whereas in the nematic state Bragg peaks are present only in Q(k).

A general quadrupole-quadrupole correlation function has the form ⟨Qαβ
i,jQ

αβ
i+r,j+r′⟩, which

can be measured numerically in finite clusters. However, for the symmetry-broken states,

the expectation value of the nematic order parameter ⟨Qαβ
ij ⟩ can be also detected directly,
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similarly to the ordered moment ⟨Sz
i ⟩ in the dipolar magnetic states. This is used in our

DMRG approach, see Secs. C.4 below and the main text.

C.2 Magnon bound states

C.2.1 Magnon interaction

We restrict ourselves to the bound-state problem in a fully polarized FM phase of an isotropic

spin-S Heisenberg model on a Bravais lattice in a field

H =
1

2

∑
i,δ

Jδ Si · Sj −H
∑
i

Sz
i , (C.7)

where δ=rj − ri spans all non-zero nth-neighbor couplings that are present in the model.

The kinetic energy of a magnon, or a single-spin-flip eigenstate |ψ1,q⟩=1/
√
N

∑
i e

−iqriS−
i |0⟩,

relative to the ground-state energy E0 of |0⟩= | ↑↑↑ . . . ⟩, can be written as [212]

εq = H + S
(
Jq − J0

)
, with Jq =

∑
δ

Jδe
iqδ, (C.8)

where Jq =J−q as Jδ =J−δ on a Bravais lattice. Assuming that εq has an absolute minimum

at the momentum Q and given the simple Zeeman-like dependence of energy on the field,

one can find the critical field for a transition to a single-spin-flip BEC from the condition

εQ =0, which yields

Hs1 = S
(
J0 − JQ

)
. (C.9)
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In the absence of an attraction between magnons, the expression (C.9) is valid for any value

of S. Thus, one refers to Hs1 and to the single-magnon BEC transitions itself as the the

“classical” ones in this case.

Magnon interaction requires a consideration of the two-spin-flip wavefunction, whose generic

form is given by

|ψ2⟩ =
1

2

∑
i,j

ψi,jS
−
i S

−
j |0⟩. (C.10)

The reason why this function cannot be built directly from the basis of single-spin-flip

operators, which are complete and orthogonal in the single-particle sector, is the non-

commutativity of spin operators, the problem recognized early on [295–297]. The commonly

followed resolution [200, 201] is to operate directly in the basis of the |ψ2⟩ wavefunctions

(C.10), which is complete, but not orthogonal. Despite this latter inconvenience, the exact

two-particle Schroedinger equation (SE) can be obtained by standard, if tedious, manipula-

tions [212] to yield

(E − εK
2
+q − εK

2
−q)ψK(q) =

1

2N

∑
p

VK(q,p)ψK(p), (C.11)

with ψK(q) =
1

N

∑
i,j

e−iK
2
(ri+rj)e−iq(rj−ri)ψi,j, (C.12)

and the magnon interaction potential given by

VK(q,p) = Jq−p + Jq+p − JK
2
−q − JK

2
+q. (C.13)

The first two terms in VK(q,p) in (C.13) adhere to the conventional “potential-like” form, as

they depend on the momentum transfer between initial and final particles in the scattering,

with the momenta K/2 ± q and K/2 ± p, respectively. The last two terms depend on the

individual particle momenta and originate from the “hard-core” repulsion of spin flips.
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Given the single-magnon energy in (C.8) and magnon interaction potential in (C.13), it is

made explicit by SE (C.12) that the magnon interaction is manifestly a 1/S effect, with the

role of pairing diminishing in the large-S limit and single-magnon BEC retaining its classical

value.

We also would like to remark that an expression identical to (C.13) is trivially obtained in the

O(S0) order of expansion of (C.7) within the perfectly commutative and orthogonal bosonic

basis of the standard 1/S-approximation, obviously leading to a form of the two-magnon SE

that is identical to (C.12).

C.2.2 Simple case, Cooper problem analogy, and higher harmon-

ics

It is instructive to have a general intuition on solving SE in (C.12) for a simple case. Consider

a continuum limit for particles of mass m and energies εk =k2/2m that are attracted via a

δ-functional potential in real space, V (r1, r2)=−αδ(r1−r2), which corresponds to a constant

in the momentum space, VK(q,p)=−α. This reduces (C.12) to an algebraic equation for ψ

that is trivially solved as

ψK(q) = −α
2
· CK

E − EK − q2/m
, with CK =

1

N

∑
p

ψK(p), (C.14)

where EK =K2/4m is the bottom of the two-particle continuum for the total momentum K.

The second equation in (C.14) provides a self-consistency condition, which is also an implicit

equation on the pair’s energy E

1 = − α

2N

∑
p

1

E − EK − p2/m
. (C.15)
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Finding E <EK from (C.15) constitutes a solution of the bound-state problem. This con-

sideration is analogous to a textbook problem of the bound state for a single particle in a

free space with a δ-functional potential well [298], also demonstrating a mapping of the two-

to one-body problem. A direct integration in Eq. (C.15) in the D-dimensional continuum

demonstrates the existence of a bound state for an arbitrarily weak attraction in the dimen-

sions D = 1 and D = 2, and requires α to exceed a threshold value of order 1/m in D = 3

[298]. Since we are interested in the case of D=2, the solution for it is

E − EK =
Λ

m
· e− 8π

αm , (C.16)

where Λ is a large-momentum cut-off and the non-analytic dependence on the coupling

constant α is clear. These results rely exclusively on the density of states of the non-

relativistic particles in D-dimensions and are expected to hold for any short-range attractive

potential in the continuum [298]. One of the well-known realizations of such conditions is the

celebrated Cooper problem of the short-range attraction of electrons near the Fermi surface

[219]. The presence of the finite Fermi-momentum cutoff leads to an effective dimensional

reduction from 3D to 2D, resulting in the 2D-like density of states and the pairing gap that

closely follows Eq. (C.16).

For a realization of the pair-BEC, the lowest bound-state energy needs to be below the

absolute minimum of the two-particle continuum, which typically occurs at a high-symmetry

K-point. In an example above, this is the K = 0 point. There, a systematic symmetry

consideration of the pairing in the higher partial-wave channels is also possible. Given the

mapping onto the one-body problem in the continuum, it can be made explicit that with an

exception of the s-wave channel, which is exposed above, all other channels have nodes of

their corresponding pairing potential that pass through the minimum of the single-particle

energy. This crucial feature leads to an effective dimensional increase, as opposed to the

dimensional reduction, suggesting that the weak attraction in the continuum in 2D can only
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create s-wave bound states, but not the ones in the higher-harmonics, which would require

the corresponding coupling strengths to exceed threshold values of order 1/m.

C.2.3 Pairing in the J1–J2 Heisenberg model

We now turn to the problem of pairing in the ferro-antiferromagnetic S = 1/2 J1–J2 Heisen-

berg model on the square lattice with the ferromagnetic J1 =−1 taken as a unit of energy and

antiferromagnetic J2> 0. The convenient shorthand notation Jq in (C.8) can be rewritten

using standard hopping amplitudes

Jq = −4γq + 4J2γ
(2)
q , with γq =

1

2

(
cos qx + cos qy

)
, and γ(2)q = cos qx cos qy.

(C.17)

The single-magnon energy (C.8) for S = 1/2 is given by

εq = H + 2
(
1 − γq

)
− 2J2

(
1 − γ(2)q

)
= εQ − 2γq + 2J2

(
1 + γ(2)q

)
, (C.18)

where we use that for J2 > 0.5, the minima of εq are at the non-trivial Q = (0, π)[(π, 0)]

points, with εQ =H + 2 − 4J2, leading to Hs1 = −2 + 4J2, see (C.9). This is the range of

J2 that we will consider below, although extension to the case of J2 < 0.5, for which the

minimum of εq is at Q=0, is easily made.

In addition to the hopping amplitude γq in (C.17), one can see an immediate utility in

introducing other combinations of lattice harmonics of different symmetry

γ−q =
1

2

(
cos qx − cos qy

)
, γsxyq = [γ(2)q =] cos qx cos qy, and γdxyq = sin qx sin qy,

(C.19)
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Figure C.1: The two-magnon continuum (shaded area) and the bound state energies (lines)
along the representative K = [qx, qy] cuts in the Brillouin zone for (a) J2 = 0.6 and (b)
J2 = 1.0. M = [π, π] and X = [π, 0].

as they permit an easy symmetrization of the single-magnon energies in SE (C.12) and a

separation of interaction potential (C.13) into the partial harmonics using

γq−p + γq−p = 2γpγq + 2γ−p γ
−
q , γ

(2)
q−p + γ

(2)
q−p = 2γsxyp γsxyq + 2γdxyp γdxyq . (C.20)

Introducing binding energy of the pair 2∆>0 relative to the absolute minimum of the two-

magnon continuum via E=−2∆ + 2εQ, converts the energy difference in the left-hand side

of SE in (C.12) to

E − εK
2
+q − εK

2
−q = −2∆ + 4

(
γK

2
γq + γ−K

2

γ−q
)
− 4J2

(
1 + γ

sxy
K
2

γsxyq + γ
dxy
K
2

γdxyq

)
, (C.21)

while the interaction potential (C.13) becomes

VK(q,p) = −8γq
(
γp − γK

2

)
− 8γ−q

(
γ−p − γ−K

2

)
+ 8J2γ

sxy
q

(
γsxyp − γ

sxy
K
2

)
+ 8J2γ

dxy
q

(
γdxyp − γ

dxy
K
2

)
,

(C.22)

with the terms clearly assuming the separable partial-wave decomposition structure, al-

though with asymmetric “shifts” of the harmonics by γγK
2

due to the hard-core components

of the original potential (C.13).
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For the magnon-band minima at Q = (0, π)[(π, 0)] points, there only two distinct total

momenta of their pair at which pair-BEC can occur, K= 0 and K= (π, π). While rigorous

arguments can be given to prove that the K=(π, π) sector does not support pairing in any

orbital channel in the range of J2>1/π, we skip them in favor of the visual demonstration

of the numerical solution for the bound state problem (C.12) with the energy denominator

(C.21) and pairing potential (C.22) for K along a representative cut of the Brillouin zone

and for two representative J2 = 0.6 and J2 = 1.0, see Fig. C.1. This Figure clearly points to

the importance of the K=0 sector in our case, considered next.

K=0 sector

For the K = 0 sector, γK
2

= γ
sxy
K
2

= 1 and γ−K
2

= γ
dxy
K
2

= 0, converting the energy part of SE

(C.21) to

∆E0(q) =
(
E − εK

2
+q − εK

2
−q

)∣∣
K=0

= −2∆ − 4J2
(
1 + γ(2)q

)
+ 4γq = −2∆ − 2

(
εq − εQ

)
< 0,

(C.23)

where the binding energy ∆ is relative to the 2εQ minimum, and the interaction potential

(C.22) becomes,

V0(q,p) = −8γq
(
γp − 1

)
− 8γ−q γ

−
p + 8J2γ

sxy
q

(
γsxyp − 1

)
+ 8J2γ

dxy
q γdxyp =

∑
γ

VγRγ(q)R̃γ(p),

(C.24)

with γ = {s, d, sxy, dxy}, Vγ = {8, 8,−8J2,−8J2}, Rγ(q) = {γq, γ−q , γsxyq , γ
dxy
q }, and R̃γ(p) =

{γp − 1, γ−p , γ
sxy
p − 1, γ

dxy
p }.

While it is tempting to conclude that this form of interaction already guarantees decompo-

sition of the SE in (C.12) into a fully orthogonal set of algebraic equations on pairing in
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separate channels, the analysis provided so far is based entirely on the lattice-harmonic ex-

pansion of the interaction potential and magnon energies. Continuing without any symmetry

analysis for a moment, the SE (C.12) for the K=0 sector can be rewritten as

ψ0(q) = −1

2

∑
γ

VγRγ(q) · Cγ

∆E0(q)
, with Cγ =

1

N

∑
p

R̃γ(p)ψ0(p). (C.25)

Although it is clear that the SE is, indeed, reduced to a set of algebraic equations for ψ0(q),

these equations are, or can be, coupled, as the constants Cγ in (C.25) can have contributions

from the γ′ ̸=γ components of ψ0(q).

The partial waves in (C.24) and (C.25) are of the s, sxy, dx2−y2 , and dxy character, with

the mirror-plane symmetries at the K = 0 point separating dx2−y2 and dxy partial-wave

solutions of the SE, while the two generalized s-wave-like solutions are allowed to mix.

Thus, Eq. (C.25) for the K = 0 sector decouples into two independent algebraic equations

for the d-waves and two coupled equations for the s-waves.

The resultant equations on the pairing energy for the dx2−y2 (d for brevity) and dxy waves

are given by

d : 1 = − 4

N

∑
p

(γ−p )2

∆E0(p)
, and dxy : 1 =

4J2
N

∑
p

(γ
dxy
p )2

∆E0(p)
, (C.26)

of which the dxy-wave does not permit any solutions having negatively-defined right-hand

side. The d-wave equation yields a solution of our ultimate interest that is discussed in more

detail below.
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The coupled s-wave equations can be written as

Cs = CsI11 + CsxyI12, and Csxy = CsxyI22 + CsI21, with I11 = − 4

N

∑
p

γp(γp − 1)

∆E0(p)
,

(C.27)

I22 =
4J2
N

∑
p

γ
sxy
p (γ

sxy
p − 1)

∆E0(p)
, I12 =

4J2
N

∑
p

γ
sxy
p (γp − 1)

∆E0(p)
, I21 = − 4

N

∑
p

γp(γ
sxy
p − 1)

∆E0(p)
.

(C.28)

While, ultimately, one can simply use these expressions to numerically prove that they are

unable to yield a viable solution for the binding energy, having an intuition on “why” would

be very useful. For that, let us consider only the diagonal Iγγ terms, because if they are

unable to sustain a solution on their own, the situation is unlikely to improve by the coupling

between the two channels.

For the I22 in the sxy-wave channel, the situation is similar to the dxy-wave above in that

the coupling is due to a repulsive J2 term, but it contains a “hard-core shift” in the pairing

potential, which makes the outcome less certain analytically. However, with a minimal effort,

one is able to prove that I22 does indeed remain negative and yields no feasible solutions for

the binding energy,

The interaction in the s-wave channel in I11 is attractive (J1 =−1<0), but it has a hard-core

shift in the pairing potential, which is repulsive and is often quoted as the reason for the

suppression of the s-wave pairing. While this is a valid mechanism for the lack of pairing in

the pure ferromagnetic cases, which never result in the bound states that occur below the

absolute minimum of the continuum, this is not the reason why the s-wave is projected out

of a pairing in our case. A counterexample is always useful. If we ignore the momentum-

dependence in ∆E0(q) in the denominator of the integral in I11 in (C.27) for a moment (flat

magnon bands), it will yield a solution for the bound-state energy that is actually degenerate
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with the one for the d-wave in (C.26). Yet, for the true ∆E0(q) from (C.23), the s-wave

solution is absent. Hence, the lack of the binding is elsewhere.

The resolution is that the extended s-wave pairing harmonic γp∝(cos qx + cos qy) in (C.27)

has nodes of zeros passing through the energy minima of the denominator ∆E0(p), which

are at the magnon energy minima Q= (0, π)[(π, 0)], leading to a suppressed attraction via

the “dimensional increase” mechanism and giving no bound-state solution. For the smaller

values of J2< 0.5, the magnon band minima migrate back to the ferromagnetic minima at

Q = 0, where the “hard-core” reasoning takes over in forbidding the K = 0 bound state in

the s-wave channel.

Altogether, the d-wave K= 0 magnon bound-state in (C.26) is the only candidate to have

a BEC in the ferro-antiferromagnetic J1–J2 Heisenberg model on the square lattice. We

consider it in some more details next.

d-wave solution and asymptotics

We rewrite the equation on the d-wave pairing energy (C.26) in two different ways

1 =
1

2N

∑
p

(
cos px − cos py

)2
∆ + 2J2

(
1 + cos px cos py

)
−
(

cos px + cos py
) , (C.29)

and 1 = − Vd
2N

∑
p

(
γ−p

)2
−2∆ − 2

(
εp − εQ

) , (C.30)

with the first one being handy to use in the numerical integration that results in the curves

for ∆ vs J2 in Fig. 2(a) and hc2 = hc1 + ∆ in Fig. 1(a) of the main text. The second one,

with Vd = 8 in units of |J1| as before, is useful to relate back to the very beginning of our

bound-state consideration, the s-wave pairing in the continuum. Taking the J2≫1 limit for

the denominator in (C.30) and expanding near the magnon energy minima Q=(0, π)[(π, 0)]

yields ∆E0(p)=−2∆ − p2/mQ with 1/mQ =2J2.
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Figure C.2: (a) Numerical results for the d-wave bound-state wave-function ψd(rx) on a
semi-log plot for three representative values of J2 together with the asymptotic result ψd(r)=
Ae−|r|/ξ, with the correlation length ξ=0.8eπJ2/2 for all three sets. (b) Same as in Fig. 1(a)
and Fig. 2(a) of the main text, with the analytical results for ∆ in (C.30) obtained using
integration on an Lx×Ly lattice, with effective Lx = ∞ and two values of the width, Ly = 8
and Ly = 12.

Since the zero-nodes of the pairing harmonic γ−p are along the qx =±qy diagonals, perfectly

missing the magnon band minima, the coupling of the low-energy magnons is finite at Q,

allowing us to approximate (γ−p )2 ≈ 1 near Q and giving us all the ingredients of the “s-

wave-like” pairing. Thus, in the weak-coupling limit, integration in (C.30) yields the answer

that mirrors that of Eq. (C.16)

2∆ ≈ Λ

mQ

· e−
4π

mQVd = 2J2Λ · e−πJ2 , (C.31)

with Λ being the large-momentum cutoff and an extra factor 1/2 in the exponent originating

from the two inequivalent minima of the magnon band at Q= (0, π) and (π, 0). Thus, the

pairing in the d-wave channel in the considered problem indeed maps onto the textbook

s-wave solution. One of the key consequence of that is the absence of the upper limit on J2

for such a pairing to occur.

The other consequence is the exponential decay of the pair wave-function with the distance,

ψd(r) ∼ e−|r|/ξ, with the correlation length that can be inferred from the virial theorem,
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q2
ξ/2mQ≃∆, as ξ∼eπJ2/2. In Figure C.2(a), we show the real-space amplitudes of the bound-

state wave-function ψd(r) from (C.25) along the line r = (rx, 0) for several representative

values of J2 together with the asymptotic exponential behavior with ξ = 0.8eπJ2/2. Lastly,

for J2 < 0.5, the magnon band minimum shifts to Q = 0, quickly terminating pairing at

J c
2 = 0.4077593304754(1), as can be inferred numerically from (C.30). This is the end-point

of the hc2 line in Fig. 1(a) in zero field and ∆0 = 0 point in Fig. 2(a) of the main text, see

also Fig. C.2(b) and its inset.

One can emulate the finite-size effects of the DMRG results for the paring energy ∆ that

can be seen in Fig. 1(a) and Fig. 2(a) of the main text, by taking the analytical integral

for ∆ in (C.30) on an Lx × Ly lattice. The results of such an effort, with two values of Ly

and effectively infinite Lx are shown in Fig. C.2. The results are nearly matched by the

width Ly = 12, not Ly = 8, which can be interpreted in favor of the open-periodic boundary

conditions employed by DMRG as giving a better approximation of the thermodynamic limit

than its nominal width would suggest [3].

C.3 Finite-size scaling of the nematic order parameter

To investigate the order-parameter evolution with the system size, we follow the strategy of

Ref. [3]. It suggests that the DMRG cylinders with the open-periodic boundary conditions

and the aspect ratio Lx/Ly about 2.0 should cancel the leading finite-size effects for the order

parameter in the center of the cluster, closely approximating its value in the thermodynamic

2D limit.

We use three cylinders with the aspect ratio of 2.0 and apply the nematic pair-field of

0.1⟨S−
i S

−
i+y⟩ on both edges. The results for the nematic order-parameter ⟨S−

i S
−
i+y⟩ and for

the z-axis magnetization ⟨Sz
i ⟩ are shown in Fig. C.3(a) as the profiles along the width of the

142



clusters. The 1/Ly-scaling of the nematic order parameter and magnetization in the center

of the cylinders are presented in Fig. C.3(b). Both quantities show little change, giving a

strong support to the existence of the nematic phase in 2D and providing a vindication to

the strategy of Ref. [3] used in this work, suggesting that the width-8 cylinders that we rely

on in our study approximate the 2D behavior very well.
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Figure C.3: Finite-size scaling of the nematic order parameter and z-axis magnetization in
the nematic phase for h = 0.96 and J2 = 0.7. (a) Nematic order parameter ⟨S−

i S
−
i+y⟩ (left

axis) and z-axis magnetization ⟨Sz
i ⟩ (right axis) along the cylinder for the three cluster sizes

of the same aspect ratio 2.0. There is a weak symmetry-breaking pairfield 0.1S−
i S

−
i+y applied

to both edges. (b) 1/Ly-scaling of ⟨S−
i S

−
i+y⟩ and ⟨Sz

i ⟩ at the center of the cylinders in (a).

C.4 Dipole and quadrupole order parameters in a Heisen-

berg antiferromagnet

In a multipole expansion, higher-order multipole correlations can exist merely as a byprod-

uct of the lower-order ones, so the nematic (quadrupolar) order parameter should always be

detectable in the presence of the conventional dipolar order. In this section, we present a nu-

merical demonstration of this effect for the J1>0, nearest-neighbor Heisenberg antiferromag-

net in a magnetic field. By highlighting its differences from the J1–J2 ferro-antiferromagnetic

model that we study in the present work, we further confirm that the existence of the pure

nematic phase in the J1–J2 model is not a byproduct of the dipolar order.
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Figure C.4: (a) Spin configuration in a long-cylinder scan of the Heisenberg J1-AFM, with
the magnetic field varying linearly across the length of the cylinder from zero to above the
saturation field. (b) Magnetization ⟨Sz

i ⟩ (left axis), square of the dipolar order parameter,
⟨S−

i ⟩2, and the quadrupolar order parameter ⟨S−
i S

−
i+y⟩, (right axis) along the cylinder in (a).

(c) The same order parameters as in (b) for the J1–J2 FM-AFM model for J2 = 0.7, as in
Fig. 4(b) of the main text, but for a wider field range. The shaded regions are the phases
from the naive phase diagram in Fig. 1(a) of the main text based on the values of hc1 and
hc2. The actual AFM to nematic phase boundary is at h ≈ 0.95, which is way above hc1 and
only slightly below hc2.

In Figs. C.4(a) and C.4(b) we show the DMRG results for the long-cylinder scan of the

Heisenberg J1-AFM in a magnetic field, with J1 = 1 set as the energy unit. The magneti-

zation curve shown in Fig. C.4(b) agrees very closely with the prior spin-wave calculation

[299]. One can see that the spin canting, demonstrated by the square of the order parameter,

⟨S−
i ⟩2, occurs below saturation field with no sign of an intermediate nematic phase. There is

also a finite quadrupolar order parameter, ⟨S−
i S

−
i+x(y)⟩, which is detected alongside the dipo-

lar order, but not independently. Furthermore, the dipolar order is always stronger than the
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quadrupolar one throughout our scan, with no region where the former can dominate and

indicate a possible occurrence of the pure nematic state.

This should be contrasted with the scan of the J1–J2 ferro-antiferromagnetic model for J2 =

0.7, as in Fig. 4(b) of the main text, but for a wider field range, shown in Fig. C.4(c). One

can observe a region near the saturation field where the ordered moment has deviated from

the full saturation, but shows no spin canting, also indicated by the dominant quadrupolar

order, ⟨S−
i S

−
i+y⟩, with the suppressed or vanishing dipolar one, ⟨S−

i ⟩2, in this region. These

are the distinct features of the spin nematic phase as we argue and analyze in more detail

in the main text.
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Appendix D

Supplemental materials for Chapter 5

D.1 phase boundaries from the DMRG scans

Here we illustrate how we determine the approximate phase boundaries and corresponding

error bars from the DMRG scans. In Figure D.1, we show the in-plane, |⟨Sx
i ⟩|, and out-

of-plane, |⟨Sz
i ⟩|, ordered moments along the DMRG J3-scan in Fig. 2(b) of the main text.

Spins in the FM and ZZ phases are along the x axis, while in the Iz phase they order along

the z axis. The transition points are chosen as the crossing points of their order parameters.

Error bars are either the distance to the inflection points of the order-parameter curves or a

minimum of one step of the scan (one column of the cylinder) for sharper transitions.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

FM ZZIz

J3

|⟨Sz
i ⟩|

|⟨Sx
i ⟩|

Figure D.1: |⟨Sz
i ⟩| and |⟨Sx

i ⟩| along the length of a 16×40 cylinder in a DMRG scan vs J3
for the ∆ = 0 limit of the J∆

1 –J3 model. The crossing points are the phase boundaries and
the shaded regions are the error bars.
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D.2 Proximity effect in the scans and the absence of

an spiral phase

0.1 0.2 0.3 0.4 0.5 0.6 0.7J3

(a)

FM ZZIz

J3

0.45 0.48 0.51 0.54 0.57 0.6

⟨Sx ⟩

J3

ZZIz

(c)

(b)

Figure D.2: Results for the J∆
1 –J3 model at ∆=0. (a) The J3-scan from Fig. 2(b) of the main

text. (b) The “zoom-in” J3-scan of the Iz-to-ZZ transition region in the 16×32 cylinder. (c)
The column-averaged ⟨Sx⟩ vs J3 for the scans in (a) and (b).

In some DMRG scans, such as the one in Fig. 2(b) of the main text, reproduced in Fig. D.2(a),

spins at the boundary between the Iz and other phases appear to form a spiral pattern. To

rule out an additional intermediate spiral phase, we perform a scan in a smaller range of the

varied parameter (“zoom-in” scan) to observe the boundary region closer. In Fig. D.2(b)

we focus on the transition region between the Iz phase and the ZZ phase. If the spiral

phase would exist, it would become wider in such a scan. In Fig. D.2(b), the transition

region has the same width (about ten columns) as in Fig. D.2(a), with the transition getting

sharper for the smaller gradient of J3, see Fig. D.2(c), strongly suggesting the absence of

any intermediate phase in the thermodynamic limit. In the non-scan calculation at J3=0.55

we also do not find the spiral phase. This analysis clearly shows that the spiral-like pattern
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in the scans is due to a proximity effect at the phase boundary. Similar verifications were

carried out for all suspicious phases in all scans.

D.3 DMRG results for the J∆
1 -J∆

2 model

Ref. [281] has studied the J1–J2–J3 XXZ model, demonstrating a potentially richer structure

of its phase diagram compared to the J1–J3 model investigated in our work. Specifically, it

was suggested that the spin-liquid phase in the isotropic Heisenberg limit is stable in a much

wider region along the J1–J2 axis than along the J1–J3 axis, with a specific point J2 = 0.18

studied in more detail. In that work, an XXZ cut of the J∆
1 –J∆

2 model along the ∆-axis for

J2 = 0.18 (and J3 = 0) was also investigated, and a transition to an incommensurate phase

from an SL phase was identified near the Heisenberg limit, at ∆ = 0.96, with a wide range

of the incommensurate phase extending down to the low values of ∆.

J2 = 0.18

Δ

Δ = 1.0 Δ = 0.9 Δ = 0.8
dZZ SDW FM

(a)

(b) (c) (d)

Figure D.3: Results for the J∆
1 –J∆

2 model for J2 =0.18. (a) DMRG scan on 12×32 cylinder vs
∆, and (b), (c), and (d) are non-scans on 16×16 and 12×12 cylinders for three representative
values of ∆.

Here we briefly present our additional results for the J∆
1 –J∆

2 model for this specific choice of

J2 = 0.18 and J3 = 0, thus extending our work in a different region of the parameter space.

148



The summary of our results is the following. We do not find any evidence for a spin-liquid

state in the Heisenberg limit of this model, and find a double-zigzag state instead. This is

similar to our results for the dZZ state in the J1–J3 model, found instead of the SL state

suggested in Ref. [281], as is discussed in the main text. For the 1D phase diagram along the

∆-axis for the same choice of J2 =0.18 and J3 =0, we find two transitions, one at ∆=0.93(2)

and the other at ∆=0.86(2). The lower one is a transition to a FM state, with no sign of the

incommensurate phase. While the existence of a transition at ∆ = 0.93(2) is, ideologically,

in agreement with the transition found in Ref. [281], in our case it is between a dZZ phase

and a potentially novel triple-zigzag state that also has a significant modulation of spins,

characteristic of that of the spin-density wave (SDW). We refer to it as to tZZ-SDW state.

The numerical results to substantiate these findings are presented in Fig. D.3. The Fig. D.3(a)

part shows a scan calculation at J2=0.18 vs ∆ from the Heisenberg limit down to ∆ = 0.8.

The double zigzag phase at the isotropic limit (∆=1.0) evolves into a FM state via an inter-

mediate phase. The non-scan calculations in Fig. D.3(b) and Fig. D.3(d) confirm the dZZ

and the FM phases at the respective ends of the scan, with both exhibiting a robust order.

The non-scan for the intermediate phase at ∆=0.9 in Fig. D.3(c) retains the characteristics

of the SDW state, as the spin’s magnitude is not varied in a fashion that would be consistent

with a “simple” triple-zigzag phase. While it is possible that the SDW variation may be an

artifact of the finite cluster as the tZZ phase has a large unit cell, the dZZ phase in the J1–J3

case is much more symmetric and we believe that the observed SDW variation is genuine.

Lastly, we note that in the energy comparison for the J1–J3 Heisenberg case discussed in the

main text and shown in Fig. 3(b), we have also investigated a stability of the triple-ZZ state.

The tZZ did come very close near the FM-dZZ boundary, but did not become the ground

state in that limit. In that sense, the stabilization of the tZZ phase, or a descendant of it,

in a different part of the phase diagram does not come as a complete surprise.
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D.4 Minimally augmented spin wave theory

The spin-wave approach is based on the 1/S-expansion about a classical ground state of a

spin model using bosonic representation for spin operators [300]. Since the classical energy

is at a minimum, the first non-zero term of the expansion is quadratic (harmonic), yielding

the liner spin-wave theory (LSWT) Hamiltonian in a standard form

H = Ecl +
1

2

∑
q

(
x̂†
qĤqx̂q −

1

2
tr(Ĥq)

)
+O(S0), Ĥq =

 Âq B̂q

B̂†
q Â∗

−q

 , (D.1)

where Ecl is the classical energy, O(S2), x̂†
q =

(
â†
q, â−q

)
is a vector of the bosonic creation and

annihilation operators, and Ĥq is the Hamiltonian matrix, O(S), in this basis. The diago-

nalization of ĝĤq, where ĝ is the diagonal para-unitary matrix, yields the LSWT magnon

eigenenergies {ε1q, ε2q, . . . ,−ε1−q,−ε2−q, . . . } [301] that are guaranteed to be positive defi-

nite because the expansion is around a minimum of the classical energy.

From that, the energy of the ground state to the order O(S) is E =Ecl + δE, where δE is

the 1/S quantum correction

δE =
1

2

∑
q

(∑
α

εαq − tr(Âq)
)
. (D.2)

When the classical state stops being a minimum as some parameter of the model is varied, the

quadratic Hamiltonian in (D.1) ceases to be positive definite, with some of the ε2αq turning

negative for some momenta q, and the quantum correction in (D.2) becoming ill-defined.

This hinders the use of the LSWT outside the classical region of stability of a state and

limits its ability to describe the shift of the phase boundaries between classical states due to
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quantum effects and the appearance of the ordered phases that are not favored classically

but stabilized in a quantum case.

The resolution to this general conundrum that has plagued application of the SWT to the

classically unstable states was suggested in Refs. [283–285]. The method consists of adding

a local field term to the Hamiltonian, δH=µ
∑

i a
†
iai (see the main text) and referred to as

the minimally augmented SWT (MAGSWT). The minimal value of this field is chosen from

the condition that all eigenvalues ε2αq are positive definite for all the momenta q.

D.4.1 LSWT for the phases of the J1–J3 model

The classical energies of the collinear phases of interest per number of atomic unit cells NA

are given by

EFM
cl = −3S2(1 − J3), EZZ

cl = −S2(1 + 3J3), EIz
cl = 3S2(∆1 − J3∆3), EdZZ

cl = −2S2,

(D.3)

valid for any J3 and ∆1(3) of the model (1) of the main text, inside or outside the phase’s

stability region.

Of the five phases in Fig. 1 of the main text, the magnetic unit cell in the FM and Iz phases

is naturally that of the honeycomb lattice (two sites), while for the ZZ and Sp ones it can

be reduced to that by the staggered or rotated reference frames, respectively, resulting in

the 4× 4 Hamiltonian LSWT matrix Ĥq (D.1) in all four cases. For the dZZ phase, the

staggered reference frame reduces the unit cell from eight to four sites and yields the 8× 8

LSWT matrix.

The LSWT treatment of the collinear phases is rather standard and we do not elaborate

on it except for a few details. In all two-sublattice cases, FM, ZZ, Iz, and Sp, the LSWT

matrices Âq, B̂q in (D.1) assume the same structure, for which the eigenvalues of the 4× 4
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Hamiltonian matrix can be found analytically. One can find additional simplifications of the

eigenvalue problem for the FM and Iz phases, and in all four cases in the limit ∆1(3) =0, see

also Ref. [278] for the limiting cases for the Sp phase.

In the 4-sublattice dZZ case, the eigenvalue problem for the 8× 8 matrix is not reducible to

a compact analytical form. However, analytical solutions are available for the eigenenergies

at the high-symmetry q = 0 and q = (0, π/
√

3) points in the Heisenberg limit, which are

instrumental for finding the MAGSWT parameter µ.

D.4.2 Finding µ in MAGSWT

In the FM, ZZ, and Iz phases, the search for the minimal value of µ for the MAGSWT follows

a similar pattern. In a simplified case, such as full XXZ (∆1 =∆3) or XY limits, analytical

expression for the lowest branch ε21q simplifies sufficiently to yield the J3-dependence of the

offending negative minimum that needs to be lifted up by a positive shift. The required

energy shift is easily related to µ with the ∆-dependence of µ either absent or following

trivially from the considered limiting cases. The resulting solutions correspond to a change

of the diagonal matrix element A → Ā of the LSWT matrix Âq, with Ā in all three cases

given by

Ā = A+ µ = 3S |γ̄Qmax| , where γ̄q = γq − J3γ
(3)
q , (D.4)

with the first- and third-neighbor hopping amplitudes γq = 1
3

∑
α e

iqδα and γ
(3)
q = 1

3

∑
α e

iqδ
(3)
α ,

and Qmax defined as

Qmax =


(0, 0), J3 < J3,c1 = 0.25,

(Qx, 0), Qx = 2
3
· arccos

(
1

2J3
· 1−3J3
1−2J3

)
, J3,c1 < J3 < J3,c2,

(2π/3, 0), J3 > J3,c2 = (
√

17 − 1)/8 ≈ 0.3904,

(D.5)
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Technically, the condition for the maximum of |γ̄q| is related to that of the classical energy

minimum in the Sp phase.

Interestingly, the resultant MAGSWT spectrum in the Iz phase and the quantum energy

correction (D.2) that derives from it, are fully independent of the anisotropy parameters ∆n.

In the dZZ case, the search of µ has involved analysis of the spectrum obtained by a numerical

diagonalization of the
(
ĝĤk

)2
matrix in the Heisenberg limit, which helped in identifying the

relevant high-symmetry q points that require stabilization corrections. The diagonalization

at these points can be reduced to an analytical form, which, in turn, yields the minimal

value of µ. In a narrow region of 0.1892 < J3 < 0.2030, the two lowest unstable branches

trade places and, in a row, develop negative minima at small but finite q’s. For that region,

we find that a straightforward linear interpolation for µ between the analytic solutions from

the neighboring regions is the most effort-effective, as it stabilizes the spectrum if not with

zero but with a very small gap. The resultant explicit expressions for µ are

µ =



S
(√

5−2J3+J2
3−1−3J3

)
, J3<J̃c1 = 0.1892,

interpolate, J̃c1<J3<J̃c2 = 0.203,

2S
(√

2−2J3+J2
3−1

)
, J̃c2<J3<J̃c3 = 0.25,

2SJ3, J3>J̃c3.

(D.6)

As in the other coplanar phases, FM and ZZ, µ is independent of the XXZ anisotropies ∆n.

D.4.3 Energies

Following the MAGSWT strategy, quantum corrections to the groundstate energies in all

competing phases can now be calculated in a conventional 1/S fashion using Eq. (D.2) with

the expressions for the minimal chemical potential from (D.4) and (D.6). Then the total

energies E(J3,∆) can be compared between the phases to create the phase diagram.
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Figure D.4: (a) The classical (dashed lines) and quantum (solid lines, from (D.2)) energies
of the FM, ZZ, Sp, and dZZ states vs J3 for ∆1(3) = 1 per atomic unit cell. The vertical
dashed lines are classical FM-Sp and Sp-ZZ boundaries and the dotted line is the crossing of
Ecl for the FM and ZZ states. (b) Same as (a) for the FM, ZZ, Sp, and Iz states for ∆1 =0
and ∆3 =1.

Figure D.4(a) shows the J3 energy-cuts in the Heisenberg limit, ∆1(3) = 1, of the J1–J3

model. The dashed lines are classical energies (D.3) and solid lines are energies with quantum

corrections (D.2). The vertical dashed lines are classical FM-Sp and Sp-ZZ boundaries, J3,c1

and J3,c2. The dotted line is the intersection of the FM and ZZ classical energies, J3 = 1/3.

The Iz phase is not competitive. The Sp phase uses standard SWT with no augmenting as

it is stable through its extent. The FM is an exact eigenstate, so the quantum corrections

to it are zero.

The first effect is the expansion of the ZZ phase (blue lines). While the FM is fluctuation-

free, the ZZ is not, which pushes its energy down and the crossing with the FM’s energy

below the J3,c1 point where the FM is unstable classically, superseding the non-collinear Sp

phase, which is not effective in lowering its energy. However, near J3,c1 another collinear

phase, dZZ, is competitive, making it a ground state in a finite range of J3 (orange lines).

One can note a very close agreement of the MAGSWT dZZ-ZZ transition at J3 = 0.262

compared to the DMRG value of 0.26. On the other hand, the FM-dZZ transition is at a

lower J3 = 0.1785 than the DMRG one at J3 ≈ 0.24. One can ascribe this difference to a
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larger sensitivity of the MAGSWT phase boundaries to the higher-order corrections in this

case because FM state is non-fluctuating in the Heisenberg limit.

For the “partial” XY limit, with ∆1 = 0 and ∆3 = 1, see Figure D.4(b). In this case,

dZZ is not competitive, but Iz is. All phases are fluctuating in this limit, including FM.

The Sp phase is not effective in benefiting from quantum fluctuations. The transition point

between FM and ZZ phase is renormalized to a slightly smaller J3 from its classical value.

However, both are overtaken by the strongly-fluctuating Iz phase in a wide window of J3.

One observation is that while the FM-Iz transition is associated with a rather steep energy

crossing, the Iz-ZZ crossing is rather shallow, suggesting stronger higher-order effects on the

MAGSWT phase boundary for the latter, but not the former. This is in accord with the

numerical values: J3≈0.269(15) [DMRG] vs 0.2513 [MAGSWT] for the FM-Iz boundary and

J3≈0.554(23) [DMRG] vs 0.637 [MAGSWT] for the Iz-ZZ boundary. Similar discrepancies

for the finite ∆1 in the phase diagram in Fig. 1(b) of the main text can be attributed to the

same effect.
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Figure D.5: (a) Same as in Fig. D.4(b) for the FM, ZZ, and Iz states in the “full” XY limit,
∆1 =∆3 =0. (b) Same as in Fig. D.4(a) for the FM, ZZ, Sp, and dZZ states for ∆1 =0.5 and
∆3 =1.

We note that in the “partial” XY case in Fig. D.4(b), the Heisenberg J3-term helps to

stabilize the Iz state. The effect of the ∆3 anisotropy is tested by the “full” XY limit of

the model, in which the benefit of the out-of-plane spin-coupling is absent. The J3-cut in

155



this limit is shown in Figure D.5(a). The Iz phase can be seen as remarkably effective at

lowering its energy, with the quantum fluctuation part being about four times of that for

the FM and ZZ states. However, while being closely competitive, the Iz phase is not stable

in the full XY limit according to MAGSWT. This result is, superficially, in a disagreement

with the DMRG, which does show a narrow strip of the Iz phase in Fig. 5 of the main text.

Nevertheless, with the energy curves in Fig. D.5(a) and Fig. D.4(b) in mind, it is clear that

the MAGSWT misses Iz phase in the full XY limit only slightly.

An additional J3-cut for ∆1 = 0.5 and Heisenberg J3 is shown in Fig. D.5(b). Here, the

competing phases are the same as in Fig. D.4(a), with the dZZ phase coming extremely

close, but not able to stabilize, yielding a direct FM-ZZ transition for this value of ∆1. This

is in a close agreement with DMRG, which shows a narrow dZZ slice for J3 between 0.280(4)

and 0.290(6) at this ∆1, with the FM-ZZ transition being direct for the next cut at ∆1 =0.4,

see Fig. 1(b) of the main text. Given the energy differences in Fig. D.5(b), the agreement is

indeed very close.

Such additional insights into the energetics of the competing phases are instrumental for

the understanding of their competition. They also underscore the undeniable success of the

MAGSWT in describing classically unstable states.
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