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Abstract

Inferring the properties of galaxies and dark matter halos from the dynamics of

their stars and star clusters

by

Asher Wasserman

There is a long and rewarding history in astronomy of studying the motions

of stars, gas, and planets to learn about the distribution of mass in the universe.

Observations of nearby galaxies rotating faster than otherwise expected are one of the

pillars of evidence for the cold dark matter (CDM) cosmological model. As increasingly

precise predictions are made about the small scale distribution of mass in the universe,

we need tools to be able to weigh our beliefs about the mass content of galaxies and how

they can be updated by increasingly richer and more complete observations. In this thesis

I present a series of applications of a Bayesian hierarchical model for the equilibrium

dynamics of spherical galaxies. Some key features of the model are: a natural mechanism

for propagating the systematic uncertainty of parameters such as orbital anisotropy,

distance, and stellar mass-to-light ratio into estimates for the dark matter content of

galaxies, the ability to jointly model multiple tracer populations with heterogeneous

data, and a clear way to incorporate and examine prior assumptions about galaxy and

dark matter scaling relations.
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Chapter 1

Introduction

Using the motion of objects in space to infer the distribution of mass in the

universe has a distinguished history. From foundational tests of general relativity to the

discovery and characterization of planets outside of our own solar system, the principle

that motion implies mass has led to great strides in our understanding of the universe.

To first order, we can relate motion to mass with a simple dimensional analysis as

M ∼ Rv2

G
(1.1)

where M is the total (i.e., dynamical) mass, R is the length scale of the system, v

is the velocity scale of the system (e.g., the velocity dispersion), and G is Newton’s

gravitational constant. Indeed, just flipping this relation around reveals that this is the

virial theorem, which holds that the average kinetic energy of a system is proportional

to the gravitational potential energy.

Observations of the dynamics of galaxies provided some of the earliest evidence

for dark matter (DM), dating back to studies from the 1930s by Oort and Zwicky. More
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precise measurements of the rotation curves of spiral galaxies made in the 1970s (e.g.,

Rubin et al. 1978) helped demonstrate that this unseen matter, should it exist, must be

spread throughout a large “halo” of mass that extends far beyond the spatial extent of

stars and gas in galaxies. For further historical details, I refer readers to the reviews of

Faber & Gallagher (1979), Trimble (1987), and de Swart et al. (2017).

One readily apparent challenge in measuring the DM content of galaxies is

finding and measuring the kinematics of a suitable population of tracers of the galactic

potential. For late-type spiral galaxies such as those studied by Rubin and collaborators,

the rotations of gas could be observed out to tens of kiloparsecs, on the order of the

sizes of the galaxies themselves. While these observations were sufficient to show flat

rotational profiles consistent with large mass-to-light ratios, we often lack such convenient

tracers in the form of gas or stellar disks for dispersion-supported systems like massive

elliptical galaxies and dwarf spheroidal galaxies.

Globular clusters (GCs) are compact clusters of millions of stars. While the

exact formation mechanisms of GCs are unknown, we do know that most of them formed

very early in the history of the universe, and that many of the GCs we see today in

the outer stellar halos of galaxies were accreted from smaller galaxies that merged to

form the galaxies we see today (Beasley et al. 2002; Brodie & Strader 2006). This latter

claim is bolstered by observations that the spatial distribution of GC systems is ∼ 4

times more extended than the spatial extent of galaxies as measured by their integrated

starlight (Forbes 2017). In light of this observation (and as illustrated in Figure 1.1), we

see that GCs provide a particularly useful role in measuring the motions of galaxies in
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orbits far beyond those of the majority of their stars.

It should be noted that this population of kinematic tracers is separate from

that of the field stars in the galaxy. In addition to the different spatial scale, GC

systems often have different distributions of orbits from that of the field stars (e.g., Zhu

et al. 2014). This difference can help us alleviate the well-known degeneracy between

dynamical mass and orbital anisotropy, shown in Figure 1.2. We can get even more

leverage over the dynamics of galaxies by exploiting our understanding of multiple

subpopulations of GCs. Early studies of GC systems found evidence of bimodality in

their color distributions (e.g., Zinn 1985; Zepf & Ashman 1993; Ostrov et al. 1993).

These two color subpopulations are often referred to as metal-rich (red) and metal-poor

(blue). When splitting GCs into these subpopulations, we find that they often follow

different spatial and kinematic distributions (Pota et al. 2013; Zhu et al. 2016; Forbes

2017).

Modern studies of the DM content of galaxies has moved beyond the first-order

calculation of the amount of DM around galaxies to questions about the small-scale

spatial distribution of DM in the universe. In particular, what is the mass distribution

of DM within galaxies, and how does DM content map to stellar content for lower mass

dwarf galaxies? Much of the recent progress and current challenges surrounding these

problems are documented by Weinberg et al. (2015); Bullock & Boylan-Kolchin (2017).

To learn something new from galaxy dynamics, we need to carefully integrate

information from diverse sources and weigh the uncertainties from a variety of systematic

effects. In addition, to answer questions about how surprising we find various observations,
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Figure 1.1: Enclosed mass profile for a model galaxy with a stellar mass of log10M∗/M� =

11 and a DM halo mass of log10M200c/M� = 13. The green dashed line shows the

effective radius of the galaxy (as traced by integrated starlight) while the dot-dashed

blue line shows the effective radius of the globular cluster population. We see that for a

typical massive elliptical galaxy, the GC system probes a region of the galaxy that is

dynamically dominated by dark matter.
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Figure 1.2: Velocity dispersion profile for a model galaxy under different assumptions for

the orbital anisotropy of the tracer (but with a fixed mass profile). Uncertainty in the

associated mass profile is minimized at the “pinch point” at approximately the effective

radius of the galaxy, where the predictions from the different anisotropy models overlap.
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we need a framework for evaluating the impact of our prior beliefs. The language of

Bayesian statistical inference provides such tools. In this thesis, I show how combining

simple dynamical models for spherical galaxies with techniques from Bayesian statistics

can help us answer interesting questions about the relationships between galaxies, globular

clusters systems, and dark matter halos.

In Chapter 2, I present a summary of the Bayesian dynamical modeling for-

malism. Chapters 3 through 5 are taken from Wasserman et al. (2018a,b, 2019). Each

of these chapters represents an application or extension of the model from Chapter 2.

Chapter 3, contains an application of the model to the dynamics of the massive elliptical

galaxy NGC 1407. In Chapter 4, I investigate claims of missing DM around the ultra-

diffuse galaxy NGC 1052-DF2. In Chapter 5, I use the model to evaluate evidence for

fuzzy dark matter around the Coma Cluster ultra-diffuse galaxy Dragonfly 44. Finally

in Chapter 6, I summarize this work and speculate on promising areas of future work.
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Chapter 2

Bayesian Spherical Jeans Modeling

2.1 The spherical Jeans equation

Consider a spherical galaxy. More precisely, consider a population of collisionless

point tracers1 in dynamical equilibrium in a spherical galaxy. Our task is this: given

the volume density ρ(r) of this population of point tracers orbiting in a gravitational

potential Φ(r), specified by the cumulative mass distribution M(r), we would like to

derive the statistical distribution of the velocities of these tracers and relate them to

observable quantities such as the line-of-sight (LOS) velocity dispersion and kurtosis.

We use the notational convention that r refers to a three dimensional spherical

radius (i.e., the de-projected radius) and R refers to a two dimensional cylindrical radius

along the LOS (i.e., the projected radius).

Following Binney & Tremaine (2008), under the above assumptions we can

1In context, these tracers can be observable stars or star clusters in a galaxy for which we can
reasonably assume that the relaxation time is sufficiently large.
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derive the spherical Jeans equation from taking the second moment of the phase space

distribution function as

d(ρ(r)σ2
r (r))

dr
+

2β(r)

r
ρσ2

r (r) = −ρdΦ(r)

dr
= −ρGM(r)

r2
(2.1)

where σr is the radial velocity dispersion profile, M is the cumulative mass profile, and

β is the anisotropy parameter profile, defined as

β = 1−
σ2
θ + σ2

φ

2σ2
r

= 1− σ2
θ

σ2
r

(2.2)

where in the second line we have made use of the fact that, for our spherically symmetric

galaxy, σθ = σφ. When β = 0, we say the system is isotropic, and Equation 2.1 can

be greatly simplified. When β ∈ (0, 1), we say the orbits of tracers in the system

are radially-biased, since σ2
r > σ2

θ . When β < 0, we say the orbits of the tracers are

tangentially-biased.

We can multiply both sides of Equation 2.1 by the integrating factor2

gβ(r) = exp

(∫ r

1

2β(r̃)

r̃
dr̃

)
(2.3)

and then integrate both sides with respect to r to directly relate the radial velocity

dispersion profile to the mass distribution:

σ2
r (r) =

1

ρ(r)gβ(r)

∫ ∞
r

ρ(r̃)gβ(r̃)
GM(r̃)

r̃2
dr̃ (2.4)

2Since g appears once in both the numerator and denominator of Equation 2.4, the choice of lower
integration bound in Equation 2.3 is arbitrary as the constant of integration becomes a common factor
when exponentiated.

8



In general, with the exception of a handful of very nearby galaxies, we lack full

six-dimensional phase space measurements of the tracers. Thus, we must first project

σ2
r along the LOS and second, we must make some assumptions about β and how it

changes with galactocentric radius.

2.1.1 Projecting the radial velocity dispersion

To derive the LOS velocity dispersion, we compute the tracer density-weighted

component of the velocity dispersion tensor σ2(x) = σ2
r r̂ + σ2

θ θ̂ + σ2
φφ̂ projected along

the LOS given by the unit vector ŝ. We then take the Abel transform of this quantity,

given by ρ(r) ŝ · σ2 · ŝ. For the spherically symmetric velocity dispersion tensor, with ŝ

arbitrarily aligned with the z axis (used as the reference axis for the polar angle, θ), we

have

ŝ · σ2 · ŝ = σ2
r (ŝ · r̂)2 + σ2

θ(ŝ · θ̂)2

= σ2
r cos2 i+ σ2

θ sin2 i

= σ2
r

(√
r2 −R2

r

)2

+ σ2
θ

(
R

r

)2

(2.5)

where i is the inclination angle between ŝ and the vector x̂ = (sin θ cosφ, sin θ sinφ, cos θ),

and R =
√
r2 − s2 is the projected radius. Note by construction, ŝ · φ̂ = 0. Thus applying
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the relation σ2
θ = (1− β)σ2

r , we have

σ2
LOS(R) =

2

Σ(R)

∫ ∞
R

r√
r2 −R2

ρ(r)

(
σ2
r

r2 −R2

r2
+ σ2

θ

R2

r2

)
dr

=
2

Σ(R)

∫ ∞
R

r√
r2 −R2

ρ(r)σ2
r

(
1− R2

r2
+ (1− β)

R2

r2

)
dr

=
2

Σ(R)

∫ ∞
R

(
1− βR

2

r2

)
ρ(r)σ2

r (r)
r√

r2 −R2
dr (2.6)

where Σ(R) is the projected surface density of the tracer population3. Replacing σ2
r in

Equation 2.6 with the right-hand side of Equation 2.4, we obtain the following double

integral expression

σ2
LOS(R) =

2G

Σ(R)

∫ ∞
R

r√
r2 −R2

(
1− βR

2

r2

)
1

gβ(r)

∫ ∞
r

ρ(r̃)gβ(r̃)
M(r̃)

r̃2
dr̃ dr . (2.7)

2.1.2 The Jeans kernel

For some limiting assumptions about β(r), we can simplify the above double

integral into a more computationally efficient single integral. Mamon &  Lokas (2005)

derive a range of such formulae (listed in their appendix) of the form

σ2
LOS(R) =

2G

Σ(R)

∫ ∞
R

Kβ (r,R)
ρ(r)M(r)

r
dr (2.8)

where

Kβ(r,R) =

∫ r

R

1

gβ(r̃)

r̃√
r̃2 −R2

(
1− 2β(r̃)

R2

r̃2

)
dr̃ (2.9)

is the Jeans kernel. This kernel can be thought of as accounting for the projection effects

of β on both the radial velocity dispersion and the LOS integral. For β(r) = β (i.e.,

3Astute readers will note that the integrand in Equation 2.6 is undefined for r = R at the lower
integration bound. In practice, so long as the numerical integration is performed down to some value of
R+ ε, the integral converges without problem.
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anisotropy is invariant with galactocentric radius, Mamon &  Lokas (2005) find

Kβ(u) =
u2β−1

2

[(
3

2
− β

)√
π

Γ(β − 1/2)

Γ(β)
+ βB

(
1

u2
, β +

1

2
,
1

2

)
− βB

(
1

u2
, β − 1

2
,
1

2

)]
(2.10)

where u = r/R,

Γ(z) =

∫ ∞
0

xz−1e−x dx (2.11)

is the Gamma function, and

B(z; a, b) =

∫ z

0
xa−1(1− x)b−1 dx (2.12)

is the incomplete Beta function. We note that the incomplete Beta function as used in

Equation 2.10 will diverge for β ≤ 1/2. Thus, we introduce the analytic continuation

of the incomplete Beta function in terms of the hypergeometric function (e.g., Straton

2002)

B(z; a, b) =
za

a
2F1(z; a, 1− b, a+ 1) . (2.13)

where

2F1(z; a, b, c) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(2.14)

is the hypergeometric function and

(q)n =


1 n = 0

∏n−1
i=0 (q + i) n > 0

(2.15)

is the rising Pochhammer term. Computationally efficient evaluations of the hypergeo-

metric function are readily available (e.g., Galassi et al. 2009), but care must still be

taken to avoid divergences at half-integral values of β. Fortunately Mamon &  Lokas

(2005) provide limiting cases of Kβ(u) for the relevant cases.
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2.1.3 A flexible anisotropy model

For many realistic models of β(r), an analytic expression for Kβ does not exist,

and thus we must resort to computing the full double integral of Equation 2.7 numerically.

Read & Steger (2017) proposed a flexible anisotropy model of the form

β(r) = β0 + (β∞ − β0)
(

1 +
(rβ
r

)nβ)−1
(2.16)

where β0 is the inner anisotropy value, β∞ is the outer anisotropy value, rβ is the

transition radius, and nβ controls the sharpness of the transition. For certain values of

the parameter, this model is identical to that of Osipkov (1979) and Merritt (1985), as

well as that preferred by Mamon &  Lokas (2005). For those particular cases, Mamon &

 Lokas (2005) provide analytic expressions for Kβ , but in general for arbitrary parameters

we are left to numerically integrate both the inner and outer integral expressions for

σ2
LOS. There is – at least – a concise analytic expression for gβ(r) with this model

gβ(r) = r2β∞
((rβ

r

)nβ
+ 1
) 2
nβ

(β∞−β0)
(2.17)

2.1.4 Line-of-sight kurtosis

By construction, odd velocity moments of the phase space distribution function

in a spherically symmetric model do not exist (e.g., the mean velocity field is zero).

However in addition to computing the second velocity moment of the distribution function

(in the form of the velocity dispersion) and its associated LOS projection, we can also

compute higher-order even velocity moments (i.e., the kurtosis).
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The LOS velocity kurtosis is defined as

κLOS(R) =
v4

LOS(R)

σ4
LOS(R)

(2.18)

where v4
LOS refers to the fourth-moment of the LOS velocity distribution. In the general

case of a radially varying β this is infeasible to compute, but for the case of constant

β,  Lokas (2002) derived the following relations in analogy to those for the second-order

velocity moments:

ρ(r)v4
r (r) = 3r−2β

∫ ∞
r

r̃2βρ(r̃)σ2
r (r̃)

GM(r̃)

r̃
dr̃ (2.19)

v4
LOS(R) =

2

Σ(R)

∫ ∞
R

[(
1− R2

r2

)2

+ 2(1− β)
R2(r2 −R2)

r4

+
(2− β)(1− β)

2

R4

r4

]
ρ(r)v4

rr√
r2 −R2

dr (2.20)

2.2 Mass models

In many applications, the enclosed mass profile we wish to model is composed

of different components, e.g., a stellar mass profile and a halo mass profile. Sometimes

the tracer density profile, ρ(r), will be identical to the dynamical mass density profile

(i.e., a self-consistent model)

ρM (r) =
1

4πr2

dM

dr
. (2.21)

However for many cases this is overly restrictive, and we will model the tracer density

separate from the total mass density.
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2.2.1 Sérsic model

The density distribution of stars (and star clusters systems) in galaxies are

often described with a Sérsic model. The surface density profile in this model is given by

Σ(R) = Σ0 exp

(
−bn

(
R

Re

)1/n
)

(2.22)

where Σ0 is the central surface density, Re is the effective radius, n is the Sérsicindex, and

bn is a function of n chosen such that Re matches the definition that 2L(< Re) = Ltot.

Efficient and accurate approximations for bn are given by Ciotti & Bertin (1999), but

for a quick reference we can use bn ≈ 2n− 1/3.

The de-projected volume density profile of this model a complicated analytic

form, but we can make use of the following approximation

ρ(r) = Σ0
b
n(1−pn)
n

2Re

Γ(2n)

Γ((3− pn)n)

(
r

Re

)−pn
exp

(
−bn

(
r

Re

)1/n
)

(2.23)

where Γ is the gamma function and the function pn is chosen to match the Abel inversion

of Equation 2.22, and whose approximation is found by Lima Neto et al. (1999). The

enclosed mass (within de-projected radius r) is given by

M(r) = 2πnΣ0

(
Re

bnn

)2 Γ(2n)

Γ((3− pn)n)
γ

[
(3− pn)n, bn

(
r

Re

)1/n
]

(2.24)

where γ is the lower incomplete gamma function. For an overview of the Sérsic density

model, see the review of Graham & Driver (2005).

2.2.2 Halo models

In the absence of baryonic effects or beyond-CDM physics, the profiles of

Navarro et al. and Einasto (the NFW and Einasto models, respectively) have been
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shown to be adequate descriptions of the structure of DM halos down to the smallest

scales resolved by simulations.

When taking into account baryonic effects such as adiabatic contraction (Blu-

menthal et al. 1986) or bursty star formation (Pontzen & Governato 2012), the distribu-

tion of mass in the halo can change. A more flexible DM density profile is given by the

double power law αβγ model:

ρ(r) = ρs

(
r

rs

)−γ (
1 +

(
r

rs

)α)(γ−β)/α

(2.25)

where ρs is the scale density, rs is the scale radius, γ is the negative inner log slope, β is

the negative outer log slope, and α controls the sharpness of the transition between the

two slopes (Hernquist 1990; Di Cintio et al. 2014). The enclosed mass profile for this

halo model is given by

M(r) =
4πρsr

3
s

ω

(
r

rs

)ω
2F1

[
ω

α
,
β − γ
α

, 1 +
ω

α
;−xα

]
(2.26)

where ω = 3− γ and 2F1 is the hypergeometric function.

For (α, β, γ) = (1, 3, 1), this reduces to the NFW profile. For (α, β) = (1, 3)

with γ left as a free parameter, this model is sometimes known as the generalized NFW

(or gNFW) model. Di Cintio et al. (2014) fit relations for the three shape parameters as

a function of the stellar-to-halo mass ratio.

The Einasto model is similar in structure to the Sérsic model, and a good

overview is given by Retana-Montenegro et al. (2012). For modeling the halos of dwarf

galaxies in particular, Read et al. (2016) proposed the coreNFW model, which introduces

a DM core to the NFW model on the spatial scale of the galaxy.
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2.3 Bayesian inference

The space of possible models to choose from when describing a dynamical

system is infinitely large, but even once we have specified a particular model we are left

with numerous free parameters. We would like to learn from data what are reasonable

beliefs for these parameters. Denoting the model parameters as θ and the data as

D, Bayes’ Theorem relates the conditional probability of model given the data to the

conditional probability of the data given the model.

P (θ|D) =
P (D|θ)P (θ)

P (D)
(2.27)

The left hand side of this expression is the posterior probability of θ, the inverse of the

conditional posterior probability (first term in the numerator on the right hand side)

is the likelihood of the data given the model, and P (θ) is the prior probability of the

model parameters. The denominator on the right hand side is the marginal likelihood,

and is equal to

P (D) =

∫
P (D|θ)P (θ)dθ . (2.28)

For many purposes, we only need to know the posterior density up to some multiplicative

constant of θ. Thus, we can safely ignore the normalization of the marginal likelihood.

2.3.1 Likelihood

For velocity dispersion as measured through integrated starlight, we have data

of the form D = (Ri, σi, δσi) where δσi is the measurement error for the i-th measurement.

If we assume a Gaussian measurement error model, then the likelihood for continuous
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tracers is given by

L(σi|δσi, Ri, θ) = N (σi|σJ(Ri, θ), δσi) (2.29)

where the Normal PDF is

N (x|µ, σ) =
1√
2πσ

exp

(
−
(
x− µ√

2σ

)2
)

(2.30)

and the Jeans model prediction, σJ(Ri, θ) is given by Equation 2.7. For discrete

tracers (e.g., radial velocity measurements of star clusters), we have data of the form

D = (Ri, vi, δvi). The Gaussian measurement error model is slightly different in this

case.

L(vi|δvi, Ri, θ) = N (vi|vsys,
√
σ2
J(Ri, θ) + δv2

i ) (2.31)

where vsys is the systemic velocity of the galaxy.

In general, we often assume that a set of measurements are conditionally

independent, which is to say that if we fix θ, then knowing the value of Di doesn’t tell

us anything more about the value of Dj . In this case,

L(D|θ) =
∏
i

L(Di|θ) . (2.32)

However, we should be careful to verify that this is a reasonable assumption. Breaking

this assumption can lead to underestimated uncertainties in the resulting estimates.

We often have multiple tracer populations we wish to simultaneously model.

As in the case of multiple data points from a single tracer, we often make the assumption

that the set of measurements are conditionally independent, and so their likelihoods

can be multiplied to form the joint likelihood. However it is important to maintain the

consistency of the dynamical mass model used between different tracer populations.
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When combining different datasets, it can be useful to treat the scaling of the

measurement uncertainties as a free parameter (Hobson et al. 2002; Ma & Berndsen 2014).

In addition to accounting for the possibilities of over or underestimated uncertainties,

this naturally allows for a more equal weighting of datasets with different number of

measurements.

2.3.2 Priors

One benefit of Bayesian inference is that it allows for a clear description of any

prior beliefs held by the researcher. Sometimes we wish to leave allow a parameter in the

model to vary, but we have a well-informed belief for what its value should be and wish

to propagate the uncertainty in the value forward to any other inferences. In that case,

we can place an informative prior over this parameter, such as a Normal distribution

with a mean of our expected value of the parameter and a standard deviation quantifying

our pre-existing uncertainty over the parameter.

In other cases, we may wish to place a much more uninformative prior over

the parameter, as we expect the data to be able to constrain this quantity. In such

cases, care must be taken to examine the effects of any chosen prior on the resulting

posterior distribution. Often researchers will place a uniform prior over a parameter and

claim that it is an “uninformative” prior assumption. Such claims can be misleading

however, as a uniform prior in one parameterization is a non-uniform prior in some other

reasonable transformation of the parameter.

To be concrete, suppose we wished to set the total dynamical mass of the system
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as a free parameter. It is common practice to transform any quantity that is restricted to

be non-negative (e.g., mass, distance, etc.) to a log scale in order to guarantee that this

requirement is met. However, a uniform distribution in log(M) is equivalent to a M−1

prior in the linearized space. While a true non-informative distribution is sometimes

feasible (i.e., the Jeffreys prior), such a calculation is often impractical and may in fact

result in an improper (i.e., unnormalizable) distribution.

2.3.3 Sampling

From Equation 2.27, we know both the likelihood, P (D|θ) and the prior, P (θ).

To draw samples from the posterior distribution, P (θ|D), we only need to know this

distribution up to a multiplicative constant, and thus it is sufficient to write down

the posterior probability distribution as P (θ|D) ∝ P (D|θ)P (θ). Once we have this

expression, we can use a Markov Chain Monte Carlo (MCMC) algorithm to sample from

P (θ|D). The original Metropolis-Hastings sampler algorithm (Metropolis & Ulam 1949;

Hastings 1970) is simple to write down, but requires fine-tuning of the proposal step

size. Goodman & Weare (2010) proposed an ensemble sampling method that requires no

fine-tuning of the proposal and has the nice property that the proposal is invariant with

respect to affine transformations of the parameter space. A well-known implementation

of this algorithm is provided by the emcee Python package (Foreman-Mackey et al.

2013).

Care must be taken when analyzing the resulting MCMC samples to ensure

that the chain is converged and the samples are representative of the actual posterior
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probability distribution of interest. The most basic strategy for establishing convergence

is to look at a plot of the samples as a function of iteration in the chain. For well mixed

samples, this should be a stationary distribution, and any subset of the chain should

give the same estimates of the posterior mean.

For standard (i.e., non-ensemble) MCMC methods, the Gelman-Rubin statistic

can be used with multiple independent chains to validate the convergence of the method

(Gelman & Rubin 1992). For ensemble based methods like that of Goodman & Weare

(2010), the multiple chains are, by construction, non-independent. We can, however,

still compute the auto-correlation length for the chain and verify that we have run the

sampler for a sufficient factor of the auto-correlation length (Sokal 1997).

In practice, we will run the sampler for a fixed number of iterations, then

visual inspect the chain to see when (if at all) the Markov chain has reached a stable

equilibrium. Early iterations prior to this point are discard from the chain, as they may

bias any estimates made with the sample.

2.3.4 Model comparison

It is common practice to write down multiple models to describe the data,

often with different numbers of parameters, different priors, and/or different forms of

the likelihood. In the frequentist modeling framework, it is common to describe the

goodness-of-fit of a maximum likelihood estimator with a reduced χ2 statistic,

χ2
ν =

1

ν

∑
i

(
yobs,i − yexp,i

σi

)2

(2.33)
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where ν = n− p is the degrees of freedom (equal to the number of datapoints minus the

number of free parameters), yobs are the observed data, yexp are the model expectations

for each data point, and σ2
i is the variance for the data (e.g., measurement error). The

resulting χ2
ν statistic should be ∼ 1 for a well-fit model, with χ2

ν < 1 suggesting that the

model over-fits the data and χ2 > 1 suggesting that the model under-fits the data.

While this is appropriate for a Gaussian likelihood with non-informative priors,

in realistic applications of Bayesian inference, we need a more flexible model comparison

tool that takes into account the spread in the posterior probability distribution. There is

an alphabet soup of information criterion methods for model comparison in the literature:

AIC, BIC, DIC, WAIC, etc. The underlying principle of most of these methods is to try

to estimate the out-of-sample predictive accuracy of the model, and for a good theoretical

overview of model comparison I direct readers to Gelman et al. (2013). To construct this

exact quantity, we would need to know the true data generating model, but if we did

know this then there would clearly be no point in comparing models. For the purpose of

practical model comparison, Vehtari et al. (2015) proposed a method for approximate

leave-one-out cross validation (LOO-CV). As long as we keep track of the point-wise

likelihood during sampling, computing a LOO-CV information criterion is relatively

computationally cheap, and serves as a robust measure of the predictive accuracy of

different models, regardless of differing parameterizations, priors, or likelihood forms.
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Chapter 3

Multi-population Jeans modeling of

NGC 1407

3.1 Introduction

The concordance cosmological model of dark energy plus cold dark matter

(ΛCDM) has had numerous successes in describing the large scale structure of the

universe. The story on the scale of galaxy formation has been more complicated, with

discrepancies in the number of satellite galaxies expected around the Milky Way (Klypin

et al. 1999; Moore et al. 1999), the masses of the Milky Way satellites that are observed

(Boylan-Kolchin et al. 2011; Bullock & Boylan-Kolchin 2017), and the inner slope of the

dark matter density profile of galaxies (Flores & Primack 1994). It is this last point that

we focus on here.
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Navarro, Frenk, & White (1997) introduced a double power law model (hereafter

the NFW model) of the halo density profile with ρ ∝ r−1 in the inner regions and ρ ∝ r−3

in the outer regions, which they found to describe well the form of halos from N-body

simulations. This model can be generalized to include a variable inner slope, γ, and is

often parameterized as

ρ(r) = ρs

(
r

rs

)−γ (
1 +

r

rs

)γ−3

, (3.1)

where rs is the scale radius which determines where the change in density slope occurs.

For γ = 1, this corresponds to the original NFW profile1. While this “universal”

profile provided a good match to their DM-only simulations, deviations from this profile

have been observed in various mass regimes. For instance, dwarf galaxies have often

been found to have shallower inner density slopes (Simon et al. 2003; Spekkens et al.

2005; Walker & Peñarrubia 2011; Oh et al. 2011, though see Adams et al. 2014; Pineda

et al. 2017). On the opposite end of the mass spectrum, Newman et al. (2013a) used

both gravitational lensing and stellar dynamics to measure 〈γ〉 ∼ 0.5 for a sample of

massive galaxy clusters.

If DM halos start with an NFW-like steep inner profile, then some physical

mechanism for transferring energy to DM in the inner regions is necessary to create

the shallower DM profiles observed for some galaxies. Self-interacting or fuzzy DM

scenarios have been proposed to solve this issue (e.g, Rocha et al. 2013; Robles et al.

2015; Di Cintio et al. 2017b). However, baryonic effects may also explain DM cores,

1In this work, we use the convention γ = −d log ρ/d log r, such that a larger value of γ implies a
steeper slope.
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either from bursty star formation at the low mass end (Navarro et al. 1996; Mashchenko

et al. 2008; Pontzen & Governato 2012) or from dynamical friction during gas-poor

mergers at the high mass end (El-Zant et al. 2004). In addition, Dekel et al. (2003)

argued that merging satellites whose halos have DM cores would be disrupted outside

of the central halo’s core, leading to a stable DM core in the central galaxy. Whatever

processes are responsible for flattening the DM density profile must compete with the

effects of adiabatic contraction (Blumenthal et al. 1986), whereby the infalling of gas

during the process of galaxy formation causes a steepening of the halo density profile.

To disentangle these many effects on the halo, we need to observationally map

out how the inner DM slope changes as a function of halo mass across a wide range

of mass regimes. While there are already many good constraints on this relation for

dwarf galaxies and for clusters of galaxies, there remains a dearth of observational

measurements of the inner DM slope for halos between the masses of 1012 and 1013 M�,

which typically host massive early-type galaxies (ETGs). These massive galaxies are

particularly critical tests for the presence of new, non-CDM physics, as many of the

baryonic effects on the halo are small compared to those for dwarf galaxies.

Mass inferences with dispersion-dominated dynamics suffer from a number of

challenges. For one, the total mass is degenerate with the distribution of the orbits

of the kinematic tracers being modeled. A general strategy for dealing with this

mass–anisotropy degeneracy is to simultaneously model multiple kinematic tracers with

separate distributions of their orbits.

Walker & Peñarrubia (2011) applied this approach to the Fornax and Sculptor
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dwarf spheroidal (dSph) galaxies by splitting their resolved stellar kinematic data into

chemo-dynamically distinct components, then making separate mass estimates using each

subpopulation. Previous studies of massive ETGs modeled multiple tracer populations

such as globular clusters (GCs), planetary nebulae (PNe), and integrated-light stellar

kinematics to alleviate the mass–anisotropy degeneracy (Schuberth et al. 2010; Agnello

et al. 2014; Pota et al. 2015; Zhu et al. 2016; Oldham & Auger 2016).

These studies were able to provide good constraints on the total mass of

DM halos, but inferring the detailed density distribution of halos requires a precise

determination of the stellar mass distribution. In contrast to the dSph galaxies studied

by Walker & Peñarrubia (2011), the inner regions of ETGs are dynamically dominated

by baryonic matter. As Pota et al. (2015) found, the degeneracy between the inferred

stellar mass-to-light ratio (Υ∗) and the inner DM density slope undermines attempts

to draw robust conclusions about the slope of the DM halo. Furthermore, in all of the

studies cited above, Υ∗ was assumed to be constant across all galactocentric radii (but

see Li et al. 2017; Poci et al. 2017; Mitzkus et al. 2017; Oldham & Auger 2018a for

work that relaxes this assumption). Given that many ETGs are found to have spatially

varying stellar populations, the constant Υ∗ assumption is an important systematic

uncertainty in understanding the inner DM density distribution (Mart́ın-Navarro et al.

2015; McConnell et al. 2016; van Dokkum et al. 2017a).

Using data from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS)

survey2 (Brodie et al. 2014), we model the dynamics of the massive elliptical galaxy

2http://sluggs.ucolick.org
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NGC 1407. SLUGGS is a survey of 25 nearby ETGs across a variety of masses,

environments, and morphologies. NGC 1407 has been studied by numerous authors (e.g.,

Romanowsky et al. 2009; Su et al. 2014; Pota et al. 2015), but here we revisit the galaxy

with state-of-the-art stellar population synthesis results, a new method for modeling the

stellar mass distribution, and a more rigorous statistical treatment of the influence of

multiple disparate datasets. This paper is a pilot work for an expanded study of a larger

subset of SLUGGS galaxies.

In Section 3.2, we summarize the observational data. In Section 3.3, we describe

the dynamical modeling and our method for combining distinct observational constraints.

In Section 3.4 we present the results of applying our model to NGC 1407. In Section 3.5

we interpret these results in the context of other observations and theoretical predictions.

We summarize our findings in Section 3.6, and we present our full posterior probability

distributions in Appendix A (Section 3.7.1). We show the result of various systematic

uncertainty tests in Appendix B (Section 3.7.2).

3.2 Data

NGC 1407 is a bright (MK = −25.46; Jarrett et al. 2000), X-ray luminous

(LX = 8.6× 1040 erg s−1 within 2 Re; Su & Irwin 2013), massive elliptical galaxy at the

center of its eponymous galaxy group. Brough et al. (2006) argued on the basis of its

high X-ray luminosity and low spiral fraction that the NGC 1407 group is dynamically

mature. The central galaxy is a slow rotator (λRe = 0.09; Bellstedt et al. 2017). We
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adopt a systemic velocity of 1779 km s−1 (Quintana et al. 1994). The galaxy shows

slight ellipticity (de Vaucouleurs et al. 1991 reported a flattening of ε = 0.07), and so we

calculate the projected galactocentric radius as

R2 = q∆x2 + q−1∆y2 , (3.2)

where ∆x and ∆y are coordinate offsets along the major and minor axes respectively

and q is the axial ratio (b/a). Here we have adopted a position angle of 58.4◦(Spolaor

et al. 2008).

There are numerous conflicting redshift-independent distances for NGC 1407

in the literature. Cantiello et al. (2005) used surface brightness fluctuation (SBF)

measurements to obtain a value of 25.1± 1.2 Mpc, while Forbes et al. (2006) used the

globular cluster luminosity function to obtain a value of 21.2±0.9 Mpc. Using a weighted

average of both SBFs and fits to the Fundamental Plane, Tully et al. (2013) derived a

distance of 28.2± 3.4 Mpc. Using the Planck Collaboration et al. (2016) cosmological

parameters and correcting the recession velocity to the Virgo infall frame, the galaxy has

a luminosity distance of 24.2± 1.7 Mpc. When including the distance to the galaxy as a

free parameter, we use a Gaussian prior with a mean of 26 Mpc and a standard deviation

of 2 Mpc. We find an a posteriori distance of 21.0+1.5
−1.4 Mpc (see Sec. 3.4) corresponding

to a distance scale of 0.102 kpc per arcsecond. It is this distance that we adopt for any

distance-dependent results that are not already marginalized over this parameter. We

report the effects of adopting a wide uniform prior on the distance in Appendix 3.7.2.1.

Here we summarize the kinematic, photometric, and stellar population data
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that we use for our models.

3.2.1 Stellar density

We use the same surface brightness profile as Pota et al. (2013), who combined

Subaru/Suprime-Cam g band and HST/ACS F435 imaging into a single B band profile

out to 440′′. Masking out the core at R < 2′′, they fitted a single Sérsic component

(Eqn. 3.3).

I(R) = I0 exp

(
−bn

(
R

Re

)1/n
)

(3.3)

Here, I0 is the central surface density, Re is the effective radius, n is the Sérsic index,

and bn is a function of n chosen such that 2L(Re) = Ltot (see Eqn. 18 in Ciotti & Bertin

1999, for an asymptotic expansion of bn). Pota et al. (2013) found an effective radius of

Re = 100′′ ± 3′′, a Sérsic index of n = 4.67± 0.15, and a central surface brightness of

I0 = 1.55× 1011 L�,B kpc−2 (adopting a solar absolute magnitude of M�,B = 5.48).

To derive a stellar mass surface density profile, we use the spatially-resolved

Υ∗ measurements of van Dokkum et al. (2017a), shown in Fig. 3.1. Details of the Low

Resolution Imaging Spectrograph (LRIS) observations, data reduction, and modeling

can be found in Sections 2 and 3 of van Dokkum et al. (2017a). Fitting of the extracted

1D spectra was performed with the stellar population synthesis (SPS) models of Conroy

et al. (2018) (an update to those of Conroy & van Dokkum 2012), using the extended

stellar library of Villaume et al. (2017) and the MIST stellar isochrones (Choi et al.

2016). The logarithmic slope of the initial mass function (IMF) was allowed to vary in

the ranges of 0.08 < M/M� < 0.5 and 0.5 < M/M� < 1. For M/M� > 1, a Salpeter
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(1955) log slope of −2.35 was adopted.

Since these Υ∗ values were computed for I band, we use the B − I color profile

measured by Spolaor et al. (2008) to convert to a B band Υ∗. We then multiply these

Υ∗ measurements by the stellar surface brightness profile to obtain the mass surface

density profile shown in Fig. 3.2, propagating uncertainties under the assumption that

the Υ∗ uncertainties dominate over the photometric uncertainties. We compare this

variable Υ∗ density profile with one determined from multiplying the surface brightness

profile by a constant Υ∗ = 8.61 (chosen to match the two enclosed stellar mass values at

100′′). We see that the variable Υ∗ profile is noticeably more compact than the constant

Υ∗ profile. We discuss this more in Sec. 3.5.3.

The Sérsic fits to the stellar luminosity and mass surface density profiles are

listed in Table 3.1.

3.2.2 GC density

Nearly all massive ETGs have been found to have GC systems with a bimodal

color distribution (Brodie & Strader 2006), and NGC 1407 is no exception (Forbes et al.

2006). The red and blue modes are expected to trace metal-rich and metal-poor GCs

respectively, with the basic galaxy formation scenario associating metal-rich GCs with

in-situ star formation and metal-poor GCs with accretion (Brodie & Strader 2006; Peng

et al. 2006; Harris et al. 2017).

Since we model the dynamics of the blue and red GC subpopulations simultane-

ously, we use separate surface number density profiles for each subpopulation, using the
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Figure 3.1: Stellar mass-to-light profile of NGC 1407 from van Dokkum et al. (2017a).
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Figure 3.2: Stellar mass surface density. Blue circles show the measured values using

the variable Υ∗ profile. The blue dashed line shows the best fit model (see Sec. 3.3) of

the surface density, with the width of the curve showing the inner 68% of samples. We

compare this with a profile derived from a constant Υ∗, shown as the yellow squares.

The uncertainties on these points are taken from the typical uncertainties on Υ∗.

31



I0 Re n

Stellar luminosity 1.55×1011 100± 3 4.67± 0.15
Stellar mass 3.25×1012 23± 2 3.93± 0.05
Red GCs 354 169± 7 1.6± 0.2
Blue GCs 124 346± 30 1.6± 0.2

Table 3.1: Sérsic profile parameters. Left to right: central surface density, effective radius

(in arcseconds), and Sérsic index. The central surface density has units of L�,B kpc−2 for

the stellar luminosity, M� kpc−2 for the stellar mass, and count arcmin−2 for the GCs.

results from Pota et al. (2013). With Subaru/Suprime-Cam g and i band imaging, they

fitted a single Sérsic profile plus uniform background contamination model to both the

red and blue subpopulations, splitting the two subpopulations at a color of g − i = 0.98

mag. Their resulting Sérsic parameters are listed in Table 3.1, and the profiles are shown

in Fig. 3.3.

Relative to the field star density distribution, the GC profiles show flatter inner

cores, possibly due to tidal destruction of GCs at small galactocentric radii. The red GC

subpopulation is more compact than the blue GCs, though both are far more spatially

extended than the field stars.

In Fig. 3.4 we show the log-slopes of the tracer surface density profiles as a

function of radius. The density slope of the red GC subpopulation qualitatively matches

that of the field stars in the outer halo, matching expectations that the metal-rich GCs

are associated with the field star population (Forbes et al. 2012).
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Figure 3.3: Surface brightness and surface number density profiles for the field stars,

blue GCs, and red GCs. The extent of the radial ranges represent where the profiles

were fitted to the photometric data, and the width of the curve shows the propagated

uncertainty in the Sérsic parameters.
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Figure 3.4: Log-slopes of the surface brightness and surface number density profiles for

the field stars, blue GCs, and red GCs. The extent of the radial ranges represent where

the profiles were fitted to the photometric data, and the width of the curve shows the

propagated uncertainty in the Sérsic parameters.
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3.2.3 Stellar kinematics

In the inner ∼ 40′′ (0.4 Re) of the galaxy, we use longslit spectroscopy along the

major axis from the ESO Faint Object Spectrograph and Camera (EFOSC2), originally

analyzed by Spolaor et al. (2008). These data were re-analyzed by Proctor et al. (2009),

who used penalized pixel fitting (Cappellari & Emsellem 2004) to calculate a velocity

dispersion profile for the galaxy.

Here we define the velocity dispersion as the root mean square (RMS) velocity,

vrms =
√
〈v2〉. For the longslit data along the major axis, we account for the slight

rotational motion by calculating vrms as

vrms =

√
v2

rot

2
+ σ2 (3.4)

where σ is the standard deviation of the line-of-sight velocity distribution (LOSVD)

(Napolitano et al. 2009). With 〈v/σ〉 ∼ 0.09, there is a difference of less than 3 km s−1

between the σ and vrms profiles.

To reach out to much farther galactocentric radii, we use the Keck/DEIMOS

multislit observations presented by Arnold et al. (2014) and Foster et al. (2016), which

sample the stellar light in 2D. Using only spectra visually classified as “good” by Foster

et al. (2016), these stellar velocity dispersion measurements reach out to ∼ 200′′ (2Re),

though of course with sparser spatial sampling than the longslit kinematic data. We

calculate the velocity dispersion for these 2D measurements as

vrms =
√
v2

rot + σ2 . (3.5)

These stellar kinematic measurements are shown in Fig 3.5.
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Figure 3.5: Stellar velocity dispersion data out to 2 Re (∼ 20 kpc). The lighter points

between 40′′ and 80′′ show where we mask data due to substructure. The green circles

show the longslit data, the orange squares show the multislit data, and the blue line

shows the best fit stellar velocity dispersion model described in Sec. 3.3, with the width

of the curve showing the inner 68% of samples. We note that the error bars have not

been visually scaled following the best-fit weighting parameter (Sec. 3.3.2).
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There are two complications in pre-processing the stellar kinematic data. The

first is the potential presence of substructure in the kinematics in the region between

40′′ and 80′′. This deviation from a monotonically decreasing velocity dispersion profile

was also seen in the velocity dispersion profile measured by van Dokkum et al. (2017a),

and it is further mirrored in the metallicity bump seen by Pastorello et al. (2014).

Following Pota et al. (2015), we mask out this region for our analysis (the lighter points

in Fig. 3.5). We discuss the effects of removing these data in Appendix 3.7.2.2. The

second complication is the influence of the central super-massive black hole (SMBH).

Rusli et al. (2013) inferred the presence of a ∼ 4× 109 M� SMBH in NGC 1407 with

a corresponding sphere of influence with radius ∼ 2′′. To avoid having to model the

dynamical effects of the SMBH, we restrict our analysis to radii outside of 3′′.

3.2.4 GC kinematics and colors

We use the GC kinematics presented in Pota et al. (2015). The spectra for

these measurements were obtained from ten Keck/DEIMOS slitmasks. The red and

blue GC radial velocities (RVs) in Fig. 3.6 reveal that the two subpopulations have

systematically different velocity dispersions in the outer regions. The GC radial velocity

measurements for NGC 1407, as well as for the entire SLUGGS sample, can be found in

Forbes et al. (2017).

The g − i color distribution of our spectroscopic GC dataset, shown in Fig. 3.7,

is well-matched to the photometric GC catalog presented in Pota et al. (2013). We fit a

Gaussian Mixture Model to the spectroscopic sample color distribution and compare the
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Figure 3.6: GC velocity dispersion vs. galactocentric radius, with blue GCs and red

GCs showing systematically different trends in their scatter at large galactocentric radii.

The blue GC subpopulation has a rising velocity dispersion profile, while the red GC

subpopulation has a falling velocity dispersion profile. The associated best fit models

of the GC velocity dispersion profiles are described in Sec. 3.3, with the width of the

curves showing the inner 68% of samples.
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µc σc φ

Blue GCs (photometric sample) 0.85 0.05 —
Red GCs (photometric sample) 1.10 0.1 —
Blue GCs (RV sample) 0.87 0.067 0.52
Red GCs (RV sample) 1.12 0.094 0.48

Table 3.2: GC color Gaussian parameters. Comparison of the color distribution of our

spectroscopic GC sample with that of the GC system overall. The weights, φ, indicate

the fraction of GCs which come from the specified subpopulation.

result with the distributions found for the photometric sample of Pota et al. (2013)3,

listed in Table 3.2. We find that the color Gaussians of the RV GC sample have nearly

identical means to those of the photometric sample, though the blue Gaussian of the RV

sample has a slightly larger standard deviation than that of the photometric sample.

We emphasize that we do not split the GCs into red and blue subpopulations

based on color for the dynamical analysis, but rather use this information to assign a

probability of being in either subpopulation for each GC (Sec. 3.3.2).

3.3 Methods

Here we describe the dynamical (Sec. 3.3.1) and statistical (Sec. 3.3.2) methods

that we use to model our data.

3We note that the mean color of the red GCs was swapped with that of NGC 2768 in the presentation
of their Table 3.
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Figure 3.7: Gaussian mixture model of GC colors from our RV GC dataset. The

blue and red curves show the Gaussian color distribution for the blue GC and red GC

subpopulations respectively, while the dashed black curve shows that the sum of these

distributions accurately captures the observed RV GC color distribution (in the violet

histogram).
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3.3.1 Dynamical model

Given the low v/σ and near-circular isophotes of the galaxy, we assume spherical

symmetry for our model. Further assuming that we have a perfectly collisionless tracer

population in steady-state, we can write the spherically symmetric Jeans equation as

d(νv̄2
r )

dr
+ 2

β

r
νv̄2

r = −ν dΦ

dr
(3.6)

where ν is the volume density of the tracer, and

β ≡ 1−
σ2
θ + σ2

φ

2σ2
r

(3.7)

is the standard orbital anisotropy parameter (Binney & Tremaine 2008).

We can integrate once to obtain the mean square of the radial component of the

velocity, and again to obtain the projected line-of-sight (LOS) RMS velocity. Following

Mamon &  Lokas (2005) the latter is,

v2
rms,los(R) =

2G

I(R)

∫ ∞
R

K
( r
R
, β
)
ν(r)M(< r)

dr

r
(3.8)

where I(R) is the surface density profile, ν(r) is the volume density profile, M(< r)

is the enclosed mass profile, and K(u, β) is the appropriate Jeans kernel. The Jeans

kernel weighs the impact of the orbital anisotropy across the various deprojected radii,

r, associated with the projected radius, R.

We note that we only model the LOS vrms, and not any higher-order moments

of the LOS velocity distribution. If we assume that the anisotropy parameter of a tracer
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is constant at all radii, then we have

K(u, β) =
1

2
u2β−1

[(
3

2
− β

)√
π

Γ(β − 1/2)

Γ(β)

+βB

(
β +

1

2
,
1

2
;

1

u2

)
−B

(
β − 1

2
,
1

2
;

1

u2

)] (3.9)

where B(a, b; z) is the incomplete Beta function (Mamon &  Lokas 2005, Appendix A).

By writing the incomplete Beta function in terms of the hypergeometric function,

B(a, b; z) = a−1za 2F1[a, 1− b, a+ 1; z] (3.10)

we can extend this formula to values of β ≤ 1/2 that would otherwise make this expression

undefined.

We model our tracer density as a Sérsic profile (Eqn. 3.3). For the blue and red

GCs, the parameters of these Sérsic profiles are fixed to the values described in Sec. 3.2.2.

For the stellar density profile, we freely vary the Sérsic parameters to jointly constrain

the stellar surface density profile shown in Sec. 3.2.1 and the impact of the stellar mass

on the kinematics.

The deprojected volume density profile in the Sérsic model is approximated as

ν(r) = I0
b
n(1−pn)
n

2Re

Γ(2n)

Γ((3− pn)n)

(
r

Re

)−pn
exp

(
−bn

(
r

Re

)1/n
)

(3.11)

where the reciprocal polynomial pn can be found by minimizing the difference with

this equation and the density as computed from an inverse Abel transform of the

projected surface density (see Eqn. 19 in Lima Neto et al. 1999 for an appropriate series

approximation to pn).
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We use a generalized Navarro-Frenk-White (gNFW) dark matter density profile

of the form given by Eqn. 3.1. The enclosed mass profile of this model is found by

integrating the spherically-symmetric density profile,

MDM(< r) =

∫ r

0
4πr′2ρ(r′) dr′

= 4πρs

∫ r

0
r′2
(
r′

rs

)−γ (
1 +

r′

rs

)γ−3

dr′
(3.12)

Comparing this with the integral form of the hypergeometric function

2F1[a, b, c; z] =
1

B(b, c− b)

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−a dx (3.13)

where B(x, y) is the complete Beta function, we obtain

MDM(< r) =
4πρsr

3
s

ω

(
r

rs

)ω
2F1

[
ω, ω, ω + 1;− r

rs

]
(3.14)

where ω ≡ 3− γ.

The stellar mass is the deprojected enclosed luminosity of the Sérsic density

profile, given by

M∗(< r) = 2πnΣ0

(
Re

bnn

)2 Γ(2n)

Γ((3− pn)n)
γ

[
(3− pn)n, bn

(
r

Re

)1/n
]

(3.15)

where Γ(z) is the complete Gamma function and γ(z, x) is the lower incomplete Gamma

function (Lima Neto et al. 1999). We note that here Σ0 refers to the central surface

mass density, not the surface brightness.

The total enclosed mass is thus given by

M(< r) = MDM(< r) +M∗(< r) +MBH (3.16)

where we have included the central supermassive black hole (MBH) as a single point

mass at r = 0.
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3.3.2 Measurement model

We construct a Bayesian hierarchical model from the previously described

dynamical model that is simultaneously constrained by the longslit stellar kinematics,

the multislit stellar kinematics, the GC kinematics and colors, and the stellar mass

surface density measurements. Since these data cover a range of different observations

and modeling assumptions, we use the hyperparameter method of Hobson et al. (2002)

to allow the properties of each dataset to determine their own relative weights.

For each dataset, we assign a parameter, α, that scales the uncertainties on

the dataset as δx→ δx/
√
α. This α parameter can be interpreted as the “trust” in the

dataset, given the other data available and the model context in which the data are

being evaluated. This is similar to the approach adopted by Oldham & Auger (2016)

for balancing the contribution of stellar kinematics and GC kinematics to the overall

likelihood, though we assign a weight parameter to each dataset under consideration. We

do not model the co-variance between uncertainties in the datasets (see Ma & Berndsen

2014 for an extension of this method to covariant uncertainties).

We note that the introduction of these weight parameters means that we need

to take care in specifying the likelihood. For a typical Gaussian likelihood, we can drop

the constant 1/δx uncertainty factor (where δx refers to the measurement uncertainty),

as it does not influence our sampling of the posterior distribution. However, the log

likelihood for data, x, drawn from a Gaussian of mean, µ, and standard deviation,
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δx/
√
α, would now be

lnL(x, δx) = −1

2

(
ln

(
2πδx2

α

)
+ α

(
x− µ
δx

)2
)

(3.17)

Thus there is now a free parameter in the first term which we cannot neglect. The

following description of our joint likelihood assumes that all uncertainties on the data

have already been weighted as specified here.

For the sake of visual clarity, in this section we write all velocity dispersion

quantities as σ, despite the measured velocity dispersions being given by the RMS

velocity and not the standard deviation of the LOSVD.

We model the stellar velocity dispersion data, σi ± δσi, as being drawn from a

Gaussian distribution about the Jeans model prediction, σJ(Ri).

L∗(σi, δσi|σJ(Ri)) =
1√

2πδσ2
i

exp

(
−(σJ(Ri)− σi)2

δσ2
i

)
(3.18)

We treat both the longslit and the multislit data as measuring the same kinematic tracer

(and hence σJ for both is calculated with the same density profile and anisotropy), but

we use different weight parameters as discussed above. When separated, we use Lls and

Lms to refer to the longslit and multislit likelihoods respectively.

We model the stellar mass surface density data, Σi ± δΣi, as being drawn from

a Gaussian distribution about the proposed Sérsic profile, Σm(Ri).

Lm(Σi, δΣi|Σm(Ri)) =
1√

2πδΣ2
i

exp

(
−(Σm(Ri)− Σi)

2

δΣ2
i

)
(3.19)

This is the same Sérsic profile used for the mass modeling, and so while the parameters

of this model are primarily constrained by the data presented in Sec. 3.2.1, these Sérsic

parameters also influence the predicted kinematic data.
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Our analysis of the GC kinematic data differs from that of Pota et al. (2015) in

that we do not use a strict color cut or bin GC RV measurements by radius. Rather, we

follow the approach of Zhu et al. (2016) in modeling GC RVs as a mixture of Gaussians

associated with each GC subpopulation. Here the mean velocity is the systemic velocity

of the galaxy and the standard deviation is the predicted σJ from the Jeans model

associated with that subpopulation. We model the GC colors as being drawn from the

mixture of Gaussians as described in Sec. 3.2.4.

Thus the likelihood for a particular GC measurement (with velocity vi±δvi and

g− i color ci± δci), under the assumption that it comes from a particular subpopulation,

k, (described by a distinct density profile, anisotropy, and color distribution) is

Lk(vi, δvi, ci, δci|σJ,k(Ri)) =

1√
2π(δv2

i + σ2
J,k(Ri))

exp

(
− v2

i

δv2
i + σ2

J,k(Ri)

)

× 1√
2π(δc2

i + σ2
c,k)

exp

(
−(ci − µc,k)2

δc2
i + σ2

c,k

) (3.20)

where µc,k and σc,k are the mean and standard deviation of the color Gaussian for the

k-th subpopulation, and σJ,k is the Jeans model prediction.

The likelihood for the GC data is therefore

Lgc(vi, δvi, ci, δci) =
∑

k∈{b,r}

φkLk(vi, δvi, ci, δci) (3.21)

where φk is the mixture model weight for the k-th GC subpopulation, satisfying∑
k φk = 1. We note that the probability that an individual GC comes from a particular
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subpopulation is given by

Pk(v, δv, c, δc) =
φkLk(v, δv, c, δc)∑
j φjLj(v, δv, c, δc)

. (3.22)

Putting all of the likelihoods together, our final joint likelihood is

L =
∏
i

Lls ×
∏
i

Lms ×
∏
i

Lm ×
∏
i

Lgc . (3.23)

In practice, we compute the log-likelihood.

lnL = lnLls + lnLms + lnLm + lnLgc (3.24)

Our model has fifteen free parameters, listed in Table 3.3. The parameters are

as follows: the scale density of the DM halo (ρs), the scale radius of the DM halo (rs),

the inner DM density log-slope (γ), the SMBH mass (Mbh), the anisotropy of the field

stars (βs), the anisotropy of the blue GCs (βb), the anisotropy of the red GCs (βr), the

distance (D), the central stellar mass surface density (Σ0,∗), the stellar mass effective

radius (Re), the stellar mass Sérsic index (n∗), the weight for the longslit dataset (αls),

the weight for the multislit dataset (αms), the weight for the GC dataset (αgc), and the

weight for the stellar mass surface density dataset (αm).

The dynamical model and measurement model was constructed with slomo4,

a python-based code doing Jeans modeling of spherically symmetric systems. To sample

our posterior probability distribution, we use emcee (Foreman-Mackey et al. 2013), an

implementation of the affine-invariant Markov Chain Monte Carlo (MCMC) ensemble

sampler described by Goodman & Weare (2010). We run our sampler with 128 walkers

4https://github.com/adwasser/slomo
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Parameter Unit Prior Fit value

log10 ρs [M� kpc−3] U(3.0, 9.0) 6.65+0.74
−0.99

log10 rs [kpc] U(1.0, 3.0) 1.79+0.56
−0.36

γ [—] U(0.0, 2.0) 1.06+0.22
−0.37

log10 Mbh [M�] U(0.0, 11.0) 5.11+3.11
−3.32

β̃s [—] U(−1.5, 1.0) −0.31+0.08
−0.10

β̃b [—] U(−1.5, 1.0) −1.08+0.32
−0.29

β̃r [—] U(−1.5, 1.0) 0.23+0.25
−0.24

D [Mpc] N (26.0, 2.0) 21.01+1.37
−1.35

log10 Σ0,∗ [M� kpc−2] U(12.0, 13.0) 12.53+0.05
−0.06

log10Reff,∗ [arcsec] U(1.0, 2.5) 1.41+0.06
−0.05

n∗ [—] U(1.0, 8.0) 4.07+0.14
−0.13

αls [—] Exp 1.89+0.47
−0.42

αms [—] Exp 0.13+0.02
−0.02

αgc [—] Exp 1.89+1.27
−0.80

αsp [—] Exp 0.36+0.15
−0.12

Table 3.3: Model parameters. List of free parameters in our model with their best fit

values. The fit values show the median of the posterior, along with the 68% credible

region.

for 6000 iterations, rejecting the first 4800 iterations where the chains have not yet fully

mixed. The traces of these walkers are shown in Appendix 3.7.1 in Fig. 3.17.

3.3.3 Parameterizations and Priors

For scale parameters such as ρs or rs, we use a uniform prior over the logarithm

of the parameter. For the anisotropy parameters, we re-parameterize to β̃ = − log10(1−β).

By adopting a uniform prior over this symmetrized anisotropy parameter, we treat radial

and tangential anisotropy values as equally probable. For the distance, we adopt a

Gaussian prior as discussed in Sec. 3.2. In practice, we truncate this distribution for
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negative distances. Following Hobson et al. (2002) we adopt an exponential prior over

all weight parameters.

3.3.4 Mock data test

After sampling from our posterior distribution, we validate our model by

generating a mock dataset and performing the same inference as described above on

these generated data. We emphasize that, rather than being a test of the appropriateness

of our model, this is a test to see how well recoverable is our posterior distribution, given

the assumed correctness of our model.

We take the median parameter values from Table 3.3 to be our “true” parameter

values. For each stellar kinematic dataset, we use our dynamical model to generate

new velocity dispersion values at each radial sample. We sample from a Gaussian with

a standard deviation taken from the associated uncertainties in original data at the

respective radial points to generate the mock stellar kinematic data. We generate mock

stellar mass surface density measurements analogously.

For the GC dataset, we create a blue GC and red GC dataset by sampling from

the respective model at each radial point for which we have data. We then assign each

radial point to either be from the blue or the red subpopulation by comparing a draw

from the standard uniform distribution with the φb value (from Table 3.2) in our model.

When generating each dataset, we scale the standard deviation by the respective

best-fit weight values (the α hyperparameters from Table 3.3). The input uncertainties

to the mock model are the same as those in the original data.
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3.3.5 Caveats

Before presenting our results, we discuss a number of caveats to our work. We

leave the relaxation of these assumptions for future work.

We have explicitly assumed that NGC 1407 has a spherically symmetric halo

and stellar mass distribution. Wet major merger remnants can produce triaxial halos,

with the expectation that the stars end up in an oblate spheroid with its minor axis

perpendicular to the major axis of its prolate dark matter halo (Novak et al. 2006).

However, NGC 1407 likely built up its halo through many minor mergers, and if the

distribution of incoming merger orbits was largely isotropic as could be expected in a

group environment, the galaxy could be expected to have a more spherical halo.

The Jeans equations assume that the tracers of the potential are in equilibrium.

This requirement will be violated if there are recently-accreted tracers or if the relaxation

time is relatively short. For the globular clusters in the outer halo, the long crossing

times (on the order of 0.1− 1 Gyr) ensure that the relaxation time is long, but mean

that any recently-accreted GCs will take a long time to phase mix. While there is not

any blatantly obvious substructure in the GC kinematic data, a quantitative description

of substructure in the tracer population would require a more rigorous determination of

the completeness of our kinematic sample.

Since most of the stellar mass (and hence GCs) of the halo was built up by

z ∼ 0.1 (Buitrago et al. 2017, see also Rodriguez-Gomez et al. 2016), this would give

GCs accreted prior to this point several crossing times to come into equilibrium. Efforts
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at quantifying the effect of non-equilibrium tracers on the mass profiles inferred from

spherical Jeans modeling have found a systematic uncertainty on the order of 10-25%

(Kafle et al. 2018; Wang et al. 2018).

We assume that the LOSVD is intrinsically Gaussian. More detailed models

(e.g., Romanowsky & Kochanek 2001; Napolitano et al. 2014) would be necessary to

make use of higher-order moments of the LOSVD.

Another major assumption we make is that the orbital anisotropies of our tracers

are constant with radius. Generically, we would expect the anisotropy to take on different

values at different distances from the center of the galaxy (e.g., Xu et al. 2017). There are

a multitude of ways of parameterizing this anisotropy profile, including that presented

by Merritt (1985) and that preferred by Mamon &  Lokas (2005). However, given both

the diversity of anisotropy profiles seen in simulated galaxies and the complexity evident

in the Milky Way stellar anisotropy profile (e.g, Kafle et al. 2012), we opt for a simpler

model that can be easily marginalized over. We show the result of modeling constant-β

profiles given mock data generated with varying-β profiles in Appendix 3.7.2.3. This

anisotropy assumption contributes the largest systemic uncertainty to the mass inference,

and thus motivates the future study of orbital anisotropy in the outer stellar halos of

galaxies.

To the extent that we expect any cores created in DM halos to have their own

spatial scale independent of the scale radius of the halo, a more robust test to distinguish

between a DM cusp and a core should treat these two radii separately. For instance, one

can allow for a DM core out to some rcore, then have ρ ∝ r−1 between that core radius
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and the scale radius, rs, then transition to having ρ ∝ r−3 as in a standard NFW halo.

We only have direct constraints on the stellar mass-to-light ratio, Υ∗, in the

region studied by van Dokkum et al. (2017a), within 100′′. The stellar mass inferred for

the outer regions of the galaxy is thus extrapolated from the Sérsic model that best fits

the data in the inner region. We show a comparison inference for a radially-invariant Υ∗

model in Appendix 3.7.2.4.

3.4 Results

We show the full posterior distribution in Fig. 3.18 in Appendix 3.7.1. We show

the DM halo parameters in Fig. 3.8, where we have converted the halo parameters of ρs

and rs to the virial halo mass and concentration. We use the convention of defining the

virial mass as the enclosed mass with an average density 200 times that of the critical

density of the universe at z = 0.

M200 ≡M(< r200) =
4π

3
r3

200 (200ρcrit) (3.25)

The halo concentration is then defined as c200 ≡ r200/rs. With the Planck Collaboration

et al. (2016) cosmological parameters, ρcrit(z = 0) = 127.58 M� kpc−3. These halo

parameters, along with other derived quantities, are reported in Table 3.4. We find

strong evidence for a dark matter cusp in NGC 1407, with γ = 1.0+0.2
−0.4. The posterior

distribution has 92.9% of samples with γ > 0.5, disfavoring a cored-NFW profile.

Our best-fitting model predictions are shown along with the corresponding

data for the stellar kinematics in Fig. 3.5, for the GC kinematics in Fig. 3.6, and for the
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Figure 3.8: Posterior distribution of halo parameters. Histograms along the diagonal show

the marginalized posterior distributions of halo mass (in M�), halo concentration, halo

inner density slope. The dashed vertical lines mark the 16th, 50th, and 84th percentiles.

The contours (at levels equivalent to 0.5, 1, 1.5 and 2 σ for a 2D Gaussian distribution)

show the covariances between these parameters. We note the strong degeneracy among

all three halo parameters.
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Unit Value

log10M200 [M�] 13.3+0.5
−0.3

c200 [—] 9+8
−6

r200 [kpc] 560+250
−110

log10M∗ [M�] 11.34+0.06
−0.07

fDM [—] 0.91+0.01
−0.01

Table 3.4: Derived parameters. List of quantities derived from free parameters. γ is

listed in Table 3.3.

stellar mass surface density in Fig. 3.2.

We show the decomposition of the enclosed mass profile into stellar, DM, and

BH components in Fig. 3.9. Here we see that the overlap in the spatial regions probed by

the GC and stellar kinematic data cover the crucial region where the DM halo becomes

gravitationally dominant over the stellar mass. As anticipated, we have weak constraints

on the mass of the central SMBH, which we have treated as a nuisance parameter in the

modeling.

3.4.1 Mock data test results

Our inference on the mock data shows that most of the parameters used to

generate the mock data are well recovered. We show the recovery of our input halo

model parameters in Fig. 3.10, and we show the full parameter set in Appendix 3.7.1 in

Fig. 3.19. We find excellent recovery of the halo mass parameters. However, our recovery

of the stellar anisotropy is biased towards more tangential orbits.

Since these mock data were generated using the model which was used for
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Figure 3.9: Top: circular velocity profiles of the mass components of the best fit model,

with the width of the curve showing the central 68% of samples. Bottom: same, but

showing the enclosed mass of each component. The horizontal bars indicate where we

have constraints from stellar and GC kinematics.
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fitting, the successful recovery merely validates our statistical uncertainties; we defer

an in-depth discussion of the systematic uncertainties of our modeling assumptions to

Appendix 3.7.2. The largest quantified source of systematic uncertainty in the halo inner

density slope is from the choice of anisotropy profile, which lowers γ by ∼ 0.5.

3.4.2 Literature comparisons for NGC 1407

In this section, we compare our mass inferences with those from some recent

observational studies. We compare both the dark matter fraction,

fDM(< R) = 1−M∗(< R)/Mtot(< R) , (3.26)

and the circular velocity

vcirc(R) =
√
GM/R . (3.27)

The dark matter fractions and circular velocity profiles from Pota et al. (2015), Deason

et al. (2012), Su et al. (2014), and Alabi et al. (2017) are compared with our results in

Fig. 3.11. These are both quantities which vary with radius, so we plot values at a given

angular radius on the sky to make a proper comparison. For the dark matter fractions,

we scale the reported measurements by

1− fDM →
(

dus

dthem

)
(1− fDM) (3.28)

to account for the differences in their adopted distances. The stellar mass will scale with

two factors of the distance for the luminosity distance dependence, and the dynamical

mass will scale inversely with one factor of distance, leading to the scaling of the baryon

fraction by one factor of the adopted distance.
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Figure 3.10: Posterior probability distribution from modeling our mock dataset. Red

solid lines show the model parameters used to generate the dataset.
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Our total mass result is consistent with that of Pota et al. (2015), who adopted

a distance of 28.05 Mpc. This is to be expected, given that we use a similar dataset and

modeling technique. They reported fDM = 0.83+0.04
−0.04 at 500′′, slightly below the value of

0.90+0.01
−0.02 that we find at the same radius.

Deason et al. (2012) used a distribution function-maximum likelihood method

to constrain the mass of 15 ETGs using PNe and GCs. They assumed a distance to

NGC 1407 of 20.9 Mpc, and they modeled the total mass as a power law. For an assumed

Salpeter IMF (6 < Υ∗,B < 10), they found fDM = 0.67± 0.05 within 285′′, whereas we

find fDM = 0.82+0.02
−0.03.

Su et al. (2014) modeled the X-ray emission of hot gas surrounding NGC 1407.

Under the assumption that the gas is in hydrostatic equilibrium, they constrained the

total mass profile of the galaxy and decomposed this into stellar, gas, and DM components.

They modeled the DM halo using an NFW profile, and assumed a mass-to-light ratio of

ΥK = 1.17 M� / L�,K and a distance of 22.08 Mpc. Within the inner 934′′(100 kpc at

their adopted distance), they found fDM = 0.94. We find fDM = 0.95+0.01
−0.01 within the

same enclosed area.

Alabi et al. (2017) also used GCs as tracers, but applied the tracer mass

estimator technique of Watkins et al. (2010) to 32 ETGs, including NGC 1407. They

assumed a distance of 26.8 Mpc. They reported results for multiple assumptions for

β, and we compare with their result (fDM = 0.82± 0.04 at 60.7 kpc) that assumes an

anisotropy of β = 0 for all the GCs (though we note that their value of fDM only varies

by 0.04 between the β = −0.5 and the β = 0.5 cases).
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Figure 3.11: Left: Dark matter fraction as a function of radius, compared with measure-

ments from the literature. Right: Circular velocity as a function of radius, compared

with measurements from the literature. The width of the curves indicate the central

68% of samples.
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We find good agreement in the measured DM fractions shown in Fig. 3.11,

though there is a slight offset between our value and that of Deason et al. (2012). Our

total mass estimate is largely in agreement with those of other dynamical studies of

NGC 1407, though we find that the X-ray mass measurements of Su et al. (2014) are

noticeably larger at R ∼ 20 kpc and also at R & 50 kpc. This is consistent with other

X-ray studies of NGC 1407 (e.g., Zhang et al. 2007; Romanowsky et al. 2009; Das et al.

2010, though see Humphrey et al. 2006), and it suggests systematic differences in the

X-ray and the dynamical modeling.

Disagreements between X-ray and dynamical mass measurements have been

seen before in numerous studies of ETGs, and are sometimes attributed to hot halo gas

being out of hydrostatic equilibrium or supported by non-thermal pressures (Churazov

et al. 2010; Shen & Gebhardt 2010). Furthermore, directional gas compression and de-

compression can cause asymmetric deviations from optically-derived mass measurements

(Paggi et al. 2017).

3.4.3 Halo mass–concentration and stellar mass–halo mass relations

Given that we find a nearly-NFW halo, we compare our virial mass and

concentration with the M200–c200 relation of relaxed NFW halos from Dutton & Macciò

(2014). This relation, along with measurements from the literature, are shown in Fig. 3.12.

Here we see good agreement between our median DM halo parameters and those expected

from the mass–concentration relation.

Fig. 3.13 compares our inference of the halo mass and stellar mass with the
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Figure 3.12: Posterior distribution of halo mass and concentration for NGC 1407 shown

in contours. The green line shows the relation from Dutton & Macciò (2014) with

characteristic scatter.

M∗–Mhalo relation from Rodŕıguez-Puebla et al. (2017). Here we have re-calculated

our virial mass to match the definition used by Rodŕıguez-Puebla et al. at z = 0, with

h = 0.678 and ∆vir = 333. We find that NGC 1407 lies slightly above the M∗–Mhalo

relation from Rodŕıguez-Puebla et al. (2017). However, we have indicated the shift in

stellar mass that would occur if they had adopted a Salpeter IMF rather than a Chabrier

IMF. We see that this Salpeter IMF stellar mass–halo mass relation is consistent with

our inference.
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Figure 3.13: Posterior distribution of stellar mass and halo mass for NGC 1407 shown

in contours. The green line shows the stellar mass-halo mass relation from Rodŕıguez-

Puebla et al. (2017) with uncertainties propagated for the 68% credible interval. The

orange arrows show change in stellar mass from a Chabrier (2003) IMF to a Salpeter

(1955) IMF, with a resulting shift for the prediction of 0.3 dex.
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3.4.4 Distance

One unique aspect of this work is that we freely vary the distance, informed

by a weak Gaussian prior from previous redshift-independent distance measurements

(see Section 3.2). With the stellar mass-to-light ratio known to a reasonable degree

of uncertainty, this becomes a non-trivial systematic uncertainty, as indicated by the

covariance of distance with the inner DM density slope, the stellar anisotropy, and the

stellar mass distribution parameters (Fig. 3.18).

We find a distance of 21.0+1.4
−1.4 Mpc. This is a notable offset from our prior

distribution on distance, which was a Gaussian with a mean of 26 Mpc and a standard

deviation of 2 Mpc. Our result is inconsistent with the Tully et al. (2013) combined

SBF/Fundamental Plane measured distance. However, our inferred distance is closer to

the luminosity distance of 24.2± 1.7 Mpc at the observed redshift, and in full agreement

with the Forbes et al. (2006) distance constraint from modeling the globular cluster

luminosity function. We ran tests fixing the distance to the mean of our prior distribution,

and found a lower value of γ, consistent with the negative covariance between the two

parameters seen in Fig. 3.18. Thus to the extent that our adopted distance is considered

low (compared to the wide range of literature values), we find a robust upper bound on

γ.

3.4.5 SMBH

Rusli et al. (2013) modeled the stellar kinematics of 10 ETGs to constrain

their super-massive black hole (SMBH) masses. For NGC 1407, they found MBH =
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4.5+0.9
−0.4 × 109 M�. Since we, by design, do not model the detailed dynamics of stellar

orbits near the SMBH, we only get weak constraints on its mass. However, our constraints

indicate that the SMBH mass of NGC 1407 could be somewhat lower. With a uniform

prior for log10Mbh < 11, we find that the posterior distribution on Mbh cuts off at

approximately 2× 109 M�.

While Rusli et al. (2013) treated the systematics of having a DM halo in their

inference of the SMBH mass, they treated the stellar mass as a constant Υ∗ times the

stellar luminosity profile. NGC 1407 lies slightly above standard MBH–σ relation, by

a factor of approximately 1.5 times the intrinsic scatter (McConnell et al. 2013). It is

conceivable that some of the mass inferred for the SMBH is in fact associated with a

more bottom-heavy IMF in the center of the galaxy.

McConnell et al. (2013) investigated the effect of radial Υ∗ gradients on the

inferred masses of SMBHs, finding that a log-slope, d log Υ∗/d log r, which varied from

−0.2 to 0.2 had little impact on the inferred Mbh. However, the radial variation in Υ∗

for NGC 1407 appears to be somewhat steeper, with a log-slope of ∼ −0.3 (van Dokkum

et al. 2017a).

3.5 Discussion

3.5.1 The γ–Mhalo relation

Few measurements have been made of the inner DM density slope for massive

ETGs for reasons discussed in Sec. 3.1. Here we discuss both the measurements and

64



predictions for galaxies in this mass regime and for galaxies across a broad range of

masses, focusing first on giant elliptical galaxies.

Pota et al. (2015) also modeled NGC 1407 using GC and stellar kinematics,

finding γ ∼ 0.6. We attribute the difference between this value and our own inference to

be primarily due to our more precise determination of the stellar mass distribution and

also to fitting distance as a free parameter. Agnello et al. (2014) modeled the dynamics

of the GC system of M87, the Virgo cluster central galaxy. They found that the behavior

of the inner DM density profile followed a power law, ρ ∼ r−γ with γ ≈ 1.6. Oldham

& Auger (2016, 2018a) also modeled the dynamics of M87, but found evidence for a

DM core (γ . 0.5). They attributed this difference to their inclusion of central stellar

kinematics in the inference, although we also note that they used a less restricted GC

spectroscopic sample than Agnello et al.. Zhu et al. (2016) modeled the dynamics of

field stars, GCs, and planetary nebulae (PNe) in the massive elliptical galaxy NGC 5846

(based in part on SLUGGS data). They ran models with a fixed DM core and with a

fixed DM cusp, finding a preference for the model with the cored halo.

Thomas et al. (2007) modeled the stellar dynamics of 17 ETGs in the Coma

cluster with both NFW halo models and LOG halo models (which include a central core),

though they were unable to distinguish between the two scenarios with the available

data. Napolitano et al. (2010) looked at trends of central DM density and radius for a

large sample of low-redshift ETGs, finding evidence for an inner DM density log-slope of

∼ 1.6, in turn suggesting the need for baryonic processes to contract the halo. While

this result is fairly independent of assumptions about the IMF, it is based on stacked
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galaxy data and thus it cannot be used to provide γ for individual galaxies.

In Fig. 3.14 we show how NGC 1407 compares with the observed and predicted

dependence of γ on halo mass. We restrict our observational comparisons in this figure

to studies which allowed for a variable inner DM density log-slope. We emphasize that

due to the varied definitions, methods of inference, and sources of data used to constrain

γ, Fig. 3.14 is intended merely as a schematic of what we might expect of DM halos

across a wide mass range (10.5 < log10M200/M� < 16).

We summarize the cited observational studies shown in this figure. Chemin

et al. (2011) modeled the rotation curves of spiral galaxies with Einasto halos. They

reported the log-slope of the best fit Einasto density profile at log(r/rs) = −1.5, and we

compare with their result which assumes a Kroupa IMF. Adams et al. (2014) modeled

the gas and stellar dynamics of dwarf galaxies using both a gNFW profile and a cored

Burkert profile. Newman et al. (2013b,a) modeled galaxy clusters and groups with

constraints from lensing and stellar dynamics with a gNFW profile, finding halos with

both NFW cusps and slightly shallower (γ ∼ 0.5) slopes. Oldham & Auger (2018b)

modeled strongly-lensed ETGs, confirming the decreasing γ trend at large halo masses.

We remove the two systems (J1446 and J1606) for which they find minimal constraints

from the lensing data.

The observations of high-mass galaxy clusters suggest a decreasing trend of γ

with Mhalo. NGC 1407 is consistent with this trend, though it may lie on the turnover

region that would be necessary to connect to the increasing trend of γ at the low-mass

regime. In subsequent work we will check where this turnover happens with a larger
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Figure 3.14: The γ–Mhalo relation from a wide range of theoretical and observational

studies. We see that ΛCDM simulations with hydrodynamics (black lines) largely agree

with observations (multi-colored points, described in text). DM core creation occurs

most strongly for 1011 M� halos, with an additional trend towards shallower halos at

the highest halo masses. NGC 1407 follows the general trend of steepening density slope

with decreasing halo mass, thought the median value of γ is slightly below what would

have been interpolated from both theory and observation.
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sample of galaxies down to lower halo masses.

Simulations that constrain the relation shown in Fig. 3.14 must address physics

across a wide range of spatial scales. Tollet et al. (2016) used the NIHAO hydrodynamical

cosmological zoom-in simulations to make predictions at logM200/M� < 12. They

measured the DM density profiles for their galaxies and reported the log-slope in the

region between 1% and 2% of the virial radius. Schaller et al. (2015a,b) used the EAGLE

simulations to make predictions for higher-mass galaxy clusters. They fitted a gNFW

density profile to their halos and reported the inner asymptotic log-slope.

We see two emerging trends in the γ–Mhalo relation. At the range of dwarf

and spiral galaxies (M200 ∼ 1011 − 1012 M�), γ is predicted to increase with halo mass,

though there is a large range of observed γ values in the observations. For hydrodynamic

simulations in this regime, DM core creation is associated with bursty star formation

(Tollet et al. 2016). Thus, this trend can be understood as the energy associated with

baryonic feedback becoming less and less significant relative to the depth of the potential

associated with the halo. At the range of galaxy groups and clusters (M200 ∼ 1013− 1016

M�), there is a decreasing trend of γ with halo mass. This has often been interpreted as

increased dynamical heating for halos which have experienced more satellite mergers

(El-Zant et al. 2004; Laporte & White 2015).

Massive elliptical galaxies like NGC 1407 ought to have the steepest inner

density profiles with γ > 1, owing to the fact that they lie at the intersection of the

two competing trends discussed above (i.e., minimal heating from stellar feedback and

mergers), and due to the effect of adiabatic contraction (Blumenthal et al. 1986; Gnedin
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et al. 2004).

We see that our median value for γ falls slightly below the predictions from

Schaller et al. (2015a,b) (though consistent within the uncertainty). However, this value

is consistent with the results from the analysis of Sonnenfeld et al. (2015), who found

an average inner DM density slope of γ = 0.80+0.18
−0.22 for a sample of 81 strongly lensed

massive ETGs.

The above discrepancy between theory and observation could be an indication

that some mechanism is needed to prevent the steepening of the halo density profile.

Self-interacting dark matter (SIDM) could be one such mechanism, as the non-zero

collisional cross-section allows for heat transfer in the inner regions of the halo. Rocha

et al. (2013) compared the structure of self-interacting DM halos with that of standard

CDM halos for two cross-sections, σ/m = 0.1 cm2 g−1 and σ/m = 1 cm2 g−1. They

found that large cross-sections lead to DM cores within ∼ 50 kpc. Our result disfavors

this large a cross-section, though we note that it is difficult to rule out their result for

the smaller cross-section. In addition, the lack of baryonic physics in these simulations

makes a proper comparison difficult.

Di Cintio et al. (2017b) used hydrodynamic simulations to explore the effect of

SIDM on the baryonic and DM density distributions of Milky Way-mass galaxies. They

used a significantly higher cross-section, σ/m = 10 cm2 g−1, than Rocha et al.. They

reported the log-slope of the density profiles between 1% and 2% of the virial radius for

both standard CDM simulations and SIDM runs and found a decrease of 0.5− 0.7 in γ

from the standard run to the SIDM one.
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Alternatively, feedback from AGNs could be an important mechanism for

transferring energy to the central DM (Martizzi et al. 2013; Peirani et al. 2017), analogous

to the way that bursty star formation induces potential fluctuations in low mass galaxies

(Pontzen & Governato 2012). Even in absence of any AGN feedback, dry merging

of galaxies can slightly decrease the DM density slope, though not enough to fully

counteract the effects of adiabatic contraction (Dutton et al. 2015).

Given the paucity of observational constraints and the non-trivial systematic

uncertainties in measuring the halo density slope, any connection between our best-fit

value of γ and any particular physical cause is largely speculation at this point. However,

this ambiguity motivates further work to fill in the remaining observational gaps.

3.5.2 Halo anisotropy

The orbital anisotropy of stars and star clusters in the outer stellar halos of

galaxies has received much attention in recent years. We find that the blue (metal-poor)

GCs have tangentially-biased orbits (βblue . −4), while the red (metal-rich) GCs have

radially-biased orbits (βred ∼ 0.4).

Dynamical differences between the red and blue GC subpopulations have been

seen before. Pota et al. (2013) calculated the kurtosis of the GC LOSVD as a proxy for

orbital anisotropy for a sample of 12 ETGs. While they found that the kurtosis values

for individual galaxies were largely consistent with isotropic orbits, they found that the

blue GCs had, on average, negative kurtosis (suggesting tangential anisotropy) in the

outskirts while red GCs had, on average, positive kurtosis (suggesting radial anisotropy)
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in the outer regions.

Pota et al. (2015) also found tangential blue GCs and radial red GCs for

NGC 1407 using Jeans models; we note that we have modeled the same GC dataset as

the Pota et al. study.

There have been numerous studies of the dynamics of the GC system of M87.

Romanowsky & Kochanek (2001) used the Schwarzschild orbit library method to model

the GCs and stars. They found that the orbits of the GCs as a whole system were near

isotropic at large radii. Zhu et al. (2014) used made-to-measure models to infer the

orbits of GCs as a single population, and found orbits that were similarly near-isotropic

across most of the spatial extent of the galaxy. Agnello et al. (2014) found evidence

for three GC subpopulations. For both the bluest and reddest subpopulations they

found mildly tangential orbits at 1 Re, while they found the intermediate subpopulation

to have slightly radial orbits at the same distance. Zhang et al. (2015) modeled the

dynamics of the red and blue GC subpopulations separately using Jeans models. They

found slightly tangential (β ∼ −0.5) blue GCs in the inner and outer regions of the

galaxy, and radially-biased (β ∼ 0.5) red GCs. Oldham & Auger (2016) also modeled

blue and red GC subpopulations of M87, finding mildly radially-biased orbits for both

blue and red GCs. Overall the consensus for halo anisotropy in M87 seems to be that, if

red and blue GCs have different orbital anisotropies, the blue GC orbits are somewhat

more tangentially-biased.

Zhu et al. (2016) used made-to-measure models to constrain the β-profiles of

stars, PNe, and GCs in NGC 5846, following up on earlier Jeans modeling work by
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Napolitano et al. (2014). They found the opposite trend for this galaxy compared with

NGC 1407, with tangentially-biased or isotropic red GCs and radially-biased blue GCs.

The PNe trace the field star population in the center and go from radial to marginally

tangential orbits out to ∼ 30 kpc.

We compare some of these studies that separately analyze blue and red GCs in

Fig 3.15. There seems to be a diversity of results, with some studies finding the blue

GCs to have more tangential orbits than the red GCs, and others finding the opposite

result. However, none of the studies find both red and blue GCs in a single galaxy to

have radial orbits (the upper right quadrant of the figure).

This result is puzzling, since the outer stellar halos of galaxies built up by

mergers are expected to produce radially-biased orbits (e.g., Dekel et al. 2005; Oñorbe

et al. 2007; Prieto & Gnedin 2008), and the majority of blue GCs have most likely been

brought into the present day host galaxy via satellite accretions.

Röttgers et al. (2014) used hydrodynamic zoom simulations from Oser et al.

(2010) to examine the connection between orbital anisotropy and the fraction of stars

formed in-situ. They found that accreted stars were more radially biased than in-situ

stars. To the extent that the blue and red GCs could be expected to trace accreted

and in-situ populations of the stellar halo, our result that blue GCs have an extreme

tangential bias is an interesting counter-example to their result.

One possible explanation for the tangential orbits is that we are seeing a survival-

bias effect, whereby GCs on radially-biased orbits are more likely to be disrupted, as

they reach more deeply into the center of the potential. However, for this scenario to
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Figure 3.15: Blue GC orbital anisotropy versus red GC anisotropy for NGC 1407

compared with those of NGC 5846 (Zhu et al. 2016) and M87 (Zhang et al. 2015). For

M87, we show their result at a distance of 100 kpc. Isotropic values of β are indicated

by the dashed grey line.
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work, the metal-poor GCs would have to be in place longer than the metal-rich GCs,

contrary to the expectation that the former are accreted and the latter form in-situ.

Another possibility would be a dynamical effect noted by Goodman & Binney

(1984) whereby gradual accretion of mass at the center of a spherical system will

preferentially circularize orbits in the outer regions.

The origin of this peculiar halo anisotropy remains an open question, deserving

further study.

3.5.3 Stellar mass distribution

Since we have chosen to model the stellar mass of the galaxy as its own

Sérsic profile, as opposed to a constant mass-to-light ratio multiplied by the enclosed

luminosity, we have a handle on how the stellar mass distribution differs from the

stellar light distribution. We find a half-mass effective radius of 26+4
−3
′′(2.7+0.5

−0.4 kpc when

marginalizing over distance), much smaller than the B band half-light effective radius of

100′′(10.2+0.7
−0.7 kpc).

This relative concentration of the stellar mass is intriguingly similar to the

situation at high redshift. van der Wel et al. (2014) used results from 3D-HST and

CANDELS to trace the evolution in the stellar size–mass relation out to z ∼ 3, finding

a strong size evolution of ETGs at fixed mass of Re ∝ (1 + z)−1.48. We compare our

measurement of the stellar half-mass radius with the ETG relations from van der Wel

et al. (2014) in Fig. 3.16. We see that the stellar mass distribution of NGC 1407 most

closely matches the light distribution of compact galaxies at z ∼ 2.
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Figure 3.16: Stellar size–mass relations at different redshifts from van der Wel et al.

(2014), compared with our inference for NGC 1407 (purple contours). The B band Re

value of NGC 1407 is indicated by the star.
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We note that our modeling may be biased towards smaller effective radii, as

we are only fitting to the stellar mass surface density profile where we have data at

R < 100′′. If the mass-to-light profile does remain at a Milky Way-like value past 1Re,

then this would result in a less compact Sérsic fit than we find here.

3.6 Conclusions

We have presented a new analysis of the dynamics of the massive elliptical

galaxy NGC 1407. We constrained the dynamical mass of the galaxy using a variety of

datasets, including metal-rich and metal-poor globular cluster velocity measurements,

the stellar velocity dispersion measurements from longslit and multislit observations,

and the spatially-resolved mass-to-light ratio from stellar population models.

We found the following:

1. The dark matter virial mass and concentration are well-matched to expectations

from ΛCDM.

2. The dark matter halo of NGC 1407 likely has a cusp (γ = 1). This is shallower

than expected for a normal ΛCDM halo with adiabatic contraction, although a

larger sample size is needed to constrain the physical origin of this result.

3. The blue (metal-poor) globular clusters of NGC 1407 are on tangentially-biased

orbits (contrary to expectations for accreted stellar mass), while the red (metal-rich)

clusters are on slightly radially-biased orbits.
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4. The stellar mass distribution is significantly more compact than the stellar lumi-

nosity distribution, reminiscent of compact “red nugget” galaxies at high redshift.

We are just beginning to probe the γ −Mhalo relation in the regime of giant

early-type galaxies. Here we have shown that it is feasible to populate this parameter

space with individual galaxies, and we intend to follow up this work with a larger study

of galaxies from the SLUGGS survey.

3.7 Appendix

3.7.1 Markov Chain Monte Carlo Sampling

Here we show the detailed results of our sampling of the posterior probability

distribution for the model parameter space described in Sec. 3.3.

3.7.2 Systematics tests

We performed a number of tests to investigate the systematic uncertainty

on the recovered DM halo parameters. For each of the tests described below, we

plot a comparison of the DM halo parameter posterior distribution (re-parameterized

log10(M200/M�) and c200) of the reference model described in the main text (in purple)

with the distribution found when doing the specified test (in red). The contours are

drawn at the 1 and 2 sigma levels.
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Figure 3.17: Walker traces across each iteration. Units are taken from Table 3.3. ρs,

rs, Mbh, Σ0, ∗, and Re,∗ are shown as the logarithm (base 10) of those quantities, and

the anisotropy parameters (β) are shown as the symmetrized anisotropy parameter,

β̃ = − log10(1 − β). We reject the first 4500 walker steps in our analysis, where it is

clear from the walker traces that the sampler has not yet converged.
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3.7.2.1 Wide distance prior

We replaced our informative distance prior with a wide uniform distance prior,

D ∼ U(15Mpc, 30Mpc). We recover a lower distance value (∼ 17 Mpc, compared to 21

Mpc with the informative prior). This has the effect of increasing the inner DM slope

value, as the lower distance at fixed surface brightness results in a lower luminosity, and

hence lower stellar mass and steeper DM density slope.

3.7.2.2 Masked stellar kinematic dataset

We fit all stellar kinematic data, including those masked out as described in

Sec. 3.2.3. We find a more concentrated halo and hence a lower value for γ (shown

in Fig. 3.21). We also find a slightly worse agreement of the multi-slit data with the

model, as quantified by the weight hyperparameter αms, which changes from 0.13 to 0.10.

While there is still work to be done to inference the presence and extent of substructure

in stellar kinematic data, we thus find that an imperfect cut is better than no cut at

all. However, the open question of whether or not the outer stellar halo of NGC 1407

is in entirely in equilibrium adds ∼ 0.2 dex systematic uncertainty to the halo mass

measurement and ∼ 8 to that of the halo concentration measurement.

3.7.2.3 Varying anisotropy profiles

We performed similar mock data tests to those described in Sec. 3.3.4, but

rather than using the constant anisotropy profile, we used a radially varying profile

to generate the mock kinematic data. We ran one test where we replaced the stellar
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kinematic data with one generated using a Mamon &  Lokas (2005) profile (shown in

Fig. 3.22). This model transitions from isotropic in the center to β = 0.5 in the outskirts,

with the transition radius, ra. Here we set ra = 10 kpc to be consistent with the value

of ra = 0.018rvir from theory, e.g., Fig. 2 from Mamon &  Lokas (2005). We find a good

recovery of the mass parameters, and we find the recovery of the stellar anisotropy to be

isotropic to within the uncertainty.

We performed a similar test, but instead of replacing the stellar anisotropy

profile, we replaced the red GC anisotropy profile with a Mamon &  Lokas (2005) radially

varying profile where we set ra = 56 kpc. This value was chosen to lie in the range of

0.018 < ra/rvir < 0.18, where the lower bound was shown to be a good match to the

stellar orbits from merger remnants and the upper bound was found to be a good match

to the DM orbits for collisionless N-body simulations (Mamon &  Lokas 2005). As shown

in Fig. 3.23, we found a notable difference in the recovered halo parameters, with c200

changing from 9 to 25 (and hence a lower value of γ and lower value of M200). Given

this difference, we emphasize that our findings are conditional on the adopted anisotropy

profile. We defer the in-depth analysis of the GC anisotropy for future work.

3.7.2.4 Non-varying Υ∗

We removed our knowledge of the stellar population constraints for NGC 1407

and instead used a stellar mass model where M∗(r) = Υ∗L(r), using a fixed stellar

surface brightness distribution given in Sec. 3.2.1. With this model we found weaker

constraints on γ and a slightly higher value of the halo mass. For the mass-to-light ratio
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we find Υ∗,B = 8.97+0.98
−1.08M�/L�,B (Υ∗,I ∼ 4M�/L�,I when adopting the mean B − I

color from Spolaor et al. (2008)).
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Figure 3.18: Posterior probability distribution for our model. Histograms along the

diagonal show the marginalized posterior distributions for the respective parameters.

The dashed vertical lines mark the 16th, 50th, and 84th percentiles. The contours

(at levels equivalent to 0.5, 1, 1.5 and 2 σ for a 2D Gaussian distribution) show the

covariances between these parameters. We hit the prior bounds for Mbh and β̃b. For the

SMBH, we have very little constraints by design, so we restrict it to be less than 1011 M�.

For all anisotropy parameters, we restrict the range to such that −1.5 < − log10(1− β)

to avoid floating-point underflows. However, at such tangential orbital anisotropies, the

physical differences in the dynamics are negligible.
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Figure 3.19: Posterior probability distribution for our model applied to the mock data,

as discussed in Sec. 3.4.1.
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Figure 3.20: Comparison of the posterior probability distributions for the dark matter

halo parameters. Purple contours show the reference inference, and the red contours

show the inference with a wide uniform prior on the distance, between 15 Mpc and 30

Mpc.
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Figure 3.21: Comparison of the posterior probability distributions for the dark matter

halo parameters. Purple contours show the reference inference, and the red contours

show the inference when we do not mask any of the stellar kinematics data points.
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Figure 3.22: Comparison of the posterior probability distributions for the dark matter

halo parameters. Purple contours show the reference inference, and the red contours

show the recovery of the parameters when the stellar kinematics are generated with a

Mamon & Lokas anisotropy profile.
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Figure 3.23: Comparison of the posterior probability distributions for the dark matter

halo parameters. Purple contours show the reference inference, and the red contours

show the recovery of the parameters when the red GC kinematics are generated with a

Mamon & Lokas anisotropy profile.
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Figure 3.24: Comparison of the posterior probability distributions for the dark matter

halo parameters. Purple contours show the reference inference, and the red contours

show the inference assuming that the mass-to-light ratio (Υ∗) does not vary with radius.
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Chapter 4

Quantifying the deficit of dark matter in

NGC 1052-DF2

4.1 Introduction

Ultra-diffuse galaxies (UDGs) were recently recognized as a ubiquitous class of

low-surface-brightness stellar systems with luminosities like dwarf galaxies but sizes like

giants (van Dokkum et al. 2015; Yagi et al. 2016). They are found in all environments

from clusters and groups to the field (e.g., Mart́ınez-Delgado et al. 2016; van der Burg

et al. 2017), and appear to originate from multiple formation channels, including an

extension of normal dwarfs to lower surface brightness, as tidal debris, and perhaps as

“failed” galaxies (e.g., Peng & Lim 2016; Greco et al. 2018; Pandya et al. 2018).

The failed-galaxy scenario was motivated partly by inferences of UDG halo

masses based on dynamics and on number-counts of globular star-clusters – masses that
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in some cases appear significantly higher than for the overall dwarf-galaxy population

(Beasley et al. 2016; van Dokkum et al. 2016, 2017a; Amorisco et al. 2018; Lim et al.

2018). The implication is that the stellar-to-halo mass relation (SHMR; e.g., Moster

et al. 2013; Rodŕıguez-Puebla et al. 2017) for luminous dwarf galaxies (L ∼ 108L�) may

have a much larger scatter than was presumed, requiring revisions in galaxy formation

models at halo masses of ∼ 1011M� (see also Smercina et al. 2018).

In this context, one of the nearest known UDGs, NGC 1052-DF2 in a galaxy

group at ∼ 20 Mpc (Fosbury et al. 1978, Karachentsev et al. 2000; van Dokkum et al.

2018b (hereafter vD+18a)), presents a valuable opportunity for detailed dynamical

study. vD+18a used deep Keck spectroscopy to measure radial velocities for 10 luminous

star-clusters around DF2, estimating its dynamical mass within a radius of ∼ 8 kpc

(cf. Virgo-UDGs work by Beasley et al. 2016; Toloba et al. 2018). The result was very

surprising: rather than an unusually high mass-to-light ratio (M/L) as found for previous

UDGs, the M/L was unusually low, and consistent with harboring no dark matter (DM)

at all.

The low/no-DM result generated spirited debate, much of which focused on

how best to estimate the intrinsic velocity dispersion σ of DF2 (e.g., Martin et al. 2018;

Laporte et al. 2019; van Dokkum et al. 2018c).

However, the more fundamental question is what range of halo mass profiles is

permitted by the data, which we examine in detail in this Letter. We adopt a generative

modeling approach where the individual velocity measurements are mapped statistically

onto halo parameter space, without the intervening steps of estimating σ and applying a
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mass estimator. In addition to deriving constraints on the dynamical mass profile, we

consider the potential impact of tidal stripping, and furthermore compare DF2 with

Local Group dwarfs.

4.2 Observational Constraints

NGC 1052-DF2 has position, redshift, surface brightness fluctuation (SBF),

and tip of the red giant branch measurements all consistent with being a satellite of

the giant elliptical galaxy NGC 1052 (vD+18a; van Dokkum et al. 2018a). We adopt a

distance of 19 Mpc, matching the measured SBF distance to DF2 (Cohen et al. 2018),

while allowing for a ±1 Mpc uncertainty in our analysis1.

The UDG surface brightness follows a Sérsic profile with index n = 0.6, effective

radius Re = 22.6′′ (2.08 kpc), and total luminosity of 1.2 × 108 LV,�. For the stellar

M/L, we adopt a Gaussian prior with mean of Υ∗,V = 1.7 in Solar units and standard

deviation of 0.5 (based on stellar population modeling; van Dokkum et al. 2018d). We

truncate this distribution to be between 0.1 and 10.

NGC 1052-DF2 has ten star-clusters with radial velocity measurements in

vD+18a. We use one updated velocity from van Dokkum et al. (2018c); this has only a

mild impact on the results. Although the mass uncertainties from using so few tracers

is relatively large (as we will find here), there is ample precedent in the literature for

drawing meaningful conclusions from small sample sizes (Aaronson 1983; Kleyna et al.

1A distance of 13 Mpc has been proposed (Trujillo et al. 2019), but see van Dokkum et al. (2018a)
for an in-depth discussion of the evidence for the greater distance.
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2005; Chapman et al. 2005; Brown et al. 2007; Koposov et al. 2015).

The surface-density distribution of the star-cluster population is highly uncon-

strained. We assume an exponential distribution of tracers (i.e., a Sérsic profile with

n = 1) where the half-number radius is drawn from a Gaussian prior with a mean of

the observed half-number radius (32′′) and standard deviation of 10′′. We truncate this

distribution to be between 10′′ and 70′′. Our adopted mean half-number radius is 40%

larger than Re of the galaxy diffuse starlight, consistent with studies of the star-cluster

systems of other UDGs (Peng & Lim 2016; van Dokkum et al. 2017a; Toloba et al. 2018;

cf. Forbes 2017).

4.3 Jeans Modeling Methods

We use the Bayesian Jeans modeling formalism of Wasserman et al. (2018b) to

infer the mass distribution of DF2. Here a given mass profile and a tracer density profile

are linked to a predicted line-of-sight velocity dispersion profile σJ(R). The assumptions

include spherical symmetry, dynamical equilibrium, and velocity-dispersion anisotropy

(β = 1− σ2
t /σ

2
r ) that is constant with galactocentric radius. (There is no evidence for

rotation in the system, although individual velocity uncertainties are too large for strong

constraints; vD+18a). We adopt a Gaussian prior on β̃ = − log10(1− β) with a mean of

0 (isotropic) and standard deviation of 0.5 (truncated to the range of β̃ = −1 to +1).

Since we do not directly constrain the dynamical mass beyond ∼ 8 kpc, we

must rely on priors on the halo characteristics – on the DM profile shape, and also on
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expected correlations between halo mass, concentration, and stellar mass.

We model the mass distribution as the sum of the stellar mass, with spatial

distribution described in Section 4.2, and a DM halo. For the halo density distribution

we use the generalized Navarro–Frenk–White (gNFW) profile,

ρ(r) = ρs

(
r

rs

)−γ (
1 +

r

rs

)γ−3

(4.1)

where rs is the scale radius, ρs is the scale density, and γ quantifies the inner log-slope.

For γ = 1, this matches the usual NFW halo model (Navarro et al. 1997), but letting γ

vary below 1 allows for models which have a cored, shallower density profile.

We re-parameterize the halo in terms of virial mass (M200c) and concentration

(c200c), where

M200c = 200ρcrit
4πr3

200c

3
(4.2)

and c200c = r200c/rs.

We then consider two flavors of mass models: one in which the stellar and halo

masses are drawn from a SHMR, and one where the stellar and dark masses are decoupled.

For the latter model, we use a uniform prior on log10M200c/M� between 2 and 15. This

effectively allows for the case of no DM, since the stellar mass is log10M?/M� ∼ 8.3.

For both types of models we assume that the halo concentration is drawn from

a mass–concentration relation (MCR; Diemer & Kravtsov 2015; Diemer 2018) based

on the Planck 2015 cosmology. We use a log-normal distribution about this expected

concentration with a scatter of 0.16 dex.

For the SHMR we use the z = 0 relation of Rodŕıguez-Puebla et al. (2017),
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where halos with mass M200c ∼ 1010.8M� host galaxies with M∗ similar to DF2 (note

that for a satellite galaxy such as DF2, the halo mass is pre-infall, before tidal stripping).

We allow for variation around this mean relation through a variable scatter:

σlogM∗ = 0.2− 0.26(logMvir − logM1) (4.3)

below virial masses of M1 = 1011.5 M� (note Mvir 6= M200c; at M1, M200c ∼ 0.9Mvir),

while at higher masses, σlogM∗ is a constant 0.2 dex scatter (Garrison-Kimmel et al.

2017; Munshi et al. 2017).

Given the wide range of possible baryonic effects on the inner slope of DM

halos (Oh et al. 2011; Adams et al. 2014; Pineda et al. 2017), we adopt a uniform prior

on γ between 0 and 2.

To connect the Jeans model predictions for σJ to the velocity observations, we

use a Gaussian likelihood for the probability of drawing data, vi, given the location Ri

and the various model parameters θ,

L(vi|R, θ) = N
(
vi − vsys, σ

2 = σ2
J(R|θ) + δv2

i

)
(4.4)

=
(
2πσ2

)−1/2
exp

(
−(vi − vsys)

2

σ2

)
where vsys is the systemic velocity (drawn from a Gaussian prior with a mean of the

observed velocities, 1801.6 km s−1, and with a 5 km s−1 standard deviation), and δvi is

the measurement uncertainty.

We draw from our posterior with the emcee Markov Chain Monte Carlo

(MCMC) ensemble sampler (Foreman-Mackey et al. 2013). We run our sampler with
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128 walkers for 2000 iterations, rejecting the first 1500 to ensure fully-mixed chains. The

posterior distributions of vsys, Υ∗, and distance closely match those of the associated

prior distributions. For the inference with the SHMR-informed prior, the posterior

distribution of the star-cluster system Re is slightly lower (with median of 26′′). The

weak-prior model prefers a slightly tangential orbital anisotropy, although consistent

with isotropy, while the posterior anisotropy in the SHMR-prior model matches the

prior.

4.4 Halo Mass Inferences

Before discussing the best-fitting results, in Figure 4.1 we present a comparison

between the data and a simple model with a cuspy NFW halo that follows the mean

SHMR, assuming isotropic orbits. The individual star-cluster velocity measurements

(absolute value relative to vsys) versus galactocentric radius are shown along with a model

line-of-sight σ profile (dashed-green curve). It is clear that this is not a favorable model:

∼ 3 of the observed velocities should lie above the curve, which has a spatially-averaged

σ ∼ 36 km s−1, compared to an observed σ ∼ 5–10 km s−1.

This is not however the only plausible model, as there is scatter in the predicted

SHMR and in the halo concentration. Furthermore, UDGs and luminous dwarfs in

general are expected to inhabit cored DM halos (Chan et al. 2015; Di Cintio et al. 2017a).

Allowing for a DM core (dot-dashed purple curve) reduces the tension with the data

somewhat (σ ∼ 22 km s−1). Introducing scatter in the SHMR and the MCR as discussed
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Figure 4.1: DF2 observed star-cluster velocity offsets (points with error-bars), compared

with the posterior predictive distribution of the velocity dispersion profiles associated

with the star+halo model fit with freely-varying anisotropy and Re. The shaded regions

give the inner 68% of samples. Left: The dashed green curve shows an isotropic model

with a standard DM halo (γ = 1 cusp) and halo mass fixed to the SHMR mean. The

dot-dashed purple curve is for a cored DM halo (γ = 0.2), with fixed halo mass, and

isotropic orbits. The dotted purple lines around this curve show the effect of assuming

radial (falling profile) and tangential (rising profile) anisotropy. The blue solid curve

shows a cored halo with mass informed by a log-normal prior about a standard SHMR.

Right: The red solid curve shows the model fit with the relaxed prior on halo mass – a

model that we see is less in tension with the data than the models with large amounts

of DM (left panel).
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in Section 4.3, we present the best “standard” model from our MCMC fitting, including

a freely varying orbital anisotropy, as a solid-blue curve with uncertainty envelope in

Figure 4.1. This model dispersion profile is fairly constant with spatially-averaged

σ = 17+6
−4 km s−1 and appears more reasonably close to the data, although still in

tension with the many observed near-zero relative velocities. The posteriors on some key

model parameters are: β = 0.0+0.7
−2.5, log10M200c/M� = 10.7+0.2

−0.3, c200c = 9+4
−3 (implying

rs = 8+4
−3 kpc), and γ = 0.2+0.3

−0.2, although we note that the samples of γ hit the prior

boundary at 0. This is a model solution with a normal halo and concentration (consistent

with the priors: see Figure 4.2, left) but a large central density core – strongly disfavoring

the NFW model.

We next consider a model that allows for deviation from the standard SHMR,

along with a free central DM slope, while still imposing the standard prior on halo

mass versus concentration. We find that the DM halo all but disappears, with M200c <

1.2× 108 M� (MDM/M∗ < 0.6) at the 90th percentile. The posterior velocity dispersion

profile is shown in Figure 4.1 (right), with an average σ = 7 ± 1 km s−1. This model

prefers a more tangential β = −1.0+1.2
−2.7.

For a measure of relative predictive accuracy of these two models, we use the

Watanabe–Akaike Information Criterion (WAIC), an approximation of cross-validation

(Gelman et al. 2013), defined as

WAIC = −2
n∑
i

ln

∫
L(vi | θ)ppost(θ) dθ + 4

n∑
i

varpost [lnL(vi | θ)] (4.5)

where ppost(θ) is the posterior distribution, L(vi|θ) is the likelihood, and varpost is the
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variance over the posterior. The first term measures the predictive accuracy marginalized

over the posterior distribution, while the second term penalizes for model complexity by

computing an approximation of the effective number of model parameters (analogous to

reduced χ2). We find ∆WAIC = 1.5 (equivalent to a model odds ratio of ∼ 2), slightly

favoring the model without the SHMR prior, although not enough to reject the SHMR

model outright.

As a summary of these results, Figure 4.2 shows the distribution of stellar and

dark mass within a three-dimensional aperture of 10 kpc, as well as the halo concentration

for these two models. For the SHMR-prior model, the data prefer a lower enclosed dark

mass than in the prior, with a shift in the median MDM within 10 kpc from 1.2×1010 M�

to 5.1×109 M�. For the weak-priors model, the posterior distribution of MDM(< 10 kpc)

extends all the way to the lower prior boundary (∼ 102 M�), with a 90th-percentile

upper bound of 1.2 × 108 M�. Thus the data prefer a relatively low amount of DM

within the region probed.

The more tightly constrained quantity of interest is the total dynamical mass

within 10 kpc, which is (2.2+0.9
−0.6)× 108M�, or dynamical M/LV = 1.7+0.7

−0.5. The latter

value is remarkably coincident with the independent stellar population estimate for DF2

(Section 4.2). We conclude that data-driven dynamical modeling of DF2 allows for at

most an extremely low-mass DM halo, and suggests that this UDG is comprised purely

of stars.
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Figure 4.2: Distributions of select model parameters. The contours showing the covariance

between the two parameters are placed at 1- and 2-σ intervals. Masses are in M�. Left:

For the model with the SHMR prior (in blue). The prior distribution is shown in gray.

From left to right, the parameters are the stellar mass within 10 kpc, the DM mass

within 10 kpc, and the halo concentration. Right: The same model parameters but for

the model without the SHMR prior. We see that the SHMR prior model largely recovers

the prior distribution, though with slightly lower halo mass, while the data-driven model

has a halo mass that hits the prior lower-boundary.
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4.5 Tidal Effects

The models considered in the previous sections were for an isolated dwarf

and neglected any influence from the nearby massive elliptical galaxy, NGC 1052. In

particular, infall of a satellite into a larger host initiates a process of tidal stripping, first

from the outer DM halo, then from the central regions, followed by total disruption.

Tidal stripping and heating has been proposed as the dominant mechanism for forming

UDGs, which could be considered as exemplars for galaxies undergoing tidal disruption

(Carleton et al. 2019). Some previously studied UDGs are clearly in the process of

disruption (Merritt et al. 2016), while many others have undisturbed morphologies out

to ∼ 4 Re (Mowla et al. 2017).

vD+18a presented analysis of tidal stripping to constrain the physical separation

between DF2 and NGC 1052. Here our aim is to develop a holistic model where

the inferred UDG mass distribution is checked for consistency with tidal constraints,

propagating uncertainties on viewing angle, satellite mass distribution, and central galaxy

mass. In particular, is a no-DM scenario implausible owing to a likelihood of disruption?

We use a simple model for the tidal radius given enclosed masses of satellite

and central galaxies:

rtidal =

(
Msat(rtidal)

(α− γM )Mcen(d)

)1/3

d, (4.6)

where d is the 3D distance between the two galaxies, γM is the local log-slope of the

enclosed mass profile of the central galaxy at d, and α = 2 if we assume the orbit of

the satellite is radial and 3 if we assume the orbit is circular (van den Bosch et al.
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Figure 4.3: The distribution of DF2 tidal radii inferred for each of the two models.

The blue histograms show the limits inferred with a strong SHMR prior, while the red

histograms show those for the model without the SHMR prior. The filled histograms

show the tidal radius from assuming a circular orbit, while the empty histograms show

the same distributions from assuming a radial orbit. The vertical dash-dotted line shows

2 Re for the starlight. We see that 52% (81%) of the no-SHMR-prior model samples for

the circular (radial) orbit are above this lower bound, thus allowing for little/no-DM

solutions that do not exhibit tidal disturbances.
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2018). Without modeling any constraints on the actual orbit of DF2, we compare

results assuming either radial or circular orbits for the satellite, assuming that the truth

lies somewhere in between these two cases. For our sampled central mass profiles and

separation distances, γM ∼ 1. DF2 shows no obvious evidence of tidal disturbances,

with regular isophotes out to ≈ 2Re (∼ 4 kpc; vD+18a). This provides a tidal constraint

that rtidal & 4 kpc.

To estimate the central-galaxy mass, we use the halo-to-stellar mass relation

from Rodŕıguez-Puebla et al. (2017). For M∗ = 1011M� (Forbes 2017), we expect

M200c = 4.9 × 1012M� with a scatter of 0.25 dex (from inverting the SHMR scatter

of 0.15 dex). We then adopt an NFW profile with concentration from the MCR and

calculate the enclosed mass at a given radius.

To fold in all the uncertainties together (central mass, satellite mass posterior

from the previous inference, and distance), we randomly sample from the underlying

parameters, including a uniform distribution of projection angles. We plot the resulting

distribution of tidal radii in Figure 4.3.

For the data-driven model, rtidal = 4.3+4.7
−1.7 (5.7+5.09

−1.71) kpc when assuming a

circular (radial) orbit. Thus there is a large fraction of model-posterior space (52% for

circular, 81% for radial) where DF2 can have little/no DM yet be tidally undisturbed

out to 4 kpc. We note that the low-velocity star clusters observed out to ∼ 7.5 kpc could

still be bound even with rtidal ∼ 4 kpc, if they have retrograde orbits (Read et al. 2006).

Turning to the SHMR-prior model, the dwarf would be naturally much more

resistant to tides, and the tidal radius would be farther out (Figure 4.3). However, the
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predicted value of rtidal = 16+28
−7 kpc (or 24+33

−10 kpc for the radial case) implies that DF2

would still likely have most of its DM stripped away by now, as MDM(rtidal)/M200c ∼ 0.2

(∼ 0.4).

The latter point leads us to the possibility that DF2 started out with a normal

DM halo, but has been tidally eroded, not only by removing the outer parts but also

by stripping out much of the central DM prior to disruption of the visible galaxy. Such

a solution was studied through N -body simulations by Ogiya (2018), who found that

the final dark mass within 10 kpc could be ∼ 108M� – which is consistent with our

observations (see red curves in Figure 4.2). We note however two major caveats to this

interpretation: (1) there is a small range of orbital parameter space that allows for the

necessary degree of stripping; (2) the dynamical time within the UDG is comparable to

its orbital period, which may prevent it from relaxing into a visually undisturbed system

with cold kinematics.

The difference in predicted tidal radii between the DM and no-DM models

motivates looking beyond 4 kpc for tidal features around DF2 to help distinguish between

these two scenarios.

4.6 DF2 in a Wider Context

We have found through Jeans modeling that the observations of cold kinematics

in DF2 imply a very low DM content. However, Martin et al. (2018) disputed the unusual

nature of this galaxy by noting its similar σ and dynamical M/L to previously studied
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dwarfs. Here we emphasize that such comparisons neglect the different measurement

radii used, and we clarify the position of DF2 in a wider context by constructing a plot

relating galaxy stellar masses, halo masses, and sizes (Fig. 4.4).

We take the compilation of Local Group (LG) dwarf galaxies from Fattahi

et al. (2018), selecting only galaxies with M∗ > 105 M� and updating with sizes from

Martin et al. (2016) where available. Taking the dynamical mass within r1/2 ≈ 1.3Re

and subtracting the associated stellar mass, we compute the DM contribution to the

circular velocity,

vcirc,DM =

√
GMDM(< r1/2)

r1/2
, (4.7)

propagating uncertainties in the distance, size, luminosity, stellar M/L, and velocity

dispersion. We color these points in Figure 4.4 by their stellar mass, with different

symbols for field dwarfs versus satellites. We compare these measurements with halo

circular velocity profiles for several halo masses, adopting MCR concentrations and

γ = 0.3 cores, while color-coding these profiles by the SHMR-predicted stellar mass. The

halo-concentration scatter is illustrated by the red band for the 1011 M� halo.

This Figure shows that some dwarfs track cored-halo profiles appropriate to

their stellar masses. Others have higher velocities and perhaps cuspy halos (e.g., Spekkens

et al. 2005; Oñorbe et al. 2015; Genina et al. 2018). A few have low velocities; since most

of these are satellites, they may be examples of ongoing tidal stripping that has depleted

their central DM content (Collins et al. 2013; Fattahi et al. 2018; Buck et al. 2019). DF2,

however, stands out from all these galaxies by having the lowest DM-velocity estimate,

despite the much larger measurement radius. Andromeda XIX is closest in σ–r1/2 space
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Figure 4.4: DF2 compared with Local Group dwarf galaxies. The circles and x’s show

the circular velocity of the DM component for field and satellite dwarfs respectively. The

points are color-coded by stellar mass. The curves show cored (γ = 0.3) NFW profiles

for different halo masses (in M�), color-coded by the mean expected stellar mass. The

posterior predictive value for the data-driven DF2 inference is shown as the star, below

logM200c/M� = 8. The open markers with dotted lines for And XIX and DF2 show the

expected DM halos they would occupy given their stellar mass. We see that DF2 is an

outlier even beyond the extended LG dwarfs in both its size and in mismatch between

expected and observed DM halo mass.
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but has ∼ 300× lower stellar mass and thus does not appear as DM-depleted as DF2.

IC 1613 has a high stellar mass but the smaller measurement radius allows for a larger

range of halo masses.

We therefore strengthen the conclusion of vD+18a that DF2 is an extreme

outlier in the usual dwarf–DM scaling relations. There are then two main possible

explanations. One is that the galaxy formed with little or no DM, and the other is that

it has been severely stripped of DM. We cannot definitively discriminate between the two

scenarios, but in Section 4.5 we pointed out potentially major flaws in the tidal argument.

Furthermore, there is an additional clue that has so far been generally overlooked: the

very star-cluster system used to probe the dynamics of DF2 is itself so far unique in the

known Universe. The clusters are on average far more luminous than in other galaxies

including the Milky Way, and they are also unusually extended and elongated (vD+18a).

The presence of either a normal or a stripped DM halo provides no explanation for this

novel observation. On the other hand, if DF2 formed through a rare pathway without

DM (e.g., scenarios discussed in vD+18a), then it is more plausible that its star-cluster

system would show unusual properties as well.

The peculiar case of DF2 demonstrates the rich yield of information that can

be obtained through detailed observations of dwarfs beyond the Local Group, which will

help challenge and refine our understanding of galaxy formation and of the nature of

DM.
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Chapter 5

Constraints on fuzzy dark matter from

the ultra-diffuse galaxy Dragonfly 44

5.1 Introduction

The concordant cosmological model of dark energy plus cold dark matter

(ΛCDM) has had remarkable successes in describing the large scale structure of the

universe (e.g., Tegmark et al. 2006; Planck Collaboration 2018). However, there have

been a number of small scale challenges to this picture concerning the inner density

structure of dark matter (DM) halos and the relative numbers of subhalos (e.g., Weinberg

et al. 2015; Bullock & Boylan-Kolchin 2017, and references therein). Many authors

have proposed solutions to these problems that involve a more detailed treatment of the

baryonic physics of galaxy formation (e.g., Pontzen & Governato 2012; Martizzi et al.

2013; Schaller et al. 2015a). Furthermore, given the continued absence of directly detected
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DM particles (Marrodán Undagoitia & Rauch 2016; Akerib et al. 2017; Aprile et al. 2018),

attempts to explain these astrophysical discrepancies with modifications of the physics

of DM have become increasingly appealing. Frequently considered modifications include

allowing for self-interactions (SIDM; e.g., Carlson et al. 1992; Rocha et al. 2013; Wittman

et al. 2018) and increasing the DM temperature at the time of thermal decoupling (Warm

DM; e.g., Davis et al. 1981; Lovell et al. 2017; Bozek et al. 2019). For overviews of the

intersection of astrophysics and particle physics searches for DM, we refer readers to the

reviews of Bertone et al. (2005), Profumo (2017), and Buckley & Peter (2018).

One promising class of models posits that the DM particle is an extremely

low-mass (� 1 eV)1 spin-0 boson (i.e., a scalar field) manifesting quantum mechanical

wave-like behavior on astrophysical scales (∼kpc; Colpi et al. 1986; Lee & Koh 1996;

Hu et al. 2000; Matos et al. 2009; Hui et al. 2017). Axions, a proposed solution to the

strong Charge-Parity (CP) problem in particle physics (Peccei & Quinn 1977; Dine et al.

1981), are a well-motivated class of models that provide one such candidate DM particle.

There are a variety of names for these DM models: ultra-light axion DM, scalar field

DM, Bose-Einstein condensate DM, wave DM, or fuzzy DM. Here we adopt the term

Fuzzy Dark Matter (FDM) for ultra-light (m ∼ 10−22 eV) non-thermal (i.e., restricted

to the ground state) models lacking self-interaction. We refer to the mass of the DM

scalar field in this model in its dimensionless form as m22 = m/10−22 eV.

We note that for any model in which an ultra-light scalar field is the dominant

contributor to DM, its production mechanism must necessarily be non-thermal (Marsh

1For particle masses, we use the convention that c = 1, giving mass and energy the same physical
dimensions.
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2016), in contrast with the thermal production of weakly interacting massive particles in

the standard CDM cosmology (Bringmann & Hofmann 2007). Thermal production of

such a low mass of DM would lead to hot (i.e. ultra-relativistic) DM, in conflict with

observations of the matter power spectrum and the cosmic microwave background (CMB;

e.g., Viel et al. 2005). For a broad overview of FDM cosmologies, we refer interested

readers to Marsh (2016) and Hui et al. (2017).

The salient phenomena associated with FDM cosmologies are a cutoff in the

halo mass function below ∼ 109 M�, and distinct density cores in the inner ∼ 1 kpc of

DM halos, with a lighter scalar field mass resulting in a higher halo mass cutoff and

a more massive inner core (Hu et al. 2000). This cutoff in the halo mass distribution

implies less correlation of structure on smaller scales and the delayed formation of

galaxies relative to CDM. The measured CMB and galaxy power spectra imply that,

if FDM makes up the majority of DM in the universe, m22 must be & 10−3 (Hlozek

et al. 2015). Constraints from the Lyα forest power spectrum imply that m22 & 1, with

some models excluding scalar field masses up to m22 ∼ 30 (Armengaud et al. 2017; Nori

et al. 2019). Complementary constraints on FDM models from both high redshift galaxy

luminosity functions and the Milky Way satellite luminosity function are also consistent

with m22 & 1 (Bozek et al. 2015; Schive et al. 2016; Nadler et al. 2019).

The stellar dynamics of nearby galaxies offer further opportunities to test FDM

models. The inner density structures of DM halos that form in an FDM cosmology follow

a stationary wave, or soliton, solution to the Schrödinger–Poisson equation (Schive et al.

2014a; Marsh & Pop 2015). In the outer region the halo density profile transitions to a
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normal CDM halo profile (e.g., a Navarro-Frenk-White (NFW) profile, Navarro et al.

1997). The sizes of these cores are predicted to scale inversely with halo mass, while the

symmetry of the soliton solution requires the core density to scale inversely with the

core size (Schive et al. 2014a). Higher mass halos are therefore predicted to have smaller

but denser cores.

Many previous studies of FDM density profiles in galaxies have focused on

either dwarf spheroidal (dSph) or ultra-faint dwarf (UFD) galaxies (e.g., Lora & Magaña

2014; Marsh & Pop 2015; Chen et al. 2017; González-Morales et al. 2017), as their high

dynamical mass-to-light ratios minimize the impact of systematic assumptions about

the stellar mass distribution. Studies have generally found m22 ∼ 1 (within a factor of a

few), in slight tension with the Lyα constraints. Calabrese & Spergel (2016) found that

the stellar kinematics of two UFDs were consistent with m22 ∼ 4, though they noted

the lack of kinematic measurements outside of the inferred core radius. More recently,

Marsh & Niemeyer (2019) applied the stochastic density fluctuation model of El-Zant

et al. (2016) to study how FDM would cause dynamical heating of the star cluster in

the UFD Eridanus II. They argued that the survival of the EriII star cluster implies

m22 & 1000, whereas the existence of EriII itself implies m22 & 10.

Looking toward more massive galaxies to probe FDM scaling relations presents

increasing difficulties in disentangling the baryonic and dark mass components. In the

halo mass range of 1010 - 1011 M�, low surface brightness (LSB) galaxies have proven to

be the most amenable to analysis. Bernal et al. (2018) modeled the rotation curves of 18

LSBs, and their results favored a lower value of m22 ∼ 0.05 (though see Bar et al. 2019
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for a discussion of the impact of the baryons on the FDM density structure). Bar et al.

(2018) also modeled the rotation curves of LSBs under the assumption of the previously

mentioned soliton–halo scaling relations, finding that, the data were in tension with

1 . m22 . 10.

With the discovery of a vast population of even lower surface brightness “ultra-

diffuse” galaxies (UDGs; van Dokkum et al. 2015; Mihos et al. 2015; Koda et al. 2015),

we now have more opportunities to test FDM in a broader range of galaxy masses and

environments. The Coma Cluster UDG Dragonfly 44 was shown to have a large stellar

velocity dispersion, corresponding to a DM halo with a mass on the order of that of the

Milky Way (van Dokkum et al. 2016). In a companion paper, van Dokkum et al. (2019)

(hereafter Paper I), we present new spatially-resolved spectroscopy of Dragonfly 44,

confirming that the potential of the galaxy is indeed dominated by DM. In this work,

we address the question of whether or not the dynamics of Dragonfly 44 are consistent

with FDM.

Throughout this work we assume the Planck Collaboration 2018 values of

relevant cosmological parameters, including H0 = 67.66 km s−1 Mpc−1 and Ωm = 0.3111.

In Section 5.2 we summarize the photometric and spectroscopic data for Drag-

onfly 44. We describe the Jeans modeling formalism and mass modeling assumptions in

Section 5.3. In Section 5.4 we present our derived constraints on FDM models, and we

place our results in context with other FDM studies in Section 5.5.
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5.2 Data

Readers interested in a detailed description of the spectroscopic observations,

data reduction, and kinematic extraction are referred to Paper I; here we provide a brief

summary of the observational data for Dragonfly 44. We adopt a standard distance to

Coma of 100 Mpc for the galaxy, which has an associated distance modulus m−M = 35

and an angular distance conversion factor of 0.485 kpc arcsec−1.

Using the V606 HST WFC3/UVIS imaging data presented by van Dokkum et al.

(2017b), we modeled the stellar light of Dragonfly 44 with a Sérsic surface brightness

profile, deriving a total luminosity of LV = 2.33× 108 L�,V , a major-axis effective radius

of Re = 4.7 kpc, a Sérsic index of n = 0.94, and an axis ratio of b/a = 0.68. For our

modeling purposes, we adopt the circularized effective radius of Re,circ = Re
√
b/a = 3.87

kpc.

We obtained integral field unit (IFU) spectroscopy of Dragonfly 44 with the

Keck Cosmic Web Imager (KCWI) in the first half of 2018, with 17 hours of exposure

time on target and an additional 8 hours on sky. We used the medium slicer with the

BM grating, yielding a field-of-view of 16′′ × 20′′ and a spectral resolution of R ∼ 4000.

For reducing the data to rectified, wavelength calibrated cubes, we used the

public Keck-maintained pipeline, KDERP2. We aligned the individual science exposures

by fitting a 2D model of the flux from the HST imaging data and interpolating to a

common spatial grid with a spatial resolution of ∼ 1.2′′. We subtracted the sky spectrum

using a principle component analysis technique – see Paper I for further details. The

2https://github.com/Keck-DataReductionPipelines/KcwiDRP
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final signal-to-noise ratio in the optimally-combined spectrum was 48 per pixel or 96

Å−1.

We extracted spectra in nine elliptical apertures following the isophotes of the

galaxy. We modeled the stellar kinematic line-of-sight velocity distribution (LOSVD)

as a fourth-order Gauss–Hermite function, and we fitted the LOSVD in each of these

apertures by convolving it with both a high-resolution template spectrum of a synthetic

stellar population and the instrumental line profile (including a wavelength-dependent

resolution). From varying the ages and metallicities of the chosen stellar population

template, we found the most likely values for an age of 10 Gyr and a metallicity of

[Fe/H] = −1.25. For each spectrum we found the best fitting central velocity and

higher-order (second, third, and fourth) moments of the LOSVD using a Markov Chain

Monte Carlo (MCMC) simulation.

The radius of a given aperture is defined as the flux-weighted average pixel

radius. There is little evidence for rotational motion in Dragonfly 44, with v/σ . 0.25

along the minor axis and v/σ . 0.1 along the major axis. We computed the effective

rms velocity within each aperture as v2
rms = (v − vsys)

2 + σ2.

5.3 Dynamical Modeling

We use the spherical Jeans modeling formalism presented in Wasserman et al.

(2018a), using an updated, publicly available modeling code3. Under the assumptions

of dynamical equilibrium and spherical symmetry, the model predicts the LOS velocity

3http://github.com/adwasser/Slomo.jl
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dispersion as a function of projected galactocentric radius. See Hayashi & Obata (2019)

for a discussion of the systematic uncertainty associated with applying spherical models

to non-spherical systems. The main components of the model are the mass profile, M(r),

the tracer volume density profile, ν(r), and the orbital anisotropy profile of the tracers,

βani(r). The orbital anisotropy for a spherically symmetric system is defined as

βani = 1− σ2
t /σ

2
r (5.1)

where σt and σr are the tangential and radial components of the velocity dispersion.

We can compute the mean squared LOS velocity as

σ2
los(R) =

2G

I(R)

∫ ∞
R

Kβ (r,R) ν(r)M(r)
dr

r
(5.2)

where I(R) is the tracer surface density profile and Kβ(r,R) is the anisotropy projection

kernel. For our adopted constant anisotropy profile, the functional form of this projection

kernel is given by Mamon &  Lokas (2005), equation A16.

We set the stellar tracer density distribution to follow the Sérsic distribution

of the star light. We assume that the stellar mass distribution follows the same Sérsic

luminosity distribution used for the tracers, with the local stellar mass density given by

the spatially-invariant stellar mass-to-light ratio, Υ∗, multiplied by the stellar luminosity

density.

5.3.1 Halo Models

For the DM halo, we construct a flexible double power law model with a soliton

core. A generalized form of the Navarro–Frenk–White (NFW) model (Navarro et al.
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1997) is given by

ραβγ(r) = ρs

(
r

rs

)−γ (
1 +

(
r

rs

)α)(γ−β)/α

(5.3)

where ρs is the scale density, rs is the scale radius, γ is the negative inner log slope, β is

the negative outer log slope, and α controls the sharpness of the transition between the

two slopes (Hernquist 1990; Di Cintio et al. 2014). For (α, β, γ) = (1, 3, 1), this is the

typical NFW profile, which we assume to be an appropriate approximation for CDM

halos in the absence of baryonic effects or FDM cores.

The inner soliton core region from FDM has the density profile

ρsoliton(r) = ρsol

(
1 +

(
r

rsol

)2
)−8

(5.4)

where ρsol and rsol are the soliton scale density and scale radius, respectively (Schive

et al. 2014a; Marsh & Pop 2015; Robles et al. 2019). Note that we use a slightly different

definition of the soliton radius than Schive et al. (2014a) and Robles et al. (2019); their

core radius, rc, refers to the radius where the density has fallen to half of the central

density, and it is equivalent to 0.3017 rsol. In addition to eliminating a numeric constant

from the equations, our choice of definition for the soliton radius makes the ratio of the

transition radius to the soliton radius near unity (see Section 5.5.3).

From the symmetry of the soliton solution, the soliton scale density and radius

are related to the scalar field mass as

ρsol

M�kpc−3 = 8.755× 106 h−2 m−2
22

(
rsol

kpc

)−4

(5.5)

where h is the Hubble parameter in units of 100 Mpc km s−1, and m22 is the scalar

field mass in units of 10−22 eV (Marsh & Pop 2015).
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We match the inner soliton profile with the outer αβγ profile at the transition

radius, rt, by finding the root of the function corresponding to the difference between

the two profiles. This guarantees that the density profile,

ρ(r) =


ρsoliton(r) r < rt

ραβγ(r) r ≥ rt ,
(5.6)

is a continuous function, and the transition radius is thus fixed for a given set of outer

halo and soliton parameters. We reject any model that fails to converge due to the

inner profile being less dense than the outer profile at all radii. The transition radius

is found in simulations to be a factor of a few times the core radius of the soliton,

and the transition between the soliton and normal CDM profiles is sharp (Schive et al.

2014a; Mocz et al. 2017). While FDM halo density profiles are continuous, their density

derivatives are not.

The enclosed mass in the αβγ model is

Mαβγ(r) =
4πρsr

3
s

ω

(
r

rs

)ω
2F1

[
ω

α
,
β − γ
α

, 1 +
ω

α
;−xα

]
(5.7)

where ω = 3− γ and 2F1 is the hypergeometric function. For the limiting case of the

NFW profile, this simplifies to

MNFW(r) = 4πρsr
3
s

[
ln

(
1 +

r

rs

)
− r

rs + r

]
. (5.8)
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The enclosed mass of the soliton has an analytic form4 and is given by

Msoliton(r) =

∫ r

0
4πr̃2ρsoliton(r̃)dr̃ (5.9)

= 4πρsolrsol
3

∫ r/rsol

0
x2
(
1 + x2

)−8
dx

= 4πρsolrsol
3

∫ θ

0
tan2(θ) sec−16(θ) sec2(θ) dθ

= 4πρsolrsol
3

∫ θ

0
sin2(θ) cos12(θ) dθ

where in the second-to-last line we have used the trigonometric substitution r/rsol =

tan(θ). The integral in the last line can then be iteratively integrated by parts, yielding

the following solution.

Msoliton(r) = Msol
1

K

[
k0θ +

7∑
i=1

ki sin(2iθ)
]

(5.10)

where Msol = 4πρsolrsol
3, K = 1720320 and the other constant factors are given in the

table below.

k0 k1 k2 k3 k4 k5 k6 k7

27720 17325 −1155 −4235 −2625 −903 −175 −15

Table 5.1: Coefficients for the analytic solution to the soliton enclosed mass profile

(Equation 5.10).

From Equation 5.5, we can also express Msol as

Msol = 1.1× 108 M� h
−2 m−2

22

(
rsol

kpc

)−1

. (5.11)

4The existence of such an analytic form was noted by Marsh & Pop (2015), but the derivation of this
profile was left as an exercise to the reader.
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Our generic halo mass profile is then given by

M(r) =


Msoliton(r) r < rt

∆Mαβγ(r) +Msoliton(rt) r ≥ rt

(5.12)

where ∆Mαβγ(r) = Mαβγ(r)−Mαβγ(rt).

We parameterize the halo with the virial mass and concentration, using the

“200c” convention such that the virial radius is given by the relation

M(r200c) = 200ρcrit
4π

3
r3

200c (5.13)

and c200c = r200c/r−2. Note that here we use the convention that the halo concentration

is given by the radius where the halo log slope is equal to −2. This is related to the halo

scale radius as

r−2 =

(
2− γ
β − 2

)1/α

rs . (5.14)

Generally speaking, we must be careful in our definition of the halo virial mass

and concentration. Since the soliton core contributes to the mass of a halo, the outer

halo density and radius scale parameters for a FDM halo of a given virial mass and

concentration are necessarily different than those for a normal CDM halo.

However from the predicted scaling relation between soliton core mass and halo

mass, we would expect a 1010 M� halo to have . 1% of its mass locked up in the soliton

core, with this fraction decreasing with increasing halo mass (Robles et al. 2019). Thus

given the expected halo mass range of Dragonfly 44 of ∼ 1011 − 1012 M�, we assume

that the differences in the outer halo scale parameters in the FDM and CDM models

at fixed halo mass and concentration are negligible. We later verify the validity of this
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assumption by comparing the inferred virial mass with one computed from the posterior

mass profile, finding a negligible difference.

This generic double-power law plus soliton halo model has eight free parameters

(βani, M200c, c200c, α, β, γ, m22, rsol) and it would be poorly constrained by the available

kinematic data. Thus, we consider the following constraints.

We impose a prior on c200c by using the halo mass–concentration relation

(HMCR) from Diemer & Kravtsov (2015). Practically this is accomplished by sampling

both M200c and c200c, then using a log-normal prior on c200c whose mean is the HMCR

prediction conditioned on the sampled M200c, and whose scatter is 0.16 dex.

We consider two possibilities for the αβγ slope parameters. First, in the

limit of no baryonic effects, we assume the outer halo follows an NFW profile with

(α, β, γ) = (1, 3, 1). Alternatively assuming that baryonic feedback – such as cycles

of bursty star formation – plays an important role, we use the halo scaling relations

from the hydrodynamics simulations of Di Cintio et al. (2014), which map variation

in x = log(M∗/Mvir) to α, β, and γ (see their Equation 3, also copied below as

Equation 5.15).

α = 2.94− log10

[
(10x+2.33)−1.08 + (10x+2.33)2.29

]
β = 4.23 + 1.34x+ 0.26x2 (5.15)

γ = −0.06 + log10

[
(10x+2.56)−0.68 + (10x+2.56)

]
For Dragonfly 44, this results in a shallower CDM halo, with γ ∼ 0.3.
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To summarize, in addition to the CDM halo models described in Paper I, we

have added two halo models by including the soliton core component from the FDM

model, with both NFW and αβγ outer halo profiles.

Despite the constraints of the above assumptions, the task of inferring the

properties of an FDM halo in Dragonfly 44 are substantial. Figure 5.1 illustrates the

difficulty by comparing velocity dispersion profiles from expected FDM halo models with

their CDM counterparts.

5.3.2 Bayesian Inference

We use a Gaussian likelihood to model the stellar velocity dispersion data,

σi± δσi in apertures with projected galactocentric radii, Ri. For a given halo model and

model parameters, the predicted velocity dispersion, σJ, is modeled by Equation. 5.2.

The log likelihood is thus

lnL =
∑
i

−1

2

(
ln(2πδσ2

i ) +

(
σi − σJ(Ri)

δσi

)2
)
. (5.16)

We use uniform priors over the log of the halo mass, scalar field mass, and soliton

scale radius. For the orbital anisotropy, we use a uniform prior over the symmetrized

anisotropy parameter, β̃ani = − log10(1− βani). This ensures that radial and tangential

orbits are given equal weight. We use the HMCR as a prior for the concentration, as

described in the previous section. For the stellar mass-to-light ratio, we use a log-normal

distribution with mean log10 Υ∗,V = log10(1.5) and a scatter of 0.1 dex. Here the mean

value chosen is typical of an old, low metallicity stellar population, while the chosen
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Figure 5.1: Illustration of mass models and their associated velocity dispersion profiles

for different halo models described in Section 5.3.1. The top panels show CDM models

with log10M200c/M� = 11, c200c = 10.5, and rs = 9.3 kpc. The red solid line shows a

cuspy NFW halo and the orange dot-dashed line shows a cored αβγ halo. The bottom

panels show FDM halos with an outer αβγ halo profile (plotted again for comparison)

for a range of possible values of m22. The left-hand panels show the circular velocity

profile associated to the halo, while the right-hand panels show the line-of-sight velocity

dispersion profile. The range of orbital anisotropy values (from βani = −1 to 0.5) is

shown by the shaded region, with the line indicating the isotropic (βani = 0) profile.

Tangentially-biased profiles (βani < 0) generally display velocity dispersion profiles that

increase with radius, while radially-biased profiles generally fall with radius. In the

bottom left panel, the dotted lines show the expected soliton scale radius associated to

each FDM halo (see Section 5.5.2). As the FDM scalar field mass gets larger, the profile

approaches its CDM analogue, with the deviations occurring on increasingly smaller

scales. FDM is more “detectable” for lower m22 values where there is more mass in the

soliton core. However, the projection of this mass profile into an observable velocity

dispersion tends to wash out this signal (demonstrating the mass–anisotropy degeneracy).

Furthermore even with a known anisotropy parameter, the FDM signal is degenerate

with the inner DM slope (i.e., cored or cuspy).
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scatter matches that found by Taylor et al. (2011) from the GAMA survey. We show a

summary of these model parameters and our priors in Table 5.2.

For each halo model, we sample from our posterior probability distribution,

Post(θ|(σ, δσ,R),Model) ∝ L(σ|R,Model, θ)

Prior(θ)
(5.17)

by using the affine-invariant ensemble MCMC algorithm of Goodman & Weare (2010).

We run chains of 128 walkers for 4000 iterations, rejecting the first 2000 iterations where

the MCMC might not have converged. We visually inspect the trace plots to verify that

this is an adequate number of burn-in iterations.
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5.4 Results

Table 5.2 summarizes the posterior distributions for the different halo mass

models. The full posterior distributions are shown as marginalized 1D and 2D histograms

in Appendix 5.7.1.

We find that all models we consider are able to reproduce the observed velocity

dispersion profile, as shown in Figure 5.2. We assess the relative quality of these models

using leave-one-out cross validation (LOO-CV; Vehtari et al. 2015; Piironen & Vehtari

2017), finding no significant differences in the goodness-of-fit of FDM models relative

to the CDM models. Translating the differences between models in their calculated

LOO-CV information criteria into probabilities, we find that no model is more than

∼ 0.3 times as likely as any other model to best describe the data. In other words, the

increase in goodness-of-fit from the FDM models is not enough to compensate for the

increased model freedom (i.e., the additional model parameters).

As demonstrated in Figure 5.3, the dynamical mass profile is best constrained

at the maximum radius of the kinematic tracers (∼ 5 kpc), with Mdyn(< 5 kpc) =

3.4+0.5
−0.4(±0.1)× 109 M�, where the systematic uncertainty (in parentheses) comes from

the standard deviation between the four models.

Figure 5.3 also demonstrates the systematic effect that the choice of halo model

has on the inferred circular velocity profile, with both CDM and FDM αβγ profiles

preferring more massive halos than their associated NFW models by ∼ 0.5 dex. This

is to be expected, as the cored αβγ models put less mass in the inner region (where
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Figure 5.2: Posterior predictive checks on the velocity dispersion profiles for the FDM

halo models compared with the kinematic observations, with the CDM halo models

from Paper I shown for comparison. The red solid and orange dot-dashed lines show the

FDM halo models for the NFW and αβγ outer profiles. The dark blue dashed and cyan

dotted lines show the CDM halo models for the NFW and αβγ profiles. The shaded

regions cover the 16th through 84th percentiles of the distribution. We see that all four

models do an adequate job of recovering the general trend of the kinematic data.
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we have kinematic constraints) compared to NFW models of the same halo mass. The

differences in inferred halo mass between halo models are consistent within the statistical

uncertainties from the spread in the posterior distributions, and the deviations indicates

the difficulty in robustly extrapolating halo masses out to spatial scales where we lack

data.

The analysis of higher order LOS velocity moments (e.g., kurtosis) may help

in distinguishing cuspy density profiles (NFW) from shallower cored profiles (αβγ), as

discussed by Paper I. The high value of h4 = 0.13± 0.05 measured for the Dragonfly 44

stellar kinematic data slightly favors the αβγ model (predicted h4 = 0.01± 0.01) over

the NFW model (predicted h4 = 0.03± 0.02). However since h4 is more susceptible to

systematic biases than the velocity dispersion, we remain largely agnostic about which

halo model (and hence which associated value for the halo mass) is correct.

As expected, the choice of CDM or FDM models has the most impact on

the inner mass profile, with FDM models allowing a ∼ 109 M� core within 1 kpc.

The inner mass distribution is degenerate with both the chosen model and the orbital

anisotropy (see Figure 5.4), with the FDM models preferring more DM inside of 1 kpc

and slightly more tangentially-biased orbits. The primary modeling systematic affecting

the anisotropy distribution however is the outer DM profile (NFW or αβγ), with the

NFW model preferring tangential orbits βani ∼ −0.8 and the αβγ model preferring

isotropic orbits. We note that models with tangentially-biased orbits will hide the signal

of the vcirc soliton bump when projecting to the LOS velocity dispersion.

Figure 5.5 shows the ratio of the enclosed (i.e., cumulative) DM mass to stellar
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Figure 5.3: Circular velocity corresponding to the dynamical mass (DM + stars) for

the FDM halo models, compared with their CDM halo counterparts. Note that these

are profiles in de-projected (3D) radius, in contrast to the projected (2D) radial profiles

shown in Figure 5.2. The bottom gray solid line shows the circular velocity profile

corresponding to just the stellar mass for the NFW model. The black bar at the bottom

indicates the spatial extent of the kinematic data. The dynamical mass within 5 kpc

(∼ Re) is well constrained by the data, but the mass within 1 kpc is degenerate with the

chosen model.
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models, compared with their CDM halo counterparts. The median of each distribution

is marked by circles. The NFW models (both for CDM and FDM) prefer tangentially

biased orbits (βani < 0), with the tail of the distributions extending to the prior bound

at β̃ani = −1.5 (βani = −30.6). The αβγ models are consistent with isotropic orbits

(βani = 0, shown by the gray dotted line), but all of the posterior distributions are skewed

in the direction of tangential anisotropy.
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Figure 5.5: Ratio of DM to stellar mass as a function of radius for the FDM halo models,

compared with their CDM halo counterparts. The black bar at the bottom indicates

the spatial extent of the kinematic data. All four models show Dragonfly 44 to be

DM-dominated (MDM/M∗ > 1) down to ∼ 0.1 kpc.

mass as a function of radius, and it confirms that Dragonfly 44 is DM-dominated

(MDM/M∗ > 1) independently of the considered cosmology (FDM/CDM) or degree of

baryonic impacts (NFW/αβγ), down to the smallest spatial scales probed by the data.

As such, our inference on the mass-to-light ratio, Υ∗, is consistent with our chosen

prior. With our chosen prior of log Υ∗ ∼ 0.176 ± 0.1, MDM/M∗ ∼ 20 at r = 5 kpc,

independently of the chosen mass model.
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Looking at just the two FDM models, we see that they are consistent in their

posterior soliton parameter distributions. Figure 5.6 shows the covariance between the

scalar field mass, the total mass within the soliton core, and the ratio of the transition

radius to the soliton scale radius. The modes of the distributions for both NFW and

αβγ models have a ∼ 109 M� soliton core with a size of ∼ 0.6 kpc. We find a less likely

second peak in the posterior distribution for the NFW model, towards a more massive

scalar field (m22 ∼ 10). This region has a soliton core with mass of ∼ 107 M� that

rapidly transitions to the outer NFW halo profile. Thus, this second peak corresponds to

models for which the DM scalar field is too massive to create a dynamically significant

core on spatial scales probed by our data. For the αβγ model, this region of parameter

space has a similar posterior density, but this manifests as a long tail towards higher

scalar field masses rather than as a discrete second mode.

While the observable velocity dispersion of the FDM models will approach that

of the CDM models in the limit as m22 →∞ (see the bottom right panel of Figure 5.1),

we caution that this does not mean that the bounded m22 posterior distribution favors

FDM over CDM. Rather, as discussed in the beginning of this section, we need to

statistically account for the additional model freedom that the introduction of the soliton

parameters provide.
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Figure 5.6: Posterior distributions for the scalar field mass in 10−22 eV, the mass within

the soliton core (in M�), and the ratio of the transition radius to the soliton core radius

for the NFW (red, unfilled histograms) and αβγ (orange filled histograms) halo models.

The FDM constraints are broadly similar between the two halo models, with both models

favoring a core of mass ∼ 109 M�. Both models show a mode in m22 of ∼ 2, with a broad

posterior tail towards higher m22 values. For the NFW model, we see a second mode

at high m22, corresponding to a negligible core mass and hence a near-zero transition

radius.
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5.5 Discussion

We now focus on the question of whether or not the stellar dynamics of

Dragonfly 44 are consistent with the FDM hypothesis and other constraints on FDM.

We find qualitatively similar FDM constraints for both the NFW and αβγ models (see

Figure 5.6), and so for the sake of simplicity we focus on the FDM + αβγ model.

5.5.1 Scalar field mass

We find the DM scalar field mass to be m22 = 3.3+10.3
−2.1 .

Figure 5.7 shows this range in the context of other observational constraints

on the scalar field mass. The values we find for m22 are similar to those for the Local

Group dSph galaxies from the study of Chen et al. (2017), who found m22 ∼ 1.8.

González-Morales et al. (2017) found a similar value (m22 ∼ 2.4) from Jeans modeling

of the same data, but they cautioned that the orbital anisotropy degeneracy could cause

the scalar field mass inference to be biased high. Instead of using this Jeans analysis,

they advocated instead for using mass estimators with multiple stellar subpopulations

(e.g., Walker & Peñarrubia 2011), for which they derived an upper bound of m22 < 0.4.

Recent work by multiple authors (e.g., Iršič et al. 2017; Armengaud et al. 2017;

Kobayashi et al. 2017; Nori et al. 2019) have used the Lyα forest power spectrum to test

FDM. Less massive FDM particles would result in stronger deviations from ΛCDM at

small spatial scales; thus these studies infer lower bounds on the scalar field mass, with

m22 values ranging from 7 to 30.
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There are a large number of modeling assumptions that go into this lower

bound, ranging from the temperature evolution of the intergalactic medium during

reionization (e.g., Garzilli et al. 2017) to different priors on cosmological parameters.

In addition, Desjacques et al. (2018) found that even a relatively small self-interaction

term in FDM can lead to instabilities that result in notable differences (with respect

to CDM) in the cosmic web, complicating the interpretation of Lyα forest clustering.

Due to degeneracies between reionization history and the growth of structure, it remains

uncertain to what degree the FDM constraints from low-z galaxy dynamics and the

high-z Lyα power spectrum are in tension with one another. Ultimately, FDM models

that reproduce both galaxy dynamics and the observed Lyα forest power spectrum may

need to go beyond the simple model considered here (e.g., Leong et al. 2019).

5.5.2 Core size

The core sizes of soliton halos are predicted to scale with halo mass and scalar

field mass as rsol ∝ m−1
22 M

−1/3
h . We can see this by considering the following relations,

rcore ∝ (mv)−1

v ∝
(
Mh

rh

)1/2

(5.18)

rh ∝M1/3
h

where the first one is from the de Broglie wavelength of the scalar field, the second

relation comes from the virial theorem, and the third one comes from the definition of

the halo virial radius. Indeed, inserting relevant constants, we can recover within order
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Figure 5.7: Posterior distributions of m22 from Dragonfly 44 (orange histogram) compared

with constraints from the literature. A lower bound of m22 & 20 from modeling of the

Lyα forest (see sources in text) is shown by the gray dashed line, with the gray shaded

region showing the range of lower bounds found in the literature. The constraint from

dSph galaxies (Chen et al. 2017) is shown by the yellow solid line. We see that both

inferences on m22 from Dragonfly 44 are consistent with the dSph constraints, but they

are in tension with the Lyα constraint. Only ∼ 10% of samples lie to the right of the

Lyα lower bound.
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unity the scaling relation found from FDM simulations (Schive et al. 2014b):

rsol

kpc
= 5.304

(
Mh

109M�

)−1/3

m−1
22 . (5.19)

We could in principle use Equation 5.19 as an informative prior on rsol, which

would result in stronger constraints on m22. However, since we let rsol be a free parameter

in our modeling of FDM halos, Equation 5.19 acts as an additional consistency test for

the model. Figure 5.8 shows the posterior distribution of the core size (multiplied by

the scalar field mass to remove its associated scaling) and the halo mass. The mode of

the posterior is well-matched to this relation. In addition, we see that our derived core

size for Dragonfly 44 is less than that derived by Chen et al. (2017) for their sample of

lower halo mass dSph galaxies, consistent with the direction of the soliton core size–halo

mass scaling relation.

5.5.3 Transition radius

Another consistency check for our FDM models is the location of the transition

from the inner soliton profile to the outer CDM-like profile (rt from Equation 5.6). For

the outer αβγ profile, we infer rt = 0.5+0.4
−0.2 kpc and rt/rsol = 0.8+0.2

−0.3. As shown in

Fig. 5.6, these values are similar for the NFW model.

Using simulations of merging FDM halos, Mocz et al. (2017) interpreted this

transition radius as the location where the energy density due to quantum pressure is

equal to the classical kinetic energy density. They found this transition radius to occur

at rt ∼ 3.5 rc (∼ 1 rsol).
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inferred core size from dSph galaxies (Chen et al. 2017). There is a broad range of

allowed core sizes, but the mode of the distribution is consistent with the expected

scaling relation.
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Recent work by Robles et al. (2019) identified a plausible range for this ratio

of the transition radius to the soliton core radius. The maximum of this value is set by

the requirement that the radius of the peak of the circular velocity profile is less than

the virial radius. The corresponding minimum of this transition ratio is set by either the

requirement of a local maximum in the circular velocity profile (for halos . 1011 M�) or

by the need for the peak of the velocity profile in the FDM halo to be less than that of

the corresponding CDM halo (for more massive halos). For a halo of mass ∼ 1011 M�,

these requirements translate to 0.6 . rt/rsol . 1.2.

These bounds, as well as the posterior distribution for this transition ratio,

rt/rsol, are shown in Figure 5.9. We recall that our definition of the soliton core radius

differs from that used by Robles et al. (2019), requiring a conversion factor of 3.315. In

addition, we show the same ratio as found in the simulations of Mocz et al. (2017). Most

of the posterior mass (∼ 70%) as well as the mode of the distribution is inside of these

bounds, indicating that the inferred soliton transition radius is in agreement with the

constraints for a reasonable FDM halo.

5.5.4 Future work

One potentially rewarding area for future work would be testing FDM against

galaxies with even higher halo masses than that of Dragonfly 44. Figure 5.10 shows that

the difference in velocity dispersion between a CDM halo model and a FDM model (both

assuming an outer αβγ profile) is on the order of the observational uncertainties for a

halo mass similar to that of Dragonfly 44. A 1012 M� FDM halo would be much more
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Sec. 2.2). The dotted violet line shows the approximate value from the FDM simulations

of Mocz et al. (2017). Over two-thirds of the posterior mass for Dragonfly 44 is within

these bounds, indicating good agreement with FDM predictions.
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readily detected with the current observational error budget. The field UDG DGSAT I,

with its high velocity dispersion of σ = 56 km s−1(Mart́ın-Navarro et al. 2019), may be

one such promising candidate.

As discussed in Paper I, modeling higher order LOSVD moments may help

break the mass–anisotropy degeneracy. Another possibility would be to use the extensive

globular star cluster system of some UDGs (van Dokkum et al. 2017b) as tracers of the

potential. Such multi-population Jeans modeling can also mitigate the uncertainties

from orbital anisotropy (e.g., Oldham & Auger 2016; Zhu et al. 2016; Wasserman et al.

2018a).

Most simulation studies of FDM in the literature have not modeled the impact

of baryons on the density structure of DM halos (with Bar et al. 2019 being a notable

exception). Our crude method for marginalizing over this uncertainty was to try models

with the best fit DM profiles from the hydrodynamical simulations of Di Cintio et al.

(2014), which naturally assumed a CDM cosmology. Stellar feedback may be critical

in forming UDGs (Di Cintio et al. 2017a; Chan et al. 2018; Jiang et al. 2019) and

would likely affect the properties of soliton cores in FDM. Galaxy formation studies

with WDM and SIDM (e.g., Di Cintio et al. 2017b; Fitts et al. 2019; Despali et al. 2019)

have helped identify better ways of discriminating between available models, and we

believe dedicated studies of galaxy formation in a FDM cosmology will be necessary to

disentangle the effects of baryonic feedback and new DM physics on the observable DM

mass distribution.
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5.6 Conclusions

We applied equilibrium dynamical models to new spatially-resolved spectroscopy

of the integrated starlight of the ultra-diffuse galaxy Dragonfly 44. We considered FDM

halo models in which DM consists of an ultra-light scalar field.

While we were unable to statistically distinguish between our proposed halo

mass models, we were able to test the consistency of the FDM halo models. If we assume

a FDM cosmology, the inferred scalar field mass and soliton core size are consistent with

a range of FDM predictions, including the core size–halo mass scaling relation and the

radius of transition between the soliton core and the outer halo.

The inferred scalar field mass from the Dragonfly 44 data is largely in agreement

with other constraints from galaxy dynamics, however it is in tension with results from

modeling the Lyα forest power spectrum. Possible solutions to these disagreements

include accounting for any self-interactions in the scalar field or allowing for a mixture of

FDM and CDM. Future work is needed to fully quantify this tension and to determine if

FDM is a viable alternative to CDM.

5.7 Appendix

5.7.1 Posterior distributions

We show the 1D and 2D marginalized posterior distributions for each of the

four halo models. The parameterization and associated units are shown in Table 5.2.
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Figure 5.11: Marginalized posterior distributions for the four halo models. The top

panels show the FDM models from this work. The bottom panels show the CDM models

from Paper I. Left panels are for NFW halo profiles, and right panels show the results for

the αβγ halo profiles. Within both top (FDM) panels the parameters are (from left to

right, or top to bottom) the log of the halo mass, the log of the halo concentration, the

log scalar field mass, the log soliton scale radius, the log of the stellar mass to light ratio,

the symmetric parameterization of the anisotropy parameter. Contours show iso-density

surfaces from 0.5 to 2.0 “sigma” levels (for a 2D Gaussian).
142



Chapter 6

Summary and future work

In this thesis I have presented a flexible model for predicting the kinematics

of spherical galaxies and inferring the properties of these galaxies from kinematics of

their tracer populations. I presented several applications of this model, including a

multipopulation analysis of the massive elliptical galaxy NGC 1407, an uncertainty

quantification for the ultra-diffuse galaxy NGC 1052-DF2, and a investigation of fuzzy

dark matter models for the ultra-diffuse galaxy Dragonfly 44. There are numerous areas

where extensions to this model would be promising.

6.1 Partial pooling for multiple galaxies

Chapter 3 demonstrated that it is feasible to measure the inner density structure

of DM halos around nearby massive elliptical galaxies. Different physical mechanisms may

be responsible for changing the log density slope, γ, ranging from adiabatic contraction

and galaxy mergers, to CDM extensions such as self-interacting DM (Rocha et al. 2013).
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To better understand the origin of differences in γ, we need to make measurements

across a range of galaxy and halo masses. Moving one step up the hierarchical ladder to

simultaneously model the dynamics of multiple galaxies at once would help constrain

inferences for galaxies with noisier data and to robustly infer the relationship between γ

and Mhalo. This method is, by no means, limited to the question of the γ–Mh relation.

Indeed any proposed galaxy scaling relation can and should be used.

Partial pooling (e.g., Gelman 2006) refers to the phenomena of information

sharing in a hierarchical (or more generally, multilevel) model between different levels.

For instance, when inferring the mass, concentration, and inner density slope of DM

halos, we can propose that all halos share some relation between these parameters, e.g.

〈Mh〉 = α∗0 + α∗h logM∗

〈log c〉 = αc0 + αch logMh

〈log γ〉 = αγ0 + αγh logMh + αγc log c (6.1)

The first relation in the above equations is a stellar-to-halo mass relation, and we can

use informative priors on the intercept and slope parameters (e.g., Rodŕıguez-Puebla

et al. 2017). Similarly, the second relation in the above equations is simply a halo

mass–concentration relation (e.g., Dutton & Macciò 2014; Diemer & Kravtsov 2015)

which lead to informative priors on αc0 and αcM . For the γ model, the relationship

between the halo parameters is less well understood. Expectations from simulations are

that αγh < 0 (Schaller et al. 2015a), but there exist potentially conflicting predictions
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(Tollet et al. 2016).

Joint modeling of some small number of galaxies (e.g., ∼ 10) is on the edge of

computational convenience. However, it has been shown that importance sampling can

provide a sufficient approximation to the posterior distribution for hierarchical models

(Sonnenfeld et al. 2015).

6.2 Joint stellar population and DF modeling

As discussed briefly in Chapter 5.4, higher order moments of the LOSVD

may help mitigate mass–anisotropy degeneracies when a multi-population analysis is

unfeasible. For the spherical models that assume odd-ordered velocity moments are zero,

this requires measurements of the LOS kurtosis. As mentioned by van Dokkum et al.

(2019), such measurements are difficult and noisy. To properly address this challenge for

integrated light spectroscopic observations of field stars would require a joint modeling of

the stellar populations and the distribution function of the stellar tracers. The resulting

inferences for the LOSVD should then be internally consistent with the stellar mass

distribution.

6.3 Schwarzschild orbit modeling

It is clear that the simple assumptions of constant β or even the flexible β

model of Read & Steger (2017) break down for real galaxies undergoing hierarchical

assembly (Cunningham et al. 2019). If we wish to understand the connection of galaxy
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assembly history to the orbital structure of galaxies, then we need to go beyond Jeans

modeling to e.g., Schwarzschild orbit library methods (Romanowsky & Kochanek 2001;

Zhu et al. 2018).

The Bayesian hierarchical modeling presented in this thesis requires a large

number of repeated likelihood evaluations, which is much more demanding for orbit

library methods. However, if we wish to understand how uncertainty in mass models

propagates to our inferences of orbital anisotropy, we need a mechanism for doing

Bayesian computation for models with over an order of magnitude more parameters

(mostly taken up by the weights of orbits in the library).

One way forward would be to construct a partial likelihood where the mass

model parameters are sampled via an MCMC algorithm and the orbit weights are

determined through the usual optimization (e.g., quadratic programming) methods. The

difficulty in this would be determining the proper degree of regularization for the orbit

weight optimization to ensure that a small change in the proposed potential results in

only a small change in the resulting anisotropy profiles. With such a computational

method, we can apply many of the same techniques discussed in this work (e.g., multiple

tracer population) to the questions about the detailed orbital anisotropy profiles of

galaxies.
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Lim, S., Peng, E. W., Côté, P., et al. 2018, ApJ, 862, 82, doi: 10.3847/1538-4357/

aacb81

Lima Neto, G. B., Gerbal, D., & Márquez, I. 1999, MNRAS, 309, 481, doi: 10.1046/j.

1365-8711.1999.02849.x

 Lokas, E. L. 2002, Monthly Notices of the Royal Astronomical Society, 333, 697, doi: 10.

157

http://doi.org/10.1086/307643
http://doi.org/10.1086/307643
http://doi.org/10.1103/PhysRevD.96.123514
http://doi.org/10.1088/2041-8205/807/1/L2
http://doi.org/10.1088/0004-637X/811/1/62
http://doi.org/10.1088/0004-637X/811/1/62
http://doi.org/10.1093/mnras/sty2891
http://doi.org/10.1093/mnras/sty2891
http://doi.org/10.1093/mnras/stv112
http://doi.org/10.1093/mnras/stv112
http://doi.org/10.1103/PhysRevD.53.2236
http://doi.org/10.1103/PhysRevD.53.2236
http://doi.org/10.1093/mnras/stz271
http://doi.org/10.3847/1538-4357/aa662a
http://doi.org/10.3847/1538-4357/aacb81
http://doi.org/10.3847/1538-4357/aacb81
http://doi.org/10.1046/j.1365-8711.1999.02849.x
http://doi.org/10.1046/j.1365-8711.1999.02849.x
http://doi.org/10.1046/j.1365-8711.2002.05457.x
http://doi.org/10.1046/j.1365-8711.2002.05457.x


1046/j.1365-8711.2002.05457.x

Lora, V., & Magaña, J. 2014, Journal of Cosmology and Astroparticle Physics, 2014,

011, doi: 10.1088/1475-7516/2014/09/011

Lovell, M. R., Gonzalez-Perez, V., Bose, S., et al. 2017, Monthly Notices of the Royal

Astronomical Society, 468, 2836, doi: 10.1093/mnras/stx621

Ma, Y.-Z., & Berndsen, A. 2014, A&C, 5, 45, doi: 10.1016/j.ascom.2014.04.005

Mamon, G. A., &  Lokas, E. L. 2005, MNRAS, 363, 705, doi: 10.1111/j.1365-2966.

2005.09400.x

Marrodán Undagoitia, T., & Rauch, L. 2016, JPhG, 43, 013001, doi: 10.1088/

0954-3899/43/1/013001

Marsh, D. J. E. 2016, PhR, 643, 1, doi: 10.1016/j.physrep.2016.06.005

Marsh, D. J. E., & Niemeyer, J. C. 2019, Physical Review Letters, 123, 051103, doi: 10.

1103/PhysRevLett.123.051103

Marsh, D. J. E., & Pop, A.-R. 2015, Monthly Notices of the Royal Astronomical Society,

451, 2479, doi: 10.1093/mnras/stv1050

Martin, N. F., Collins, M. L. M., Longeard, N., & Tollerud, E. 2018, ApJL, 859, L5,

doi: 10.3847/2041-8213/aac216

Martin, N. F., Ibata, R. A., Lewis, G. F., et al. 2016, ApJ, 833, 167, doi: 10.3847/

1538-4357/833/2/167

Mart́ın-Navarro, I., La Barbera, F., Vazdekis, A., Falcón-Barroso, J., & Ferreras, I. 2015,

MNRAS, 447, 1033, doi: 10.1093/mnras/stu2480

Mart́ın-Navarro, I., Romanowsky, A. J., Brodie, J. P., et al. 2019, Monthly Notices of

158

http://doi.org/10.1046/j.1365-8711.2002.05457.x
http://doi.org/10.1046/j.1365-8711.2002.05457.x
http://doi.org/10.1088/1475-7516/2014/09/011
http://doi.org/10.1093/mnras/stx621
http://doi.org/10.1016/j.ascom.2014.04.005
http://doi.org/10.1111/j.1365-2966.2005.09400.x
http://doi.org/10.1111/j.1365-2966.2005.09400.x
http://doi.org/10.1088/0954-3899/43/1/013001
http://doi.org/10.1088/0954-3899/43/1/013001
http://doi.org/10.1016/j.physrep.2016.06.005
http://doi.org/10.1103/PhysRevLett.123.051103
http://doi.org/10.1103/PhysRevLett.123.051103
http://doi.org/10.1093/mnras/stv1050
http://doi.org/10.3847/2041-8213/aac216
http://doi.org/10.3847/1538-4357/833/2/167
http://doi.org/10.3847/1538-4357/833/2/167
http://doi.org/10.1093/mnras/stu2480


the Royal Astronomical Society, 484, 3425, doi: 10.1093/mnras/stz252
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