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Distributed Lag Models: Examining Associations between the
Built Environment and Health

Jonggyu Baek?, Brisa N. Sanchez?, Veronica J. Berrocal?, and Emma V. Sanchez-
VaznaughP:¢
aUniversity of Michigan

bSan Francisco State University

¢Center on Social Disparities in Health, University of California San Francisco

Abstract

Built environment factors constrain individual level behaviors and choices, and thus are receiving
increasing attention to assess their influence on health. Traditional regression methods have been
widely used to examine associations between built environment measures and health outcomes,
where a fixed, pre-specified spatial scale (e.g., 1 mile buffer) is used to construct environment
measures. However, the spatial scale for these associations remains largely unknown and
misspecifying it introduces bias. We propose the use of distributed lag models (DLMs) to describe
the association between built environment features and health as a function of distance from the
locations of interest and circumvent a-priori selection of a spatial scale. Based on simulation
studies, we demonstrate that traditional regression models produce associations biased away from
the null when there is spatial correlation among the built environment features. Inference based on
DLMs is robust under a range of scenarios of the built environment. We use this innovative
application of DLMs to examine the association between the availability of convenience stores
near California public schools, which may affect children’s dietary choices both through direct
access to junk food and exposure to advertisement, and children’s body mass index z-scores
(BMIz).

INTRODUCTION

Built environmental factors and community resources may be critically important
determinants of disease because they directly constrain individual choices and behaviors.12
For example, environment attributes near or around schools, particularly the availability of
commercial establishments offering “junk” food, are under scrutiny as possible contributors
to the childhood obesity epidemic.3-” Convenience stores are an example of establishments
that sell high energy, low nutrition foods. The availability of convenience stores near schools
may increase children’s junk food consumption, directly through purchasing on the way to
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and from school and indirectly through excess exposure to advertising,8 and affect
children’s weight status.3

The spatial scale used to construct environmental measures is an important consideration in
efforts to estimate associations between built environment factors and health.1% A common
approach is to construct a buffer (i.e., a circular area) around locations of interest (e.g.,
schools) and count environment features (e.g., number of convenience stores) within the
buffer. Studies that use buffers to measure environment attributes typically choose the
buffer’s radius in an ad hoc manner, sometimes justifying the selected radius by distance
travel time (e.g., children could walk ¥ mile in 5-10 minutes!:12). However, the causally
relevant distances within which environment features may affect health remain unknown,10
and empirical methods to determine them are understudied or do not perform well 13.14

Incorrect spatial scale selection when assessing environment-health associations can yield
incorrect inferences!®16. For instance, consider data generated from the model Y= a +
BX(As) + e, where §# 0, X(As) is an environmental measure constructed within a 5 mile
buffer, while e is a residual error. Not knowing the true buffer size, suppose we instead fit Y
= Gy + G1.X(A3) + £, If the environment measure computed from distance 3 to 5 miles from
the locations, say X(As-s), is correlated with X(Az), the estimated &; will suffer from
omitted variable bias; the bias may be away from the null.

In this paper we (1) describe distributed lag models and show how they can be applied to
investigate built environment-health associations; and, as a case study, (2) use distributed lag
models to examine the association between the presence of convenience stores near schools
and children’s body mass index z-scores (BMIz).

METHODS
Distributed Lag Models

Distributed lag models have a long history in economics;1718 more recently they have been
used in air pollution studies'9-2 to examine how health outcomes may be affected by air
pollution during prior periods (i.e., ‘lagged” exposures). For built environment research, we
define the lagged exposure as the environment feature between two radii, 74 and r;from
study locations, /=1, 2, ..., L, where ry = 0; e.g., the lagged exposure is the number of
convenience stores within “ring”-shaped areas around schools.

Let Yj be a continuous outcome measured at location 7, X{rr1;r), /=1,2, ..., L,bean
environment feature measured within a ring-shaped area28 around location 7between radii
r1 and rz; and r; be the maximum distance around locations beyond which there is no
association between the environment feature and the outcome. The distributed lag model is

L
Yi=fo+y_,_ Blrivr) Xi(riim)+ei, (1)

where e;~ MO, ),  represents the intercept. The association of the environment feature
measured between radii -1 and ryaround the locations and the outcome is B (r1-1; r)); for
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instance, the difference in children’s BMIz per additional convenience store between radii
r-1 and ry(see Figure 1A). New insights can be gained from the distributed lag model
coefficients by examining the magnitude and pattern (shape) of B(r1; 1) as a function of
distance from locations of interest: we may be able to identify distances at which the built
environment factor is strongly associated with the outcome and at which distance the
association vanishes. Although indirectly, this allows us to identify the spatial scales for a
given outcome-exposure association.

Since the true associations between the outcome and built environment features within ring-
shaped areas are likely similar in adjacent rings, we model the coefficients S(rx1; r7as a
smooth function of distance from the locations of interest using smoothing splines2227 (see
eAppendix for implementation details). While various ways for constraining the distributed
lag coefficients have been proposed,232% we used a smoothing spline approach? since knot
selection is not required and relatively fewer assumptions are imposed. Smoothing splines
are an attractive option for modeling the coefficients because: (1) we would not typically
expect associations to change abruptly across distance; (2) they alleviate numerical/
singularity problems that may arise when many locations have zero food stores between two
given radii 11 and rj and (3) they resolve issues regarding the choice of the number of rings
because by controlling the degrees of freedom used for estimating the L lag coefficients. The
number of lags L <nneeds to be large enough to avoid coarser estimates (see simulation
section), and can be chosen so that the ring width is small enough for practical purposes
(e.g., one street block).

The units of the built environment feature captured by X{(r1; r)) naturally impact the
interpretation of B (r-1; 7). In our application, we used the total number of convenience
stores, however, other definitions could be used, such as the density of convenience stores
per square mile. For density measures, the distributed lag coefficients can be readily
calculated by transforming the parameters in (1): coefficients of the association between the

count per unit area X;(r,_;r)/x(rf — r7_;)and outcome are equal to the coefficients in (1)

weighed by the area of the ring, i.e., 3(r;_1;r)m(r? — 17 ).

Estimation of distributed lag model parameters can be carried out using either a frequentist
or a Bayesian approach in readily available software,28-30 and the smoothing parameter for
the coefficients can be selected by representing the smooth function as mixed model or via
generalized cross validation. We opted for the latter using a Bayesian approach (see
eAppendix for details and sample R code) because this allows us to account for the
uncertainty in the penalty parameters and easily derive the variance of estimated coefficients.

Connection between distributed lag models and Traditional Approaches—
Traditional linear models, e.g., Yj= & + 6y, ,, XA0; 1) + &, are the widespread approach to
estimate the average association between built environment measures within a buffer of
radius 7y [i.e.,X{0; )] and health outcomes. Implicitly, traditional linear models assume
that the outcome-environment association within distance 7y is constant and no association
beyond distance ryexists (e.g., Figure 3A). Our proposed distributed lag model allows us to
relax both of these assumptions by allowing the coefficients to vary smoothly as a function
of distance (e.g., Figure 3B). In addition, our model enables us to easily calculate the
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average buffer effect 3 (0;r) up to a given distance 74 (e.g., the average difference in
children’s BMIz per one additional convenient stores within a buffer of radius ) by
computing the average height of the solid shape depicted in Figure 1B, i.e.,

_ 1 :
ﬁ(O;m:W—?ﬁZfﬂﬁ(m;mw(r? -

To see this, first consider the average buffer effect up to distance 7y in the density scale.
Because the association between distance r.1 and r7in the density scale is

B(ry_y;m)m(r? —r?_,), the sum of the area-weighted associations,

k
lelﬁ(rm;rz)ﬂ(ﬁg — r"1), gives the total association within the buffer of radius 7.

Division by the total area of the buffer, -2, yields the average association for the buffer
area. In air pollution research, the simple sum of the distributed lag coefficients represents
the overall health impact of a unit difference in exposure on the previous & days; in our case
the distributed lag coefficients have to be weighted by the area of the rings to obtain an
analogous interpretation.

Differences in Distributed Lag Coefficients by Subject Characteristics—
Distributed lag models can be expanded to allow the association between a health outcome
and built environment features to vary by subject characteristics. Associations between
features of the built environment and children’s BMIz might be different by age or grade, for
instance, if school policies allow or disallow children to leave school during lunch periods
depending on a child’s age. To investigate whether the distributed lag effects vary according
to subjects characteristics, equation (1) could include interaction terms between X{rr1; ), /
=1,2, ..., L, and a covariate Z; i.e., O (r1;r) X;(r1;r)Z; Interaction coefficients 6 (rr1;
r)) have the usual interpretation, but the magnitude of the interaction can vary over distance
from locations of interest.

Extensions of the model—Distributed lag models can be extended in several directions
to examine different types of outcomes. Generalized linear distributed lag models can be
used if the observed outcome Yjis binary or a count. In our motivating example, although
our outcome is approximately normal, the assumption of constant variance, typical of linear
models, does not hold. In this situation a weighted distributed lag model may be used, where
the error terms e;are modeled as e;~ MO, 2/wj) and w;is a known weight for the /7
observation. Fitting a weighted distributed lag model is rather straightforward3: proceeding
as in weighted least squares, the outcome Y;and all covariates are transformed as

Y=Y aw; and X (r_y5m)=X; (ri_1;m) Vwi 1= 1,2, ..., L, (and similarly for any
additional predictors), and the distributed lag model in equation (1) is fitted to the
transformed data. Interpretation of the regression coefficients remains unchanged. Multilevel
models to account for clustering of subjects within larger units can also be implemented (see
Data and Methods).
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We performed a simulation study to assess the distributed lag model’s ability to estimate
coefficients as a function of distance, and to compare the traditional linear and distributed
lag models in terms of inferences for the associations at pre-specified distances under
various degrees of clustering in the built environment. Full details of the simulation settings
are in the eAppendix. Briefly, we simulated 1000 datasets by first sampling food store
locations from a spatial domain with various degrees of clustering (Figure 2), and sampling
school locations at random from the same domain. We generated outcomes from linear
model (1) under two assumptions for the true shape of the coefficients S as a function of
distance: We used a step function [5(H) =0.1 if r< 5, 0 otherwise] to mimic the assumption
made by traditional linear models that effects are zero outside a specified buffer (Figure 3A);
and a curve [ B(n) = 0.1 £/ R0), where 7Ar) is a normal density with mean 0 and standard
deviation 5/3] represent smoothly decreasing built environment effects with longer distances
from locations of interest (Figure 3B). Distributed lag models (using with L =100 and r; =
10) and traditional linear models using a-priori chosen distances 7, = 2.5, 5, and 7.5 were
fitted. The same distances were used to calculate average buffer effects B(0; ) from
distributed lag models using (2). Different sample sizes and values of model /2 were used.

Children’s BMIz and Convenience Stores in California: Data and Methods

We used FitnessGram data for 51 and 7t grade children who attended public schools in
California in 2009 to examine associations between availability of convenience stores near
schools and children’s BMI z-scores (BMIz). FitnessGram data are publicly available from
the California Department of Education (CDE) and include measures of children’s weight
and height, grade (we used 5™ and 7", age (we categorized as 10, 11, 12, 13, and 14 or
more), sex, and race/ethnicity (we used non-Hispanic White and Hispanic only). The
analysis included only two of California’s most prevalent race/ethnicity groups because we
were interested in illustrating how differences in distributed lag model coefficients across
subgroups can be carried out. From the total eligible for analysis, N=730,060, we followed
documented data cleaning procedures33 and sequentially excluded children missing: the
identifier for the school they attended since they could not be linked to a school (CDE masks
this to protect confidentiality of children who belong to subgroups of <10 children within
the school), 7.6%; school characteristics, 3%; demographics (0.04%); or BMIz, 7.0%.

Participating in the FitnesGram test is required by the State of California, and as such,
informed consent is not required. All personal identifiers are removed by the CDE prior to
making the data available to researchers. The institutional review boards of the San
Francisco State University and University of Michigan approved the study.

The locations of California convenience stores were purchased from a commercial source.34
Geocodes for schools and convenience stores were cross-referenced to obtain the number of
stores between two radii 71 and r;, £ 1, ... ,50, from each school with a maximum lag
distance of 159 = 7 miles. We obtained other school characteristics from the CDE: the total
enrollment, student racial composition, percentage of children participating in the free or
reduced meal program, and, from the 2000 US Census, the percentage of adults with a
bachelor’s degree or higher residing in the school’s census tract.
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Due to the large number of students in the dataset, we created population subgroups defined
simultaneously by sex, grade, age, and race/ethnicity. Children’s BMIz was averaged for
each subgroup, reducing the dimension of the data without loss of information since all the
available child-level covariates were categorical. We fitted weighed distributed lag models
and weighed traditional linear models, using as the outcome the average BMIz among
children of subgroup 7in school j. We included random intercepts of schools in the
traditional linear and distributed lag models to account for correlation within schools. Buffer
associations were estimated for r,= 1/4, 1/2, 3/4, and 1 miles from schools. Since the role of
school neighborhood characteristics (e.g., socioeconomic position) can act as confounders or
mediators,3°-38 in addition to crude models, we fitted models adjusted for student
characteristics only, and models adjusted for student and school characteristics, and report
all results as has been previously suggested.36

Simulation Results

We focus simulation results for the setting with 7= 6,000 and /2 = 0.2, since it mimics the
data in our motivating example, and on the comparison between the traditional linear models
and the distributed lag model. Additional results, including how well the distributed lag
model estimates the coefficient functions £(7) and can therefore be used to indirectly infer
the spatial scale, are summarized in the eAppendix.

When the true g() is a step function (Figure 3A, top of Table 1), the traditional linear model
provides valid inference only when there is no clustering in the food environment or when
the correct buffer size, r, =5, is specified; otherwise, the estimated associations are biased
away from the null. When a smaller buffer size is chosen, r, = 2.5, bias occurs in the
traditional linear models due to failure to adjust for the effects at longer lags, which, because
of clustering in the environment, are correlated with both the outcome and the exposure
measured within the smaller buffer size (i.e., omitted variable bias). When the selected
buffer size was larger (e.g., 7= 7.5), bias in traditional linear model estimates was smaller;
however standard errors of the estimated coefficients were underestimated yielding invalid
inference (e.g., very low coverage). The distributed lag model provided good inference
regardless of the spatial clustering in the environment, except when r, =5 was selected as
the pre-specified buffer size. This is because the distributed lag model cannot accurately
estimate associations at the distance where the step occurs (see eFigure 2).

More realistically, when the true S() is a smooth function (Figure 3B, bottom of Table 1),
we see the same pattern of bias in the traditional linear model estimates. In contrast,
estimates from the distributed lag model exhibit correct inferences at all pre-specified radii.
The distributed lag model performed better than the traditional linear model except in cases
where the fitted traditional models coincide with data generating models assuming an
unrealistic step function for the effects of the built environment over distance.

To further examine assumptions used by the fitted distributed lag models, we conducted
additional simulations: we specified different numbers of lags, i.e., L = 25,50,200; and we
assumed different maximum distance r; = 3,20. Using the smaller L = 25 resulted in
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smoother distributed lag coefficients because the distributed lag coefficients are estimated in
wider ring shaped area and thus become coarser. A larger number of lags (L = 200) yielded
similar results as L = 100, since constraining the effects via smoothing splines protects
against singularity problems when the rings are too narrow. When the maximum distance
was shorter than needed, r; = 3, we observed bias in the distributed lag coefficients when
there is clustering of locations in the built environment. However, the amount of bias in
estimates of the average buffer effect at ;= 2.5 was less than that from traditional linear
models. Results were consistent to those with r; = 10 when the maximum distance used to
fit the distributed lag models was equal to 20.

In additional simulations we examined the use of the deviance information criteria for model
selection32 and the impact of modeling spatial correlation in the outcome. When data were
generated assuming environmental effects follow a step function (Figure 3A), deviance
information criteria selected the correct buffer size among traditional linear models and
selected the traditional linear over the distributed lag model (eTable 2). However, in the
more realistic scenario that assumes environmental effects decay smoothly with distance
(Figure 3B), deviance information criteria selected a smaller buffer size than needed among
traditional linear models. When power to detect environmental effects was high, deviance
information criteria selected the distributed lag model; but, when power was low, it selected
the traditional linear model about half of the time. However, because the traditional linear
model with minimum deviance information criteria consistently produced biased estimates
(eTable 2), even for cases where it selected the traditional linear model, it produced
estimates with larger bias compared to distributed lag model estimates. Similar to using R?
for model selection in built environment applications!#, deviance information criteria may
not be a reliable tool to select either among traditional linear models or between distributed
lag and traditional linear models, particularly if environmental factors have a low effect size
and effects are hypothesized to decay smoothly with longer distances from study locations.
Accounting for spatial patterning in the outcome did not attenuate the magnitude of bias in
estimates for the traditional linear models (eTable 3) probably because the spatial structures
in the covariates is not captured by the spatial structure of the outcome.

Convenience store availability and children’s BMI

There were 601,847 students in 5,745 California public schools included in the analyses. Of
these, 49% were girls, 66% were Hispanics, and 52% were 7t graders. The overall mean
(SD) for children’s BMIz was 0.78 (1.09), while the mean (SD) for the number of
convenience stores within 1/4, 1/2, 3/4, and 1 miles around schools was, respectively, 0.18
(0.49), 0.74 (1.09), 1.61 (1.88), and 2.74 (2.87).

Figures 4A-4C show the estimated distributed lag coefficients for the convenience store-
BMIz association within 7 miles from schools. The crude distributed lag coefficients
indicate higher convenience store availability within approximately 1.5 miles from schools
was associated with higher BMIz; the coefficients were the highest within shorter distances
and became negligible with longer distances. After adjusting for student characteristics and
holding the availability of convenience stores constant at all other distances, the BMIz
difference associated with the presence of an additional convenience store %2 mile away from
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schools is 0.004 [95% credible interval (Cl): 0.003, 0.006], but 0.000 (95% ClI:
-0.000,0.001) at 1.5 miles. Adjusting the models for school characteristics attenuated the
associations, but the 95% CI continued to suggest associations for several distances less than
1 mile.

Table 2 compares the estimated average association between convenience stores up to 1/4,
1/2, 3/4, and 1 miles and children’s BMIz in the traditional linear and distributed lag models.
In the crude analysis, the estimated average associations between the number of convenience
stores up to 1/4, 1 /2, 3/4, or 1 miles were positive and had 95% Cls suggestive of
associations for both the traditional linear and distributed lag models. In the results from the
distributed lag model, BMIz was 0.009 (95% CI: [0.005; 0.013]) higher for each additional
convenience store within 1/4 mile from schools. Adjusting for student characteristics alone,
or for student and school characteristics, attenuated all coefficients. Overall, the coefficients
from the traditional linear model tended to be larger (approximately 4 times larger or more)
as may be expected given the bias observed in the simulations for these models in the
presence of spatial correlation in the built environment.

We investigated whether associations differed by grade (51 grade vs. 7t grade children), sex
(girls vs. bays), and race/ethnicity (non-Hispanic Whites vs. Hispanics). We hypothesized
that this would be the case since (1) 7t graders might have different behaviors and
characteristics e.g., greater ability to walk farther distances and more pocket money, and (2)
previous studies have observed differences by sex, and race/ethnicity.* To assess this, we
included in the model indicators of 71" grade, female sex, and Hispanic ethnicity in the
school as interacting covariates. The associations did not differ by individual characteristics
(eFigure 1).

DISCUSSION

We proposed using distributed lag modeling to examine associations between built
environment factors and health outcomes. The distributed lag model approach is based on
constructing environment measures within ring-shaped regions around sample locations, and
constraining the coefficients to follow a smooth association over distance. The approach has
the distinctive advantage of revealing how associations between features of the built
environment and health are distributed across distances (up to a maximum distance) from
locations of interest. Hence, distributed lag models can help generate empirical evidence
regarding the most relevant spatial scales for a given health outcome and built environment
attribute. For instance, because the distributed lag coefficients for convenience store
availability in our BMIz case study become indistinguishable from zero at around 1 mile, 1
mile buffers rather than the widely used % mile buffer may be more appropriate for studies
involving children’s exposure to convenience stores. Distributed lag models, however, do not
require the use of pre-specified buffers. When average associations within a predetermined
buffer size are of interest, distributed lag model coefficients can be used calculate them more
accurately and with higher precision than commonly used traditional linear models.

Distributed lag models rely on specifying a maximum distance, beyond which we assume no
association between the outcome and the built environment factors. Violation of this
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assumption might bias estimated distributed lag coefficients, since they would be
confounded by associations with features beyond the maximum distance when spatial
correlation exists in the built environment. While traditional approaches require speculating
about the distance where effects may be present, distributed lag models’ single requirement
is less stringent: specifying a distance beyond which there is no association and
simultaneously permitting examination of whether these effects are indeed vanishing with
distance.

In our case study, we examined the association between convenience store availability and
children’s BMIz scores using data on 5" and 7t grade non-Hispanic White and Hispanic
children using the 2009 FitnessGram surveillance data. In models adjusted for individual
(and area) level factors, the magnitude of the distributed lag coefficients and their 95%Cl
suggested that convenience store availability within 1 mile from schools was associated with
higher BMIz; associations did not differ by student characteristics (grade, sex, race/
ethnicity). The associations, which only accounted for one feature of the environment, were
relatively small magnitude and, though they may not be as meaningful at the individual
level, they may be important at the population level.3” When comparing buffer associations
between the models, we found that estimates using traditional linear models were usually
higher than those from distributed lag models, possibly due to bias induced by spatial
clustering of convenience stores.

Several extensions of the distributed lag model are possible, which would overcome some of
its limitations. The distributed lag model assumes that relevant areas have a circular shape
around schools; the circular shape provides comparability to results obtained using
traditional methods and buffers around the outcome locations. Future work can construct
areas around the outcome locations from shapes derived using street-network distances. The
model proposed here estimated the overall association between the built environment and
health, but did not examine how or if the association varies spatially across locations,
although such extensions are possible38. Finally, although the distributed lag model
approach breaks new ground by helping to explore the spatial scale of built environment
effects, it does not fully capture the complexity of the built environment. Methodologic work
is needed that permits consideration of several environmental features simultaneously, which
may or may not be associated with each other or with the outcome at different spatial scales.

Future work should examine the relative performance of other methods to constrain
distributed lag coefficients in the context of built environment data; we used smoothing
splines since they are straightforward to implement in available software. Alternative
methods that can reduce the estimated uncertainty in the first few lags (e.g, see Figure 4 and
eFigure 2), which is due to a preponderance of zero features near locations of interest,
should be explored. For instance, approaches are of interest that smooth differentially
depending on the lag t.23 Smoothing the coefficients using Gaussian Process priors,
previously compared to smoothing splines3? but not in the context of built environment data,
may have the advantage of directly linking the amount of smoothing to the width of the rings
where built environment features are counted (as suggested by an anonymous reviewer) thus
potentially addressing issues related to zero counts within rings. Other Gaussian Process
priors-based approaches may be used to directly estimate the most relevant buffer size.2°
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The utility of kernel-averaged predictor models, which formalize the idea that the observed
outcome is likely to depend on the value of the covariate at the location of interest and on a
weighted average of the covariate over an area centered around the location,* should also be
explored.

Although distributed lag models have a long history, to our knowledge this is the first
application of these models to study built environment and health associations. This
innovative application of distributed lag models can shed light on the relevant distances
within which built environment features may affect health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) Ring-shaped areas within which built environment features are ascertained and

corresponding distributed lag coefficients. (B) Averaged coefficient associated with features
within buffer of radius r, B(0; r); larger radius 7, will result in smaller averaged coefficient
because effect is averaged over a larger area.
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Figure 2.
Spatial domains used in the simulation study depicting three assumed clustering settings for

built environment features: locations of food stores are sampled from (A) a homogeneous
Poisson point process (no clustering) and an inhomogeneous Poisson point process with
intensity functions that leads to (B) a small amount of clustering (spatial range =5), (C) a
large amount of clustering (spatial range = 20).
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Figure 3.
True function B(r) used in simulation studies to represent impact of built environment

features as a function of distance, , from study locations. (A) Step function: g(r) =0.1if r<
5, 0 otherwise represents assumption that associations are constant within the a given buffer
size (i.e. r<5), and are zero outside the buffer. (B) Curve: g(r) = 0.1£, (n/R0), where £ is
a normal density with mean 0 and standard deviation 5/3, represents the assumption that
associations decay smoothly towards zero.
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Figure 4.
Estimated distributed lag coefficients quantifying association between availability of

convenience stores up to 7 miles from schools and children’s BMIz: (A) crude; (B) with the
adjustment of student characteristics, and (C) with the adjustment of both student and
school’s characteristics. California 2009 Fitnessgram.
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