Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Computational economy improvements in PRISM

Permalink
https://escholarship.org/uc/item/61132289

Authors

Tonse, Shaheen R.
Brown, Nancy J.

Publication Date
2003-01-29

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/6113228s
https://escholarship.org
http://www.cdlib.org/

Computational Economy Improvements in PRISM

Shaheen R. Tonse! and Nancy J. Brown
Environmental Energy Technologies Division
Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

Abstract

The PRISM piecewise solution mapping procedure, in which the solution of the chemical kinetic ODE system
is parameterized with quadratic polynomials, is applied to CFD simulations of Hy+air combustion. Initial
cost of polynomial construction is expensive, but it is recouped as the polynomial is reused. We present two
methods that help us to parameterize only in places that will ultimately have high reuse. We also implement
non-orthogonal Gosset factorial designs, that reduce polynomial construction costs by a factor of two over

previously used orthogonal factorial designs.

Notation

Ng: Number of chemical species
At: Length of timestep
C: Chemical composition space

Ve Trajectory velocity
Nggr: Number of Expected Reuses of a hypercube
Nar: Number of Actual Reuses of a hypercube
Copg: Cost of an ODE time-integration
Cpc: Cost of polynomial construction
Cpg: Cost of a polynomial evaluation

Np: Reuse threshold for DPC

Npg: Break-even usage of a hypercube

N_: Number of hypercubes with N < Ny

N-: Number of hypercubes with N > Np

N.: Mean usage of hypercubes with N < Np

Introduction

Reactive computational fluid dynamics (CFD) calcu-
lations with large modeling domains and chemical re-
action sets are still time consuming on today’s com-
puters. A substantial fraction of the computing re-
sources are used for integrating the chemical kinetic

LCorresponding author: stonse@Ilbl.gov
Proceedings of the Third Joint Meeting of the U.S. Sections of
the Combustion Institute

ordinary differential equation (ODE) system to cal-
culate the changes in concentration of the chemical
species and enthalpy. One class of methods used to
reduce the costs of complex chemistry develops mod-
els to mimic the time evolution of the rate equations
of chemical kinetics. In these approaches the time-
integration calculation, which dictates the evolution of
the chemical kinetics over time is viewed as a mapping
from one chemical composition (and temperature) to
another. This time integration is parameterized by
an inexpensive approximate mapping with a simpler
functional form. Approaches within this class include:
Piecewise Reusable Implementation of Solution Map-
ping (PRISM) [1]; Fifth- to eighth-order polynomial
parameterizations [2]; In situ adaptive tabulation (ISAT)
[3,4]; and Laminar flamelet libraries [5]. As examples:
in PRISM the parameterization is a set of quadratic
polynomials defined within a hypercube; in ISAT it is
a set of linear polynomials defined within an ellipsoidal
region. In PRISM the parameterization is done piece-
wise on hypercubes of dimension Ng+1 which parti-
tion C and contain a distinct parameterization for each
hypercube. Subsequently, if the time-evolution of a
mixture is required, it is simple a matter of evaluat-
ing the polynomial.

In a previous study [1] we simulated laminar pre-
mixed and turbulent non-premixed Hs+air combus-
tion and saw a factor of 10 speedup when comparing
the cost of a single polynomial evaluation to a single
ODE time-integration. Recent algorithmic improve-
ments have since raised this factor to 15. This gain
was offset slightly by the cost of constructing the poly-
nomials for the hypercubes, which imposed an initial
investment that yielded returns as the polynomials
were reused multiple times. Mean reuse rates of sev-
eral thousand per hypercube were observed, ample to

recover costs, since cost-effectiveness was achieved at
a reuse rate of 266 for the Hy reaction set. The reuse
distribution was a skewed distribution, with a large
number of hypercubes having very low reuse (less than
10). The mean usage was increased by a smaller num-
ber of highly reused hypercubes. For the low reuse
hypercubes it would be far more efficient to use the
ODE solver directly rather than construct polynomi-
als.

Specific Objectives

In this paper we investigate two methods to exploit the
skewness of the reuse distribution. The first method
anticipates high hypercube reuse by utilizing the rates
at which trajectories are moving, to calculate a trajec-
tory “velocity” V.. This quantity is then combined
with an estimated trajectory length through the hy-
percube to determine the number of expected reuses,
NEgR, and on this basis we decide whether or not poly-
nomial construction is worth the expense. The second
method takes advantage of the shape of the distri-
bution to defer polynomial construction for a hyper-
cube until a certain number of reuses has occurred.
These methods are applied to four cases: a 1-D lam-
inar premixed Ho+air flame, a 2-D premixed Hs+air
turbulent jet, a 2-D flame with non-premixed Hy and
air turbulent jets, and a laminar premixed CHy+air
flame. We also apply a non-orthogonal Gosset facto-
rial design to the CHy+air flame

Method

Prism Overview We partition C into non-overlapping

adjacent hypercubes with a distinct polynomial pa-
rameterization for each. Calculations for a hypercube
are not performed, and storage is not allocated, until
a reaction trajectory enters it for the first time. Once
calculated, polynomials are stored in a data structure,
to be retrieved whenever the time evolution of a com-
position within that hypercube is required. All calcu-
lations and hypercube positions use log(concentration)
and reciprocal temperature because the underlying
chemical rate equations typically conform better to
a quadratic model under this transformation.

To parameterize the response of the time-integration,

the ODE solver is called at selected points within the
hypercube. Each point corresponds to a set of input
concentrations, a temperature, and a time-step length.
These input concentrations and temperature are prop-
agated by the ODE solver over the specified time-step
length, returning a set of final concentrations and tem-
perature (responses) at each point. A quadratic re-
gression is applied to each response, resulting in a set

of Ng+1 polynomials for the hypercube. By evaluat-
ing Eqn. 1 using the initial concentrations, tempera-
ture, and time-step as input variables, we obtain as
responses the concentrations and temperature at the
end of the time-step. The concentration of species i,

C’f"’m, is given by:
NS
log C!FA1 = a0+ Z a; ;log C}
J
1
+ai,Ns+1ﬁ + ai N, +o2 log At
N, N,
+ Z Z a; ;1 log Cj log Cj,
J k<j
1 1
+ai N, +1 NALTE T T

+ai,N.+2 N.42log At -log At
+ cross terms of C;, T, At (1)

where a; are the polynomial coefficients determined in
this procedure. We ensure accuracy by requiring that
each species within a hypercube has a relative error
(of the regression residuals) in molar concentration of
less than 5 x 10~ and an absolute error of less than
10~* times the sum of all the molar concentrations.

Computational costs for polynomial construction,
polynomial evaluation and ODE integration are spe-
cific to the Hy+air chemical mechanism and the or-
der of factorial design utilized, but not strongly de-
pendent on the simulation’s physical conditions, e.g.,
they do not vary much between a 0-D simulation and
a 2-D turbulent jet. The factorial design dictates the
number of ODE calls to be made during polynomial
construction. The costs of ODE time-integration and
polynomial evaluation both depend on the chemical
mechanism. The relative computational costs, spe-
cific to the Hy reaction set, for polynomial construc-
tion, polynomial evaluation and ODE integration are
in the ratio 266 : 7% : 1.

Trajectory Velocity (Vr;) This method aims to
identify hypercubes that have high reuse by predict-
ing the number of time-steps (defined as Number of
Expected Reuses: Ngr) taken when the chemical tra-
jectory enters a new hypercube, and at that time de-
ciding whether or not to construct the hypercube’s
polynomials.

We define trajectory velocity V, as a vector in
C, with each component (V7y); being the net rate of
change of the ith species, calculated from the sum of
the rates (w;;) of the reactions that contribute to its
production: (Vr); = 236:1 wi;, where the total num-
ber of reactions in this particular mechanism is 26.

Multiplying Vi, by the time-step, Vi, - At gives a first
order approximation to the trajectory displacement
vector in C.

In our case studies, the influence of CFD on tra-
jectory movement through C is significant, so we aug-
ment | Vyy | -At with the combined displacements of
the CFD and the chemistry contributions, done by
measuring the displacement of a trajectory from one
time-step to the next. Since the hypercube is often
accessed by more than one CFD grid cell, it is neces-
sary to associate the CFD cell with the trajectory, by
using the CFD grid indices. When a trajectory enters
a hypercube the chemical mixture and cell index are
stored. On the next time-step if the trajectory from
the same CFD cell remains in the same hypercube,
then the displacement in C is calculated. Using the
same linear extrapolation idea as for the purely chem-
ical case above we then calculate Ngr. This modifica-
tion shows improved accuracy over the purely chemi-
cal version,

In addition to the trajectory length of the time-
step | Vv | -At, we require the expected trajectory
length through the hypercube. To estimate transit
length, we linearly extrapolate the trajectory entry
point coordinates in the direction vector of Vi, until
it exits the hypercube and define

trajectory length
NgR = 2
ER Ve | B (2)

Whenever the trajectory enters a new hypercube
we calculate Ngr. If Nggr is above break-even cost
usage, (= 250) we proceed to construct polynomials
for the hypercube and store them in a data struc-
ture. If Ngr does not meet the usage requirement
we do not construct polynomials as we would not re-
cover the polynomial construction costs. The hyper-
cube is flagged as “ODE only”and subsequent visits
from a chemical trajectory to this hypercube result in
an ODE time integration.

There remain hypercubes where actual reuse Nag
far exceeds Ngr. The majority of hypercubes with
this behavior are visited by trajectories from large
numbers of CFD cells (> 20). For these cases the
first trajectory into the hypercube, (which is the one
used to calculate Ngr) is likely not the one that uses
the hypercube the most. A later trajectory hits the
hypercube at a location where it has a much smaller
trajectory velocity and this is the trajectory that car-
ries the most weight in determining hypercube usage.
This later trajectory would give a better estimate of
Nggr. To take advantage of this we modified our pro-
cedure so that if a hypercube fails the Ngr cut, the
ODE solver is called, but Ngg calculations continue to
be performed for later trajectories entering the same

hypercube. If one of them passes the cut, then poly-
nomials are constructed.

Deferred Polynomial Construction (DPC) Our
objective here is to study the consequences on compu-
tational expense of deferring the construction of poly-
nomials for a hypercube until it has first been reused a
certain number of times, Np. In the interim the ODE
solver is called to advance the trajectory through the
hypercube. The criteria to determine Np are cost-
based; waiting until Np reuses have occurred elim-
inates polynomial construction for hypercubes with
reuse less than Np, but simultaneously increases the
cost associated with the remaining hypercubes by sub-
jecting them to unnecessary ODE integrations.

Consider a hypercube reused N times. If N is less
than Np the total cost is that of calling the ODE
solver N times: Copg - N. If N is greater than Np
the cost has contributions from calls to the ODE solver
(Copg), then polynomial construction (Cpc), and sub-
sequent polynomial evaluation (Cpg): Copg - Np +
Cpc + Cpg - (N — Np). For a set of hypercubes whose
reuse distribution is denoted f(IN) the total cost is
obtained by convolving the cost with f(N):

Np
Total cost = Copg - f(N)NdN
0
Nl’nax
+/ [Cope - Np + Cpc
Np

+ Cpe - (N — Np)] - f(N)dN (3)

Here Nyax is the upper limit of f(N) and we take the
liberty of replacing the summation by an integral in
light of large values of N. Note that setting Np = 0
reduces Eqn.3 to the special case where polynomial
construction is not deferred.

To gain some insight into the problem we chose
several simple functions for f(N), and analytically
evaluated and differentiated Eqn.3 with respect to Np
to find the value of Np which resulted in minimum
cost. This gave us insight into the shapes of reuse
distributions that would benefit from a DPC cut. It
also told us that the value of Np is close to Ng. We
also noted that the minima were shallow, which im-
plied that searching for the most optimal Np would
not net us much more gain than simply setting Np to
a reasonably close value, such as Ng. Subsequently
we derived a simple formula which shows the compu-
tational gain that results from moving from Np=0 (no
DPC) to Np=Np, for any simple integrable f(N):

N

Computational Gain = Cpc[N< (1 — N—) —N=] (4)
B

Using this, one can determine whether it is worthwhile
setting the deferred polynomial construction threshold
to Np given any hypercube reuse distribution f(N).

Results and Discussion

The Vi and DPC methods are tested on 4 different
time-evolving reactive flow simulations. The Coyote
CFD code [6] is used, within which the chemistry cal-
culation uses the DVODE differential equation solver
[7] and the CHEMKIN thermodynamic library [8].
Three of the simulations use a 9-species Hy+-air reac-
tion set, obtained by removing carbon from the GRI-
Mech 2.11 mechanism [9]. The fourth, CH4+air simu-
lation uses DRM19, a reduced version of GRI-Mech [9].
For each case we show how the methods result in fewer
polynomial being constructed, and the resulting com-
putational gain will be shown on plots of CPU time
vs. timestep number. Table summarizes the perfor-
mance with information on number of hypercubes con-
structed, their mean reuse, CPU time used in chem-
istry, and total CPU time, for the Hy flame examples.

The 1-Dimensional Laminar Flame example
includes the influence of convection and diffusion be-
tween CFD grid cells: a propagating premixed 1-D
laminar flame. The physical configuration is a 1 cm
long (200 CFD grid cells) tube, closed at one end and
open at the other. A small portion of the tube near the
open end is filled with hot burned gas, while the re-
mainder is filled with unburned stoichiometric Hy-air
at room temperature. A flame forms at the interface
between the burned and unburned gas mixtures and
propagates toward the closed end. During the sim-
ulation Ngg is calculated when a hypercube is first
used, and at the end the reuse statistics for all hyper-
cubes are gathered, giving us their respective NaR.
Figure 1 shows the effect of including or excluding the
effect of fluid mechanics on trajectory movement in
Ngr calculation. The correlation is improved if Ngr
is calculated taking into account the effect of fluid
mechanics on trajectory movement. The economy of
the method is illustrated by Fig. 2a which shows ac-
cumulated CPU time in seconds vs. timestep number
for different cases. The expense is highest when us-
ing an ODE solver instead of PRISM to advance the
chemistry. The CPU time per timestep is reflected by
the slope of this curve, which increases slightly as the
simulation progresses, due to the decreasing number
of CFD cells containing cool, unburnt gas as the flame
front progresses down the tube. For PRISM with no
Nggr or DPC requirement, (labeled “no cut”) there is
a sharp initial rise caused by the expense of polyno-
mial construction for approximately 3000 hypercubes
early in the run; subsequent CPU time is used mainly

800
600

LI
T
A 8 0 0
e
e e
2L 2

e e

(I STF
e

.
388 s S
0
-
<
@Qx
2, <
log(n 6
'ar)

300
200
100

Figure 1: (a) A 2-D frequency distribution of Nagr vs.
Ngr of every hypercube from the laminar flame case.
Ngr is calculated solely using chemical information in
the same way as for the 0-D case.

(b) A 2-D frequency distribution of Nagr vs. Nggr of
every hypercube from the laminar flame case. Ngg is
calculated using both chemical and CFD information.

for polynomial evaluation. This is because for a pre-
mixed 1-D laminar flame with approximate transla-
tional symmetry nearly all of active C is accessed early.
At later times as the flame propagates through the
mixture it has translational symmetry and so covers
about the same portion of C as earlier. The simula-
tion was run for 90000 time-steps with almost all hy-
percube construction in the first 5000 timesteps. The
slope at later times is less than that of the ODE curve,
as polynomial evaluation is less expensive than ODE
time-integration. The case requiring hypercubes to
have Ngr > 250 before allowing polynomial construc-
tion results in polynomials being constructed for far
fewer hypercubes so that the initial rise is smaller.
The total CPU time for this is only about half of that
for the “no cut” case. Good performance is also seen
from the DPC method. Np depends mainly on the
chemical reaction set, and is 266. Figure 2a shows the
accumulated CPU time. As with the Nggr > 250 case,
far fewer polynomials are constructed, resulting in a

\ ODE \ PRISM \ Vv \ DPC
Laminar
hcubes - 5484 349 382
< reuse > — 1238 19004 | 17601
CPU(chem) | 2300 850 400 350
CPU(tot) 3100 1700 1250 1200
Premixed turbulent
hcubes - 23120 3211 3438
< reuse > - 1771 12411 | 11701
CPU(chem) | 21800 5700 3700 3700
CPU(tot) 27800 | 11600 9500 9500
Non-premixed turbulent
hcubes — 115383 | 5617 | 9751
< reuse > - 356 6738 4206
CPU(chem) | 50200 | 41700 | 20500 | 18400
CPU(tot) 56500 | 47700 | 26400 | 24600

Table 1: Summary performance comparison for the
laminar, premixed turbulent, and non-premixed tur-
bulent cases, each of which was run in 4 modes:
(i) ODE-only, (ii) PRISM (without Vn, or DPC),
(iii) Vy (trajectory velocity), (iv) DPC (deferred poly-
nomial construction). Shown are the number of hy-
percubes for which polynomial construction occurred,
the mean reuse of those hypercubes, the accumu-
lated CPU time (chemistry only), and the accumu-
lated CPU time (CFD + chemistry).

smaller initial rise. At later times the slopes of the
Ngr, DPC and “no cut” cases are nearly the same,
indicating that we are correctly rejecting the hyper-
cubes that should be rejected and retaining those that
should not.

The 2-D Axisymmetric Premixed Turbulent
Jet example is a simulation of a premixed Hy+air 2-D
turbulent jet, starting from a quiescent non-combusting
state and proceeding until a turbulent flame has de-
veloped. The physical configuration is a cylindrically
symmetric chamber of radius 8 cm and height 20 cm,
with the inlet at the center of the base and open at the
top to atmospheric pressure. The inlet conditions are
stoichiometric Ho+air at 21 m/s and 300 K from a jet
of radius 0.35 cm. The chamber is initially filled with
air at 300 K with the exception of a “hot-spot” of air
at 1600 K placed near the fuel jet, to initiate combus-
tion. The simulation was run for about twice the time
needed to reach a steady state. Figure 2b shows the
accumulated CPU time curves for the same 4 cases as
were shown in the laminar flame. At timestep 30000
(about the time steady state was reached) the ratio
of total CPU times between the DPC and “no cut”
curves was 0.6. At timestep 60000 the ratio was 0.7.

3000 @

2000 —
0@

1000 — no cut
VTr
DrRC

60000

0

0 30000

25000 (b)
20000

2 15000
= 10000
2 5000

90000

0 20000
60000 ©

40000

60000

no cut

00?’ Ve
DPC

O ‘ | ‘ |

0 20000 40000

30000 (d)

60000

20000 —
OOQ/
10000 v

o
0 0 500 1000 1500

time-step

2000 X
x 10

Figure 2: The cumulative CPU time used for the
chemistry portion of the simulation vs. CFD timestep
number, for an ODE case, a normal PRISM case (“no
cut,)”, PRISM with Vi (Ngr > 250), and PRISM
with DPC (Np = 266) for: (a) 1-D Hy laminar flame
(b) premixed turbulent jet (the Vi, and DPC curves
overlap) (c) non-premixed turbulent jet. (d) 1-D lam-
inar CHy flame with a Gosset design and Nggr > 304.
Conducted on a 1.8 GHz Athlon Linux workstation.
(RAM is not an issue.) Only the portion of CPU time
utilized in chemistry calculations is reported.

The 2-D Axisymmetric Non-premixed Tur-
bulent Jet example is a non-premixed 2-dimensional
turbulent jet with coaxial Ho and air inflows, start-
ing from a quiescent non-combusting state and pro-
ceeding until a turbulent flame has developed. The
physical configuration is similar to that above, except
that there are two concentric inlets at the center of the
base, with Hy at 21 m/s and 300 K in the inner jet
of radius 0.35 c¢m, and air at 1 m/s and 300 K in the
outer jet, which has radial extent from 0.5 to 8 cm.
We run for about twice the time needed to reach a
steady state. Figure 2c shows the CPU usage for the
“no cut,” Ngr > 250 and DPC cases. The Ngr > 250
and DPC perform about equally well, with the former
slightly better. The non-premixed case differs from
the previous cases in that it accesses a substantially
larger portion of C.

The 1-Dimensional CH,+air Laminar Flame
example is identical physically to the hydrogen case.
but uses a stoichiometric CHy+air mixture. To ex-
tend PRISM to CH4+Air combustion, we had devel-
oped a 22-dimension factorial design, 2‘2/-2_13. This
design was used in preliminary PRISM calculations
and it gave accurate results; however, the number of
ODE calls required for polynomial construction was
554 therefore correspondingly hypercube reuse was re-
quired to recoup construction costs. We have found
that a factorial design produced by the Gosset pro-
gram (http://www.research.att.com/ njas/gosset/) pro-
vides better accuracy than an orthogonal fractional
design, and requires only about 300 ODE calls. Gos-
set designs are not orthogonal, necessitating a full ma-
trix inversion at the polynomial construction stage,
but this cost is easily offset by the reduced number
of ODE calls. The polynomial construction cost is re-
duced almost a factor of 2 over that of the orthogonal
design. Fig. 2d compares CPU times for an ODE run
and for a case which uses the Gosset design and Vry.
The DPC method CPU performance was identical to
that of Vi, and so is not shown.

Conclusion

The Trajectory Velocity (V) method, which employs
the rate of movement of a chemical trajectory com-
bined with an estimated path length through a hyper-
cube to estimate the expected hypercube reuse, was
applied to 4 cases: a propagating laminar flame, a
turbulent premixed flame, and a turbulent diffusion
flame. In the three flames considered, the efficiency
was improved by a factor of 1.5 to 2.5.

In the Deferred Polynomial Construction (DPC)
method efficiency is improved by deferring polynomial
construction until a hypercube has been reused a spe-

cific number of times. In the three cases considered,
the efficiency was improved by a factor of 1.5 to 2.5.

Preliminary results for the application of PRISM
to CHy flames is encouraging.

Acknowledgements

The work was supported by the Director, Office of En-
ergy Research, Office of Basic Energy Sciences, Chem-
ical Sciences Division of the U.S. Department of En-
ergy, all under contract No. DE-AC03-76SF00098.

LBNL internal report LBNL-52401

References

[1] Tounse, S. R., Moriarty, N. W., Brown, N. J., and
Frenklach, M., Israel J. Chem., 39:97-106 (1999).

[2] Turanyi, T., Comp. Chem., 18:45-54 (1994).

[3] Pope, S. B., Combust. Theory Modelling, 1:41-63
(1997).

[4] Yang, B. and Pope, S. B,
112:85-112 (1998).

Combust. Flame,

[5] Bray, K. N. C. and Peters, N., (Libby, P. A. and
Williams, F. A., eds.), Turbulent Reacting Flows,
Academic Press, San Diego, CA, USA. 92101-
4311, 1994, pp. 63-113.

[6] Cloutman, L. D., “Coyote: A computer program
for 2D reactive flow simulation,” Technical Report
UCRL-ID-103611.

[7] Brown, P. N., Byrne, G. D., and Hindmarsh, A. C.,
SIAM J. Sci. Stat. Comput., 10:1038-1051 (1989),
Also, LLNL Report UCRL-98412, June 1988.

[8] Kee, R. J., Rupley, F. M., Meeks, E., and Miller,
J. A., “Chemkin-III: A Fortran chemical kinetics
package for the analysis of gas-phase chemical and
plasma kinetics,” Technical Report SAND96-8216,
UC-405.

[9] Frenklach, M., Wang, H., Goldenberg, M.,
Smith, G. P., Golden, D. M., Bowman, C. T.,
Hanson, R. K., Gardiner, W. C., and Lis-
sianski, V., “GRI-Mech—an optimized de-
tailed chemical reaction mechanism for methane
combustion,” Technical Report GRI-95/0058,
http://www.me.berkeley.edu/gri_mech/.

