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Regional segmentation of ventricular models to achieve
repolarization dispersion in cardiac electrophysiology modeling
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SUMMARY

The electrocardiogram (ECG) is one of the most significant outputs of a computational model of cardiac
electrophysiology because it relates the numerical results to clinical data and is a universal tool for
diagnosing heart diseases. One key feature of the ECG is the T-wave, which is caused by longitudinal and
transmural heterogeneity of the action potential duration (APD). Thus, in order to model a correct wave of
repolarization, different cell properties resulting in different APDs must be assigned across the ventricular
wall and longitudinally from apex-to-base. To achieve this requirement, a regional parametrization of the
heart is necessary. We propose a robust approach to obtain the transmural and longitudinal segmentation in a
general heart geometry, without relying on ad hoc procedures. Our approach is based on auxiliary harmonic
lifting analyses, already used in the literature to generate myocardial fiber orientations. Specifically, the
solution of a sequence of Laplace boundary value problems allows parametrically controlled segmentation of
both heart ventricles. The flexibility and simplicity of the proposed method is demonstrated through several
representative examples, varying the locations and extents of the epicardial, midwall and endocardial layers.
Effects of the control parameters on the T-wave morphology are illustrated via computed ECGs. Copyright
c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Ventricular segmentation; Cardiac modeling; Harmonic lifting; T-wave; Repolarization
dispersion

1. INTRODUCTION

Numerical models of the heart electrophysiology (EP) are increasingly used to better understand

the mechanisms governing the functioning of the heart in both healthy and failing, e.g., arrhythmic,

conditions. The proposed models require to be validated by computing the Electrocardiogram

(ECG), which is the most common clinical diagnostic tool to assess the electrical activity of the

heart. During every beat, an electrical signal propagates through the myocardium. Its ensemble

timing and strength can be evaluated at different positions (i.e., ECG lead positions) through an

ECG recording. Each wave in the ECG (Fig. 1) captures a particular electrical event, which occurs

during a heart beat. Normal atrial depolarization is described by the P wave. The QRS segment

characterizes the depolarization of the left and right ventricles. The T-wave (wave of repolarization)

is related to the repolarization of the ventricles. In particular, the morphology of the T-wave

plays a key role in identifying cardiac diseases and, as such, should be modeled accurately. For

∗Correspondence to: Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 420
Westwood Plaza, Los Angeles, CA 90095, United States of America. E-mail: klug@ucla.edu
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2 L. E. PEROTTI ET AL.

example, hyperkalemia is related to peaked symmetric T-waves [1], hypokalemia leads to flattened

T-waves [2], ST segment elevation may indicate ischemia [3] or other pathological conditions [4],

and T-wave alternans is related to the risk of ventricular arrhythmia [5].
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Figure 1. Idealized ECG signal with marked P,Q,R,S and T-waves.

Several studies have focused on understanding the physiological causes of the T-wave in the

ECG. Higuchi and Nakaya [6] investigated experimentally the origin of upright and negative T-

waves by recording a unipolar epicardial ECG while changing the APD through modification of the

temperature of the epicardial surface. They inferred that the amplitude of the T-wave increased with

increasing transmural (Endo to Epi) APD gradient. Subsequent studies (e.g., [7]) supported their

findings and identified the central role of transmural and apex-to-base APD gradients in governing

the T-wave morphology. Specifically, the T-wave is caused by the fact that the first cells to depolarize

are the last to repolarize. This relation is known as the Franz relationship [7].

The origin of the T-wave morphology has also been modeled and studied numerically. Given

its importance in diagnosing and understanding heart diseases, a large number of numerical T-

wave related studies have been published in the literature (e.g., [8, 9, 10, 11, 12], to cite only a

few) and in the following we provide only a few examples, representative of different modeling

strategies. A first approach (e.g., [13]) to model upright T-waves is based on the aforementioned

Franz relationship and consists in assigning the repolarization starting time at a given location

according to the time at which depolarization occurs at the same location. This approach does

not require a heart segmentation into transmural and apex-to-base regions but is phenomenological

in nature; it does not link regional differences in action potential to the underlying physiological

mechanisms at the cell level. A similar approach consists in assigning the repolarization starting

times on the endocardial and epicardial surfaces based on experimental data [14]. The surface

repolarization times are then linearly interpolated to define the length of the action potential plateau

across the myocardial wall. This method shares the same drawback — no causal effect between

cell physiology and T-wave morphology — suffered by the strategies based on the Franz relation.

Consequently, these approaches can neither investigate the distribution of physiological ion channel

properties that produce the T-wave, nor predict changes in the T-wave morphology caused by an

altered state of the myocardial cells (e.g., changes in ion channels). As such, they cannot be used to

study heart diseases or drugs that affect the T-wave morphology.

A different approach consists in modeling the physiological origin of the T-wave by assigning

different EP to myocardial cells in separate transmural and apex-to-base regions. Following this

approach, Okada et al. [15] modified the APD gradients by changing the potassium currents of the

myocardial cells through the myocardial wall and from apex-to-base. Similarly Weiss et al. [16]

study the origin of the T-wave by varying the maximum conductance of the potassium (IKs and

Ito) and sodium-calcium exchange (INaCa) currents through the myocardial wall and from apex-

to-base. By accounting for multi-scale mechanisms, from myocardial cell ion channel models to

electrical conduction in the full heart ventricles, these approaches can explain changes in the ECG

T-wave mechanistically and relate them to an altered or diseased state of the myocardial cells.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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REPOLARIZATION DISPERSION THROUGH VENTRICULAR SEGMENTATION 3

This second type of approach requires an objective strategy to assign variations in cell model

parameters across the heart wall and from apex-to-base. A simple and effective option consists of

segmenting the myocardium into transmural and apex-to-base regions and assigning different cell

model parameters to each of them. An apex-to-base segmentation may be easily obtained based on

the position of the myocardial cells along the heart longitudinal axis. A transmural segmentation is

equally straightforward if the heart model is based on a simplified geometry and the ventricles are

modeled using truncated ellipsoids fitted to MRI data (e.g., [17]). In this case, the distance between

the epicardial and endocardial surfaces is well defined and may be used to compute the transmural

layers. However, anatomically accurate heart geometries are required for numerical simulations

aimed at modeling the detailed EP of the heart. In this latter case, although the epicardial and

endocardial surfaces are in general not smooth or analytically defined, the distance from either the

endocardial or the epicardial surfaces may still be computed using the single distance map from a

triangulation of the surface as presented by Baerentzen and Aanaes [18]. This approach was used

by Chabiniok et al. [19] to compute the distance of a point from the epicardial and endocardial

surfaces and accordingly assign fiber orientation. Nevertheless, since in anatomically accurate heart

models the epicardial and endocardial surfaces are not parallel, transmural regions are not rigorously

defined based purely on the distance from one or both of these surfaces.

These approaches notwithstanding, there has not been proposed a clear, systematic strategy

to subdivide physiologically accurate biventricular heart geometries in transmural and apex-to-

base regions necessary to assign different APD gradients and to obtain a correct T-wave. Herein

we propose a systematic solution to this problem and study its robustness by investigating the

effect of different transmural segmentations on the resulting T-wave. We based our algorithm

on an auxiliary steady state diffusion boundary value problem following a technique previously

employed to generate myocardial fiber orientations [20, 21, 22]. We show how the combination

of multiple Laplace boundary value problems allow careful control of the ventricular segmentation

into Epi/M(ventricular midwall)/Endo and Apex/Mid(or mid-ventricular)/Base layers. The resulting

segmentation, in conjunction with physiologically accurate ionic cell models defining the APD

gradients, results in a physiologically correct T-wave. Since this modeling approach incorporates

the spatial variation in cell ion channels responsible for the T-wave morphology, it can be used to

study heart disease or drugs affecting the T-wave.

In the remainder of the paper, we first provide a brief overview of the model employed to

solve the heart EP and of the ionic cell models used to vary the APD in each transmural region.

The boundary value problem and the algorithms used to segment the heart are described next.

Following the computation of the myocardial segmentation, we assign varied ionic cell model

parameters to each of the regions and compute the corresponding ECG, which exhibits the correct

T-wave morphology. A discussion of the segmentation method presented and its possible extensions

concludes the manuscript.

2. ANATOMICAL AND ELECTROPHYSIOLOGY MODEL

The heart segmentation resulting from our algorithm is used and tested inside a computational

scheme developed to model heart EP [23]. Here we provide a brief overview of this computational

scheme, which is necessary to compute the ECG from a segmented heart domain.

The heart EP is described using a monodomain reaction-diffusion partial differential equation,

which is coupled with a set of ordinary differential equations (ODEs) governing cell-

level ionic currents based on the Hodgkin-Huxley framework [24]. We solve the governing

equations using operator splitting [25] and the finite element method as previously presented in

Krishnamoorthi et al. [26]. The equations governing the heart EP are solved on an anatomically

accurate rabbit heart geometry model, which includes MRI-based microstructural fiber/sheet

orientations and a Purkinje conduction system, as described by Krishnamoorthi et al. [23] (Fig. 2,

left).

Animal handling and care related to the acquisition of the rabbit heart geometry and

microstructure were performed according to the recommendations of the National Institutes of

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
Prepared using cnmauth.cls DOI: 10.1002/cnm



4 L. E. PEROTTI ET AL.

Health Guide for the Care and Use of Laboratory Animals and the Institutional Animal Care and

Use Committee at the University of California, Los Angeles (UCLA). The animal protocol for ex

vivo tissue evaluation (Protocol #2008-161-12) was approved by the UCLA Chancellors Animal

Research Committee.

Our finite element model consists of 901,852 nodes and 828,532 elements with mesh size equal

to 200 µm. This mesh size was previously verified in [26, 23] and guarantees the correct numerical

solution of the EP governing equations. According to the microstructure information, we assign

diffusion coefficients equal to 0.001 cm2/ms, 0.0005 cm2/ms, and 0.00025 cm2/ms in the fiber,

cross fiber, and fiber sheet normal direction, respectively. The conductivity σ is then computed as

σ = χCmD, where χ = 6× 103cm−1 is the membrane surface/volume ratio, and Cm = 1µF/cm2

is the membrane capacitance. Therefore, the fastest, medium and slowest conductivities are related

by a 4:2:1 proportionality. The resulting tissue conductivity is anisotropic since at every point in

the model the tissue microstructure, i.e., the fibers orientation, varies and with it the conductivity

coefficients and directions.

In our model, the system of ODEs describing the cell ionic gating channels is the

Mahajan et al. [27] cell model, which meets important validation criteria such as reproducing a

physiologically correct action potential, calcium transient, and action potential (AP) restitution

curve. Conduction is initiated by a stimulus current at the atrioventricular node, from which it

propagates to the myocardial tissue through the Purkinje muscle junctions (PMJs). Before modeling

the propagation of the electrical stimulus, we prepace the single cell models (9 myocardial cell

models and the Purkinje cell model) for 1000 beats. After 1000 cycles at constant pacing we verify

that the action potential, Calcium and Sodium transients have reached the steady state regime. Using

the same pacing interval (400 ms in the analyses presented herein) we carry out the full heart

simulations initialized with the prepaced cell models. Employing this initialization procedure we

observe that the changes in the ECG in subsequent beats are minimal. Nevertheless, to ensure that a

steady state regime has been reached, in the following analyses we disregard the first two beats and

report the subsequent beats.

We seek to separate the myocardium into Epi, M and Endo cells, and Apical, Mid-ventricular,

and Basal subdomains. The cell model properties in these regions were modified according to

trends observed in the literature [28, 29, 30]. Specifically, we alter the model conductance Gks

of the slow component of the delayed rectifier potassium current Iks. Transmurally, we also alter

the conductance Gto of the transient outward potassium current Ito, which contributes to both the

duration and the shape of the action potential. This current has not been shown to vary significantly

from apex-to-base. We report in Table I the calibrated values of Gks and Gto. The resulting action

potentials in the different regions of the myocardium exhibit significant differences in duration,

primarily due to variation in the repolarization phase (Fig. 2, right). Here we will consider both

the apex-to-base and transmural cell properties gradients simultaneously and focus on presenting a

segmentation algorithm, and discuss its validity and robustness to describe the T-wave. Other studies

have considered only one of these gradients and the resulting effect on the T-wave, e.g., we show

the T-wave due to either of these gradients in isolation in the supplementary material of [23].

3. SEGMENTATION OF BIVENTRICULAR MODEL

A biventricular model may be subdivided in the apex-to-base direction on a simple geometric basis.

Through a rigid body rotation, the longitudinal heart axis may be aligned with a Cartesian axis.

Without loss of generality, we refer to this axis as the z-axis. The model may then be subdivided in

the apex-to-base direction according to the z coordinate. For simplicity we segmented the heart into

three longitudinal segments of equal height. This amounts to a step of one-dimensional interpolation

along the z-axis. A z coordinate for the Apex-Mid boundary (zapex), and another for the Mid-Base

boundary (zbase with zbase > zapex) are sufficient for longitudinal segmentation (Algorithm 4). We

point out that a finer apex-to-base segmentation is a straightforward extension of the three region

model presented here and may be appealing as more accurate experimental data becomes available

to describe the apex-to-base EP variations at the cellular level. In the present context, given the

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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REPOLARIZATION DISPERSION THROUGH VENTRICULAR SEGMENTATION 5

Figure 2. Ventricular finite element mesh (left) with embedded Purkinje system (blue), and action potentials
in different heart regions (pacing cycle length equal to 400 ms) showing repolarization heterogeneity (right).

Cell position Gto [mS/µF] Gks [mS/µF] APD90 [ms]

Epi - Apex 0.110 0.263 158

Epi - Mid 0.110 0.194 168

Epi - Base 0.110 0.139 179

M - Apex 0.110 0.103 189

M - Mid 0.110 0.072 202

M - Base 0.110 0.049 217

Endo - Apex 0.094 0.136 182

Endo - Mid 0.094 0.097 195

Endo - Base 0.094 0.069 208

Table I. Potassium currents conductances in the nine transmural and apex-to-base regions.

available experimental data and the purpose of presenting the segmentation algorithm, we use three

apex-to-base regions and proceed to describe the more complex transmural segmentation.

Given the irregular geometry of the endocardial and epicardial surfaces, transmural segmentation

is not amenable to such a simplistic geometric definition. Interpolation along the “transmural

direction” is not unambiguously defined. As an alternative to distance map definitions [18, 19],

we propose a method based on Laplace interpolation [20, 21] and harmonic lifting [22]. In this

approach the relative distance from the endocardial and the epicardial surfaces may be computed

according to the field distribution resulting from the solution of a steady state diffusion (Laplace)

equation in an homogeneous isotropic material. Specifically, on the given domain Ω, we solve the

Laplace equation

∇2φ =

(

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

)

= 0 , (1a)

with field values prescribed on the epicardial, and left and right endocardial surfaces, denoted

generally as ∂Ωi ,

φ = φi on ∂Ωi , (1b)

and zero-flux Neumann boundary conditions prescribed on the base of the heart,

(∇φ) · n = 0 on ∂ΩN , (1c)

defined as the complement of the epi- and endocardial surfaces, ∂Ω = {∪i∂Ωi} ∪ ∂ΩN . The

resulting field φ(x) interpolates smoothly between the values prescribed on neighboring surfaces

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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6 L. E. PEROTTI ET AL.

∂Ωi. For instance, in the simple case of a domain between two large parallel plate boundaries at

x = ±a with prescribed values φ0 on ∂Ω0 = {x|x = −a} and φ1 on ∂Ω1 = {x|x = a}, the solution

of Eqn. (1) far from the lateral boundaries ∂ΩN will be φ(x) = 1

2a
(a− x)φ0 +

1

2a
(a+ x)φ1, a linear

interpolation between φ0 and φ1. The fractional distance from the surfaces can then be computed

as di = |φ(x) − φi|/∆φ, with ∆φ = |φ1 − φ0|. This holds as a robust estimate of distance even in

complex geometries with irregular surfaces.

By this approach, a single steady state diffusion problem can be solved to subdivide a domain

delimited by two singly-connected surfaces ∂Ω0,1. By assigning boundary values φ0,1, the distance

from the surfaces to any point x ∈ Ω is estimated as proportional to the difference between the

field φ(x) and φ0,1. However, the epi- and endocardium are not two singly-connected surfaces.

The septum divides the left (LV) and right (RV) ventricles and, in order to obtain the transmural

segmentation needed to assign the cell model properties, we need to interpolate between three

singly-connected surfaces: the epicardial surface, the RV endocardial surface and the LV endocardial

surface. Although in this case one diffusion boundary value problem is insufficient, we can compute

the transmural LV and RV segmentation by solving multiple diffusion problems, with each focusing

on a particular pair of surfaces. We identify in the following three separate strategies (Algorithms 1-

3) involving two and three subsequent diffusion analyses (Eqn. 2-4). The outlined algorithms

illustrate the method and its flexibility.

In the diffusion analyses solved on the heart domain in order to obtain the ventricles segmentation,

we impose two Dirichlet boundary conditions, φ0 and φ1, on the epicardial and RV/LV endocardial

surfaces and, without loss of generality, we assume hereafter that ∆φ ≡ φ1 − φ0 > 0.

In a first diffusion analysis (A) we impose φ = φ0 on the endocardial surfaces and φ = φ1 on the

epicardial surface,

φA(x) = φ(x) such that



















∇2φ = 0 in Ω;

∇φ · n = 0 on ∂Ωbase;

φ = φ0 on ∂Ωendo;

φ = φ1 on ∂Ωepi.

(2)

A second diffusion analysis (B) is performed imposing φ = φ0 on the RV endocardial surface and

φ = φ1 on the epicardial and LV endocardial surfaces,

φB(x) = φ(x) such that



















∇2φ = 0 in Ω;

∇φ · n = 0 on ∂Ωbase;

φ = φ0 on ∂ΩR
endo;

φ = φ1 on ∂Ωepi ∪ ∂ΩL
endo.

(3)

A third analysis (C) mirrors the second analysis by switching the boundary conditions applied on

the RV and LV endocardial surfaces, i.e., φ = φ0 on the LV endocardial surface and φ = φ1 on the

epicardial and RV endocardial surfaces,

φC(x) = φ(x) such that



















∇2φ = 0 in Ω;

∇φ · n = 0 on ∂Ωbase;

φ = φ0 on ∂ΩL
endo;

φ = φ1 on ∂Ωepi ∪ ∂ΩR
endo.

(4)

The field distributions resulting from these analyses, plotted in Fig. 3 for boundary conditions

φ0 = −1 and φ1 = 1, show a smooth interpolation of φ between the ∂Ω0 and ∂Ω1 boundaries.

Accordingly φ(x) provide a measure of the relative distance from the epi- and endocardial

surfaces. The heart segmentation obtainable in each separate diffusion analysis may be visualized

by computing field isovalue surfaces, which determine the interface (i.e., the threshold) between

adjacent layers. We can parametrize the isovalue by a scalar α ∈ [0, 1] representing a unitless

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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REPOLARIZATION DISPERSION THROUGH VENTRICULAR SEGMENTATION 7

coordinate interpolating between φ0 and φ1,

φ(α) = (1− α)φ0 + αφ1.

If, for example, a transmural segmentation in three equal layers is desired, the isosurfaces for

α = 1

3
and α = 2

3
, i.e., with isovalues φ = 2

3
φ0 +

1

3
φ1 and φ = 1

3
φ0 +

2

3
φ1 can be identified as the

interfaces between regions (Fig. 3).

Figure 3. Top: Longitudinal sections of the field distributions for analyses A–C. A: ∂Ω0 = ∂Ωendo (Eqn. 2);

B: ∂Ω0 = ∂ΩR
endo (Eqn. 3); C: ∂Ω0 = ∂ΩL

endo (Eqn. 4); Bottom: isosurfaces φ = (1− α)φ0 + αφ1 obtained
in analyses A, B, and C for α = 1/3 (blue), 1/2 (gray) and 2/3 (red).

Our strategy is to construct a transmural segmentation of the heart by computing unions and

intersections of regions separated by particular isosurfaces in analyses A–C. We denote by pepi, pM,

and pendo the fractions of the wall to be assigned to the Epi, M, and Endo regions. The coordinate

α coincides approximatively with the fraction of the wall that is on the ∂Ω0 side of the isosurface.

Because ∂Ω0 boundary always includes one or more of the endocardial surfaces, we can identify

α = pendo as the coordinate of the isosurface separating the Endo and M regions. By similar logic,

since ∂Ω1 always includes the epicardial surface, we can identify α = 1− pepi as the coordinate

of the Epi-M interface. We segment the ventricles by thresholding φ(x) in the regions between

isosurfaces. The isovalue of the candidate Endo-M interface is denoted as

φ− = (1− pendo)φ0 + pendoφ1,

and that of the Epi-M interface as

φ+ = pepiφ0 + (1− pepi)φ1.

Based on φ− and φ+, we threshold φ(x) to obtain the following three regions in each diffusion

analysis A–C (• denotes analysis A, B or C in the following)

Ω−

• = {x ∈ Ω | φ(x) < φ−},

Ω+
• = {x ∈ Ω | φ(x) > φ+}, (5)

Ω±

• = {x ∈ Ω | φ− < φ(x) < φ+}.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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8 L. E. PEROTTI ET AL.

Figure 4. Longitudinal sections of the transmural heart segmentation obtained separately in diffusion
analyses A, B, and C using pendo = pM = pepi = 1/3.

Application of Eqn. (5) shows (Fig. 4) that analysis A can can be used to identify the Epi, M

and Endo regions everywhere except in the septum where the field is uniform and equal to φ0. In

analyses B and C, the different boundary conditions in the left and right Endo surfaces create a clean

interpolation across the septal region, which can be used to subdivide it into Endo and M regions.

These results make clear that the Epi, M and Endo regions can be defined from the union and/or

intersection of the Ω+, Ω−, Ω± domains from analyses A, B, and C. There are a variety of possible

definitions using set arithmetic. Here, as illustrative examples, we consider three particular options,

Algorithms 1–3, specified below.

Algorithm 1 Transmural segmentation based on 2 diffusion analyses (A,B)

Ωepi := Ω+

A

≡ {x : φA(x) > φ+}

ΩM := (Ω−

A ∩Ω±

B) ∪ Ω±

A

≡ {x : (φA(x) < φ− ∧ φ− < φB(x) < φ+) ∨ φ− < φA(x) < φ+}

Ωendo := Ω−

A ∩ (Ω−

B ∪ Ω+

B)

≡ {x : φA(x) < φ− ∧ (φB(x) < φ− ∨ φB(x) > φ+)}

Algorithm 2 Transmural segmentation based on 3 diffusion analyses

Ωepi := Ω+

A

≡ {x : φA(x) > φ+}

ΩM := (Ω−

A ∪ Ω±

A) ∩ (Ω±

B ∪Ω+

B) ∩ (Ω±

C ∪ Ω+

C)

≡ {x : φA(x) < φ+ ∧ φB(x) > φ− ∧ φC(x) > φ−}

Ωendo := (Ω−

A ∪ Ω±

A) ∩ (Ω−

B ∪Ω−

C)

≡ {x : φA(x) < φ+ ∧ (φB(x) < φ− ∨ φC(x) < φ−)}

Algorithms 1 through 3 can be easily interpreted with the help of Fig. 4. For Algorithm 1, the

epicardial region coincides with the red portion computed in analysis A. The M cell region is defined

as the union of the gray region in analysis A and the intersection between the blue region in analysis

A and the gray region in analysis B. Lastly, the endocardial region is the intersection between the

blue region obtained in analysis A and the red and blue regions obtained in analysis B. Algorithms 2

and 3 can be visualized in the same way.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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REPOLARIZATION DISPERSION THROUGH VENTRICULAR SEGMENTATION 9

Algorithm 3 Transmural segmentation based on 2 diffusion analyses (B,C)

Ωepi := Ω+

B ∩ Ω+

C

≡ {x : φB(x) > φ+ ∧ φC(x) > φ+}

ΩM := Ω±

B ∪ Ω±

C

≡ {x : φ− < φB(x) < φ+ ∨ φ− < φC(x) < φ+}

Ωendo := Ω−

B ∪ Ω−

C

≡ {x : φB(x) < φ− ∨ φC(x) < φ−}

Algorithm 4 Apex-to-base segmentation based on position along the longitudinal z axis

Ωapex := {x : z(x) ≤ zapex}

Ωmid := {x : zapex < z(x) < zbase}

Ωbase := {x : z(x) ≥ zbase}

A longitudinal section of the final transmural and apex-to-base segmentations based on the

presented algorithms is shown in Fig. 5. Since in our formulation [23] the ionic variables governing

the cell AP reside at the nodes of the heart finite element mesh, we use the outlined algorithms to

subdivide the nodes based on their coordinate x. Equivalently, we can subdivide the finite elements

of the heart mesh based, for instance, on their barycentric coordinate. The Epi, M and Endo regions

and the Apical, Mid and Basal regions are labeled using an identification number from 1 to 9
according to Table II.

Apex Mid Base

Epi 9 8 7

M 6 5 4

Endo 3 2 1

Table II. Region identification numbers for apex-to-base and transmural segmentation.

Figure 5. Longitudinal sections of the ventricles segmentations: each region is labeled from 1 to 9 according
to the heart location to which it belongs (Table II). Transmural and apex-to-base ventricular segmentation

obtained with Algorithm 1 (left), Algorithm 2 (center), and Algorithm 3 (right).

All the algorithms presented in the foregoing (Algorithms 1-3) result in valid transmural heart

segmentations, which differ only subtly from each other. The largest difference between any

two of the presented algorithms amounts to 4.2% of the total nodes receiving a different ID

and, consequently, different cell properties and APD. In the following section we quantify the
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effect of these differences by computing the electrocardiogram for each of the transmural heart

segmentations.

Figure 6. Heart regions receiving different IDs with the three presented segmentation algorithms. From left
to right: differences between Algorithms 1 and 2 (≈ 2.0% of total nodes), differences between Algorithms 1
and 3 (≈ 4.2% of total nodes), differences between Algorithms 2 and 3 (≈ 2.2% of total nodes). As shown,

the differences are localized to the region where the septum is connected to the RV/LV ventricular wall.

In our applications, we solved the simple steady state diffusion problems employing the finite

element method, which is often also the method of choice for cardiac EP analyses. Other

computational schemes commonly used to model cardiac EP, such as the finite difference method,

may be employed as well in a straightforward way to solve the Laplace equation on the heart domain.

The availability of common computational schemes to solve the basic equations and the simplicity

of the proposed approach render it readily applicable.

4. ELECTROCARDIOGRAMS AND APDS RESULTING FROM THE PROPOSED CELL

SEGMENTATIONS

We proceed to show that the heart segmentation obtained with the presented method can be

successfully used to assign cell property gradients and to produce a physiologically correct T-wave

in the ECG. Furthermore, we investigate how sensitive the T-wave is to changes in the parameters

governing the segmentation algorithms.

Toward this objective, we combine the heart segmentation obtained in Section 3 with the heart

and cell models described in Section 2. In particular, the 9 heart regions used in the simulation

are obtained with Algorithm 1 and correspond to equally spaced apex-to-base (zapex = 1

3
H and

zbase =
2

3
H with H being the heart total length along the longitudinal z axis) and equal-width

transmural (pendo = pM = pepi = 1/3) segmentation. This segmentation corresponds to the section

shown in Fig. (5,1). According to Section 2 and the previous work of Krishnamoorthi et al. [23], cell

properties resulting in different APDs are assigned to the cells in the 9 heart regions. We simulate

four heart beats with pacing cycle length equal to 400ms and report the third and fourth heart beat.

Disregarding the first two heart beats and preliminary single cell prepacing as described in Section 2,

guarantees that a steady state solution has been reached in our model. For comparison, the same

simulation and corresponding ECG were computed using an identical heart model but without cell

APD heterogeneity; i.e., uniform cell properties (in this example we chose the Mid and M cell

properties) were assigned to all the nodes in the finite element mesh. The voltage field time history

is subsequently used to compute the ECG output from a bipolar lead according to [31]:

ECG(x, t) =

∫

Ω

∇V (x, t) ·

(

D(x) · ∇

(

1

R(x)

))

dΩ , (6)

where R(x) denotes the distance from a point in the heart domain Ω to the lead position and

D(x) is the diffusion tensor at point x. We observe that a scaling factor is necessary to convert
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REPOLARIZATION DISPERSION THROUGH VENTRICULAR SEGMENTATION 11

the ECG signal computed using Eqn. 6 in voltage units. However, this scaling factor does not affect

in any way the morphology of the ECG signal and therefore, in the following, we report directly the

normalized voltage computed through Eqn. 6.

V1 V4

V2 V5

V3 V6

(a) Homogeneous cell properties

V1 V4

V2 V5

V3 V6

(b) Varying cell properties

Figure 7. ECG generated using homogeneous (left) and heterogeneous (right) cell properties. The ECG
computed using cell property gradients shows physiologically accurate T-wave morphology, i.e., the T-wave

is upright in all six leads and presents the correct progression and slower rising than descending phase.

The six-lead ECG resulting from the model including the apex-to-base and transmural APD

gradients contains a physiologically accurate T-wave morphology (Fig. 7b) whereas the T-wave

is absent from the ECG obtained using the homogeneous heart model (Fig. 7a). This comparison

illustrates the applicability of the method presented herein for including heterogeneous cell

properties and, consequently, to obtain a physiologically correct ECG.

We have also included the APD map obtained during the fourth simulated beat (Fig. 8) to analyze

more in details the effect of cell properties gradients on APD gradients. We observe that the APD

gradients are smooth across the myocardium in both the transmural and apex-to base directions

despite the distinct cell properties boundaries imposed using the segmentation algorithm. Gradual

APD changes are due to the smoothing effect associated with voltage diffusion during each heart

beat.

In order to assess the sensitivity of the ECG to the segmentation, we recompute the ECG by

using the transmural segmentations obtained with Algorithms 2 and 3. We have already established

(Section 3 and Fig. 6) that less than 5% of the total number of nodes are placed in different regions

by the three presented algorithms and most differences reside where the septum is connected to

the rest of the RV/LV ventricular wall. These very limited differences are not reflected in the ECG,

i.e., the ECGs (not reported here) computed using the model obtained with Algorithms 2 and 3 are
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Figure 8. APD distribution obtained using an heterogeneous transmural and apex-to-base cell model
distribution. Even tough the boundaries between adjacent cell regions with different ionic constants may
be sharp — especially in the apex-to-base direction — at steady state the APD varies smoothly through the

myocardium due to diffusion.

indistinguishable from the ECG based on Algorithm 1 (Fig. 7b). This result shows that any of the

presented algorithms can be used to construct a heart model without affecting the resulting ECG.

For subsequent sensitivity analyses we proceed with Algorithm 1.

In the simulations just presented we used equally spaced apex-to-base (zapex = 1

3
H , zbase =

2

3
H)

and equal-width transmural (pendo = pM = pepi = 1/3) segmentation. This appears as a reasonable

choice since more detailed data are lacking in the literature regarding the thickness of the different

myocardial cell regions. For example, significant uncertainty is reported in the literature about the

position and extension of the M cells (e.g., see Table 1 in [32]). In this regard, we investigate

how sensitive the T-wave is to different widths of the M layer. In particular, in two subsequent

analyses, we define a thicker (pM = 3/5) and a thinner (pM = 1/5) M layer. The epicardial and

endocardial layers are assumed equal with pendo = pepi = 1/5 and pendo = pepi = 2/5 in the two

analyses, respectively (Fig. 9).

Figure 9. Representative sections of the heart segmentations obtained by imposing equal-width transmural
layers (left - for comparison), wider M layer and equally thinner endocardial and epicardial layers (center),

thinner M layer and equally wider endocardial and epicardial layers (right).

The six-lead ECG is not affected significantly by the changes in the transmural segmentation.

Specifically, the QRS complex remains unchanged and the T-wave preserves its physiologically

correct morphology in all cases (Fig. 10). The largest difference is obtained when comparing the

equal-width transmural segmentation (pM = 1/3) and the thicker M layer (pM = 3/5) models. A

wide M layer results in a slightly smaller and delayed T-wave (Fig. 10, left). In contrast, a thinner
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Prepared using cnmauth.cls DOI: 10.1002/cnm



REPOLARIZATION DISPERSION THROUGH VENTRICULAR SEGMENTATION 13

M layer (pM = 1/5) leads to a slightly taller and earlier T-wave (Fig. 10, right), even if, in this latter

case, the differences with respect to the equal-width transmural segmentation model are very small.

V1 V4

V2 V5

V3 V6

Equal
Thick M layer

V1 V4

V2 V5

V3 V6

Equal
Thin M layer

Figure 10. Comparison between the T-waves obtained using equal-width transmural segmentation and wider
(left) / thinner (right) M layer.

We can observe here that the values of pepi, pmid, and pendo provide convenient parametric control

over the transmural segmentation. In the present model, modest adjustment of these parameters

yielded noticeable but not dramatic change in the ECGs. This result proves the robustness of the

method with respect to parameters that are not well defined in the literature. Moreover, as more

accurate physiological data for transmural heterogeneity become available, the proposed method can

easily incorporate the additional information and accordingly modify the ventricular segmentation

to further explore the effects of repolarization dispersion.

5. DISCUSSION

The simulations presented show the applicability and robustness of the proposed segmentation

method to define heart regions with different cell properties and obtain the correct T-wave

morphology. The resulting T-wave is directly linked to the cell APD gradients and therefore changes

in the cell physiology due to heart diseases may be studied and related to changes in the ECG.

Moreover, the method presented is applicable to any heart model and does not rely on geometrical

simplifications. In an anatomically accurate heart geometry acquired, for instance, through MRI,

the transmural layers cannot be defined simply based on a fixed distance measured from either the

endocardial or the epicardial surfaces since they are not parallel and the thickness of the myocardial

wall varies continuously. To illustrate this, an example of an ad hoc segmentation is shown in
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Fig. (11,right), in which the transmural layers are defined based on a fixed distance from the

endocardial and epicardial walls. The resulting segmentation is not appropriate in the apical and

right ventricle walls where M cells are almost missing due to the reduced myocardium thickness in

those regions.

Figure 11. Comparison between heart segmentations obtained with Algorithm 1 (left) and ad hoc
segmentation (right).

Ad hoc approaches also require some additional strategy to modify the layout of the transmural

layers. In contrast, the segmentation algorithms presented in Section 3 can be modified in a

straightforward way to produce a different transmural segmentation. As an example, we lay out

three modifications in which we obtain:

• a thicker endocardial layer in the left ventricle - Fig. (12, left);

• a thicker endocardial layer in the right ventricle - Fig. (12, center);

• four layers in the external myocardial wall and two layers in the septal region - Fig. (12, right).

Figure 12. Example sections of different transmural segmentations obtainable with simple modifications

of the proposed algorithms: (left) wider LV endocardium layer with pC
endo = 1

2
, pC

M = pC
epi =

1
4

and pB
endo =

pB
M = pB

epi =
1
3

; (center) wider RV endocardium layer with pB
endo = 1

2
, pB

M = pB
epi =

1
4

and pC
endo = pC

M =

pC
epi =

1
3

; and (right) four equal layers in the external free walls plus two Endo layers in the septal region

with pA
endo = pA

M = pA
epi = pA

L = 1
4

and pB
endo = pB

M = pB
epi =

1
3

.

These are obtained with only minor modifications to, for instance, Algorithms 1 and 3. In the

modified algorithms we introduce the additional threshold values

• φL = (1− pL)φ0 + pLφ1;

• φk
− =

(

1− pkendo

)

φ0 + pkendoφ1 and φk
+ = pkepiφ0 +

(

1− pkepi

)

φ1, where k = B,C refers to

the diffusion analysis in which the field φ is computed.

A thicker left endocardial layer is obtained using pC
endo > pB

endo whereas pB
endo > pC

endo corresponds to

a thicker right endocardial layer. The modifications to the algorithms listed in Section 3 are presented

in Algorithms 5-7.
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Algorithm 5 Modification of Algorithm 3 to obtain thicker LV endocardial layer using diffusion

analyses B and C

Ωepi := Ω+

C ∩Ω+

B

≡ {x : φC(x) > φC
+ ∧ φB(x) > φB

+}

ΩM := Ω±

C ∪
(

Ω+

C ∩ Ω±

B

)

≡ {x : φC
− < φC(x) < φC

+ ∨
(

φC(x) > φC
+ ∧ φB

− < φB(x) < φB
+

)

}

Ωendo := Ω−

C ∪
(

Ω+

C ∩ Ω−

B

)

≡ {x : φC(x) < φC
− ∨

(

φC(x) > φC
+ ∧ φB(x) < φB

−

)

}

Algorithm 6 Modification of Algorithm 3 to obtain thicker RV endocardial layer using diffusion

analyses B and C

Ωepi := Ω+

B ∩Ω+

C

≡ {x : φB(x) > φB
+ ∧ φC(x) > φC

+}

ΩM := Ω±

B ∪
(

Ω+

B ∩ Ω±

C

)

≡ {x : φB
− < φB(x) < φB

+ ∨
(

φB(x) > φB
+ ∧ φC

− < φC(x) < φC
+

)

}

Ωendo := Ω−

B ∪
(

Ω+

B ∩ Ω−

C

)

≡ {x : φB(x) < φB
− ∨

(

φB(x) > φB
+ ∧ φC(x) < φC

−

)

}

Algorithm 7 Modification of Algorithm 1 to obtain a 4 layers segmentation using diffusion analyses

A and B

Ωepi := Ω+

A

≡ {x : φA(x) > φA
+}

ΩMext
:= Ω±ext

A

≡ {x : φA
L < φA(x) < φA

+}

ΩMint
:= (Ω−

A ∩Ω±

B) ∪ Ω±int
A

≡ {x :
(

φA(x) < φA
− ∧ φB

− < φB(x) < φB
+

)

∨ φA
− < φA(x) < φA

L}

Ωendo := Ω−

A ∩ (Ω−

B ∪ Ω+

B)

≡ {x : φA(x) < φA
− ∧

(

φB(x) < φB
− ∨ φB(x) > φB

+

)

}

We conclude by pointing out that the significance of a general method to subdivide the heart goes

behind obtaining the physiologically correct T-wave and predicting its changes caused by an altered

state of the myocardial cells during heart diseases. For example, a flexible segmentation method

may be used in analyses with the objective of identifying the mechanical properties of the heart,

which may be spatially inhomogeneous. In order to reduce the number of unknowns and therefore

the complexity of the model, different mechanical properties may be assigned to discrete heart

regions rather than varied continuously through the myocardium (e.g., [33]) . The method presented

herein may be used to subdivide the heart model in transmural and apex-to-base regions in which

different material properties can be identified. Moreover, our method may also be combined with

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
Prepared using cnmauth.cls DOI: 10.1002/cnm



16 L. E. PEROTTI ET AL.

other regional segmentations of the heart. For instance the AHA heart regions [34] may be further

subdivided in the transmural direction according to the method presented.

Lastly, it is important to highlight some of the method limitations. For instance, the algorithms

presented herein do not allow to segment the papillary muscles in different transmural layers. The

papillary muscles are located in the interior of the ventricles and therefore their surface is only

exposed to the field φ0, i.e., no transmural gradient is created through the papillary muscles and

the corresponding locally homogeneous field φ cannot be used to determine transmural layers in the

papillary muscles. This limitation appears small if the presented method is used to assign transmural

cell property gradients with the aim of computing the corresponding T-wave, but may be important

in other particular applications.
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