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Summary

The worldwide prevalence of non-alcoholic steatohepatitis (NASH) is increasing, causing a 

significant medical burden, but no approved therapeutics are currently available. NASH drug 

development requires histological analysis of liver biopsies by expert pathologists for trial 

enrolment and efficacy assessment, which can be hindered by multiple issues including sample 

heterogeneity, inter-reader and intra-reader variability, and ordinal scoring systems. Consequently, 

there is a high unmet need for accurate, reproducible, quantitative, and automated methods 

to assist pathologists with histological analysis to improve the precision around treatment and 

efficacy assessment. Digital pathology (DP) workflows in combination with artificial intelligence 

(AI) have been established in other areas of medicine and are being actively investigated in NASH 

to assist pathologists in the evaluation and scoring of NASH histology. DP/AI models can be used 

to automatically detect, localise, quantify, and score histological parameters and have the potential 

to reduce the impact of scoring variability in NASH clinical trials. This narrative review provides 

an overview of DP/AI tools in development for NASH, highlights key regulatory considerations, 

and discusses how these advances may impact the future of NASH clinical management and 

drug development. This should be a high priority in the NASH field, particularly to improve the 

development of safe and effective therapeutics.

Keywords

NASH; NAFLD; histology; machine learning; digital pathology; artificial intelligence; liver 
biopsy; fibrosis; steatosis; inflammation; ballooning; clinical trials

Introduction

Despite being associated with a considerable health and economic burden, there are 

no approved therapies for nonalcoholic steatohepatitis (NASH), the progressive form of 

nonalcoholic fatty liver disease (NAFLD), which is now a leading cause of chronic 

liver disease worldwide.1–3 The NASH drug development process currently requires the 

demonstration of improvement in histological endpoints as a prerequisite for conditional 
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approval, followed by the demonstration of clinical benefit in long-term extension trials.4–6 

The assumption underlying this sequence of events is that NASH resolution and fibrosis 

regression, the two surrogate endpoints defining histological improvement, are likely 

predictors of improved outcomes.7 Therefore, histological examination of liver biopsies is 

mandatory for the drug registration process in NASH.

While currently considered the reference standard,4,5 conventional histological analysis has 

major shortcomings. In particular, imprecise definitions and subjective interpretation of 

lesions have caused high rates of intra- and inter-observer variability, while semi-quantitative 

grading and staging systems have limited sensitivity to change.8,9 Consequently, most 

NASH therapeutic trials are plagued by a high screening failure rate at enrolment, high 

placebo response rates, and a reduced ability to uncover early treatment effects at follow-up 

biopsies.10 Therefore, automated, objective, quantitative, precise, and reproducible methods 

to analyse liver histology with higher sensitivity are needed.

Digital pathology (DP) in combination with artificial intelligence (AI) is an area of active 

investigation with the potential to revolutionise histological analysis of liver biopsies in 

both clinical practice and therapeutic trials.11 DP- and AI-based workflows are already 

established methods in other areas of medicine, supporting the potential utilisation of 

these tools in NASH.12,13 Some DP/AI platforms bring translational capabilities that can 

be used for drug candidate screening and validation. They may also assist in uncovering 

biological mechanisms underpinning NASH development, including the co-existence of 

both progressive and regressive features,14 as well as in the development of new NASH 

preclinical models and non-invasive tests (NITs) for diagnosis and monitoring of patients.15–

17 This review article will provide an overview of DP and AI, introduce DP/AI tools in 

development for NASH, summarise regulatory considerations for these tools, and discuss 

how these advances may impact the future of NASH drug development and clinical 

management. We will not discuss the large body of data generated by morphometry analysis 

of collagen content as the methodology used, while computer assisted and quantitative, does 

not involve AI and machine learning (ML) methodologies and therefore cannot provide 

information beyond what is already visible to the human eye.

Methods

This article was initially based on the proceedings of the 5th NASH Roundtable Virtual 

Forum on Thursday, June 16, 2022, titled “Is digital pathology a game-changer for histology 

in drug development?”, with input from four companies developing DP/AI tools for NASH, 

and was updated thereafter. This information was supplemented by literature searches 

performed using PubMed and the search terms “digital pathology AND artificial intelligence 

AND liver” and “non-alcoholic steatohepatitis AND digital pathology”. Published abstracts 

from international liver congresses (International Liver Congress and The Liver Meeting) in 

2020–2023 were also searched using “NASH” or “digital”, or “artificial”. Abstracts were 

manually reviewed to identify those of relevance.
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Limitations and challenges of conventional histopathological assessment 

for NASH

To diagnose NASH and assess disease progression or regression, pathologists must perform 

histological analysis of liver biopsies. Standard practice includes staining of liver sections 

with H&E followed by conventional (i.e. light microscopy) pathologist review to assess 

lobular inflammation, steatosis, and hepatocyte ballooning and with Masson’s trichrome or 

picrosirius red to assess fibrosis and collagen proportional area (for the latter).18 The NASH 

Clinical Research Network (NASH-CRN) classification is the most widely used histological 

scoring system for NAFLD19 but other classifications have been proposed and are being 

used.20,21 The NASH-CRN staging system includes disease activity assessment using the 

NAFLD activity score, which combines steatosis, lobular inflammation, and ballooning.19 It 

also stages fibrosis on a 5-point scale, from stage 0 (no fibrosis) to stage 4 (cirrhosis).

Historically, conventional pathological interpretation has been key in diagnosing NAFLD, 

and in particular its progressive form (steatohepatitis), and establishing the fibrosis 

stage, a major prognostic determinant.22 Advanced late-phase therapeutic trials have used 

conventional pathology to assess efficacy endpoints and define treatment success. In clinical 

practice, conventional pathology can identify complex diagnoses when other lesions or 

liver diseases coexist with NAFLD and help solve discordant results obtained with fibrosis 

biomarkers. Therefore, conventional pathology is and will continue to be essential for 

clinical research and will remain useful for the clinical management of patients with 

NAFLD.

Yet, there are multiple challenges associated with histological analysis of liver biopsies. 

First, there are issues inherent to the collection of a limited core fragment of the liver 

which is not necessarily representative of the entire liver. Landmark studies have shown 

variability of fibrosis distribution and fibrosis amount within the same core fragment or 

different sections of the same fragment23 or within adjacent tissue fragments both for 

fibrosis, inflammatory foci and hepatocyte ballooning.24 It is unclear if the variability 

in distribution is random or if it follows anatomical patterns related to, for instance, 

differential vascularisation of segments or lobes of the liver,25,26 and, importantly, if these 

differences are magnified during the resolution of injury.27 While the confidence in the 

pathological interpretation increases with fragment size, not all biopsies collected in clinical 

trials are of optimal length and width. A second issue relates to reader variability, either 

intraobserver variability or inter-observer variability. This is partly due to subjectivity in 

the interpretation of insufficiently precise histological definitions28 (in particular for the 

quantitative aspects) and partly to lack of reproducibility at the observer level.8 Importantly, 

observer disagreement is magnified in the middle of the spectrum of severity of injury rather 

than at the most severe or the almost normal ends. Regardless, lack of reproducibility may 

cause patients who meet study eligibility criteria to fail screening, lead to misclassification 

of disease activity or fibrosis stage and result in incorrect interpretation of drug treatment 

effects. A particular concern has been raised around hepatocyte ballooning, as its presence is 

a prerequisite for NASH clinical trial enrolment and its absence is established as a surrogate 

endpoint for NASH resolution.28 Finally, the categorical nature of fibrosis staging systems, 
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mostly based on architectural disruption has two caveats: the amount of fibrotic matrix does 

not increase linearly with increasing fibrosis stages23 and genuine changes in the amount 

of fibrosis may be missed because histological stages are semiquantitative. The first caveat 

implies that a one-stage reduction (or increase) in fibrosis stage may not represent the same 

amount of collagen removed (or synthesised) between two patients at different baseline 

stages. For instance, fibrosis stage 3, as a single stage, covers a large and variable amount 

of fibrotic tissue. The second caveat implies that early signals of antifibrotic potency of a 

candidate drug may be largely missed.

There is an unmet need for tools that can assist pathologists in reliable and reproducible 

identification, scoring, and quantification of NASH histological features in liver biopsies. 

These methods should also help pathologists to identify complex features of progression 

or regression of liver injury and allow for quantification of multiple histological lesions in 

an enhanced dynamic range for a more sensitive assessment of drug effects. They should 

be able to identify intra stage or intra grade improvement which is currently missed by the 

semiquantitative classification systems. This is important since early studies are typically of 

short duration and conducted in small study populations which limits the ability to detect 

significant changes unless measurements are more precise and truly quantitative. DP in 

combination with AI is an evolving discipline that may address some of these unmet needs. 

Moreover, by identifying patterns of progression or regression, aspects of fibrotic matrix 

disposition and by computing combined scores between different histological lesions, DP/AI 

could help pathologists refine the histological diagnosis and disease staging of NASH.

Digital pathology and artificial intelligence

DP refers to the tools and systems used to digitise pathology slides and associated meta-data 

and their review, storage, analysis, and related infrastructure (Table S1).29 An example of 

DP is whole-slide imaging (WSI), which involves the production of virtual images of stained 

or unstained pathology slides, created through robotic scanning and digital reconstruction 

at very high resolution. WSI allows for the online sharing and digital storage of pathology 

slide images, and/or integration into telemedicine.30,31 Another example is the stain-free 

imaging approach using second harmonic generation/two-photon excitation (SHG/TPE) 

fluorescence, where staining-related variations are removed, allowing for analysis of fine 

structural detail.32,33 Digital image analysis algorithms can segment tissue regions, cells and 

relevant structures (e.g., blood vessels, portal tracts), quantify positive staining (or other 

sources of contrast), define regions of interest, and/or allow users to capture or annotate 

images of selected regions for future examination.31

AI is a branch of computer science dealing with the simulation of intelligent behaviour 

in computers. AI can be used in combination with digital image analysis techniques 

to accurately classify or segment images and can be trained in supervised (leveraging 

annotations provided by expert pathologists) or unsupervised (without pathologist input) 

manners.29 Expert systemsare an older branch of AI based on a deterministic approach,34 

unlike ML where a computer learns how to perform a task after being exposed to 

representative data using a statistical approach. Deep learning is where a computer trains 

itself to perform tasks by exposing artificial neural networks to large amounts of data and 
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does not require annotations.29 By incorporating AI into DP, image analysis can be made 

quantitative and potentially more efficient and accurate.35–37 Potential benefits of DP/AI 

approaches include improvements in fidelity and reproducibility, but results need to be 

interpreted with caution due to limited clinical experience.37,38

There are several potential challenges to introducing DP/AI tools into clinical practice, 

including optimal sample collection and preparation, digitisation, pathologist involvement 

and training, and implementation of suitable IT infrastructure.37,39 Standardised sample 

collection and preparation is essential for both conventional reading and DP. Many DP/AI 

approaches rely on WSI of stained samples where the inherent issue of staining variability 

remains. AI can also be used to interpret SHG images of unstained samples to further 

optimise histological assessment of tissue samples.40

DP/AI models can be used to automatically detect, localise, quantify, and score various 

histological parameters.29,41 Moreover, they offer the possibility to study quantitatively the 

relative proportion of different morphological features including those that are not part 

of the histological classifications (such as portal inflammation or bile duct changes). In 

the future, these data may independently, and in combination with other medical data 

(e.g., genetic, radiological, liquid biomarkers, novel immunohistological markers), enable 

prediction of patient outcomes.42–44 DP/AI approaches may also allow pathologists and 

clinicians to obtain insights into histological features or changes that may be associated with 

disease progression and regression, which are not included or readily distinguishable using 

conventional scoring systems.43,45 DP/AI-based methods have been developed and approved 

for use in oncology diagnostics.12 For example, image analysis software has been approved 

in the US and EU for immunohistochemical assays in breast cancer and the US Food 

and Drug Administration (FDA) has approved an AI-based pathology product for prostate 

cancer diagnosis.46 DP/AI is therefore becoming a mainstream technology with significant 

prospects for growth with technological improvements.

DP/AI tools for the assessment of NASH histological features

Several academic research groups have developed DP/AI tools to evaluate the histological 

features of liver biopsies from patients with NASH or preclinical models of the disease. 

Some DP/AI tools analysed specific features of NASH liver histology, such as fibrosis47–

49 steatosis50–53 inflammation54,55 and ballooning.56,57 Several studies demonstrated 

good correlation between results obtained by novel DP/AI tools and experienced 

pathologists.47,51,58,59 However, these approaches have yet to become widely adopted.

For widespread implementation of DP/AI approaches in NASH, commercial development 

and approval by regulatory authorities is necessary. To that end, several companies are 

developing DP/AI tools for NASH diagnosis and monitoring,15,45,60–64 but this review 

focuses only on the four that are most developed (Table 1). This section provides an 

overview of the different methodologies, including technical insights. The following sections 

will discuss how these DP/AI tools are being developed and validated in NASH. A potential 

bias in the published literature summarised in these sections may be the over-representation 

of successful results.
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AIM-NASH and NASH explore (PathAI Inc.)

AI-based histologic measurement of NASH (AIM-NASH) is an AI-based DP tool designed 

to assist pathologists in achieving accurate, reproducible grading and staging of NASH 

histology in clinical trials (Table 1 and Fig. 1)45. AIM-NASH algorithms were trained using 

WSI from liver biopsies across several NASH clinical trials and annotations provided by 

expert pathologists to predict NASH-CRN steatosis, ballooning, and inflammation grades, as 

well as fibrosis stage. The AIM-NASH AI-assist clinical trial workflow is conducted via a 

Good Clinical Practice-compliant WSI viewer and displays both the model’s predictions for 

NASH-CRN scores and the original WSI with corresponding colourised heatmap overlays 

that spotlight histological features relevant to scoring. This approach allows the pathologist 

to accept or reject the model-provided scores for each histological feature. AIM-NASH 

is currently undergoing qualification for clinical trial enrolment and primary endpoint 

assessment with the FDA and European Medicines Agency.

NASH explore comprises a suite of AI-based algorithms developed to enable quantitative, 

continuous evaluation of NASH biopsy tissue to facilitate precise measurement of 

therapeutic response. NASH explore uses both H&E- and Masson’s trichrome-stained 

images to enable continuous quantification of tissue features (e.g., proportionate area of 

lobular and portal inflammation and subtypes of fibrosis) and cell features (e.g., counts 

and densities of different types of hepatocytes and immune cells), in addition to spatial 

relationships amongst these features. Both AIM-NASH and NASH explore tools have 

integrated AI-based artifact models that detect and exclude image and tissue artifacts (e.g., 

out-of-focus areas and tissue folds) prior to downstream feature quantitation and scoring.

Analytical validation of the algorithms in terms of repeatability and reproducibility between 

scanners at different locations has shown high agreement rates for fibrosis, hepatocyte 

ballooning, lobular inflammation and steatosis ranging between 0.93 and 0.9665, which is 

better than the repeatability of conventional pathologist reads.8 Clinical validation studies 

tested agreement between a consensus read of three expert hepatopathologists, designated 

as “ground truth”, and, on the one hand, the AIM NASH algorithms and on the other 

hand, the conventional reads of three individual hepatopathologists. In a study including 

1,500 biopsies from three randomised-controlled trials, AI-assisted reads were superior 

to conventional reads for hepatocyte ballooning, lobular inflammation, NASH resolution 

and at-risk NASH (NAS ≥4 with stage 2 or 3 fibrosis) and non-inferior for fibrosis and 

steatosis.65

FibroNest™ (PharmaNest Inc.)

FibroNest™ is a drug development tool designed to assist pathologists in the assessment 

of fibrotic tissues (Table 1 and Fig. 2). FibroNest™ is compatible with conventional 

pathology workflows, stains, and WSI scanners, and is enabled by the BISQUE (Bio-Image 

Semantic Query User Environment) database66 to provide next-generation digital image 

management, visualisation, annotation, and sharing. The approach is based on several 

steps, including: (1) digital image colour normalisation, standardisation, and segmentation 

pre-processing to reduce colour and intensity variations present in stained images, including 

additional preprocessing steps to eliminate scanning and other artifacts;67–69 (2) single-fibre, 

Ratziu et al. Page 7

J Hepatol. Author manuscript; available in PMC 2025 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



single-nucleus, single-object, high-content, quantitative image analysis of DP images to 

generate large quantitative and relevant data lakes at the levels of collagen content, fibre 

morphometry, and fibrosis architecture;69,70 and (3) supervised AI for the automated and 

continuous quantification of fibrosis phenotypes and associated histological features.71 This 

approach is independent of fibrosis aetiology and the type of tissues studied and can quantify 

and classify fibrosis phenotypes independently of staining or imaging methodology72 and 

liver disease aetiology.73 The high signal-to-noise ratio generates outputs that avoid staining 

variability.74 When FibroNest™ was compared with SHG imaging of unstained tissue 

sections, no significant differences in fibrosis severity scoring of liver biopsies from patients 

with NASH or rodent NASH models were identified.72,75 Results from a retrospective 

study of patients with NASH diagnosed by conventional pathology showed that FibroNest™ 

scores correlated with NASH-CRN fibrosis scores at baseline.74 FibroNest™ can classify 

type 1 and 2 fibrosis phenotypes in paediatric patients with NASH76 and has demonstrated 

that fibrosis phenotypes are identical in lean and obese patients with moderate-to-severe 

NASH.77 At the extremes of fibrosis severity ranges, FibroNest™ can classify substages of 

F1 and F478. In addition to fibrosis assessment, FibroNest™ can quantify other histological 

features including steatosis, inflammation, and hepatocyte ballooning.79

MorphoQuant® (Biocellvia)

MorphoQuant® is a fully automated AI expert system designed to identify all histological 

features required for NASH activity scoring and fibrosis grading, and to perform quantitative 

measurement (Table 1 and Fig. 3)60. It uses the deterministic approach, made of rules 

and statements to recognise, describe, and characterise histological features, based on the 

principles of morphometric analysis. MorphoQuant® works from histological slides stained 

with classic stains alone or in combination with specific labels to emphasise information 

contained in images. This tool does not require expert pathologists’ annotations to train 

a machine. Use of MorphoQuant® is compatible with the general workflow of clinical 

studies, where whole slide images are submitted to MorphoQuant®. After selecting organ, 

pathology, species, and image magnification, no further human intervention is required to 

generate quantitative data and pathology images, ensuring reproducibility and objectivity in 

the process. The software also automatically discards very small, fragmented sections and 

considers the size of fragments to provide a global quantity. Generated data are submitted to 

one or several pathologists for review and used for scoring. Prospects for future development 

include investigation of new morphological definitions of histological features, such as 

inflammation or hepatocyte ballooning.

qFibrosis, qInflammation, qBallooning, and qSteatosis (HistoIndex Pte Inc.)

HistoIndex developed a tissue imaging system based on nonlinear optical microscopy 

that enables observation of endogenous tissue signals using SHG/TPE in unstained tissue 

samples (Table 1 and Fig. 4). This avoids both the need for staining procedures and 

degradation artifacts. TPE fluorescence microscopy provides visualisation of the background 

liver architecture (inflammation, hepatocyte ballooning, steatosis) while the SHG signal 

provides accurate identification and quantification of fibrillar collagen.80,81 A large number 

of individual collagen fibre parameters termed quantitative fibrosis parameters (qFPs)48 

have been identified and quantified, including number, length, diameter, orientation, 
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contour, and cross-linkage. Interestingly, four of these biophysical parameters with the 

strongest association with fibrosis stages (number of collagen strands, strand length, strand 

eccentricity, and strand solidity) allowed for discrimination of adjacent fibrosis stages 

(except for stage 1 vs. stage 2, which both include a peri-sinusoidal fibrotic contingent). 

These parameters were used to model a continuous linear fibrosis score (qFibrosis) that 

is strongly related to fibrosis stage in NAFLD.48,49,82 The algorithm was developed with 

pathologists to ensure that output interpretation is relevant for clinical and pathological 

assessment.40,61,83 Conversely, when assisted by qFibrosis, the concordance rate between 

pathologists for fibrosis staging improved substantially,38 which indicates its potential value 

as a diagnosis-assistive tool in clinical practice or therapeutic trials. The AI-based algorithm 

recognises and segregates the biopsy area into histological regions: central vein, peri-central, 

portal tract, peri-portal, peri-sinusoidal, and transitional.84 These are then classified into 

zone 1 (portal tract and peri-portal), zone 2 (peri-sinusoidal), and zone 3 (per-central and 

central vein). The definition of these regions is based on the NASH-CRN staging system 

such that specific fibrosis morphological features (e.g., area, number, and dimensions of 

collagen strings) can be quantified in each of these regions independently. In addition, the 

AI algorithms allow for the accurate detection of septa and nodules in patients with NASH 

cirrhosis, which can be used for disease monitoring and treatment response evaluation.85

QFibrosis has been combined with quantitative analysis of steatosis (qSteatosis), 

inflammation (qInflammation), and hepatocyte ballooning (qBallooning) in a Qfibs tool.55 

Correlation with hepatocyte ballooning is only moderate,54 which is largely explained by 

inter-observer variability,28 limiting the fidelity of the reference standard. Also, the score 

has only moderate discrimination for severe inflammation and cannot distinguish between 

different inflammatory cell types.55 While awaiting further validation, these limitations 

require that Qfibs be used once pathological diagnosis of NASH has been established as an 

adjunct to pathologist grading of disease activity and staging. Despite this, the greatest 

potential of Qfibs may be for the robust quantification of changes in disease severity 

before and after therapeutic interventions, for example in clinical trials. Other SHG-based 

algorithms have been developed, allowing for automated quantification of fibrosis and 

prediction of fibrosis stage in chronic viral hepatitis.86,87

DP/AI tools and longitudinal changes in liver histology

Several DP/AI tools discussed above have been evaluated in clinical studies to assess 

longitudinal changes in liver histology and to assist pathologists in achieving reproducible 

scoring in clinical trials. In a study of Chinese patients with NAFLD and serial biopsies, 

the sensitivity of selected qFPs for fibrosis reduction was low, while they showed higher 

sensitivity and acceptable specificity for fibrosis progression.81 Importantly, the diagnostic 

accuracy of selected qFPs at baseline biopsy was insufficient to predict fibrosis changes on 

follow-up biopsy.55 In a subgroup of patients from a 1-year phase IIb trial of tropifexor 

vs. placebo, SHG/TPE analysis revealed a treatment-associated reduction of liver fibrosis 

otherwise not discernible by conventional pathology.84 Importantly, patterns of regression 

in fibrosis septa morphology and reduction in septa parameters (septa area, septa width, 

fibre interactions and aggregated septa) were documented for different fibrosis locations 

specifically (i.e. portal, periportal, pericentral, perisinusoidal and septal), thus providing 
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tools for future studies of fibrosis regression in relation to the mechanism of action of 

different drugs.88

Moreover, these changes can be quantitatively assessed (through radar maps), a key 

requirement in the context of therapeutic trials.88 Conventional pathology assessed fibrotic 

septa as “unchanged”, highlighting again the potential of DP/AI to fully document anti-

fibrotic effects in the context of therapeutic trials.84,88 Similarly, preliminary data from 

the phase IIb resmetirom trial has documented a significant reduction in fibrosis assessed 

by SHG/TPE compared with placebo, while no difference was seen between groups 

when fibrosis regression was assessed using conventional pathology.89,90 These data were 

confirmed in the phase III MAESTRO-NASH trial of resmetirom vs. placebo: the qSteatosis 

score reproduced the reduction in steatosis grade observed by conventional pathology and 

correlated with changes in MRI-estimated proton density fat fraction. Changes in categorical 

qFibrosis stage were aligned with NASH-CRN pathologist scoring and identified 90% 

of responders as per conventional pathology. Changes from baseline in the continuous 

qFibrosis score confirmed the antifibrotic response of resmetirom, while demonstrating less 

worsening of fibrosis compared to placebo. These data further reinforce the validity of 

digital image quantification in therapeutic trials.

AIM-NASH has recapitulated endpoints met by central pathologists in several studies, 

including the phase II EMINENCE trial and phase II study of resmetirom.91,92 In the 

phase IIb ATLAS trial, analysis of liver biopsies using the NASH explore tool showed 

that cilofexor and firsocostat combination treatment caused a significant decrease in NASH-

CRN fibrosis score compared with placebo.93 While a phase II trial of semaglutide did 

not demonstrate a significant improvement in fibrosis stage compared with placebo using 

conventional histological analysis,94 NASH explore continuous fibrosis scoring showed 

a significant improvement in fibrosis score in patients treated with semaglutide vs. 

placebo.95 Similar documentation of fibrosis improvement was possible at the cirrhotic 

stage with the same agent.96 AIM-NASH has also detected successful primary endpoint 

achievement (fibrosis regression) where the central pathologist did not in a phase II study of 

pegbelfermin.97

In a phase IIb trial of aramchol, the use of a fibrosis composite score by the FibroNest™ 

tool enabled identification of patients with fibrosis improvement with high sensitivity.98 

These results were corroborated by conventional staging, which confirmed fibrosis stage 

reduction and improvement by ranked assessment.98 Similar results were observed in the 

phase II LPCN 1144 LiFT trial.78 These results were confirmed prospectively in the phase 

II pegbelfermin trial programme, which demonstrated correlation with changes in Ishak 

fibrosis stages before and after 24 weeks of treatment.99 Distinct single fibre quantitative 

traits combined in a single score demonstrated a dose-response relationship between placebo 

and three increasing doses of active drug,100 while no antifibrotic response was visible 

by conventional pathology. These data illustrate how quantitative image analysis can help 

uncover treatment effects, but more studies are necessary for the optimal selection of the 

fibrosis parameters to be included in the best performing scores. Since these scores are based 

on different underlying reading methodologies, they will not be interchangeable. This will 

raise the prospect of direct face to face comparisons within a trial dataset, although the 
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outcome of these comparisons will need to be agreed upon: sensitivity for early changes? 

specificity for robust major changes? accuracy for prediction of liver-related events?

DP/AI tools and correlation with clinical outcomes

While it is unquestionable that DP/AI provides enhanced granularity and higher sensitivity 

when assessing temporal changes in liver histology, the clinical relevance of DP/AI 

changes remains to be established. Therefore, the next big challenge is to assess to what 

extent changes in DP/AI parameters predict the occurrence of clinical outcomes. In the 

aforementioned study of serial liver biopsies in Chinese patients with NAFLD, after a mean 

follow-up period of 5.6 years, patients with high baseline values of selected qFPs had an 

increased incidence of liver-related events.82 It is unclear if changes in qFPs were also 

predictive of clinical outcomes.

In a series of 294 Scottish patients with NAFLD, with long-term follow-up, a baseline 

index based on 25 fibrosis parameters derived from SHG-TPEF imaging was able to predict 

all-cause mortality, cirrhosis decompensation and occurrence of hepatocellular carcinoma 

with greater accuracy than the NASH-CRN stage. Interestingly these predictive indices 

were not identical to and actually performed better than the qFibrosis score itself.101 The 

association between fibrosis parameters and clinical outcomes was also demonstrated using 

single fibre quantitative and high resolution technology (PharmaNest) in a multicentric 

series of 304 patients with NAFLD and a median follow-up of 11.4 years.102 In this study, 

a liver event predictive score was developed and achieved an AUC of 0.78 for prediction of 

the occurrence of a composite endpoint of liver-related events and hepatocellular carcinoma. 

In contrast to the previous series based on SHG-TPEF readings101 the predictive value of the 

liver event predictive score was not different from that of the baseline quantitative fibrosis 

score.102 These studies are continuing in order to increase the accuracy of prediction and 

statistical power.

In the phase III STELLAR trials of selonsertib, AIM-NASH continuous fibrosis scoring 

approaches predicted progression to cirrhosis in patients with stage 3 fibrosis and the 

occurrence of clinical events (cirrhosis decompensation) in patients with cirrhosis.42 

Similarly, an ML-based approach that used deep convolutional neural networks to produce 

pixel-level predictions of fibrosis and nodularity was shown to be well correlated with 

haemodynamically measured hepatic venous pressure gradient (HPVG), only modestly 

correlated with reductions in HPVG, and strongly correlated with fibrosis changes.103 

Importantly, increases from baseline in ML-HPVG were associated with an increased risk 

of clinical events. A different ML-based algorithm was used in patients with NASH and 

compensated cirrhosis to identify and quantify fibrosis changes within the F4 stage as well 

as portal hypertension.85 Across all these studies, ML-based histological scores accurately 

predicted HPVG changes, clinically significant portal hypertension, and development 

of varices in patients with cirrhotic NASH.42,85,103 Finally, in patients who underwent 

liver transplantation, unsupervised AI-identified quantitative fibrosis traits in non-tumoral 

tissue associated with the presence of hepatocellular carcinoma.104 This exciting area 

of investigation may reveal the full potential of the different DP/AI methodologies in 
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determining disease severity, predicting disease course, and identifying therapeutic benefits 

of pharmacotherapies in development.

DP/AI tools in preclinical models

DP/AI tools are also being investigated in preclinical models to improve understanding of 

the biological mechanisms underlying NASH and to screen potential drug candidates. AIM-

NASH, as part of a multidimensional analysis of hepatic and splenic immune cells, revealed 

distinct immunological patterns that inhibit hepatic carcinogenesis and that could provide 

valuable insights on progression of liver disease.105 Results from the FAT-NASH mouse 

model showed that quantitative fibrosis and steatosis scoring with FibroNest™ was superior 

to conventional NASH staging when describing progression and treatment responses and 

their effect on specific phenotypic fibrosis traits.106 FibroNest™ can detect and quantify the 

effects of multiple drug treatments, as well as the effect of gene therapies and knockout 

approaches.107 FibroNest™ has also been used to assess changes in liver histology in 

response to drug treatments in studies of human 3D NASH models.15 The MorphoQuant® 

tool can quantify fibrosis, steatosis, and inflammation in preclinical rodent models of 

NASH,60,108,109 with good correlation between MorphoQuant® assessment of fibrosis 

and conventional pathologist scoring when used to assess liver samples from two mouse 

models of liver disease.17 In particular, inflammation was assessed through the identification 

of hepatic crown-like structures, a NASH-specific feature, involved in inflammation and 

fibrosis development.60,110 The qFibrosis tool has been used to systematically evaluate liver 

fibrosis progression patterns in different animal models.14,111 This approach can be used 

to quantify specific fibrosis progression and regression patterns in different liver regions, 

which can assist in improving understanding of therapeutic agents’ mechanisms of action. 

Furthermore, qFibrosis has been used to estimate changes in fibrosis patterns in preclinical 

NASH treatment models with either pharmacological or metabolic interventions.112,113

Other potential uses for DP/AI tools in NASH

A major advantage to DP/AI tools is the quantitative and continuous scoring of histological 

features vs. conventional categorical scoring systems. NIT development for NASH diagnosis 

and management is an active area of investigation. The potential added value of integrating 

DP/AI tools with NITs is providing a bridge between quantitative and continuous histology 

scores and continuous data from NITs. A post hoc analysis of the phase IIb FALCON1 study 

evaluated the association between continuous histological scores generated by FibroNest™ 

and imaging-based scores using magnetic resonance enterography and MRI-estimated 

proton density fat fraction measurements.114 The results showed agreement between 

quantitative DP scores and imaging-based measurements. Additional studies have shown 

correlations between changes in imaging-based biomarkers and NASH explore-derived 

quantitative histological features.115 These preliminary data suggest that DP/AI tools can be 

used to benchmark histological changes with imaging-based measurements, and likely novel 

serum markers, thereby assisting NIT development and validation, while also improving the 

ability to demonstrate treatment-induced histological benefit.

Ratziu et al. Page 12

J Hepatol. Author manuscript; available in PMC 2025 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pathomic fusion is a recently proposed approach to integrate histopathology data with 

molecular features for improved diagnosis and prognosis.116 It combines large quantitative 

DP datasets with molecular datasets using AI. ML-based analyses of liver histology have 

been integrated with transcriptomic data from the same tissue to obtain mechanistic insights 

into NASH disease progression and to identify genes associated with portal inflammation 

and bile duct area to predict patient prognosis.117 Moreover, an ML-based histological 

analysis from patients with NASH and stage 3 fibrosis or cirrhosis, when combined with 

phenotypes derived from transcriptomic and genetic data, enabled improved prediction 

of molecular endpoints relative to standard histology. It also identified a histological 

phenotype associated with the PNPLA3 I148M genotype in the NASH cohort.62 These 

results highlight the potential of combining large DP datasets with genomic data to promote 

our understanding of NASH pathogenesis, but this research is still at an early stage.

A proposal for clinical validation

A proposal for the clinical validation of DP/AI is outlined in Fig. 5. At a minimum DP/AI 

should be able to reproduce fibrosis staging, as currently assessed by common histological 

classifications, such as the NASH-CRN classification, using conventional pathology reading 

as a reference standard. However, the ability of DP/AI to go beyond the mere reproduction 

of the traditional histological classifications creates the opportunity for a quantitative and 

sensitive assessment of disease progression (and possibly regression) which could have 

significant implications for therapeutic trials. Continuous quantitative scores should provide 

information on disease course, both during the natural course and as a result of specific 

interventions. A crucial requirement is that both fibrosis progression and fibrosis regression 

be reflected in the directionality of score changes. If measurable, structural collagen fibre 

properties should provide information about patterns of fibrosis progression or regression. 

This would help determine, for a given fibrosis stage, the trajectory of the fibrotic process 

and whether this trajectory has been impacted by a particular intervention.

Ultimately, the relevance of the continuous scores or the fibrosis fibre structures will be 

demonstrated by their ability to predict clinical, liver-related events. This should be tested 

for both baseline biopsy values and for changes between serial biopsies resulting from 

an intervention. A convincing demonstration of the clinical value of DP/AI findings will 

position this technology as a surrogate for drug efficacy in clinical trials, with the main 

advantages being the reproducibility, lack of variability and robustness of an automated 

technique, while the continuing reliance on liver biopsy is a disadvantage.

Regulatory considerations for DP/AI tools

Regulatory processes vary across countries and evolve over time. Therefore, this section 

discusses some general points that should be considered when developing, validating, and 

selecting DP/AI tools. The Digital Pathology Association (DPA) has released a white paper 

that provides recommendations and guidance on best practice, proposing that companies 

and regulatory authorities should collaborate to set formal standards for DP/AI components 

and software to ensure that tools are safe, effective, and beneficial for patients.29 The DPA 

released another white paper detailing the FDA regulatory framework of quantitative image 
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analysis (QIA) tests for biomarker use and related guidelines. With more than 33 QIA 

applications approved by the FDA, these regulatory pathways and guidelines can also be 

applied to DP/AI tools.13

DP/AI tools consist of both hardware (e.g., microscope, slide scanner) and software (e.g., 

AI algorithm). Each component can be approved individually or as a complete system.118 

Two WSI systems have been approved by the FDA for histopathological analysis and these 

include the slide scanner, image management system, and display.39 The first AI product 

to be approved by the FDA is designed to identify regions of interest on digital prostate 

biopsy images for further analysis by pathologists. This software is compatible for use with 

available digital WSI systems.46 DP/AI tools are regulated as in vitro diagnostics (IVDs) or 

medical devices. Device classifications are based on the intended use and the risk to human 

health.119 In the US, devices (including software) that are developed for use in an individual 

pathology laboratory are defined as laboratory-developed tests, regulated under the Clinical 

Laboratory Improvement Amendments, and require validation and self-certification by the 

individual laboratory. Devices that are developed for commercial distribution are regulated 

by the FDA based on patient risk (classes I–III; Table S2). FDA-approved WSI systems have 

been classified as class II devices with special controls.119,120 DP image management and 

viewing platforms can be included as Medical Device Data Systems, Medical Image Storage 

Devices, and Medical Image Communication Devices, and are covered by their own FDA 

guidelines.121 In the EU, WSI and image analysis systems (including software specifically 

intended for medical uses) are considered IVDs and are regulated by IVD device regulations 

that came into effect in 2022. WSI systems are considered to be class C devices based on 

their intended use and risk (Table S2). DP/AI tools developed for use in NASH will likely be 

classified as class C devices.118

The FDA has approved several QIA algorithms. However, these algorithms do not interpret 

data but provide quantification scores that must be approved by a pathologist.13 ML-based 

algorithms that are trained with pathologist involvement are considered more likely to gain 

FDA approval compared with unsupervised AI approaches.53 However, a deep learning-

based AI algorithm has been approved by the FDA for use in detection of diabetic 

retinopathy.31 The FDA released an AI/ML Software as a Medical Device (SaMD) Action 

Plan that states that SaMD must not reproduce human bias and must demonstrate greater 

certainty and agreement compared with conventional approaches.122 The SaMD includes 

AI-based algorithms intended to be used to diagnose, treat, cure, mitigate, or prevent disease 

and can be locked or open for continuous learning.13,122 For algorithms that are open for 

continuous learning, the DPA recommends use of Good Machine Learning Practices to 

anticipate modifications and thereby define what the algorithm should become when it is 

learning and how it will remain safe and effective.13

Prospects for future utilisation and limitations of DP/AI in NASH

There is enthusiasm in the NASH community about the potential of DP/AI so it is important 

to consider where these tools will be most useful in NASH diagnosis and management 

(Table 2 and Fig. 6). In the short term, DP/AI tools are being developed to assist pathologists 

with grading and staging of liver biopsies in an accurate and reproducible manner,38 while 
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reducing the impact of limitations associated with manual scoring. Histological assessment 

of liver biopsies is required for patient enrolment and assessment of drug activity in 

clinical trials, and this is one area where DP/AI tools are beginning to demonstrate their 

potential. Several of the DP/AI tools described in this review are supporting clinical trials, 

both prospectively and retrospectively. The use of continuous scoring outputs generated 

by DP/AI tools may allow for the more accurate assessment of disease progression and 

regression than can be determined using standard categorical scoring systems, including 

subtle changes that may be missed or impossible or impractical to categorise by light 

microscopy.38,45,84,95 This could enable more accurate identification of potential biological 

activity of investigational therapeutic agents within the short timeframe of standard clinical 

trials and will hopefully allow for more successful drug development and the use of DP/AI 

tools as surrogate endpoints. Other short-term goals of DP/AI in NASH include relating 

digitally captured changes in cell characteristics to fibrosis stage and disease progression 

over time, correlating early changes in fibrosis patterns with risk of cirrhosis and clinical 

outcomes, and linking short-term changes in histological activity to disease progression and 

regression. For example, novel immunohistochemistry-based parameters could be quantified 

using DP/AI to reflect changes in fibrosis dynamics. These could include markers of fibrosis 

progression (e.g., platelet-derived growth factor and transforming growth factor-β) and 

regression (e.g., matrix metalloproteins). In the long term, DP/AI could improve knowledge 

of the biology underpinning NASH, thereby improving disease definitions, characterisation 

of patient subgroups (such as paediatric patients),123 and ultimately prediction of clinical 

outcomes. The identification of AI-derived continuous or exploratory histological features 

may also assist with the development of novel clinical endpoints, thereby improving the 

drug development process, and identification of novel biomarkers of both NASH and fibrosis 

progression/regression. DP/AI tools may also have an impact on day-to-day clinical practice. 

DP images could be used to communicate with patients about a disease that may have 

minimal symptoms, thus allowing patients to visualise and better understand the changes 

that are happening to their liver. In turn, this may improve patient adherence to lifestyle 

modifications and treatments.

Current limitations of DP/AI for use in NASH trials

There are limitations associated with DP/AI tools under development in NASH. 

Identification of subtle changes in histological processes, while potentially beneficial 

in drug development, currently has unknown clinical relevance for predicting patient 

outcomes. Additionally, most ML-based algorithms rely on training by multiple experienced 

pathologists who may not agree on individual features.45 However, this would not be an 

issue for tools using expert system-based AI algorithms. It is essential for developers of 

DP/AI tools to demonstrate that they are more reliable and reproducible than conventional 

histological approaches, requiring transparency when publishing results. However, even with 

improvements in reliability and reproducibility, DP/AI tools are still subject to sampling 

variability and thus provide results unrepresentative of the entirety of the liver. Also, 

pre-analytical steps in biopsy management, such as quality of staining or thickness of cut 

sections, need to be carefully standardised given the impact they have on the quality of 

the readings. Moreover, the formal demonstration of the lack of intrareader variability of 
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DP/AI methods is still lacking when addressing, for instance, stains performed on different 

days, slides scanned on different scanners, different section thicknesses or diameter of the 

core fragments and any other technical differences between commercial vendors. Also, 

with multiple companies developing different DP/AI tools, there must be alignment on 

the optimal utilisation of these tools, i.e. in which patients or scenarios the different tools 

are most effective and how they can be combined for analysis of clinical data sets. It is 

likely that the NASH community will be able to select from a portfolio of tools based on 

their needs and available clinical data. As with other new technologies, the end users will 

ultimately decide which tools are the most useful, but approval by regulatory authorities may 

influence these decisions.

It is valid to argue that conventional histology readings may be sufficient to detect changes 

in NASH pathological features for compounds with strong efficacy thus rendering DP/AI 

analyses irrelevant. However, phase IIb trials, which can have a significant impact on the 

fate of drug candidates, are usually of small sample size and of rather short duration. Even 

potent drugs may not demonstrate noticeable effects in this setting, while positive results 

from small trials may be chance findings that are not subsequently confirmed. Therefore, it 

is important to either corroborate anti-fibrotic effects detected by conventional histology or 

document early histological changes that indicate (the dynamics of) anti-fibrotic effects in 

a quantifiable manner. This could help establish dose-response relationships or understand 

kinetics or zonal determinants of histological changes, which would aid in the assessment of 

the potential of a drug candidate.

As NASH prevalence increases, DP/AI approaches may help to manage increasing liver 

biopsy assessments that place escalating demands on pathologists. It is important to 

remember that DP/AI tools will not replace pathologists and the impact on pathologists’ 

workload will depend on how the tools are designed, for example, whether a tool requires 

a pathologist to use the software themselves or only to receive data and outputs generated 

by the software. Additionally, it is essential that DP/AI tools can be adapted for use in 

other settings, such as for diagnosis and staging of paediatric NASH.123,124 Ultimately, 

histological analysis of NASH may be superseded by NITs, but in the meantime, we 

strongly believe that developing and validating DP/AI tools should be of the highest priority 

in the NASH field. This is particularly important for drug development as the limitations of 

current histological assessments may have played a major role in the failure of some trials 

to achieve their histological endpoints, even when drug candidates have demonstrated clear 

biological efficacy.
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Abbreviations

AI artificial intelligence

AIM-NASH AI-based histologic measurement non-alcoholic steatohepatitis

CRN Clinical Research Network

DP digital pathology

DPA Digital Pathology Association

FDA US Food and Drug Administration

HPVG hepatic venous pressure gradient

IVD in vitro diagnostic

ML machine learning

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NIT non-invasive test

qFPs quantitative fibrosis parameters

QIA quantitative image analysis

SaMD Software as a Medical Device

SHG second harmonic generation

TPE two-photon excitation

WSI whole-slide imaging
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Keypoints

• Safe and effective therapies are urgently needed to treat patients with non-

alcoholic steatohepatitis (NASH), but a major challenge is the requirement for 

conventional (i.e. light microscopic) histological analysis of liver biopsies in 

clinical trials to diagnose NASH for enrolment and efficacy assessment.

• Conventional assessment of liver biopsies is associated with inherent 

limitations, including pathologist subjectivity, lack of reproducibility, the 

co-existence of progressive and regressive fibrosis features, and categorical 

scoring systems that lack the sensitivity to detect drug-induced changes.

• Digital pathology (DP) workflows are established in other areas of medicine 

and can be used to automatically detect, localise, and quantify histological 

features, and in combination with artificial intelligence (AI), can score various 

histological parameters.

• Several DP/AI tools in development for NASH can quantitatively analyse the 

key histological features of NASH (i.e., steatosis, inflammation, hepatocyte 

ballooning, and fibrosis) and could assist pathologists with grading and 

staging of liver biopsies in an accurate and reproducible manner and, 

importantly, provide continuous metrics for measuring treatment-induced 

changes.

• Regulatory processes for DP/AI tools vary between countries and are rapidly 

evolving, but currently, specific guidance is complex and limited.

• Development, validation, and standardisation of DP/AI tools is an area of high 

priority in the NASH field, particularly with respect to drug development, 

where the limitations of conventional histological assessments may have 

contributed to the failure of some trials to achieve their histological endpoints 

despite evidence of biological activity.

Ratziu et al. Page 25

J Hepatol. Author manuscript; available in PMC 2025 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. AIM-NASH and NASH explore workflow and outputs.
Liver biopsy samples are stained with H&E and MT prior to conventional scanning and 

digitisation performed by either the user or at PathAI Diagnostics. WSIs are uploaded 

via the cloud and are evaluated first by artifact detection and exclusion algorithms, and 

subsequently by AIM-NASH and/or NASH-explore machine learning-based algorithms 

for tissue characterisation. WSI, heatmap overlays, and quantitative human interpretable 

features are either returned directly to the user or are reviewed by a pathologist who 

accepts or rejects the model-derived ordinal scores prior to delivery. Examples of AIM-

NASH output images illustrating key NASH histological features are shown in the 

lower panel and were provided by Dr Janini Iyer of PathAI, Inc. AIM-NASH, AI-based 

histologic measurement non-alcoholic steatohepatitis; CRN, Clinical Research Network; 

MT, Masson’s trichrome; NAS, non-Alcoholic fatty liver disease activity score; NASH, 

non-alcoholic steatohepatitis; WSI, whole-slide imaging.
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Fig. 2. FibroNest™ workflow and outputs.
H&E, Masson’s trichrome, PSR, and IHC staining are performed on liver biopsy samples 

prior to scanning and digitisation. WSIs are uploaded via the cloud and analysed by 

FibroNest™ machine learning-based algorithms. Images and quantitative data are returned 

for pathologist review and interpretation. Examples of FibroNest™ output images illustrating 

key NASH histological features are shown in the lower panel and provided by Dr 

Mathieu Petitjean of PharmaNest Inc. IHC, immunohistochemistry; NASH, non-alcoholic 

steatohepatitis; PSR, picrosirius red; WSI, whole-slide images.
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Fig. 3. MorphoQuant® workflow and outputs.
H&E, PSR, and IHC staining are performed on liver biopsy samples prior to scanning 

and digitisation. WSI are uploaded via the cloud and analysed by MorphoQuant® 

automated algorithms. Images and quantitative data are returned for pathologist review 

and interpretation. Examples of MorphoQuant® output images illustrating key NASH 

histological features are shown in the lower panel and provided by Dr Cindy Serdjebi 

of Biocellvia. IHC, immunohistochemistry; NASH, non-alcoholic steatohepatitis; PSR, 

picrosirius red; WSI, whole-slide imaging.
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Fig. 4. qFibrosis, qInflammation, qBallooning, and qSteatosis workflow and outputs.
Unstained liver biopsy samples are imaged by SHG/TPE fluorescence. WSI are uploaded via 

the cloud and analysed by qFibrosis knowledge-based algorithms. Images and quantitative 

data are returned for pathologist review and interpretation. Examples of qFibrosis output 

images illustrating key NASH histological features are shown in the lower panel and 

provided by Dr Dean Tai of HistoIndex Pte Inc., as further described in Liu et al. and 

Naoumov et al.62,91 AI, artificial intelligence; AUROC, area under the receiver operating 

characteristic; MT, Masson’s trichrome; NASH, non-alcoholic steatohepatitis; SHG/TPE, 

second harmonic generation/two-photon excitation; WSI, whole-slide imaging.
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Fig. 5. A proposal for clinical validation of DP/AI diagnostic procedures for NASH.
AI, artificial intelligence; DP, digital pathology; NASH, nonalcoholic steatohepatitis.
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Fig. 6. Diagnostic capabilities of DP/AI methodologies applied to liver histology.
AI, artificial intelligence; DP, digital pathology.
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