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Abstract

Building systems and their heating, ventilation and air conditioning flow networks, are becoming
increasingly complex. Some building energy simulation tools simulate these flow networks using
pressure drop equations. These flow network models typically generate coupled algebraic nonlinear
systems of equations, which become increasingly more difficult to solve as their sizes increase. This
leads to longer computation times and can cause the solver to fail. These problems also arise when
using the equation-based modelling language Modelica and Annex 60 based libraries. This may limit
the applicability of the library to relatively small problems unless problems are restructured. This
paper discusses two algebraic loop types and presents an approach that decouples algebraic loops
into smaller parts, or removes them completely. The approach is applied to a case study model
where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of
5 iteration variables.

1 Introduction

Building Heating, Ventilation and Air Conditioning (HVAC) systems are becoming increasingly com-
plex due to new requirements such as the use of new energy-efficient heating and cooling systems
with increasing share of renewable energy sources and more stringent ventilation standards. For
detailed building energy simulations these flow networks can be modelled using first-principle phys-
ical models. The fluid flow direction and magnitude in a system are governed by the pressure drops
that are generated by viscous friction in various components and by the pressure heads that are
generated by pumps. Building Energy Simulation (BES) tools often neglect pressure drops and only
consider the flow rates. HVAC systems are however becoming increasingly complex, with multiple
actuators such as valves and variable-speed pumps that aim to improve the controllability of the
system, while reducing electrical power use. To simulate these types of systems more accurately,
simulation models can be extended such that they compute pressure drop based on flow rates. The
added accuracy however incurs a higher computational cost. Consider for instance a hydronic sys-
tem containing n components that model nonlinear flow friction. For such systems in the order of
n pressure drops are computed. Since flow networks are typically considered to be quasi-stationary,
a non-linear algebraic loop with up to n iteration variables may be formed if the problem structure



is not exploited. These algebraic loops are typically solved using Newton-type solvers, which use a
Jacobian computation containing up to n2 elements. As the inverse of the Jacobian is needed, the
computation time can scale as O(n3). This results in a computation time that scales badly with
the problem size (Jorissen, Wetter, and Helsen, 2015). Moreover, as convergence of Newton solvers
depends on the initial guess, Newton solvers may not converge.

Modelica is an equation based modelling language that allows simulation of multi-physical sys-
tems (Mattsson, Elmqvist, and Broenink, 1997) and is gaining interest in the field of building
simulation. A number of open source Modelica libraries such as IDEAS (Baetens et al., 2015),
Buildings (Wetter et al., 2014), AixLib (Müller et al., 2016) and BuildingSystems (Nytsch-Geusen
et al., 2013) allow the simulation of buildings, including pressure-driven water and air flow circuits.
At the core of these libraries is the Annex 60 library (Wetter et al., 2015) (Wetter and van Treeck,
2017), which provides models for fluid flow networks. Annex 60 development is continued as part of
IBPSA project 1.

The goal of this paper is to provide a comprehensive overview that explains when two main
types of algebraic loops in flow networks are formed if pressure drop is computed as a nonlinear
function of the flow rate and how they can be avoided. This discussion should allow the Modelica
user to gain more insight into the Modelica toolset, allowing them to simulate larger flow networks
by manipulating the problem structure. The Modelica library developer can learn how to structure
models such that fewer or smaller algebraic loops are generated. The discussion is based on the
Modelica tool chain, but the insights may also be applicable to other simulation tools and problems
that are governed by the same underlying mathematical problems. This work is complementary to
an earlier publication (Jorissen, Wetter, and Helsen, 2015). More specifically, Jorissen, Wetter, and
Helsen (2015)present broadly applicable simplifications, applied to simple models and they state
that such simplifications can lead to 2 to 3 orders of magnitude speed increase for a large model.
This paper further discusses in detail how these simplifications are applied to the hydronic network
of the larger model. For the Modelica tool developer, possible points of improvement are identified
that are specific to the BES field.

This paper is structured as follows: Section 2 first provides background information that is re-
quired to understand the rest of the discussion. Some background information regarding Modelica
is provided, main Annex 60 library equations are presented and algebraic loops are discussed. Sec-
tion 3 outlines the methodology, which consists of three approaches that can be used to simplify
or eliminate algebraic loops and rules of thumb for modelling the thermal dynamics of hydronic
systems. Section 4 applies the methodology to a specific case study where an algebraic loop with
86 iteration variables is split and simplified such that multiple algebraic loops with no more than 5
iteration variables are obtained. Section 5 presents the conclusions.

2 Assumptions and Background

We assume that flow friction is computed using a nonlinear function that depends on the mass flow
rate. Hence, we neglect temperature dependency of density and viscosity. Further, we assume the
flow distribution to be steady-state.

Algebraic loops are coupled systems of algebraic equations. The type and configuration of the
used HVAC component model equations determines what algebraic loops exist, but not how they
are solved, which is tool-specific. The user chooses the configuration and type of HVAC components.
Therefore, knowing the relevant equations in the used component models and understanding when
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algebraic loops are formed is key to understanding the following discussion. This section therefore
provides background information. Firstly, basic Modelica concepts are explained. Secondly, a qual-
itative overview of the relevant equations in typical Annex 60 models is presented. Thirdly, we
discuss how algebraic loops are typically identified and how they are solved.

2.1 Modelica background

Modelica models declare a number of variables and contain a number of equations from which the
variables are solved. For pressure drop elements these equations require boundary conditions from
outside the considered model, and conversely the variables that are defined in a model may become
boundary conditions in a different model. To enable this exchange of information, Modelica models
use ports. Different types of ports exist, e.g. a RealInput, HeatPort or FluidPort. A RealInput

is used to input a real variable into a model. A HeatPort is used to exchange heat. It consists
of one potential variable, the temperature T , and one flow variable, the heat flow rate Q̇. A
FluidPort represents a fluid connection and consists of variables representing the pressure at the
port, which is a potential variable, the mass flow rate entering the model, a flow variable, and a
stream variable representing the specific enthalpy of the fluid. A port may declare optional stream
variables such as glycol concentrations and water vapour fractions. For each stream variable, two
associated numerical values exist: one value assuming the fluid exits the model, which we denote
by s and one value assuming the fluid enters the model, which is denoted using inStream(s). See
Franke et al. (2009) for more information regarding stream variables.

When connecting two or more ports to each other, a connection set is generated. For each
connection set, equations are generated depending on the involved variable type (potential, flow
or stream). The quantities corresponding to flow variables are conserved such that their values add
up to zero. The values of potential variables are equated. For a connection set that consists of
two ports ‘a’ and ‘b’, the value of the entering stream variable s of ‘a’ equals the exiting value of
s of ‘b’ such that inStream(sa) = sb and vice versa. When a connection set consists of n > 2 ports
then n mixing equations are generated such that

inStream(si) = f(sj , ṁj) ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , n}\{i}, (1)

where si and ṁi are respectively the stream variable and the mass flow rate corresponding to port i,
and f(·, ·) is a function that conserves the product ṁi si and that has a continuous derivative around
zero mass flow rate ṁi (Franke et al., 2009). When s is an enthalpy variable, then this equation
corresponds to conservation of energy.

2.2 Annex 60 model equations

Table 1 contains an overview of some basic models in the Annex 60 library. The fluid ports of these
models (blue or white-blue circles) may be used to connect models to each other. The equations
that are introduced by connecting components from the outside were discussed in Section 2.1. We
now discuss the relevant equations that exist inside of the models that are listed in Table 1. The
purpose of this discussion is not to be complete, but rather to show the main variable dependencies
that are relevant for this discussion. The total set of equations determines what algebraic loops
are formed. This will be discussed in Section 2.3. We consider two groups of equations: equations
associated to pressures and mass flow rates, and equations with properties that are carried by the
flow, e.g., enthalpy and mass fractions.

In the following discussion, we assume that each component enforces conservation of mass such
that the sum of the mass flow rates entering and exiting through all fluid ports equals zero. This
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property is satisfied when using the default Annex 60 water Medium. For air media this may not be
the case when air is configured to be compressible.

At this point, we note that in this paper, we are concerned with the situation in which the mass
flow distribution is computed based on non-linear flow friction. This is how most users use Modelica.
However, Annex 60-based libraries allow three options: Firstly, all flow resistance can be modelled
using nonlinear functions of the flow rate, and for valves and dampers, the valve and damper position.
This is the most detailed situation, which we examine in this paper. Secondly, the nonlinear flow
resistances can be replaced by linear functions using a parameter, which greatly simplifies the flow
network. Thirdly, the flow resistances could be removed by setting the pressure drop at design flow
to zero. In this case, the flow rates can be prescribed in each flow branch, as it is typically done
in building simulation tools such as EnergyPlus and TRNSYS. Moreover, we note that although
EnergyPlus computes flow friction for hydronic plants, it does so by prescribing for each parallel
flow branch the mass flow rate, and then adding what is called in its documentation an ”imaginary
valve”. These imaginary valves adjust the pressure drop in order to get consistent pressure at the
flow junctions. Hence, to avoid nonlinear systems of equations, EnergyPlus simplifies the physics by
prescribing the flow rate and adding artificial pressure drop elements. Furthermore, it places various
restrictions for where users are allowed to add pressure drop elements (U.S. Department of Energy,
2016).

2.2.1 Pressure drop

PressureDrop is a generic component for modelling pressure drops as

∆p = sign(ṁ)(ṁ/k)2 (2)

where ∆p is the pressure difference between the two fluid ports of the component, ṁ is the mass flow
rate through each of the fluid ports of the component and k is a flow coefficient that is computed
using a nominal value for the pressure drop and the mass flow rate. Note that a regularisation
around zero flow is implemented for |ṁ| < ṁturb, where ṁturb is the mass flow rate around which
turbulence occurs. See Wetter et al. (2015) for more details.

For computational reasons it sometimes is more efficient to use the inverse of (2) (Jorissen,
Wetter, and Helsen, 2015). Therefore Annex 60 component models that generate pressure drop
equations allow switching between (2) and its inverse,

ṁ = sign(∆p)k
√

abs(∆p). (3)

The switch is done using a boolean parameter from dp. The PressureDrop model is isenthalpic.
When the flow in a model never reverses, the exiting enthalpy value of the upstream port is never
used, therefore its value can be set to anything, which may reduce model complexity. The user can
flag this for most models using a boolean parameter allowFlowReversal. The implementation is

hb = inStream(ha), (4)

ha = if allowFlowReversal then inStream(hb) else h0, (5)

where hb and ha are the enthalpies leaving through the upstream and downstream port, and h0 is
a default enthalpy.
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Table 1: Illustration and short description of the main component models that are used in the
example models.

Icon Description Source

PressureDrop: Pressure drop element that computes ∆p =

sign(ṁ)
(
ṁ
k

)2
or ṁ = sign(∆p)k

√
abs(∆p) depending on the value

of parameter from dp.

Annex 60 v1.0 (Wet-
ter et al., 2015)

MixingVolume: This component mixes all incoming fluids and
causes no pressure drop.

Annex 60 v1.0 (Wet-
ter et al., 2015)

Two-way valve: This computes the same equation as
PressureDrop, but instead of a parameter, k is a function of the
control signal of the valve.

Annex 60 v1.0 (Wet-
ter et al., 2015)

Junction: This component connects one instance of
PressureDrop from each of the three ports to a MixingVolume,
which can optionally be removed using a parameter. The three k
values are computed from parameters.

Annex 60 v1.0 (Wet-
ter et al., 2015)

Three-way valve: This component internally connects one two-
way valve between each of the black valve legs to a MixingVolume,
which is also connected to the white valve leg. The MixingVolume
can optionally be removed.

Annex 60 v1.0 (Wet-
ter et al., 2015)

Boundary: Used to set the absolute pressure at a point in the
hydronic system.

Annex 60 v1.0 (Wet-
ter et al., 2015)

Pump: The pump used in this work sets ∆p to a control input, or
sets the speed N of the pump such that ∆p = f(ṁ,N), where N
is the control input.

Annex 60 v1.0 (Wet-
ter et al., 2015)

Component that exchanges heat between two fluid streams and
that uses one PressureDrop for each fluid.

Custom

HeatPump: Identical to the heat exchanger in terms of pressure
drops, but with thermodynamics of a heat pump.

Cimmino and Wetter
(2017)
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2.2.2 Mixing volume

A MixingVolume represents a fixed volume of mass that mixes perfectly with all entering fluid
streams. It has a vector of fluid ports, which can have any size n. This component causes no
pressure drop, hence the pressure at all its ports is the same. The main purposes of a MixingVolume

are 1) to define a time-dependent state for the mass and energy contained within the considered
volume and optionally 2) to exchange energy with a fluid stream through its heat port.

The main model equations assuming a medium with constant density and mass fractions and a
state variable representing energy dynamics are

∑
i

ṁi(t) = 0, (6)

pi(t) = p1(t) ∀i ∈ {2, . . . , n}, (7)

Ḣi(t) = semiLinear(ṁi(t), inStream(hi(t)), hi(t)) ∀i ∈ {1, . . . , n}, (8)

dH(t)

dt
= Q̇(t) +

∑
i

Ḣi(t), (9)

hi(t) =
H(t)

m
∀i ∈ {1, . . . , n}, (10)

T (t) = fT (h1(t)). (11)

Equation (6) expresses conservation of mass for all mass flow rates ṁi(t) flowing into port i. Since
this model has no flow friction, all port pressures pi(t) are equated in Equation (7). Equation (8)
computes the enthalpy flow rate Ḣi(t) for port i where hi(t) and inStream(hi(t)) are the specific
enthalpies, assuming that the fluid is exiting or entering through port i. semiLinear(·, ·, ·) is a
Modelica-specific function defined as

semiLinear(x, y, z) = if x > 0 then xy else xz. (12)

This function either adds or subtracts energy from the mixing volume, depending on the flow direc-
tion. Equation (9) determines the time-derivative of the enthalpy H(t) of the mixing volume. Q̇(t)
represents the heat flow rate added to the volume through the heat port. The enthalpy is used in
(10) to compute the specific outlet enthalpy of each port and is used in (11) to compute the heat
port temperature T (t) using a function fT (·). m is the mass contained by the mixing volume.

What equations are solved for what variables depends on what components are connected to the
ports of the mixing volume. A component c1 that is connected to the heat port may for instance
set the value of T (t), meaning that the equations will need to be solved for Q̇, while component c2

may set a value for Q̇ in which case the equations need to be solved for T (t).

2.2.3 Two-way valve

The Annex 60 library version 1.0 contains models for five two-way valve types. Four of these
models are very similar to the PressureDrop model except for how the flow coefficient is computed.
The coefficient k(t) now equals g(y(t)) where y(t) is the valve control signal and g(·) is the valve
characteristic such as an equal percentage valve. Each two-way valve has its own implementation
for g(·). Moreover, the input signal is filtered by default, which introduces a state variable for the
valve control signal. The fifth valve model, TwoWayPressureIndependent, uses a flow function that
is pressure independent if a minimum pressure difference is available.
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2.2.4 Junction

The Junction model allows three fluid flows to be connected. Each leg of the junction contains
a PressureDrop component that connects it to a central MixingVolume. The Junction can be
configured to have no pressure drop for its legs and the MixingVolume can be removed by setting
the thermal dynamics to SteadyState. The default stream implementation (1) is then used to
compute the outlet enthalpy.

2.2.5 Three-way valve

The three-way valve models are similar to the Junction models, except that the white branch
in the icon has no flow friction and the black branches contain two-way valves instead of the
PressureDrops. An input control signal and corresponding filter are added similar to the two-
way valve model.

2.2.6 Boundary

The Boundary model sets boundary conditions for the pressure and specific enthalpy or temperature.

2.2.7 Pump

Three types of pumps exist in the Annex 60 library. An input control signal either prescribes the
pressure head of the pump, the mass flow rate through the pump, or the pump speed. The pump
also contains a MixingVolume that represents the thermal mass of the pump. By default a heat flow
rate corresponding to the pump heat dissipation is injected in the MixingVolume.

2.2.8 Heat exchanger

This model exchanges heat between two fluid streams. Each side of the heat exchanger contains a
PressureDrop. The exchanged heat flow rate is computed from the four inlet enthalpies, but only two
of the inlet enthalpies are used, depending on the flow direction. When allowFlowReversal=false

only the two inlet enthalpies of the design flow direction are used. The heat flow rate is used to
compute the outlet enthalpies.

2.2.9 Heat pump

A heat pump is similar to a heat exchanger. The main differences are that a different function is
used to compute the heat flow rate and two MixingVolumes are used to represent the condenser and
evaporator. The heat flow rates are injected in these volumes.

2.3 Algebraic loops

Depending on what equations are used in components and how they are connected, algebraic loops
may be formed. We first discuss a simple example, after which the solution algorithms are discussed
in more detail.

Example Figure 1 shows an example model. One PressureDrop component and one two-way
valve are connected to two pressure boundaries with fixed pressure such that mass flows from the
high pressure boundary sou through res and val to the low pressure boundary sink. Such a model
could be solved based on the following reasoning.
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sou sink

res val

ramp

duration=1

pmidpsou psink

Figure 1: Example circuit with four components: two pressure boundaries, one valve and one fixed
resistance pressure component.

Each port is connected to exactly one other port. Since pressures are potential variables, the
pressure at the left port of res equals the pressure of the port of sou. Typically Modelica tools
consider one of the variables to be an alias variable of the other variable. The alias variables are
then eliminated from the problem, which simplifies computer algebra since fewer variables remain.
Similarly, the pressure at the right port of val is an alias variable of the pressure of sink and the mass
flow rates through these components are alias variables of each other. The values of the remaining
pressure variable, the mass flow rate and the enthalpies need to be solved using a combination of
computer algebra and numerical solvers.

The mass flow rate through this system can be computed from (2), which is contained by res.
To compute the mass flow rate, the pressure difference over res needs to be known. This pressure
difference equals the pressure difference between sou and sink minus the pressure drop of val,
which in turn depends on the mass flow rate through val. Since mass is conserved, the mass flow
rate through val equals the mass flow rate through sou, meaning that the mass flow rate through
val needs to be known. This is however the variable that we were trying to solve for. This example
illustrates that even for this simple example, an algebraic loop is formed that requires a system of
equations to be solved simultaneously. The process how algebraic loops are detected and how they
are solved is now explained in further detail.

Algebraic loop identification When translating a Modelica model, the Modelica translator
collects all equations and all variables of the model. Computer algebra is then used to identify what
equations depend on what variables. This information can be represented using an incidence matrix,
which contains rows of equations i = {1, . . . , n} and columns of variables j = {1, . . . , n}. If equation
i depends on variable j, the element (i, j) contains 1, otherwise it contains 0. This information is
used in Tarjan’s algorithm (Tarjan, 1972) to define which equation is solved for which variable and
in which sequence they are solved. The algorithm effectively restructures the incidence matrix by
reordering the equations (rows) and variables (columns) such that the matrix becomes Block Lower
Triangular (BLT). When there are no algebraic loops, the BLT is lower triangular. In such a matrix,
the first equation e1 uses only one variable v1. Therefore e1 must be solved for v1. The second
equation uses a maximum of two variables, of which one is v1, which was solved from e1. Therefore
e2 must be solved towards v2 using the known value of v1. This way all variables can be solved
sequentially.

When algebraic loops exist, this sequential evaluation is not possible since there exist mutual
dependencies between variables such as illustrated in the example. For each algebraic loop Tarjan’s
algorithm then identifies an equation set E and variable set V that need to be solved simultaneously.
These sets appear as blocks on the diagonal of the BLT. Once the algebraic loop is solved, the
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resulting solutions can be used to evaluate the part of the BLT that appears below the algebraic
loop equations.

Algebraic loop solution Algebraic loops consist of a set of m equations E that depend on m
unsolved variables in V = {V1(t), . . . , Vm(t)} , and that may depend on state variables S that are
computed by the time integrator and solved variables V̄ that were computed earlier in the BLT.
For algebraic loops the equations cannot be reordered such that they can be solved sequentially.
Therefore these equation sets are solved differently, depending on the equation type and the solver
implementation. In the following discussion, we assume that E contains non-linear once continuously
differentiable equations, that a unique solution exists, and that the equations are solved using a
Newton-type solver.

A Newton solver assumes m initial values {V (0)
1 (t), . . . , V

(0)
m (t)} and iteratively solves the equa-

tions. Unless the initial values are correct, the right and left hand sides of equations E return a
different numerical value, implying that the equations are not satisfied. The equation residuals, i.e.
differences between the left hand sides and right hand sides, and the Jacobian are typically used to
compute the next values of the iteration variables. This can be repeated until a solution is found
for which the residuals satisfy an error check.

This formulation requires a linear system of m equations to be solved, which may scale as O(m3).
Elmqvist and Otter (1994) describe tearing, where only a subset of V is used as iteration variables
and the remaining variables are computed by solving them analytically from the iteration variables
and equations E. This can significantly reduce the number of iteration variables and therefore also
the computational cost.

3 Methodology

Large algebraic loops lead to longer computation times and may cause the solver to not converge.
This section explains three main approaches how algebraic loops can be simplified or avoided. Firstly,
algebraic loop equations can be simplified by using known analytic solutions. In this case, the user
replaces a set of equations by a known analytical solution for these equations. Secondly, algebraic
loops can be broken, by which we mean that they either disappear, or they are split into smaller
parts. Thirdly, algebraic loops can be restructured. In this case, the structure of the equations
changes. Moreover, Section 3.4 discusses how hydronic system thermal dynamics can be lumped in
order to obtain faster models without introducing algebraic loops.

Jorissen, Wetter, and Helsen (2015)present the impact of these three approaches on computation
time for small problems. Their work is extended in this section with a generic methodological
discussion and a more complex example in Section 4 where the guidelines that were presented for
these small problems cannot be applied directly. Particular attention is given to the decoupling of
algebraic loops into smaller parts, which is a need that only arises in larger problems.

3.1 Using analytic solutions

In some cases, an analytic solution for the system of equations, or for a part of it, may exist. These
analytic solutions are often not detected by solvers, but they can be introduced by the user.

A simple example is a series configuration of two PressureDrop components c1 and c2. Each
PressureDrop uses nominal pressure drop parameter ∆pnom and nominal mass flow rate ṁnom to
compute k = ṁnom√

∆pnom
. The two PressureDrops can be replaced by a single PressureDrop with

∆pnom = ∆pnom,1+∆pnom,2. The two pressure drop equations are then replaced by a single pressure
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drop equation that produces the same result. Moreover, the number of variables that needs to be
computed is reduced.

This can also be illustrated using the equations corresponding to Figure 1. From the connections
and equations it follows that ṁres = ṁval = ṁ and furthermore:

psou − pmid =

(
ṁ

kres

)2

(13)

pmid − psink =

(
ṁ

kval

)2

. (14)

Variable pmid can be eliminated as

psou − psink =

(
ṁ

kval

)2

+

(
ṁ

kres

)2

= ṁ2

(
1

k2
val

+
1

k2
res

)
(15)

and then solved for ṁ as

ṁ =

√
psou − psink

1
k2
val

+ 1
k2
res

(16)

to obtain an explicit analytical solution for this algebraic loop that computes psou−psink from ṁ, or
vice versa, without considering pmid. These symbolic manipulations are not obvious for most solvers,
but they can be integrated by the user through the use of valve parameter dpFixed nominal.

These two examples illustrate that analytic solutions for series components can be used when
they use the same pressure drop equation and they transition to laminar flow at the same mass flow
rate. For parallel and other configurations, analytic solutions may also exist but they are harder to
integrate into existing models in a user-friendly way. However, base circuit models could be developed
to accommodate such functionality. Ideally Modelica tools would integrate these solutions into their
solvers such that they are implemented automatically.

3.2 Algebraic loop splitting

Engineering insight sometimes allows to remove or simplify equations. Such simplifications could
change certain equations in E such that they only depend on state variables S and on known variables
V̄ instead of on the algebraic loop variables V. That equation is then no longer part of the algebraic
loop.

A second way to split algebraic loops is to replace one or more algebraic equations that solve
for V by differential equations. The corresponding algebraic variable in V then becomes a state
variable, which is computed from a differential equation. Differential equations are evaluated by
the integrator, and hence are already known when the algebraic equations are evaluated. This may
break algebraic loops, but it introduces additional overhead for the integrator. The introduced states
typically have small time constants, which may cause smaller time steps to be required. This can
negatively effect computation time, see Section 3.4.

3.3 Algebraic loop restructuring

The Annex 60 library equations are written in an explicit form where the equation is already solved
for one of its variables, see e.g. (2) where ∆p is evaluated explicitly from ṁ. When multiple parallel
pressure drop components share the same alias variable ∆p, just one distinct variable ∆p can be
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eliminated since the equations are not inverted by the symbolic solver. It is therefore more efficient
to use its inverse, (3). ∆p can then be chosen as an iteration variable, from which all mass flow rate
can be evaluated using (3).

The model structure determines which of the two options is more efficient. Due to the symbolic
algorithm limitations of typical Modelica tools, Annex 60 models contain a parameter from dp that
allows the user to switch between the two formulations manually. This can lead to a significantly
more efficient evaluation of algebraic loops where a large number of pressure drop components are
connected in series or in parallel.

For flow networks that combine series and parallel connections, we suggest the following rule of
thumb. Whenever appropriate, series pressure drop components should be eliminated by merging
them together, using parameter dpFixed nominal and setting dp nominal=0 in the other compo-
nents, which will remove the pressure drop equations. These merged series components are then
connected to each other in parallel. Then set parameter from dp = true to ensure that the pressure
difference can be used as an iteration variable to compute the mass flow rate through each parallel
branch.

For cases where the resulting algebraic loops are still too complex, using balance dynamics
equations as suggested by Zimmer (2013) may offer a solution. This however requires the balance
dynamics equation concept to be integrated in the Modelica standard.

3.4 Thermal dynamics configuration

The discussion thus far only concerned equations solving for pressure drops and mass flow rates.
However, algebraic loops that solve for enthalpies can be formed too. For the remainder of this
section, we assume all mass flow rates are known. By default, all pumps, three-way valves and
junctions contain a MixingVolume, which introduces an enthalpy state (see (9)), due to which
algebraic loops are avoided. Similarly, the control signals of pumps and valves are filtered by default,
which introduces state variables. These states however have small time constants, by default in the
order of 10 seconds, which can significantly increase the number of steps required by the integrator
(Jorissen, Wetter, and Helsen, 2015), and is considered bad practice by Zimmer (2013). These
states can be removed by setting parameter energyDynamics to SteadyState, which replaces the
MixingVolume by an internal fluid port that acts as a mixing point (see (1)). Replacing state
variables in favour of algebraic variables may however lead to linear algebraic loops, which increases
the computation time for each time step. Thus there exists a trade-off between the computation
time per time step and the total number of time steps.

This section discusses why these algebraic loops are formed and how they can be avoided such
that the overall computation time is reduced through the use of parameters energyDynamics and
allowFlowReversal.

The example at the left of Figure 2 is used to illustrate this. The subcircuit is configured using
default parameter value allowFlowReversal = true, which leads to the variable dependencies as
illustrated in Figure 2a, and using energyDynamics = SteadyState such that the outlet enthalpy is
computed using algebraic equations as illustrated in Figure 3a. All enthalpy variables are therefore
algebraic variables, which are computed from each other. Variable dependencies are indicated using
arrows. Suppose now that we want to compute the heat exchanger outlet enthalpy. We then need
to follow the arrows representing the equation dependencies. This shows that the variable depends
on itself, since there exists a path back to the heat exchanger outlet enthalpy. Consequently an
algebraic loop is generated that consists of the variables connected by red arrows in Figure 2a.
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(b) Legend

P dp
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Figure 2: Equation structure for enthalpy computations of subcircuit using original (a) and simplified
(c) equations. The equation structure inside of the three-way valves is illustrated by Figures 3a and
3b.

The first proposed change to remove these algebraic loops is to set allowFlowReversal = false

in the pump, pressure drop, two-way valve and heat exchanger. This simplifies Equation (5) in each
of these models. However, it should only be used if the user knows that the flow never reverses.
The change results in the structure of Figure 2c. It causes enthalpy variables to depend only on the
‘upstream’ variables. An algebraic loop still exists as indicated in the figure using the red elements.
However, it consists of fewer equations and variables. Furthermore, all equations can be solved
in sequence, such that only a single iteration variable is required, since all other variables can be
computed from this variable sequentially. In this particular case Dymola is even able to solve the
algebraic loop analytically.

The second change consists of changing the model equations such that some of the variables that
form an algebraic loop become state variables. In the previous example, one iteration variable sufficed
to compute all other algebraic loop variables in sequence. Therefore, when changing a single algebraic
loop variable into a state variable, all other algebraic variables can sequentially be solved from this
state variable. There is however a choice where the state variable can be introduced. Typically we
want to have the fewest states and the largest time constants possible. The time constants however
cannot be chosen non-physically large as this would introduce too large an approximation. As a rule
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3 x Eq (1)

(a) Steady state

V=V_nominalV=V_nominal

Eq (9)

(b) Dynamic

Figure 3: Graphical illustration of junctions or three-way valves for a steady state (a) or dynamic (b)
configuration. Annotations are added that illustrate the enthalpy equation structure. See Figure 2b
for a legend of the annotations.

of thumb, we propose to introduce states at the start of a subcircuit in a model with many ports,
since then all outflowing enthalpies of these ports are fixed to the state value and hence they do
not end up in an algebraic loop. To avoid small time constants, the thermal mass of the state is
be chosen such that it reflects the lumped thermal mass of the downstream flow leg. This way, the
time constant is relatively large and the introduced state is a reasonable first-order approximation
of the thermal dynamics of the subcircuit.

In the example, the state in the MixingVolume in the three-way valve is used. Valve output
enthalpies are then directly computed from the known state values as indicated in Figure 3b. The
real thermal time constant of a three-way valve is in the order of seconds and depends on the flow
rate. Such small time constants may reduce the integrator time step size. Therefore a thermal mass
is chosen that corresponds to the thermal mass contained by the downstream pipes.

4 Results and discussion

We now apply the methodology presented in Section 3 to the hydronic system of an office build-
ing model. Section 4.1 introduces the model. Section 4.2 shows how algebraic loops are split by
decoupling pressure drop equations of subcircuits that interact weakly. Section 4.3 restructures
algebraic loops through the use of the parameter from dp to reduce the number of iteration vari-
ables. In Section 4.4, the remaining large algebraic loops are split up further using simplified valve
models. Finally, Section 4.5 applies the above described thermal dynamics simplifications. The
simplifications suggested in Section 3.1 were already applied in the initial model configuration and
are therefore not discussed in detail.

4.1 Case study description

Figure 4 shows the hydronic system of a real office building. The plant is illustrated in Figure 4d. It
contains a hot water section that produces hot water for the Domestic Hot Water (DHW) circuit and
for the heating coils in two Air Handling Units (AHU). Hot water is stored in a hot water storage
tank. Furthermore warm or cold water are supplied respectively for heating or cooling of a Concrete
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(d) Main hydronic network model consisting of cold, warm and hot water sections.

Figure 4: Modelica model of the hydronic system. Lines between components represent connec-
tions. Lines with the same color and line type indicate that equations corresponding to the linked
components form one algebraic loop. Black connections indicate that the pressure equals the fixed
boundary pressure. The subsystem shown in subfigure (c) and 24 parallel instances of subfigure (a)
and (b) are connected to subfigure (d) using the indicated ports. A second instance of subfigure (c)
is connected to ports h, i, j of subfigure (d). One large algebraic loop is formed, indicated in red,
and multiple smaller algebraic loops.
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Core Activation (CCA) ceiling heating or cooling system. Warm water is produced using four heat
pumps and is also used as a heat source for 24 Variable Air Volume (VAV) heating coils. Heat or
cold for the heat pumps and passive cooling is supplied by a borefield model at the top left. The
subsystem at the top of the hot water storage box consists of three parallel subsystems that each
charge one DHW storage tank using a three-way valve and a pump. Furthermore ports indicated
using letters ‘a’ through ‘j’ are external connections to more components outside of Figure 4d:

• 24 instances of the VAV heating coil subsystem in Figure 4a are connected to ports ‘a’ and ‘b’
in parallel.

• 2 instances of the AHU heating coil subsystem in Figure 4b are connected to ports ‘c’ and ‘d’
in parallel.

• The CCA subsystem in Figure 4c supplies water to the CCA circuits. 5 CCA instances are
connected to supply ports ‘e’ and 9 to port ‘f’. Port ‘g’ is a shared return flow port.

• 5 CCA instances are connected to supply ports ‘h’ and 10 to port ‘i’. Port ‘j’ is a shared return
flow port.

Unless carefully constructed, a model like this contains large non-linear algebraic loops. We
denote the size of an algebraic loop by (x,y), where x is the number of equations in the algebraic
loop and y is the number of iteration variables. A partial list of non-linear algebraic loops generated
when using Dymola version 2017FD01 for the model corresponding to Figure 4d is [(259, 86),

(3, 1), (3, 1), (22, 4), (7, 2)]. This does not include algebraic loops related to enthalpy
computations, which are discussed in Section 4.5.

Each of these algebraic loops correspond to a specific part of the hydronic circuit. In Figure 4,
different colors are used to indicate the subcircuits that form one algebraic loop. The two algebraic
loops with sizes (3, 1) compute the mass flow rates and pressures of the two fluid loops indicated in
green in the two heat production subcircuits at the bottom left of the figure. The algebraic loop with
sizes (7, 2) solves the blue fluid loop of the borefield. The algebraic loop with sizes (22, 4) solves
the purple algebraic loop at the primary side of the heat pumps. Most remaining components are
coupled into one large (red) algebraic loop, which has sizes (259, 86). This algebraic loop cannot
be solved by the Newton solver, i.e. the solver does not converge and the simulation is aborted.

4.2 Algebraic loop splitting

Large algebraic loops in flow networks can often be split into smaller parts by decoupling weakly
coupled subcircuits, i.e. circuits where mass flow rates and pressure drops in one part of the circuit
only have a small influence on the mass flow rates and pressure drops in the other parts. These weak
couplings are often not of interest for building energy simulations and can therefore be removed.
Algebraic loops spanning over two subcircuits can typically be decoupled by removing pressure drop
equations that require mass flow rates and/or pressure drops of both subcircuits to be known as
follows.

Consider for instance the two MixingVolumes ( see Table 1) at the bottom of Figure 4d. They
represent a supply (left) and return (right) water collector of the heat pumps. A bypass between
these collectors compensates mass flow rate imbalances that exist between the heat pump supply
pumps and the warm water demand pumps shown in Figure 4a and Figure 4c. The purpose of this
bypass is therefore to decouple subcircuits such that the pumps operate independently from each
other. This bypass was however modelled using a pipe, which causes a pressure drop. The pressure
drop ∆pb across this bypass can be computed from the difference of all mass flow rates flowing to
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and from both collectors. These mass flow rates are however a function of the pressure difference
between the collectors, which are in turn functions of ∆pb. Hence an algebraic loop is generated,
consisting of the equations from supply and return connections from and to the collectors.

This algebraic loop is split by removing the pressure drop over the bypass through setting
dp nominal = 0. Since each collector then has the same pressure, each subcircuit coupled to the col-
lectors can compute the mass flow rates using the known pressure difference of 0 Pa across the bypass.

A similar bypass consists of the connection made by the storage tank at the bottom of the ‘Hot
water storage’ block in Figure 4d. Three subcircuits are connected in parallel to this storage tank.
The first is the hot water production circuit on the left. The second is the circuit connecting to
ports (c) and (d). The third is the circuit connecting the tank to the heat pump collectors in the
bottom center of the figure. The goal of this system design is to allow each of these subcircuits to
inject or withdraw hot water from the tank independently. Therefore we assume that the pipes are
sized sufficiently large such that the mutual influence created by the pressure drops is negligible.
Furthermore a pressure independent valve is used to control the mass flow rate in the heat produc-
tion circuit. This valve contains an internal control loop that tracks the flow rate set point such that
the flow rate is not influenced by the pressure difference across the valve provided sufficient pressure
is available. The second subcircuit is connected to long pipes. The pressure drop of these pipes is
significantly larger than the pressure drop over the short pipes towards the heat storage tank. The
connection to the warm water collector is not used in practice and therefore its mass flow rate is
always zero. Therefore, the pressure drop across the heat storage tank can be neglected, since it will
not significantly influence the mass flow rates in the circuits.

More bypasses are formed by the two Junctions at:

• the bottom right in Figure 4d,

• ports (c) and (d),

• the subcircuit at the top in the ‘Hot water production’ part.

The pressure drops generated by these bypasses were also removed.

The result of these simplifications can be seen by comparing Figure 4 and Figure 5. Black
lines in both figures indicate connections for which the pressure along the line is fixed and equal
to the boundary condition pressure set by component pAbs. After the simplifications a significant
part of the system is at the fixed boundary pressure. This causes the algebraic loops to be split
up into smaller parts. The original algebraic loop with size (259, 86) is split into smaller alge-
braic loops with sizes [(65, 28), (55, 25), (34, 5), (21, 4), (12, 2), (7, 1), (7, 1),

(7, 1), (6, 1), (3, 1)]. Each set of red connections in Figure 5 that is separated from other
components by black connections represents one algebraic loop.

After these simplifications most algebraic loops have only a few iteration variables. However,
two algebraic loops with 28 and 25 iteration variables remain. In the next section these algebraic
loops are restructured such that the number of iteration variables is reduced further.

4.3 Algebraic loop restructuring

Consider the algebraic loop with sizes (55, 25). It computes the mass flow rates through 24 valves
that are connected in parallel to ports (a) and (b) (see Figure 4a). Each valve contains a pressure
drop equation, which by default uses from dp = false such that (2) is used. In order to compute
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Figure 5: Illustration of algebraic loops when bypasses cause no pressure drops. The large algebraic
loop is split into smaller parts.

the 24 mass flow rates through the 24 parallel branches, each mass flow rate must either be an
iteration variable of the algebraic loop, or it must be solved from an equation using the iteration
variables. The algebraic loop contains 26 equations in which the 24 ṁi variables appear:

• 24 instances of (2): 1 for each valve,

• conservation of mass at port (a):
∑

ṁi = ṁa,

• conservation of mass at port (b):
∑

ṁi = ṁb.

Equation (2) cannot be solved analytically for ṁ unless the function is symbolically inverted by the
solver, which does happen in Dymola for the analysed cases. The other two equations are linear
equations that may be solved symbolically for the mass flow rates. This means that only 2 equations
can be solved towards mass flow rates. This is 22 equations too few, so at least 22 mass flow rates
need to be iteration variables. Due to the additional equations introduced by the pipes, valve and
pump, the total number of iteration variables is 25: 23 instances of ṁi and the mass flow rate
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through ports (a) and (b).

As explained in Section 3.3 the problem structure forces the solver to use many iteration vari-
ables, which can be overcome by setting from dp = true in the valve models. The solver should
then be able to identify that all valves have the same pressure drop and hence a single iteration
variable can be used. However, Dymola 2017FD01 does not identify that the pressure drops are
alias variables and therefore they are not eliminated. Hence 24 iteration variables are required.
Further simplifications of the flow network are required before the alias variables are identified. In
this case the PressureDrop components that are connected to ports (a) and (b) can be merged
into one PressureDrop component since the same mass flow rate flows through them. When the
PressureDrops are merged, a solution is found where only a single iteration variable is required:
the pressure at port (a). Using this iteration variable, the mass flow rates through all valves can
be computed. This determines the total mass flow rate through the left PressureDrop component,
from which its pressure drop is computed since this component by default has from dp=false. The
pump prescribes the pressure difference across the pump such that the pressure at its inlet may be
computed from this set point and the computed pressure drop. Finally that pressure may be used
to compute the mass flow rates through the two branches of the three-way valve, which by default
have from dp=true. The residual equation equals the sum of the mass flow rates of the three-way
valve ports.

Similarly, from dp=true was set for the valves in the algebraic loop of sizes (65, 28). The
resulting algebraic loop has 7 iteration variables instead of 28. However, it can still not be solved
robustly. The following subsection explains how this algebraic loop, and two others are simplified
further.

4.4 Valve simplifications

Below, three subcircuits containing valves are simplified by removing their pressure drop computa-
tions, which will further split up algebraic loops. These specific valves can be simplified because
their function is not to control the flow magnitude by causing flow friction, but rather to direct the
entire flow towards one of two possible paths, which can be simulated without using pressure drop
equations.

4.4.1 Valve simplification 1

The first considered subcircuit in Figure 5 is the bottom circuit indicated in red at the bottom of
the ‘Hot water production’ block. The size of this algebraic loop is (12, 2). Further simplification
is not required since the number of iteration variables is already small, but we demonstrate how this
could be achieved since the same reasoning can be applied to larger circuits.

The left-most two-way valve in this circuit is a valve that is either fully open or fully closed.
Since the pressure drop of the open valve is negligible, it is safe to assume the pressure drop to
be zero when the valve is open. The valve should be able to block the flow by creating a pressure
difference when the valve is closed. However, the building controller is configured such that this
valve is only closed when the pump is off. Therefore this valve can be replaced by a dummy valve
that causes no pressure drop in both positions, since the system already ensures that the flow is zero
when the valve is closed. This decouples the two parts of the subcircuit. The dummy valve does
however verify our assumption: whether the mass flow rate through the valve is indeed zero when
the control signal indicates that the valve is closed. This avoids unintended modelling errors.
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4.4.2 Valve simplification 2

A second simplification can be made for the two valves in the middle of the ‘Hot water storage’
block, which has sizes (21, 4). These valves determine whether the return water from the three
storage tanks is injected in the top pipe, or in the bottom pipe. The building controller activates the
circulation pumps only when one of the two valves is fully open. The flow then exits through one of
the two valves. The valve control signal is sufficient to know what fraction of the flow exits through
each valve. Therefore there is no need to use pressure drop equations to compute this fraction. The
model can therefore be simplified by neglecting the pressure drop equations and by enforcing the
flow rate fractions explicitly. A second dummy model was created that achieves this, using

pc = pb, (17)

0 = ṁa + ṁb + ṁc, (18)

ṁa = if u1 then − ṁc else 0, (19)

ha = inStream(hc), (20)

hb = inStream(hc), (21)

hc = if u1 then inStream(ha) else inStream(hb), (22)

where u1 and u2 are two boolean control signals and ha, hb, hc, inStream(ha), inStream(hb),
inStream(hc) and ṁa, ṁb, ṁc are specific enthalpies and flow rates corresponding to fluid ports
(a), (b), (c). Port (a) and port (b) are respectively connected to the bottom and top pipe and port
(c) is connected to the domestic hot water storage tanks.

This model also verifies whether the mass flow rates are zero when both valves are closed such
that u1 = u2 = 0. Furthermore this implementation is only correct when the pressures at ports (a)
and (b) are equal since it always assumes pc = pb. This is true in our case since the parallel storage
tank model does not have a pressure drop. This simplification therefore requires knowledge about
the interaction between system components, which defeats the object orientation paradigm.

After the simplification, this algebraic loop is split up into 3 smaller algebraic loops, one for each
parallel branch in the DHW circuit. They each have one iteration variable.

4.4.3 Valve simplification 3

At the right of Figure 6 one large algebraic loop remains, which has 7 iteration variables. It computes
the flow rates through the north and south CCA circuits, which are coupled through the four valves
at the bottom of the circuit. The valves open a connection to either the passive cooling circuit or
the heating circuit. Only one of the two options is opened at any given time and the pumps are
only enabled when either of the two sets of valves is opened. Therefore the same reasoning as in
the second valve simplification is applied, now requiring one instance of the second simplified valve
model and a second instance of this model where (17) - (19) are replaced by

pc = pb, (23)

pa = pb, (24)

ṁb = if u1 then 0 else − ṁc. (25)

This ensures that the total set of equations is non-singular.

The resulting set of non-linear algebraic loops is now [(54, 1), (34, 5), (24, 3), (23,

3), (7, 1), (7, 1), (7, 1), (7, 1), (6, 1), (6, 1), (6, 1), (5, 1), (5, 1)]. Figure
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Figure 6: Figure showing that algebraic loops are broken up into smaller parts when the certain
valves are simplified.

6 provides a graphical illustration of the final set of algebraic loops. Only small algebraic loops
remain. The largest remaining algebraic loop is the algebraic loop at the secondary side of the heat
pumps. It has size (34, 5). Further simplification can be achieved by removing the fixed pressure
drop element of the common pipes, but measurement data has shown that this would lead to too
large an error since its pressure drop is not negligible.

4.5 Thermal dynamics

This section discusses how thermal dynamics were configured to avoid algebraic loops, while also
avoiding small time constants. As a reference configuration, all states were removed except those of
heat storage devices, heat production devices and the borefield. An algebraic loop is then generated
with sizes (632,123).

As suggested in Section 3.4 all models were configured with allowFlowReversal = false. This
resulted in a reduced algebraic loop of size (435, 54) due to the simplification of (5).
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Thermal dynamics were then introduced for all three-way valves and junctions at the start of
each subcircuit and in mixing volumes that represent thermal collectors. This removed algebraic
loops since all variables can be computed sequentially from the new state variables.

The overall result of these simplifications is a model of which the smallest time constant is on the
order of one minute and with algebraic loops containing up to five iteration variables. The smaller
algebraic loops reduce the computation time per time step and the model time constants allow the
use of explicit Euler integration. This is a relatively fast time integrator for problems with many
state variables (Jorissen, Wetter, and Helsen, 2015). After all these modifications, the hydronic
system, when coupled to a building envelope model, ventilation systems and a controller model,
can be simulated 100 times faster using Euler integration than with Dymola’s default integration
algorithm, Dassl. As the original model did not converge, the simplifications and methodology
presented in this work were crucial to obtain a fast implementation of a detailed building model in
Modelica.

5 Conclusion

Modelica is a multi-disciplinary modelling language that is well suited for modelling buildings and
their HVAC systems using a relatively high level of detail. However, when unaware of the algorithms
used by Modelica tools, for large systems, the Modelica user can easily construct models that are
slow or models for which the solver does not converge. One of the primary causes for this is the
generation of algebraic loops, in particular those related to flow networks. The main contribution of
this paper is that it explains why the model equations of hydronic flow networks lead to algebraic
loops and how these algebraic loops can be simplified or avoided altogether. This knowledge can be
applied directly by Modelica users, or it can be used by library developers, e.g. to develop precon-
figured subcircuit templates.

We propose a methodology to reduce the size of algebraic loops, which is an application of basic
methods proposed by Jorissen, Wetter, and Helsen (2015). Firstly, analytic solutions should be
used for problems whenever they are available. Secondly, algebraic loops can be split by simplifying
negligible model equations. Thirdly, algebraic loops can be restructured such that they are solved
using fewer iteration variables. Furthermore, thermal dynamics can be simplified by configuring
models to only allow one flow direction and by lumping the thermal mass of subcircuits at the start
of the circuit. Some of these recommendations implicitly hold simplifications, such as: some pressure
drops are negligible relative to others, flow reversal is not taken into account, fast dynamics of the
HVAC are negligible.

This methodology is applied to an example hydronic system of an office building. Pressure drop
equations in this flow network lead to an algebraic loop with 86 iteration variables. These equations
were simplified using our methodology, which leads to algebraic loops with a maximum of 5 iteration
variables. Thermal equations in the flow network with quasi-stationary thermal dynamics lead to an
algebraic loop of 123 iteration variables. Our methodology removed the algebraic loop completely.
When combined with a suitable integration algorithm, this can lead to models that are two to three
orders of magnitude faster than non-optimised models.

Some of the proposed simplifications require knowledge of the modelled system and are therefore
not easily applied. Further research and development of specialised subcircuits, e.g. within the scope
of IBPSA project 1, can better expose these modelling options to users. For an open-source, docu-
mented example application based on this paper see the IBPSA library package IBPSA.Fluid.Examples.FlowSystem.
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teme.” Bauphysik 35 (1): 21–29.

Tarjan, Robert. 1972. “Depth-first search and linear graph algorithms.” SIAM Journal on Computing
1 (2): 146–160, doi:10.1137/0201010.

U.S. Department of Energy. 2016. EnergyPlus Version 8.7 Documentation Engineering Reference.

Wetter, Michael, Marcus Fuchs, Pavel Grozman, Lieve Helsen, Filip Jorissen, Moritz Lauster, Müller
Dirk, et al. 2015. “IEA EBC Annex 60 Modelica Library - An International Collaboration to De-
velop a Free Open-Source Model Library for Buildings and Community Energy Systems.” In 14th
Conference of International Building Performance Simulation Association, edited by Jyotirmay
Mathur and Vishal Garg, Hyderabad, 395–402. International Building Performance Simulation
Association.

Wetter, Michael, and Christoph van Treeck. 2017. IEA EBC Annex 60: New Generation Computing
Tools for Building and Community Energy Systems.

Wetter, Michael, Wangda Zuo, Thierry S. Nouidui, and Xiufeng Pang. 2014. “Modelica Buildings
library.” Journal of Building Performance Simulation 7 (4): 253–270, doi:10.1080/19401493.2013.
765506.

Zimmer, Dirk. 2013. “Using Artificial States in Modeling Dynamic Systems: Turning Malpractice
into Good Practice.” In Proceedings of the 5th International Workshop on Equation-Based Object-
Oriented Modeling Languages and Tools, edited by Henrik Nilsson, Nottingham, 77–85. Linköping
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