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Although it is well-documented that T cells are crucial in the pathogenesis of human 

immunodeficiency virus type 1 (HIV-1) yet the dynamic interplay between HIV-1 and T cells 

has not been fully elucidated. The effects that HIV-1 has on T cell diversity and the effects that 

T cell diversity has on HIV viral escape have not been well characterized; an understanding of 

these effects could have crucial implications for design of CTL vaccines. In particular, such 

information could provide insights needed to develop methods for reconstitution of sufficient 

diversity in the immune systems of HIV+ persons to allow CTL vaccines to be effective. 

Furthermore, such information could be helpful in the development of CTL vaccines against 

semi-conserved epitopes, so as to prevent viral escape. These are the aims this dissertation will 

attempt to address. 

One major problem with the current approach to HIV-1 vaccine development is that the 

strategies currently being employed ultimately fail; this is mostly, but not entirely, due to HIV- 
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1’s high rate of mutation. This ultimately results in the escape of the virus from vaccine-induced 

immunity, thereby rendering such vaccines useless. Both CD4+ and CD8+ T cells play a major 

role in immune responses to HIV-1. However, during the course of infection, CD4+ T cells are 

depleted, not only in number, but also in diversity. Limited CD4+ T cell diversity cripples the 

immune system, as such CD4+ T cells are not able to provide the help necessary for effective 

innate and adaptive immune system responses to HIV, including help to CTL, which is of 

particular importance for this dissertation. CTL responses constitute one of the crucial arms of 

the immune system that is highly responsible for responding to HIV-1 infection. However, 

immune defenses mediated by CTL ultimately fail in HIV infection, which is, again, also largely 

(but not entirely) due to high rates of HIV-1 mutation that cause constant viral escape, which, in 

turn, drives chronic immune activation and ultimately CTL exhaustion. 

We have addressed each of these problems in this dissertation. In Chapter Two, we 

present results of studies in which we examined thymic output and CD4+ T cell diversity from 

HIV+ persons who were perinatally infected, were in treatment and had lived with the infection 

for over two decades. In Chapter Three, we present results of studies in which we screened for 

CTL responses against the gag 162-173 KAFSPEVIPMF epitope from multiple persons and 

identified and cloned the TCR responsible for these responses, using a novel technique TCR 

identification and cloning technique that we also present in this chapter. Finally, we functionally 

tested the cloned KF11-specific TCR to confirm that this panel was able to recognize and lyse 

the most common circulating variants of the KF11 epitope. 

The results presented in Chapter Two of this dissertation show that HIV+ participants had 

reduced CD4+ T cell levels, with predominant depletion of the memory subset, but preservation 

of naive cells. In most of these HIV+ participants, levels of CD4+ T cells that were recent thymic 
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emigrants’ CD4+ T cell levels were normal, and enhanced thymopoiesis was present, as 

indicated by higher proportions of CD4+ T cells containing TCR recombination excision circles. 

Memory CD4+ T cell depletion was highly associated with CD8+ T-cell activation in HIV-1- 

infected persons, and plasma interlekin-7 levels were correlated with levels of naive CD4+ T 

cells, suggesting activation-driven loss and compensatory enhancement of thymopoiesis. Deep 

sequencing of CD4+ T cell receptor sequences in HIV+ subjects who had high levels of 

compensatory enhancement of thymopoiesis revealed supranormal TCR diversity, providing 

additional evidence of enhanced thymic output. 

In Chapter Three we introduce and describe an inexpensive new technique to quickly and 

efficiently identify, clone and functionally test epitope-specific TCR. Using this new technique 

and samples from multiple HIV+ HLA-B*5701 persons, we identified, cloned and functionally 

tested four KF11-specific TCR. The four identified KF11-specific TCR were able to recognize 

and lyse target cells that were peptide-loaded with the six most common circulating variants of 

KF11. These six variants make up 97% of all circulating variants, according to the Los Alamos 

HIV database. The functional avidity and killing efficiency of the KF11-specific TCR were also 

investigated. Consonant with prior supporting data on KF11-specific TCR, the functional avidity 

observed for these four KF11-specific TCR had a range of 89 ng/ml to 832 ng/ml. One of the 

KF11-specific TCR was tested for its ability to lyse HIV-infected cells. This TCR was able to 

lyse cells infected with three of the four variants that were previously recognized and lysed in the 

peptide-loaded target cells. If these TCR are validated in vivo, and they are to prevent viral 

escape, the process could be repeated with other HLA restricted epitopes in order to develop a 

new treatment against HIV-1. 
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Chapter 1. Introduction 

HIV-1, Then and Now 

In 1981, Dr. Michael Gottlieb, Dr. Andrew Saxon and several other physicians at UCLA 

first noted the immunological irregularity that later was to be recognized as a hallmark of 

HIV/AIDS. Five patients were suffering from opportunistic infections such as cytomegalovirus 

infection, pneumocystis pneumonia, mucosal candidiasis, and Kaposi's sarcoma (Gottlieb et al., 

1981). These conditions, rarely observed in non-immunocompromised patients, plagued Dr. 

Gottlieb’s patients. This led Dr. Gottlieb and his colleagues to investigate further; they found 

that these patients had CD4-T cell deficiency (Gottlieb et al., 1981), another immunological 

hallmark of HIV. These findings spurred the scientific community to research this novel 

immunological condition, which later, in 1983-1984, was discovered to be caused by the Human 

Immunodeficiency Virus I (HIV-I) (Barre-Sinoussi et al., 1983; Popovic, Sarngadharan, Read, & 

Gallo, 1984). This viral infection has turned into a pandemic that has resulted in millions of 

deaths, and it is estimated there is a minimum of 35 million people currently living with HIV 

worldwide. To date, no successful vaccine has been developed, despite many attempts and the 

dire need. 

HIV-1 
 

HIV-1 is an enveloped lentivirus that has an unspliced genome size of 9.2 kb, with a 

mature virion having a diameter of 100-120 nm (Kuznetsov, Victoria, Robinson, & McPherson, 

2003).  HIV-1 is highly genetically diverse and is divided into 3 major groups: M, N, and O (F. 

Gao et al., 1999; Korber et al., 2000). HIV-1 group M is the most common in worldwide 

infections, making up 99.6% of the reported cases. Group M has been further divided into nine 

clades: A-D, F-H, J, and K. An infectious mature HIV-1 virion is composed of nine viral genes, 
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three of which encode structural proteins and six of which encode regulatory proteins. The three 

genes encoding the structural proteins are gag, pol, and env. Each gene encodes multiple 

proteins. For example, gag encodes p17, p24, p7, and p6; pol encodes Protease, Reverse 

Transcriptase, p15, and integrase; env encodes gp120 and gp41. 

HIV infection begins with the binding of its gp120 protein to the target cell’s CD4 

molecule (Maddon et al., 1986; McDougal et al., 1986) and usually either the CCR5 (Alkhatib et 

al., 1996; Choe et al., 1996; Deng et al., 1996; Dragic et al., 1996) or CXCR4 (Y. Feng, Broder, 

Kennedy, & Berger, 1996) which serve as co-receptor. Consequently, the major target of HIV 

infection is CD4+ T cells; however, dendritic cells and macrophages are also susceptible to 

infection (Kawamura et al., 2003; Niedecken, Lutz, Bauer, & Kreysel, 1987; Soto-Ramirez et al., 

1996), although replication is less efficient than it is in CD4+ T cells (Granelli-Piperno, Delgado, 

Finkel, Paxton, & Steinman, 1998; Kawamura et al., 2003; Steinman et al., 2003). Infection of 

the above target cells has been reported to occur via two different mechanisms, cell-free spread 

and cell-to-cell spread (C. Zhang et al., 2015). In cell-free spread, virions bud off from an 

infected cell and encounter and infect another target cell (C. Zhang et al., 2015). Cell-to-cell 

spread involves an infected cell that directly infects another target cell via a virological synapse 

(Arthos et al., 2008; Jolly, Kashefi, Hollinshead, & Sattentau, 2004). Alternatively, cell-to-cell 

spread can also occur by an infected antigen presenting cell (APC) directly transferring mature 

virions in trans to another target cell (Sattentau, 2008). 

Post entry into the target cell, HIV’s integrase will integrate the viral genome into the 

target cell’s genome. HIV infection will cause increased NFkβ and NFAT expression. These 

proteins then bind to HIV’s long terminal repeat, initiating transcription of viral RNA by the 

infected cell’s RNA Pol II. Expression of the viral proteins in an infection of a cell results in 
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human leukocyte antigen (HLA) I downregulation, decreased expression of anti-viral proteins, 

expression and secretion of immune activating cytokines, and expression of anti-apoptotic 

signals. 

After 3-4 weeks of a person being infected, an immune response is mounted by HIV- 

specific cytotoxic T lymphocytes (CTLs) is detected, reducing viremia to a relatively constant 

amount. This is known as the viral set point. However, the CTLs and other immune responses 

are never sufficient to completely eradicate the virus so far as we know. The rate of disease 

progression and immune dysregulation is generally correlated with the height of the set point. 

The amount of infectious virus circulating in an untreated adult remains relatively consistent for 

2-12 years until CD4+ T cells are depleted in quantity (Gottlieb et al., 1981) and/or breadth 

(Baum et al., 2012), creating an opportunity for opportunistic infections to begin and ultimately 

result in death. Since the introduction of combination anti-retroviral therapy (cART) in 

approximately 1995 (Palmisano & Vella, 2011), the use of cART has resulted in a decrease in 

viremia, increase in breadth and quantity of CD4+ and CD8+ T cells, semi-normalization of the 

immune system, decrease in immuno-activation, prevention of opportunistic infections, and 

delayed onset of neurodegenerative disease (Gulick et al., 1997; Hammer et al., 1997). 

T Lymphocytes 
 

All T lymphocytes are derived from pluripotent hematopoietic stem cells arising from 

the bone marrow that then migrate to the thymus where they mature (Donskoy & 

Goldschneider, 1992). T cell development in the thymus is stepwise; first, they all begin without 

expressing CD4 or CD8, commonly referred to as double negative thymocytes, and without 

having rearranged either of their T cell receptor (TCR) chain coding domains. Next, T cells 

rearrange and express the β-chain, which pairs with a surrogate pre-T-cell α chain, forming a 
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pre-T-cell receptor that is co-expressed with the CD3 complex (Spits, 2002). The successful 

formation of the pre-T-cell receptor and CD3 complex leads to cell proliferation, halting of 

rearrangements of other β-chains, and the double expression of CD4 and CD8, commonly 

known as double positive thymocytes. After proliferation occurs, the α-chain rearranges, 

replacing the pre-T-cell α-chain. After successful pairing of α and β chains, the double positive 

T cells undergo positive selection in the thymic cortex. Positive selection is the process in which 

the TCR interacts with the peptide-HLA I or II stabilized complex (pHLA I or pHLA II) of 

cortical thymic epithelial cells (cTECs). The T cells not able to bind pHLA with their TCRs 

undergo apoptosis within 3-4 days. The T cells that are able to bind with intermediate affinity 

are induced to differentiate into mature T cells that express either CD4 or CD8. The double 

positive T cells that survive positive selection then undergo negative selection (Belizario, 

Brandao, Rossato, & Peron, 2016). Negative selection is the deletion of double positive or 

CD4+/CD8+ single positive T cells whose TCR binds self-pHLA with high affinity. The vast 

majority of the T cells that rearrange a successful TCR are deleted either by positive or negative 

selection (Daley, Hu, & Goodnow, 2013; Stritesky et al., 2013; Surh & Sprent, 1994). Single 

positive CD4+ or CD8+ T cells that successfully pass positive and negative selection then 

migrate to the periphery as recent thymic emigrants (RTEs). Once in the periphery, pending 

activation through the engagement of non-self epitopes, naïve T cells need to have consistent 

TCR engagement and signaling with the pHLA complexes they encountered during positive 

selection in order to avoid apoptosis (Ebert, Jiang, Xie, Li, & Davis, 2009; Lo et al., 2009; 

Stefanova, Dorfman, & Germain, 2002).  

Activation of T cells requires three signals. The first signal is the engagement of the T 

cell’s TCR with its non-self cognate epitope presented by the target cell’s HLA. The second 
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signal is the engagement of the T cell’s CD28 receptor with the target cell’s B7 ligand. 

However, signal 2 is modulated at times by the engagement of additional costimulatory 

interactions. Binding of CTLA-4 on the surface of T cells to the target cell’s B7 ligand results in 

an inhibitory signal to the activated T cell. Binding of the T cell’s CD40 ligand to the target 

cell’s CD40 results in increased B7 expression by the APC and further T cell proliferation. A T 

cell’s TCR engagement with its cognate pHLA in the absence of the costimulatory signal leads 

to anergy or clonal deletion through apoptosis. The third signal is received from the different 

cytokines produced from the presenting cell (Imboden & Stobo, 1985). The T cells that 

successfully develop into their effector phenotypes proliferate quickly to try to clear the 

pathogen and/or malignant cells. Once the cognate epitope is no longer present, most of the 

effector T cells die through apoptosis, while a minority differentiates into memory T cells. 

Memory T cells can have a lifespan of many years and, upon recognition of their cognate 

pHLA, they can quickly proliferate and engage in their effector function without the need of 

additional signals. 

CD4+ T cells. CD4+ T cells recognize non-self antigens via the presentation of the Major 

Histocompatibility Complex II (MHC II) in animals or, in humans, the HLA II. Prior to 

exposure to non-self antigen and activation, CD4+ T cells are naïve, with the phenotype CD4+ 

CD3+ CD45RA+. Upon activation, CD4+ T cells differentiate, proliferate, attain the phenotype 

CD4+ CD31- CD45RO+, and are subdivided based on their secreted cytokine profile. Briefly, 

differentiated CD4+ T cells are subdivided into Th1, Th2, Th17, and Treg subtypes, which are 

involved in suppressing or regulating immune responses, B cell class switching, activating and 

supporting the growth of CTLs, and the activation of innate immune cells like dendritic cells and 

macrophages. 
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CD8+ T cells. CD8+ T cells recognize non-self antigens via the presentation of the Major 

Histocompatibility Complex I (MHC I) or, in humans, the HLA I. Pending exposure to non-self 

epitopes and activation, CD8+ T cells are naïve. Upon activation, CD8+ T cells differentiate into 

their effector phenotype CTLs. CTLs’ effector function is to lyse virally infected and/or 

transformed cells that actively present non-self epitopes. CTLs lyse their target cells primarily 

through two different mechanisms, Ca2+ dependent and Ca2+ independent. Both mechanisms 

require signaling to begin with the engagement of the TCR from the CTL and the pHLA 

complex from the target cell. In the Ca2+ dependent mechanism, CTLs release lytic granules, 

perforin, granzyme A and B, and granulysin. Perforin will polymerize on the target cell’s cell 

membrane to cause transmembrane pores and allow the influx of water and solutes (Podack, 

Young, & Cohn, 1985). Granzymes, which are serine proteases, will initiate caspase cascades 

that will trigger apoptosis (Greenberg & Litchfield, 1995). In the Ca2+ independent mechanism, 

the CTL’s Fas ligand binds to the target cell’s Fas molecule. Both mechanisms result in 

signaling for target cells to undergo apoptosis. Additionally, activated CTLs will produce anti-

viral cytokines that will either directly or indirectly suppress viral replication (Cocchi et al., 

1995; Guidotti & Chisari, 1996; Kurane, Meager, & Ennis, 1989). Some of the cytokines and 

chemokines produced are IFN-γ, TNF-α, and MIP-1β (Dayton, Matsumoto-Kobayashi, 

Perussia, & Trinchieri, 1985; Tomiyama, Matsuda, & Takiguchi, 2002). Viral infected cells 

exposed to TNF-α will be induced to initiate apoptosis (J. A. Levy, Mackewicz, & Barker, 

1996). MIP-1β and RANTES have been shown to inhibit HIV-1 entry into CD4+ T cells 

(Alkhatib et al., 1996; Cocchi et al., 1995) by occupying chemokine receptor 5 (CCR5), which 

functions as a co-receptor for most variants of HIV-1. 

T Cell Receptor (TCR) 
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The TCR is a cell surface heterodimeric protein composed of an α and a β chain, with 

each chain being of about 530 amino acids (Kappler et al., 1983). Each β chain is encoded by 

multiple gene segments, including variable (V), diversity (D), joining (J), and constant (C) gene 

segments; the α chain is encoded similarly to the β chain except that it does not contain a 

diversity gene segment (Davis & Bjorkman, 1988). Each of these gene segments has several 

alleles. More specifically, there are 52 V, 2 D, 13 J, and 2 C alleles for the β chain and 70 V, 61 

J, and 1 C alleles for the α chain. Each complete TCR chain is generated through somatic 

recombination; briefly, TCR gene segments are semi-randomly chosen, selecting a V gene 

segment and a D or J gene segment, depending whether it is the β or α chain, and excising out 

the gene segments in between so that they form T-Cell receptor excision circles (TRECs). 

Thereafter, the same process is repeated until the TCR has all of the VDJ-C gene segments 

ready for transcription and pairing of both chains. This provides a small portion of the known 

1015-1020  TCR repertoire. 

However, the majority of the TCR repertoire is reached through the generation of the 

complementary determining region 3 (CDR3). Each chain of the TCRαβ has three CDR regions. 

CDR1 and CDR2 are composed of the V gene segment of each chain and have conserved 

interactions with the HLA complex (D. Feng, Bond, Ely, Maynard, & Garcia, 2007). Mutations 

at this region have been observed to decrease the efficiency of positive selection as well as 

reduce pHLA recognition of non-self (Scott-Browne, White, Kappler, Gapin, & Marrack, 2009). 

CDR3 is responsible for recognizing and binding cognate epitopes (Garcia et al., 1996). The 

CDR3 region is generated through a series of enzymatic reactions where a number of 

nucleotides are randomly added and/or deleted (Cabaniols, Fazilleau, Casrouge, Kourilsky, & 

Kanellopoulos, 2001; Lafaille, DeCloux, Bonneville, Takagaki, & Tonegawa, 1989). Each 
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CDR3 region has a limited number of epitopes it is able to recognize, each with varying degrees 

of affinities. The epitopes recognized are not pathogen-dependent but rather sequence-dependent 

and consequently can be somewhat promiscous. For example, prior studies have shown that a 

TCR can recognize the flu M1:58-66 epitope while also recognizing the HIV p17 gag: 77-85 

epitope (Acierno et al., 2003). Additionally, a TCR can also recognize variants of an epitope. 

For instance, a TCR specific for the consensus sequence of the HIV epitope SLYNTVATL is 

also able to recognize its variants at varying degrees of avidity (Bennett, Ng, Dagarag, Ali, & 

Yang, 2007b). Nevertheless, TCR promiscuity is limited in order to prevent the lysis of host 

cells that present self-epitopes. Given the limited promiscuity of TCRs and their vast repertoire, 

CTLs are able to clear a myriad of pathogens. When skewing of the TCR repertoire occurs due 

to cell death and/or exhaustion induced by continued immune activation, a person’s ability to 

fight off pathogens is highly impaired. 

TCR Complex 
 

The TCR complex is made up of varying proteins, the TCR, the CD3 complex, and the ζ- 

chain (Bragado, Lauzurica, Lopez, & Lopez de Castro, 1990). The CD3 complex is made up of 

three distinct chains including a CD3γ chain, a CD3δ chain, and two CD3ε chains. The TCR 

engages the pHLA complex, initiating a signal that is then regulated by the CD3 and the ζ-chain 

through a downstream sequence of phosphorylation and dephosporylation of their ITAMS, 

resulting in the activation of the T cell (De Palma & Gorski, 1995; Geiger, Gorski, & Eckels, 

1991; Goronzy, Xie, Hu, Lundy, & Weyand, 1993; Hurley et al., 1993; Lobashevsky, Kotb, & 

Gaber, 1996). 

Human Leukocyte Antigen (HLA) 
 

HLAs are cell surface proteins encoded by chromosome 6. They represent the most 
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polymorphic locus in humans and their function is to regulate the survival and activation of T 

cells and natural killer (NK) cells via the presentation of self and non-self epitopes. HLA genes 

are highly polymorphic. According to the IMGT-HLA database 

(https://www.ebi.ac.uk/ipd/imgt/hla/), there are over fourteen thousand different alleles known to 

date. This genetic diversity within HLA genes allows the human race to combat myriad 

pathogens (Brahmajothi et al., 1991; Cooke & Hill, 2001; Hill et al., 1991; Thursz et al., 1995). 

In addition to the HLA’s polymorphic nature, HLAs are also polygenic. There are two major 

classes, HLA Class I (HLA I) and HLA Class II (HLA II). However, not all HLA molecules are 

created equal. Some HLA molecules have been associated with having a predisposition for 

resistance or susceptibility to a pathogen (Brahmajothi et al., 1991; Cooke & Hill, 2001; Hill et 

al., 1991; Thursz et al., 1995). For example, HLA B*5701 is highly correlated with partial 

protection against HIV-1 disease progression (X. Gao et al., 2001; Hendel et al., 1999; Kaslow et 

al., 1996; Magierowska et al., 1999; Migueles et al., 2000), while HLA B*3501 is correlated 

with fast disease progression in HIV+ persons (X. Gao et al., 2001; Itescu et al., 1992; Sahmoud 

et al., 1993; Scorza Smeraldi et al., 1986). 

HLA I. HLA I has three major and three minor genes, HLA-A, -B, and -C and HLA-E, - 

F, and -G, respectively. According to the IMGT/HLA Database, there are 10,730 different HLA 

Class I alleles as of July 1, 2016 (see Table 1). The HLA I complex is composed of an HLA I 

allele whose α domains associate with β2-microglobulin (Buslepp, Wang, Biddison, Appella, & 

Collins, 2003). HLA I is expressed on all nucleated cells and its function is to present 

intracellularly processed 8-12 amino acid epitopes to CTLs. Each epitope that binds to an HLA I 

molecule stabilizes the pHLA complex through the engagement of generally two amino acids, 

one in the free amino at P2 and one in the carboxy termini of the epitope and generally two 
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amino acids in the epitope binding cleft of the HLA I (Madden, Garboczi, & Wiley, 1993). The 

stabilizing amino acids are referred to as anchor residues. HLA I expression is regulated to either 

clear a pathogen or provide homeostatic signals to CD8+  T cells. A viral infected cell will 

express IFN-α, -β or -γ, which will increase the expression of HLA I molecules. Healthy cells 

will express normal levels of HLA I molecules to provide the homeostatic signals T cells require 

for survival. 
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Numbers of HLA Alleles 

HLA Class I Alleles 10,730 

HLA Class II Alleles 3,743 

Total HLA Alleles 14,473 

HLA Class I 

Gene A B C E F G 

Alleles 3,399 4,242 2,950 21 22 53 

HLA Class I-Pseudogenes 

Gene H J K L P V Y 

Alleles 12 9 6 5 5 3 3 

HLA Class II 

Gene DRA DRB DQA1 DQB1 DPA1 DPB1 DPB2 DMA DMB DOA DOB 

Alleles 7 2,018 69 911 43 644 6 7 13 12 13 

 
 

 

Table 1. List of HLA Class I and Class II alleles. 
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HLA II. HLA II has eleven known genes with approximately 3,743 different alleles (see 

Table 1). The different HLA II genes come together to form a heterodimeric complex composed 

of two different chains with their respective α and β domains. HLA II complexes are capable of 

binding extracellularly processed epitopes of about 13-17 amino acids and are expressed by 

antigen presenting cells  (APCs) but can also be expressed by group 3 innate lymphoid cells if 

induced by INF-γ. These HLA II epitope-bound complexes are presented to CD4+ T cells to 

activate and induce proliferation and differentiation of the naïve CD4+ T cells to their effector 

phenotypes. 

Antigen Presentation via HLA I 
 

HLA Class I molecules are used to present intracellularly processed epitopes to aid in 

immuno-surveillance. This process begins with cytoplasmic proteins being processed into 

peptides within the proteosome. The peptides are then transported into the endoplasmic 

reticulum (ER) by the TAP proteins, where they are further processed into 8-12 amino acid 

epitopes (Oancea et al., 2009; Pages et al., 1994). These processed epitopes are then loaded into 

HLA class I molecules through the assistance of ER chaperone proteins like Tapasis, ERp57, and 

calreticulin (Purcell & Elliott, 2008), thus stabilizing the HLA and forming the pHLA complex 

(Townsend et al., 1989). The pHLA complex then leaves the ER through the secretory pathway 

and is transported to the cell surface where it can be recognized by CD8+ T cells, whether naïve 

or CTL. 

CD4+ T Cells Play a Major Role in HIV Pathogenesis 
 

CD4+ T cells modulate the immune system by controlling the activation and function of 

the innate and adaptive immune system. They are primarily located in the primary and secondary 

http://en.wikipedia.org/wiki/Secretory_pathway
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lymphoid organs. The majority of CD4+ T cells in healthy adult persons express the memory 

phenotype CD4+, CCR5+, CD45RO+, tend to have a basal level of activation, and reside in the 

gut-associated lymphoid tissue (GALT) (Mowat & Viney, 1997), making them ideal targets for 

HIV. As a result, major depletion of CD4+ T cells in the GALT (Brenchley et al., 2004; 

Mattapallil et al., 2005; Veazey et al., 1998; Veazey et al., 2000) and chronic immune activation 

occurs shortly post-infection (Brenchley et al., 2006). The chronic immune activation results in 

enhanced maturation of naïve T cells into memory T cells (CD4+ CD45RO+), making them also 

ideal targets for viral infection (Clement, Yamashita, & Martin, 1988; Schnittman et al., 1990; 

Sleasman, Aleixo, Morton, Skoda-Smith, & Goodenow, 1996), thus starting a vicious cycle of 

chronic activation and infection. Without cART intervention, CD4+ T cells are eventually 

depleted during the course of HIV infection, all the while causing chronic immunoactivation, 

dysregulation, and exhaustion of innate and CD8+ T cells and, ultimately, the inability to fight 

off opportunistic infections (Blackburn et al., 2009; Doering et al., 2012; Kao et al., 2011; Lu et 

al., 2014; Quigley et al., 2010). If cART is commenced, CD4+ T cell counts are replenished, but 

the quality and breadth of the replenished CD4+ T cells is highly dependent upon how quickly 

cART is commenced or reinstated. 

CTLs Play a Major Role in HIV Pathogenesis 
 

The effector phenotype of CD8+ T cells, also known as CTLs, were first observed to be 

involved in suppressing HIV-1 replication in three different studies in 1994 (Borrow, Lewicki, 

Hahn, Shaw, & Oldstone, 1994; Koup et al., 1994; Safrit, Andrews, Zhu, Ho, & Koup, 1994). In 

later studies, it was shown that (i) depletion of CD8+ T cells in macaques leads to a loss of viral 

control and disease progression, both in the acute and chronic phases of infection (Friedrich et 

al., 2007; Jin et al., 1999; Matano et al., 1998; Schmitz et al., 1999); (ii) HIV-1 sequences show 
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HLA-associated “footprints” from CTL selective pressure in vivo in chronically-infected 

individuals (Moore et al., 2002) and enrichment for HLA alleles associated with viral control in 

humans (Carrington & O'Brien, 2003a; Goulder et al., 1997b; Kelleher et al., 2001b; Migueles 

et al., 2000) and SIV-infected macaques (Loffredo et al., 2007; Yant et al., 2006); (iii) CTL 

responses almost exclusively drive the HIV viral evolution during acute infection (Allen et al., 

2005b; Y. Liu et al., 2006; O'Connor et al., 2004a); and lastly, (iv) the HLA class I locus is the 

strongest genetic determinant of disease progression (International H. I. V. Controllers Study et 

al., 2010). 
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Chapter 2 
 
Supranormal Thymic Output Up to Two Decades After HIV-1 Infection 

Introduction 

The hallmark of Human Immunodeficiency Virus Type 1 (HIV-1)-induced 

immunosuppression leading to acquired immunodeficiency syndrome is CD4+ T-cell depletion, 

which may be caused by direct cytopathic effects of infection, immune clearance of infected 

cells, persistent immune activation, and likely other factors (Moir, Chun, & Fauci, 2011).In 

particular, immune activation is highly associated with the ongoing loss of CD4+ T-cells and 

believed to be the cause of increased T-cell turnover during chronic infection. The precise 

mechanisms for this inappropriate inflammatory state are unclear, but ongoing viral replication 

can be a major contributor even in persons with undetectable viremia. (Chomont et al., 2009; 

Frenkel et al., 2003; Moir et al., 2011; Siliciano et al., 2003) . 

Peripheral blood CD4+ T-cell concentration is a widely used clinical predictor of the 

immunological status of an infected individual, with a level of less than 200/µL generally 

considered to reflect sharply increased risk for opportunistic infections that define AIDS.(Moir et 

al., 2011) However, this simple quantitative assessment does not precisely reflect 

immunocompetence. For example, recurrent bacterial pneumonias, malignancies, and AIDS- 

defining illnesses such as active cytomegalovirus infection and Pneumocystis pneumonia may 

occur at higher CD4+ T-cell levels in children, adolescents, and adults.(Komanduri et al., 2001; 

Krogstad et al., 2015; Zoufaly et al., 2011) It is very likely that the clonal diversity of the CD4+ 

T-cell population and therefore breadth of pathogen recognition is also important.(Baum et al., 

2012) 
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Effective antiretroviral therapy (ART) suppresses HIV-1 replication, reduces immune 

activation, and increases peripheral blood CD4+ T-cell concentrations.(Autran et al., 1997; 

Giorgi et al., 1998) However, the extent to which normalization of clonal T-cell diversity occurs 

is less well documented. In HIV-1-infected adults, the rise in CD4+ T-cell levels seen after 

institution of ART is characterized by an initial rapid rise that is likely due to redistribution of 

total body memory CD4+ T-cells, followed by a slower and more prolonged increase in naïve 

CD4+ T-cells. (Autran et al., 1997; Pakker et al., 1998) By contrast, HIV-1-infected children 

demonstrate an early and sustained increase in naïve CD4+ T-cells (Gibb et al., 2000; 

Jankelevich et al., 2001; Resino, Bellon, Gurbindo, Leon, & Munoz-Fernandez, 2003; Resino et 

al., 2006; Sleasman et al., 1999) that likely reflects greater baseline thymic function than adults, 

who tend to have age-related involution of thymic epithelial tissue and attrition of thymic 

function.(Haynes, Markert, Sempowski, Patel, & Hale, 2000) 

Supporting this concept, we previously demonstrated that adolescents and young adult 

survivors of perinatal HIV-1 infection on ART have markers of thymopoiesis that are 

comparable to uninfected age-matched controls, including concentrations of peripheral blood 

naïve CD4+ T-cells and T-cell receptor recombination excision circles (TREC) that reflect recent 

thymic emigrants.(Lee et al., 2006) Others have demonstrated that T-cell receptor CDR3 

distribution perturbations are rapidly reduced in some children and adolescents during ART (Yin 

et al., 2009) suggesting that some degree of normalization of the TCR repertoire is possible. 

However, these measurements have not excluded qualitative abnormalities in thymopoiesis that 

might result from the known impact of HIV-1 on the architecture of both the thymus and 
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secondary lymphoid tissues.(Bohler et al., 1999; Gibb et al., 2000; Resino et al., 2003; Resino et 

al., 2006; Zeng, Haase, & Schacker, 2012; Zeng et al., 2011). 

Thus it is unclear if CD4+ T-cell clonal diversity is maintained in conjunction with 

recovered total CD4+ T-cell numbers on ART, particularly in individuals who were infected 

before immunologic maturity. To address this uncertainty, we assess immune reactivity to HIV- 

1, thymopoiesis and CD4+ T-cell diversity in a cohort of long term survivors of perinatal HIV-1 

infection. These data address key questions as to whether infection early in life (during 

immunologic development), in conjunction with chronic infection (spanning more than 13 

years), limit CD4+ T-cell reconstitution. 



17  

Material and Methods 

Study approval. 

Healthy control and HIV-1-infected study volunteers were enrolled under protocols approved by 

institutional review boards of the University of California Los Angeles and Children’s Hospital 

Los Angeles. Written informed consent was received from all participants prior to inclusion in 

the study. 

Cohort and preparation of peripheral blood mononuclear cells. 
 

All study participants were enrolled from 2003 to 2006. Individuals with known hepatitis 

B or C infections were excluded. Twenty control subjects and 20 HIV-1-infected subjects were 

described in previous reports.(Lee et al., 2006; O. O. Yang et al., 2005) Peripheral blood 

mononuclear cells (PBMC) were isolated by Ficoll-Hypaque density centrifugation gradient, 

washed twice with phosphate buffered saline, and viably cryopreserved. Fresh umbilical cord 

blood was obtained from the UCLA CFAR Virology Core. For quantitative spectratyping and 

pyrosequencing studies, CD3+CD4+CD31+CD45RA+ T-cells were purified from cryopreserved 

PBMC by fluorescence-activated cell sorting (FACSAria II using FACSDiva Version 6.1, 

Becton Dickinson). CD4+ T-cells from cord blood samples were isolated by negative selection 

(human CD4+ T-cell enrichment mixture, RosetteSep, StemCell Technologies). 

Clinical laboratory tests 
 

Complete blood counts and plasma HIV-1 RNA measurements were obtained through the 

Children’s Hospital Los Angeles and UCLA clinical laboratories. 
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Volumetric tomography of thymic tissue. 
 

Non-contrast helical computed tomography (CT) studies of the chest were performed 

with 3-mm collimation extending from the thoracic inlet to the lung bases, using previously 

described methods.(Lee et al., 2006) All female participants had negative pregnancy tests 

confirmed prior to imaging. Volumetric CT scans were discontinued after 49 scans (29 HIV-1- 

infected and 20 uninfected controls) because an interim analysis indicated futility to detect 

statistically significant differences with the initially planned sample size. 

T-cell immunophenotyping by flow cytometry. 
 

Whole blood T-cell staining and flow cytometry was performed as described previously, 

with naive CD4+ T-cells defined as CD4+CD45RA+CD27+.(Lee et al., 2006) CD45RA-CD4+ T- 

cells were defined as memory cells (combined central and effector subsets). Staining was also 

performed to quantify the CD45RA+CD31+ subset of CD4+ T-cells (recent thymic emigrants) 

(Kimmig et al., 2002) and the CD38+HLA-DR+ subset of CD8+ T-cells (activated).(Giorgi et al., 

1999) Quantitation of naïve, recent thymic emigrants, and memory CD4+ T-cells was not 

performed in one control subject and the percentage of CD38+HLA-DR+ CD8+ T-cells was not 

determined for two other control subjects. Due to the absence of a complete blood count, the 

concentrations (cells/µL) of T-cell subsets of one HIV-1-infected individual are absent from 

panels of Figures 2 and 3. 

Detection of HIV-1-specific CD8+ T-cell responses against HIV-1 by interferon γ (IFN)-γ- 

ELISpot analysis. 

Peripheral blood HIV-1 specific CD8+ T-cell responses in HIV-1 infected individuals 

with plasma HIV-1 levels of <400 RNA copies/mL at study entry were quantified by IFN-γ 

ELIspot analysis, as previously described.(Ibarrondo et al., 2005) In brief, purified CD8+ T-cells 
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were screened against 53 pools of overlapping peptides spanning the total HIV-1 clade B 

consensus sequence proteome (NIH AIDS Reference and Reagent Repository) to determine the 

frequency of spot-forming cells (SFC) per added CD8+ T-cells. The frequency of HIV-1-specific 

SFC per volume of peripheral blood was calculated by multiplying the frequency of SFC in 

CD8+ T-cells and the number of CD8+ T-cells per volume of blood. 

Peripheral blood TREC analyses. 
 

Cellular DNA was prepared from PBMCs and signal joint T-cell receptor recombination 

excision circles (TREC) were quantified by real time PCR as previously described (Halnon et al., 

2005; Pham et al., 2003; Reiff et al., 2009), and reported as TREC/million cells. TREC were 

measured using isolated CD4+ T-cells (Rosette-Sep beads, StemCell Technologies, Vancouver, 

Canada) for most participants. The number of TREC+ CD4+ T-cells per volume of peripheral 

blood was calculated by multiplying the frequency of TREC in isolated CD4+T-cells and the 

concentration of CD4+T-cells per volume of blood. 

HLA and CCR5 genetic analyses. 
 

Using PBMC DNA, HLA typing was performed by the clinical laboratory at the UCLA 

Immunogenetics Center, and PCR was used to determine if the 32 deletion was present at the 

CCR5 locus using oligonucleotide primers described by others. (Misrahi et al., 1998) 

Quantitation of TCR BV family RNA transcripts. 

From 3 to 15 million cryopreserved PBMC from HIV-1-infected or control subjects were 

stained and sorted to purify CD31+CD45RA+CD4+ T-cells, yielding 230,000 to 700,000 cells per 

individual. RNA was isolated from purified lymphocytes (RNeasy MiniKit, Qiagen, Valencia 

CA.), and reverse-transcribed to cDNA using random primers (High Capacity Reverse 

Transcription Kit, Applied Biosystems, Carlsbad, CA). Quantitative spectratyping (QS) was used 
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to examine BV family usage as described previously. (Balamurugan, Ng, & Yang, 2010) In 

brief, RT-PCR was employed to determine the relative concentration of each BV gene family 

(IMGT nomenclature (http://www.imgt.org)), and capillary electrophoretic size resolution of 

each family yielded a profile of TCR sequence size distribution within each family. 

Deep sequencing of TCR coding sequences. 
 

The cDNA (6.5 to 15 µg) generated for spectratyping was PCR-amplified (Phusion High- 

Fidelity DNA Polymerase, New England BioLabs) for 35 cycles under the following conditions: 

initial denaturation 98˚C (30sec), denaturation 98˚C (10sec), annealing 62˚C (30sec), extension 

72˚C (15sec) and final extension (5 min). The PCR products were then purified (PureLink PCR 

Purification Kit, Invitrogen) and further amplified using nested PCR (Phusion High-Fidelity 

DNA Polymerase) for 35 cycles under the following conditions: initial denaturation 98˚C 

(30sec), denaturation 98˚C (10sec), annealing 62˚C (30sec), extension 72˚C (15sec) and final 

extension (5 min). These PCR products were then separated in 2% agarose gels and cDNA from 

the appropriate bands was purified (QIA Gel Extraction Kit, Qiagen). Pyrosequencing of the 

nested PCR purified products using 454 FLX Titanium chemistry was performed according to 

the manufacturer’s protocols (Roche Applied Science). The primers used for the 3 BV families 

were the same as those used in QS analysis (Balamurugan et al., 2010), but additionally tagged 

with multiplex identifier (MID) and primer key sequences (see Table 2). To check that diversity 

within the samples was retained during PCR amplification with the modified primers, the 

following control experiments were performed. First, three rounds of PCR amplification were 

performed on an aliquot of an umbilical cord blood DNA sample, and spectratyping was 

performed after each round, showing that the TCR genes of the third round of amplification 

remained Gaussian in size distribution (see Figure 1).  Second, the PCR products from the third 
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round of amplification were cloned and sequenced, showing polyclonality of TCRs in all cases 

(see Table 3), thus demonstrating no evidence of biased amplification. 
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Patient 

Identifier 

Cord 

Blood 

BV 
 

Family 

Primer 

 12 29 CGTATCGCCTCCCTCGCGCCATCAGACGCTCGACAGAGGCCA 

CATATGAGAGTGG 

 12 03 CGTATCGCCTCCCTCGCGCCATCAGACGCTCGACACCTAAAT 

CTCCAGACAAAGC 

 12 19 CGTATCGCCTCCCTCGCGCCATCAGACGCTCGACAGGAGATA 

TAGCTGAAGGGTA 

 11 29 CGTATCGCCTCCCTCGCGCCATCAGAGACGCACTCGAGGCCA 

CATATGAGAGTGG 

 11 03 CGTATCGCCTCCCTCGCGCCATCAGAGACGCACTCCCTAAAT 

CTCCAGACAAAGC 

 11 19 CGTATCGCCTCCCTCGCGCCATCAGAGACGCACTCGGAGATA 

TAGCTGAAGGGTA 

AP04  29 CGTATCGCCTCCCTCGCGCCATCAGATCAGACACGGAGGCCA 

CATATGAGAGTGG 

AP04  03 CGTATCGCCTCCCTCGCGCCATCAGATCAGACACGCCTAAAT 

CTCCAGACAAAGC 

AP04  19 CGTATCGCCTCCCTCGCGCCATCAGATCAGACACGGGAGATA 

TAGCTGAAGGGTA 

AP22  29 CGTATCGCCTCCCTCGCGCCATCAGATATCGCGAGGAGGCCA 

CATATGAGAGTGG 

AP22  03 CGTATCGCCTCCCTCGCGCCATCAGATATCGCGAGCCTAAAT 

CTCCAGACAAAGC 

AP22  19 CGTATCGCCTCCCTCGCGCCATCAGATATCGCGAGGGAGATA 

TAGCTGAAGGGTA 

CP04  29 CGTATCGCCTCCCTCGCGCCATCAGACGCTCGACAGAGGCCA 

CATATGAGAGTGG 
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CP04  03 CGTATCGCCTCCCTCGCGCCATCAGACGCTCGACACCTAAAT 

CTCCAGACAAAGC 

CP04  19 CGTATCGCCTCCCTCGCGCCATCAGACGCTCGACAGGAGATA 

TAGCTGAAGGGTA 

CN13  29 CGTATCGCCTCCCTCGCGCCATCAGAGACGCACTCGAGGCCA 

CATATGAGAGTGG 

CN13  03 CGTATCGCCTCCCTCGCGCCATCAGAGACGCACTCCCTAAAT 

CTCCAGACAAAGC 

CN13  19 CGTATCGCCTCCCTCGCGCCATCAGAGACGCACTCGGAGATA 

TAGCTGAAGGGTA 

CN02  29 CGTATCGCCTCCCTCGCGCCATCAGATCAGACACGGAGGCCA 

CATATGAGAGTGG 

CN02  03 CGTATCGCCTCCCTCGCGCCATCAGATCAGACACGCCTAAAT 

CTCCAGACAAAGC 

CN02  19 CGTATCGCCTCCCTCGCGCCATCAGATCAGACACGGGAGATA 

TAGCTGAAGGGTA 

BN02  29 CGTATCGCCTCCCTCGCGCCATCAGATATCGCGAGGAGGCCA 

CATATGAGAGTGG 

BN02  03 CGTATCGCCTCCCTCGCGCCATCAGATATCGCGAGCCTAAAT 

CTCCAGACAAAGC 

BN02  19 CGTATCGCCTCCCTCGCGCCATCAGATATCGCGAGGGAGATA 

TAGCTGAAGGGTA 

  Reverse CTATGCGCCTTGCCAGCCCGCTCAGCATAGTAGTGCTTCTGA 

TGGCTCAAACAC 

 
 
 

Table 2. List of primers used in pyrosequencing to amplify BV03, BV19 and BV29 sequences. 
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Figure 1. Nested PCR with 454-tagged BV specific primers does not result in biased PCR 

amplification. 

A third round PCR was done on nested PCR products using the 454-pyrosequencing modified 

primers. Spectratyping analysis was performed on the 3rd round PCR products and a comparison 

was done between the spectratyping analysis of the 1st round PCR and the 3rd round PCR. The 

compared profiles suggest no biased amplification. This is a representative figure of the analysis 

done on all 3 BV families (BV03, BV19 and BV29). 
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Patient 

 
 
Sample 

 
 

BV Fam 

 
 
BJ Seg 

 
 

CDR3 Seq 

CRD3 
 
Length (aa) 

Constant 

Region 

CB12 1-2 19-01 2-5-01 CASSISYWETQYF 13 2 

  

1-3 
 

19-01 
 

1-1-01 
 

CASSLIQGAYSDTEAFF 
 

17 
 

1 

  

1-4 
 

19-01 
 

2-1-01 
 

CASGIAGGVYNEQFF 
 

15 
 

2 

  

1-5 
 

19-01 
 

2-1-01 
 

CASSNDGRGNEQFF 
 

14 
 

2 

 

AP04 
 

2-1 
 

19-02 
 

1-3-01 
 

CASSIGAGPGNTIYF 
 

15 
 

1 

  

2-4 
 

19-02 
 

2-1-01 
 

CASSIRSSYNEQFF 
 

14 
 

2 

  

2-5 
 

19-01 
 

1-3-01 
 

CASSIYPDRTGNTIYF 
 

16 
 

2 

 

CN13 
 

3-1 
 

19-01 
 

2-1-01 
 

CASSRGLAGGTEQFF 
 

15 
 

2 

  

3-2 
 

19-02 
 

1-2-01 
 

CASSIRGGPYYGYTF 
 

15 
 

1 

  

3-4 
 

19-01 
 

1-3-01 
 

CASRPAVGNTIYF 
 

13 
 

1 

  

3-5 
 

19-01 
 

2-3-01 
 

CASSNPLAGGADTQYF 
 

16 
 

2 

 
 

 

Table 3. TCR Diversity is retained after PCR amplification with the 454-pyrosequencing 

modified primers. 
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Statistical analyses. 
 

Clinical parameters analyzed as continuous variables were compared using two-tailed 

Mann Whitney U Test (except for the comparison of HIV ELISpot responses). Categorical 

variables were compared using Fisher’s exact test. Pyrosequencing (454, Roche) of TCRs in nine 

samples of sorted CD31+CD45RA+CD4+ T-cells (from three HIV-1-infected participants 

receiving ART with suppressed viremia (uVL), three uninfected controls, and three umbilical 

cord blood (CB) ( See Table 4) yielded between 32,000 and 198,000 TCR sequences per sample. 

To compare the diversity of TCR sequences in these individuals, we examined TCR sequences in 

3 specific BV families: BV03, BV19 and BV29 (IMGT nomenclature). These families were 

selected because they represented about 5% of total BV families in the CD31+CD4+ T-cells in 

HIV infected individuals, control study participants, and cord blood specimens that were 

selected. Two samples with lower yields (control BN02 and infected subject CB13 with 33,000 

and 32,000 sequences respectively) were excluded from analyses that are especially sensitive to 

sample size. 

Pyrosequencing is typically associated with significant sequencing errors (Huse, Huber, 

Morrison, Sogin, & Welch, 2007; Luo, Tsementzi, Kyrpides, Read, & Konstantinidis, 2012), but 

this will alter comparisons of diversity estimates if the error statistics do not differ across 

samples. Differences in the diversity of TCR coding sequences were evaluated by methods 

commonly employed in ecologic studies including Shannon index of diversity, sample size- 

corrected Shannon index, rarefaction curves, and  analysis of the fraction of singleton species 

(that occur only once in the sample). We also used a histogram shape estimation technique using 

an “unseen estimator,” which uses the observed distribution of species in a sample to estimate 
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the total number of unique species missed in sampling, as well as the full species 

distribution.(Valiant & Valiant, 2013) 

As an additional control, sequences were also clustered with two different algorithms, as 

described by others.(Niu, Fu, Sun, & Li, 2010) Finally, the clusters were translated into stop 

codon-free amino acid sequences with verified BV and BJ flanking regions. 
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HIV-1 

 
Status 

 
 
Subject 

 
 
Age 

 
 

HLA-B 

Plasma HIV-1 

(RNA 

copies/mL) 

 
Blood CD4+ 

T-cells/µL 

 
InfectedA 

(uVL) 

AP04 15.0 *3501, *5801 <400 811 

AP22 17.6 *4701,*5301 <400 448 

CP04 18.0 *5802, *37 <400 738 

 
 
Uninfected 

BN02 16.3  - 541 

CN02 19.0 - - 923 

CN13 19.3 - - 593 

 
 
Cord Blood 

CB11 NB - - - 

CB12 NB - - - 

CB13 NB - - - 

 
AAll infected subjects were treated with emtricitabine, tenofovir, and ritonavir-boosted atazanavir 

 

Table 4.  TCR deep sequencing subjects. 
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Results 
 
Cohort characteristics. 

 
The study participants included 39 persons who were infected with HIV-1 as infants (22 

male and 17 female) and an uninfected control group of 28 individuals (10 male and 18 female), 

ranging from 13.3 to 23.0 and 13.1 to 22.9 years of age respectively at the time of study (Figure 

2A). Most infections (85%) were from mother to child transmission (including one by 

breastfeeding from a mother who acquired infection post-partum by blood transfusion), and the 

remainder (15%) were from blood transfusions in 1982 and 1983, including twin brothers who 

were described extensively in an earlier report (O. O. Yang et al., 2005). Among the infected 

individuals, none had the CCR5 Δ32 mutation; one and three respectively had HLA-B*27 and 

HLA-B*57 genotypes associated with slower disease progression (Carrington & O'Brien, 

2003b), and one and none respectively had HLA-B*3502 and HLA-B*3503 associated with 

accelerated disease progression. All infected participants were receiving combination 

antiretroviral therapy (ART) at the time of study; 18 had plasma viremia <50 HIV-1 RNA 

copies/mL (uVL group, 11 male and 7 female) and 21 had plasma viremia ≥ 50 HIV-1 RNA 

copies/mL (dVL group, 11 male and 10 female). Most (77%) of the HIV-1 infected individuals 

had clinical or laboratory evidence of immunodeficiency (CDC class B or C) in the past (Figure 

2B), although imaging revealed relatively normal thymic size overall (Figure 2C). Thus, the 

infected individuals represented a group of long term survivors of whom most had sustained 

clinically significant immunodeficiency due to HIV-1 infection at some point. 
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Figure 2. Clinical and immune parameters of study participants. 
 
The HIV-1-infected participants included 39 persons, of whom 18 had plasma viremia <50 HIV- 

1 RNA copies/mL (uVL group, 11 male and 7 female) and 21 had plasma viremia ≥ 50 HIV-1 

RNA copies/mL (dVL group, 11 male and 10 female), who were compared to a control group of 

healthy uninfected persons (10 male, 18 female) of similar ages (A). Most of the infected persons 

had had symptomatic disease in the past (B). Evaluated parameters included thymic volume (C), 

concentrations of blood CD4+ T-cells (D) and their characteristics (E-H), blood CD8+ T-cell 

concentrations (I) and the ratio of CD4+ to CD8+ T-cells (J), and CD8+ T-cell activation (K) and 

HIV-1 targeting (L). Filled circles represent uninfected control subjects; unfilled circles, 

represent uVL participants with plasma HIV-1 RNA <50 copies/ml; open triangles represent 

dVL individuals with plasma HIV-1 RNA 50 to<400 copies/ml. Statistically significant results 

(p<0.05), as determined by Mann-Whitney U Tests, are indicated. Bars indicate median values. 
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Many long term survivors of perinatal HIV-1 infection have relatively normal total and 

naïve CD4+ T-cell concentrations on ART, despite generally depressed levels of memory 

CD4+ T-cells. 

At enrollment, peripheral blood CD4+ T-cell levels were lower overall in the HIV-1-infected 

persons versus uninfected controls (mean 514 versus 686 cells/µL blood respectively), although 

the uVL group had levels similar to the controls (mean 601 versus 686 CD4+ T-cells/µL 

respectively, Figure 2D). Examining the CD4+ T-cell population phenotypically, both HIV-1- 

infected groups exhibited significant depletion of the memory (CD45 RA-) subset (Figure 2E). 

By contrast, the naïve (CD45RA+/CD27+) subset was relatively normal to elevated in the uVL 

group and slightly reduced in the dVL group (neither statistically significantly different) (Figure 

2F). More detailed analysis of the naïve CD4+ T-cell population suggested overall normal levels 

of recent thymic emigrants (CD45RA+/CD31+)(Kimmig et al., 2002) in the µVL group and 

normal to reduced levels in the dVL group compared to controls (no statistically significant 

differences, Figure 2G). Furthermore, the frequency of the total CD4+ T-cell population with T- 

cell receptor excision circles (TRECs) was elevated in both uVL and dVL groups compared to 

controls (statistically significantly only for the uVL group, Figure 2H), suggesting higher 

percentages of cells produced in the thymus (versus peripheral homeostatic proliferation). As a 

whole, these data demonstrate that these long term survivors of perinatal HIV-1 infection had 

depleted levels of memory CD4+ T-cells, but generally exhibited quantitative restoration of naïve 

T-cell populations via increased thymic output on ART. 



33  

Despite suppression of viremia by treatment, perinatally-infected individuals have evidence 

of ongoing HIV-1-driven immune activation. 

Compared to controls, both groups of HIV-1-infected subjects had significantly elevated 

blood CD8+ T-cells levels (Figure 2I). Examining the ratio of CD4+ to CD8+ T-cells, it was 

apparent that the relative increase of CD8+ T-cells and decrease of CD4+ T-cells was especially 

marked in the dVL group (Figure 2J), suggesting an association between abnormality in the 

CD8+ and CD4+ T-cell compartments. Additionally, CD8+ T-cell activation (CD38+/HLA-DR+) 

was increased in both infected groups versus the control group, significantly greater in the dVL 

versus uVL group (Figure 2K). Finally, screening of participants with <400 HIV-1 RNA 

copies/mL plasma (12 from the uVL group, 5 from the dVL group) for CD8+ T-cell responses 

against the whole HIV-1 proteome (Ibarrondo et al., 2005) (Figure 2L) revealed persisting 

responses (predominately targeting Gag and Nef proteins similarly to infected older adults 

(Frahm et al., 2004))(not shown) in most persons despite undetectable or low viremia (between 

50 and 400 copies/mL). Lower blood levels of memory CD4+ T-cells were seen in infected 

individuals with higher levels of CD8+ T-cell activation (Figure 3A), and there was a significant 

inverse correlation between the number of naïve CD4+ T-cells and the plasma concentration of 

IL-7 in the HIV-1 infected group (Figure 3B); no such correlation was seen in the uninfected 

control group. These results suggest persistent generalized immune activation was present and 

was associated with ongoing loss of memory CD4+ T-cells and secondary enhanced homeostatic 

proliferation of naïve CD4+ T-cells in addition to the enhanced thymic output suggested by the 

data above. 
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Figure 3. Relationship of immune activation to memory CD4+ T-cell loss, and resulting 

homeostatic proliferation of CD4+ T-cells. 

A. Systemic immune activation, as reflected by CD8+ T-cell co-expression of activation 

markers, is plotted against blood levels of memory CD4+ T-cells (CD45RA-, including central 

and effector memory subsets). B. The relationship of blood levels of naïve CD4+ T-cells to 

plasma levels of the homeostatic cytokine IL-7 is plotted. Linear regression regression line and 

its associated p value is indicated for relationship between naïve T-cells and plasma IL-7 

concentrations of HIV infected subjects. In both panels, filled circles represent uninfected 

control subjects, unfilled circles, represent uVL participants, and open triangles represent dVL 

individuals. 
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The long term survivors of perinatally HIV-1 infection exhibit increased CD4+ T-cell 

receptor diversity and breadth. 

To evaluate thymopoiesis more qualitatively, we examined the TCR repertoire of the CD31+ 

subset of CD4+ T-cells, which represent thymic emigrants and their early progeny because CD31 

is lost after a few cycles of homeostatic proliferation. Quantitative spectratyping analysis 

(Balamurugan et al., 2008; O. O. Yang et al., 2005) revealed Gaussian distributions of TCR size 

populations for three control umbilical cord blood samples, as expected for unperturbed native 

populations (Balamurugan et al., 2010) (see Figure 4A). TCR repertoires of control subjects and 

uVL individuals also showed generally Gaussian distributions (data not shown), suggesting 

grossly diverse TCR production. 

To better define the diversity of TCR production, we performed deep sequencing analysis of 

TCR families BV03, BV19 and BV29 (IMGT nomenclature), selected for having relatively 

consistent representation of ~5% of total BV families in CD31+CD4+ T-cells from representative 

uVL and control study participants and 3 cord blood specimens ((see Table 4, see Table 5 and 

See Figure 4B). The Shannon entropy index (S) for raw sequences (initially excluding BN02 (an 

uninfected control)) and cord blood CB13, which had insufficient sampling), ranged from 14.3 to 

16.3 for CB, 11.3 to 14.1 for controls, and 13.6 to 14.1 uVL. The Shannon index of the estimated 

histogram from filtered sequences ranged from 16.8 to 17.2 for CB, 13.2 to 13.5 for uninfected 

controls, and 13.8 to 14.1 for uVL (see Table 6), indicating that TCR diversity was greatest in 

CB and least in controls (p<0.01). The two samples initially excluded (control BN02 and cord 

blood CB13) were also consistent with this pattern (Table 6). 

As sample sizes could have biased estimates of Shannon index even after simple 

corrections, we also analyzed the TCR repertoire using rarefaction curves plotting the number of 
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unique species found in random subsamples of the total sequence population of all three BV 

families (see Figure 5), which revealed the same relative pattern of TCR diversity being highest 

in CB, intermediate in uVL subjects, and least in control subjects (p = 0.018). These differences 

also held true for BV families considered individually (p = 0.041, see Figure 6). 

As a third approach to confirming the diversity comparisons between groups, we also 

performed analyses using random subsamples 24,000 sequences (corresponding to the smallest 

sampling size, obtained for CB13) from each individual sequence set. The number of discrete 

sequences, Shannon index, and fraction of singletons (number of sequences observed only once 

divided by the total number of observed sequences) were assessed (Table 7). Again, all 

parameters revealed the pattern of highest TCR diversity in CB followed by uVL, both greater 

than uninfected control persons (p<0.01). The HIV-1-infected individuals had overall more 

species and a higher fraction of singleton sequences. Additional analyses examining the 

abundance of rare and common sequences (see Figures 7 and 8) corroborated these results, 

supporting the overall conclusion that the recent thymic emigrant CD4+ T-cells of uVL subjects 

had a broader TCR repertoire than uninfected subjects. 
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A. 
 

 
B. 

 

 

 
Figure 4: BV usage in cells from umbilical cord specimens and study subjects selected for 

TCR pyrosequencing analysis. 

(A) ) Representative quantitative spectratyping analysis of an umbilical cord blood sample. (B) 

The Spectratype of each CB, HIV+ uVL+ and seronegative control used in the pyrosequencing 
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was analyzed for their BV family usage. Families BV03, BV19 and BV29 had a uniform usage 

of approximately 5%. 
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Perinatal HIV+ HIV- Umbilical Cord Blood 

 

 AP04 AP22 CP04 CN02 CB11 CB12 CB13 Mean Standard 

Deviation 

BV03 4.5% 6.7% 4.1% 5.0% 4.0% 5.0% 1.0% 4.3% 1.7% 

BV19 7.6% 4.5% 7.4% 5.0% 4.0% 4.0% 3.0% 5.1% 1.7% 

BV29 5.2% 4.2% 7.0% 5.0% 2.0% 1.0% 5.0% 4.2% 2.3% 

 
 
 

 

Table 5. BV usage of in CD4+ T cells from donors selected for TCR sequence analysis by 

pyrosequencing. 

Each subject utilized about 5% of the 3 BV families chosen for 454-pyrosequencing (BV3, 

BV19, BV29 ). Each BV family was chosen based on our ability to over-sample at least 5 times 

during 454 sequencing, 10% usage of the BV repertoire and usage by each subject was 

comparable. 
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Figure 5.  Rarefaction analysis of TCR species in CD31+ naïve CD4+ T-cells. 
 
Rarefaction curves are plotted for TCR sequences isolated from each sample, indicating that 

diversity is greater in the uVL subjects compared to uninfected control subjects (considering the 

number of species at x=9809, p=0.02). 



41  

 

 
  

uVL 
 

Uninfected 
 

Cord Blood 

 
 
 

BV03 

AP04 AP22 CP04 CN13 CN02 BN02 CB12 CB11 CB13 

27537 
 

(10.79) 

32125 
 

(12.62) 

37942 
 

(11.84) 

112979 
 

(11.71) 

54912 
 

(11.23) 

25396 
 

(9.63) 

47801 
 

(15.06) 

82367 
 

(15.95) 

10987 
 

(14.23) 

 
BV19 

25337 
 

(12.27) 

13015 
 

(12.81) 

23497 
 

(11.69) 

72688 
 

(12.99) 

30868 
 

(11.02) 

4734 
 

(10.46) 

10868 
 

(14.01) 

73392 
 

(15,00) 

11325 
 

(16.86) 

 
BV29 

38031 
 

(14.07) 

3377 
 

(14.23) 

24832 
 

(14.45) 

12789 
 

(14.08) 

33727 
 

(12.92) 

2883 
 

(11.77) 

29607 
 

(16.81) 

19827 
 

(14.66) 

9627 
 

(15.59) 

 
Overall 

90905 
 

(14.11) 

48517 
 

(13.78) 

86271 
 

(14.14) 

198456 
 

(13.50) 

119507 
 

(13.23) 

33013 
 

(10.79) 

88276 
 

(17.15) 

175586 
 

(16.82) 

31939 
 

(16.86) 

 

Table 6. Numbers of TCR sequences obtained by deep sequencing and Shannon Diversity 

Indexes (parentheses). 



42  

 
 
 
 
 
 
 

Figure 6. Rarefaction curves computed on the nine samples, divided per BV families 
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Average count of species - subsampled data 
 

 Positive patients Negative patients Cord samples Sample size 

(#sequences)  AP04 AP22 CP04 CN13 CN02 BN02 Cord12 Cord11 Cord13 

BV 03 3047 4075 3638 3257 3176 2684 6967 8460 7354 9958 

BV 19 1853 2296 1637 2026 1405 1412 3060 3153 3663 3718 

BV 29 1684 1812 1867 1853 1441 1416 2047 1934 1767 2087 

           

BV03/19 
 

/29 

 
 
10849 

 
 

10775 

 
 
11610 

 
 

9576 

 
 

9156 

 
 

7129 

 
 

18858 

 
 

19384 

 
 

20012 

 
 

24369 

 
 

Average Shannon index - subsampled data 
 

 Positive patients Negative patients Cord samples Sample size 

(#sequences)  AP04 AP22 CP04 CN13 CN02 BN02 Cord12 Cord11 Cord13 

BV 03 9.69 11.17 10.50 10.29 9.99 8.73 12.51 12.92 11.48 9958 

BV 19 10.27 10.78 9.83 10.47 9.36 8.93 11.47 11.53 11.83 3718 

BV 29 10.59 10.74 10.80 10.79 10.25 10.19 10.99 10.87 10.16 2087 

           

BV03/19 
 

/29 

 
 

12.43 

 
 

12.39 

 
 

12.47 

 
 

11.83 

 
 

11.78 

 
 

9.93 

 
 

13.98 

 
 

14.08 

 
 

13.39 

 
 

24369 
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Average fraction of singletons - subsampled data 
 

 Positive patients Negative patients Cord samples Sample size 

(#sequences)  AP04 AP22 CP04 CN13 CN02 BN02 Cord12 Cord11 Cord13 

BV 03 0.25 0.30 0.28 0.26 0.26 0.22 0.55 0.74 0.69 9958 

BV 19 0.37 0.47 0.34 0.41 0.30 0.32 0.69 0.73 0.97 3718 

BV 29 0.67 0.76 0.81 0.79 0.52 0.52 0.96 0.86 0.83 2087 

           

BV03/19/29 0.34 0.34 0.38 0.32 0.30 0.23 0.66 0.66 0.78 24369 

 
 
 
 
 

Table 7. Statistics of the TCR data after subsampling. 
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Figure 7. Abundance levels of the different species. 
 
(a) The y axis indicates the number of species above the abundance threshold on the x axis. (b) 

The same representation, showing the y axis in log domain for a better insight into high frequent 

species. (c) and (d) depict the same graphs, after the histogram of TCR species have been 

reconstructed with the unseen estimator 
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Figure 8. Nuanced patterns in the histogram of species counts. 
 
From the subsampled species histogram (sorted by descendent frequencies) of each HIV 

positive or HIV negative subject, or the cord blood samples, we computed the Shannon index in 

contiguous bins centered in , each region occupying 2% of total TCRs. 
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Discussion 
 

Immune reconstitution following initiation of antiretroviral therapy of HIV-1 infection 

clearly differs between children and adults. In children, expansion of naïve T-cell populations 

begins soon after initiation of ART, whereas redistribution and expansion of memory T-cell 

populations initially predominate in adults, in whom increases in naïve CD4+ T-cells are 

typically seen only months after therapy (Autran et al., 1997; Gibb et al., 2000; Harris et al., 

2005; Jankelevich et al., 2001; Pakker et al., 1998; Resino et al., 2003; Resino et al., 2006). To 

investigate the nature of these differences, we performed an extensive survey of thymic function 

markers and found evidence of robust thymopoiesis in long-term survivors of perinatal infection 

(>13 years) receiving ART, compared to healthy controls of similar age. The majority in the 

HIV-1 infected group had evidence of abundant thymic tissue and active thymopoiesis, with 

naïve CD4+ T-cell levels and markers (TREC) suggesting elevated production compared to 

uninfected persons. This was further supported by deep sequencing of TCRs in the naïve CD4+ 

T-cell population, which demonstrated not only preserved but enhanced diversity in these long 

term survivors of perinatal infection versus uninfected persons. These findings are consistent 

with previous studies of immune reconstitution during ART (Gibb et al., 2000; Jankelevich et al., 

2001; Resino et al., 2003; Resino et al., 2006; Sleasman et al., 1999), and observations that 

“thymic rebound” (expansion of histologically normal thymic tissue occurring after illness, 

stress, and cancer chemotherapy) is more common in children than adults, likely underlying age- 

dependent recovery of lymphocyte populations after cancer chemotherapy(Mackall et al., 1995). 

Of note a recent report demonstrated that restoration of naïve T-cell populations may be impaired 

in adult individuals with advanced HIV-1 infection, possibly due to loss of the normal stromal 

fibroblastic reticular cell (FRC) network in lymphoid tissue (Zeng, Southern, et al., 2012). Given 
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the long average duration of infection (~17 years) and histories of AIDS-defining illness in more 

than half of our study participants, this underscores the likely importance of age in HIV-1- 

induced damage to secondary lymphoid tissues and/or its reversal during ART. 

As a whole, the data presented above suggest a model in which HIV-1 replication (and/or 

secondary immune dysregulation) drives loss of memory CD4+ T-cells, leading to compensatory 

supranormal thymic output of naïve CD4+ T-cells (see Figure 9) in these youths. Evidence of 

ongoing immune activation and replication is provided by the high fraction of CD38+ HLA-DR+ 

CD8+ T-cells (Figure 2K) (Giorgi et al., 1999) and the persistence of CD8+ T-cell responses to 

HIV (Figure 2L) which indicate ongoing HIV antigen production. We note that the persistence of 

broad antiviral responses to HIV during cART has previously been observed in other perinatally- 

infected persons and contrasts with the situation in older adults, in whom complete decay of 

these responses is common. (Ching et al., 2007; Frahm et al., 2004; Kalams et al., 1999; Ogg et 

al., 1999; Spiegel et al., 1999) 

The Naïve CD4+  T-cell population is composed of both CD31+  and CD31- CD45RA+ 

cells and homeostatic proliferation is thought to transform the former into the latter, resulting in a 

decrease in the concentration of TREC in CD4+ T-cells. (Kilpatrick et al., 2008; Kimmig et al., 

2002) Within the naïve CD4+  T-cell population, the population size of the recent thymic 

emigrant (CD31+ CD45RA+) CD4+ T-cells (Naïve RTE) is maintained in most individuals 

studied (Figure 2G), suggesting increased thymic output occurs to replace loss of naïve 

(CD27+CD45RA+) cells that differentiate into memory CD4+ T-cells. The hypothesis that 

supranormal thymopoiesis occurs is also supported by our observation of enrichment of TREC in 

CD4+ T cells of uVL subjects (Figure 2H) and the enhanced diversity of TCRs in the CD31+ 

CD4+ T-cell population observed by pyrosequencing. 
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TCR breadth is likely an important clinical factor, as severe AIDS-defining illnesses may 

occur years after blood CD4+ T-cell concentrations have “reconstituted” to seemingly safe levels 

in both children and adults receiving ART. (Komanduri et al., 2001; Krogstad et al., 2015; 

Zoufaly et al., 2011) Our detailed analysis of TCR repertoire substantiates and extends prior 

studies of HIV-1-infected adults in whom ART does not generally restore CD4+ T-cell numbers 

to normal or fully normalize skewing of the TCR repertoire, as assessed by various tools ranging 

from relatively indirect to more precise measures of diversity such as CDR3 size distributions 

(“spectratyping” or “immunoscoping”), DNA hybridization kinetics (“Amplicot”), multiplex 

amplification of V-J segments, and CDR3 sequencing,(Baum & McCune, 2006; Baum et al., 

2012; Connors et al., 1997; Killian et al., 2004; Pannetier et al., 1993; O. O. Yang et al., 2005) 

and one study in children/adolescents indicating that perturbations in TCR diversity of naïve 

cells begin to resolve within several months of therapy.(Yin et al., 2009) Because HIV-1 

infection is typically associated with disrupted thymic architecture, involution of the thymic 

cortical epithelial space, and fibrosis of the peripheral lymph nodes that are required for 

expansion of thymic emigrants,(Haynes & Hale, 1999; Ho Tsong Fang, Colantonio, & 

Uittenbogaart, 2008; Schacker et al., 2002; Zeng, Southern, et al., 2012) the novel finding of 

substantially increased TCR breadth in the recent thymic emigrant CD4+ T-cell compartment of 

our HIV-1-infected subjects was surprising. Supporting this observation, recent trials of 

administering recombinant human IL-7 to infected persons on ART have demonstrated enhanced 

naïve CD4+ T-cell production accompanied by indirect measures of increased TCR diversity (Y. 

Levy et al., 2012). 
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Our study has several limitations, including its cross-sectional nature and the ~2.3 year 

average age difference between the groups of HIV-1-infected and control individuals. These 

concerns are mitigated by evidence that thymic architecture and function change little over this 

short age span (Douek et al., 1998; Harris et al., 2005; Haynes & Hale, 1999; Steinmann, Klaus, 

& Muller-Hermelink, 1985). Moreover, we found no evidence of a correlation between age and 

the number of CD31+ T cells in any of the three groups studied (Controls, uVL or dVL 

individuals) (data not shown), consistent with earlier reports indicating that CD31+ T cells 

decrease less than 50% between 20 and 60 years of age.(Kilpatrick et al., 2008; Kimmig et al., 

2002) We also observed stability of thymopoiesis parameters over 1 to 3 years in our cohort 

(TREC, number and fraction of blood CD31+CD4+ T-cells, manuscript in preparation). Our 

assessment of TCR repertoire was limited to three BV families representing about 5% of naïve 

CD4+ T-cells, and may not reflect the total functional repertoire, although there is no reason to 

suspect BV family-specific differences. Despite these limitations, the composite data support the 

sanguine view that thymic function and naïve T-cell homeostasis may be restored by prolonged 

ART in adolescent and young adult survivors of perinatal infection. 

Overall, our study suggests that thymic function is resilient in most persons, even~17 

years after HIV-1 infection that occurred when immunologically immature. Despite prior 

clinically significant immunosuppression (including AIDS defining illness and conditions 

indicative of moderate immune deficiency), ART appears to allow recovery of an apparently 

adequate TCR repertoire in many survivors of perinatal infection who have reached young 

adulthood, which is encouraging in light of numerous studies showing damaging effects of HIV- 

1 on the thymus. This appears to differ from persons infected as adults, and it is unclear whether 

the difference is simply due to better age-related regenerative potential and immunologic reserve, 
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or perhaps a difference in viral persistence or reservoirs specific to infection when 

immunologically immature. While the data are hopeful that long term survivors of perinatal 

infection are well compensated immunologically, there remain questions about whether the 

supraphysiologic TCR repertoire could in fact reflect an abnormality such as reduced stringency 

in thymic T-cell negative selection, and whether heightened thymic output will remain 

sustainable over longer periods of time if persistent HIV-1-driven memory CD4+ T-cell loss 

continues. Indeed there appeared to be some persons in our cohort with low memory and naïve 

CD4+ T-cell levels. Additional studies will be needed to determine the extent to which 

normalization of TCR diversity in and other T-cell parameters is indicative of true restoration of 

normal immune function in the setting of prolonged HIV-1 infection, and to examine the impact 

of detectable HIV replication and residual HIV-specific immune responses on these processes. 



52  

 
 
 
 

 

Figure 9. Schematic model of CD4+ T-cell homeostasis in long term survivors of perinatal 

HIV-1-infection. 

Box depicts the partitioning of CD4+ T cells into three discrete populations following emigration 

from the thymus: recent thymic emigrant CD31+ T cells (Naïve-RTE) that have not undergone 

peripheral expansion, naïve T-cells that have undergone homeostatic proliferation (CD27+ CD31-
 

), and memory (CD45RA-) cells. In the infected persons receiving ART, loss of memory (and 

possibly naïve) CD4+ T-cells is associated with enhanced thymopoiesis (thicker bold lines) and 

possibly less homeostatic proliferation in the naïve subset. The naïve T cell population is 

retained. In some individuals, this compensatory   results in resulting in an increased fraction of 

Naïve RTE cells with relatively increased TREC content, and enrichment of TCR diversity. 
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Chapter 3. Constructing HIV-Specific TCR Panels to Prevent Viral Escape 

Introduction 

CTLs, HIV, and Escape 
 

Since the first recognized and treated case of HIV-1 at UCLA in 1983 (Gottlieb et al., 

1981), HIV-1 has eluded our attempts at designing a successful vaccine and instead is a world 

epidemic that infects over 33 million individuals. One of the driving forces for HIV- 1’s success 

is its ability to mutate and escape CTLs, as first noted in 1991 (Phillips et al., 1991). HIV-1’s 

rate of viral replication and error during reverse transcription likely results in the generation of 

every combination of one or two mutations per day in an untreated person (Perelson, Essunger, 

& Ho, 1997), resulting in a catch-up game with our immune system, since even one amino acid 

mutation can abrogate CTL recognition (Bennett, Ng, Ali, & Yang, 2008a; Bennett et al., 2007b; 

O. O. Yang, Sarkis, Ali, et al., 2003). While HIV-1’s mutation is rapid and stochastic, the 

mutants that survive are selected in a deterministic manner primarily in response to CTL 

immuno-pressure (Allen et al., 2005b; Borrow et al., 1997; Goonetilleke et al., 2009b; O'Connor 

et al., 2004a). Although to a lesser extent, there are other immune cells that also drive non-env 

HIV-1 evolution, like B-cells which apply selective pressure via immunoglobulins (Watkins et 

al., 1993; Wei et al., 2003), NK cells, and cytolytic CD4+ T cells (Brown, 2010; Burwitz et al., 

2012; Soghoian & Streeck, 2010; Tang et al., 2010). 

CTL immune-pressure begins as early as three weeks post-infection (Allen et al., 2000; 

Fernandez et al., 2005b; McMichael, Borrow, Tomaras, Goonetilleke, & Haynes, 2010b). This is 

preceded by HIV-1 infecting and/or depleting about 50% (Mehandru et al., 2004; Mehandru et 

al., 2007) of the 1010 CD4+ T cells that reside in the GALT (Ganusov & De Boer, 2007a) and 

establishing a reservoir of multiple viral strains. Nevertheless, once a CTL response is mounted, 
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each individual will generate a CTL response targeting 14-19 epitopes of HIV-1 (Addo et al., 

2003) (Frahm et al., 2004) that will result in the lysis of 20-30% of all infected cells (Asquith, 

Edwards, Lipsitch, & McLean, 2006) and from the mounted response, an average of five CTL 

responses will yield an infected cell death rate of about 0.1 d-1 (Asquith et al., 2006; Ganusov et 

al., 2011; Goonetilleke et al., 2009a). However, which epitopes are targeted by CTLs will depend 

on the host’s HLA haplotype. HLA-B alleles *13, -B*27, and -B*57 (Crawford et al., 2009; X. 

Gao et al., 2001; Itescu et al., 1992; Sahmoud et al., 1993; Scorza Smeraldi et al., 1986) have 

been associated with greater viral control. This control may be due to CTL responses targeting 

epitopes whose escape variants have a weak selective advantage (Asquith, 2008), making escape 

more difficult. This is because the availability of escape from CTLs hinges on two factors – the 

efficacy of the CTL response and the replicative cost (fitness cost) that the virus incurs from 

reduction in stability and/or reduction in immune evasion. Large cross-sectional studies have 

shown that when CTL responses target epitopes with low entropy, the viremia observed during 

chronic infection is lower than when CTL responses target high entropy epitopes (Kiepiela et al., 

2007). Another example is demonstrated by elite controllers that are HLA-B*13+ (Antoni et al., 

2013; Emu et al., 2008). These persons’ CTLs target semi-conserved epitopes in Gag 

(Honeyborne et al., 2007) and Nef (Harrer et al., 2005). Through this multi-epitope targeting, 

these persons are able to control viremia to undetectable levels without medication because they 

attack HIV-1 through two mechanisms, reducing Gag fitness (i.e., viral stability by targeting the 

structural proteins that make up the capsid) and targeting Nef (i.e., dampening HLA-

downregulation) (Shahid et al., 2015) . However, the CTL responses mounted are always 

escaped because no one individual is able to produce enough CTLs to target all the variants of 

one epitope and thereby prevent escape. 
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Compartmentalization of CTL Escape Variants 
 

Escape from CTLs can occur through compartmentalization to different regions in the 

body and through different mechanisms, making it even more difficult for a strong and persistent 

CTL response to be maintained. Prior studies have shown that the viral isolates found in blood 

differ from those found in the gut-associated lymphoid tissue (GALT) (Chun et al., 2008) and 

the central nervous system (CNS) (Beck et al., 2016a) (Doherty, 1995). The HIV-1 strains in the 

different compartments evolve differently and give rise to different escape isolates, such that the 

escape variants present in the CNS will differ from those in the periphery (Beck et al., 2016a). 

This in its own right poses a new set of problems. Escape variants that may have been dealt with 

in the bloodstream could be establishing a reservoir in the CNS (Beck et al., 2016a), and later, 

when the CTLs specific for those escape variants have waned or died out due to a lack of epitope 

presence, they can arise again and result in an increase in viremia. 

Mechanisms for CTL Escape 
 

HIV-1 utilizes different mechanisms to escape CTLs, these include (i) mutations within 

the epitope to reduce or prevent binding to HLA molecules, (ii) mutations within the epitopes to 

reduce or eliminate TCR binding, (iii) mutations triggering epitope degradation, and (iv) epitope 

flanking mutations that prevent the production of epitopes of adequate length (Allen et al., 2004; 

Draenert et al., 2004; Erickson et al., 2001; Fernandez et al., 2005a; Lazaro et al., 2011; Milicic 

et al., 2005; Troyer et al., 2009; Wolfl et al., 2008; Yokomaku et al., 2004; S. C. Zhang et al., 
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2012). This project will deal with epitope mutations that reduce or eliminate TCR binding and 

mutations within the epitope to reduce or prevent HLA binding. 

HIV-1 escape mutations that negatively affect HLA binding. HIV-1 will reduce or 

abrogate HLA binding by mutating the epitope’s amino acids that bind to the HLA’s anchor 

residues, usually situated in P2 and P8 or P9 (Allen et al., 2000) (Barouch et al., 2002; Katoh et 

al., 2016). When HIV-1 successfully mutates these amino acids, HLA binding affinity has been 

observed to decrease by 50-99% (Allen et al., 2000). In one study, one amino acid mutation of 

the SIV tat epitope, SL8, resulted in reduced HLA affinity after 8 weeks (Allen et al., 2000); the 

escape variant became fixed and dominant, and the HLA affinity was observed to have been 

reduced between 50-80% (Allen et al., 2000). In the KAFSPEVIPMF (Gag 162-172) epitope, the 

mutation A163G results in 1-log less affinity to HLA-B*57 (Yu et al., 2007). Epitope mutations 

that negatively affect HLA binding will result in escape variants evading CTL surveillance, since 

the CTLs’ TCR will not bind to an pHLA complex and thus unable to lyse the infected cells. 

HIV escape mutations that negatively affect TCR binding. Mutations within epitopes 

that reduce or prevent TCR binding are another mechanism utilized by HIV-1 to escape CTL 

recognition (Bennett, Ng, Ali, & Yang, 2008b; Bennett, Ng, Dagarag, Ali, & Yang, 2007a; O. O. 

Yang, Sarkis, Trocha, et al., 2003). The epitope’s stability may not necessarily be impacted and 

HLA binding may not change, but due to CTLs’ high specificity, one mutation within the epitope 

may result in reduced or complete lack of recognition by the TCR (Bennett et al., 2008b; Bennett 

et al., 2007a; O. O. Yang, Sarkis, Trocha, et al., 2003) (Barouch et al., 2000). Not all mutations 

will result in this phenomenon, but in order for these mutations to arise, they must have higher 

replicative capacity than the consensus sequence (Loh, Petravic, Batten, Davenport, & Kent, 

2008). These mutations can rise during the acute and chronic phases of infection (Allen et al., 
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2005a; Bimber et al., 2009; Bimber et al., 2010; Goonetilleke et al., 2009a; O'Connor et al., 

2004b). Lower TCR binding will result in lower functional avidity, as defined by Bennett et al 

2011 as “the sensitizing dose of peptide for 50% maximal activity (SD50)” and, thus, in the 

persistence of those escape variants (Sunshine et al., 2015). Mutations affecting TCR binding 

may confer TCR escape without incurring fitness costs (Sunshine et al., 2015). These mutations 

will occur in epitopes with higher entropy, where fitness costs are minor or absent. The constant 

change within these high entropy epitopes will result in a variation of factors that impact T cell 

immuno-dominance. The factors that impact and determine Immuno-dominance are described as 

(i) the affinity of the HLA or TCR, (ii) the frequency of CTL precursors and the TCR repertoire, 
 
(iii) the kinetics of expression and level of protein present, (iv) the efficiency of epitope 

processing, and (v) the magnitude of the response relative to the total response within each 

infected person at a given time point (Bihl et al., 2006; Chen, Anton, Bennink, & Yewdell, 2000; 

Le Gall, Stamegna, & Walker, 2007; Osuna et al., 2014; Probst et al., 2003; Schmidt et al., 2012; 

Schmidt et al., 2011; Tenzer et al., 2009). The shift of immuno-dominance results from the 

immuno-targeting of high entropy epitopes in Nef and Env to more conserved epitopes like 

KF11 (Altfeld et al., 2006; Altfeld et al., 2001; Brumme et al., 2008; Pereyra et al., 2014). 

Because of the rapid and constant epitope mutations that result in decreased TCR binding, an 

infected person is unable to produce at any one given time enough TCRs to target all possible 

escape variants and therefore prevent viral escape and accomplish complete immune control. 

Fortunately, despite the constant mutations that reduce TCR binding, each TCR does not 

exclusively target one epitope, but is able to target other variants of that epitope (Bennett et al., 

2008b). 
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As we have surmised, HIV-1 escapes CTLs through different mechanisms in an effort to 

evade the lysis of infected cells and to promote continued dissemination. However, other issues 

remain unaddressed – for example, when does escape happen, at what rate does this escape 

occur, and can the virus revert back to its consensus sequence once a CTL response to the 

consensus sequence dissipates. 

Timing of CTL Escape Mutations 
 

HIV-1 acute phase. The timing and rate of HIV-1 escape is influenced by the interplay 

among the level of viremia, the availability of target cells, immune pressure, and the fitness cost 

associated with the escape mutation. Early studies have shown that HIV-1 and SIV can escape 

CTLs during acute and chronic infection (Allen et al., 2005a; Barouch et al., 2003; Bimber et al., 

2009; Bimber et al., 2010; Ganusov et al., 2011; Goonetilleke et al., 2009a; O'Connor et al., 

2004b; Roberts et al., 2015). Later, other studies have shown that the majority of escape happens 

during acute infection, when it occurs at a higher rate; this might be due to lower initial fitness 

costs and a large number of target cells (Asquith et al., 2007; Davenport, Loh, Petravic, & Kent, 

2008; Ganusov et al., 2011; Leslie et al., 2004), such as the 1010  CD4+  T cells found in the 

GALT during the start of infection(Ganusov & De Boer, 2007b). Prior to a CTL response, viral 

diversity is primarily driven stochastically due to the large number of target cells; however, once 

the CTL response is initiated, viral evolution is primarily driven by CTL immuno-pressure 

(Allen et al., 2005a; O'Connor et al., 2004b). Escape mutations accumulate in CTL epitopes as 

early as 3 to 4 weeks post-infection (Allen et al., 2000; McMichael, Borrow, Tomaras, 

Goonetilleke, & Haynes, 2010a; Walsh et al., 2013), highly correlating with the time when a 

CTL response first emerges. Deep sequencing supports the notion that escape primarily occurs 

during acute infection, since it has revealed that the majority of early mutations leading to escape 
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were CTL epitopes or had an HLA footprint (Henn et al., 2012). Another reason for the high 

level of escape observed during acute infection is due to immunodominant CTL responses 

targeting high entropy epitopes in Nef, Env, and Tat (M. K. Liu et al., 2013). While there is a 

targeting of semi-conserved epitopes during acute infection, these responses tend to be sub- 

dominant. If cART is not commenced shortly after infection, early escape mutations that have 

very little fitness costs but (i) are resistant to CTL immunodominant responses and (ii) have a 

faster fixation rate will populate the latent reservoir and will re-emerge during the chronic phase, 

when CTL responses have weakened and CTLs are low in their lytic granules due to CD4+ T cell 

loss (Appay et al., 2000; Bevan & Braciale, 1995; D. Zhang et al., 2003) (Asquith et al., 2006). 

Latent reservoir being defined as HIV strains infecting and residing in transcriptionally inactive 

cells. While most of the literature agrees that the majority of escape occurs during acute 

infection, it is noteworthy that a handful of studies have observed that, in their cohorts, the 

incidence of CTL escape was low during the acute phase of infection (Roberts et al., 2015). 

Some of these differences can be explained by the fact that they studied HIV-1 Clade C, which 

has been shown to have higher transmission efficiency and fitness (Rodriguez et al., 2009), or by 

the fact that, while analyzing their cohort, they began their analysis not post-infection but, rather, 

at seroconversion, which can be 1-3 weeks after infection, when a lot of the escape variants have 

already occurred. Lastly, the studies did not look at whether the transmitted strains had pre- 

existing escape variants and/or compensatory mutations. 

HIV-1 chronic phase of infection. CTL escape is also observed during the chronic phase 

of infection, although the rate of escape decreases by 10- to 100-fold (Ganusov et al., 2011). This 

might be due to lower amounts of target cells, decreased immune CTL pressure due to 

weakening of CTL responses, and loss of CD4+ T cells. Nevertheless, escape has been observed 
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even after 2 years or more despite effective immune control (Barouch et al., 2003) since (i) there 

is sufficient ongoing viral replication during undetectable levels of viremia, (ii) the number of 

target cells (i.e., CD4+ T cells) increases with effective immune control, and (iii) the higher 

fitness costs that are associated with late CTL escaped are out-weighed by CTL immuno- 

pressure. Reactivated latently infected cells can be another source from which escape can occur, 

since they begin producing new virions that bear a large number of CTL resistance mutations 

with low fitness costs (Marsden & Zack, 2015). Lastly, CTL escape can occur in the chronic 

phase of HIV-1 infection since certain epitopes generate only partial immune escape (Lewis, 

Dagarag, Khan, Ali, & Yang, 2012)variants during acute infection or early chronic infection and 

only fully escape CTLs after one or more compensatory mutations have been fixed (Brockman et 

al., 2007; Chopera et al., 2011; Crawford et al., 2009; Crawford et al., 2007b; Jamieson et al., 

2003; Kelleher et al., 2001a; D. Liu et al., 2014; Martinez-Picado et al., 2006; Seki & Matano, 

2011). 

Compensatory Mutations and their Effect on CTL Escape 
 

The timing and rate of escape can also be influenced by additional factors, such as the 

presence of compensatory mutations, reversions, and the HLA expression of the person 

transmitting the virus and the recipient of the virus. Compensatory mutations are mutations that 

will restore replication capacity that was previously lost or mutations that allow replication by 

preceding an otherwise lethal mutation. Compensatory mutations can be found within the 

epitope, flanking the epitope, or in distal regions (Brockman et al., 2007; Chopera et al., 2011; 

Crawford et al., 2009; Crawford et al., 2007b; Jamieson et al., 2003; Kelleher et al., 2001a; D. 

Liu et al., 2014; Martinez-Picado et al., 2006; Seki & Matano, 2011) . Compensatory mutations 

not only can restore lost replication capacity, but may even result in replication capacity that is 
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even higher than the consensus sequence and still retain the ability to evade the immune system. 

Consensus sequence being defined as the amino acid sequence that is the most prevalent among 

circulating strains within the population and generally used as the baseline for replication 

capacity studies. The consensus sequence for the gag 162-173 epitope is KAFSPEVIPMF. The 

KAFSPEVIPMF (Gag 162-173) epitope has compensatory mutations that fit every one of these 

criteria. The A163G mutation has reduced replication capacity (Crawford et al., 2007a), but it 

also has 1-log less affinity to HLA-B*57 (Yu et al., 2007) and reduced TCR recognition (Yu et 

al., 2007). However, the S165N compensatory mutation rescues the replication capacity of the 

A163G mutant (Crawford et al., 2007a) while retaining the reduced HLA affinity (Yu et al., 

2007) and therefore the reduced TCR recognition. This compensatory mutation lies within the 

epitope; it restores replication capacity while retaining the immuno-evasion benefits of the 

original escape. The flanking mutation S173T helps escape CTLs but, when coupled with the 

distal compensatory mutations S126N / L215T / H219Q / M228I, replication capacity exceeds 

that of the consensus sequence (Gijsbers et al., 2013). Compensatory mutations that have little or 

no fitness costs and help HIV-1 evade the immune system will not revert back to the consensus 

sequence regardless of whether they were transmitted in the transmitted/founder (T/F) virus or 

evolved during acute or chronic infection. 

Reversion of Escape Mutations 
 

Reversion of an escape variant to the consensus sequence has been well documented in 

macaques and in humans (Asquith et al., 2007; Brumme et al., 2008; Fernandez et al., 2005a; 

Friedrich et al., 2004; Goulder et al., 2001; Kelleher et al., 2001a; Leslie et al., 2004). The data 

show that, for a successful reversion, the following prerequisites must be met: (i) the wild type 

virus must have a higher replication capacity than its escape counterpart, (ii) the wild type virus 
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needs to be either the T/F or one of the strains first inoculated during infection, or be generated 

through stochastic mutations or as a result of immune pressure on the escape variants, (iii) there 

must be sufficient target cells for the wild type virus to grow in and outgrow the escape variant, 

and (iv) the immune pressure against the wild type must be less than the escape variant (Loh et 

al., 2008). As a consequence of the reversion prerequisites, reversion can occur during both acute 

and chronic infection. In a macaque study where they looked at the KF11 analog SIV Gag KP9 

epitope (Beck et al., 2016b), macaques inoculated with the high fitness cost escape variant 

K165R responded in one of two ways. If the macaque’s MHC could result in a CTL response 

against the consensus sequence, the K165R variant remained present upon the rapid development 

of the compensatory mutation V145A (Beck et al., 2016b). However, if the macaque could not 

mount a response against the consensus sequence, the K165R escape variant quickly reverted to 

consensus (Beck et al., 2016b). This illustrates the point that reversion occurs quickly in acute 

infection if the escape mutants have a high fitness cost or in the absence of CTL selective 

pressure against the consensus. Additionally, reversion can occur during acute infection if the 

newly infected person is HLA-mismatched from the HIV-1 donor, since the CTL pressure 

against the escape variants is absent (Kawashima et al., 2009; Leslie et al., 2004; Seki & Matano, 

2011). Reversion can also occur during chronic infection (Goepfert et al., 2008; Rousseau et al., 

2008). This can be a result of infection dynamics following inoculation with escape variants and 

the absence of wild type virus. In addition, reversion might not be observed until chronic 

infection when CD4+  T cell levels have increased because, while the daily probability of 

mutation is lower, the target cell availability is higher and the replication capacity of the wild 

type may be more robust. Reversion might also occur during chronic infection if the CTL 
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response is highly impaired and cannot adequately mount a response against the wild type and if 

the wild type is available in newly activated cell reservoirs. 

The Effects of CTL Escape on HIV-1 Disease Progression 
 

Over the course of HIV-1 infection, escape variants accumulate in the population, despite 

having protective or non-protective HLAs (Crawford et al., 2009; Moore et al., 2002). In one 

study (Crawford et al., 2009), several HLA-B*57+ persons infected with HIV-1 for several years 

were screened for escape mutations. All subjects had mutations in three gag-p24 epitopes that 

have been known to cause escape, and all of the HIV-1 strains isolated had reduced viral fitness, 

but viral persistence was maintained and, in the event that CTL pressure became absent, disease 

progression would likely occur. Whether the presence and accumulation of escape variants 

positively or negatively impacts disease progression is still a point of contention. 

One side of the argument is that CTL escape variants lead to disease progression and a 

poor prognosis (Allen et al., 2000; Asquith, 2008; Barouch et al., 2003; Barouch et al., 2002; 

Feeney et al., 2004; Geels et al., 2006; Goulder et al., 1997a; Koenig et al., 1995; Nowak et al., 

1991; O'Connor et al., 2002; Oxenius et al., 2004). It is argued that, while sequential addition of 

escape mutations results in reduced fitness, HIV-1 can still replicate to high levels and result in 

disease progression (Crawford et al., 2009). Other groups have observed that the appearance of 

escape CTL variants has resulted in loss of virologic control and disease progression in both 

HIV-1 and SIV (Allen et al., 2000; Asquith, 2008; Barouch et al., 2003; Barouch et al., 2002; 

Feeney et al., 2004; Geels et al., 2006; Goulder et al., 1997a; Koenig et al., 1995; Nowak et al., 

1991; O'Connor et al., 2002; Oxenius et al., 2004). In macaques, is has been observed that, after 

a mutation in a Gag epitope, CTL escape occurred and the animal’s undetectable viremia 

underwent a burst of viral replication, clinical progression, and ultimately death from AIDS- 
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related complications (Allen et al., 2000). In other studies, the evolution of CTL and antibody 

escape variants resulted in failure of HIV-1 control and the advancement of immunodeficiency. 

In the opposing viewpoint, other groups argue that the development of CTL escape 

variants does not contribute to disease progression and the onset of AIDS (Altfeld & Allen, 

2006; Bailey, Williams, Siliciano, & Blankson, 2006; Iversen et al., 2006; Jamieson et al., 2003; 

Kelleher et al., 2001a; Leslie et al., 2004; Wolinsky et al., 1996). One basis for this argument is 

that the dramatic reduction in replicative capacity due to the fitness costs of escape results in 

slow disease progression and also in reduced transmission. Other groups have observed that viral 

escape is not always accompanied by a surge or a detectable increase in viremia. In one study 

(Leslie et al., 2004), HIV-1+ persons were followed for several years; they remained healthy 

despite the presence of CTL escape variants. As such, it is argued that CTL escape has no 

clinical disadvantage and may even be advantageous in some cases due to the lower replicative 

capacity. The differing viewpoints can be possibly reconciled by noting that the rate of AIDS 

progression due to CTL escape variants is better described as HLA-associated rate of AIDS 

progression, which is a fraction of the total rate of disease progression and is CTL-dependent. 

Thereby, while CTL escape will not result in direct progression to AIDS, it does tip the scales 

towards the progression of AIDS. 

CTL Escape and its Effects at the Population Level 
 

Furthermore, the evolution of CTL escape variants has changed the face of HIV-1 at the 

population level due to its constant adaption to HLA-driven responses (Gounder et al., 2015; 

Kawashima et al., 2009). The increased prevalence of CTL escape mutations coupled with 

compensatory mutations has further reduced the benefits of protective HLA alleles associated 

with slowed HIV-1 disease progression(Payne et al., 2014). The prevalence of compensatory 
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mutations has mitigated the fitness costs associated with the escape mutations (Brockman et al., 

2010; Brockman et al., 2007; Huang et al., 2011), thus resulting in more CTL resilient HIV-1 

strains. An example of this phenomenon can be seen in the Japanese population (Katoh et al., 

2016), which expresses HLA-A*2402 in over 60% of its population. The HIV-1 strains observed 

in Japan have resulted in reduced CTL-mediated viral control and increased HIV-1 pathogenesis 

(in terms of lower CD4+ T cell counts). Other studies have found that a large number of escape 

variants are being transmitted at the time of infection, suggesting a viral adaptation to host HLA 

molecules that is occurring at the population level. 

T Cell Immunotherapy 
 

To date, there is no HIV-1 vaccine. However, T cell immunotherapy has been considered 

as a possible avenue for a potential HIV-1 treatment and/or vaccine. The idea behind T cell 

immunotherapy is based on the promising results in the treatment of melanoma using HLA-A*02 

restricted TCRs (Clay, Morse, & Lyerly, 2002; Coccoris, de Witte, & Schumacher, 2005). A 

problem with current T cell immunotherapies is that they are unable to cope with viral escape 

and thereby leave unplugged holes that the virus can use to escape CTL surveillance. Previously, 

an HIV-1 epitope was targeted using T cell immunotherapy; however, the treatment ultimately 

failed since the virus escaped, and the treatment was rendered useless (Koenig et al., 1995). 

Another problem with the current technology is that the methods utilized to identify and clone an 

epitope-specific TCR are laborious and expensive. In this work, we show a new inexpensive 

method to rapidly identify, clone, and functionally test a panel of TCRs that are specific to HIV- 

1 epitopes. This panel of TCRs targets the different variants of the HIV-1 epitope 

KAFSPEVIPMF (Gag 162-172) and prevents viral escape and/or greatly diminishes replicative 

capacity. 
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Materials and Methods 
 
Cohort and Preparation of Peripheral Blood Mononuclear cells 

 
Blood samples were collected from healthy control and non-treated chronically HIV-1– 

infected volunteers under University of California Los Angeles Institutional Review Board- 

approved protocols. PBMCs were isolated by Ficoll gradient and washed twice with Hanks’ 

buffered saline, then viably cryopreserved. 

Detection of HIV-1-Specific CD8+ T cell Responses Against HIV-1 by IFN-γ ELISpot 

Analysis 

Peripheral blood HIV-1 specific CD8+ T cell responses in HIV-1 infected individuals 

with plasma HIV-1 levels of <400 RNA copies/mL at study entry were quantified by IFN-γ 

ELIspot analysis, as previously described (Ibarrondo et al., 2005). Briefly, purified CD8+ T cells 

were screened against peptide, KAFSPEVIPMF (KF11), to determine the frequency of spot- 

forming cells (SFC) per added CD8+  T cells.  SFC were enumerated with an automated 

ELISPOT reader (Autoimmum Diasgnostika, Strassberg, Germany). The frequency of HIV-1- 

specific SFC per volume of peripheral blood was calculated by multiplying the frequency of SFC 

in CD8+ T cells and the number of CD8+ T cells per volume of blood. 

HLA Genetic Analyses 
 

Using PBMC DNA, HLA typing was performed by the clinical laboratory at the UCLA 

Immunogenetics Center. 

Enrichment of Epitope-Specific TCRs by Cognate Peptide Stimulation of PBMC 
 

Culture 1.5 x106 PBMC in 2 ml of R10-12.5 in a 48-well cell culture plate for each 

condition, i.e. cognate peptide-stimulated sample and non-peptide control. Add the cognate 

peptide to the experimental well to a final concentration of 0.6-1.0 μg/ml and mix well by 
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pipetting, and no peptide to the non-stimulated control. Incubate the plate at 37°C in a 

humidified cell culture incubator with 5% CO2 for 72 hours. Without disturbing the cells, feed 

each well by removing 1 ml of medium and replenishing with 1 ml R10-12.5 pre-warmed to 

37°C. Incubate the plate at 37°C in a humidified cell culture incubator with 5% CO2 for 7 days, 

and feeding the cells with R10 every 72 hours. 

Isolation of CD8+ T Cells by Immunomagnetic Positive Selection 
 

Transfer the contents of each well (after pipetting to ensure all cells are suspended) to a 2 

ml microcentrifuge tube.  Pellet cells by spinning at 2,400 rcf at 4°C for 3 minutes (in a 

FrescoTM 17 Microcentrifuge at 5000 rpm or similar). Carefully remove as much supernatant as 

possible without disturbing the cell pellets. Resuspend each cell pellet in 80 μl of cell separation 

buffer. Add 20 μl of anti-human CD8 coated Microbeads to each pellet (Miltenyi Biotech) and 

mix well by gently pipetting several times. Incubate for 15 minutes at 4°C. Add 1 ml of cell 

separation buffer to each tube and again pellet the cells at 2,400 rcf at 4°C for 3 minutes. 

Carefully remove as much of the supernatant as possible without disturbing the cell pellets. 

Resuspend each pellet with 500μl of cell separation buffer. Isolate the CD8+ T cells using a 

MACS Cell Separator (Miltenyi) under the conditions: Program=Option, Separation 

Method=Possel, Wash=QuickRinse, Volume=500 μl. Place the collected CD8+ T cells on ice for 

a maximum of one hour before RNA extraction. 

RNA Isolation and Purification 
 

Transfer each sample to a 2 ml microcentrifuge tube and pellet cells at 2,400 rcf at 4°C 

for 3 minutes. Carefully remove as much supernatant as possible without disturbing the cell 

pellets. Resuspend each pellet in 250μl of cold R10. Add 750μl of Trizol LS reagent to each 

pellet and lyse by pipetting several times or vortexing; if there are more than 10x106  cells adjust 
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the amount of Trizol (additional 75μl of Trizol LS for each additional 106 cells). Incubate for 5 

minutes at room temperature. Per 750μl of Trizol LS reagent, add 200μl of chloroform and mix 

vigorously using a vortexer. Incubate for 10 minutes at room temperature. Centrifuge the 

samples at 12,000 rcf at 4°C for 15 minutes (in a FrescoTM 17 Microcentrifuge 11,200 rpm or 

similar centrifuge). Carefully transfer the aqueous phase to a clean 1.5ml microcentrifuge tube, 

ensuring that no Trizol reagent is carried over. Add 500μl of absolute isopropanol at room 

temperature (optional: add 200μg of glycogen) and mix well by pipetting up and down several 

times to precipitate the RNA. Incubate for 10 minutes at room temperature. Centrifuge the 

samples again at 12,000 rcf at 4°C for 10 minutes. Discard the supernatant and add 1ml of 75% 

ethanol at 4°C. Mix the sample by vortexing for 3 seconds. Centrifuge the samples at 7,500 rcf 

at 4°C for 5 minutes (in a FrescoTM 17 Microcentrifuge at 8,800 rpm or similar centrifuge). 

Carefully remove the ethanol without disrupting the RNA pellet. Air-dry the RNA pellet for 10 

minutes at room temperature. Dissolve the RNA pellet in 40 μl molecular grade water. Take 2 μl 

and measure the RNA concentration using a nanodrop spectrophotometer to ensure a yield of at 

least 20 ng/μl of RNA. The RNA can be immediately used for cDNA synthesis or stored at - 

80°C long term. 

Synthesis of cDNA 
 

For each RNA sample, prepare two microcentrifuge tubes containing 20 μl of 2x master 

mix using the reagents from the “High Capacity cDNA Reverse Transcription Kit” (See Table 

8); mix gently by pipetting and place on ice.  Add 20μl of each RNA sample (or maximum of 2 

μg RNA) to each tube and pipette gently to mix. Briefly spin in a microfuge to bring all liquid to 

the bottom of the tubes. Place the microcentrifuge tubes in a thermal cycler and run using the 

conditions: Step 1=25°C for 10 minutes, Step 2=37°C for 120 minutes, Step 3=85°C for 5 
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minutes, Step 4=4°C hold. Once the reverse transcription reaction is completed, the cDNA can 

be stored at -20°C or used immediately. 
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COMPONENT µl 
10x Reverse Transcriptase 4 

25x dNTP Mix 1.6 
10x RT Random Primers 4 

MultiScribe Reverse Transcriptase 2 
RNase Inhibitor (10U/μl) 2 
Molecular grade water 6.4 

TOTAL 20.0 
 
 

 

Table 8. Reverse transcription master mix. 
 

The components for a 2x mix for reverse transcription are listed. 
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Purification of cDNA 
 

Purify cDNA using the Invitrogen PureLink PCR Purification Kit as per manufacturer’s 

instructions, except finally resuspending each sample in 40 μl molecular grade water. The 

purified cDNA can be stored at -20°C or used immediately for quantitative spectratyping of TCR 

TRAV and/or TRBV families. 

Quantitation of TCR AV and TRBV Family Transcripts by Real-Time PCR 
 

For each sample, take one of the two 40 μl cDNA reactions and add 80 μl of molecular 

grade water to bring the total volume to 120 μl (reserve the other for cloning, or as a backup). 

For the TRAV and TRBV spectratyping reactions, prepare mastermixes in 1.5ml microcentrifuge 

tubes with cDNA as indicated in table 9 (four mastermixes for TRAV and three mastermixes for 

TRBV spectratyping); keep on ice and protected from light until use. For the quantitative 

standards using plasmid standards, prepare mastermixes in 1.5ml microcentifuge tubes for the 

plasmid standard as shown in table 10; keep on ice protected from light until use.  Prepare 7 

serial four-fold dilutions of TRAV08 and TRBV20 plasmid standards (previously produced in a 

TOPO TA cloning vector, Invitrogen) in molecular grade water from 5 pg/μl (5 pg = 1.94 x 107 

and 1.65 x 107 copies of the TRAV and TRBV plasmids respectively) to 1.22 fg/μl; start with 16 

μl and carry forward 4 μl plus 12 μl water serially, mixing well by pipetting and changing pipet 

tips between each dilution. Set up a 96-well PCR plate with 19 μl of the indicated mastermixes 

per well as indicated in table 10 for TRAV and TRBV spectratyping, adding 1μl of each 

unlabeled TRAV forward primer listed in table 11A for TRAV and table 11B for TRBV to the 

wells indicated; mix by pipetting several times. Add 1 μl per well of the standard plasmid serial 

dilutions to the wells indicated in figure 10 for TRAV and figure 10 for TRBV; mix by pipetting 

several times.  Seal the plates with a Microseal ‘B’ Adhesive Seal.  Place the plates in an iQ5 
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thermal cycler and run using the real-time PCR conditions: one cycle of 95°C for 30 seconds, 

followed by 40 cycles of 95°C for 5 seconds and 60°C for 30 seconds, followed by hold at 4°C. 

Calculate the copy numbers of each TRAV and TRBV family based on standard curves from the 

diluted plasmid standards. Derive the relative concentration of each TRAV or TRBV family as 

the ratio of the copy number of that family versus the median copy number across all TRAV or 

TRBV families respectively. 
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MASTERMIXES (µl) FOR: 
COMPONENT  

ALPHA 
 

BETA 

α-chain constant region reverse primer   

labeled with: FAM, VIC, NED, or PET* 9 - 

(10 mM stock solution) 
  

 

α-chain constant region probe 
 
 

4.5 

 
 

- 
labeled with Cy5** (100 mM stock solution)   

 
β-chain constant region reverse primer 

  

labeled with FAM, VIC, or NED*** - 9 

(10 mM stock solution) 
  

 

β-chain constant region probe 
 
 

- 

 
 

4.5 
labeled with Cy5**** (100 mM stock solution)   

 
SsoFast Probe Supermix 

 
90 

 
90 

cDNA 13.5 13.5 

Molecular grade water 54 54 

TOTAL 171 171 

 

 

Table 9. Mastermixes with final working concentrations for AV and BV spectratyping. 
 

The components for generating mastermixes for the AV and BV family real-time PCR reactions 

are shown. One mastermix is made for each labeled version of the constant region reverse primer 

(four for alpha and three for beta). 
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* 5’-GCAGACAGACTTGTCACTGG-3’ 
** 5’-(Cy5)- CTGCCGTGTACCAGCTGAGAGA-(BHQ2)-3’ 
*** 5’-CTTCTGATGGCTCAAACAC-3’ 
**** 5’-(Cy5)-TGTTCCCACCCGAGGTCGC-(BHQ2)-3’ 
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COMPONENT 
MASTERMIXES (µl) FOR: 

ALPHA BETA 
AV8 forward primer 

(10 mM stock solution)* 
15 - 

α chain constant region reverse primer 
(10 mM stock solution)** 

15 - 

α chain constant region probe 
(100mM stock solution)*** 

7.5 - 

BV20 forward primer 
(10 mM stock solution)**** 

- 15 

β chain constant region reverse primer 
(10 mM stock solution)***** 

- 15 

β chain constant region probe 
(100mM stock solution)****** 

- 7.5 

SsoFast Probe Supermix 150 150 
Molecular grade water 90 90 

TOTAL 277.5 277.5 
 
 
 
 
 

Table 10. Real-time PCR standard mastermixes for AV and BV families. 

Mastermixes for the real-time PCR plasmid standards are indicated. 

* 5’-GCATCAACGGTTTTGAGGCTG-3’ 
** 5’-GCAGACAGACTTGTCACTGG-3’ 
*** 5’-(Cy5)- CTGCCGTGTACCAGCTGAGAGA-(BHQ2)-3’ 
**** 5’-TCAACCATGCAAGCCTGA-3’ 
***** 5’-CTTCTGATGGCTCAAACAC-3’ 
******5’-(Cy5)-TGTTCCCACCCGAGGTCGC-(BHQ2)-3’ 



77  

A 
 

FAMILY PRIMER SEQUENCE (5’→3’) AV GENES INCLUDED 

AV01 ATGYTCTGGATGGTTTGGAGGAGA AV1-1*01, AV1-2*01 

AV02 TCAGCAGGGACGATACAACATGAC AV2-1*01 

AV03 ATCAGGTCAACGTTGCTGAAGGGA AV3*01 

AV05 GGATAAACATCTGTCTCTGCG AV5*01 

AV06 TGAAGGTCACCTTTGATACCACCC AV6*01 

 
AV08 

 
GCATCAACGGTTTTGAGGCTG 

AV8-1*01, AV8-2*01, AV8-3*01, 

AV8-4*01, AV8-6*01, AV8-6*02 

AV09 CTTGGAGAAAGGCTCAGTTC AV9-1*01, AV9-2*01 

AV10 CAACTCTGGATGCAGACACAAAGC AV10*01 

 
AV12 

 
GAAGATGGAAGGTTTACAGCACAG 

AV12-1*01, AV12-2*01 AV12- 

3*01 

AV13 ATTCARACAGYGCCTCARACTACTTC AV13-1*01, AV13-2*01 

AV14 AATCCGCCAACCTTGTCATCTCCG AV14-1*01, AV14-1*02 

AV16 CACTGCTGACCTTAACAAAGGCG AV16*01 

AV17 AAGCAGTTCCTTGTTGATCACGGC AV17*01 

AV18 AGTGACAGTTCCTTCCACCT AV18*01 

AV19 TCCACCAGTTCCTTCAACTTCACC AV19*01 

AV20 CCCTGAATTCCTCTTCACCCTGTA AV20*01 

AV21 TGCCTCGCTGGATAAATCATCAGG AV21*01 

AV22 TTCATCAAAACCCTTGGGGACAGC AV22*01 
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AV23 TCCATGGTACCAACAATTCCCTGG AV23*01 

AV24 TGCCACTCTTAATACCAAGGAGGG AV24*01 

AV25 ACCCAGACTACAGATGTAGGAACC AV25*01 

AV26 GAAAGTCCAGTACCTTGATCCTGC AV26-1*01, AV26-2*01 

AV27 CTGTGTACTGCAACTCCTCAAGTGT AV27*01 

AV29 ACCCTGCTGAAGGTCCTACATTCC AV29*01 

AV30 GAAGCACCCGTCTTCCTGATGATA AV30*01 

AV34 AGATAACTGCCAAGTTGGATGAGAA AV34*01 

AV35 GCTGGTGAATTGACCTCAAATGG AV35*01 

AV36 GAACATCACAGCCACCCAGACCGG AV36*01 

AV38 CCCAGCAGGCAGATGATTCTCGTT AV38-1*01, AV38-2*01 

AV39 TTGATACCAAAGCCCGTCTC AV39*01 

AV40 AGCAAAAACTTCGGAGGCGG AV40*01 

AV41 ACACTGGCTGCAACAGCATC AV41*01 

B 
 

FAMILY PRIMER SEQUENCE (5’→3’) BV GENES INCLUDED 

BV02 GCAGAAAGTCGAGTTTCTGG BV2 

BV03 CCTAAATCTCCAGACAAAGC BV3-1 

BV04 GCTTCTCACCTGAATGCCCC BV4-1, BV4-2, BV4-3 

BV05a TCAGTGAGACACAGAGAAAC BV5-1 

 
BV05b 

 
TGTGTCCTGGTACCAACAGG 

BV5-3, BV5-4, BV5-5, BV5-6, 

BV5-7, BV5-8 
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BV06a 

 
CGACAAGACCCAGGCATGGG 

BV6-1, BV6-3, BV6-5, BV6-6, 

BV6-7, BV6-8, BV6-9 

BV06b AGACAAGATCTAGGACTGGG BV6-4 

 
BV07 

 
CTCAGGTGTGATCCAATTTC 

BV7-1, BV7-2, BV7-3, BV7-4, 

BV7-6, BV7-8, BV7-9 

BV09 CGCACAACAGTTCCCTGACT BV9 

BV10 CATGGGCTGAGGCTGATC BV10-1, BV10-2, BV10-3 

BV11 TCACAGTTGCCTAAGGATCG BV11-1, BV11-2, BV11-3 

BV12 TCTGGTACAGACAGACCATG BV12-3, BV12-4, BV12-5 

BV13 GCAGGGTCCAGGTCAGGACCCCCA BV13 

BV14 AGTCTAAACAGGATGAGTCCG BV14 

BV15 ACAATGAAGCAGACACCCCT BV15 

BV18 GAGTCAGGAATGCCAAAGGA BV18 

BV19 GGAGATATAGCTGAAGGGTA BV19 

BV20 TCAACCATGCAAGCCTGA BV20-1 

BV24 GTGTCTCTCGACAGGCACAG BV24-1 

BV25 TCAACAGTCTCCAGAATAAGGACG BV25-1 

BV27 GTCTCTCGAAAAGAGAAGAG BV27 

BV28 GTCTCTAGAGAGAAGAAGGAGCGC BV28 

BV29 GAGGCCACATATGAGAGTGG BV29-1 

BV30 CAGCTCTGAGGTGCCCCAGA BV30 
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Table 11. Forward primer sequences for spectratyping. 
 
Table 11A. Forward primers for AV spectratyping. Table 11B. Forward primers for BV 

spectratyping. 
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Figure 10. Plate maps  for  AV  and  BV  spectratyping reactions. 
 
96 well plate maps are shown for real-time PCR reactions for AV (A) and BV (B) families. The 

dyes listed above each column of families indicate labels for those families. The blocks of 4 

families (AV) or 6 families (BV) indicate groupings that are subsequently combined for analysis 

by capillary electrophoresis. 
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Size Distribution Profiling of Individual TRAV and TRBV Families to Identify Epitope- 

Specific TCR Peaks 

Take 5μl of each real-time PCR reaction and combine into the TRAV and TRBV 

groupings in table 12A and table 12B. Mix each grouping well by pipetting and add 1.5 μl of 

each grouping to a 96 well PCR plate with 0.5 μl LIZ 500 size standard and 8 μl Hi-Dye 

Formamide. Place the 96-well PCR plate on a Mastercycler Pro (or similar thermal cycler) and 

denature at 94°C for 5 minutes, and immediately place the plate on ice for 5 minutes protected 

from light. Load 10 μl of each reaction into an ABI 3130 Sequencer (or similar unit) using the 

capillary electrophoresis function. Analyze the resulting histograms using GeneMapper v3.7 to 

determine the area under the curve of each size peak within each TRAV or TRBV family (see 

Figure 11). Calculate the relative concentration of each size peak within the family by 

multiplying the fraction of its peak area of total peaks within its family times the relative 

concentration of the total family. Compare the relative concentrations of each peak for the 

peptide-stimulated versus unstimulated control samples to identify the peaks that expanded in an 

epitope-specific manner (increased by at least 2 units compared to the control). 
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A 
 

 
GROUP 

CONSTANT REGION REVERSE PRIMER LABEL 

FAM VIC NED TED 

1 AV10) AV14 AV34 AV39 

2 AV08 AV22 AV02 AV38 

3 AV19 AV16 AV09 AV18 

4 AV27 AV23 AV05 AV29 

5 AV20 AV40 AV21 AV36 

6 AV35 AV24 AV13 AV17 

7 AV25 AV06 AV26 AV30 

8 AV12 AV41 AV01 AV03 

 
 

B 
 

 
GROUP 

CONSTANT REGION REVERSE PRIMER LABEL 

FAM VIC NED 

1 BV09, BV18 BV20, BV29 BV28, BV06a 

2 BV05a, BV05b BV27, BV15 BV04, BV02 

3 BV03, BV14 BV25, BV10 BV24, BV06b 

4 BV19, BV07 BV30, BV12 BV11, BV13 

 
 

 

Table 12. Grouping of AV and BV PCR reactions for capillary electrophoresis spectratyping 

analysis. 

Table 12A for alpha and table 12B for beta spectratyping PCR products, groupings of different 

families for capillary electrophoresis analysis are listed. 
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Figure 11. Maps of AV and BV family locations after capillary electrophoresis. 

Examples of raw AV (A) and BV (B) spectratyping histograms generated by capillary 

electrophoresis are shown for a typical healthy person.  Each box indicates one group of PCR 

reactions run together; each line represents one PCR reaction tagged by constant region reverse 

primers complexed to the indicated dyes. 
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Purification of TRAV and TRBV Family PCR Products in Preparation for Sequencing 
 

Using the Invitrogen PureLink PCR Purification Kit, PCR purify the TRAV and TRBV 

families that showed epitope-specific size-peak expansions according to the manufacturer’s 

instructions, except eluting the DNA in 50 μl molecular grade water in the last step. The DNA 

can be stored at -20°C or used immediately for sequencing. 

Sequencing of Epitope-Specific TRAV and TRBV Chains in Families with Epitope-Specific 

Expansions 

Prepare a sequencing reaction mix as listed in table 13 in a PCR microcentrifuge tube for 

each PCR product with an epitope-specific expansion; mix well by pipetting and briefly spin 

down.  Place the tubes in a thermal cycler using the conditions: one cycle of 96°C for one 

minute, followed by 40 cycles of 96° for 10 seconds, 50°C for 5 seconds, 60°C for 4 minutes, 

followed by hold at 4°C. After PCR, the tubes can be stored at 4°C up to 2 days or used 

immediately for sequencing. Use the BigDye Sequencing Cleanup Kit to prepare each PCR 

reaction for sequencing according to the manufacturer’s instructions, finally resuspending each 

sample in 40 μl molecular grade water. Load 10 μl of each reaction into the ABI 3130 sequence 

analyzer. Analyze the resulting sequences using Chromas Lite and the IMGT/V-Quest database 

http://www.imgt.org/IMGT_vquest/.  For families that contain more than one epitope-specific 

expansion, it may be necessary to TOPO-TA clone the PCR product to do clonal sequencing. 

http://www.imgt.org/IMGT_vquest/
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COMPONENT µl 

5x BigDye Sequencing Buffer 3.75 

Terminator Reaction Mix v3.1 0.5 

AV or BV PCR product (100-200 ng) (x) 

Primer (10mM stock solution)* 0.5 

Molecular grade water q.s. 

TOTAL 20 

 
 

 

Table 13. Sequencing reaction mixes for AV or BV chains. 
 

The components for sequencing reactions of AV or BV family PCR products are listed. 
 
 
 

*Appropriate forward AV or BV primer (TABLE 4), or appropriate reverse alpha or beta constant region primer (TABLE 3) 
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Preparation of TRAV, TRBV, and Vector Link PCR Fragments for In-FusionTM 
 

Design and obtain specific primers for TRAV and TRBV PCR amplification as shown in 

table 14; these primers include overlap sequences for In-FusionTM (see Figure 12). For each 

TRAV or TRBV family cDNA generated and the corresponding primers designed above, prepare 

a 50 μl PCR reaction in an 0.2 ml PCR tube using 1μl of cDNA as template, adding KOD 

polymerase last (table 15). For the vector link fragment between the TRAV and TRBV genes 

(containing the alpha constant region and the 2A ribosomal skip sequence, see Figure 12), set up 

the same PCR reaction conditions in table 15 in an 0.2 ml PCR tube using 5 ng of the plasmid 

with the template and the primers: 5'-GCCGTGTACCAGCTGCGG-3' (forward) and 5'- 

GGGGCCAGGGTTTTCCTCC-3' (reverse). For TRAV, TRBV, and vector link PCR 

amplification reactions use conditions: 95°C for 60 seconds, then 34 cycles of 95°C for 30 

seconds, 58 to 63°C (1°C lower than the lowest melting temperature of the primers used) for 1 

minute, 68°C for 60 seconds, followed by hold at 70°C for 7 minutes, and then hold at 4°C. Add 

1μl (20 units) of DpnI enzyme to the vector link PCR product and incubate for one hour at 37°C, 

to digest residual plasmid template. The PCR product can be stored long term at -20°C or used 

immediately. Run 50 μl of each PCR reaction mixed with 6 μl loading buffer on an 2% agarose 

gel for 40-45min at 120V/500mA to resolve bands of about 500 base pairs for the TRAV, 

TRBV, and vector link PCR products. On a UV light box, excise the bands (minimizing time of 

exposure to UV as much as possible) and transfer each band to a 2 ml microcentrifuge tube. Use 

the Machery-Nagel NucleoSpin Gel and PCR Clean-up Kit to isolate DNA from the gel slices as 

per manufacturer’s instructions except resuspending the DNA in molecular grade water rather 

than the supplied elution buffer.   Determine DNA concentration using 2 μl in a nanodrop 
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spectrophotometer; the 260:280 OD ratio should be 1.8 to 1.95. The DNA can be used for 

immediately for In-FusionTM, or stored long term at -20°C. 
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Figure  12. TCR  lentiviral  expression  vector  and  In-Fusion strategy. 

 
The cDNA from CD8+ T cells that have been highly enriched for epitope-specificity is PCR 

amplified for the AV and BV chains of interest using primers with overhangs : AV PCR to 

produce a fragment overlapping the 5' end of the lentiviral vector and the alpha constant 

(AC) chain, and BV PCR by to produce a fragment overlapping the 2A ribosomal skip 

sequence of the AC-2A vector linker fragment and the beta constant (BC) chain. The AC- 

2A vector linker fragment is produced by PCR of a plasmid with that insert. The outer 

vector fragment is produced by digestion of vector plasmid to remove a beta -galactosidase 

place-holder insert. The final vector (bottom) produced by In-Fusion™ contains genes for 

complete alpha and beta chains flanking the 2A ribosomal skip sequence, followed by an 

IRES that drives expression of heat stable antigen (HSA) reporter, all within a lentiviral 

vector in a plasmid. 
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AV= Alpha chain variable region 

AC= Alpha chain constant region 

2A = Ribosomal skip sequence ("self-cleaving 

peptide") BV= Beta chain variable region 

BC= Beta chain constant region 

IRES= Internal ribosomal entry site 
 
HSA= Heat stable antigen reporter (murine CD24) 

J}-Gal = Beta galactosidase 

* =  Complementary overhang 
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A 
 

 PRIMER SEQUENCE (5’→3’) 

ALPHA BETA 

FORWARD 

(VARIABLE) 

CGCCCGGGGGGGAT 

CCGCCACCX 

 
GAAAACCCTGGCCCCX 

REVERSE 

(CONSTANT) 

CAGCTGGTACACGGC 
 

AGGGT 

TCGAACACGGCCACCTCAGGTGGGAACAC 

GTTTTTCAGGTC 

 
 

B 
 

 FAMIL 

Y 

 
FORWARD PRIMER SEQUENCE (5’→3’) 

Estima 

ted Tm 

AV 
 
Families 

AV01 CGCCCGGGGGGGATCCGCCACCATGTGGGGAGYTTTCC 

TTCTYTATGTTTC 

63.9°C 

AV02 CGCCCGGGGGGGATCCGCCACCATGGCTTTGCAGAGCA 

CTCTGGG 

64.2°C 

AV03 CGCCCGGGGGGGATCCGCCACCATGGCCTCTGCACCCA 

TCTCGA 

64.0°C 

AV04 CGCCCGGGGGGGATCCGCCACCATGAGGCAAGTGGCGA 

GAGTGATC 

64.4°C 

AV05 CGCCCGGGGGGGATCCGCCACCATGAAGACATTTGCTG 

GATTTTCGTTCCTGTT 

64.4°C 
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 AV06 CGCCCGGGGGGGATCCGCCACCATGGAGTCATTCCTGG 

GAGGTGTTTTG 

65.0°C 

AV07 CGCCCGGGGGGGATCCGCCACCATGGAGAAGATGCGGA 

GACCTGTC 

64.4°C 

AV08- 

1 

CGCCCGGGGGGGATCCGCCACCATGCTCCTGTTGCTCAT 

ACCAGTGC 

64.6°C 

AV08- 

1/-4/-6 

CGCCCGGGGGGGATCCGCCACCATGCTCCTGCTGCTCG 

TCCC 

63.4°C 

AV08- 

3 

CGCCCGGGGGGGATCCGCCACCATGCTCCTGGAGCTTA 

TCCCACTG 

64.4°C 

AV09- 

1 

CGCCCGGGGGGGATCCGCCACCATGAATTCTTCTCCAGG 

ACCAGCGATTG 

65.1°C 

AV09- 

2 

CGCCCGGGGGGGATCCGCCACCATGAACTATTCTCCAG 

GCTTAGTATCTCTG 

64.0°C 

AV10 CGCCCGGGGGGGATCCGCCACCATGAAAAAGCATCTGA 

CGACCTTCTTGGT 

63.9°C 

AV12 CGCCCGGGGGGGATCCGCCACCATGATGAWATCCTTGA 

GAGTTTTACTRGTSATC 

63.9°C 

AV13- 

1 

CGCCCGGGGGGGATCCGCCACCATGACATCCATTCGAG 

CTGTATTTATATTCCTG 

64.5°C 

AV13- 

2 

CGCCCGGGGGGGATCCGCCACCATGGCAGGCATTCGAG 

CTTTATTTATGTAC 

64.0°C 
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 AV14 CGCCCGGGGGGGATCCGCCACCATGTCACTTTCTAGCCT 

GCTGAAGGT 

63.2°C 

AV15 CGCCCGGGGGGGATCCGCCACCATGTATACGTATGTAAC 

AAACCTGCGCGT 

63.9°C 

AV16 CGCCCGGGGGGGATCCGCCACCATGAAGCCCACCCTCA 

TCTCAGTG 

64.4°C 

AV17 CGCCCGGGGGGGATCCGCCACCATGGAAACTCTCCTGG 

GAGTGTCTTTG 

65.0°C 

AV18 CGCCCGGGGGGGATCCGCCACCATGCTGTCTGCTTCCT 

GCTCAGG 

64.2°C 

AV19 CGCCCGGGGGGGATCCGCCACCATGCTGACTGCCAGCC 

TGTTGAG 

64.2°C 

AV21 CGCCCGGGGGGGATCCGCCACCATGGAGACCCTCTTGG 

GCCTG 

63.7°C 

AV22 CGCCCGGGGGGGATCCGCCACCATGAAGAGGATATTGG 

GAGCTCTGC 

63.0°C 

AV23 CGCCCGGGGGGGATCCGCCACCATGGACAAGATCTTAG 

GAGCATCATTTTTAGTTC 

64.7°C 

AV24 CGCCCGGGGGGGATCCGCCACCATGGAGAAGAATCCTT 

TGGCAGCCC 

64.6°C 

AV25 CGCCCGGGGGGGATCCGCCACCATGCTACTCATCACATC 

AATGTTGGTCTTATG 

64.4°C 
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 AV26- 

1 

CGCCCGGGGGGGATCCGCCACCATGAGGCTGGTGGCAA 

GAGTAACTG 

64.6°C 

AV26- 

2 

CGCCCGGGGGGGATCCGCCACCATGAAGTTGGTGACAA 

GCATTACTGTACTC 

64.0°C 

AV29 CGCCCGGGGGGGATCCGCCACCATGGCCATGCTCCTGG 

GGG 

63.1°C 

AV30 CGCCCGGGGGGGATCCGCCACCATGGAGACTCTCCTGR 

AAGTGCYTTC 

64.8°C 

AV34 CGCCCGGGGGGGATCCGCCACCATGGAGACTGTTCTGC 

AAGTACTCCTA 

63.4°C 

AV35 CGCCCGGGGGGGATCCGCCACCATGCTCCTTGAACATTT 

ATTAATAATCTTGTGGATG 

63.8°C 

AV38- 

1 

CGCCCGGGGGGGATCCGCCACCATGACACGAGTTAGCT 

TGCTGTGGG 

64.6°C 

AV38- 

2 

CGCCCGGGGGGGATCCGCCACCATGGCATGCCCTGGCT 

TCCTGT 

64.0°C 

BV 
 
Families 

BV02 GAAAACCCTGGCCCCATGGATACCTGGCTCGTATGCTGG 64.4°C 

BV03- 

1 

GAAAACCCTGGCCCCATGGGCTTCAGGCTCCTCTGCT 64.0°C 

BV03 GAAAACCCTGGCCCCATGGGCTKCAGGCTCCTCTGCT 64.9°C 

BV04 GAAAACCCTGGCCCCATGGGCTGCAGGCTGCTCTG 63.4°C 

BV05- GAAAACCCTGGCCCCATGGGCCCYGGGCTCCTCT 64.2°C 
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 3/-4/- 
 

5/-7 

  

BV05- 

6/-8 

GAAAACCCTGGCCCCATGGGMCCCRGGCTCCTCTKC 66.7°C 

BV06- 

1/-9 

GAAAACCCTGGCCCCATGAGCATCGGGCTCCTGTGC 63.7°C 

BV06- 
 
2/-3/- 

 
7/-8 

GAAAACCCTGGCCCCATGAGCCTCGGGCTCCTGTG 63.4°C 

BV06- 

4 

GAAAACCCTGGCCCCATGAGAATCAGGCTCCTGTGCTGT 

G 

64.6°C 

BV06- 

5 

GAAAACCCTGGCCCCATGAGCATCGGCCTCCTGTGC 63.7°C 

BV06- 

6 

GAAAACCCTGGCCCCATGAGCATCAGCCTCCTGTGCTG 64.2°C 

BV07- 
 
2/-3/- 

 
4/-5/- 

 
8/-9 

GAAAACCCTGGCCCCATGGGSACCAGSCTCCTCTKC 64.7°C 

BV07- 

6/-7 

GAAAACCCTGGCCCCATGGGYACCAGTCTCCTATGCTG 63.3°C 

BV09 GAAAACCCTGGCCCCATGGGCTTCAGGCTCCTCTGC 63.7°C 
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 BV10 GAAAACCCTGGCCCCATGGGCACVAGGYTSTTCTTCTAT 

G 

63.3°C 

BV11 GAAAACCCTGGCCCCATGRGYACCAGGCTYCTCTGC 62.8°C 

BV14 GAAAACCCTGGCCCCATGGTTTCCAGGCTTCTCAGTTTA 

GTGT 

63.7°C 

BV15 GAAAACCCTGGCCCCATGGGTCCTGGGCTTCTCCAC 63.7°C 

BV19 GAAAACCCTGGCCCCATGAGCAACCAGGTGCTCTGCTGT 64.4°C 

BV20 GAAAACCCTGGCCCCATGCTGCTGCTTCTGCTGCTTCTG 64.4°C 

BV25 GAAAACCCTGGCCCCATGACTATCAGGCTCCTCTGCTAC 

AT 

63.2°C 

BV27 GAAAACCCTGGCCCCATGGGCCCCCAGCTCCTTG 63.1°C 

BV28 GAAAACCCTGGCCCCATGGGAATCAGGCTCCTCTGTCG 64.2°C 

BV30 GAAAACCCTGGCCCCATGCTCTGCTCTCTCCTTGCCC 64.0°C 

 
 
 

Table 14. Primer design for AV/BV PCR amplification for In-FusionTM. 
 

A. The reverse primers, and base sequences for designing forward AV or BV primers are given. 
 

Underlined sequences indicate regions for overlap with adjacent vector fragments for In- 

FusionTM. “X” indicates variable gene-specific leader sequences 

(http://www.imgt.org/genedb/tableC.action), which should be added to yield a primer melting 

temperature of approximately 64˚C. B. Examples of working forward primers designed in our 

laboratory are given. 

http://www.imgt.org/genedb/tableC.action)
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COMPONENT µl 
10x Buffer for KOD Hot Start DNA Polymerase 5 
MgSO4 (25 nM stock solution) 3 
dNTPs (2 mM each stock solution) 5 
Template DNA* x 
Forward primer (10 mM stock solution) 1.5 
Reverse primer (10 mM stock solution) 1.5 
Molecular grade water q.s. 
KOD Hot Start DNA Polymerase (1 U/μl) 1 
TOTAL 50 

 
 
 
 
 

Table 15. PCR reaction mixes for preparing TCR and intervening vector link fragments for In- 

FusionTM. 

* cDNA for AV and BV constructs, or plasmid containing the vector link between AV and BV chains (including the alpha 

constant region and 2A ribosomal skip sequence) for the vector link sequence between AV and BV genes. 
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Preparation of Outer Vector for In-FusionTM 
 

In a 1.5 ml microcentrifuge tube, digest 10 μg of the lentiviral outer vector (see Figure 
 
12) with the restriction enzymes BamHI-HF and Bsu36I (NEB) using 30 units of each enzyme, 

and 8μl CutSmart Buffer (NEB) in a total volume of 80 μl for 3 hours at 37°C to remove the 

LacZ insert gene to be replaced by the TRAV and TRBV genes. Run the digested DNA on an 

agarose gel and isolate the 8433 bp band DNA except using a 0.5% agarose gel, after which the 

DNA can be used immediately or stored at -20°C. 

In-FusionTM Reaction to Produce Lentiviral Vector Constructs 
 

For each TCR expression vector to be generated, combine 10.9 ng of the TRAV PCR 

product, 10.6 ng of the TRBV PCR product, 11.1 ng of the vector link PCR product, and 100 ng 

of the outer vector (final molecular ratio of 2:2:2:1 respectively) in a microcentrifuge tube. Add 

2 μl of the enzyme from the In-FusionTM HD Cloning Kit and bring the volume to 10μl total 

with molecular grade water; pipet gently to mix. Briefly spin down in a microfuge to bring all 

liquid to the bottom of the tube. In a thermal cycler, incubate at 42°C for 30 minutes, followed 

by 4°C for 30 minutes. Use 2 μl of the above In-FusionTM reaction to transform One Shot® 

Stbl3™ Chemically Competent E. coli as per the manufacturer’s protocol (Life Technologies)- 

Note these cells do not have β-galactosidase screening capability. Streak an LB-agar plate 

containing 50 μg/ml ampicillin, then incubate inverted overnight at 37°C, after which the plate 

can be stored at 4°C. Inoculate 5 or more colonies separately into 14 ml polystyrene round- 

bottom tubes with 3 ml of LB-broth containing ampicillin (50 μg/ml) and incubate overnight at 

37°C in an orbital shaker incubator at 200 rpm. Isolate plasmid DNA using the Biopioneer 

Plasmid Preparation Kit as per manufacturer’s instructions; the purified plasmid DNA can be 

used immediately or stored at -20°C.  Digest 5 μl of plasmid DNA with 5 units each of the 
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restriction enzymes BamHI-HF and XbaI and 2 μl of the CutSmart Buffer in a microcentrifuge 

tube in a total volume of 20 μl for 1 hour at 37°C. Electrophorese the digested DNA to confirm 

a vector band of 8433 bp and insert fragment(s) totaling approximately 2000 bp. Sequence 

confirm plasmids with the appropriate sized inserts using the PCR primers in table 16 and 

sequencing conditions. 



101  

 

 

SEQUENCE (5’→3’) LOCATION 

TTAAGACCCATCAGATGTTTC Upstream of AV 

GCCGTGTACCAGCTGCGG Beginning of AC 

TGGAGGAAAACCCTGGCC Upstream of BC 

AGAGGTGCACAGCGGAGTCAG Beginning of BC 

 
 

 

Table 16. TCR vector sequencing primers. 
 

Primers (forward) for confirming TCR sequences in the final assembled expression vector are 

listed. 
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Generating Pseudotyped TCR Lentiviral Vectors 
 

For each construct being tested, seed 1.5-2 x106 293 T cells in 10 ml D10 medium in a 

25 cm3 flask, and culture for approximately 24 hours in a humidified 5% CO2 tissue culture 

incubator until 60 to 75% confluent.  Immediately before lipofection, replace the medium with 

10 ml fresh D10 pre-warmed to 37°C. In a microcentrifuge tube, premix 1.67 μg of the plasmid 

containing the TCR expression construct generated above, 1.67 μg of the packaging construct 

plasmid (pCMVΔR8.2DVPR), and 0.83 μg of Vesicular Stomatitis Virus envelope expression 

plasmid to achieve a molecular ratio of 2:2:1 in a total volume of 200 μl of pre-warmed DMEM 

(without serum); pipet to mix. Add 6.6 μl of the lipofection reagent BioT (Bioland Scientific 

LLC) and pipet gently to mix.  Add 300 μl of pre-warmed DMEM to bring the total volume to 

500 μl and pipet gently to mix; leave at room temperature for 10 to 15 minutes. Add the 

DNA/lipofectamine mixture to the cells in the flask drop-wise, distributing it over the cells by 

tilting the flask after each drop; return the flask to the cell incubator.  After 16 to 24 hours, 

replace the medium with 10 ml pre-warmed D10 and return to the incubator. After another 24 

hours, harvest and save the medium at 4°C; replace with 10 ml pre-warmed D10 and return to the 

incubator. After another 24 hours remove the medium and pool with the harvested medium from 

the prior day. Prepare a 0.45 μm low protein-binding syringe filter (Corning) by running through 

5 ml of DMEM without serum. Using a 12 ml syringe, filter the collected medium. Concentrate 

the virus by ultracentrifuging at 175,000 rcf (SW32 TI rotor at 28,000 rpm in an Optima L-90K 

ultracentrifuge or equivalent) for 2 hours at 4°C. Carefully aspirate and discard the supernatant, 

taking care not to disturb the pellet.  Resuspend the pellet in 200 μl RPMI without serum and 

store in two aliquots of 100 μl each at -80°C until use. 
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TCR Testing Using a Jurkat Reporter Cell Line 
 

Pellet two aliquots of 500,000 Jurkat reporter cells expressing CD8 and containing an 

NFAT-dependent GFP expression construct in a 15 ml conical centrifuge tube by centrifuging at 

484 rcf at room temperature (in a Sorvall Legend RT at 1500 rpm or similar). Aspirate the 

medium and resuspend each pellet in 50 μl of R20 medium. Thaw a 100 μl aliquot of lentiviral 

vector and add to one aliquot; pipet gently to mix. Add 100 μl D10 to the other aliquot; pipet 

gently to mix. Incubate for 4 hours at 37°C in a rotating mixer at 24 rpm. Add 850 μl of R10 pre-

warmed to 37°C to each aliquot, pipet gently to mix, and transfer to a 24-well plate to culture for 

48 to 72 hours in the tissue culture incubator before testing. 

Testing the TCR-Transduced Jurkat Reporter Cells for Epitope Reactivity 
 

Pellet two aliquots of 100,000 target cells with the appropriate HLA type for the 

epitope/TCR in 1.5 ml microcentrifuge tubes at 2,400 rcf at 4°C for 3 minutes (in a FrescoTM 17 

Microcentrifuge at 5,000 rpm or similar centrifuge); these can be HLA matched immortalized B 

or T lymphocytes, or other cells transfected/transduced with the gene for the HLA. Remove the 

supernatants and vortex to resuspend the cell pellets, adding 200 μl of R20 and the cognate 

peptide at a final concentration of 1 μg/ml to one aliquot and no peptide (or an irrelevant 

negative control peptide) to the other aliquot. Culture with the caps loosened in the tissue culture 

incubator for 30 to 60 minutes while continuing to prepare the Jurkat reporter cells. Pellet 

200,000 of the non-transduced Jurkat reporter cells and 150,000 of the previously TCR- 

transduced Jurkat reporter cells in 1.5 ml microcentrifuge tubes at 2,400 rcf at 4°C for 3 minutes. 

Aspirate and discard supernatants; vortex to break up the cell pellets. Bring both tubes of the 

Jurkat effector cells to a concentration of 0.5 x 106  cells/ml in R20 pre-warmed to 37°C by 

adding 400 μl to the non-transduced cells and 300 μl to the transduced cells; mix by pipetting. 
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Bring both tubes of the target cells to 0.5 x 106 cells/ml by adding 150 μl of R20 pre-warmed to 

37°C each; mix by pipetting.  In a 96-well round bottom tissue culture plate, set up the 

conditions listed in table 17 by adding 100 μl of cells or R20 to each well, bringing all wells to a 

final volume of 200 μl.  Incubate the plate in the tissue culture incubator for 24 hours. 
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JURKAT 

REPORTER 

CELLS 

 
 

STIMULUS 

 
 

STAINING 

 
 

PURPOSE 

 
 
 
 
 

Non-Transduced 

 
None 

Isotype (PE) 
Isotype (APC) 

Isotype (PerCP-Cy5.5) 

Negative 
stain control 

 
None 

α-CD8 (PE) 
Isotype (APC) 

Isotype (PerCP-Cy5.5) 

PE 
stain control 

 
None 

Isotype (PE) 
α-CD8 (APC) 

Isotype (PerCP-Cy5.5) 

APC 
stain control 

 
None 

Isotype (PE) 
Isotype (APC) 

α-CD8 (PerCP-Cy5.5) 

PerCP-Cy5.5 
stain control 

 
 
 
 
TCR-Transduced 

 
PMA/Ionomycin 

Isotype (PE) 
Isotype (APC) 

Isotype (PerCP-Cy5.5) 

 
GFP control 

Target cells 
without peptide 

α-HSA (PE) 
α-CD3 (APC) 

α-CD8 (PerCP-Cy5.5) 

Unstimulated 
control 

Target  cells 
with cognate peptide 

α-HSA (PE) 
α-CD3 (APC) 

α-CD8 (PerCP-Cy5.5) 

Epitope 
recognition 

test 
 
 
 

Table 17. Experimental test conditions for TCR-transduced Jurkat reporter cells. 
 

Test conditions for evaluating TCR responsiveness after transduction of Jurkat reporter cells are 

listed. 

Isotype (PE) = Rat IgG2b Isotype Control-PE Clone KLH-G2B-1-2 (Southern Biotec, 
https://www.southernbiotech.com/ProductDetails.aspx?catno=0118-09&ttl=Rat+IgG2b-PE, S0118-09) 

Isotype (APC) = Anti-Mouse IgG2a Isotype Control-APC Clone m2a-15F8 (Southern Biotec, 
http://www.ebioscience.com/mouse-igg2a-antibody-m2a-15f8-apc.htm, 17-4210-80) 

Isotype (PerCP-Cy5.5) = PerCP/Cy5.5 Mouse IgG1, κ Isotype Ctrl Antibody (BioLegend, http://www.biolegend.com/percp- 
cy55-mouse-igg1-kappa-isotype-control-4205.html, 400149) 

α-CD8 (PE) = Anti-Human CD8-PE Clone SK1 (http://www.bdbiosciences.com/us/applications/clinical/blood-cell- 
disorders/ivd-reagents/cd8-leutrade-2a-pe-sk1/p/340046, 340046) 

α-CD8 (APC)= Anti-Human CD8-APC Clone SK1 (http://www.bdbiosciences.com/us/applications/clinical/blood-cell- 
disorders/asr-reagents/cd8-apc-sk1/p/340659, 340659) 

α-CD8 (PerCP-Cy5.5)= Anti-human CD8a clone RPA-T8 (eBioscience, http://www.ebioscience.com, 45-0088-41) 
α-HSA (PE)= Anti-mouse CD24 clone M1/69 (eBioscience, http://www.ebioscience.com, 12-0242-81) 
α-CD3 (APC)= Anti-Human CD3 clone OKT3 (eBioscience, http://www.ebioscience.com, 50-0037-41) 

http://www.southernbiotech.com/ProductDetails.aspx?catno=0118-09&amp;ttl=Rat%2BIgG2b-PE
http://www.southernbiotech.com/ProductDetails.aspx?catno=0118-09&amp;ttl=Rat%2BIgG2b-PE
http://www.ebioscience.com/mouse-igg2a-antibody-m2a-15f8-apc.htm
http://www.biolegend.com/percp-
http://www.bdbiosciences.com/us/applications/clinical/blood-cell-
http://www.bdbiosciences.com/us/applications/clinical/blood-cell-
http://www.bdbiosciences.com/us/applications/clinical/blood-cell-
http://www.ebioscience.com/
http://www.ebioscience.com/
http://www.ebioscience.com/
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Preparation of Jurkat Reporter Cells for Flow Cytometric Assessment 
 

To wash the cells, spin the 96-well plate at 484 RCF for 10 minutes at 4°C (in a Sorvall 

Legend RT centrifuge at 1,500 rpm or similar). Remove the supernatants, taking care not to 

disrupt the cell pellets. Add 200 μl of PBS with 1% FBS to each well and resuspend the cells by 

pipetting. Repeat the spin and wash. Spin down the cells and remove the supernatants, taking 

care not to disrupt the cell pellets. Protected from direct light, add 95 μl of PBS with 1% FBS to 

each well, resuspending the cells by pipetting, and add 0.8 μl of the antibodies.  Incubate the 

plate at 4°C for 25 minutes in the dark. Spin and wash the plate twice with PBS with 1% FBS, 

and resuspend each pellet in 200 μl PBS with 1% paraformaldehyde, after which the plate can be 

stored for up to 24 hours at 4°C before analysis. 

Flow Cytometric Assessment of Jurkat Reporter Cells Transduced with TCR 
 

Calibrate the flow cytometer for negative gating and compensation using isotype and 

single color control samples 136. Assess the TCR-transduced Jurkat reporter cells (CD8- 

expressing gated cells) for transduction efficiency (HSA expression), TCR expression (CD3 

expression), and epitope recognition (GFP expression), using the gating strategy shown in figure 

13. 
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Figure 13. Gating stratey to assess epitope-specific TCR triggering in Jurkat reporter cells. 

Cells in the live gate (by forward scatter and side scatter) that are CD8+ (left panels) are 

examined for expression of: the lentiviral vector heat stable antigen (HSA) reporter 

reflecting successful transduction, CD3 reflecting expression of a T cell receptor, and green 

fluorescent protein (GFP) reflecting T cell receptor signaling (right panels). In this example, 

transduced cells (HSA+) express intact TCRs (CD3+), and TCR-transduced cells respond to 

the epitope (GFP+). 
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HIV-1 Permissive Target Cells 
 

The cell lines Jurkat (expressing HLA-B*3501 or HLA-B*5701), H9 (expressing HLA- 

B*3501 or HLA-B*5701) and T1 (expressing HLA-B*3501 or HLA-B*5701) were maintained 

in RPMI 1640 medium supplemented with L-glutamine, penicillin-streptomycin, and 10% heat- 

inactivated fetal calf serum, as described elsewhere (O. O. Yang et al., 1996). 

Generation of Pseudotyped Non-T-Cell Receptor Lentivirus Stocks 
 

Lentivirus was produced by transfection of 293T cells with the above lentiviral vector 

constructs in conjunction with the lentiviral packaging vector pCMV[DELTA]R8.2DVPR 

(Paranjape, Gadkari, Lubaki, Quinn, & Bollinger, 1998) and the vesicular stomatitis virus 

envelope protein G expression vector pHCMVG (Rutebemberwa et al., 2004) using Fugene HD 

transfection reagent (Roche, Nutley, New Jersey, USA). Supernatants from 2 and 3 days after 

transfection were combined, passed through a 0.22 micron filter, and concentrated by 

centrifugation at 28 000g for 120 min at 4°C. Virus concentration was assessed by Flow 

Cytometry by staining against the reporter CD24. 

HIV-1 Mutagenesis and Stocks 
 

Virus stocks were generated from plasmid DNA as described elsewhere (reference). The 

NL4-3 sequence served as the backbone for the HIV-1 mutants produced for this study, with a 

single amino acid mutation in Nef to ablate HLA class I down-regulatory function and avoid this 

confounding effect on CTL activity. Consensus sequences were obtained from the Los Alamos 

National Laboratory HIV Sequence Database (http://www.hiv.lanl.gov/content/hiv-db). 

Production of the clade B consensus KF11 sequence KAFSPEVIPMF using overlapping 

polymerase chain reaction mutagenesis was as reported elsewhere (reference). The different 

KF11 variants were produced using the QuikChange mutagenesis kit (Stratagene) by changing 

http://www.hiv.lanl.gov/content/hiv-db
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the clade B consensus sequence from KAFSPEVIPMF to the different KF11 variant sequences 

as listed in table 18. 
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Variant % of Circulating KF11 variants 

KAFSPEVIPMF 91.8 

------I---- 2.16 

---N------- 1.27 

-N--------- 0.75 

-S--------- 0.52 

-G-N------- 0.15 

------T---- 0.15 

Total % of Circulating KF11 

Variants 

96.8 

 
 
 

Table 18.  List of the most common circulating KF11 epitope variants within clade B. 
 

The above variants are the most common circulating variants for HIV-1 epitope KF11 (gag 162- 

172).  Together, these variants comprise ≈97% of all circulating HIV-1 clade B strains. 
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Functional avidity measurements and chromium release assays 

 
CTL functional avidity was measured via standard chromium release assays with five- 

fold peptide dilutions ranging from 5.0 ug/ml to 64 pg/ml using 104 target cells (Cr51-labeled T1 

cells) in 96-well U-bottom plates with 105 effector cells (TCR-transduced subcloned CD8+ T 

cells). Chromium release in the supernatant was assessed after 3.5 h using a microscintillation 

counter (MicroBeta 1450; Wallac-Perkin Elmer, Waltham, Massachusetts, USA), and specific 

lysis was calculated as follows: (observed chromium release – spontaneous chromium release) ÷ 

(maximal chromium release – spontaneous chromium release). SD50 values (the concentrations 

of peptide needed to achieve half maximal specific lysis) were calculated via nonlinear 

regression using Graphpad Prism 5 (Graphpad Software, La Jolla, California, USA). 
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Results 
 
Cells Lines Engineered to Express HLA-B*5701 

 

Immortalized B-cells from an HLA-B*5701+ subject were used to PCR amplify HLA- 

B*5701. The PCR product amplified had 15nt overhangs that were complementary to our 

lentiviral vector. In-Fusion HD cloning was then used to clone the HLA-B*5701 gene into the 

lentiviral vector. The newly made HLA-B*5701 lentiviral vector was then used to make 

pseudotyped lentivirus and transduce the CD4+ T1 cell line (Salter, Howell, & Cresswell, 1985) 

that normally expresses HLA-A*02 and HLA-B*40. The T1-transduced cells’ HLA-B*5701 

expression was then verified via flow cytometry. Upon confirmation of HLA-B*5701 

expression, the T1-HLA-B*5701 cells were subcloned to attain a uniform clonal population of 

T1 cells that highly expressed HLA-B*5701. After 4 weeks of culturing the subclones cells in 

R10, the expression of HLA-B*5701 was again confirmed by flow cytometry (see Figure 14). 
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A B C 
 

 
 

 

Figure 14. Stable high expression of HLA-B*5701 in transduced and subcloned T1 cells. 

Samples were stained with anti-HLA-B*5701 to confirm the level of expression HLA-B*5701 in 

the transduced T1 cells. Panel A : Non-transduced T1 cells. Panel B : Immortalized B-cells 

isolated from an HLA-B*5701 positive subject and used as a positive control. Panel C : 

Transduced and subcloned T1-HLA-B*5701 cell line. The immortalized B-cells and the 

transduced subclone T1-HLA-B*5701 cell line have comparable HLA-B*5701 expression, with 

mean fluorescence intensity of 448 and 573, respectively. 

T1-HLA-B*5701 
Transduced T1-Non Transduced BCL–HLA-B*5701 
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KF11-Specific TCR α β Chains were Identified 
 

Seven subjects with HIV-1 chronic untreated infection were assessed by INF-γ EliSpot 

Assays for their response against KAFSPEVIPMF (see Figure 15). The PBMC of subjects with 

a positive INF-γ response were co-cultured for seven days with and without 1ug/ml of 

KAFSPEVIPMF peptide for Quantitative Spectratyping (QS) analysis (Balamurugan et al., 

2010).  Eight TRAV and TRBV chains were identified and sequenced (See Table 19). TRAV 

05-01 and TRBV 19-01 have been previously described as public TCR sequences specific for the 

KAFSPEVIPMF. These same sequences were also identified in this study as specific for 

KAFSPEVIPMF. At times, more than one TRAV or TRBV were identified for one subject. A 

limitation of QS is that TRAV and TRBV chains are analyzed separately. Consequently, if more 

than one expansion takes place it is uncertain which combination of TRAV and TRBV is correct. 
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Figure 15. Screening for KF11-specific CTL responses. KF11-specific CTL responses were 

measured by INF-γ EliSpot assays using polyclonally expanded CD8+ T cells from each of the 

four subjects. Responses are reported as the number of spot-forming cells (SFC) per million 

CD8+ T cells. 
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A 
 

AV AJ A-CDR3 

05-01 13-01 CAVLGGYQKVTF 
05-01 13-01 CAVSGGYQKVT 
05-01 13-02 CAASGGYQKVTF 
05-01 22-01 CAESSGSARQLTF 
05-01 31-01 CAEGARLMF 
12-03 15-01 CAMSAGQAGTALIF 

14/D4-01 26-01 CAMRDNYGQNFVF 
14/D4-02 49-01 CAMRESVATGNQFYF 

 
 
 

 

B 
 

BV BJ BD B-CDR3 

05-08 02-06 01-01 CASSVGFGANVLTF 
06-05 02-05 02-02 CASSYSQQGGETQYF 
07-08 02-05 01-01 CASSPREGAGETQYF 
07-09 02-05 02-02 CASSPTLAGIQETQYF 
14-01 02-05 02-01 CASSPRDSKETQYF 
15-02 01-02 01-01 CATSGTEYGYTF 
19-01 01-02 01-01 CASSGSYGYTF 
19-01 01-02 01-01 CASTGTYGYTF 

 
 
 

 

Table 19. List of TRAV and TRBV chains identified by spectratyping against HIV-1 epitope, 

KAFSPEVIPMF. 

Table 19A is the list of TRAV chains identified. Table 19B is the list of TRBV chains identified. 



117  

 
 

CONSTRUCTION OF LENTIVIRAL TCR EXPRESSION VECTORS 
 

cDNA from KAFSPEVIPMF stimulated PBMC was used to amplify the identified 

TRAV and TRBV. As described in detail in the Materials and Methods section, the PCR 

products were used clone the TRAV and TRBV into a pCCL lentiviral transfer vector under 

control of the Ubiquitin-C promoter.  Nine different constructs were made (See Table 20). 
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AV AJ A-CDR3 BV BJ BD B-CDR3 

05-01 13-01 CAVLGGYQKVTF 19-01 01-02 01-01 CASTGTYGYTF 
05-01 13-01 CAVSGGYQKVT 19-01 01-02 01-01 CASSGSYGYTF 
05-01 13-02 CAASGGYQKVTF 07-08 02-05 01-01 CASSPREGAGETQYF 
05-01 13-02 CAASGGYQKVTF 07-09 02-05 02-02 CASSPTLAGIQETQYF 
05-01 22-01 CAESSGSARQLTF 15-02 01-02 01-01 CATSGTEYGYTF 
05-01 31-01 CAEGARLMF 06-05 02-05 02-02 CASSYSQQGGETQYF 
12-03 15-01 CAMSAGQAGTALIF 19-01 01-02 01-01 CASTGTYGYTF 

14/D4-01 26-01 CAMRDNYGQNFVF 14-01 02-05 02-01 CASSPRDSKETQYF 
14/D4-02 49-01 CAMRESVATGNQFYF 05-08 02-06 01-01 CASSVGFGANVLTF 

 
 

Table 20.  List of KF11-specific TCR constructs cloned into the pCCL vector. 



119  

TRC Constructs Can Recognize KF11 Peptide Loaded Target Cells 
 

As described in detail in the Materials and Methods section, the pCCL-KF11-specific 

TCR pseudotyped lentiviruses were screened in modified Jurkat J.RT3-T3.5 reporter cells 

(Birkholz et al., 2009; Schaft, Lankiewicz, Gratama, Bolhuis, & Debets, 2003). These reporter 

cells lack an endogenous TRBV chain and therefore do not express CD3 unless an exogenous 

TCR is introduced (Ohashi et al., 1985; Schneider, Schwenk, & Bornkamm, 1977). Additionally, 

this Jurkat cell line has been modified to express CD8 and contain an NFAT-dependent GFP 

reporter gene, yielding green fluorescence if a functional TCR is engaged (Macian, 2005). T1- 

HLA B*5701 cells were peptide pulsed for 45 minutes with either KAFSPEVIPMF or one of its 

variants. The KF11-peptide loaded T1-HLA B*5701 cells were then co-cultured overnight with 

modified Jurkat cells transduced with KF11-specific TCR. The modified Jurkat cells were then 

screened for GFP expression. All nine constructs expressed the cloned TCR as referenced by the 

positive CD3 expression. However, only four of the nine constructs, S14-KF11-B5701- 

TRAV5TRBV15, S52-KF11-B5701-TRAV5TRBV19, S68-KF11-B5701-TRAV5TRBV19 and 

S94-KF11-B5701-TRAV14TRBV5, recognize the KAFSPEVIPMF variants as evidenced by 

GFP expression (See Figure 16). 
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Figure 16. KF11-Specific TCR are able to recognize KF11 variants and induce GFP 

expression in the Jurkat-GFP system. 

Modified jurkat-CD8+ cells were transduced with KF11-specific TCR to assess whether or not 

the TCR could recognize KF11 variants and induce GFP expression as a result of a successful 

TCR/pHLA engagement.  The different TCR construct recognize different KF11 variants and to 
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a varying degree as measured by GFP expression. Row A: TCR construct S14-KF11-B5701- 

TRAV5TRBV15 is able to recognize the KF11 V168I and V168T variants. Row D: TCR 

construct S52-KF11-B5701-TRAV5TRBV19 is able to recognize the KF11 V168T and S165N 

variants but not the KF11 V168I variant. Row C: TCR construct S68-KF11-B5701- 

TRAV5TRBV19 is able to recognize the KF11 V168I and V168T variants and to a lesser 

extent, the KF11 S165N variant. Row B: TCR construct S94-KF11-B5701-TRAV14TRBV5 is 

able to recognize the KF11 V168I and V168T variants and to a lesser extent, the KF11 S165N 

variant. 
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Primary Bulk CD8+ T Cells Transduced with KF11-Specific TCR recognize and Lyse 

KAFSPEVIPMF Peptide Loaded Target Cells 

Healthy primary CD8+ T cells were transduced with pCCL-KF11-specific TCR 

pseudotyped lentiviruses and 48 hours later screened for CD24 expression. Samples with >90% 

CD24 expression and an MFI of 2 logs higher than the untransduced control were preliminarily 

screened for their ability to lyse target cells loaded with KAFSPEVIPMF peptide. Constructs 

S14-KF11-B5701-TRAV5TRBV15, S52-KF11-B5701-TRAV5TRBV19, S68-KF11-B5701- 

TRAV5TRBV19 and S94-KF11-B5701-TRAV14TRBV5 recognized and lysed the T1-HLA 

B*5701 cells loaded with KAFSPEVIPMF peptide. 

Primary CD8+ T Cells Demonstrate Stable Clonal Expression of Exogenous TCR 
 

The bulk CD8+ T cells that were transduced with one of the four KF11 TCR constructs 

were sorted for CD24 expression. The sorted transduced CD8+ T cells were then subcloned with 

one, three and five cells per cell in six 96-well round bottom plates. Each construct was co- 

cultured with feeder cells, stimulated with 12F6 antibody and maintained with R10-12.5 for 

approximately six to seven weeks. Each sample was then screened for CD24 expression using 

flow cytometry. Samples with a clonal population expressing CD24 with about two MFI logs 

higher than non-transduced controls were then re-stimulated and maintained in R10-12.5. After 

two additional weeks, the samples were re-screened for CD24 expression to ensure high stable 

expression of CD24. 

The Combined KF11-Specific TCR Panel can Lyse T1 Cells that are Peptide Loaded with 

KF11 WT Peptide or All of Its Most Common Circulating Variants 

Primary CD8+ T cell subclones transduced with KF11-specific TCR were screened for 

their ability to lyse target cells loaded with KAFSPEVIPMF peptide or its variants using the 51Cr 
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killing assay with an effector to target ratio of 10:1. Each of the four different constructs are able 

to lyse the consensus sequence of the KF11 epitope, however, each construct has its own unique 

pattern of variant coverage. The S14-KF11-B5701-TRAV5TRBV15 construct recognized and 

lysed target cells loaded with KAFSPEVIPMF and the A163S, S165N and A163G S165N KF11 

variants. The S52-KF11-B5701-TRAV5TRBV19 construct recognized and lysed target cells 

loaded with KAFSPEVIPMF and the A163S, A163G S165N, V168I variants. The S68-KF11- 

B5701-TRAV5TRBV19 construct recognized and lysed target cells loaded with 

KAFSPEVIPMF and the A163S, S165N, A163G S165N, V168I, V168T variants.  The S94- 

KF11-B5701-TRAV14TRBV5 construct recognized and lysed target cells loaded with 

KAFSPEVIPMF and the S165N, V168I, V168T (See Figure 17). When combined, these four 

KF11-specific TCR are able to recognize and lyse cells that are peptide loaded with all the most 

common circulating strains of the KF11 epitope. 
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Figure 17.  Viral variant coverage of KF11-specific TCR. 

 
Each KF-11 specific TCR construct was tested for its ability to lyse the different KF11 variants 

using peptide loaded T1-HLA-B57*01 target cells with an E:T ratio of 10:1. Each KF11- 

specific TCR construct has a different recognition pattern for KF11 variants. 
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TCR Avidity Differs Between Each KF11-Specific TCR Construct and KF11 Epitope 

Sequence 

To assess whether the KF11-specific TCR subclones varied in their sensitivity to the 

KF11 epitope and its variants, the primary CD8+ T cell subclones transduced with the different 

KF11-specific TCR were tested in chromium release assays against T1-B*5701-expressing target 

cells that were loaded with varying concentrations of KF11 wild type peptide and KF11 variant 

peptides (see Table 18). The functional avidities, defined as the sensitizing dose of peptide for 

50% maximal activity (SD50), were calculated for each KF11 TCR versus each KF11 variant 

(See Figure 18). The SD50 values for S52-KF11-B5701-TRAV5TRBV19, S68-KF11-B5701- 

TRAV5TRBV19 and S94-KF11-B5701-TRAV14TRBV5 varied over a range of 32ng/ml to 

2,167ng/ml, 28ng/ml to 2,118ng/ml and 609ng/ml to 894ng/ml, respectively, across the different 

combinations of KF11 epitope variants. 
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Figure 18.  Functional Avidity of KF11-specific TCR constructs against KF11 variants. 

Each TCR has a different SD50 for the targeted epitope.  The 2N variant was not tested since it was not 

lysed by any of the KF11 TCR.



127  

Primary CD8+ T Cells Transduced with KF11-specific TCR Can Lyse Cells Infected with 

HIV- containing KF11 WT and its variants 

The primary CD8+ T cell subclone transduced with the KF11 specific TCR, S94-KF11- 

B5701-TRAV14TRBV5, was re-transduced with the same KF11 TCR construct to have 

physiological levels of TCR expression. The re-transduced subclone expressing the KF11 TCR 

S94-KF11-B5701-TRAV14TRBV5 was tested in chromium release assays against HIV infected 

T1-B*5701 target cells. The target cells were infected with HIV vector, NL4-3 M20A VPR- 

CD24. The HIV vector contained either the KF11 consensus epitope or each of its variants. The 

re-transduced subclone was able to lyse the HIV vector containing the KF11 consensus 

sequence, S165N variant, and the V168I variant (See Figure 19 panel A). Except for the KF11 

V168T variant, the KF11 specific TCR, S94-KF11-B5701-TRAV14TRBV5, is able to lyse the 

same KF11 epitope pattern in both, peptide loaded and in HIV infected cells (See Figure 19 

panel A). The observed lysis against the infected cells was then used to determine the percent 

killing efficiency of the KF11 specific TCR, S94-KF11-B5701-TRAV14TRBV5 against the 

KF11 variants. % Killing efficiency was calculated by [ (Observed killing from infected cells) ÷ 

(Theoretical Max Killing as determined by % lysis of peptide loaded cells) ] X [ % of infected 

cells ] . The highest observed killing efficiency was between the KF11 variants was S165N > 

consensus > V168I  and with no observed lysis of infected cells for variant V168T (See Figure 

19 panel B). In a prior study (Bennett, 2007), it was observed that lysis of infected cells was 

restricted to a strict threshold of 1log difference of SD50. In this study, no lysis of infected cells 

was observed when a variant differed by more than 1log from the highest avid epitope variant. 

All variants targeted by KF11 specific TCR, S94-KF11-B5701-TRAV14TRBV5, were within 
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1log and as such killing of infected cells was observed except for the V168T variant (See Figure 

19 Panel C). 
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Figure 19. Recognition and killing pattern of target cells infected with HIV-containing 

KF11 variants. 

(A)T1-B*5701 target cells were infected with NL4-3 M20A VPR-CD24 that encoded for the 

different KF11 variants. The target cells were infected for 3 days and then used in a 51Cr killing 

assay using the KF11-specfic TCR construct S94-KF11-B5701-AV14BV05.  TCR construct 

S94-KF11-B5701-AV14BV05 lysis pattern of infected cells was the same as with peptide loaded 

cells except for the V168T variant. (B) KF11-specfic TCR construct S94-KF11-B5701- 
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AV14BV05 has the highest % killing efficiency for variant S165N at 100% followed by 

consensus at 65%, then V168I with 51%. No killing efficiency reported for variant V168T since 

there was no observed lysis of cells infected with this variant. (C) % Killing efficiency was 

plotted against SD50 values for KF11-specfic TCR construct S94-KF11-B5701-AV14BV05. 

Despite the difference of an SD50 of about 300ng/ml between the different KF11 variants, lysis 

was still observed. 
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Discussion 
 

Viral escape by HIV-1 is one of the leading causes of why we lack an effective HIV-1 

vaccine. HIV-1 is able to quickly mutate to render current treatments useless and to avoid 

immuno-surveillance. Despite recent successes with T cell immunotherapy against melanoma, 

one of the challenges in its transfer to HIV-1 treatment is viral escape and cost. In a prior 

attempt to utilize T-cell immunotherapy against HIV-1, an individual was passively transferred 

an HIV-specific CTL. However, the epitope quickly mutated and escaped the CTL, rendering 

the CTL useless. Additionally, the current technology to identify, isolate and clone CTL is very 

laborious and expensive. 

The earliest methodology to generate epitope-specific TCR genes was cloning epitope- 

specific T-cells followed by isolation of TCR sequences, but this laborious and reagent-intensive 

method is not amenable to high throughput. The current state-of-the art is cloning TCR genes 

from molecular libraries generated from populations of epitope-specific cells identified by 

binding of 4 MHC-epitope multimers sorted by flow cytometry (Douek et al., 2002; Szymczak et 

al., 2004). From the total sorted cell population a cDNA library of AV and BV genes is prepared, 

from which many molecular clones are screened.  Within the mixture from a polyclonal 

response, the proper pairing of these genes is unknown, requiring individualized functional 

testing different pairings of intermediate vectors in primary CD8+ T cells, after which a final 

cloning step is required to combine the AV and BV chain genes into a single vector (Kobayashi 

et al., 2013; S. Yang et al., 2008). Although a recently described single cell PCR protocol 

addresses some of these limitations (Kobayashi et al., 2013), that technique is not widely used 

and requires highly specialized equipment and expertise associated with single cell sorting. 
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There are several limitations to this strategy. MHC-epitope multimers may be 

unavailable, especially for rare MHC types/subtypes, and every newly identified epitope requires 

production of a new multimer. Cell sorting requires significant infrastructure, expertise, and 

expense, and is inadequate for epitope-specific cells that are below the limit of reliable detection 

by flow cytometry. High frequency clones in the bulk cDNA library may obscure rare 

subpopulations of TCRs, given limitations in the numbers of AV or BV genes from the library 

that can be feasibly cloned and screened. These caveats are addressed by our approach. 

Our protocol is founded upon spectratyping, a tool originally developed by Pannetier et al 

(Pannetier et al., 1993) to analyze the diversity of TCRs based on the size distributions within 

variable gene families. By enriching the frequency of epitope-specific TCRs through cognate 

peptide stimulation of PBMC, spectatyping has been developed further as a tool by Killian et al 

for indicating epitope-specific clonal expansions (Killian et al., 2005). Most recently we 

modified this assay to be quantitative to reveal epitope-specific TCR sequences without need for 

cloning the bulk PCR products of AV and BV families. Taking advantage of this capability for 

rapid definition of epitope-specific TCR gene sequences, we have devised a simple method to 

combine these sequences into a modified version of a lentiviral construct developed by 

Szymczak et al (Szymczak et al., 2004) for dual expression of AV and BV genes, further coupled 

with a rapid screening strategy using Jurkat cells that express green fluorescent protein (GFP) in 

a TCR signaling-dependent manner (Birkholz et al., 2009; Schaft et al., 2003). 

Our strategy circumvents the requirement for cell sorting and MHC-epitope multimer 

complexes, which is a major limitation to current methodology. Because expansions of epitope- 

specific TCRs are identified within individual variable gene families after enrichment of epitope- 

specific cells, there is greater sensitivity to find low frequency epitope-specific responses; a high 
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frequency expansion in one family does not obscure a low frequency expansion in another. 
 

Like the current state-of-the-art approach, ours does not directly distinguish proper 

pairing of the identified AV and BV chains. However, the quantitative measurements of clonal 

expansions can suggest likely pairings (e.g. a high frequency AV expansion pairs with a high 

frequency BV expansion because they come from the same cell), and the use of a one-step 

molecular combination method (Zhu, Cai, Hall, & Freeman, 2007) greatly accelerates the 

process of producing complete TCR lentiviral vectors for functional screening, circumventing 

the need for generating and screening intermediate single AV and BV chain vectors. Finally, 

functional screening is typically performed using transduced primary CD8+ T cells, requiring 

high titer vectors and assay(s) such as cytokine release or cytolysis in response to the epitope. 

Alternatively, we harness a Jurkat cell line that conveniently tests TCR functionality by NFAT- 

dependent GFP expression (Birkholz et al., 2009; Schaft et al., 2003). These cells are easily 

maintained, highly transducible with lentiviral vectors even at the low titers achieved with small- 

scale virus stock production, and efficiently express exogenous TCRs given their endogenous 

TCR beta chain deletion. Thus, overall our protocol creates a more inexpensive, rapid and 

efficient method for producing final TCR lentiviral vectors starting from PBMCs. 

Using our new technique, we identified and cloned TCRs specific for the gag epitope, 

KAFSPEVIPMF or KF11. This epitope is HLA-B*5701 restricted and its viral variants either 

have a high fitness cost or are lethal without compensatory mutations. Additionally, in contrast 

to many other HIV-1 epitopes, the top six circulating variants make up about 97% of all variants 

in the population according to the Los Alamos HIV database. HLA-B*5701 has been strongly 

correlated with HIV-1 elite non-progressors.  As such, the KF11 epitope has been widely 

studied.  These studies have revealed that viral variants have reduced replicative capacity or a 
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high fitness cost and how they require compensatory mutations to lessen or negate those fitness 

costs. Additionally, these studies have also revealed that there are public TCR against the KF11 

epitope. Public TCR are TCR that are commonly found in persons sharing the same HLA and 

targeting the same epitope. Some of the known public TCR chains against KF11 include TRAV 

5 and TRBV 19. Of the four TCR we identified and confirmed their functionality against KF11, 

two of them have the TRAV 5 and TRBV 19 chains but differed in their CDR3 sequence. 

Another TCR had the public TCR chain TRAV 5 but utilized the private TCR chain TRBV 15. 

Lastly, the final TCR identified utilized both private TCR chains TRAV14 and TRBV 15. From 

this study, using peptide loaded target cells, the two TCR that have the two public TCR chains, 

TRAV 5 TRBV 19, were able to lyse all six tested variants. Whereas the other two TCR 

constructs either had one public TCR chain, TRAV 5, or lacked any public TCR chains but 

instead had, TRAV 14 TRBV5. These two TCR were able to lyse four of the six most common 

KF11 variants tested. 

Next we wanted to examine the avidity of the KF11-specific TCR. For this, we measured 

the amount of peptide the TCR requires for 50% of its maximal lysis, or its SD50. To date, the 

field of TCR immunology follows the school of thought that the more avid the TCR, the better 

the TCR.  Some studies suggest that highly avid TCR control HIV more effectively (Berger et 

al., 2011; Bihl et al., 2006; Mothe et al., 2012) and are thus better candidates for TCR 

immunotherapy. However, this may not be necessarily correct. In a prior study, three TCR 

specific for gag epitope SL9 were examined and tested for their SD50  (Bennett et al., 2007a). 

The SD50 of the SL9 TCR ranged from one to ten nanograms/ml (Bennett et al., 2007a). In a 

separate study, the avidity for HIV gag epitope, KRWIILGLNK (KK10) was measured using its 

SD50.  The SD50 of the KK10 TCR ranged from thirteen to 201 nanograms/ml (Berger et al., 
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2011). Both of these epitopes are targeted during the acute phase of infection.  Whereas the 

KF11 epitope is generally targeted during the chronic phase of infection. This may be due to the 

lower avidity observed with KF11. In a prior study, the SD50 of the KF11 TCR ranged from 152 

to 443ng/ml (Berger et al., 2011). These data support the results we obtained in the KF11- 

specific TCR we tested, S52-KF11-B5701-TRAV5TRBV19, S68-KF11-B5701- 

TRAV5TRBV19 and S94-KF11-B5701-TRAV14TRBV5 varied over a range of 82ng/ml to 

531ng/ml, 89ng/ml to 426ng/ml and 596ng/ml to 832ng/ml, respectively, across the different 

combinations of KF11 epitope variants. The KF11 epitope has been highly correlated with HIV 

control; any variant from the consensus sequence has either high fitness costs or is lethal without 

a compensatory mutation, suggesting that the KF11 epitope is crucial for the survival of HIV. 

When taken together with the available published SD50  data and our results, the notion that SD50 

is the crucial factor to determine the efficacy of a TCR, disease progression and/or importance of 

an epitope seems erroneous. Although more TCR’s SD50 need to be tested, I believe that early 

targeted epitopes will have higher avidity while epitopes targeted during chronic infection will 

have a lower avidity. This suggests that avidity alone may not necessarily be the determinant of 

the efficacy of a TCR, disease progression and/or importance of an epitope. Instead, SD50 should 

only be used as a comparison between TCR targeting the same epitope and not TCR that target 

different epitopes. 

Conclusions made on SD50 values should also be made judiciously since SD50 is only half 

the story for the efficacy of a TCR. As previously described in Benett 2011, SD50 measurements 

do not take into account “protein expression, proteasome processing, epitope transport, and HLA 

binding”. To take into account all of these factors, we tested the killing efficiency of the S94- 

KF11-B5701-TRAV14TRBV5 construct  against infected cells with each of the targete KF11 
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variants. Except for the V168T variant, all of the variants that were targeted and lysed in the 

peptide loaded system, were also targeted and lysed in infected cells. Despite having an SD50 of 

609ng/ml for the KF11 consensus sequence, and the S165N variant an SD50 of 832ng/ml, the 

S165N variant had a higher killing efficiency of 100% versus the consensus’ of 65%. This 

would suggest that it is likely that this TCR was originally raised against the S165N variant but 

the TCR is also able to recognize and lyse the consensus and V168I variant. 

It was previously reported that TCR have a narrow threshold of 1log SD50 variation 

which can translate to lysis of infected cells (Bennett et al., 2007a). Any epitope targeted by a 

TCR outside the 1log SD50 range would not be recognized and lysed in infected cells. However, 

the observation made was using TCR whose SD50 ranged from 1 to 10ng/ml or 10 to 100ng/ml. 

The difference between the highest and lowest SD50 for which killing of infected cells was 

observed was always <100 ng/ml.  However, we found that even with an SD50  difference of 

about 449ng/ml, the S94-KF11-B5701-TRAV14TRBV5 construct was still able to lyse infected 

cells. While the prior conclusion about the narrow threshold of 1log SD50 variation for lysis of 

infected cells is supported by these findings, we can expand the prior conclusion to stating that 

highly avid TCR with an SD50  range of 1 to 100ng/ml are more sensitive to a deviation of 

peptide concentration than TCR that are less avid with an SD50 range of 100 to 1000ng/ml. This 

however would need to be tested with more TCR due to our small sample size of 4 TCR. 

The goal of this project was to identify and clone a panel of TCR by combining epitope- 

specific TCR from multiple persons that would either prevent viral escape or limit the routes of 

escape to variants with high fitness cost. Towards this, we have successfully identified and clone 

four different KF11-specific TCR isolated from four different persons.  Albeit in a peptide 

loaded system, these TCR can target and lyse all six of the most common variants of the KF11- 
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epitope that make up 97% of all circulating HIV-1 strains. These TCR may also recognize other 

variants but this has not yet been done. We have also demonstrated that at least one of our 

KF11-specific TCR can also target and lyse cells infected with the different targeted KF11 

variants. 
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Ch. 4 Discussion 

Abstract 

Chapter Four is subdivided into two major sections. The first section summarizes the major 

findings of, and discussions in, this dissertation. The second section will describe potential 

future work, and includes two sub-sections. The first sub-section discusses two issues: (1) the 

potential future characterization of the TCR repertoire in different segments of the HIV+ 

population, including fast progressors, elite non-progressors, and HIV+ persons who are 

treatment-naïve compared to those in modern cART treatment; and (2) the possibility in the 

future of complete characterization of TCRs that target early and late HIV epitopes. This latter 

characterization can include a comparison of the SD50 values of these epitopes to confirm 

whether high avidity TCR have a lower threshold between SD50 and killing efficiency compared 

to low avidity TCR.  Lastly, in the final sub-section, we will discuss the potential future testing 

of the KF11-specific TCR panel constructed in this study, including the testing of its efficacy in 

vivo. 
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Summary of results 
 

The overall aim of this dissertation was to gain a better understanding of the effects of 

HIV on T lymphocytes. Specific questions addressed include: (1) how HIV skews TCR 

repertoire and its effect on thymic output, and (2) how, despite having a negatively affected 

TCR repertoire, a panel of epitope-specific TCR can be identified and constructed to prevent 

viral escape. 

We wanted to see if HIV infection skews TCR repertoire and thymic output, since it has 

been well-documented that thymic infrastructure is often damaged in HIV+ persons. Since the 

thymus is responsible for the development and production of T lymphocytes, it is safe to assume 

that T cell development and output is affected. To examine this, we performed an extensive 

analysis of parameters of thymic function in perinatally HIV-1-infected persons, ranging from 

13 to 23 years of age. To our surprise, we found that the HIV+ persons had reduced CD4 T-cell 

levels, with predominant depletion of the memory subset but preservation of naive cells. RTE 

CD4 T-cell levels were normal in most infected individuals, and enhanced thymopoiesis was 

indicated by higher proportions of CD4 T cells containing TCR recombination excision circles. 

Memory CD4 T-cell depletion was highly associated with CD8 T-cell activation in HIV-1-

infected persons and plasma interlekin-7 levels were correlated with levels of naive CD4 T cells, 

suggesting activation-driven loss and compensatory enhancement of thymopoiesis was 

occurring. Deep sequencing of CD4 T-cell receptor sequences in infected persons revealed 

supranormal diversity, thus providing additional evidence of enhanced thymic output. These 

results provide hope that, despite the damage caused by HIV-1 to thymic infrastructure, thymic 

output and TCR repertoire can be reconstituted with treatment.  Nevertheless, this conclusion is 
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limited to children and young adults who have a higher likelihood of an “immune-comeback”, as 

opposed to older adults whose thymic output may be decreased, and whose TCR repertoire may 

have been skewed by viral infections throughout their lives. This last issue can be easily studied 

by thoroughly characterizing the TCR repertoire and thymic output of adults in cART versus 

treatment-naïve and healthy individuals. A further conclusion is that the development of an HIV 

vaccine has the potential to not only aid in getting rid of HIV but also can provide hope that the 

immune system of an HIV+ person can be reconstituted so they can live healthy. 

To date there is no HIV vaccine available. However, T cell immunotherapy has shown 

promise in battling melanoma. In 1995, T cell immunotherapy was tried as a potential new 

treatment against HIV-1. Unfortunately it failed. However, it did not fail because of a lack of T 

cell responses to HIV-1 in the immunotherapy, but rather because HIV-1 was able to mutate and 

escape the TCR used. Therefore, the obvious goal for successful TCR immunotherapy would be 

the development of a T cell immunotherapy strategy that HIV could not mutate around . No one 

person can develop enough TCR at any given one time to cover all possible variants of an HIV 

epitope. However, if epitope-specific TCR from multiple HIV+ persons were pooled together, a 

panel of TCR could potentially be identified and constructed to target all possible variants of a 

specific HIV epitope, thereby preventing escape. 

A problem with identifying and constructing a panel of TCR is that the current 

technology required is laborious and expensive. However, as previously demonstrated in 

Chapter Three, we have developed a new inexpensive strategy to quickly and efficiently 

identify and clone epitope-specific TCR. One of the advantages of this strategy is not it is not 

limited to HIV- specific TCR, but can be utilized in any disease that elicits a CTL response. 

Briefly, the TCR are: (1) identified via quantitative spectratyping, (2) the identified TCRαβ are 
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then cloned into a  lentiviral vector through one single cloning InFusion reaction, and (3) the 

cloned TCR’s functionality against the desired epitope is tested using our modified Jurkat-

CD8+-GFP flow cytometry system. 

Using our new TCR identification and cloning technique, we screened PBMC from 

HIV+ HLA-B*5701+ persons for CD8 responses directed against the gag 162-173 KF11 

epitope. Four KF11- specific TCR were identified and cloned into a lentiviral vector.  These 

four TCR constructs were named S14-KF11-B5701-TRAV5TRBV15, S52-KF11-B5701-

TRAV5TRBV19, S68- KF11-B5701-TRAV5TRBV19 and S94-KF11-B5701-TRAV14TRBV5.  

Together, these four 

KF11-specific TCR constructs were able to recognize and lyse cells that were peptide-loaded 

either with the KF11 consensus sequence or with any of the six most common circulating 

variants. According to the Los Alamos HIV Database, these six variants compose about 97% of 

all circulating strains of HIV-1 of Clade B. The SD50 values for these KF11-specific TCR 

constructs were measured and the difference between the highest and lowest SD50 for each 

construct against each of the six variants was always less than ten-fold. The highest SD50 

(82ng/ml) was for construct S52-KF11-B5701-TRAV5TRBV19, which targets the KF11 

A163S variant, while the lowest SD50 (832ng/ml) was for construct S94-KF11-B5701- 

TRAV14TRBV5, which targets the KF11 S165N variant. These data match previous results that 

found that KF11-specific TCR have SD50 values in the hundreds of ng/ml. These data also 

support a model in which low avidity TCR are used after high avidity TCR have been used. For 

example, TW10 is an epitope targeted during acute phase of infection and has an SD50 ranging 

from 1-100ng/ml, while KF11 is targeted during the chronic phase of infection and has an SD50 

ranging from 100-900ng/ml. We next tested construct S94-KF11-B5701-TRAV14TRBV5 
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against HIV-infected cells to confirm that our TCR constructs were able to lyse HIV-infected 

cells and not only peptide-loaded cells. Construct S94-KF11-B5701-TRAV14TRBV5 was able 

to lyse cells infected with three of the four KF11 variants that were lysed in the peptide loaded 

system. The highest killing efficiency (100%) for construct S94-KF11-B5701-TRAV14TRBV5 

was observed against the KF11 S165N variant, suggesting that this TCR was originally raised 

against this variant. However, this has not been confirmed since no sequencing of the virus 

infecting this person has been done. 

In conclusion, we have demonstrated that we have compiled an antigen- specific panel 

against the major variants of a particular epitope that could potentially prevent viral escape. 

When taken together, these results suggest that if a TCR panel to prevent escape could be 

developed as a new therapy against HIV, it might be possible to restore the CD4 count and 

repertoire of HIV+ persons to either normal levels, or potentially even supranormal levels of T 

cell diversity. 
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Potential Future Work: 
 

As is typical of science (and one reason why most of us do research), these findings have 

raised more questions than answers; the questions raised can and should be addressed with future 

work by others. It was surprising to have found that perinatally infected persons who have been 

chronically infected for more than a decade, and who have been on treatment, have supranormal 

thymic output up to 2 decades after HIV-1 infection. The current scientific literature appears to 

suggest that thymic output and TCR diversity have been addressed in adults infected with HIV; 

however, it is our belief that these studies have been superficial, since the majority have looked 

at TREC levels as a measurement of diversity. However, TREC level are a rough tool that 

actually measures output, but not necessarily diversity. To address the question of diversity, the 

TRAV, TRAJ, TRBV, TRBJ and the actual sequences of the CDR3 need to be defined. While in 

many adults undetectable levels of viremia occur as a result of taking cART, we have shown that 

immuno-activation persists and a perturbation of the TCR repertoire can be suspected.  This 

issue should be addressed – this can be done by determining which treatments promote immune 

reconstitution by checking whether the TCR repertoire in such cART-treated subjects matches 

those of healthy, HIV(-), persons of a similar age. Additionally, it would be interesting to also 

characterize the TCR repertoire of HIV+ persons who are known elite non-controllers and those 

who are fast-progressors. 

To date, we have tested TCR construct S94-KF11-B5701-TRAV14TRBV5’s killing 

efficiency of infected cells and confirmed it has the same lysis pattern for infected cells and 

peptide-loaded target cells.  However, we must test the killing efficiency of the remaining three 
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KF11-specific TCR to determine if they are also able to lyse HIV-infected cells with the same 

lysis pattern as observed with the peptide-loaded target cells. The SD50 of these three KF11- 

specific TCR should also be plotted against their killing efficiency to test whether they have a 

one log threshold of SD50 values that is related to their ability to lyse HIV-infected cells. Lastly 

and more importantly, the TCR panel constructed in this dissertation should be: (1) pooled 

together and co-cultured with cells infected with different HIV-KF11 variants to test if such a 

panel is able to prevent viral escape; (2) tested in vivo to confirm that each TCR is able to induce 

sufficient immuno-pressure to cause escape; and (3) tested in vivo to confirm that it is able to 

prevent viral escape in a physiological setting. 
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