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Recent development in electronic medical devices or systems has realized the effective collection 

and documentation of patients’ health in real time. To date, the potential clinical impact of this 

healthcare data has not been fully realized. Specifically, patients’ health data is heterogenous and 

sparse in nature, as it is composed of various modalities and is collected on different scales. In 

addition, processing this data efficiently in a temporal manner to take advantage of its sequential 

structure remains a barrier for medical records. This dissertation attempts to overcome these 

challenges by developing machine learning models to classify patient reported outcome (PRO) 

scores from activity tracker data and predict depression diagnoses based on data from patients’ 

historical electronic health records (EHR). A temporal model based on hidden Markov models 

(HMM) is first proposed to classify PRO scores in various categories from human vital signs 

collected from Fitbit activity trackers. This approach is able to combine various vital signs on 

difference scales in a single model that tracks changes in PRO scores over time. Second, several 
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end-to-end machine learning models were built to aggregate multimodal EHR data in a single 

model. A novel hierarchical embedding method achieved superior performance for predicting 

depression diagnosis, which lays a foundation for addressing the heterogeneity and sparsity of 

EHR data. Third, an innovative bidirectional sequence learning model with a transformer 

architecture was developed for representation learning on high dimensional EHR data, 

demonstrating significantly improved performance over the traditional forward-only method. 

Finally, methods to improve the interpretability of the aforementioned models have been 

developed, which is a critical step before clinical deployment. Relative feature importance factors 

are determined for each vital sign collected from the Fitbit and attention weights are found for each 

data modality in the sequential EHR data. Extensive experiments and results have demonstrated 

the effectiveness of these proposed methods. This dissertation provides methodologies that 

advance modeling and understanding of digital health datasets, which lays the foundation to 

construct clinical decision support systems in this domain which could potentially lead to early 

disease detection and intervention. 
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And you shall know the truth, and the truth shall set you free. 
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CHAPTER 1   

Introduction 

1.1 Motivation 

Rapid development in the field of digital technology has brought benefits to clinical domains, 

such as remote monitoring by ambulatory devices and clinical decision support systems (CDSS) 

based on electronic health records (EHR). Specifically, the advancement of machine learning 

algorithms could facilitate monitoring patients’ health status and future diagnosis for several 

diseases, among which ischemic heart disease (IHD) and depression have high prevalence as well 

as high cost for treatment and monetary loss due to missed work. IHD is a major health problem 

worldwide and the top cause of death [1]. Approximately one third of adults in the United States 

(about 81 million) has some form of cardiovascular disease, including more than 17 million with 

coronary artery disease and nearly 10 million with angina pectoris [2,3]. IHD patient care cost 

$156 billion in the United States for both direct and indirect costs in 2008 [1]. Depression also has 

high prevalence as epidemiological studies have estimated that roughly 17% of Americans 

experience symptoms of depression during their lifetime [4]. The economic burden of depression 

was $210.5 billion in 2010, composed of direct medical costs and monetary loss due to disability 

[5]. Therefore, the large amount of medical data collected by activity trackers and EHR provides 

an opportunity for machine learning algorithms to explore and discover clinically relevant 

information. The main contribution and motivation of this work is to apply machine learning 

algorithms to constructure classification or predictions to certain clinical applications: 1) to build 
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a remote monitoring system for IHD patients with wearable activity trackers; 2) to build a clinical 

decision support system for predicting future diagnosis of depression using patients’ EHR.  

1.1.1 Remote monitoring for patients with ischemic heart disease 

IHD, also called coronary artery disease (CAD), is a type of cardiovascular disease caused by 

narrowed arteries that results in less blood and oxygen reaching heart muscle, which can ultimately 

lead to myocardial infarction (MI) [1]. IHD is a major public health problem in United States and 

worldwide. Approximately 25% of men and 16% of women have coronary artery disease among 

people in their 60s and 70s, and these figures rise to 37% and 23% among men and women in their 

80s or older, respectively [2]. Although the survival rate of patients with IHD has been steadily 

improving, it was still responsible for nearly 380,000 deaths in the United States during 2010 [3].  

Furthermore, IHD is the top cause of death in both men and women, among whom this 

condition accounts for 27% of deaths [1]. IHD accounts for the vast majority of the mortality and 

morbidity of cardiac disease, with more than 1.5 million patients having an MI each year. Many 

more are hospitalized for unstable angina and for evaluation and treatment of stable chest pain 

symptoms. Beyond the need for hospitalization, many patients with symptoms of chronic chest 

pain are temporarily unable to perform normal activities for hours or days and thus experiencing a 

reduced quality of life. IHD continues to be associated with considerable patient morbidity despite 

the decline in cardiovascular mortality rate. Patients who have had acute coronary syndrome, such 

as acute myocardial infarction, remain at risk for recurrent events even if they have no, or limited, 

symptoms and should be considered to have stable IHD (SIHD). 

Despite the high prevalence, the costs of caring for patients with IHD are enormous, estimated 

at $156 billion in the United States for both direct and indirect costs in 2008. More than half of 

direct costs are related to hospitalization [1]. Another major expense is for invasive procedures 
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and related costs as well as $13 million for outpatient visits for IHD that occur in the United States 

annually [4]. The estimated costs of outpatient and emergency department visits in 2000 by 

patients with chronic angina were $922 million and $286 million, respectively, and prescriptions 

accounted for $291 million. Long-term care costs, including skilled nursing, home health, and 

hospice care, were $2.6 billion, which represented 30% of the total cost of care for chronic angina 

[5]. Although the direct costs associated with SIHD are substantial, they do not account for the 

significant indirect costs of lost workdays, reduced productivity, long-term medication, and 

associated effects. The indirect costs have been estimated to be almost as great as the direct costs 

[2]. 

Therefore, much effort has been concentrated on increasing the diagnosis accuracy and risk 

assessment of SIHD both from clinical and technological perspectives. Recently, rapid 

developments in digital technology have led to biomedical applications for personal healthcare, 

where an increasing number of clinical trials have focused on the potential of using mobile devices 

and activity trackers in medicine [6]. This technology enables collecting human vital signs from 

people’s daily lives with high accuracy, which was not feasible until recently [7,8]. For instance, 

studies have demonstrated the feasibility of the Fitbit Charge, a common commercial activity 

tracker, to record user’s step counts and heart rate in real time [9]. However, few studies have 

sufficiently utilized activity tracker data to provide clinically relevant information on users’ health 

[10,11]. Data collected from this minimally invasive method could potentially provide more 

reliable estimates of patient health status over time. 

1.1.2 Early diagnosis of depression using electronic health records 

Depression is a major cause of disability worldwide, often leading to a number of adverse 

outcomes, including increased risk of self-harm, premature mortality, and the development of 
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comorbid general medical conditions, such as heart disease, stroke, and obesity [12]. Within a year 

of experiencing depressive symptoms, patients are 4.4 times more likely to develop major 

depressive disorder (MDD) [13], a heterogeneous spectrum disorder with a variety of onsets, 

treatment responses, and comorbidities. The economic burden of individuals with MDD was 

$210.5 billion in 2010, which increased from $173.2 billion in 2005. A large portion of this 

increase was attributed to higher direct medical costs and presenteeism, defined as being present 

but not fully functional in the workplace [14]. Depressive symptoms can be effectively improved 

by treatment with antidepressants [15] or psychotherapy to mitigate adverse outcomes. However, 

linking patients to care necessarily requires accurate and timely detection of depression by a 

qualified medical or mental health provider. Identifying depression in the primary care setting, 

particularly in patients with multiple comorbidities, can be inefficient. Thus, screening with self-

reported questionnaires has emerged as an approach to aid primary care providers in identifying 

patients who may have depression but who do not have a diagnosis yet. 

Despite high prevalence and high cost, the current diagnosis or screening method of high risk 

patients only generated a 50% true positive rate [16]. For instance, one prospective cohort studies 

found that only 17 patients (1% of the 1687 screened) started treatment for major depressive 

disorder. Screening for depression in high risk populations was thus deemed to be ineffective. The 

authors attributed this result mainly to low rates of treatment initiation [17]. The current evidence 

suggests that screening alone is not an effective strategy to improve the quality and outcomes of 

care. It is promising that screening in primary care carries important benefit when primary care 

practices can support accurate diagnosis, effective treatment and appropriate follow-up. 

Recently, adoption of electronic health records (EHRs) has increased dramatically over the 

past several years [18]. As a consequence, there is an increasing number of healthcare providers 
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equipped with computerized support tools that are explicitly designed to help health professionals 

comply with recommended clinical guidelines. These systems consist of heterogeneous data 

modalities, such as patient demographic information, diagnoses, procedures, medications or 

prescriptions, clinical notes, and medical images [19]. CDSS, a common feature of EHR systems, 

provide users with automated prompts when specified tests or screenings are indicated. A recent 

systematic review of research exploring the impact of CDSS on depression care yielded primarily 

positive results [20]. Notably, these results indicated that using CDSS can increase the number of 

individuals screened for depression. Thus, improving the diagnostic accuracy of depression 

prediction could allow patients to be screened at an early stage, enabling the possibility of careful 

monitoring or early intervention 

1.2 Contributions 

Both activity tracker data and EHR are in time series formats, which are similar to data 

structure of word sequences. Thus, recent advancement in sequential and temporal machine 

learning models developed in fields such as natural language processing (NLP) can be applied to 

medical datasets [21–23]. This dissertation aims to investigate the feasibility of constructing 

specific temporal models for each clinical application that can perform representation learning on 

time series activity tracker and EHR data. The main goal of the constructed models is to deliver 

clinical outcomes or predictive information for ischemic heart disease and depression while 

presenting novel approaches to alleviate the sparsity and heterogeneity nature of medical datasets. 

This proposed research work has three aims: 

1. To develop a temporal machine learning model to process human vital signs collected by 

activity trackers and provide information about a patient’s health status. This framework was 
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one of the earliest approaches to realize the clinical impact of vital signs collected from one 

activity tracker (Fitbit) by using them to classify PRO scores. A hidden Markov model (HMM) 

represented the change in PROs using transition probabilities, demonstrating superior 

performance over classical non-temporal machine learning algorithms. This framework also 

provided flexibility to be applied to multiple categories of PROs in both physical and mental 

health, such as physical function, anxiety and depression. This work demonstrates that data 

generated from activity trackers may be used in a machine learning framework to classify self-

reported health status variables. These techniques could play a future role in larger 

frameworks for remotely monitoring a patient’s health state in a clinically meaningful manner. 

2. To construct a single predictive model based on machine learning algorithms capable of 

aggregating multimodal EHR data to predict depression.  A novel Hierarchical Clinical 

Embedding with Topic modeling (HCET) architecture was proposed to address the 

heterogeneity and sparsity of EHR data while building a temporal model to predict depression 

onset at various prediction windows prior to diagnosis. The HCET model was able to 

aggregate various categories of EHR data and learn their inherent structure within hospital 

visits. The prediction performance was further improved after applying bidirectional learning 

with a transformer architecture, showing that bidirectional representation learning developed 

on word sequences can also be applied on longitudinal EHR sequence. The results 

demonstrated the model’s ability to utilize heterogeneous EHR information to predict 

depression, which may have future implications for screening and early detection. 

3. To improve model’s interpretability by revealing each feature’s contribution to the 

classification task in Aim 1 and the importance factor of every modality of EHR data as well 

as the order of clinical visits in Aim 2. Improving a model’s interpretability is an important 
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area of machine learning research, especially in the biomedical domain. To address this 

problem, a random forest model being able to output feature importance factor were added to 

the model built on Aim 1, which revealed the relative feature importance for classifying PRO 

scores. Additionally, adding attention weights to HCET improved its interpretability by 

showing the relative importance of each EHR modality. Furthermore, adjusting the novel 

transformer architecture on EHR data and outputting self-attention for each code in sequences 

indicated the relationship between them in the task of predicting depression. Making these 

models more explainable allows physicians to better understand how decisions are made, 

which is an important step if they are going to be integrated as a clinical decision support 

system in the future.  

Towards Aim 1, a machine learning framework was proposed to classify PRO scores from 

data collected from Fitbit activity trackers within a population of patients with stable ischemic 

heart disease (SIHD). The developed framework comprised two steps: 1) constructing an end-to-

end machine learning system that uses data collected from activity trackers to predict or classify 

patient’s health status assessed by clinical metrics; and 2) building a hidden Markov model (HMM) 

to process temporal data using learned transition probabilities of patient reported outcome (PRO) 

scores. The first model treated each week independently, whereas the second used an HMM to 

take advantage of correlations between successive weeks. After training, a retrospective analysis 

compared the classification accuracy of two models. The results demonstrated the ability of 

utilizing activity tracker data to classify patients’ PRO scores over time and suggested that 

patients’ health status can be monitored in real time by activity trackers. 

For Aim 2, an EHR dataset was constructed that was composed of five data modalities: 

diagnoses codes, procedure codes, medications, demographic information, and clinical notes. The 
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developed architecture is comprised of four steps: 1) investigating the effect of the length of a 

patient’s medical history on depression prediction accuracy; 2) implementing a single model that 

aggregates multimodal EHR data and predicts future depression diagnosis; 3) constructing a 

temporal model capable of processing multimodal EHR data in a sequential manner; and 4) 

revising the representation learning of EHR sequences from a forward-only approach to a 

bidirectional forward-backward method to improve the model’s prediction accuracy. Models 

constructed in the first two steps was able to aggregate multimodal EHR data into a single model 

for depression prediction, but they did not effectively resolve sparsity and heterogeneity nature of 

the data. Hence, HCET efficiently alleviated these challenges by constructing a hierarchical 

structure on multimodal EHR data with various embedding levels, while preserving the data’s 

sequential nature. In this way, it learns the inherent interaction between EHR data from various 

sources within each visit and across multiple visits for an individual patient. Switching the 

architecture to a transformer for bidirectional representation learning significantly improved the 

prediction accuracy. These models could possibly be used as the basis for constructing a screening 

tool by utilizing the models’ predictions to intervene with individuals who have a higher risk of 

developing depression. 

Aim 3 was an extension work to models built on Aim 1 and Aim 2. The feature importance 

factor was enabled on a random forest model which discovered the relative contribution of each 

feature collected by activity tracker in the classifying of PRO scores. Secondly, attention weights 

were applied on the code level embedding of HCET model to reveal the contribution of each EHR 

data modality in predicting depression. In addition, applying the self-attention and multi-head 

mechanism within a transformer architecture further improved model’s interpretability by 

exploring the relationship between various data modalities and clinical visits. 
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Collectively, the design and implementation of these Aims results in PRO classification and 

depression prediction models with high interpretability that presents a deeper understanding of 

vital signs collected by activity tracker and EHR representation learning for chronic disease 

prediction. 

1.3 Organization of the Dissertation 

The dissertation is organized as follows. Chapter 2 describes technical background 

information on activity trackers, EHR data, temporal and non-temporal machine learning models, 

text modeling techniques and metrics to evaluate them. Chapter 3 presents work on building 

models to classify patients’ PRO scores from activity tracker data, including the advantage of using 

temporal models as described in Aim 1. Models constructed in Chapter 4 addresses first step of 

Aim 2 to predict depression onset and Chapter 5 describes the advanced deep learning models 

covering the second and third step of Aim 2. The work in Chapter 6 addresses the last step of Aim 

2 by adjusting the BERT, originally developed in natural language processing to perform 

bidirectional learning on EHR data to predict depression. Chapter 7 is composed of the works on 

improving the interpretability of models built in the previous chapters, which addresses Aim 3. 

Chapter 8 concludes by summarizing the results, discussing the limitations of this work and suggesting 

future directions. 
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CHAPTER 2  

Background 

2.1 Wearable activity trackers 

Activity trackers, also referred to fitness trackers, activity monitors or fitness bands are 

devices or applications for monitoring and tracking fitness-related metrics such as distance walked 

or run, calories consumed, and heart rate [24].  The word “wearable” refers to monitors that can 

be worn on the wrist or clipped to an individual’s clothing, not including smartphones. Consumer 

activity monitors, such as Fitbit, Apple watch, Jawbone UP, Garmin Vivofit and others are now 

widely used in biomedical research to study therapeutic effects of self-monitoring, exercise therapy 

and behavioral interventions [25]. Fitness trackers provide an easy interface for adults to meet 

those guidelines and over 100 million units were sold in 2016 [24].  

 An intense area of research aims at estimating the association between physical activity and 

metabolic function as well as cognitive and neurological health using consumer activity trackers. 

Accurate and precise self-monitoring devices therefore provide potential benefits both to patients 

by providing real-time feedbacks on their specific physiological status and to healthcare providers, 

since they can collect and present a full set of information, including activity frequency, duration, 

intensity, heart rate (HR), and energy consumption.  Previous works have validated the accuracy 

of heart rate monitoring specifically in the Fitbit Charge 2 [24]. The Fitbit hardware and its 

computational algorithms for calculating step counts and physical activity have been validated 
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using other Fitbit devices [26,27]. The Fitbit Charge 2 estimates activity using metabolic 

equivalents (METs), which are calculated based on heart rate and distance traveled. 

A key metric measured by fitness trackers is HR, namely the number of contractions of the 

heart per minute (bpm). Physical exercise, sleep, anxiety, stress, illness, and ingestion of drugs are 

all factors known to alter the normal HR, thus, HR has been used as an indicator of physiological 

adaptation and intensity of effort [28]. Methods used to detect changes in HR include: 

electrocardiogram (ECG), blood pressure, ballistocardiogram (BCG) and the pulse wave signal 

derived from a photoplethysmography (PPG). Recently, the need for affordable, simple and 

portable technology for both the primary care and community-based clinical settings, together with 

the wide availability of low cost and small semiconductor components, have raised attention 

around PPG [29]. PPG is an optical measurement technique that measures the amount of 

backscattered infrared light through a tissue to assess the variation of blood volume and thus the 

heart rate [29]. PPG requires a light source and a detector while their relative positions may vary. 

In quantitative PPG, the optical illumination in the measuring area is automatically adjusted for 

 

Figure 2.1: The steady and pulsatile components of the PPG signal [30]. 
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each type of skin until a predetermined level of reflected light is reached. With this technology, 

PPG measurements are independent of skin color, thickness and individual blood volume [30]. As 

shown in Figure 2.1, the PPG signal consists of AC and DC components. The AC component (for 

arterial pulse detection) is synchronous with the heart rate and depends on the pulsatile blood 

volume changes [31]. It has been suggested that the AC component is related to pulsatile blood 

volume changes because of varying lumen of the vessel and red cell orientation during each cardiac 

cycle [32]. Conversely, the DC component (commonly used for venous evaluation) of the signal 

varies slowly and reflects variations in the total blood volume of the examined tissue [33]. Recent 

studies suggest PPG is a simple, reliable and low-cost optical technique for measuring changes in 

blood volume in the microvascular bed of tissue with acceptable validity [34], although the 

accuracy often depends on the device used, the type and intensity of activity, and skin 

photosensitivity [35,36]. All wrist worn activity trackers rely on PPG to derive HR and several 

studies have investigated the accuracy of wearable devices for measuring HR recently. 

 Accelerometry is an objective method of quantifying physical activity and energy 

expenditure during the day and night [37]. Integrated chip sensors typically comprise a capacitive 

micro-electro-mechanical, piezoelectric, or piezo-resistive element that detects the change in 

acceleration of a small mass in the sensor. Raw data from the accelerometers (housed in both 

research-grade physical activity monitors and consumer physical activity monitors) are utilized in 

algorithms to count steps and sometimes to calculate parameters for other activities. Although the 

hardware and especially the algorithms vary, the newer research-grade physical activity monitors 

and consumer physical activity monitors generally employ a triaxial accelerometer, which records 

acceleration vectors in three planes, and represents a significant advance over devices using a 

uniaxial accelerometer in their ability to calculate energy expenditure [38]. Algorithms are 
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continually improving to interpret this data to estimate the frequency, duration, and intensity of 

physical activity in steps, flights of stairs, or energy expenditure. One method involves using 

vertical and anterior-posterior (front and back) accelerations to calculate step frequency and 

determine walking patterns while using mediolateral (side-to-side) accelerations to predict stride 

frequency, which can also be used to assess abnormalities in gait [39]. 

2.2 Electronic health records (EHRs) systems 

Like paper files, EHRs document the patient’s health data, possibly including, but not limited 

to, patient encounter; demographic information; problem lists; active and past diagnoses; 

laboratory test orders and results; current prescriptions; radiological images and reports; 

hospitalization information; consultant reports; immunizations; pathology reports; social history; 

allergies; health screening study results; and physician, nurse, social worker, and physical therapy 

notes [40]. Therefore, EHRs are usually composed of heterogeneous data structures and 

modalities. In addition to having this information at the healthcare provider’s fingertips in a 

searchable format on any securely connected computer, EHRs can include additional functionality 

such as access to clinical and public health guidelines, reminders about routine screenings or 

disease reporting responsibilities, and graphical display of trends in key parameters such as blood 

glucose for diabetic patients or blood pressure measurements in hypertensive patients. Some EHR 

systems can generate practice-level statistics.  

Despite this promising array of possible features, there has been a lack of standardization and 

many EHRs have been developed with various designs and functionality. For example, a recent 

survey of office based physicians found that only 60.9% of EHRs could easily generate a list of 

patients by diagnosis, only 48.2% could easily track a patient referral to completion, and only 
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51.4% could easily generate a report on quality measures [40]. Therefore, it is significantly 

important to bring standardization and interoperability to EHRs.  One purpose of EHRs is to enable 

providers to share patient information so that care can be delivered seamlessly across different 

settings and separate encounters. This practice helps avoid duplicate tests, prevents drug-drug 

interactions and enhances patient care. EHRs can also enable patients to access their records 

remotely and to use that information to better manage their health status and healthcare [40]. To 

ensure that EHRs reach their potential, networks are being developed to link EHRs so that 

healthcare providers can share information needed for care and patients can access their own 

records electronically. Such health information exchange systems, referred to in some states as 

regional health information organizations (RHIOs), also make it possible for public health workers 

to access EHRs to collect legally mandated disease reports.  

While primarily designed for improving healthcare efficiency from an operational standpoint, 

many studies have found secondary use for clinical informatics applications [41]. In particular, the 

patient data contained in EHR systems has been used for tasks such as medical concept extraction 

[42], patient trajectory modeling [43], disease inference [44], clinical decision support systems 

[45] and more. 

2.3 Non-temporal machine learning models 

With the recent development of data collection, data storage and computational power 

machines,  traditional machine learning algorithms have been widely adopted and advanced in 

many areas such as search ranking [46] and fraud detection [47]. In the meantime, they are also 

applied to the biomedical field, such as mortality prediction [48], disease classification [49] and 

drug discovery [50]. These algorithms include logistic regression, support vector machine, 
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gradient boosting regression tree and random forest, which make decisions independently each 

time. 

2.3.1 Logistic regression (LR) 

LR is a regression method for predicting a dichotomous dependent variable. In producing the 

LR equation, the maximum-likelihood ratio was used to determine the statistical significance of 

the variable. LR is useful for situations to predict the presence or absence of a characteristic or 

outcome based on values of sets of predictor variables [51]. It is similar to a linear regression 

model but is suited to models where the dependent variable is dichotomous. LR model for � 

independent variables can be written as 

��� = 1� = � = 1
1 + 
��
∑ ��������                                                  �2.3.1� 

, where ��� = 1�  is the model’s estimated probability for the positive label � , and 

��, ��, … , ��  are regression coefficients, multiplied on each corresponding feature �� . Equation 

(2.3.1) is also named as a sigmoid function. There is a linear model hidden within the logistic 

regression model. The natural logarithm of the ratio of ��� = 1� to 1- ��� = 1� gives a linear 

model in ��: 

 ��� = !" ��� = 1�1 − ��� = 1� =  �� + $ ����
�

�%�
                                      �2.3.2� 

The function  ���  has many of the desirable properties of a linear regression model. The 

independent variables can be a combination of continuous and categorical variables.  LR models 

can include the main effects and interaction terms. An important step in the process of modeling a 

set of data is determining whether there is evidence of interactions and confounder terms in the 
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data. The term confounder is used to describe a covariate that is associated with both the dependent 

variable of interest and a primary independent variable. When both associations are present, the 

relationship between the independent variable and the dependent variable is said to be confounded. 

Any clinically important change in the estimated coefficient for the independent variable suggests 

that the covariate is a confounder and should be included in the model, regardless of the statistical 

significance of its estimated coefficient. One way to test for confounders and interactions in LR is 

to start with a main effects model and use a forward selection method to find interaction terms 

which significantly reduce the likelihood ratio test statistic [51]. Regularization can be applied on 

LR to reduce overfitting. The penalized log-likelihood function becomes: 

$&��!' ���� + �1 − ���log�1 − ���+ − 12,- ||�||/                            �2.3.3�
0

�%�
 

, where ||�|| is the norm of coefficients ��, ��, … , �� and �� is the model’s logit for each label ��.  
, ∈ �0, ∞� is the shrinkage parameter that controls the degree of shrinkage of �� toward 0 [52]. 

The term 4 determines the order of regularization. The whole model is called L1 norm or Lasso 

LR when 4 = 1 while L2 norm or Ridge LR when 4 = 2. One major difference between Lasso 

and Ridge is that, the former would shrink some coefficients to 0 and induce feature sparsity while 

the latter one generally provides non-zero coefficients. 

2.3.2 Support vector machine (SVM) 

SVM is a class of supervised learning algorithms that trades off accuracy for generalization 

error. SVMs build a hyperplane which divides examples such that examples of one class are all on 

one side of the hyperplane, and examples of the other class are all on the other side [53]. For one 
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sample data point �5�  , 6��, where the vectors 5�  are in a dot space 7  and 6�  are class labels. 

Formally, any hyperplane in 7 is defined as  

85 9 7| : ;, 5 < + = = 0>  ; 9 7, = 9 ?                                �2.3.4� 

, where ; is a vector orthogonal to the hyperplane and < > represents the dot product. The idea of 

SVM is to find the hyperplane that maximizes the minimum distance from any training data point 

as shown in Figure 2.2. The following constraint problem describes the optimal hyperplane. 

�A"; 9 7, = 9 ?   �
- B|;|B-,   CD=E
FG G' 6��: ;, 5 < + =� H 1            �2.3.5�    

The above problem can be solved by introducing the Lagrange multipliers �4� H 0�  which 

maximize the dual problem  

max  M�4� = $ 4�
�

�%�
− 12 $ 4�

�

�,N%�
4N6�6N : 5�, 5N <                       �2.3.6� 

CD=E
FG G' 4� H 0 P"Q $ 4�6� = 0
�

�%�
   

 

Figure 3.2: Maximum margin and optimal hyperplane. 
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The patterns 5� that correspond to non-zero Lagrange coefficients are called support vectors. The 

resultant decision function has the following form 

6�5� = CA " R$ 4�6� : 5� , 5N <
�

�%�
+ =S                                 �2.3.7� 

Thus, the optimal margin hyperplane is represented as a linear combination of training points. 

Consequently, the decision function for classifying points with respect to the hyperplane only 

involves dot products between points. The algorithm that finds a separating hyperplane in the 

feature space can be stated entirely in terms of vectors in the input space and dot products in the 

feature space [53]. When the samples are not linearly separable, a kernel function is used to 

transform the data into a higher dimensional space where it is linearly separable. The kernel 

function gives the dot product of two examples in the higher dimensional space without actually 

transforming them into that space. This notion, dubbed the kernel trick, allows us to perform the 

transformation for the purpose of classification to large dimensional spaces. In the nonlinear case, 

the resultant decision function becomes 

6�5� = CA " R$ 4�6�U�5�, 5N�
�

�%�
+ =S                               �2.3.8� 

, where the kernel function is a nonlinear mapping from the original space to the high dimensional 

space. Gaussian radial basis functions (RBF) kernel is one of the most commonly used kernel 

functions, formulated as  

U�5, 5W� = 
X ||YXYZ||[
-\[                                                     �2.3.9� 

, where ^ is the spread of the Gaussian function. 
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2.3.3 Gradient boosting regression tree (GBRT) 

GBRT is an ensemble method on top of decision tree models, which constitute a highly 

interpretable machine learning technique, using a set of instances with known input and output 

variables to train a model that can both be applied for classification or regression tasks [54]. The 

key idea of GBRT consists of building a predictive model from an ensemble of simple models. 

The output of the ensemble is computed as the weighted sum of _ weak models. Formally, the 

output of GBRT for a test sample 5 is computed as 

7�5� = $ 4�ℎ��5�                                                     �2.3.10�
a

�%�
 

, where ℎ��5� is the output of the A-th weak learning model and 4� is a constant known as the stage 

length, which controls the contribution of the A-th model to the overall output. As opposed to other 

ensemble methods, these base models are not all trained to produce the same desired output. 

Instead, models are built sequentially, refining the output of the previous stage: 

7��5� = 7�X��5� + 4�ℎ��5�                                     �2.3.11� 

Therefore, at each learning stage the current weak model ℎ��5� and the stage length 4�  are 

trained to approximate the difference between the output of the previous stage and the desired 

overall output (i.e. the residuals). Of course, in the case of GBRT, the base models consist of 

regression trees with an advantage of allowing for the optimization of arbitrary differentiable loss 

functions. In each stage, the algorithm trains a set of binary regression trees on the negative 

gradient of the binomial or multinomial deviance loss function. GBRT is a generalization of 

boosting to arbitrary differentiable loss functions. They have good predictive power and robustness 

to outliers in the output space, but have increased complexity and phase scalability restrictions. 
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2.3.4 Random forest (RF) 

RF is another ensemble method built upon decision tree models. It is based on the bagging 

technique instead of the boosting method used in GBRT, which enables parallel computing instead 

of sequential learning.  The bagging method generates U different training data subsets from the 

original dataset using a bootstrapping sampling approach, and then U decision trees are built by 

training each subset. A random forest is finally constructed from these decision tree learners. Each 

sample of the testing dataset is predicted by all decision trees, and the final classification result 

depends on the votes from these trees [55].   

In the step of bagging, U training subsets are sampled from the original training dataset b by 

bootstrapping. Namely, c records are selected from b by a random sampling and replacement 

method during each sampling. After this step, U training subsets are constructed as a collection of 

training subsets bdef�0 = 8b�, b-, … , bg>. In an RF model, each meta decision tree is created by 

classification or regression tree algorithms from each training subset b�. In the growth process of 

each tree, a subset of � features out of the total set of _ are randomly selected to train each dataset 

b�, whereas other models always all use the total _ features for training. This random selection of 

subsets of features explains why this algorithm is called random forest. In the node’s splitting 

process of each tree, the gain ratio of each feature variable is calculated and the best one is chosen 

as the splitting node. This splitting process is repeated until a leaf node is generated [55].  Finally, 

U decision trees are trained from U training subsets in the same way. The U trained trees are 

collected into an RF model, which is defined as  

7h�, ΘNj = $ ℎ�h5, ΘNj,             E 9 &1, _+
g

�%�
                             �2.3.11� 
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, where ℎ�h5, ΘNj is a meta decision tree classifier, 5 is the input feature vectors of the training 

dataset, and ΘN is an independent and identically distributed random vector that determines the 

growth process of the tree. The random feature selection process leads to a feature decorrelating 

effect so that the most correlated features cannot dominate building the model for each subset, and 

when combined with the bagging technique, RF effectively reduces the model’s variance. 

Furthermore, RF has another advantage of providing better interpretation in the decision-

making process than aforementioned models. It is able to output the relative feature importance 

factor by the information gain (IG). IG is usually computed by two methods: Gini index or entropy. 

The feature importance factor is computed by Gini importance. For a node , within a binary tree 

k  of the random forest, the optimal split is sought using the Gini impurity l�,�, which is a 

computationally efficient approximation of the entropy, measuring how well a potential split is 

separating samples of the two classes in this particular node [56]. Suppose there are " samples in 

this node, where "� are negative and remaining "� are positive. The relative frequencies of the 

negative and positive samples, �� and ��, respectively, are defined as  

�� = "�" , �� = "�"                                                                          �2.3.12� 

and the Gini impurity of this node l�,�, can be calculated as 

l�,� = 1 − ��- − ��-                                                                    �2.3.13� 

Then, for a split at this node that yields two sub-nodes ! and m, the decrease of the Gini impurity 

for this split is calculated as  

∆ l�,� = l�,� − �ol�,o� − �el�,e�                                                   �2.3.14� 
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, where �o and �e are the fractions of samples in that fall into ! and m, respectively [57]. Since the 

split happens on a certain feature p, this decrease in Gini impurity is also defined as the Gini 

decrease for ! and m at the node ,. Moreover, p may be used as the splitting variable in more than 

one node. Let q�,, p� be the indicator function that is equal to 1 when p is the splitting variable of 

, and 0 otherwise. The Gini decrease (GD) of p in this tree is then defined as the summation of 

GDs for all nodes in which p is the splitting variable, as  

rs�k, t� = $ ∆ l�,�q�,, p�
uvwx

                                                   �2.3.15� 

, where cd is the collection of all nodes of the tree k. Finally, the summation of all GDs of p over 

all trees in the forest is the Gini importance of p, as 

rq�k, t� = $ $ ∆ l�,�q�,, p�                                                  �2.3.16�
uvwxd

 

 , where k is the collection of all decision trees in the random forest. Therefore, the random forest 

can output the Gini importance for each feature.  
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2.3.5 Training techniques 

Training strategy is one important step to find the best model as well as the optimal model 

parameters to train the dataset. Cross-validation (CV) is a computationally intensive technique, 

using all available examples as training and test examples. It mimics the use of training and test 

sets by repeatedly training the algorithm U times with a fraction  
�
g  of training examples left out 

for testing purposes. This kind of hold-out estimate of the performance lacks computational 

efficiency due to the repeated training, but the latter is  meant to lower the variance of the estimate 

[58].  

Figure 2.3 illustrates the data split method for cross validation as one example of how five-

fold cross-validation works. In practice, the dataset s is first chunked into U disjoint subsets or 

blocks of the same size: � ≜ 0
g . kz stands for the {-th block and sz is the training set obtained by 

 

Figure 2.5: Illustration of data split and cross validation. The green block means the fold 
for the training set while the blue block means the fold for the test set. 
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removing the elements in kz from s. The CV estimator is defined as the average of the errors on 

test block kz obtained when the training set is derived from kz: 

|t�s� = 1U $ 1_
g

z%�
$ }&�~�sz�, ���

��vd�
                                 �2.3.17� 

, which estimates the total error after training on the dataset s. After implementing on different 

models as wells as different sets of model parameters, the one with the minimum error would be 

selected. 

2.4 Temporal machine learning and deep learning models 

Classical or non-temporal machine learning methods are effective for making single 

decisions, but do not allow for adjustment to learn the sequential temporal information in the data. 

Temporal models are appropriate in the case of sequential or temporal observations where the 

value of the outcome may need to be updated over time. In particular, hidden Markov models 

(HMMs), recurrent neural network (RNN) and its variations have been widely applied to disease 

prediction [21,59], symptom progression [60] and classification of health questionnaires [61], 

demonstrating their outstanding performance over classical models in processing sequential or 

temporal data. 

2.4.1 Hidden Markov models (HMM) 

HMMs are sequence models. A sequence model or sequence classifier is a model whose job 

is to assign a label or class to each unit in a sequence, thus mapping a sequence of observations to 

a sequence of labels [62]. An HMM is a probabilistic sequence model given a sequence of units 

(words, letters, morphemes, sentences, et al.) and it computes a probability distribution over the 
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possible sequences of labels and chooses the best label sequence. Sequence labeling tasks come 

up throughout speech and language processing, a fact that is not too surprising if we consider that 

language consists of sequences at many representational levels. 

HMM is one variation of the Markov chain, a special case of a weighted automaton in which 

weights are probabilities and the input sequence uniquely determines which states the automaton 

will go through. Because it cannot represent inherently ambiguous problems, a Markov chain is 

only useful for assigning probabilities to unambiguous sequences. Figure 2.4a shows a Markov 

chain for assigning probabilities to a sequence of weather events, for which the vocabulary consists 

of HOT, COLD, and WARM. Figure 2.4b shows another simple example of a Markov chain for 

assigning probabilities to a sequence of words ;� … ;0. This Markov chain in fact represents a 

bigram language model. Given the two models in Figure 2.4, we can assign probabilities to any 

sequence from our vocabulary.  

A Markov chain embodies an important assumption about these probabilities. In a first-

order Markov chain, the probability of a particular state depends only on the previous state: 

����|�� … ��X�� = ����|��X��                                       �2.4.1� 

 

Figure 2.7: A Markov chain for weather (a) and one for words (b). A Markov chain is 
specified by the structure, the transition between states the start and end state. The 
probabilities on all arcs leaving a node must sum to 1. 



 26

, where �� is the state at A-th time point. In this way, the model is based on a strong assumption, 

but it efficiently reduces the computation for the input sequence.  

When states are not directly observable, a Markov chain becomes an HMM. For instance, in 

the part-of-speech tags, we assign tags like Verb or Noun to words. However, we are only able to 

see the word sequence instead of part-of-speech tags. Thus, we call part-of-speech tags hidden 

because they are not observed. An HMM allows us to focus on both the observed events (like 

words we see in the input) and the hidden events (like part-of-speech tags) that we think of as 

causal factors in the probabilistic model. There are three algorithms embedded in HMMs: (1) 

Forward algorithm (likelihood): computes the likelihood for a given observation sequence; (2) 

Viterbi algorithm (decoding): finds the best state sequence for a given observation sequence; (3) 

Forward-backward algorithm (learning): learns the model parameter to compute transition and 

emission probability for a given observation sequence [62]. Forward algorithm will be explained 

in further details as it is most applicable to this work. 

 The Forward problem in HMMs computes the likelihood ���|��  given an observation 

sequence �. An HMM model is defined as  � = �~, ��, where ~ and � stands for the transition 

and emission probability, respectively. Given this one-to-one mapping and the Markov 

assumptions expressed in Eq. (2.4.1), for a particular hidden state sequence � = ��, ��, … , �0; and 

an observation sequence � = '�, '-, … , '0 , the likelihood of the observation sequence is 

���|�� = � ��'�|���0

�%�
                                                      �2.4.2� 

Since state sequences are hidden, we need to compute the probability of the observed sequence 

and sum over all possible state sequences, weighted by their probability. In general, the joint 
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probability of a particular hidden state sequence �, which generates a particular observed sequence 

� is  

���, �� =  ���|�� × ���� = � ��'�|���
0

�%�
× � ����|��X��                 �2.4.3�

0

�%�
 

, where the first and second component are called the emission probability and transition 

probability, respectively. Then the total probability of observations can be computed simply by 

summing over all possible joint probabilities of each hidden state sequence: 

���� = $ ���, �� = $ ���|������
�

                          �2.4.4�
�

 

For an HMM with c hidden states and an observation sequence of  k, there are cd  possible 

hidden sequences. Instead of using a brute force approach to compute every combination, 

generating time complexity of ��cd� , we can use an efficient ��c-k�  algorithm called the 

forward algorithm. The forward algorithm is one kind of dynamic programming algorithm, which 

uses a table to store intermediate values as it builds up the probability of the observation sequence 

[62]. The forward algorithm computes the observation probability by summing over probabilities 

of all possible hidden state paths that could generate the observation sequence, but it does so 

efficiently by implicitly folding each of these paths into a single forward trellis. Each path of the 

forward algorithm trellis 4��E� represents the probability of being in state E after seeing the first G 

observations, given an HMM model �. The value of each 4��E�  is computed by summing over 

probabilities of every path that could lead it to. Formally, each path expresses the following 

probability 

4��E� = Ph'�, '-, … , '�,�� = jBλj                                      �2.4.5� 
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, where �� = j means “the G-th state in the sequence is state E”. We compute this probability 4��E� 

by summing over the extensions of all the paths that lead to the current path. For a given state �N 

at time t, the value 4��E� is computed as 

4��E� = $ 4�X��A�w

�%�
P�N=N�'��                                           �2.4.6�  

, where 4�X��A� is the previous forward path probability from the previous time step. P�N is the 

transition probability from previous state �� to current state �N and =N�'�� is the state observation 

likelihood or emission probability of the observation symbol '� given the current state j. 
2.4.2 Long short-term memory (LSTM) 

The Markov assumption ignores much information about the historical states, which cannot 

process long sequences. Thus, with development of deep learning and neural networks, RNN 

shows superior performance than HMM on processing sequential data.  However, training RNNs 

suffers from the gradient vanishing and exploding problem due to the repeated multiplication of 

the recurrent weight matrix [63]. Several RNN variants such as the long short-term memory 

(LSTM) and the gated recurrent unit (GRU) have been proposed to address the vanishing gradient 

 

Figure 2.9: The repeating modules in an LSTM that contains four gate structures.  
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problems. LSTMs were originally introduced in [64], following a long line of research into RNNs 

for sequence learning. It can model varying-length sequential data, achieving state-of-the-art 

results for problems in natural language processing [65], image captioning [66] and genomic 

analysis [67]. LSTMs can capture long range dependencies and nonlinear dynamics. Some 

sequence models, such as Markov models, conditional random fields, and Kalman filters are ill-

equipped to learn long-range dependencies. Other models require domain knowledge or feature 

engineering, offering less chance for serendipitous discovery. In contrast, neural networks learn 

representations effectively and can discover unforeseen structures.  

Figure 2.5 shows the inner structure of LSTM and the repeating structure to process sequential 

inputs. LSTM is composed by four gate structures: (1) input gate; (2) forget gate; (3) cell state; (4) 

output gate, which are represented by Eqs. (2.4.7) to (2.4.11), respectively.  

A� = ^�M� ∙ &ℎ�X�, 5�+ + =��                                                     �2.4.7� 

�� = ^hM� ∙ &ℎ�X�, 5�+ + =�j                                                     �2.4.8� 

|�� = GP"ℎ�M� ∙ &ℎ�X�, 5�+ + =�� ,       |� = �� ∗ |�X� + A�  ∗ |��           �2.4.9� 

'� = ^�M� ∙ &ℎ�X�, 5�+ + =��                                                    �2.4.10� 

ℎ� = '� ∗ GP"ℎ�|��                                                  �2.4.11� 

, where |�� is the cell candidate state and ^ is the sigmoid function. Notable earlier works [68,69] 

have realized backpropagation through time, where successfully trained RNNs were able to 

perform supervised machine learning tasks with sequential inputs and outputs. The design of 

modern LSTM memory cells has remained close to the original ones, with the commonly used 

addition of the forget gate. 
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2.4.3 Gated recurrent unit (GRU) 

Another variation is using coupled forget and input gates. Instead of separately deciding what 

to forget and what new information to keep, it is more computationally efficient to make decisions 

together by only forgetting when there will be another input in its place. In the meantime, the 

model inputs new values to the state when forgetting something older. Therefore, Gated Recurrent 

Unit (GRU) was introduced as another variation of RNN [70]. It combines the forget and input 

gates into a single update gate ��. It also merges the cell state and hidden state into the reset gate. 

The resulting model is simpler than the standard LSTM model and has become increasingly more 

popular. The formulation for GRU is as follows: 

�� = ^�M� ∙ &ℎ�X�, 5�+ + =��                                                     �2.4.12� 

m� = ^�Me ∙ &ℎ�X�, 5�+ + =��                                                     �2.4.13� 

ℎ�� = GP"ℎ�M� ∙ &ℎ�X�, 5�+ + =��                                             �2.4.14� 

ℎ� = �1 − ��� ∗ ℎ�X� + �� ∗ ℎ��                                                �2.4.15� 

2.5 Models for natural language processing 

There has been fast development in NLP models recently. The typical models include topic 

modeling [71], word2vec embedding [72], transformer [73] and BERT [74], which have 

demonstrated outstanding performance in text generation, semantic feature extraction and entity 

recognition and language translation. Healthcare datasets such as activity tracker data or EHR are 

similar to sequential data structure of words and texts. Therefore, several studies have also applied 

NLP models on healthcare data for disease prediction [75] or representation learning of EHR [76]. 
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2.5.1 Word2vec embedding 

Before word2vec embedding was invented, words were treated as categorial variables and 

represented as one-hot vector with dimension of the vocabulary size. Each word has one column 

equaling one while the rest are zero. There are two main drawbacks in this method: (1) each vector 

is highly sparse, which is inefficient to compute; (2) it ignores the sematic meaning of words. 

Hence, the embedding technique resolves these two problems effectively. It is composed by two 

window based structures: continue-bag-of-words (CBOW) and skip-gram [77]. Figure 2.6 shows 

 

Figure 2.11: Model architectures for CBOW and skip-gram word2vec embedding. 

 

Figure 2.13: Illustration of word embedding method. 
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the structure for CBOW and skip-gram models. CBOW uses the context word to predict the center 

word whereas skip-gram uses the center word to predict context words. Figure 2.7 displays how 

the embedding works from one-hot encoding. The left of Figure 2.7 shows how the embedding 

weight matrix transforms the one-hot vector into a dense vector with the same dimension while 

the right figure extends the weight matrix as an embedding lookup table, where the one-hot 

encoding of each word with size of 10,000 is projected to a lower dimension as a dense vector with 

size of 100. Therefore, the embedding technique efficiently resolves the feature sparsity problem. 

2.5.2 Transformer and BERT 

Even though deep learning models have revealed the outstanding performance in 

classification and prediction tasks, model’s interpretability is pretty low with the famous notation 

of “black box”. Therefore, much effort has been put to improve models’ interpretability and 

 

Figure 2.15: Architecture of the transformer. The left and right component are structure of 
encoder and decoder, respectively [73] . 
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building explainable models [59,78], especially for deep neural networks. In addition, LSTM or 

GRU have two main drawbacks: (1) they take the input in a sequential order with one sample at a 

time, not allowing for parallel computing, so training every model takes much time; (2) they don’t 

enable the method of pre-training on a large standard dataset and finetuning on customized tasks, 

which is successful and widely adopted in computer vision [66,79,80]. With the aid of the 

innovated encoder-decoder structure in neural machine translation [81], the transformer was then 

invented as a generalized language model [73]. Figure 2.8 describes the encoder-decoder structure, 

where the transformer is a multiple stacking of this structure. 

The encoder takes all input words simultaneously, enabling parallel computing while the 

decoder takes every input sequentially for counting the next output. Positional embedding is 

adopted to annotate the position of each word in the sequence since the encoder ignores the position 

for parallel computing. Self-attention is one major technical breakthrough in the transformer 

architecture, which learns the inner relation between each word in the sequence.  As shown in 

Figure 2.9, self-attention is computed from initialization of three matrices: Query; Key; Value with 

the following equation: 

 

Figure 2.17: Structure of self-attention (left) and multi-head attention (right) [73].  
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~GG
"GA'"��, U, t� = C'�G�P5 ��Ud
�Qz

� t                             �2.5.1� 

, where Qz is the dimension of the Key vector, serving as a scaling factor. In addition, transformer 

enables the flexibility of attention computation by adding more sets of Query, Key, Value vectors 

pairs with various dimension Qz, concatenated together to form the multi-head attention. Using 

multi-head attention allows the model to jointly tend to information from different representation 

subspaces at different positions [73]. Here is the mathematic formula: 

_D!GA7
PQ��, U, t� = |'"FPG�ℎ
PQ�, … , ℎ
PQ��M�                   �2.5.2� 

;ℎ
m
 ℎ
PQ� = ~GG
"GA'"h�M�� , UM�g, tM��j 

Built up on that, the BERT model was implemented, which stands for Bidirectional Encoder 

Representations from Transformers [74]. As shown in Figure 2.10, BERT is designed to pretrain 

deep bidirectional representations from unlabeled text by jointly conditioning one both left and 

right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one 

additional output layer to create state-of-the-art models for a wide range of tasks, such as question 

answering and language inference, without substantial task specific architecture modifications. 

 

Figure 2.19:  Pretraining (left) and finetuning (right) procedures for BERT. The model 
architecture is same other than the output layer [74]. 
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The BERT model has demonstrated the power of bidirectional learning on word sequences rather 

than single or forward-only sequence learning. Furthermore, it first realized the pretraining and 

finetuning approach for NLP models, which started the enormous advancement in language or 

sequence modeling. 

2.6 Metrics to evaluate machine learning models 

2.6.1 Receiver operation characteristics area under the curve (ROCAUC) 

A classifier operates at different thresholds or decision points, where the correct and incorrect 

classification are made after choosing one threshold. Therefore, it is often desirable to obtain one 

single metric to evaluate the classifier’s performance [82]. The area under the curve for receiver 

operation characteristics (ROCAUC) is then derived and commonly used to evaluate the 

performance of a binary classifier [82]. The definition is followed by the computing the true 

positive rate (TPR) and false positive rate (FPR) from the confusion matrix computed at every 

operation point, iteratively. The four items in a confusion matrix are: True Positive (TP), False 

Positive (FP), True Negative (TN) and False Negative (FN). Then TPR and FPR are calculated 

using two equations below, respectively. 

k�? = k�k� + �c                                                                        �2.6.1� 

��? =  ���� + kc                                                                         �2.6.2� 

A curve is plotted based on the list of these two values and ROCAUC is computed using the 

curriculum sum of the curve which is also the area under the curve. The range of ROCAUC is 

between 0 and 1, inclusively, where 1 means a perfect classifier and 0.5 indicates a classifier 
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behaves as a random classification. As all models developed in this dissertation are making binary 

classification, ROCAUC is chosen as the metric to evaluate and compare their performance. 

2.6.2 Precision recall area under the curve (PRAUC) 

ROCAUC is a common metric to evaluate the performance of binary classifiers as introduced 

in the previous section, but it fails to present the best result when the dataset is imbalanced [83,84]. 

Instead, precision-recall area under the curve (PRAUC) is developed to resolve this situation. 

Precision and recall are defined in the following equations: 

�m
CAFA'" =  k�k� + ��                                                                         �2.6.3� 

?
FP!! =  k�k� + �c                                                                         �2.6.4� 

As a similar approach to compute the AUC for ROC, PRAUC is computed by a curriculum 

sum of the precision recall curve at each decision threshold. According equation (2.6.1) and 

(2.6.2), each of them only consider the performance in classifying positive and negative classes, 

separately. On the contrary, precision calculated in equation (2.6.3) uses both positive and negative 

classes, which reveals the information of class distribution. Therefore, PRAUC is a better metric 

than ROCAUC when evaluating imbalanced datasets, which is suitable in our situation. 
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CHAPTER 3  

Classifying Self-Reported Health Status by Machine Learning 

Algorithms and Activity Tracker 

3.1 Overview 

There has been significant effort in developing monitoring devices and protocols to diagnose 

patients remotely. However, device fatigue has been shown to be a barrier to adherence [85–87]. 

Commercially available devices, such as passive accelerometry, have been shown to overcome 

this barrier by reducing the burden of human intervention [88], and the accuracy  of activity tracker 

data has been demonstrated to be sufficient for documenting health indicators in real-time [7,9,89]. 

With wireless connections to portable electronics, such as smartphones or tablets,  monitoring by 

activity tracker is an easy-to-use, accessible means of providing personalized information to 

people’s health and daily activities [90]. This approach creates a feedback loop that is capable of 

positively impacting health interventions with the goal of lifestyle change [10,91]. However, 

analysis of this data has largely been limited to simple correlations, and the ability to use this 

information to classify patient health status has not been explored [11,92].  

In this chapter, I explored the use of machine learning methods to classify PRO scores over 

time [93]. The goal of this study was to investigate the feasibility of using machine learning models 

to classify PRO scores based on data collected using one type of activity tracker, the Fitbit Charge 

2. In this study, I tested this goal within a population of patients with stable ischemic heart disease 

(SIHD). In the remainder of this chapter, Section 3.2 details the data and preprocessing steps used 

in this study. Section 3.3 describes the structure of two machine learning models: (1) a model that 
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treats weeks independently; (2) an HMM that takes temporal information into account. Section 3.4 

summaries the results of two constructed classification algorithms by evaluating through each PRO 

measure. Section 3.5 discusses the analysis of the results and suggests future directions for 

implementing such a classifier in a patient surveillance application. The content of this chapter 

have partly been published in [94]. 

3.2 Data Cohort and Data Preprocessing 

A set of 200 patients with SIHD were recruited for a feasibility study conducted by Cedars-

Sinai Medical Center from 2017 to 2018 to predict surrogate markers of major adverse cardiac 

events (MACE), including myocardial infarction, arrhythmia, and hospitalization due to heart 

failure, using biometrics, wearable sensors, patient-reported surveys, and other biochemical 

markers. The population size of this study is similar to several previous one that used activity 

trackers for patient monitoring [95,96]. The desired monitoring period was 12 weeks for each 

subject, during which time subjects wore personal activity trackers to record their physiological 

indices, including steps, heart rate, calories burned, and distance traveled. At the end of each week, 

they were asked to fill out eight PROMIS short forms as a self-report assessment of their health 

status [88]. 

3.2.1 Activity data  

The Fitbit Charge 2 (Fitbit Inc., San Francisco, CA, USA) is a popular commercially available 

activity tracker that can record a person’s daily activities and health indices like heart rate, steps, 

and sleep (Table 3.1). Previous works have validated the accuracy of heart rate monitoring 

specifically in the Fitbit Charge 2 [97]. The Fitbit hardware and its computational algorithms for 

calculating step counts and physical activity have been validated using other Fitbit devices [26,98]. 
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The Fitbit Charge 2 estimates activity using metabolic equivalents (METs), which are calculated 

based on heart rate and distance traveled [99]. Heart rate during activity is also provided, however 

it has been shown to be inaccurate during activities [100]. Data quality was assured by verifying 

that there were no extreme outliers based on subject-specific inter-quartile range [101]. We 

aggregated the data for each day to compensate for noise and redundancy. After data 

Table 3.1: Summary of 17 types of feature collected from Fitbit per day. 

Type (units) Mean ± Std 

Steps (#) 6138 ± 4031 

Total Distance (kilometers) 4.18 ± 3.00 

Tracker Distance* (kilometers) 4.18 ± 3.00 

Logged Activity Distance* (kilometers) 0.02 ± 0.56 

Very Active Distance (kilometers) 0.71 ± 1.49 

Moderate Active Distance (kilometers) 0.36 ± 0.60 

Light Active Distance (kilometers) 2.69 ± 1.90 

Sedentary Active Distance* (kilometers) 0.01 ± 0.08 

Very Active Minutes 12.21 ± 22.29 

Fairly Active Minutes 12.78 ± 21.89 

Light Active Minutes 176.81 ± 99.73 

Sedentary Minutes 823.24 ± 323.90 

Calories 2032 ± 610 

Floor (#) 5.1 ± 11.8 

Calories BMR (basal metabolic rate) 1428 ± 254 

Marginal Calories 372 ± 317  

Resting Heart Rate (BPM) 61.81 ± 7.45 

*means that feature was eliminated for model input because it was highly sparse or 

redundant. Std represents the standard deviation. 
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preprocessing, tracker distance was eliminated because it was identical to total distance, and 

logged activity distance and sedentary active distance were also deleted because of high sparsity. 

As a result, there were 14 features per day for each patient in the model. 

3.2.2 Patient reported outcome measures  

Patient-Reported Outcomes Measurement Information Systems (PROMIS®) questionnaires 

are a library of instruments developed and validated to measure many domains of physical and 

mental health [102]. This analysis uses data from eight PROMIS instruments: Global Physical 

Health and  Global Mental Health, which are two composite scores from the Global-10 short form 

[103]; Fatigue-Short Form 4a; Physical Function-Short Form 10a; Emotional Distress-Anxiety-

Short Form 6a; Depression-Short Form 4a; Social Isolation-Short Form 4a; and Sleep Disturbance-

Short Form 4a. Each questionnaire either asks about current health or has a recall period of the 

previous seven days, so they are appropriate for weekly administration. The T metric method was 

used to standardize scores for each type to a mean of 50 and a standard deviation of 10, with a 

range between 0 and 100 [102,104]. Symptom (i.e., Fatigue, Anxiety, Depression, Social Isolation, 

 

Figure 3.1: Distribution of normal and abnormal (moderate to severe) class for each PRO 
measure. 
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and Sleep Disturbance) scores of 60 or higher are one standard deviation above the average, which 

is defined as moderate to severe symptom severity. For function (i.e., Global Physical Health, 

Global Mental Health, and Physical Function), scores less than 40 are classified as moderate to 

severe, meaning less functional ability than normal. For this study, PRO scores were predicted in 

two ways: regression was used to predict PRO scores from patient activity tracker data, and 

classification was used to determine whether subjects’ PRO scores were above the threshold for at 

least moderate severity.  The distributions of PRO scores are shown in Figure 3.1.  Because of a 

lack of moderate or severe cases for social isolation (<2%), this variable was eliminated for 

analysis in the model. 

3.3 Methods 

Missing data is a common concern when dealing with activity tracker data, which usually 

results from subjects either forgetting to wear their devices or removing them for charging. Patients 

were asked to fill out eight PROMIS questionnaires at the end of each week for a 12-week 

monitoring period. In total, 19.1 percent of weeks had missing PRO data and 16.6 percent of weeks 

had missing values from the activity tracker in four or more days. If data was available for at least 

four days in a week, missing values were permuted by using the average value of the rest of the 

week for steps or resting heart rate. Weeks with missing survey scores, as well as those without 

step and resting heart rate data for more than three days, were removed from the analysis. 

A correlation analysis between subjects’ missing Fitbit data and their average Global Physical 

Health and Global Mental Health scores showed a slight negative relationship (-0.11 and -0.09, 

respectively) that was not statistically significant (p=0.13 and p=0.23, respectively). The 

correlation coefficient between number of missing PROs and the average global health scores were 
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-0.17 (p=0.018) to -0.14 (p=0.048), respectively, indicating that the missing PROs were not 

significantly related to patient health. Another correlation analysis was performed between 

subject’s age and number of missing values with R2 < 0.001, which demonstrated no trend of more 

missing values for elder subjects.  Finally, subjects with only one week of data were eliminated in 

order to ensure the continuity of transition of states from week to week when building the HMM 

model. After adopting this data preprocessing approach and using the classification criteria above, 

a total number of 182 subjects with a total of 1,640 weeks were collected, where the number of 

weeks of evaluable data for each patient ranged from two to 12 weeks as shown in Figure 3.2. 

3.3.1 Independent per week model by machine learning algorithms  

Since survey scores were generated per week, a naive approach is to treat each week 

independently. The left plot in Figure 3.3 illustrates the idea of the independent model as an 

example for one subject with 12 weeks of evaluable data. Features for each of the seven days were 

appended into a single feature vector, which was then used as the input for binary classification of 

each PRO score. Ensemble methods like AdaBoost, GBRT (gradient boosting regression tree) and 

Random Forest (RF) are relatively robust over unbalanced dataset and are capable of generating 

 

Figure 3.2: Histogram of number of weeks of evaluable data for the 182 subjects used in the 
dataset. 
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better classification accuracy than other types of machine learning algorithms [105]. Each of these 

methods was applied to the dataset using ten-fold cross-validation across subjects in conjunction 

with the grid search to find optimal parameters for every model. Paired t-test was applied to 

validate the statistical significance for each comparison of the result with different 4 values: 0.05, 

0.01 as for different levels of significance. A sensitivity analysis was completed to investigate the 

model performance against missing values in the feature vector by randomly withholding values 

from one to six days within a week. 

3.3.3 Hidden Markov model (HMM) with forward algorithm 

In order to track changes in PRO responses over time, a model was built to incorporate 

temporal correlations of PRO scores across weeks. As shown in the right part of Figure 3.3, an 

HMM was used and formalized such that the state at each time point corresponded to the PRO 

score for that week, with features collected for that week treated as observations. The transition 

matrix was derived by counting the state transitions from week to week. The original number of 

states for each PRO was found by number of unique responses, ranging from 15 to 36. In order to 

make the transition matrix less sparse, we defined 10 states for all types of PROs based on the 

 

Figure 3.3: Illustration of independent week model (left) and Hidden Markov Model (right). For 
HMM, feature in each week was observed while the state of health status transits from week to 
week. 
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score distribution of each. The Forward algorithm computed the probability across states at time 

G, with the maximum probability representing the classified state, 

b�6�|6�X�, … , 6�, 5� , … , 5�� = ��5�|6�� ∗ $ P�y�|y�X�� ∗ S�y�X�|y�X-, … , x�X�, … �     �3.3.1�  

where the weekly PRO score was treated as the state 6� , with observation of features 5� . The 

emission probability, ��5�|6��, computing the probability of the observed feature vector 5� given 

state 6�, was derived from the random forest classifier and ��6��: 

��5�|6�� ∝ ��6�|5����6��                                                   �3.3.2� 

At the first-time step, the transition probability distribution is undefined, so the state probability 

was: 

b�6�|5�� ∝ ��5�|6����6��                                            �3.3.3� 

For analysis, states were binarized according to the criteria defined above. Because 

dichotomizing PRO score values loses some information and precision, a regression analysis was 

conducted between the median value of HMM stages and actual scores for the HMM. This method 

of predicting PRO scores was compared against multinomial logistic regression to evaluate the 

accuracy of predicting PRO scores over time. 
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3.4 Evaluation and Results 

Table 3.2 shows the mean AUC for binary classification of PRO scores for the seven PROMIS 

measures using GBRT, AdaBoost and RF. The highest mean AUC was 0.75 using RF for 

classifying Physical Function, while the lowest was 0.47 using AdaBoost for Depression. The 

results indicated that RF significantly outperformed other models in classifying Anxiety and 

Depression (p<0.05), and it was also significantly better than GBRT for Global Physical Health 

and Global Mental Health (p=0.01 and p=0.01, respectively). The RF model was selected for the 

remaining analyses because its performance was equivalent to or better than other methods for 

classifying all PRO scores. Additionally, it was notable that the AUC related to self-reported 

physical health PROs such as Global Physical Health, Fatigue, and Physical Function were higher 

than those related to mental health such as Global Mental Health, Anxiety, and Depression.  

Table 3.2: Mean and standard deviation ROCAUC of difference Algorithms. 

Type AdaBoost GBRT Random Forest 

Global physical health 0.72 (0.03) 0.69 (0.04) 0.73 (0.01)* 

Global mental health 0.53 (0.03) 0.51 (0.03) 0.55 (0.03) * 

Fatigue 0.59 (0.04) 0.60 (0.04) 0.61 (0.03)  

Physical function 0.74 (0.03) 0.75 (0.03) 0.75 (0.01) 

Anxiety 0.48 (0.03) 0.50 (0.03) 0.54 (0.02) † 

Depression 0.47 (0.04) 0.50 (0.03) 0.53 (0.02) † 

Sleep Disturbance 0.55 (0.06) 0.59 (0.05) 0.61 (0.03) 

* Significant improvement over GBRT.  
† Significant improvement over both GBRT and AdaBoost. Bold values are the highest for 

a given PRO. 
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Figure 3.4 illustrates the results of sensitivity analysis on missing feature data on RF 

classification by randomly censoring data from one day to six days per a week. The results show 

that ROCAUC decreased monotonically as days were removed. For Global Physical Health, the 

value at missing four days dropped significantly compared to no missing data (p=0.03), while the 

difference at missing three days was not significant (p=0.11). This was why that cutoff was chosen 

for inclusion in the analysis. 

Table 3.3 displays the comparison of means and standard deviations of the AUC for each 

PRO measure using the independent model and the HMM. AUCs derived using the HMM were 

significantly higher than those from the independent model in all domains other than Fatigue and 

Sleep Disturbance. Depression achieved the highest increase from 0.57 to 0.61. We also compared 

the R2 value of the regression analysis between the HMM and a multinomial logistic regression. 

The values were 0.079 and 0.1526 from HMM in Global Physical Health and Physical Function. 

They were significantly better than the values achieved by the multinomial logit model (0.0016 

and 0.0026, respectively; p<0.001 for both). This result suggested that HMM could also track the 

 

Figure 3.4: Plot of ROCAUC for each type of PRO after randomly withholding feature values 
from one day to six days within a week. 
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minor change of PRO scores with higher precision over time than baseline models like multinomial 

logistic regression. 

3.5 Discussion 

In this work, I proposed a temporal machine learning model can be used to classify self-

reported health status in patients with SIHD using physiological indices measured by activity 

trackers. By constructing an HMM with an RF classifier, the resulting model can achieve an AUC 

of 0.79 for classifying Physical Function. The result indicates that data generated from activity 

trackers may be used in a machine learning framework to classify validated self-reported health 

status. These techniques could play a future role in larger frameworks for remotely monitoring a 

patient’s health status in a clinically meaningful manner. 

In general, the AUCs related to classifying physical health were relatively higher than mental 

health PROs, such as Global Mental Health, anxiety and depression. This result makes intuitive 

sense, as the collected data, such as steps, total distance, and calorie expenditure, are more directly 

Table 3.3: Mean and standard deviation of AUC values between the independent week model 
and the hidden Markov model.  

Type Independent model HMM 

Global physical health 0.73 (0.02) 0.76 (0.02)* 

Global mental health 0.58 (0.01) 0.61 (0.02)* 

Fatigue 0.64 (0.03) 0.65 (0.03) 

Physical function 0.76 (0.01) 0.79 (0.02)* 

Anxiety 0.57 (0.02) 0.61 (0.04)* 

Depression 0.56 (0.02) 0.59 (0.02)* 

Sleep Disturbance 0.64 (0.03) 0.66 (0.05) 

* Significant improvement over the independent model. Bold values are the highest AUC for 

a given PRO. 
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related to physical health than mental health. In particular, the highest AUC was 0.79 from 

classification of Physical Function, which demonstrated the correlation between data collected 

from Fitbit and patients’ physical health. However, AUC values also indicated that PROs cannot 

be completely determined by activity tracker data alone, suggesting that PROs, particularly those 

pertaining to mental health such as depression, contain additional information that was not 

captured in the tracking devices. While the current study demonstrates the use of activity trackers 

to capture information about patient's health status, in some cases PROs could be a preferable 

method. Internet access enables PRO data collection to be done outside of clinic through web or 

mobile apps, which provides convenience and reduces time commitment for patients.  

In this study, I found inconsistency in sleep data and sleeping stages for subjects. It was likely 

that Fitbit was taken off for charging during nights. Therefore, future studies should notice user 

not always charge it during nights to collect sleep data. Moreover, the data elements that have been 

validated are generally only tested in specific devices, rather than across all activity trackers, so it 

is not clear how these validation results translate to other devices. Future studies should be 

conducted to validate these features. As indicated by the correlation between subject’s average 

PRO scores and the number of missing PRO values, patients with moderate to severe health status 

were less likely to complete PRO questionnaires routinely, which may have introduced bias for 

data collection in this study. Future studies could try to provide incentives for continued 

participation, which may mitigate study attrition. Eight PROMIS instruments were used in this 

study, and some redundancy existed between the specific short forms such as fatigue or anxiety to 

the general Global-10 short form. Our current approach treated each score independently without 

considering this overlap. A possible future study could predict PRO scores simultaneously in a 

joint model such as Bayesian network, which considers the correlations between PRO scores. 
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In this dataset of patients with SIHD based on adjudicated clinical data, HMMs achieved 

significantly higher classification accuracy than treating weeks independently because they took 

advantage of correlations in subjects’ survey scores from week to week. I followed an data-driven 

approach that the model states were determined based on the distribution of PRO scores in the 

clinical study [106]. Score bins for the states were defined to limit the sparsity during training and 

make the number or states consistent across all PROMIS PROs tested. However, this may not be 

the optimal way to define the number of states for clinical representation of health status. Future 

studies could conduct some analysis to find out the optimum number of states, which may further 

increase the classification accuracy. 

While activity trackers are able to produce patient information within seconds or minutes,  the 

sampling periods for PROs like PROMIS [107] are on the order of weeks, requiring down-

sampling of the Fitbit data for comparison. Given that the PROs measured in this study are unlikely 

to vary significantly from day to day, this temporal resolution is appropriate for the application of 

PRO prediction. However, predicting more acute events might require more temporal resolution, 

which could be addressed by using the activity tracker data at a finer time scale.  Long term follow-

up with patients including recordings of clinical events such as rehospitalizations could also allow 

us to evaluate the effect of mHealth monitoring on clinical outcome, an important step in 

determining the efficacy of such intervention. More details about the future work of improving the 

precision for this classification system will be presented in Chapter 8. 
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CHAPTER 4   

Predicting Depression from EHR using Machine Learning 

Algorithms  

4.1 Overview 

With the development of machine learning algorithms and wide accessibility of electronic 

health record (EHR) data, an increasing amount of effort has been dedicated to improving 

prediction of depression diagnosis. The EHR is composed of myriad data sources: diagnosis codes, 

procedure codes, medications, patient demographics, and clinical notes. Previous works have 

applied natural language processing (NLP) models and latent semantic analysis (LSA) to structure 

clinical notes into predictive features. When representing a patient’s EHR data as a concatenated 

feature vector of these datasets, issues of heterogeneity and sparsity can make it challenging to 

model trends across patients. For instance, several works utilized diagnosis codes with limited 

demographic information (like age and gender) as feature vectors fitted into predictive machine 

learning models [108–110]. In addition, Zhang et al. [111] and Bian et al. [112] added procedure 

codes in their analysis. However, clinical notes, which characterize disease progression in a 

temporal manner, were not included. Therefore,  Usama et al. [113] processed clinical notes along 

with demographics while LePendu et al. [114] used unsupervised learning methods to process 

clinical texts and diagnosis codes to investigate drug-drug interactions. Huang et al. identified 

medication drug terms from clinical notes combined with diagnosis codes and demographics for 

predicting future diagnoses of depression [115]. Miotto et al. applied topic modeling to extract 
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semantic features from clinical notes along with other EHR data sources, but the ultimate model 

did not perform temporal prediction of depression [116]. 

This chapter investigates the performance of machine learning models on multimodal EHR 

data for depression prediction. The developed models are able to aggregate the aforementioned 

five types of EHR data sources to predict future diagnosis of depression. The remainder of this 

chapter is organized as follows. Section 4.2 describes the data and preprocessing steps used in this 

study. Section 4.3 the details methods to process various EHR data modalities by machine learning 

algorithms as well as the experimental setup of depression prediction. Section 4.4 summaries the 

results while Section 4.5 discusses several observations, limitations and future directions.  

4.2 Data Cohort and Data Preprocessing 

Patients with diagnoses of myocardial infarction (MI), breast cancer and liver cirrhosis were 

selected to capture a spectrum of clinical complexity. Generally, MI has the least temporal 

dynamics, with acute onset time, resolution, and management. Breast cancer is increasingly 

complicated in terms of diagnoses and treatment options. Finally, a patient with liver cirrhosis may 

have many sequelae, generating a complex EHR representation. Patients for this project were 

Table 4.1: Statistics of patient cohort. 

 Depressed patients Non-depressed patients 

Number 2,545  3,575 

Male 705 (27.70%) 1,094 (30.60%) 

Female 1,840 (72.30%) 2,481 (69.40%) 

Mean age (std) 70.04 (16.10) 69.82 (15.51) 

Mean Length of record 6.81 (2.80) 5.93 (2.95) 
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identified from our EHR in accordance with an IRB (#14-000204) approved protocol. Each patient 

visit had EHR data types consisting of diagnosis codes in ICD-9 (International Classification of 

Disease, ninth revision) format, procedure codes in CPT (Current Procedural Terminology) 

format, medication lists, demographic information, and clinical notes. Any patient record coded 

with ICD-9 values for MI, breast cancer, or liver cirrhosis from 2006-2013 was included. In this 

dataset, demographics were limited to the patient’s gender and age at the time of each visit. 

Relevant cohort statistics are shown Table 4.1.  

ICD-9 codes, CPT codes, medication lists, and demographic information can all be considered 

as categorical variables. Therefore, an intuitive approach is to encode these features in a multi-hot 

binary vector, where each column corresponds to a specific code or data element. ICD-9 codes are 

up to five digits long with three digits before a decimal point and two digits after, resulting in more 

than 12,000 unique codes in our data set. In order to reduce the dimensionality of the feature vector, 

ICD-9 codes were grouped by the three numbers before the decimal point. This approach has been 

used in previous work [117].  

Figure 4.1: Distribution of depressed patients by three identifying methods. 
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4.2.1 Identification of patients with depression  

Similar to the method used in [115], depression onset was identified by three methods: 1) a 

depression related ICD-9 code, 2) an antidepressant drug in a medication list, or 3) an mention of 

an antidepressant drug in a clinical note. The World Health Organization (WHO) drug index was 

used to generate a search list of drugs that could be used to treat depression.1 For each patient, the 

earliest time stamp of an occurrence of any of these events was defined as the time of diagnosis 

with depression. The distribution of identified depressed patients from the cohort is shown in 

Figure 4.1. The total number of patients with depression was 2,545, with 1,536 identified by 

depression-related ICD-9 codes in their EHR, 617 identified by antidepressants in their medication 

lists, and 392 identified by antidepressant mentions in clinical notes. 

4.3 Methods 

4.3.1 Topic modeling of clinical reports  

Statistical topic modeling is an approach that seeks to identify and quantify semantic themes 

from unstructured free text [118,119]. Previous works have applied topic modeling to understand 

and represent clinical notes [120–123]. Latent Dirichlet allocation (LDA) [118,119] is a common 

topic modeling technique that uses unsupervised learning approaches to learn underlying topics 

(semantic themes) based on the contextual co-occurrence of words in a collection. A topic is 

represented as a multinomial distribution over the unique words in a corpus, and a document is 

represented as a multinomial distribution over all topics. We used LDA to model clinical notes 

                                                 
1 https://www.whocc.no/atc_ddd_index/?code=N06A 



 54

with 100 topics, thus generating a 100-feature vector representation of each note in the semantic 

topic space.  

4.3.2 Predicting diagnosis of depression by machine learning algorithms  

Predicting depression prospectively can be considered a continuous task that may be based 

on various temporal windows of the EHR. We therefore explored a spectrum of time windows and 

predictions horizons. Our first experiment was similar to previous works [23,75,124], in which the 

entire length of EHR data was utilized. As shown in Figure 4.2, we further defined four additional 

prediction windows: two weeks, three months, six months and one year prior to time of diagnosis, 

whereas Huang et al. utilized three windows, immediately preceding the diagnosis, six months 

prior to the diagnosis, and one year prior to the diagnosis [115]. Patients who had at least one of 

ICD-9, CPT, medication and topic feature in all four time windows were included in experiments. 

This inclusion criteria was enforced to ensure that the same set of patients was analyzed in each 

experiment. Different feature sets from the three EHR data modalities were analyzed, including 

all features, all features except topics, and all features except topics and CPT codes, which is the 

same set of the features used by Huang et al. [115]. I also tested each model after shrinking each 

 

Figure 4.2: Experiment design of 3 month time window of EHR data with four prediction time 
prior to diagnosis for patient with depression: 2 weeks, three months, six months, one year. 
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patient’s length of record to three months prior to the prediction horizon to evaluate model’s 

performance on a limited set of EHR data. For patients labeled as not depressed, the last recorded 

time point in their EHR was substituted for the diagnosis time. Binary logistic regression (LR), 

support vector machine (SVM), and random forest (RF) classifiers were trained using ten-fold 

cross validation. Similar to [61], one advantage of using RF is its ability to output the importance 

factor of each feature, which facilitates the interpretation of features in the prediction task. 

4.4 Evaluation and Results 

Performance was measured using the receiver operator characteristic area under the curve 

(ROCAUC) and the precision recall aread under the curve (PRAUC) for each model. Figure 4.3 

shows the bar plot of the mean ROCAUC and PRAUC for the entire EHR length with four 

prediction windows using all EHR data modalities. Based on the ROCAUC value, RF 

outperformed LR for prediction windows of two weeks and three months, with p-values of 5e-3 

 

Figure 4.3: Prediction result of ROCAUC and PRAUC using all features for four predicting 
time periods in advance in left and right, respectively. The prediction accuracy was 
compared between logistic regression (blue), SVM (green) and random forest (red). 
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and 2e-2, respectively, compared to p-values of 0.19 and 0.32 for prediction windows of six 

months and one year, respectively. Additionally, RF outperformed SVM for all four time windows 

(p=3e-4, 2e-3, 2e-3, 4e-2), whereas the performance between SVM and LR was more variable. In 

total, for a prediction period of two weeks in advance, RF achieved its highest mean ROCAUC 

and PRAUC of 0.77±0.01 and 0.75±0.03, respectively. Whereas, LR reached 0.75±0.01 and 

0.70±0.02 and SVM achieved 0.74±0.02 and 0.70±0.03. Additionally, there is a trend of 

decreasing ROCAUC and PRAUC as the prediction period progresses. Since RF outperformed LR 

and SVM, it was chosen for further experiments. 

Figure 4.4 illustrates the results from RF using different combinations of EHR data modalities 

with the same prediction windows as described previously. The ROCAUC and PRAUC decreased 

by 0.01 and 0.02 on average after excluding topic features. After further excluding CPT codes, the 

ROCAUC decreased to 0.71±0.02 and 0.70±0.02 for the six-month and one-year prior to diagnosis 

horizons, respectively. Including CPT codes and topic features significantly improved the model’s 

 

Figure 4.4: Plot of ROCAUC (left) and PRAUC (right) for the RF model with three EHR data 
modalities. The red bar used all features, which is the same as that in Figure 3, while the blue 
bar excluded topics, and the green bar excluded both topics and CPT. 
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prediction performance to 0.74±0.02 and 0.73±0.01, with p=7e-4 and p=9e-4, thus demonstrating 

the importance of these two data sources. 

A comparison study was performed to test model’s performance with limited views of EHR 

data (Figure 4.5). In general, ROCAUC decreased by 0.03 on average after narrowing the window 

size to three months, compared to using the entire EHR. Performance did not decline significantly 

at the two-week prior to diagnosis horizon (p=0.19, p=0.08, p=0.08 for three data modalities), but 

for the three-month horizon, results were significantly worse compared to using the entire EHR, 

with each p-value less than 0.05. This result indicated the important temporal relation of EHR data 

to the time of diagnosis compared to data temporally farther away. It is therefore feasible to use a 

limited amount data to predict depression with a similar level of accuracy to using all EHR data. 

 

Figure 4.5: Comparison between full EHR length (blue) and three months (red) from RF using 
the same four prediction windows before. The two rows are shown ROCAUC and PRAUC, 
respectively while three columns are from three EHR data modalities as Figure 4.4. 
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4.5 Discussion 

This chapter presents several machine learning models capable of predicting future diagnoses 

of depression based on heterogeneous EHR data sources and various time windows. The model 

was able to generate non-significantly declined accuracy in the prediction window of two weeks 

using limited length of EHR data. Our results demonstrate the feasibility of making early 

predictions of depression using five EHR data modalities in a single compact model and suggest 

the possibility of creating a surveillance system that can identify patients at risk for becoming 

depressed. Such a system could identify individuals for follow-up diagnostic testing and early 

intervention. 

In general, results indicated that RF outperforms LR and SVM in the prediction task with 

various data sources and the majority of prediction windows, which demonstrated its robust ability 

to handle complex heterogeneous EHR data. Shown in Figure 4.4, the RF model’s ROCAUC for 

six-month and one-year windows without including CPT and topic features were 0.71±0.02 and 

0.70±0.02, respectively. These results are similar to previously published work [115], as they were 

0.712 (95% CI 0.695 to 0.729) and 0.701 (95% CI 0.684 to 0.718), respectively. After including 

CPT and topic features, our results were significantly better. Specifically, the model performance 

was significantly improved after including CPT codes and topic features for all four prediction 

windows, indicating their important roles of diagnosing depression. The results also demonstrate 

the temporal nature of the task as we observed that performance decreased as prediction windows 

moved further away from diagnosis, which aligns with our experimental hypothesis (and likely 

depression etiology) that it is more difficult to predict diagnoses farther out in time. This was 

reinforced by our results showing an insignificant decrease of performance using only three 

preceding month of EHR data compared to the entire length when predicting two weeks before a 
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diagnosis. This is noteworthy as it potentially makes our technique more generalizable, as it is 

easier to collect EHR data for three months rather than longer time spans. In our cohort, the average 

data length per patient was 6.3 years, thus, using three months of data was equivalent to using only 

4% of patients’ data on average. 

All three machine learning algorithms used in the experiment are time independent, and thus 

lack the ability to take full advantage of the temporal nature of the data. Temporal models, such as 

recurrent neural network (RNN) and hidden Markov models (HMM), may be able to process input 

features in a sequential manner using their inner memory structure. Several studies have used 

temporal machine learning models for healthcare tasks [23,59,61,75,124].  On the other hand, there 

are alternative NLP models other than topic models, such as BERT [74] and XLNET [125]. Thus, 

future work could apply these techniques to process clinical texts, which may further increase the 

overall model’s performance. More details about the future work of improving the precision for 

this classification system will be presented in Chapter 8. 
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CHAPTER 5  

HCET: Hierarchical Clinical Embedding with Topic Modeling on 

Electronic Health Records for Predicting Depression  

5.1 Overview 

With the rapid development of deep learning algorithms and widespread use of healthcare 

datasets, many models have presented state-of-the-art performance using patients’ electronic 

health records (EHRs) for diagnostic tasks [21], disease detection [23], and risk prediction [126]. 

EHRs have been broadly adopted for documenting a patient’s medical history [127]. They are 

composed of data from various sources, including diagnoses, procedures, medications, clinical 

notes, and laboratory results, which contribute to their high dimensionality and heterogeneity. 

Frequently, models built on EHR data have limited the number of data categories used [75,116]. 

Few studies have attempted to use data from a broad set of categories as data heterogeneity remains 

a technical barrier for utilizing all types of EHR data in one model. As a consequence, there is an 

ongoing effort to construct a single model that is able to aggregate data from different data 

modalities. An additional complication is that EHR data includes temporal information from 

different patient visits, with each visit producing data from various sources. 

To construct a predictive model with high accuracy for prediction of depression and mitigate 

the heterogeneity and sparsity of EHR data, this chapter proposes Hierarchical Clinical Embedding 

with Topic modeling (HCET), which aggregates diagnoses, procedure codes, medications, and 

demographic information together with topic modeling of clinical notes. Inspired by [75], HCET 

builds a hierarchical structure on different categories of EHR data with various embedding levels, 
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while preserving the data’s sequential nature. In this way, it learns the inherent interaction between 

EHR data from various sources within each visit and across multiple visits for an individual patient. 

This chapter points to a potential method for targeting depression screening among individuals in 

a single health system who have conditions that are associated with high risk for depression. 

Depression is often not evaluated in primary care settings. This approach could help in clinical 

practice by identifying individuals potentially at risk for developing depression within a specific 

time interval who should be screened (and potentially treated) for depression. 

In the remainder of this chapter, Section 5.2 details the data and preprocessing steps used in 

this study. Section 5.3 describes the architecture of HCET and several baseline models for 

comparison as well as the experimental setup for predicting future diagnosis of depression. Section 

5.4 summaries the results while Section 5.5 discusses several observations and limitations. The 

content of this chapter have partly been published in [94]. 

5.2 Data Cohort and Data Preprocessing 

To capture a spectrum of clinical complexity for our analyses, we selected patients based on 

three primary diagnoses: myocardial infarction (MI), breast cancer, and liver cirrhosis.  Generally, 

MI represents the least complexity, with acute onset, resolution, and straight-forward treatment. 

Breast cancer is increasingly complicated in terms of diagnoses and treatment options. Finally, a 

patient with liver cirrhosis may have many sequelae, generating a complex EHR representation. 

Patients for this project were identified from our EHR in accordance with an IRB (#14-000204) 

approved protocol. Each patient visit had EHR data types consisting of diagnosis codes in 

International Classification of Disease, ninth revision (ICD-9) format, procedure codes in Current 

Procedural Terminology (CPT) format, medication lists, demographic information, and clinical 
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notes. All patient records coded with ICD-9 values for MI, breast cancer, or liver cirrhosis from 

2006-2013 were included. In this dataset, demographics were limited to the patient’s gender and 

age at the time of each visit. Initially, there were 45,208 patients and after the preprocessing and 

patient including criteria in Section 5.2.4, 10,148 patients were included in the analysis. Table 5.1 

shows statistics of the dataset. Note that some patients had more than one primary diagnosis. 

5.2.1 Identifying diagnosis of depression  

Because patients in this dataset were identified retrospectively and were not suspected for 

depression, common methods for identifying and assessing severity of depression such as Patient 

Health Questionnaire (PHQ-9) scores [128] were not available. Instead, depression onset was 

identified by three methods: 

• depression related ICD-9 code [115] 

• inclusion of an antidepressant drug in a patient’s medication list 

• appearance of an antidepressant drug in clinical notes (from 

https://www.whocc.no/atc_ddd_index/?code=N06A) 

   The earliest time stamp of an occurrence of any of these events was defined as the time of 

diagnosis with depression. In total, 3,747 out of the total 10,148 patients were identified as 

Table 5.1: Statistics of EHR dataset. 

# of patients with MI 2,943 (1,280 depressed) 

# of patients with breast cancer 5,568 (1,960 depressed) 

# of patients with liver cirrhosis 2,218 (772 depressed) 

Gender Male (27.46%), Female (72.54%) 

Age 68.78 ± 15.46, min: 18, max 98 
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depressed, where the diagnosis time of depression occurred after the primary diagnosis for each 

patient. 

5.3 Methods 

ICD-9 codes, CPT codes, medication lists, and patient’s gender can all be considered as 

categorical variables while ages are numerical. Therefore, an intuitive approach is to encode these 

features in a multi-hot vector, where each row corresponds to a specific code or data element. Each 

row has a binary value, where 1 indicates have this item and 0 for not during one visit. ICD-9 

codes are up to five digits long with three digits before a decimal point and two digits after, 

resulting in 9,285 unique codes in our data set. In order to reduce the dimensionality of the feature 

vector, ICD-9 codes were grouped by the three numbers before the decimal point, as was 

previously done in [117]. Detailed descriptions of dimensionality reduction techniques for ICD-9, 

CPT, and medication lists are presented in Section 5.3.3, the definition of HCET.  Embedding is a 

technique that has been widely adopted in NLP to project long and sparse feature vectors into a 

dense lower dimensional space [72]. This approach efficiently reduces the size of a model’s 

parameters as well as decreases the training time. Recent models [75,117,129] have utilized 

embedding to process categorical data in EHRs, which we have adopted in the current model. The 

full definition is shown in Section 5.3.3. 

5.3.1 Topic modeling of clinical notes  

Latent Dirichlet allocation (LDA) is an unsupervised learning method to encode texts by 

assigning words to underlying topics (semantic themes). Briefly, a topic is represented as a 

multinomial distribution over unique words in a corpus, and a document is represented as a 

multinomial distribution over all topics. LDA is able to generate topics automatically from a 
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corpus, providing generalized information. Recent works have applied topic modeling on clinical 

notes [120–123]. We chose to model clinical notes with 100 topics, each one contained five words 

with the top five probabilities to represent the semantic mean of the clinical notes, thus generating 

a 100-feature vector representation of the document in the semantic topic space. Topic vectors was 

dichotomize using each topic’s average value as a threshold among our data. For patients with 

multiple clinical reports in the six-month time window, probabilities were averaged first to reach 

one feature vector and then dichotomized using the same method. 

5.3.2 Baseline models 

Predicting depression prospectively can be considered a continuous task that may be based 

on various temporal windows of the EHR. Traditional machine learning algorithms generally 

ignore temporal and sequential correlation among features by aggregating them over a time 

window for a patient. As mentioned in the first paragraph of Section 5.3, the feature vector for 

each patient is a multi-hot vector which concatenated all five EHR data modalities over multiple 

visits. In order to leave out the bias for more frequent codes, each row of vector is 1 when this 

code shows in any of the visits. As a compensation factor for temporal information, the number of 

records in ICD-9, CPT, medication lists, and clinical notes are added as addition factors to capture 

the of frequency of patients visits of records. 10-fold cross validation was adopted for each model. 

In addition, patients in the test set were separated by their primary diagnosis and the results were 

compared for three primary diagnosis individually. 

Lasso: Previous work has applied Lasso for predicting depression [115], which was compared 

in the analysis. Lasso uses L1 regularization which brings sparsity to select the more correlated 

features for the task. 
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SVM: SVM was also compared in the experiment as it has been utilized to predict depression 

previously [111]. Here we used RBF kernel and five-fold cross validation with a grid search to 

finetune the regularization term.  

Multilayer perceptron (MLP): Two layers of MLP with a tanh activation function and 256 

nodes is also compared here, following the implementation from previous studies [59,75].  

RF: Nevertheless, ensemble methods like random forests (RF) [130] and gradient boost 

regression trees (GBRT) [131] have produced competitive results in disease detection and outcome 

prediction for healthcare. These models also compute the significance factor for each feature, 

which provides valuable information on feature selection as well as dimension reduction. 

Therefore, RF was adopted as a baseline model in comparison with HCET. The hyper parameters 

were chosen using grid search with five-fold cross validation on the training set. 

VAE+RF: [116] proposed pretraining autoencoder as the feature extractor for EHR and using 

RF for classification from the extracted features. This method was also compared. 

MiME*: The MiME model demonstrated state-of-the-art performance in predicting heart 

failure onset [75]. It consists of a temporal model using GRUs that learn the temporal character of 

disease progression with external knowledge of linked relation between ICD-9 codes and 

associated CPT codes and medication lists during each visit. The MiME model required removal 

of visits that did not include diagnosis codes to make sure diagnosis codes were present to input 

the model. Since there was no direct linked relationship between ICD-9 codes, CPT codes, and 

medication lists in our EHR data, these three features were processed in the same level instead of 

the two-level structure proposed in MiME. In addition, there are many cases where procedure 

codes or medications are present in the EHR without associated diagnoses. Therefore, we revised 

the MiME model by removing this layer while keeping the remaining structure and some 
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parameters, denoted MiME*.  The performance of this modified model was compared to our 

HCET model. 
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As shown above, MiME defined Equation (5.3.1) to compute the auxiliary loss, where Q���� denoted 

the diagnosis code in  G�� visit. Thus, calculating auxiliary loss required diagnosis codes present 

in each visit, which was not applicable to our dataset. On the other hand, we highly focused on the 

prediction accuracy of depression but not on other diseases or symptoms.  Furthermore, the 

average performance after implementing this component was increased less than 0.01 from their 

reported results, so the auxiliary loss defined in MiME was not adopted in this study. 

5.3.3 Definition of HCET 

Figure 5.1 illustrates the hierarchical structure of HCET. The ultimate goal of the model is to 

predict the probability of a chronic disease for patient A given the feature embedding representing 

 

Figure 5.1: Illustration of HCET for EHR data. There are three levels of embedding: patient level, 
visit level and code level. The full explanation of symbols is described in Table 5.2. 

. 
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a sequence of visits, ℙ�6�|hi®®®̄ �. While the model is designed to be generalizable, we focus here on 

the prediction of depression, 6�. hi®®®̄  stands for the patient level embedding of a patient’s EHR, and 

each patient has multiple hospital visits from p�®®®®̄  to p�®®®̄  , which compose the visit level embedding. 

During one visit p�®®®̄  , the code level embedding 
�®®®̄   is the ensemble of multiple ICD-9 and CPT 

codes, medications, demographic information, and topic features extracted from associated clinical 

notes. Since there are five categories of EHR data, we built individual embedding for each first 

and aggregated them together. 

Table 5.2 shows the full list of notation and corresponding definitions of symbols used in 

HCET. Q̄ is a multi-hot binary vector with dimension of ℝ±×�, where each column corresponds to 

whether a specific ICD-9 code was assigned in the Gth visit. A similar approach applies to F̄ 9 ℝ�×�, 

�®®̄  9 ℝa×� , and ²̄ 9 ℝ-×� , which are the vector representations for CPT, medication, and 

demographic information, respectively. As described before, topic features are vector 

 

Table 5.2: Notation used in the formulation of HCET. 

Notation Definition 

s Unique set of ICD-9 codes 

| Unique set of CPT codes 

_ Unique set of medications 

� Set of 100 topic features 

P Demographic information 

�N Attention weight for one data modality, j ∈ (D,C,M,X,P) 


�®®®̄  9 ℝ� Vector representation of summed EHR data at the G-th visit 

p�®®®̄  9 ℝ� Vector representation of G 9&1 … k+ visit EHR data for a patient 

hi®®®̄  9 ℝ� Vector representation of EHR data for patient number A 
The dimension of embedding �  is the same for associated vectors due to the residual 

connection used in HCET. 
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representations in the topic space, which represent the distribution of topic occurrences in the 

document. In order to match the embedding size of other data types, a threshold was defined to 

dichotomies each topic word, which was computed by the average probability of each topic value 

across all patients. Thus, 5̄ 9 ℝ���×�
 is a multi-hot binary vector representation of topic features, 

where each column denotes the unique 100 topics for the Gth visit. 

Equations (5.3.2), (5.3.3) and (5.3.4) describe mathematical formulation of HCET in the top-

down view, denoting the Patient level, Visit level, and Code level embeddings, respectively. 

hi®®®̄ = ��p�®®®®̄ …  p�®®®̄ … pd®®®®̄ �                                                      �5.3.2� 

Equation (5.3.2) shows the method to process temporal information for various visit level 

embeddings to compute a patient level embedding, where � stands for the function to input visit 

information in a sequential order. As mentioned before, RNNs, LSTMs, and GRUs have been 

widely used to fulfill this task. Since RNNs often encounters the vanishing gradient problem and 

better performance has been shown for a GRU over an LSTM in previous work [75], we used a 

GRU in the current model. 

p�®®®̄ = α�M³
�®®®̄ �  +  
�®®®̄                                                            �5.3.3� 

In Eq. (5.3.3), visit level embedding is generated by first performing a matrix transformation 

with weight ´³   9 ℝ�×�, followed by a non-linear ReLU transformation function α, where � is the 

embedding size. We omitted the bias term =�®®®̄  here to formulate the residual connection [132]. 


�®®®̄ = ���� + �                                                           �7.3.4�                                  

        � = M±Q̄ + M�  F̄ + Ma �®®̄ + Mµ ²̄ + M� 5̄                            �7.3.5�    

Equations (5.3.4) and (5.3.5) define the code level embedding by summing individual 

embeddings from five EHR data sources with a non-linear transformation function � . As in 
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equation (7.3.4), we use a ReLu for �. The M± 9 ℝ�×±, M�  9 ℝ�×�, Ma 9 ℝ�×a, Mµ 9 ℝ�×µ and 

M� 9 ℝ�×� represent the weight matrices for transforming the feature vectors of ICD-9 codes, CPT 

codes, medication lists, demographics, and topic features with high and varied dimensionality into 

a latent space with the same lower dimension, respectively. For example, the diagnosis vector 

Q̄9 ℝ±×� , after multiplied with weight matrix M±Q̄  ,results in a vector of dimension  ℝ�×� . 

Therefore, all vectors can sum up as in equation (7.3.5).  In the same manner to Eq. (7.3.4), all of 

the corresponding biased terms were omitted to denote the residual connection. Finally, binary 

cross entropy was used as the loss function. 

5.3.4 Predicting depression at different decision points 

Previous studies [21,23,75,129] have used the data from the entire EHR for future disease 

prediction. This method could add bias for patients with longer medical histories. It also gives 

equal weight to old data that likely is not as useful as more recent data. As predicting the future 

risk of a disease in a prospective setting is an ongoing task, the time window of a patient's EHR is 

highly varied. Therefore, as a similar approach to [115], we defined four decision points in advance 

 

Figure 5.2: Illustration of prediction at different time windows in advance of diagnosis of 
depression. The beginning time of EHR is defined by the timestamp of the primary diagnosis. 
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of the diagnosis of depression: two weeks, three months, six months, and one year. Figure 5.2 

illustrates the four prediction windows for using EHR data to predict depression diagnosis. For 

non-depressed patients, the last time step of the EHR was substituted for the diagnosis time. 

In order to test the effect of temporal information and data size on model’s performance, 

previous work [75] used varying maximum lengths (visits) of the EHR. This resulted in a different 

number of patients in each of the four experiments as the number of visits was not consistent across 

patients. In our approach, we kept the number of patients consistent through the four predicting 

windows, which revealed the temporal nature of prediction as the time to diagnosis varies. In this 

case, patients who had at least one of ICD-9, CPT, medication and topic feature in all four time 

windows were included in experiments. After processing data based on this method, 10,148 

Table 5.3: Statistics of data input for HCET. 

Total # of patients 
10,148 (Depressed:3,747; Non-

depressed:6,401) 

Total # of visits 294,941 

Avg. # of visits  29.06 

# of unique codes s:1391, |:6927, _: 4181 

# of demographics per visit  2 (Age, Gender) 

# of topics per visit 100 

Max / Avg. # of ICD-9 codes per visit  69 / 1.74 

Max / Avg. # of CPT codes per visit  106 / 3.23 

Max / Avg. # of medication per visit  14 / 0.09 

Max / Avg. # of topics per visit 30 / 1.87 
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patients were selected, where 3,747 were diagnosed with depression. Basic statistics of the data 

are shown in Table 5.3.  

Ablation study: Three feature sets were generated to compare the contribution to predicting 

depression for demographics and topic features: all data types (ICD-9 codes, CPT codes, 

medication lists, demographics, and topic features); ICD-9 codes, CPT codes, medication lists and 

topic features; ICD-9 codes, CPT codes, and medication lists. This ablation study was only applied 

to HCET while all baseline models used all data types as input. 

5.3.5 Training details 

All models were implemented in TensorFlow 1.12 and trained on a workstation equipped with 

Intel Xeon E3-1245, 32 GB RAM and two NVIDIA Ti 1060 GPUs. Adam [133] was selected as 

the optimizer, with the same learning rate of 1
X¶ as [75] for HCET. The number of parameters is 

2.5M, which mainly depends on the size of embedding matrices. Reported results are averaged 

over 10 random data splits: training 70%, validation 10% and test 20%. Models were trained with 

the minibatch of 50 patients for a total of 2,000 iterations to guarantee convergence. The validation 

set was evaluated at every 100 iterations for early stopping. The vanishing gradient problem was 

avoided by using skip connections. To address over fitting, L2 regularization with coefficient 1
X· 

was chosen for HCET models instead of using dropout. The embedding size � was set as 200 and 

the number of nodes for the GRU was set at 256. The source code of HCET is available at 

https://github.com/lanyexiaosa/hcet. 
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5.4 Evaluation and Results 

5.4.1 Comparison of performance in depression prediction 

Table 5.4 displays the results from all baseline models and HCET with abalation analysis at 

four time points in advance of diagnosis in terms of receiver operating characteristic area under 

the curve (ROCAUC) and PRAUC. HCET using all EHR modalities outperformed other models 

for every prediction window. Lasso generated the worst accuracy. There was no significant 

Table 5.4: Comparison of prediction performance for different models. 

Metrics Prediction 
window 

Lasso 

 

SVM 

 

MLP RF VAE+RF MiME* HCET 

 

HCET 

 

ROCAUC 

Two 
weeks 

0.66 

(0.01) 

0.72 

(0.02) 

0.72 

(0.01) 

0.76 

(0.02) 

0.76 

(0.02) 

0.76 

(0.02) 

0.76 

(0.02) 

0.81† 

(0.02) 

Three 
months 

0.65 

(0.02) 

0.69 

(0.01) 

0.70 

(0.02) 

0.73 

(0.02) 

0.74 

(0.01) 

0.74 

(0.01) 

0.75 

(0.01) 

0.80† 

(0.01) 

Six 
months 

0.63 

(0.02) 

0.68 

(0.02) 

0.69 

(0.02) 

0.70 

(0.02) 

0.71 

(0.03) 

0.72 

(0.03) 

0.73 

(0.03) 

0.78† 

(0.03) 

One year 0.63 

(0.02) 

0.68 

(0.02) 

0.68 

(0.02) 

0.69 

(0.02) 

0.69 

(0.02) 

0.70 

(0.02) 

0.71 

(0.02) 

0.75† 

(0.02) 

PRAUC 

Two 
weeks 

0.55 

(0.02) 

0.62 

(0.03) 

0.64 

(0.01) 

0.67 

(0.03) 

0.67 

(0.02) 

0.67 

(0.02) 

0.68 

(0.01) 

0.73† 

(0.02) 

Three 
months 

0.52 

(0.03) 

0.59 

(0.02) 

0.60 

(0.02) 

0.62 

(0.03) 

0.64 

(0.02) 

0.64 

(0.02) 

0.65 

(0.02) 

0.71† 

(0.02) 

Six 
months 

0.51 

(0.03) 

0.57 

(0.02) 

0.58 

(0.02) 

0.59 

(0.02) 

0.60 

(0.02) 

0.61 

(0.01) 

0.62 

(0.01) 

0.68† 

(0.02) 

One year 0.50 

(0.03) 

0.57 

(0.03) 

0.57 

(0.02) 

0.58 

(0.03) 

0.60 

(0.02) 

0.61 

(0.01) 

0.61 

(0.01) 

0.66† 

(0.02) 

Values in parenthesis refer to standard deviations across randomizations and bold values 

denotes the highest in each column. † indicates the value is significantly better than MiME* 

(p<0.05). All data modalities were input to Lasso, SVM, MLP, RF, VAE+RF, and HCET. 

MiME* took ICD-9, CPT, and medication lists as the input while HCET combined 

demographics with those.  
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difference between results from RF and VAE+RF. There was a consistent decrease of accuracy 

for each model as the prediction window moves further away from the time of diagnosis, where 

the number achieved the highest at the window of two weeks. 

Adding demographic information and topic features improved the performance for HCET, 

which demonstrated their significant contribution in predicting depression as well as emphasized 

Table 5.5 : Comparison of prediction performance for three primary diagnosis. 

Prediction 
window 

Disease Metrics Lasso 

 

SVM 

 

MLP RF VAE+RF MiME* HCET 

 

Two weeks 

Breast 
cancer 

ROCAUC 
0.67 

(0.02) 

0.72 

(0.02) 

0.74 

(0.02) 

0.76 

(0.02) 

0.76 

(0.02) 

0.77 

(0.01) 

0.81 

(0.01) 

PRAUC 
0.54 

(0.03) 

0.61 

(0.03) 

0.63 

(0.02) 

0.66 

(0.03) 

0.67 

(0.02) 

0.67 

(0.02) 

0.73 

(0.01) 

MI 

ROCAUC 
0.66 

(0.02) 

0.71 

(0.02) 

0.72 

(0.02) 

0.74 

(0.03) 

0.75 

(0.02) 

0.75 

(0.01) 

0.79 

(0.02) 

PRAUC 
0.62 

(0.03) 

0.68 

(0.03) 

0.69 

(0.02) 

0.71 

(0.02) 

0.71 

(0.01) 

0.70 

(0.01) 

0.77 

(0.01) 

Liver 
cirrhosis 

ROCAUC 
0.65 

(0.02) 

0.71 

(0.02) 

0.72 

(0.02) 

0.75 

(0.03) 

0.75 

(0.02) 

0.76 

(0.02) 

0.80 

(0.01) 

PRAUC 
0.55 

(0.02) 

0.60 

(0.03) 

0.62 

(0.02) 

0.65 

(0.03) 

0.65 

(0.02) 

0.67 

(0.01) 

0.72 

(0.01) 

One year 

Breast 
cancer 

ROCAUC 
0.64 

(0.03) 

0.68 

(0.03) 

0.69 

(0.01) 

0.70 

(0.03) 

0.70 

(0.02) 

0.71 

(0.02) 

0.78 

(0.02) 

PRAUC 
0.49 

(0.03) 

0.56 

(0.03) 

0.56 

(0.02) 

0.57 

(0.03) 

0.58 

(0.03) 

0.61 

(0.01) 

0.67 

(0.02) 

MI 

ROCAUC 
0.62 

(0.02) 

0.67 

(0.02) 

0.66 

(0.01) 

0.67 

(0.02) 

0.68 

(0.01) 

0.69 

(0.02) 

0.77 

(0.01) 

PRAUC 
0.56 

(0.04) 

0.62 

(0.03) 

0.62 

(0.02) 

0.63 

(0.02) 

0.63 

(0.01) 

0.64 

(0.01) 

0.71 

(0.01) 

Liver 
cirrhosis 

ROCAUC 
0.62 

(0.04) 

0.66 

(0.02) 

0.66 

(0.02) 

0.67 

(0.01) 

0.68 

(0.02) 

0.70 

(0.01) 

0.77 

(0.02) 

PRAUC 
0.53 

(0.02) 

0.55 

(0.02) 

0.56 

(0.02) 

0.57 

(0.03) 

0.58 

(0.02) 

0.61 

(0.02) 

0.66 

(0.02) 
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the advantage of building a model being able to aggregate EHR data from multiple sources. The 

values between MiME* and HCET were similar, while the difference between HCET and HCET 

shown in bold were relatively large. HCET with all types of EHR data achieved the highest 

accuracy at each prediction window than all baseline models. It generated the highest mean 

ROCAUC of 0.81 when predicting two weeks prior to the diagnosis, and the value dropped to 0.75 

when predicting one year in advance.  

5.4.2 Model’s performance for each primary diagnosis  

Table 5.5 shows the results for each of three primary diagnosis in predictions windows of two 

weeks and one year in ROCAUC and PRAUC. HCET also achieved the best performance for three 

primary diagnosis for two prediction windows. The low variance also indicated that it is more 

robust than other models. The ROCAUC for every model was quite similar even though the 

number of patients with breast cancer was substantially higher than the other diseases (Table 5.1), 

which indicated no bias toward any primary diagnosis in the prediction. On the other hand, it is 

noticeable that the PRAUC for patients with myocardial infarction was relatively higher than other 

two. 

5.5 Discussion 

In this chapter, I developed a temporal deep learning model, HCET, which was able to 

integrate five types of EHR data during multiple visits for depression prediction. HCET 

consistently outperformed the baseline models tested, achieving an increase in PRAUC of 0.07 

over the best baseline model. The results demonstrated the ability of HCET as an approach to deal 

with data heterogeneity and sparsity in modeling the EHR.  
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Accoring to results in Table 5.4 and 5.5, Lasso generated the worst performance as it is a 

linear classifier which indicats that predicting depression from the EHR is a complicated task 

which requires more advanceted models. In addition, the Lasso method also provides sparsity of 

using more correlated features but the poor accuracy reveals that this task needs to include more 

features than only the most correlated ones. There was no significant different between results 

from RF and VAE+RF which indicated the power of classfication maily depends on RF. Models 

starting from MiME* are all temporal models and they all achieved higher performance than non-

temporal ones, which further confirms the advantage of using temporal models over non-temporal 

ones in predicting chronic diseases. Furthermore, the performance consistently declined for each 

model as the prediction window moved further away from the diagnosis time point, which agrees 

with our expectation that records closer to the diagnosis are more likely to contain relevant 

information and provide better predictions.  

The improvement of HCET over all baseline models demonstrated the advantage of utilizing 

temporal information and the hierarchical embedding to aggregate more heterogenous EHR data 

modalities to predict future diagnosis of depression. In the original implementation of the MiME 

model [75], interactions between diagnosis codes with associated procedures and medication were 

explicitly modeled, but this linked relation was not available in our EHR data, which  is a situation 

that commonly applies to other medical systems. Meanwhile, MiME also has another limitation of 

ignoring data when no diagnosis code is present for each visit. Our results indicate that treating all 

EHR data types in one level of code embedding during each visit is a viable solution in this scenario 

while being able to include all data modalities from each visit. Another adjustment in our model 

is the extension of embedding to process demographics and clinical notes, which further addresses 

the heterogeneity issue in EHR data.  
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In future work, HCET could possibly be used as the basis for constructing a screening tool by 

utilizing the models’ predictions to intervene with individuals who have a higher risk of developing 

depression. More details about the future work of improving the precision of HCET will be 

presented in Chapter 8. 
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CHAPTER 6   

Bidirectional Representation Learning with Transformer on 

Multimodal EHR to Predict Depression 

6.1 Overview 

Electronic health record (EHR) systems have become the main method of documenting 

patients’ historical medical records over the last decade [40]. The latest report from the Office of 

the National Coordinator for Health Information Technology (ONC), stated that nearly 84% of 

hospitals have adopted at least a basic EHR system, which was a nine-fold increase from 2008 

[134]. EHRs are composed of data from different modalities, documented in a sequence for each 

patient encounter, including demographic information, diagnoses, procedures, medications or 

prescriptions, clinical notes written by physicians, images, and laboratory results, which contribute 

to their high dimensionality and heterogeneity [18,94]. Deep learning algorithms enable the usage 

of EHR data not only as a documenting method for billing purposes, but also as a source of 

tremendous amount of data to construct classification or prediction models, which build the 

foundation for creating clinical decision support systems and personalized precision medicine. 

However, there is an unsolved challenge of achieving high accuracy while providing adequate 

explanation on model’s decision-making process. Although several efforts have attempted to 

improve model interpretability [59,60,135], they did not address the problem of data heterogeneity 

that is pervasive in medical research as EHR is often composed of data from various modalities in 

a sequential structure.   
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The goal of this study is to create a model with high interpretability for predicting future 

diagnosis of depression while being able to accommodate the heterogeneity of EHR data and 

process it effectively in a temporal manner. I propose a Bidirectional Representation Learning 

model with a Transformer architecture on Multimodal EHR (BRLTM). This BRLTM is able to 

aggregate five EHR data modalities: diagnoses, procedure codes, medications, demographics and 

clinical notes. The remainder of this chapter is organized as follows. Section 6.2 details the data 

and preprocessing steps used in this study. Section 6.3 describes the architecture of BRLTM and 

several baseline models for comparison as well as the experimental setup for predicting future 

diagnosis of depression. Section 6.4 summaries the results while Section 6.5 discusses several 

observations and limitations. The content of this chapter has partly been under revision for a 

submitted manuscript to the IEEE journal of biomedical and health informatics. 

6.2 Data Cohort and Data Preprocessing 

Patients selected for this study were based on three primary diagnoses: myocardial infarction 

(MI), breast cancer, and liver cirrhosis, to capture a spectrum of clinical complexity. Generally, 

MI represents the least complexity, with acute onset, resolution, and straight-forward treatment. 

Breast cancer is increasingly complicated in terms of diagnoses and treatment options. Finally, a 

patient with liver cirrhosis may have many sequelae, generating a complex EHR representation. 

Patients for this work were identified from our EHR in accordance with an IRB (#14-000204) 

approved protocol. Each patient visit had EHR data types consisting of diagnosis codes in 

International Classification of Disease, ninth revision (ICD-9) format, procedure codes in Current 

Procedural Terminology (CPT) format, medication lists, demographic information, and clinical 

notes represented as 100 topics using LDA analysis [118]. All patient records coded with ICD-9 
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values for MI, breast cancer, or liver cirrhosis from 2006-2013 were included. Demographics were 

limited to the patient’s gender and age. Initially, there were 45,208 patients and after the 

preprocessing to eliminate patients with fewer than two visits, 43,967 patients were included in 

the analysis. More importantly, data after the diagnosis time of depression was excluded for 

depressed patients to ensure no data leakage while all of them were included for non-depressed 

ones.  

Patient Health Questionnaire (PHQ-9) scores [128], the most common way to identify the 

diagnosis of depression, were not available for this patient cohort during the data collection period. 

Hence, depression onset was identified by three methods: depression related ICD-9 codes, 

inclusion of an antidepressant drug in a patient’s medication list, or appearance of an 

antidepressant drug in clinical notes, which has been used in [94]. More details are referred back 

to Chapter 5.2.1. 

6.3 Methods 

In NLP implementations, BERT models process words sequentially. This method can be 

applied to EHR data by analyzing ICD-9 codes, CPT codes, medication lists, and topics as code 

sequences representing a patient’s visits. Full ICD-9 codes are high dimensional that are sparsely 

represented with 9,285 distinct codes in our dataset. As in [117], dimensionality was reduced by 

grouping codes by the three numbers before the decimal point to reduce its feature dimension to 

1,131. Each demographic is added as an individual feature and repeated for every sequence. 

Pretraining was conducted through masked language modeling (MLM) to predict the mask code 

based on EHR sequences [74]. After pretraining, the saved model was added a classification head 
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to finetune for the downstream task of chronic disease prediction. The feature dimension as the 

unique number of codes for five modalities were listed as follows: 

• Diagnoses: 1,131 

• Procedures: 7,048 

• Medications: 4,181 

• Demographics: 2 

• Topics: 100 

6.3.1 BLRTM model for EHR representation learning  

Eq. (6.3.1) shows a patient’s EHR, composed by different visits ranging from t� to ţ , where 

L is the length of the EHR sequence. Two symbolic tokens |}b and b£� are adopted here: |}b 

denotes the starting point of the EHR and b£� denotes the separation between two consecutive 

visits. 

     £7?: �|}b, t�, b£�, t-, b£�, … , ţ �                                               �6.3.1� 

Each of the visits t� is comprised of EHR codes �, as shown in Eq. (6.3.2), where the number of 

codes is ��, which varies for each visit. Every code is from the vocabulary of the dataset:  s: 

diagnosis, |: procedure, _: medication and k: topics. 

t�: h��, �-, … , ��©j, � 9 8s, |, _, k>                                         �6.3.2� 

The original BERT model has three types of embeddings: token, position, and segment [74]. 

In our BRLTM model, we treated each token embedding as a code embedding and extended the 

model’s ability to aggregate demographics by adding age and gender embedding, shown in Figure 

6.1. There are five types of embeddings which are summed to generate the final output embedding 
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for training. Data after the depression diagnosis were excluded to avoid data leakage. For non-

depressed patients, the last time step of the EHR was substituted for the diagnosis time. Code 

embeddings are from the four EHR data modalities mentioned in Eq. (6.3.2).  Similar to the 

original BERT model, position and segment embeddings indicate the position of one code in the 

full sequence and distinguishes codes in adjacent visits, respectively. We adopted pre-determined 

instead of learned encodings for positional embeddings to avoid weak learning of the positional 

embedding due to high variety in a patient’s sequence length. The position embeddings play an 

important role in sequence learning, equivalent to the recurrent structure in RNNs. Annotating the 

position of each code in the sequence enables the model to capture the positional interactions 

among EHR data modalities. However, position embeddings do not tell whether codes are from 

the same visit or not. Hence, segment embeddings are used to provide extra information to 

 

Figure 6.1: Architecture of the BRLTM model for EHR representation learning. The subscripts 
show the original value for each embedding. CLS and SEP are symbolic tokens stands for the 
beginning of EHR and separation of two visits adjacent to each other, respectively. D, C, M, 
and T denote diagnoses, procedures, medications, and topics, respectively. The last row denotes 
the sum of the five embeddings as the final output embedding. 
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differentiate codes in adjacent visits by alternating between two trainable vectors, depicted as A 

and B in Figure 6.1.  

Age and gender embeddings are repeated in every position of the sequence. Combining code 

embeddings with the age embedding not only enables the model to use age information as a feature, 

but also provides temporal information in the sequence. As shown Figure 6.2, the final embeddings 

are the input for a bidirectional sequential learning step with the transformer architecture as in the 

BERT model [74]. The latent contextual representation of five data modalities in temporal EHR 

sequences can be efficiently learned from the aggregation of these five embeddings. This 

architecture is capable of aggregating multimodal EHR data into a single model and processing 

them in a temporal manner, as well as investigating the inner association contingency between 

them in various visits. In total, the model has the ability to perform representation learning on 

patient’s EHR. More importantly, it realizes the common two-stage transfer learning approach on 

EHR modeling, which has been widely adopted and has achieved the outstanding performance in 

computer vision [66] as well as NLP [74,136]. 

 

Figure 6.2: Illustration of bidirectional learning with the transformer architecture. The orange 
squares are the final out embeddings in Figure 6.1, which are the input sequences here. Trm 
stands for the transformer while the green squares denote the output sequence. O denotes the 
output for each code after learning. 
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6.3.2 Pretraining with mask language modeling (MLM)  

An EHR is composed of multimodal code sequences, which is similar to the way that a 

language is composed of word sequences. Hence, we hypothesized that the advantage of deep 

bidirectional sequential learning in language modeling over either a left-to-right model or the 

shallow concatenation of a left-to-right and a right-to-left model can be transferred to EHR 

modeling. As a consequence, we adopted the same pretraining approach of MLM from the original 

BERT paper [74]. Namely, we randomly selected 15% of EHR codes and modified them according 

to following procedures:  

• 80% of the time replace them with [MASK] 

• 10% of the time replace them with a random disease word 

• 10% of the time do nothing and keep them unchanged 

   This structure in MLM forces the model to learn the distributional contextual representation 

between EHR codes as the model does not know which codes are masked or which codes have 

replaced by a random code. EHR modeling is not affected significantly because only 1.5% (10% 

of 15%) of codes are randomly replaced. This random replacement brings a small perturbation that 

distracts the model from learning the true contextual sequences of the EHR and forces the model 

to identify the noise and continue learning the overall temporal progression. We used the precision 

score (true positives divided by predicted positives) at a threshold of 0.5 as the metric to evaluate 

pre-training MLM task. The average is calculated over every masked code over all patients. Similar 

to [137], we followed results from previous models [74,137] with random search to find the best 

set of hyperparameters during training. In addition, we investigated the contribution of each data 

modality by training the model with different combinations of CPT and topic features in an 
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ablation study. The data used for MLM is shown in the second column of Table 6.1. Note that 

some patients had more than one primary diagnosis. 

6.3.3 Finetuning to predict depression 

After pretraining to learn the latent contextual representation of the EHR, one feed-forward 

classification layer was added to predict diagnosis of depression after finetuning on a specific 

dataset. We followed the same data selection criteria as in the HCET model [94] with four 

prediction windows prior to time of depression diagnosis: two weeks, three months, six months, 

and one year. The length of each data window was restricted to six months instead of patient’s 

entire history to avoid bias towards patients with longer medical histories. Patients who had at least 

one ICD-9, CPT, medication or topic feature in all four time windows were included. After 

processing data based on this method, 10,148 patients were selected, where 3,747 were diagnosed 

with depression. Basic statistics of the data for this prediction task are shown in the third column 

Table 6.1: Statistics of datasets for two training approaches. 

Datasets pretraining finetuning 

Patients with MI 10,616 (2,915  depressed) 2,943 (1,280 depressed) 

Patients with breast cancer 23,3077 (4,483 depressed) 5,568 (1,960 depressed) 

Patients with liver cirrhosis 11,757 (2,359 depressed) 2,218 (772 depressed) 

Gender 70.18% female 72.54% female 

Age 
65.78 ± 14.99, 

min: 18, max 100 

68.78 ± 15.46, 

min: 18, max 98 

Sequence length 
54.64 ± 45.37,  

min:2, max: 1,186 

54.64 ± 45.37, 

min:2, max: 180 
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of Table 6.1. Finally, predicting performance of each model was evaluated in receiver 

characteristic area under curve (ROCAUC) and PRAUC. 

6.3.4 Training details 

The BRLTM model was implemented in Pytorch 1.4 and trained on a workstation equipped 

with an Intel Xeon E3-1245, 32 GB RAM and a 12G NVIDIA TitanX GPU. We followed the 

training scheduler with the Adam [133] optimizer used the original BERT model [74] and set the 

warmup proportion and weight to 0.01 and 0.1, respectively. The Gaussian error linear unit 

(GELU) rather than the standard ReLu was used as the non-linear activation function in the hidden 

layers. Pretraining of MLM used the first dataset with the minibatch of 256 patients for 100 epochs 

and evaluated at every 20 iterations. The dataset for finetuning of the prediction task underwent 

10 random data splits: 70% training, 10% validation, and 20% test, and trained with minibatch of 

64 patients for 50 epochs. Dropout of 0.1 was set to both hidden layers to address overfitting. The 

source code and more detailed description of the model is available at 

https://github.com/lanyexiaosa/bert_ehr. 

6.3.5 Baseline models 

Recent developments in natural language processing (NLP) provide a number of potential 

methods that can be applied to EHR data. Previous studies have applied temporal deep learning 

models on time-series medical data, particularly on EHR data to predict future diagnoses [21,117]. 

Retain first added a reverse time attention mechanism to RNN for heart failure prediction, which 

improved the model’s interpretability by showing the temporal effect of events [59]. Dipole 

exhibited the potential of bidirectional learning on EHR data using an RNN with concatenation 

based attention to predict diagnosis of diabetes [60] based on diagnosis codes and procedure codes. 
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Choi et al. enhanced their model’s latent representation learning with a graph convolution 

transformer (GCT), but did not perform sequential learning, focusing only on a single patient 

encounter [140]. [138] also achieved improving their model’s interpretability using self-attention, 

but only applied it on diagnosis and procedure codes. The BEHRT model [137] first realized a 

two-stage transfer learning approach with the BERT model [74], but only applied on diagnosis 

code with a low dimensional feature space (301). Meanwhile, it merely relied on diagnosis codes 

as the true label for every disease, which actually reduced the prediction sensitivity or specificity 

, due to inaccuracy and incompleteness in  ICD codes and they are mostly for billing purposes 

[141]. MiME focused on learning the inner structure of an EHR by constructing a hierarchy of 

diagnosis level, visit level, and patient level embeddings [75]. The HCET model extended this 

hierarchical structure by removing the requirement of linked structure between diagnosis codes 

and procedure codes and medication while enabling attention on each EHR data modality to 

increase the model’s interpretability [94].  

  

 

Table 6.2: Results of pretraining with MLM. 

Data combination All No topic No CPT No topic+CPT 

Vocabulary size 12,460  12,360 5412 5312 

Precision 0.4248 0.4324 0.4836 0.5086 

Learning rate 1e-4 1e-4 1e-4 1e-4 

Embedding size 216 240 252 264 

Attention layers  9 9 6 6 

Attention heads  12 12 12 12 

Intermediate layer 512 512 256 256 
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The following models were used to compare the prediction performance to our BRLTM 

model: Dipole, MiME*, HCET, BERHT. I modified MiME to MiME* as the original MiME 

model requires external knowledge of linked relation between ICD-9 codes and associated CPT 

codes and medication lists during each visit, which was not applicable to use dataset. 

6.4 Evaluation and Results 

6.4.1 Pretraining on MLM  

Table 6.2 presents the results for MLM including the optimal hyperparameter settings on 

various combination of EHR data modalities. According to the result, the precision score raises 

gradually from 0.4208 to 0.5086 as the vocabulary size decreases by excluding more data 

modalities. The optimal embedding size also follows this trend as 216 for all data and 264 for data 

without topics and CPT. The number of attention layers and the number of multi-head attention 

have the opposite trend, changing from 9 to 6 and 512 to 256, respectively. 

6.4.2 Comparison of performance in depression prediction  

Table 6.3 shows the ROCAUC and PRAUC from all baseline models and our BRLTM model 

at the four prediction time points. The BRLTM model achieved the highest performance in each 

prediction window with statistically significant improvements over the next best model (HCET). 

BEHRT generated slightly better results than MiME* in the two shortest time windows, but 

MiME* reached higher numbers in longer windows. This result follows those observed in HCET 

where ICD-9 possessed attention weights higher than the average in smaller prediction windows 

while it was lower than the average in larger windows. The prediction performance was slightly 
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improved with Dipole which used ICD-9 and CPT codes in a bidirectional learning method. 

Finally, there was a consistent decrease of accuracy for every model as the prediction window 

moved further away from the time of diagnosis. 

 

Table 6.3: Comparison of prediction performance for different models. 

Metrics Prediction 
window 

MiME* 

ICD-
9+CPT+

Med 

BEHRT 

ICD-9 

Dipole 

ICD-
9+CPT 

HCET 

All 

BRLTM 

All 

ROCAUC 

Two weeks 0.76 

(0.01) 

0.77 

(0.02) 

0.78 

(0.02) 

0.81 

(0.02) 

0.85† 

(0.02) 

Three months 0.74 

(0.01) 

0.75 

(0.02) 

0.76 

(0.02) 

0.80 

(0.01) 

0.84† 

(0.01) 

Six months 0.72 

(0.02) 

0.71 

(0.01) 

0.75 

(0.01) 

0.78 

(0.03) 

0.83† 

(0.01) 

One year 0.70 

(0.01) 

0.69 

(0.02) 

0.74 

(0.01) 

0.75 

(0.02) 

0.81† 

(0.01) 

PRAUC 

Two weeks 0.67 

(0.02) 

0.68 

(0.01) 

0.70 

(0.01) 

0.73 

(0.02) 

0.78† 

(0.01) 

Three months 0.64 

(0.02) 

0.65 

(0.01) 

0.67 

(0.02) 

0.71 

(0.02) 

0.76† 

(0.02) 

Six months 0.61 

(0.01) 

0.61 

(0.02) 

0.65 

(0.01) 

0.68 

(0.02) 

0.74† 

(0.02) 

One year 0.61 

(0.01) 

0.60 

(0.02) 

0.64 

(0.01) 

0.66 

(0.02) 

0.73† 

(0.01) 

Values in parenthesis refer to standard deviations across randomizations and bold values 

denotes the highest in each column. † indicates the value is significantly better than MiME* 

(p<0.05). The words after each model denotes the input data modalities where all means all 

five in our dataset. 
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6.4.3 Prediction performance for each primary diagnosis  

Table 6.4 displays the individual result for each of three primary diagnoses in prediction 

windows of two-weeks and one-year. Our BRLTM model also achieved the best performance for 

all three primary diagnoses in these two prediction windows. The ROCAUC from all three diseases 

Table 6.4 : Comparison of prediction performance for three primary diagnoses. 

Prediction 
window 

Disease Metrics MiME* BEHRT Dipole HCET Ours 

 

Two weeks 

Breast cancer 

ROCAUC 
0.77 

(0.01) 

0.78 

(0.02) 

0.79 

(0.02) 

0.81 

(0.01) 

0.85 

(0.01) 

PRAUC 
0.67 

(0.02) 

0.68 

(0.01) 

0.69 

(0.02) 

0.73 

(0.01) 

0.76 

(0.01) 

MI 

ROCAUC 
0.75 

(0.01) 

0.77 

(0.01) 

0.78 

(0.01) 

0.79 

(0.02) 

0.85 

(0.02) 

PRAUC 
0.70 

(0.01) 

0.71 

(0.02) 

0.71 

(0.02) 

0.77 

(0.01) 

0.78 

(0.01) 

Liver 
cirrhosis 

ROCAUC 
0.76 

(0.02) 

0.77 

(0.01) 

0.78 

(0.01) 

0.80 

(0.01) 

0.84 

(0.01) 

PRAUC 
0.67 

(0.01) 

0.68 

(0.02) 

0.69 

(0.01) 

0.72 

(0.01) 

0.75 

(0.01) 

One year 

Breast cancer 

ROCAUC 
0.71 

(0.02) 

0.70 

(0.01) 

0.75 

(0.01) 

0.78 

(0.02) 

0.80 

(0.01) 

PRAUC 
0.61 

(0.01) 

0.59 

(0.02) 

0.63 

(0.02) 

0.67 

(0.02) 

0.72 

(0.01) 

MI 

ROCAUC 
0.69 

(0.02) 

0.70 

(0.01) 

0.74 

(0.02) 

0.77 

(0.01) 

0.81 

(0.01) 

PRAUC 
0.64 

(0.01) 

0.62 

(0.01) 

0.66 

(0.02) 

0.71 

(0.01) 

0.74 

(0.01) 

Liver 
cirrhosis 

ROCAUC 
0.70 

(0.01) 

0.69 

(0.02) 

0.74 

(0.01) 

0.77 

(0.02) 

0.80 

(0.01) 

PRAUC 
0.61 

(0.02) 

0.60 

(0.02) 

0.63 

(0.01) 

0.66 

(0.02) 

0.71 

(0.01) 
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within each model was similar even though the number of patients with breast cancer was 

substantially higher than other diseases (n=5,568), which indicated no bias toward any primary 

diagnosis for the task of predicting diagnosis of depression. It is notable that while the PRAUC for 

patients with myocardial infarction was relatively higher than other two, the difference in the 

BRLTM model was relatively small. Dipole generated a mean increase of around 0.02 both in 

ROCAUC and PRAUC across all diseases over BEHRT. In addition, HCET achieved better values 

than Dipole with higher improvement in PRAUC than ROCAUC. The BRLTM model further 

improved the performance from HCET with the highest increase of 0.06 in ROCAUC for MI in 

the window of two weeks and 0.05 in PRAUC for breast cancer and liver cirrhosis in the one-year 

window. 

Figure 6.3 contains the confusion matrices individually for three primary diagnoses in the 

two-week prediction window from four models. The output probability was calibrated using the 

isotonic regression [142] with a threshold of 0.5, and numbers were aggregated from a 10-fold 

 

Figure 6.3: Confusion matrices for patients separated by three primary diagnosis at a window 
of two weeks for four models. The numbers are aggregated together with 10-fold cross 
validation. Label 0 means non-depressed while 1 means depressed. 
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cross validation. The class distribution was imbalanced with a smaller portion of depressed patients 

for each primary diagnosis. MiME* reached a higher portion of false positive than false negative 

and Dipole managed to reduce both numbers slightly. Our BRLTM model significantly decreased 

the false positives by almost 50% from HCET while reducing false negatives by roughly 40% for 

MI and 30% for breast cancer and liver cirrhosis. Hence, it achieved outstanding average precision 

and recall of 0.94 and 0.84, respectively, over the three primary diagnoses. 

6.5 Discussion 

This chapter presents a bidirectional deep learning model BRLTM to perform temporal 

representation learning on multimodal EHR data and successfully realized two-stage pretraining 

and finetuning. The results demonstrate the feasibility to apply the two-stage transfer learning 

approach on EHR modeling to overcome limitations in the amount of available data, which 

facilitates the development of clinical decision support systems for chronic disease prediction, 

such as a screening tool for patients at high risk depression, and thereby enabling early 

intervention. 

According to results in Table 6.3 and 6.4, the BRLTM model sufficiently resolved the data 

heterogeneity issue by realizing bidirectional sequential learning and enabling the sturcture to 

aggregate multimoal EHR, which achieved the best performance in predicting future diagnoisis of 

depression in all four prediction windows. Additionally, the comparison to other models 

demonstrated the advantage of including more data modalities for the prediction task whereas 

BEHRT only took diagnosis codes in their study. In particular, MiME included two more data 

modalities than BEHRT. On the other hand, the better results from Diople over MiME* validates 

the advantage of bidirectional learning over single direction, as medication was less frequently 
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present than ICD-9 and CPT, which Dipole did not take as the input. However, its lower 

performance than HCET, which adopted the forward-only sequnetial learning, highlights the 

importace to aggrete topics feature and demographics as Dipole only input ICD-9 and CPT codes, 

while HCET was capable of including all five modalities. Meanwhile, there is an observation in 

from these results that each model’s performance consistently declines as the prediction window 

moves further away from the diagnosis time point, which agrees with our expectation that records 

closer to the diagnosis are more likely to contain relevant information and provide better 

predictions.  Table 6.2 shows the observation that for a larger vocabulrory size or more data 

modalities a smaller embedding size should be used, but the number of attention layers and 

intermediate layer size should be increased, while no strong perference of the learning rate and 

number of attention heads. The results also approves model’s flexible structure of several tunable 

hyperparameters, espeically in attetnion layers, enabling it to process various types of EHR data 

which may be collected from different insitutions. 

More importantly, I sucessfully realized the common two-stage transfer learning apporach of 

pretraining and finetuing on modeling EHR data. Privacy issues related to EHR data restrict the 

ability of institutions to share data, which substantially hinders the development in this field. This 

two-stage transfer learning approach allows institutions with access to large amount of EHR data 

to be able to provide the pretrained model as a general EHR feature extractor so that others can 

take the advantage by only finetuning the pretrained model on the customized dataset for specific 

tasks [143,144]. This process benefits EHR representation learning and lays the foundation to 

facilitate adequate predictive power to models built on small EHR datasets. Furthermore, the 

BRLTM model also provides a generalized architecture that can be adopted with every EHR 

system by increasing the vocabulary of the code embedding or by stacking more embedding layers 
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for additional data modalities not used in this work. More details about the future work of 

improving the precision of BRLTM will be presented in Chapter 8. 
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CHAPTER 7   

Improving Interpretability of Machine Learning Models 

7.1 Overview 

Despite the unprecedented advancement and widespread of machine learning algorithms, they 

suffer from one main drawback of lacking adequate transparency or explanation, especially in the 

decision-making process, which highly impedes the development of their real-world applications 

[145]. In particular, the neural network based models act like a “black-box”, meaning no 

transparency to understand how they work in details [146].  

In this chapter, I explore several techniques that are augmented to each model described in 

previous chapters individually.  These efforts not only provide feasible approaches to increase 

transparency or interpretability of machine learning models for healthcare tasks, but also reveal 

insights on the tradeoff between improving model’s accuracy and interpretability [59]. The 

remainder of this chapter is organized as follows: Section 7.2 describes the dataset used in this 

study. Section 7.3 details every technique to improve models’ interpretability based on various 

dataset and tasks. Section 7.4 summaries the results while Section 7.5 discusses several 

observations and limitations. The content of this chapter have partly been published in [94,135]. 

7.2 Data Cohort 

All of the dataset used in this chapter to test the effect of model’s interpretability are the same 

as previous chapters. Specifically, the cohort of 182 patients used in Chapter 3 for building an 

HMM is adopted here to study the importance factor of each of 14 features collected by Fitbit. As 



 95

a similar approach, patient’s EHR data in Chapter 4 is used here to investigate the importance 

factor of each of five modalities as well. In addition, the multimodal EHR dataset from Chapter 5 

and Chapter 6 are adopted here to reveal the feature importance or contribution to the prediction 

task from each data modality or every EHR code. 

7.3 Methods 

7.3.1 Feature importance factor from RF  

As described in Chapter 2.3.4, RF has another advantage of better interpretation in the 

decision process than other classical machine learning models. It can output the relative feature 

importance factor by information gain (IG). Therefore, I first utilized this function in RF to study 

the relative feature importance factor of 14 types of vital signs collected by Fitbit then normalized 

and compared for the classification task of each PRO in Chapter 3. Furthermore, this technique 

was also applied to reveal the feature importance factor of every element of various EHR data 

modalities to predict future diagnosis of depression in Chapter 4.  

7.3.2 Attention for every EHR data modality in the code level embedding  

In order to investigate the importance factor of every data modality in this prediction task as 

well as improve the interpretability of HCET, attention weights �N are defined for each modality, 

where the sum of all weights equals to one, as shown in Eq. (7.3.1). A weighted sum of code level 

embedding �W  is input into HCET, indicates by Eq. (7.3.2), which substitutes �  in Equations 

(3.3.4) and (3.3.5). Q, F, �, ², 5  standard for diagnosis codes, procedure codes, medication, 

demographics and topics feature, respectively. After training, attention weights are able to reveal 

the importance factor of each feature type in the prediction task,     
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                           ∑ �N = 1                                                                     �7.3.1�                                           

�W = �±M±Q̄ + ��M� F̄ + �aMa�®®̄ + �µMµ²̄ + ��M�5̄              �7.3.2� 

7.3.3 Self-attention for every code in EHR sequences 

Revealing the attention weight as the importance factor of each of five EHR data modalities 

still do not tell how each element in various patient encounter contributes the prediction task. 

Therefore, I followed the transformer architecture described first in Chapter 2.5.2, where the 

combination of self-attention and multi-head attention effectively presents a quantitative analysis 

of every element in a sequence. This technique was applied to the model developed in Chapter 6 

to improve its interpretability. 

7.4 Evaluation and Results 

7.4.1 Relative importance factor for features collected by Fitbit  

The interpretability of the model built in Chapter 3 was enhanced by outputting the 

importance factor of each feature contributing to the classification in the RF model. Table 7.1 

displays the importance factor for the 14 feature types summed over seven days. Features that were 

significantly higher (p<0.05) than the average value for each classification were determined. Steps, 

total distance, calories, and calories BMR contributed to classify most of the PRO scores. The 

importance factor of light active distance was significantly better than other features for classifying 

global physical health and physical function, which were both related to a subject’s physical health. 

On the other hand, resting heart rate contributed significantly more than other features for 

classification of mental health PROs such as anxiety and depression, while its importance factor 

was not significantly higher than other features in classifying PROs related to physical health. 
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Table 7.1: Importance factor of each feature for classifying various health status. 

Type 

Global 

physical 

health 

Global 

mental 

health 

Fatigue 
Physical 

Function 
Anxiety 

Depressi

on 

Sleep 

Disturbance 

Step 0.138 

(0.010) 

0.088 

(0.006) 

0.111 

(0.009) 

0.138 

(0.007) 

0.075 

(0.005) 

0.080 

(0.006) 

0.104 (0.005) 

Total 

Distance 

0.122 

(0.009) 

0.081 

(0.003) 

0.100 

(0.009) 

0.123 

(0.011) 

0.079 

(0.004) 

0.075 

(0.004) 

0.088 (0.005) 

Very Active 

Distance 

0.062 

(0.005) 

0.066 

(0.006) 

0.061 

(0.004) 

0.068 

(0.005) 

0.065 

(0.003) 

0.056 

(0.002) 

0.053 (0.004) 

Moderately 

Active 

Distance 

0.059 

(0.007) 

0.058 

(0.002) 

0.052 

(0.003) 

0.051 

(0.003) 

0.052 

(0.002) 

0.054 

(0.002) 

0.0573 

(0.003) 

Light Active 

Distance 

0.088 

(0.010) 

0.071 

(0.002) 

0.074 

(0.001) 

0.086 

(0.010) 

0.070 

(0.005) 

0.066 

(0.003) 

0.069 (0.004) 

Very Active 

Minutes 

0.054 

(0.007) 

0.060 

(0.006) 

0.052 

(0.004) 

0.060 

(0.006) 

0.057 

(0.004) 

0.053 

(0.002) 

0.055 (0.004) 

Fairly 

Active 

Minutes 

0.055 

(0.009) 

0.054 

(0.002) 

0.050 

(0.007) 

0.050 

(0.006) 

0.0530 

(0.003) 

0.051 

(0.003) 

0.063 (0.004) 

Light Active 

Minutes 

0.068 

(0.006) 

0.072 

(0.005) 

0.064 

(0.003) 

0.061 

(0.005) 

0.066 

(0.002) 

0.073 

(0.002) 

0.067 (0.004) 

Sedentary 

Minutes 

0.046 

(0.003) 

0.066 

(0.005) 

0.055 

(0.002) 

0.043 

(0.001) 

0.065 

(0.007) 

0.072 

(0.007) 

0.060 (0.005) 

Calories 0.059 

(0.006) 

0.088 

(0.008) 

0.074 

(0.007) 

0.053 

(0.005) 

0.098 

(0.007) 

0.094 

(0.004) 

0.082 (0.003) 

Floors 0.055 

(0.008) 

0.049 

(0.001) 

0.056 

(0.010) 

0.076 

(0.019) 

0.048 

(0.003) 

0.053 

(0.003) 

0.051 (0.005) 

Calories 

BMR 

0.073 

(0.004) 

0.110 

(0.016) 

0.105 

(0.007) 

0.071 

(0.009) 

0.117 

(0.006) 

0.128 

(0.009) 

0.105 (0.012) 

Marginal 

Calories 

0.066 

(0.004) 

0.071 

(0.003) 

0.060 

(0.003) 

0.058 

(0.005) 

0.070 

(0.006) 

0.069 

(0.003) 

0.077 (0.006) 

Resting 

Heart Rate 

0.058 

(0.012) 

0.067 

(0.008) 

0.085 

(0.012) 

0.063 

(0.008) 

0.085 

(0.003) 

0.076 

(0.002) 

0.069 (0.016) 

Value in parentheses is the standard deviation. Bold values are significantly higher (p<0.05) 

than the average value for a feature (1/14 = 0.0714). 
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The analysis of classifying PRO was repeated using the RF classifier and only the significant 

features from Table 7.1 and were shown in Table 7.2. Because some studies such as [147] only 

used steps data to assess user’s health status, we also compared the model’s performance in the 

same manner. The results suggested that the RF model can generate significantly better 

classification accuracy with the selected features than all features from Fitbit for all PROMIS short 

form survey scores except for global mental health (p=0.37), with the highest AUC of 0.76 for 

classification of physical function. 

7.4.2 Importance factor for individual EHR feature in predicting depression 

Table 7.3 and 7.4 display the top 20 features ranked by their importance factors when using 

prediction windows of two weeks and one year, respectively. The “number of visits” feature was 

defined for each data modality that represents how many days in a patient’s record that data type 

appears (e.g., if a patient has two reports on one day and one report on a different day, their 

 

Table 7.2 Mean and standard deviation ROCAUC of different Feature selection strategy. 

Type Steps Only All Feature Selected Feature 

Global physical health 0.73 (0.03) 0.73 (0.01) 0.73 (0.02) 

Global mental health 0.52 (0.02) 0.55 (0.03)† 0.58 (0.02)* 

Fatigue 0.60 (0.05) 0.61 (0.03)  0.64 (0.03)*  

Physical function 0.76 (0.03) 0.75 (0.01) 0.76 (0.01)* 

Anxiety 0.50 (0.04) 0.54 (0.02)† 0.57 (0.02)* 

Depression 0.51 (0.02) 0.53 (0.02)† 0.56 (0.02)* 

Sleep Disturbance 0.59 (0.03) 0.61 (0.03) 0.64 (0.03)* 

* Significant improvement from Selected Feature over All Feature. † Significant 
improvement from All Feature over Steps Only. Bold values are the highest for a given 
PRO. 
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“number of visits for reports” feature would be two). For the two-week window, the “number of 

visits” features, were ranked 1, 2, 6, and 7. The high ranking of these features demonstrated the 

contribution of temporal frequency in predicting depression. When predicting two weeks before 

the diagnosis, there were six topic features in the top 20, and many of which contained words 

related to temporality, such as “week,” “continue,” and “stable.” When predicting with the one-

year window, “number of visits” features for medication and reports were no longer in the list of 

top 20 features. 

Table 7.3: Top 20 significant features in the prediction window of two weeks in advance. 

1. Number of visits for ICD-9 11. CPT: Under Diagnostic/Screening 

Processes or Results 

2. Number of visits for CPT 12. ICD-9: Symptoms involving digestive 

system 

3. Age 13. ICD-9: Symptoms involving respiratory 

system and other chest symptoms 

4. ICD-9: Anxiety, dissociative and 

somatoform disorders 

14. Topic: denies, family, use, alcohol, 

social 

5. ICD-9 780: General symptoms 15. CPT: Under Diagnostic/Screening 

Processes or Results 

6. Number of visits for medication 16. CPT: Under Organ or Disease Oriented 

Panels 

7. Number of visits for reports 17. Topic: normal, clear, bilaterally, 

extremities, soft 

8. Topic: sleep, feels, week, visit, days 18. Topic: blood, year-old, rate, post, status 

9. Topic: given, discussed, treatment, 

risk, prior 

19. ICD-9: Other disorders of soft tissues 

10. Topic: continue, stable, daily, bid, 

prn 

20. CPT: Under Established Patient Office or 

Other Outpatient Services 

Topic features are shown in bold and the feature of number of visits are underlined. 
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7.4.3 Attention weights for every EHR data modality in HCET  

As mentioned before, one advantage of RF over the majority of deep learning models is the 

ability to provide information on the importance factor of each feature contributing to classification 

[135]. However, there is a consistent effort to improve the interpretability of deep learning models 

like HCET. Figure 7.1 shows the attention weights for each of EHR data modalities over four 

prediction windows. According the result, medication and demo both are below the average value 

Table 7.4 Top 20 significant features in the prediction window of one year in advance. 

1. Number of visits for ICD-9 11. ICD-9: Other disorders of soft tissues 

2. Number of visits for CPT 12. CPT: Under Diagnostic/Screening 

Processes or Results 

3. Age 13. CPT: Under Diagnostic/Screening 

Processes or Results 

4. ICD-9: General symptoms 14. CPT: Under Echocardiography 

Procedures 

5. ICD-9: Anxiety, dissociative and 

somatoform disorders 

15. CPT: Under New Patient Office or Other 

Outpatient Services 

6. CPT: Under Established Patient Office 

or Other Outpatient Services 

16. ICD-9: Intervertebral disc disorders 

7. ICD-9: Symptoms involving 

respiratory system and other chest 

symptoms 

17. ICD-9: Symptoms involving skin and 

other integumentary tissue 

8. ICD-9: Symptoms involving digestive 

system 

18. ICD-9: Nonspecific abnormal results of 

function studies 

9. ICD-9: Other and unspecified 

disorders of back 

19. ICD-9: Nonspecific (abnormal) findings 

on radiological and other examination of 

body structure 

10. ICD-9: Other and unspecified 

disorders of joint 

20. CPT: Under Established Patient Office or 

Other Outpatient Services 

Topic features are shown in bold and the feature of number of visits are underlined. 
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of 0.2 in four prediction windows. Attention for ICD-9 is above 0.2 in window of two weeks and 

three months, but it drops in six months and one year. There is a consistent increase of attention 

for topics while the attention from CPT always ranks top. 

In the meantime, Table 7.5 reveals the effect of adding attention weights to each data modality 

at the code level embedding to the prediction task of HCET model. According to the result, the 

 

Table 7.5: Comparison of prediction performance for HCET models. 

Prediction 

window 
Two weeks Three months Six months One year 

Models 
ROCA

UC 

PRA

UC 

ROCA

UC 

PRA

UC 

ROCA

UC 

PRA

UC 

ROC

AUC 
PRAUC 

HCET  0.81  

(0.01) 

0.73 

(0.02) 

0.80  

(0.02) 

0.71  

(0.02) 

0.78  

(0.01) 

0.68  

(0.02) 

0.75  

(0.01) 

0.66  

(0.02) 

HCET  + 

attention 

0.81 

(0.01) 

0.73 

(0.01) 

0.80 

(0.01) 

0.70 

(0.02) 

0.79* 

(0.01) 

0.69 

(0.01) 

0.78* 

(0.01) 

0.67 

(0.01) 

Values in parentheses refer to standard deviations across randomizations and bold values 

denotes the highest in each column. * denotes the value is significantly better than no 

attention (p<0.05). 

 

Figure 7.1: Attention weights from every EHR data modalities in four prediction windows. 
Error bars denotes the standard deviation. The black dash line is at threshold of 1/5, which 
indicates constant weights in HCET models before. 
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ROCAUC at six months and one year are significantly improved with p=0.04 and p=3e-5, 

respectively. Furthermore, Figure 7.2 contains the prediction results in confusion matrices with 

patients separated in three primary diagnoses in the prediction window of two weeks from four 

models at the same threshold of 0.5, after probability calibration using the isotonic regression 

[142]. The numbers were aggregated from 10-fold cross validation. For each primary diagnosis, 

the distribution was imbalanced due to a lower number of depressed patients. Lasso generated poor 

accuracy as it almost always predicted the negative class.  VAE+RF slighted reduced false negative 

cases but the number of true negatives was worse than Lasso. MiME* both improved the numbers 

in true positives and true negatives while HCET with attention improved it further. The average 

precision and recall over three primary diagnoses from HCET with attention were 0.88 and 0.76, 

respectively. 

7.4.4 Self-attention for every code in EHR sequence Fitbit  

Figure 7.3 (a) and (b) exhibits the self-attention weights from two patients’ EHR sequences,  

 

Figure 7.2: Confusion matrix for patients separated by three primary diagnosis at a window of 
two weeks for four models. The numbers are aggregated together with 10-fold cross validation. 
Label 0 means non-depressed while 1 means depressed. 
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retrieved from the attention component of the last layer of the BRLTM model. It was illustrated in 

Figure 7.3 (a) that this patient was diagnosed with malignant neoplasm of the liver. The self-

attention weight indicated its highest association with the topic feature associated with the words 

“transplant, tacrolimus, liver, renal, and daily” and second highest relation to the ICD-9 code for 

“Organ or tissue replaced by transplant.” The topic feature with the words “liver, hepatitis, pain, 

hcc, and abdominal” described the fact that the patient was undergoing a liver transplant after the 

original diagnosis. Figure 7.3 (b) displays another patient was initially diagnosed with an 

unspecified joint disorder which led to a topic feature of “pain, knee, hip, fracture and shoulder” 

shown later in the EHR sequence. The darker color suggests the stronger association of this topic 

feature to the original diagnosis code (diagnostic radiology imaging) and a weaker latent relation 

 

Figure 7.3: Quantitative analysis of self-attention from two patients’ EHR sequences shown in 
color plots. CLS and SEP represent the beginning of the record and separators between visits, 
respectively. Topic features are represented as the five most commonly associated words. Each 
example is presented as two identical columns as the left one represents the code of interest 
colored in grey while the right one indicates the corresponding associations to the highlighted 
code on the left. The intensity of the blue color on the right column denotes the strength of the 
attention score; the deeper blue color suggests higher self-attention score and hence the stronger 

the latent association. 
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to the diagnosis of diabetes and the medication ceftriaxone. The attention scores demonstrated the 

association of the patient’s health status with an original diagnosis of joint disorder and a 

comorbidity of diabetes developed later. This matches the meta-analysis that arthritic patients have 

61% higher odds of having diabetes compared to the population without arthritis [148]. 

7.5 Discussion 

In this Chapter, various techniques to improve the interpretability of previous constructed 

machine learning models by revealing quantitative analysis of features’ latent association have 

been presented. According to Table 7.1, steps and total distance have significantly higher 

importance for classifying the majority of survey scores, while calories BMR significantly 

contributes to mental health scores, like anxiety and depression. Their importance factor may due 

to data quality, as  previous studies [7,9,89] have validated the data accuracy for step counts, 

distance traveled, and energy expenditure for activity trackers, while other features have not been 

validated in scientific works. Since Fitbits are not sold as medical devices, many of their features 

are not validated or regulated like other medical devices. 

Feature importance factors listed in Table 7.3 and 7.4 revealed individual contributions to the 

prediction task and demonstrated the important contribution of topic features as they occupied six 

out of the top 20 features for predicting at a two-week time horizon. In contrast, no topic features 

were included in the one-year prediction window, which further indicated the temporal importance 

of topic features. In fact, the dimension of topics was set to 100, which is relatively small compared 

to the dimensionality of ICD-9 codes, CPT codes and medications. Nevertheless, including them 

boosted the prediction performance significantly. This result suggested that aggregating more EHR 
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data sources especially like clinical notes could significantly increase model’s prediction 

performance. 

Adding attention weights effectively improved the interpretability of HCET model. In 

particular, attention weights were applied to each data modality, which revealed the relative 

importance of each data modality and the trajectory in four prediction windows. In addition, the 

attention weights of topics were consistently above the average value, demonstrating their 

important contribution in the prediction task. Finally, the self-attention from BRLTM models was 

able to provide quantitative analysis on latent association of every code in EHR sequences, which 

highly improves the transparency to trace how the model processes the dependency between them. 
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CHAPTER 8  

Conclusion 

8.1 Overview 

This chapter summarizes the results and contributions of this dissertation. It also suggests the 

limitation and future work of potential research directions to continue the work conducted in this 

thesis. Finally, this chapter gives concluding remarks about building classifiers and the potential 

of prediction models for applications in digital health. 

8.2 Summary and Results 

This dissertation presents methods that improve modeling temporal datasets in two aspects of 

digital health: vital signs collected by activity trackers (Fitbit) and longitudinal EHR data. These 

models demonstrate the feasibility of creating classifiers to monitor a patient’s physical and mental 

health status and predict diagnosis of depression using EHR, which could potentially be used in a 

clinical decision support system. Using these methods, researchers and clinicians can obtain more 

insight through modeling temporal patient digital health data and aggregating the various 

modalities available in the EHR. However, machine learning models are highly dependent on the 

quantity and quality of the training data, especially in the supervised learning paradigm. Therefore, 

addressing the need for large amounts of EHR data and the ability to integrate and standardize 

them between hospitals is critical to constructing accurate models. The availability of such datasets 

would be transformative, similar to how an image dataset such as ImageNet changed the landscape 

of computer vision. Since collecting and labeling patient’s EHR takes a significant amount of time 
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and effort and contains personally identifiable information, collaboration between several 

institutions is to enable data sharing (or alternatively, facilitate federated learning) could alleviate 

the bias on a small dataset by aggregating more patient cohorts from various locations, which 

eventually facilitate the development of modeling EHR and deployment of clinical decision 

support systems. The specific contributions of this dissertation are as follows: 

• A temporal machine learning model to process human vital signs collected by activity 

trackers and provide information about a patient’s health status. This model used an 

HMM to classify self-reported health status from activity tracker data. 

• A predictive model based on machine learning algorithms capable of aggregating EHR 

data across modalities to predict depression. This study consisted of two approaches to 

aggregate multimodal EHR data to predict diagnosis of depression. The multi-hot 

encoding method was able to combine data into one vector. Furthermore, the novel 

hierarchical embedding model overcame the challenge of data heterogeneity and 

sparsity in the data structure of EHR. 

• A bidirectional and two-stage transfer learning approach to model multimodal EHR. 

The BRLTM model is a novel adaptation of the BERT model, which realized the two-

stage pretraining and finetuning approach on modeling EHR data. This framework 

facilitates the process of EHR modeling by efficiently leveraging the limited data 

available through the EHR. 

• Multiple techniques to improve the interpretability of machine learning models. Several 

techniques were introduced to improve the interpretability of machine learning models 

built in the previous aims of this project, which enhanced the transparency and trust of 

models on the decision-making process by revealing latent feature associations. 
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There are relatively few previous studies that evaluate the clinical impact of activity tracker 

data, such as building a surveillance system for a user’s health status. In Chapter 3 of this 

dissertation, I first developed a novel application of an HMM, capable of classifying various types 

of patients’ self-reported health status from vital signs collected by Fitbit.  The results demonstrate 

the superior performance of temporal machine learning models like HMM over non-temporal ones 

in processing temporal data such as activity tracker data and weekly PRO scores. Although this 

was a retrospective analysis, the results verified our assumption that human vital signs collected 

by activity trackers were accurate enough to reflect user’s health status. We demonstrated that the 

sample size collected as part of the study was adequate to train machine learning models to classify 

patient’s PRO. Hence, this approach supports the feasibility of constructing a surveillance system 

to monitor a user’s health status in real-time. This model can be tested on data from other ongoing 

studies, which use activity trackers data to monitor or classify the surrogate of user’s health status 

in real time. 

Chapter 4 introduced a method to predict depression diagnosis with five heterogenous input 

data modalities. The study investigated the effect of length of a patient’s EHR on the prediction 

task. Model performance reported from four prediction windows demonstrated that records closer 

to the diagnosis are more likely to contain relevant information. 

Chapter 5 described HCET, an improved model that utilizes the hierarchical embedding 

architecture to alleviate the challenge of data heterogeneity and sparsity in EHR data. The results 

support the conclusion of Chapter 3 that incorporating temporal information into a model achieves 

better prediction accuracy than static models. More importantly, this model provides a more 

generalized architecture to aggregate EHR data modalities than the previous state-of-the-art, 

resulting in superior performance in predicting depression. 
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Chapter 6 describes the feasibility of applying a two-stage approach to model data from the 

EHR. The model first pretrained on a larger dataset and then finetuned for a specific task while 

performing bidirectional representation learning on multimodal EHR, which exhibited superior 

performance to previous models. These results demonstrated that the success of bidirectional 

sequence learning and the two-stage transfer learning can also facilitate modeling EHR sequences 

to build clinical decision support systems while alleviating the requirement of a large amount of 

training data for individual developers. The work described in Chapters 4-6 offers several 

approaches to address the heterogeneity and sparsity of EHR data for predicting depression 

diagnosis. These results tested our assumption that patient’s historical EHR contains the relation 

to the future health status of depression, and the data we collected was sufficient to training a 

machine learning model to predict the future diagnosis. Meanwhile, the structure of EHR 

sequences is similar to word sequences so that NLP models are able to generalize the success of 

representation learning on languages to EHR.  

Finally, Chapter 7 details several techniques to strengthen the interpretability and 

transparency of the machine learning models described in previous chapters, particularly for 

providing explanations of the decision-making process. The first approach enhances the 

transparency of the HMM model in Chapter 3 by providing the relative importance of each human 

signals, which provides guidance on the feature selection. The second work in Chapter 7 provides 

feature importance estimations for the five EHR modalities used in the prediction model built in 

Chapter 4. The third part in Chapter 7 improves the interpretability of the model built in Chapter 

5 by showing the attention weight of each input data modality. The final work in Chapter 7 further 

enhances the transparency of the model in Chapter 6 by conducting a quantitative analysis of the 
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latent association between every code in EHR sequences using self-attention and multi-head 

attention. 

8.3 Future Work 

There are several limitations of this work and ways to improve the existing methodologies. A 

sample of such improvements is briefly discussed in the following sections. 

8.3.1 Improving precision for the health status classification system  

The observation in Chapter 3 indicates the higher correlation between data collected by 

activity trackers with subjects’ physical health than mental health. Thus, it might be useful to 

develop hardware to record data more related to the mental health for future studies. For instance, 

there has been effort to develop non-invasive and continuous blood pressure tracking [149] using 

wearable devices, which may improve classifying mental health [150]. Also, anxiety and 

depression were only measured by PROMIS instruments in this study, which lacks precision as 

mental health is a broad and complicated field. More thorough evaluations of subjects’ mental 

states could provide more descriptive labels for training machine learning models, which could 

further improve the performance in predicting mental health status. 

In addition, another future direction would be to approach this as a regression problem to 

predict actual PRO scores over time. Furthermore, sequential deep learning models, such as 

recurrent neural networks (RNNs) and long-short-term-memory (LSTM) networks have also 

demonstrated strong performance when dealing with sequential data [124,151]. Therefore, these 

techniques may hold potential for applications to sensor data to classify or predict health status. 

However, such methods generally require a large amount of training data, which was not available 
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in the current study. In future studies, deep learning methods could be explored if a sufficiently 

large data set were collected. 

8.3.2 Increasing the label accuracy for the diagnosis of diseases in the prediction task 

As mentioned in Chapters 4-6, the clinical standard for depression diagnosis is the PHQ-9 

questionnaire, which is not routinely collected clinically. Instead, the time of depression diagnosis 

was determined by either of three criteria: ICD-9 codes, prescription of antidepressant, or mention 

of antidepressants in a clinical report. This method likely added false positives as some 

antidepressants can be prescribed to treat other diseases. We viewed this method as a conservative 

baseline. Actually, in clinics, patients would go through mental state examination (MSE) to 

evaluate their mental health [152]. Thus, future studies could choose a more accurate way to 

evaluate depression diagnosis, such as collecting more data from the MSE or implementing the 

PHQ-9 questionnaire [128] at different time points to define the time of depression onset 

definitively. More robust predictive models could then be constructed to track the disease 

progression and enable early detection. 

8.3.3 Enhancing the contextual representation of clinical notes 

The results presented both in Chapters 4 and 5 demonstrate the contribution of topic features 

in temporal models for predicting depression. Future work could include a larger number of 

clinical notes in building models on EHR. LDA, a topic modeling method, was adopted to process 

the clinical notes in the study. It is based on the bag of words assumption, which may not be the 

ideal way to represent clinical text. Future studies could utilize more sophisticated NLP tools, such 

as BERT [74] or GPT-2 [136] to optimize the contextual representation of clinical notes, which 

could further improve the overall performance. 
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8.3.4 Extending the model to predict other diseases and aggregate more EHR modalities  

The predictive power of models built in this dissertation was employed and limited to predict 

depression diagnosis, a binary classification task. Future studies could expand the models to 

perform multiclass prediction simultaneously for other highly prevalent chronic diseases such as 

hypertension, diabetes, or obesity. Finally, other EHR data modalities such as laboratory results 

[139] were not included in these models as they were unavailable for collection. Thus, future 

studies may extend the model to aggregate more data modalities to further utilize the heterogeneity 

of EHR data. 

8.4 Concluding Remarks 

In digital health, the feasibility of exhibiting clinical impact on users’ health status using 

activity trackers has not been fully explored. In the meantime, current screening tools used in 

clinics for depression only produced a true positive rate of 50%. These challenges highlight the 

need for assisting clinicians with better clinical decision support systems to monitor a patient’s 

health status or predict future diagnoses. The contributions of this dissertation provide the 

foundation towards modeling datasets for clinical decision support systems in digital health. These 

contributions include developing a temporal machine learning approach to classify various types 

of self-reported health status using activity tracker data, which validates the feasibility of building 

a real-time surveillance system to monitor users’ health status. Furthermore, this dissertation 

presents a variety of methods to process multimodal EHR data to predict future diagnoses of 

depression. These models provide a potential application of building clinical decision support 

systems to assist clinicians for depression screening based on EHR data. This dissertation 

successfully applies the two-stage transfer learning and bidirectional sequence learning approaches 
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to EHR modeling. The model pretrains on a large standard dataset and then finetunes for specific 

tasks, effectively resolving the limitation of data scarcity in modeling multimodal EHR. Finally, 

this work's contributions include numerous techniques to improve the interpretability and 

transparency of machine learning models by revealing the importance factor for each data modality 

and feature. This effort could provide decision-making guidance for clinicians in health status 

classification or disease prediction and ultimately shorten the time to deploy machine learning 

models in clinics. 
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