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a  b  s  t  r  a  c  t

We  explore  the phytoplankton  community  structure  and  the  relationship  between  phytoplankton  diver-
sity  and  productivity  produced  by a self-emergent  ecosystem  model  that  represents  a  large  number
of  phytoplankton  type  and  is  coupled  to a  circulation  model  of the California  Current  System.  Biomass
of  each  modeled  phytoplankton  type,  when  averaged  over the  uppermost  model  level  and  for  5-years,
spans  7 orders  of magnitude;  13  phytoplankton  types  contribute  to the top 99.9%  of  community  biomass,
defining  modeled  species  richness.  Instantaneously,  modeled  species  richness  ranges  between  1 and  17
while  the  Shannon  index  reaches  values  of  2.3.  Diversity  versus  primary  productivity  shows  large  scatter
with  low  species  richness  at both  high  and low  productivity  levels  and  a wide  range  of  values includ-
odel
alifornia Current System

ing  the maximum  at intermediate  productivities.  Highest  productivity  and  low  diversity  is  found  in the
nearshore  upwelling  region  dominated  by fast  growing  diatoms;  lowest  productivity  and  low  diversity
occurs  in  deep,  light-limited  regions;  and  intermediate  productivity  and  high  diversity  characterize  off-
shore,  oligotrophic  surface  waters.  Locally  averaged  diversity  and  productivity  covary  in  time  with  the
sign of correlation  dependent  on  geographic  region  as representing  portions  of  the  diversity-productivity
scatter.
. Introduction

Aquatic ecosystems are characterized by remarkable phyto-
lankton diversity. One estimate places the number of phytoplank-
on species in the world ocean at approximately 4000 (Sournia et al.,
991), while counts of freshwater species exceed this by almost

 factor of four (Bourrelly, 1985). In limited geographic regions,
hese numbers are reduced but still high. Cloern and Dufford (2005)
bserved approximately 500 distinct phytoplankton taxa within
he San Francisco Bay estuary and Venrick (2009) documented
early 300 phytoplankton taxa in the California Current eastern
oundary upwelling system.

The general importance of biodiversity in ecology is widely dis-
ussed. Phytoplankton diversity in the ocean may  influence the
unctioning of marine ecosystems through, for example, overall

roductivity, nutrient cycling, and carbon export. Yet most marine
iogeochemical or ecosystem models are designed with limited
otential for studying phytoplankton biodiversity. Early models
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included a single phytoplankter and one zooplankter, function-
ally representing simple predator-prey interactions (e.g., Franks
et al., 1986; Fasham et al., 1990). Over the last 15 years, research
groups have increased model complexity by including, among
other changes, two  (Kishi et al., 2007) and three (Moore et al.,
2002) autotrophs. Importantly, ocean ecosystem models are now
regularly coupled to spatially-explicit ocean circulation models,
enabling spatially variable ecosystem response and the potential
for niche differentiation among represented species. However, sim-
ple and complex ocean ecosystem models to date generally have
ignored questions of biodiversity, focusing instead on many other
important issues including understanding model dynamics (e.g.,
Edwards et al., 2000, Spitz et al., 2003), ecosystem response to cir-
culation features (Edwards et al., 2000; Fiechter et al., 2009; He
2011), biogeochemical distributions (Moore et al., 2002) and bio-
geochemical fluxes (Fennel and Wilkin, 2009; Previdi et al., 2009).

Recently, Follows et al. (2007) developed an ecosystem model
that greatly increased the number of competing phytoplank-
ton compartments (to 78) to test phytoplankton community
self-organization in a modeled global ocean. Although not all phy-

toplankton types were suitably adapted to compete effectively
for resources, considerably more types were sustained at non-
negligible concentrations than possible in more traditional models.
Directly calculated diversity indices of temporally and zonally
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http://www.sciencedirect.com/science/journal/03043800
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veraged modeled phytoplankton revealed largest values in the
ropics that decreased with latitude (Barton et al., 2010).

We have coupled this self-organizing ecosystem model to a
hysical circulation model of the California Current System. Goebel
t al. (2010) describe the performance of this model in terms of
patial structure in total chlorophyll concentration, and biogeog-
aphy and temporal progression of underlying functional groups.
owever, that work does not examine overall biodiversity or its

tructure. In this article, we examine output of the self-organizing
cosystem model output in the context of the extensive phyto-
lankton observations within the CCS. While the overall modeled
iversity cannot compare to nature with a limit of 78 phytoplank-
on types (Goebel et al., 2010), it exceeds the diversity represented
n most traditional marine ecosystem models.

In this paper, we examine how modeled diversity relates to pro-
uctivity using an ecosystem model approach, and then compare
odeled trends to those observed in nature. Multiple patterns have

een documented and are shown schematically in Fig. 1. Such pat-
erns include monotonic increases or decreases in diversity with
roductivity and maximum diversity at intermediate productivity
hat forms a unimodal or hump-shaped curve, often enveloping
cattered data, or no relationship at all. The scarcity of observed
oncave-up (U-shape or inverse hump-shape) trends (e.g., Adler
t al., 2011) precludes their inclusion in Fig. 1. Examples of these
aried relationships can be found in meta-analyses of mostly ter-
estrial systems (Waide et al., 1999; Mittelbach et al., 2001) and
quatic benthic communities (Witman et al., 2008). Studies of
elagic aquatic environments have also documented unimodal-

ike structure, though usually with considerable scatter similar
o that conceptualized in Fig. 1d (Agard et al., 1996; Li, 2002;
rover and Chrzanowski, 2004; Irigoien et al., 2004; Duarte et al.,
006; Spatharis et al., 2008). Cermeno et al. (2008) find no sta-
istical relationship in their analysis of coastal, shelf, and open
cean environments. Recently Adler et al. (2011) argue, based on
heir meta-analysis of terrestrial plants that no simple relationship
xists but that many factors contribute to variation in diversity. In
his article, we test whether our model results conform to any of
hese trends in the diversity-productivity relationship using two
iversity indices. Subsequently, we use the model to identify geo-
raphic regions and associated growth conditions that contribute to
he differing portions of the diversity-productivity scatter. Agree-

ent between modeled and observed macroecological patterns
mproves confidence in using this modelling approach to simulate
ature and promotes future testing to determine the importance
f representing such diversity in ecosystem models.

. Methods

.1. Self-assembling ecosystem model of the phytoplankton
ommunity

We  investigate simulated phytoplankton diversity and how it
elates to productivity using a 3-dimensional ecosystem model for
he California Current System. Details of this ecosystem model have
een documented previously (Goebel et al., 2010), and we provide
nly a brief description here.

The ecosystem model has structure similar to many NPZ-type
arine ecosystem and biogeochemical models in the literature. At

ach model grid point, changes in concentrations of inorganic nutri-
nts, phytoplankton, zooplankton, and dissolved and particulate
rganic matter are budgeted. What distinguishes this model from

thers is the relatively large number of phytoplankters represented.
ere, we resolve 78 phytoplankton analogs. Each analog is ran-
omly assigned parameters that determine physiological responses
o light, nutrient and temperature. Parameter values are drawn
delling 264 (2013) 37– 47

from distributions constrained by observations and measurements
reported throughout the literature. Our maximum growth rates
and prescribed distributions of half-saturation levels avoid the ini-
tialization of a phytoplankter analog that would outcompete all
others. We  divide phytoplankton into functional groups based on
nutrient utilization, and each functional group is further sepa-
rated into a multitude of phytoplankton types, distinguished by
unique combinations of temperature, light and nutrient responses.
Large phytoplankton groups include diatoms, which require silica,
and large non-diatoms (LND), which do not. Small phytoplankton
groups include Prochlorococcus-like phytoplankton (PLP), which
do not use nitrate, and small non-Prochlorococcus (SNP), which
can utilize all three forms of inorganic nitrogen. Within each
phytoplankton group, approximately 20 phytoplankton types are
initialized. All parameters for phytoplankton losses, and het-
erotrophic and remineralization processes (e.g., mortality, organic
matter export, phytoplankton sinking, grazing of phytoplankton,
particulate sinking, nitrification) are fixed rather than randomly
prescribed. Size-based differences in sinking and reduced grazer
preference for diatoms exist in the model. Phosphorus, nitrogen,
and silica budgets are explicit, though phytoplankton concentra-
tions follow Redfield ratios. Biomass and productivity reported in
units of carbon are converted with a molar carbon:phosphorus ratio
of 106. Carbon is converted to chlorophyll for SNP, PLP, LND, and
diatoms as in Goebel et al. (2010). We  note that model output used
in this study is quantitatively different from than that presented in
Goebel et al. (2010) (using, for example, a different random number
seed to generate the exact phytoplankton community), but over-
all results (e.g., of functional group distributions) are qualitatively
similar to the previous study.

The ecosystem model is embedded within a physical circulation
model that is responsible for advection and diffusion of ecosystem
component concentrations. We  use the Regional Ocean Modeling
System (ROMS; Shchepetkin and McWilliams, 2005), and our CCS
domain extends at 1/10 degree resolution from Baja, California to
the Canadian border, and to 134 W longitude. A total of 42 terrain-
following levels span the water column vertically. The physical
circulation is forced by atmospheric fields provided by the Coupled
Ocean Atmospheric Mesoscale Prediction System (COAMPS; Hodur,
1997), a high resolution regional atmospheric model, and lateral
boundary conditions are obtained from a global ocean state esti-
mate (ECCO, Estimating the Circulation and Climate of the Ocean;
Wunsch et al., 2009). More extensive details of the physical circu-
lation model and related applications are published (Broquet et al.,
2009; Veneziani et al., 2009a; Veneziani et al., 2009b; Broquet et al.,
2010). Model integration extends from January 1, 1999 through
December 31, 2004, with the first year treated as spin-up and not
included in the analysis.

2.2. Diversity calculations and analyses of biomass and
productivity

We  assess phytoplankton diversity with two measures:
the Shannon index (SI) and a measure of richness. The
ecologically-relevant, frequency-based SI is widely used in phyto-
plankton ecology to portray both species richness and evenness
by the uncertainty of sampling such a community at random
(Legendre and Legendre, 1998). SI (dimensionless) is calculated
as H = −

∑n
j pj ln pj , where pj is the proportion of species j to the

total biomass. A less descriptive, though perhaps more intuitive,
measure of diversity also calculated is simply the number of phy-

toplankton types that contribute to the top 99.9% of total biomass.
We consider this term as synonymous with species richness (SR)
when comparing model results to observations. We  calculate both
SI and SR similarly, within each model grid cell volume daily for
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ig. 1. Commonly observed relationships between diversity and productivity. Show
roductivity or biomass, and a unimodal or hump-backed trend that (c) fits or (d) e

he full five years of the model run. It is important to emphasize
hat the term species diversity, as considered for both measures,
s not exact for the model. Each modeled phytoplankton type
oes not represent a particular taxonomic species, but an entity
f an unknown number of species, which includes fewer types
han within a functional group. As a result, our diversity values
ould be considered biased low. Furthermore, we will show that
any phytoplankton types contribute to the remaining 0.1% of total

iomass with concentrations spanning over 4 orders of magnitude.
odeled phytoplankton types are prevented from extinction by

umerically maintaining exceedingly small concentrations. These
ow biomass types can potentially act as seed populations though in
ractice, none achieves sufficient sustained growth to challenge the
ost competitive phytoplankton types in the top 99.9% of biomass.
t locations, such as abyssal waters, where overall biomass is
xtremely low and phytoplankton types are numerically sustained,
iversity metrics are artificially high. In order to avoid this misrep-
esentation, we omit from the diversity calculations phytoplankton
ypes with biomass below a prescribed limit (1e−5 �M P).

One factor that influences diversity calculations in nature is
ispersal limitation (Partel and Zobel, 2007). Physical transport
echanisms do not uniformly disperse all species throughout a

egion. Thus in any given zone, some species are unable to compete
or resources because they have never been transported to the area
nd do not exist locally. In our modelling study, this factor does not
pply because all phytoplankton types are initialized identically
ithin each model cell and, as mentioned above, poorly adapted

ypes whose concentration continues to decline are numerically
ustained at vanishing but still positive levels. As a result, all phyto-
lankton types are available at all grid cells and all times to compete
or resources and potentially contribute to calculated diversity.
herefore, while dispersal is explicitly modeled with divergences
nd convergences resulting in local decreases and increases in con-
entration, differences in the growth response, grazing factors, and
he changing physical, chemical and biological environment play a
arger role in shaping the diversity and biogeography of the phyto-
lankton community.

Members of the phytoplankton community are ranked by
ontribution to total biomass in the surface domain. We  deter-
ine each phytoplankton type’s surface biomass by integrating

ts biomass across all (181 × 186) horizontal grid cells at the
ppermost grid level, normalizing by the associated volume, and
veraging over all 1828 daily snapshots of the 5-year model exper-
ment. For identification purposes, each type is assigned a unique
hytoplankton number, from 1 to 78, which is arbitrary, deter-
ined by its order of initialization.
We  compare diversity and productivity across three different

ocations of the model domain. At each location, profiles of diver-
ity indices and productivity are averaged over 4 square degrees
hat consist of approximately 440 data points; a square block of

oints represents the south (35.9N–37.9N, 129.1W–131.1W) and
orth (44.0N–46.0N, 129.1W–131.1W) offshore regions, while a
earshore strip of points represents the coastal subregion that
xtends from the coast to the 500 m model isobath between
conceptual drawings for a monotonic (a) increase and (b) decrease in diversity with
s the data.

latitudes 36.0N and 44.6N. We  investigate how the model output
from these daily profiles of diversity and productivity vary with
time and depth. ROMS uses a terrain-following coordinate system
in the vertical. Therefore, the depth of model levels varies spatially
over averaged regions. At the south offshore subregion, the aver-
age depth and standard deviation is 4.2 ± 0.1 m at the surface, while
the deep ROMS level spans 158 m to 170 m and averages 165 m. The
surface coastal subregion tested averages 0.3 m depth, ranging from
0.14 m to 0.53 m.

3. Results

Of the 78 randomly parameterized phytoplankton types ini-
tialized in the model, 13 types contribute to the upper 99.9% on
average, and up to 17 types instantaneously. The percentage of each
phytoplankton type’s contribution to this average biomass concen-
tration is calculated and yields the species abundance distribution,
shown in Fig. 2a as a function of phytoplankton number ordered
by biomass. The steep decline in percentage with ranked phyto-
plankton number demonstrates that the majority of the biomass
(76%) consists of a few types, namely two diatoms located primar-
ily in coastal waters, and a small non-Prochlorococcus (SNP) found
in both north offshore and coastal waters (Fig. 3a-c). The fourth and
fifth highest types include a central to southern offshore PLP and a
SNP that is found in south offshore and coastal waters (Fig. 3d-e).
The other top phytoplankton types include 3 diatoms, 2 SNP, and 3
small Prochlorococcus-like (PLP), but no large non-diatoms (LND).
The remaining 0.1% of the total biomass includes low concentra-
tion phytoplankton types that were excluded from the calculation
of diversity and can best be visualized when plotted on a log-scale
(Fig. 2b). In the model, average biomass varies by over 7 orders
of magnitude. While some phytoplankton types vary around their
mean biomass by over 5 orders of magnitude, the top 7 types vary
by less than 2 orders of magnitude and dominate the community
for all seasons. In the average abundance distribution, approxi-
mately half of all phytoplankton types are numerically maintained
at a prescribed minimum concentration, although additional types
with means above this floor transiently experience periods at this
minimum level. The dominant phytoplankton community near the
surface is similar to that calculated using all depths (not shown).

One useful illustration of the modeled phytoplankton commu-
nity structure is the relationship between cell size and total biomass
(Fig. 4), which will be compared to observations in California coastal
waters (Chavez et al., 1991; Bruland et al., 2001) and other systems
(Agawin et al., 2000) in section 4.1 on model-observation compar-
isons. Below a total biomass of 1 mg  Chl m−3, modeled large cells
contribute to 90% or more of total biomass, and small cells make up
the remainder. At higher levels of total biomass, the percent con-
tribution of small cells decreases dramatically, reaching only 5% of
total biomass at levels above about 3 mg  Chl m−3.
Near the surface, diversity shows cross-shore and latitudinal
gradients. Fig. 5a-b present maps of the Shannon index (SI) and
species richness (SR) calculated from phytoplankton biomass aver-
aged over the upper 20 m of the water column and the 5-year
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ig. 2. Time and space averaged biomass for each phytoplankton type, ordered ac
ogarithmic scale including maximum and minimum values attained throughout the
re  colored as indicated in each legend. The horizontal black dashed line indicates t

uration of the model run. The domain divides into three rep-

esentative regions: north offshore, coastal, and south offshore.
ighest average SR (∼6-8) and SI (∼0.9-1.2) are found over a broad

pan of the region south and offshore, consisting primarily of small
hytoplankton (Fig. 3d-e). In the north offshore region, the model
g to biomass and shown (a) as percent of the total averaged biomass and (b) on a
lation (bold dashed lines above and below mean). Phytoplankton functional groups
el used to define species richness for this averaged plot.

yields lower values for both SR (∼3-4) and the SI (∼ = 0.4-0.6), and

is dominated by a diatom and SNP (Fig. 3b-c). Generally, at all
latitudes, diversity decreases as distance to the coast decreases.
Within the central and northern California coastal zone, from Pt.
Conception to Cape Mendocino for example, SR averages about 5
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hile the SI averages 0.9 and includes several diatoms and SNPs
Fig. 3a-c, e).

Biological productivity near the surface, similarly averaged
ver the upper 20 m of the water column and over the full 5-
ear duration of the model run (Fig. 5c), is greatest along the
entral and northern California coastline, exceeding 40 mg  C m−3

−1 over a large latitudinal swath. This productivity decreases
apidly with distance offshore, up to four-fold from the coast to
he coastal transition zone. Offshore, depth-integrated rates of
-year averaged, modeled productivity varies between approxi-
ately 150-300 mg  C m−2 d−1.
A plot of productivity versus SR and SI from grid points of the

odel domain and daily time points of the five-year model run
hows considerable scatter (Fig. 6). SR ranges from 1 to 17 with an
verage and standard deviation of 3.5 + - 2.6 and is discrete, tak-
ng on integer values for each space and time point; thus Fig. 6a-b
resents what appear to be horizontal lines, but in fact comprise

any individual points. The SI reaches values of 2.3 over a continu-

us range (Fig. 6c-d). To emphasize the structure of the relationship
t both the low and high productivity ends of the scale, we present

ig. 4. Percentage contribution of small and large phytoplankton types on to the
otal biomass vs. chlorophyll (mg  m−3) concentration. Each pair of points rep-
esents one daily grid cell from the model domain. Size classes are predefined
n the model by their maximum growth rate, and are not predictions of the

odel.
 types, as shown in Fig. 2. Two diatoms (Dia), two  small non-Prochlorococcus (SNP),
r each plot.

both logarithmic and linear versions in Figs. 6a,c and 6b,d, respec-
tively. Both diversity indices (and their range) decrease at both low
and high rates of productivity. Highest diversity is found at inter-
mediate rates of productivity, though lower diversity also occurs
at these levels. Rather than appearing as a scatter of data to which
one can fit a single curve (e.g., Fig. 1c), the scatter plots suggest
an upper bound for most points which fill in the area below, as
shown conceptually in Fig. 1d. Depending on the diversity index
used, this upper bound displays a triangular (SR) or irregular (SI)
shape.

Fig. 7 presents scatter plots of productivity versus the SI at 3
locations (coastal and northern and southern offshore; see Fig. 5a
and Methods for exact location of averaged area) and four depth
bins for each day of the simulation. Low diversity and low pro-
ductivity simultaneously occur in deep (150-200 m)  waters of the
south and north offshore locations while low diversity-high pro-
ductivity regions are observed in the upper 20 m at the coastal
location. Highest diversity is observed throughout the upper 150 m
of the south offshore site in regions of intermediate rates of pro-
ductivity. Variation in productivity and SI at the northern offshore
location follows a similar trend to that at the southern offshore
location, although with a lower peak in diversity between 50 and
150 m.

The relationship between SI and primary production varies tem-
porally over the 5-year duration of the experiment. Fig. 8 shows
time-series for both quantities from three representative regions
of the domain (see Fig. 5a and Methods for exact location and
averaged area). In all three cases a clear seasonal cycle in both
quantities is present. In the surface waters, diversity and pro-
ductivity are found to covary inversely, with peaks in production
accompanying reductions in SR. This relationship is most strik-
ing in coastal waters, which is dominated by the large diatoms
(Fig. 3a-b). Here, diversity rises in late summer with elevated lev-
els extending through fall and productivity showing considerable
variability but reaching elevated levels in springtime (Fig. 8a). The
correlation coefficient for the near-coastal time-series is -0.69. In
offshore waters at the surface, the seasonal cycle of productivity
(mostly due to small phytoplankton types) is still largely out of
phase with the SI, but occurs earlier in the year, generally in late
winter or early spring (Fig. 8b). The correlation coefficient is -0.48,
still showing a strong inverse relationship. Deeper waters offshore
offer a different relationship (Fig. 8c). Diversity and productivity
exhibit elevated levels during summertime, which reach minima

in winter. The correlation coefficient for these time-series (0.71) is
positive, in contrast to the values for surface waters. Similar trends
exist for the relationship between SR and primary production (not
shown).
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Fig. 5. Five-year averages of (a) Shannon index, (b) species richness, and (c) rates of primary production averaged over the upper 20 m of the water column (or to the ocean
bottom,  whichever is shallower). White circles in (a) indicate north offshore, coastal, and south offshore locations used in Fig. 7.

Fig. 6. Scatter plot of diversity, as species richness and Shannon index, vs. rate of primary productivity, plotted on (a, c) linear and (b, d) logarithmic scales. Each point
represents one grid cell and day between 2000 through 2004 from the upper 200 m.  All points where primary productivity equals zero are omitted from log scale plots. We
randomly select and plot 10% of the model output.
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Fig. 7. Scatter plot of species richness vs. rate of primary productivity, both from one ROMS level and averaged horizontally over 4 square degrees as described in the text, at
t south
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hree  locations shown as circles in Fig. 5: northern offshore (blue), coastal (green), 

epth  ranges: (a) 0-20 m,  (b) 20-50 m,  (c) 50-150 m,  (d) 150-200 m.

. Discussion

This modelling study analyzes emergent biodiversity within a
omplex community ecosystem model that resolves a large number
f phytoplankton types and thus has the capability to move beyond
odel descriptions by size class and functional group toward inves-

igation of planktonic species. The model setting is the California
urrent System. Goebel et al. (2010) evaluated overall chlorophyll
tructure, biogeography and seasonal variability of the functional
roups and a few top phytoplankton types within this model. Here,
e focus on the number of phytoplankton that contribute to the

op 99.9% of total biomass (SR) and the Shannon index (SI) to
valuate diversity. In section 4.1, numbers, size, and biomass of
on-negligible phytoplankton types are used to compare commu-
ity structure to that observed in nature. In section 4.2, we discuss
he relationship between modeled phytoplankton diversity and
roductivity.

.1. Model-observation comparisons

When compared to typical ocean ecosystem models with only a
ew phytoplankton functional groups, the present model produces

 rich phytoplankton assemblage, with average simulated SR as
igh as 13 and instantaneous values reaching 17. Nonetheless,
his modeled diversity is still considerably less than the num-
er of organisms documented in CCS field studies (Balech, 1960;

olin and Abbott, 1963; Venrick, 2009) and analysis of the San
rancisco bay, a CCS-influenced inlet (Cloern and Dufford, 2005).
e  believe this difference results from two factors. First, though the
odel resolves 78 phytoplankton types within 4 functional groups,
ern offshore (red). Each point represents a daily value. Results are binned into four

each modeled type may  not represent a single species, but rather
a group of species. Stated differently, modeled types are param-
eterized to grow under overly broad environmental conditions
relative to species. Our differentiation between phytoplankton
types is based on parameters that vary with functional group
and set requirements for light, temperature, and nutrients; alter-
nate values of these parameters can modify modeled diversity. For
example, expanding (contracting) the temperature window over
which phytoplankton types thrive reduces (increases) modeled
SR by reducing (increasing) the effective number of temperature
niches in the system (not shown). Furthermore, species differen-
tiation in nature is likely associated with other conditions (e.g.,
micronutrient requirements, light spectra) that are not included in
the present model. Although we  represent many important com-
ponents that distinguish phytoplankton, we  do not encompass the
full spectrum of natural influences that characterize natural species
variability. Finally, the underlying physical circulation is itself an
approximation to the true oceanic motion and exists on a 1/10
degree grid. As a result, some features of the natural circulation,
such as submesoscale motion, are poorly represented in the model,
potentially resulting in fewer environmental niches than exist in
the true California Current System.

Despite quantitative differences between absolute counts of SR
in the model and observations, qualitative aspects such as the
phytoplankton types that dominate and those that make up the
background community compare favorably with nature. In a com-

prehensive study along Line 87 of the CalCOFI sampling grid in
Southern California, Venrick (2009) identified 294 taxa, with 26
considered as ‘dominant’ using a recurrent group analysis. In their
study two diatoms and one coccolithophorid accounted for 61% of
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ig. 8. Time-series of Shannon indices and rates of primary production, both from o
ime-series from (a) the surface level along a coastal strip, (b) the surface level fr
outhern offshore region. Average depth (z), and correlation coefficients between S

he total biomass. Our time-averaged biomass calculations have
he top three phytoplankton types (two diatoms and a SNP which
otentially includes coccolithophorids) contributing to 76% of total
iomass. The next 10 most dominant modeled types consist of
wo diatoms and two SNP and six PLP, whereas Venrick (2009)
ound seven diatoms, five dinoflagellates, 14 coccolithophores, one
ryptomonad, and one silicoflagellate (their microscopy does not
dentify picophytoplankton, like Synechococcus or Prochlorococcus).
n our model, the remaining 0.1% of biomass comprised 20-25 types
n the time-average, themselves spanning over 4 orders of magni-
ude in biomass (Fig. 2b). These types arguably parallel the over 250
pecies counted by Venrick (2009) but not considered dominant.

Modeled cross-shore differences in diversity can also be com-
ared to observations. Venrick (2009) identified 1 coastal and 2
ffshore assemblages consisting of dominant, associated phyto-
lankton species along a Southern California Coast cross shore
ransect. The coastal assemblage consisted of five diatoms. Each
ffshore assemblage consisted of two to three times the number of
rganisms observed in the coastal assemblage and consisted of a
ixed assemblage dominated by smaller phytoplankton such as

occolithophores, dinoflagellates, silicoflagellates, cryptomonads
s well as diatoms. The modeled offshore community also includes

 higher percentage of small phytoplankton types; analysis of the
ime-series shown in Fig. 8 indicates that the ratio of instanta-
eous SR from the southern offshore site to that at the coastal

ocation is always greater than one, more than 1.5 over half the time,
nd occasionally as high as 2.8. Despite quantitative differences in
iversity between model and observations, which are sensitive to
arameter and formulation choice, agreement among qualitative

omparisons support the likelihood that ecological mechanisms
perating within the model are similar to those in nature and can
rovide qualitative insight into the diversity-productivity relation-
hip.
MS level and averaged horizontally over 4 square degrees as described in the text.
e southern offshore region, and (c) a level with average depth of 164 m from the
n indices and productivity are displayed in plot titles.

This shift in phytoplankton size versus distance offshore can also
be characterized in terms of biomass and compared to other obser-
vations. Studies have documented the dominance of small cells at
low levels of total biomass (Agawin et al., 2000) and large cells in
high biomass California coastal waters (Chavez et al., 1991; Bruland
et al., 2001). Small cells have a superior capacity to acquire nutri-
ents and thrive in oligotrophic waters even at low light conditions.
Conversely, the higher growth rate of large cells in nutrient replete
environments supports their dominance in eutrophic (e.g., coastal
upwelling) systems. In addition, size specific grazing may  also
play a role; the rapid response of fast growing microzooplankton
constrain small phytoplankton populations, whereas the slower
growth of large zooplankton lags fast growing diatoms (also less
palatable to grazers) leading to high diatom biomass. The modeled
output produces this same division in cell size with biomass (Fig. 4).
The transition at which 50% of modeled biomass comprises small
cells was  approximately 1 mg  Chl m−3, which lies in between the
higher value for the CCS (Chavez et al., 1991; Bruland et al., 2001)
and 0.3 mg  Chl m−3 reported generally for open ocean and coastal
waters by Agawin et al. (2000). The ability of the model to depict
this structure in the phytoplankton community supports the first
two principles of phytoplankton community assembly proposed by
Cloern and Dufford (2005) (i.e., (1) cell size is determined by nutri-
ent supply and selective grazing and (2) diatoms respond rapidly
to nutrient pulses), and lays the foundation for an accurate repre-
sentation of phytoplankton diversity in the CCS.

Modeled productivity rates compare well with nearby in situ
measurements. Depth integrals of modeled productivity off Mon-
terey Bay during summer (approximately 1200 mg C m−2 d−1) are

consistent with average measurements by Chavez et al. (1991) at
the mouth of Monterey Bay in June and July of 1998 (1240 and
740 mg C m−2 d−1, respectively). The four-fold decrease in produc-
tivity from coastal to the coastal transition zone reported by Chavez
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t al. (1991) is also roughly consistent with model output. Offshore,
epth-integrated rates of 5-year averaged, modeled productivity
150 - 300 mg  C m−2 d−1) is similar to satellite-based estimates of
00 mg  C m−2 d−1 in the eastern portion of the North Pacific sub-
ropical gyre (Longhurst et al., 1995). Agreement of our modeled
ates of productivity with measured promotes investigation of the
odeled diversity-productivity relationship.
Overall, these comparisons between observations and model

utput support the modeled phytoplankton assemblage as rea-
onable in terms of type, cell size distribution, and biogeography.

ith this foundation established, we discuss relationships between
odeled phytoplankton productivity and diversity.

.2. The diversity-productivity scatter

This study is motivated by the widely discussed diversity-
roductivity relationship as estimated in observational studies. The
cean ecosystem model used here is one of the few modelling
pproaches that can provide similar information from a differ-
nt perspective. In our model output, SR varies between 1 and
7 and SI is as high as 2.3 across 11 orders of magnitude in pro-
uctivity, both with substantial scatter (Fig. 6). This structure is
ifferentiated by regions of the CCS that represent different eco-

ogical niches, including highly productive coastal upwelling zones,
ligotrophic offshore surface waters, and deeper, low productivity
abitats (Fig. 7). The upper boundary of scatter in Fig. 6 suggests a
riangular (SR) or irregular (SI) shape; the lower bound argues for

 flat relationship. Qualitatively, this scatter of points fill in areas
hose shapes resemble that formed by the distribution of points

btained in the comprehensive studies of marine phytoplankton
y Li (2002) and Irigoien et al. (2004) (Fig. 9). The range in modeled
I compares to that reported by Irigoien et al. (2004) but not to
he high cytometric diversity values of Li (2002), which upon con-
ersion of the exponential form reach high diversity values of 4.3
ue to the representation of both physiological and genetic vari-
tion among organisms rather than solely taxonomy. Similar to
he observed scatter reported by most observations in non-marine
Adler et al., 2011) and marine (Li, 2002; Irigoien et al., 2004; Duarte
t al., 2006) systems, the scatter in our model results does not reveal

 straightforward curvilinear relationship between diversity and
roductivity, consistent with Adler et al.’s (2011) argument that
any factors contribute to the variation in diversity and therefore

iversity-productivity relationships.
We tested the relationship of modeled productivity using two

easures of diversity, each of which contains different information
nd varied shapes in their scatter of data, but resemble the scatter
n the relationship. SI encompasses a balance between richness and
venness of the phytoplankton community (Li, 2002). Both SR and
I peak at intermediate values of the productivity gradient. At low
roductivity, phytoplankton communities have low richness and
igh evenness, as found in resource-deficient, deep waters repre-
ented by the left hand side of the scatter in Fig. 7d. An increase in
ichness results in an increase in productivity regardless of even-
ess. This is likely due to increased availability of resources and
herefore niches that are utilized by a greater number of phyto-
lankton types, resulting in a more productive system. Evenness of
he community further exaggerates the increase in SI with richness.
t levels of productivity beyond 10 mg  C m−3 d−1, both diversity

ndices decrease; a lower SR will always result in lower diversity
Fig. 1a, b), and this decrease may  be exaggerated by a reduction in
venness as select phytoplankton types dominate. This reduction
n richness and evenness within increase in productivity is rep-

esented by the diatom-governed productive coastal waters that
orm the scatter on the right hand side of Fig. 7a. The interplay
f evenness and richness for SI is likely responsible for distorting
he shape of the scattered points (Fig. 6c-d) from that when using
Fig. 9. Fig. 1a (a) from Irigoien et al. (2004) and (1b) (b) from Li (2002) showing
observed relationships between phytoplankton diversity and biomass or abundance.

a simpler measure of diversity (SR; Fig. 6a-b). Stochasticity also
plays an important role in the variability of diversity-productivity
relationship scatter for models and observations (Spatharis et al.,
2010).

Despite variability in the diversity-productivity relationship
scatter, different regions of the modeled scatter can be interpreted
through growth conditions that vary with environmental charac-
teristics found in different regions of the model domain (Fig. 7).
In the low diversity-low productivity deep offshore regions that
support communities on the left side of the distribution (Fig. 7c,d),
light limits phytoplankton growth (not shown). Similarly in nature,
resource limitation has been shown to decrease survival and there-
fore phytoplankton community diversity (Hardin, 1960; Sommer,
1985; Huston, 1999; Li, 2002). High productivity and low diver-
sity characterize coastal surface waters where growth rates of the
few phytoplankton types that dominate this region exceed those of
the rest of the community by at least one order of magnitude (not
shown). Fast growing phytoplankton types that are optimized to
outcompete the bulk of the community in typically high nutrient
waters are also observed in nature (Huston, 1979; Rosenzweig and
Abramsky, 1993; Huston and Deangelis, 1994).

Modeled diversity is greatest in southern offshore surface
waters. Nutrient supply in this region is small relative to nearshore
upwelling, but light availability is high. Thus overall resource
supply could be considered intermediate as the product of both
nutrient and light limitation functions determines overall growth.

We find that these regions exhibit multiple phytoplankton types
with similar growth rates, distinguishing them from coastal and
deeper waters (not shown). Various authors have suggested rea-
sons for the highest diversity at intermediate productivity. In a
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errestrial study, Grime (1973) proposed high diversity occurs
etween extremes environmental stress. In a marine phyto-
lankton study from the northwestern North Atlantic, Li (2002)
uggested that intermediate turbulence levels supply intermedi-
te nutrient concentrations to the euphotic zone and enabling
reater cell size diversity. In our view at intermediate resource
upply, a greater number of phytoplankton types, each with differ-
nt resource requirements, share similar (but suboptimal) growth
ates, promoting diversity. This mechanism for coexistence in
hich multiple species’ fitness for a particular habitat is similar,
as referred to as equalizing in the review by Chesson (2000), which

ccounts for the high evenness and richness of the SI at intermedi-
te rates of productivity discussed previously.

Temporal variability in environmental factors is also known to
lay an important role in shaping phytoplankton diversity and its
elationship to productivity, particularly in systems lacking spa-
ial heterogeneity (see Hutchinson, 1961; Armstrong and McGehee,
980; Passarge et al., 2006). Temporal changes in resource supply
revent the system from reaching steady-state, causing biomass
istributions to fluctuate and enhancing average diversity. Using
he same self-organizing ecosystem model as the present study but
n a global configuration, Barton et al. (2010) associated modeled
atitudinal changes in multi-annual average diversity with seasonal
ariability in environmental conditions related to the time-scale
or competitive exclusion. In our study of the CCS, seasonal and
nterannual variability in resource supply and biomass occurs in all
egions, though with different amplitudes (e.g., highest amplitude
ssociated with nearshore upwelling). As in Barton et al. (2010) we
nd that lower diversity accompanies greater amplitude variability.

mportantly, growth and grazing rates that control phytoplank-
on populations and thus diversity are fast relative to seasons
nd enable modeled phytoplankton communities to also track
onger time-scale changes in forcing. It is clear from our results
hat diversity and productivity are not coupled on all time-scales,
urther contributing to the scatter of the diversity-productivity
elationship. Indeed, diversity itself results from the time-integral
f growth and loss processes. This fact is visible in Fig. 8a, where
igh frequency variability in wind stress during spring and summer
esults in substantial productivity fluctuations on short time-scales,
ut variability in diversity during these periods is substantially
uted. Finally, we have shown how the phase of correlation

etween diversity and productivity depends on the productivity
mplitude, contributing to different portions of the overall scatter.
ighly productive zones yield inverse relationships whereas low-
roductive regions result in positively correlated fields (Fig. 8).

It is fair to ask whether the self-organizing, multi-phytoplankton
omponent model used here indeed benefits marine ecological
tudies over more traditional models with only one or two phy-
oplankton functional groups and considerably less computational
ost. Simpler models have shown reasonable distributions of over-
ll chlorophyll levels (Gruber et al., 2006; Omta et al., 2009) and
ecorrelation statistics of physical and biological fields (Powell
t al., 2006). As Goebel et al. (2010) note, this self-assembling
cosystem model enables a study of biogeography that is not pos-
ible with a more traditional model. Similarly, questions of marine
iodiversity can only be considered with a model that resolves a
omplex plankton assemblage. The model used here satisfies this
equirement and exhibits reasonable chlorophyll structure, pri-
ary productivity, and relative distributions of large and small

rganisms for the California Current System. The modeled diver-
ity/productivity results complement many observational studies
n this subject, not supporting tight, monotonic trends but rather
 loose cluster partially outlined by a hump-shaped curve. The
ide range of productivities spanned by the model domain resolves

 spectrum of biodiversity and reveals different temporal phase
elationships between the two variables in distinct productivity
delling 264 (2013) 37– 47

zones. As marine ecosystem models become increasingly more
complex, it will be interesting to see if the modeled relationship
found here is robust and supported by additional investigations, or
if it sensitively depends on chosen model constructs. In addition,
future modelling efforts using multi-phytoplankton component
models such as this one could address other marine biodiversity-
related issues such as succession and complementarity effects
including niche differentiation and facilitation.

Furthermore, while the general shape of the diversity-
productivity scatter is likely quite robust, it is possible to speculate
on how changing environmental conditions might alter ecosystem
productivity and community structure. Some climate change sce-
narios, for example, argue for increased nutrient flux to the coastal
ocean due to increased equatorial wind stress resulting from a
larger land/ocean surface temperature gradient (Bakun, 1990; Auad
et al., 2006). In an alternate scenario (Di Lorenzo et al., 2005),
increased ocean surface temperature yields higher upper ocean
stratification, a deeper thermocline, and lower vertical nutrient
flux. These changes impact the high productivity, low diversity
portion of our scatter plot. In the first scenario, higher nutrient
fluxes should drive higher coastal productivity but still maintain
low diversity, expanding the area containing the scatter. Domi-
nance of diatoms is likely to remain unchanged in this exaggerated
case of present day conditions. In the lower nutrient flux sce-
nario, coastal productivity should be reduced (McGowan et al.,
2003; King et al., 2011), possibly with some increase in diver-
sity depending on the magnitude of nutrient flux reduction. In
this case, stronger stratification of the water column and warmer
temperatures may  promote the presence of a higher propor-
tion of dinoflagellate-like types in the phytoplankton community
(Edwards and Richardson, 2004). Though speculative, these pre-
dictions could be tested through analysis of this model in climate
change conditions, which we leave for future work.
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