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Abstract

Wnt signalling drives a plethora of processes in development, homeostasis, and disease; however, 

the role and mechanism of individual ligand/receptor (Wnt/Frizzled, Fzd) interactions in specific 

biological processes remain poorly understood. Wnt9a is specifically required for the 

amplification of blood progenitor cells during development. Using genetic studies in zebrafish and 

human embryonic stem cells, paired with in vitro cell biology and biochemistry, we have 

determined that Wnt9a signals specifically through Fzd9b to elicit β-catenin-dependent Wnt 

signalling that regulates haematopoietic stem and progenitor cell emergence. We demonstrate that 

the epidermal growth factor receptor (EGFR) is required as a co-factor for Wnt9a/Fzd9b 
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signalling. EGFR-mediated phosphorylation of one tyrosine residue on the Fzd9b intracellular tail 

in response to Wnt9a promotes internalization of the Wnt9a/Fzd9b/LRP signalosome and 

subsequent signal transduction. These findings provide mechanistic insights for specific Wnt/Fzd 

signals, which will be crucial for specific therapeutic targeting and regenerative medicine.
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haematopoietic stem cell (HSC); Wnt; Wnt9a; signalling specificity; Fzd; Fzd9b; FZD9; EGFR; 
APEX2

Wnt genes encode highly conserved, lipid-modified glycoproteins involved in the regulation 

of a plethora of developmental processes; yet, their specific functions are poorly understood. 

Although the mammalian genome encodes 19 Wnts and 10 Frizzled (Fzd) receptors, there is 

little evidence for signalling specificity through cognate Wnt-Fzd pairings1. There is an 

exquisitely specific requirement for Wnt9a in directing an early amplification of 

haematopoietic stem and progenitor cells (HSPCs), a surprising finding because Wnts have 

been thought to be functionally promiscuous2-5. Using HSPC development as a platform for 

validation, we demonstrate that the epidermal growth factor receptor (EGFR) is required as a 

co-factor to mediate the specificity of the Wnt9a-Fzd9b signalling interaction, a finding 

which may indicate a general paradigm for Wnt-Fzd signalling specificity.

Haematopoietic stem cells (HSCs) are the tissue-specific stem cells that provide blood and 

immune cells for the duration of an organism’s life. During development, these cells arise 

directly in major arterial vessels, from a specialized population of cells termed hemogenic 

endothelium (HE), specified from progenitors in the lateral plate mesoderm6,7. HE cells 

receive inductive cues from nearby tissues like the somite and neural crest cells, including 

fibroblast growth factors, Notch, and Wnt, to establish their fate and future function as 

HSPCs6-12. After their specification, HSPCs emerge directly from endothelium comprising 

the ventral floor of the dorsal aorta (hereafter aorta) in a process termed the endothelial-to-

haematopoietic transition (EHT) 13,14. They then enter circulation and migrate to secondary 

haematopoietic organs, such as the fetal liver in mammals or the caudal haematopoietic 

tissue in teleosts, before seeding the final sites of residence in the bone marrow of mammals, 

or the kidney marrow of teleosts6,7.

Wnts are important to HSPC development and homeostasis15-26. We previously determined 

that an early Wnt9a cue is specific in driving a proliferative event in the aorta, after HSCs 

have emerged, but before they have seeded the secondary haematopoietic organs. We 

hypothesized that this specific function of Wnt9a may be mediated through specific 

interaction with one of the 14 zebrafish Fzd receptors3.

Here, we identify Fzd9b as the cognate signalling partner for Wnt9a in the process of 

haematopoietic stem and progenitor cell (HSPC) development, upstream of β-catenin, a 

process conserved in human haematopoiesis in vitro. Intracellular Fzd9b domains mediate 

the specificity of this Wnt-Fzd pairing, implicating a transmembrane spanning co-factor in 

establishing specificity. Using APEX2-mediated proximity labeling27, we identified the 

receptor tyrosine kinase EGFR as required for this specific signalling interaction. Altogether, 
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these results demonstrate a conserved Wnt-Fzd pairing that mediates a precise Wnt cue 

required for haematopoiesis, shifting the paradigm of how specific Wnt-Fzd interactions are 

established and opening the field for discovery of other cofactors that mediate specific 

signalling through cognate Wnt-Fzd pairs.

Results

HSPCs require Fzd9b-Wnt9a interaction

Specificity of Wnt signals likely involves Wnt-Fzd pairings; we sought to identify a cognate 

Fzd for the specific Wnt9a signal, which occurs when the somite signals to ingressing HE 

precursors prior to 20 hours post fertilization (hpf)3. A fzd expression screen in 16.5 hpf 

fli1a+ (endothelial) cells indicated that a majority of Fzds were expressed (Supplementary 

Fig. 1a-b). Since the Wnt9a signal involves β-catenin3, we employed an established β-

catenin dependent Wnt reporter assay28, called Super-TOP-Flash (STF), to identify Fzd 

candidates. STF reporter activity indicated a synergistic interaction between Wnt9a and 

Fzd5, or Wnt9a and Fzd9b, but no other Fzd (Supplementary Fig. 1c-d, Fig. 1a). Wnt9a 

signals to its cognate receptor on neighboring cells, which we assessed using a co-culture 

approach (Fig. 1b). In this assay, Fzd9b, but not Fzd5, was able to transduce the Wnt9a 

signal and activate STF reporter activity (Fig. 1c), indicating that Fzd9b acts as a specific 

Wnt9a receptor. These observations were further supported by an absence of signal using the 

Super FOP:FLASH reporter (reporter lacking β-catenin activity, Supplementary Fig. 1e), 

and an absence of Fzd9b specific signal in response to the prototypical ligand, Wnt3a 

(Supplementary Fig. 1f). Altogether, these data provide evidence for a Wnt9a-Fzd9b 

interaction and suggest that Fzd9b is specifically involved in Wnt9a-mediated HSPC 

development.

Consistent with a role in Wnt9a signal reception, we found by fluorescent in situ 
hybridization that at 15hpf, fzd9b mRNA is co-expressed with the endothelial marker fli1a 
in the lateral plate mesoderm, the tissue from which HE is derived6,7 (Fig. 1d). To test if 

haematopoietic cells were derived from cells expressing fzd9b, we performed two lineage 

tracing experiments using fzd9b promoter sequences driving expression of Gal4. First, Gal4 

activates an upstream activating sequence (UAS)-driven green fluorescent protein (GFP) 

(fzd9b:Gal4;UAS:GFP); second, UAS:Cre is activated to excise a loxP-flanked sequence 

encoding blue fluorescent protein (BFP), ultimately leading to expression of dsRed 

(fzd9b:Gal4; UAS:Cre; loxP-BFP-loxP-dsRed). Using this strategy, we were able to observe 

GFP+ or dsRed+ (pseudo colored green in Supplementary Fig. 2a) cells in the floor of the 

dorsal aorta in the characteristic cup shape observed during the EHT (at 40 hpf), indicating 

that nascent HSPCs had expressed fzd9b prior to their emergence (Fig. 1e, Supplementary 

Fig. 2a, left). Thymocytes derived from HSCs reside in the thymus beginning around 4 days 

post-fertilization (dpf); these expressed GFP at 6 and 7 dpf (Fig. 1f, Supplementary Fig. 2a, 

right), consistent with a function for fzd9b in HSPC development.

To assess the function of Fzd9b in zebrafish HSPC development, we used an antisense 

morpholino (MO) oligonucleotide, which blocked translation of an ectopically provided 

Fzd9b-mKate fusion transcript in vivo (Supplementary Fig. 2b). Similar to wnt9a loss of 

function3, fzd9b morphants had normal specification, as measured by the early HSPC 
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marker runx1 (Supplementary Fig. 2c-d); however, HSPC expansion markers (cmyb, gata2b 
and runx1) were significantly reduced in fzd9b morphants at 40 hpf (Fig. 1g-i, 

Supplementary Fig. 2e-f). This loss of HSPCs persisted throughout development, where 

rag1+ thymocytes were reduced in fzd9b morphants (Supplementary Fig. 2g). This effect 

was specific to HSPCs, as markers for aorta (dlc, dll4, notch1b), vasculature (kdrl) and 

pronephros (cdh17) were normal (Supplementary Fig. 2h). The effects of the MO were 

specific, as the fzd9b MO could be rescued with fzd9b mRNA (Supplementary Fig. 2i-j), 

and two germline mutants of fzd9b (predicted to produce severely truncated proteins of 

approximately 30 residues) had reduced cmyb+ cells at 40 hpf (Fig. 1j-k). Furthermore, 

MO-injected fzd9b mutants did not have a more severe phenotype than their siblings 

(Supplementary Fig. 2k). Finally, we used an established transgenic approach where a guide 

RNA to fzd9b is expressed ubiquitously and Cas9 expression is spatially regulated to 

conditionally inactivate fzd9b in early endothelial cells29, where the number of cmyb+ cells 

at 40 hpf was also reduced (Supplementary Fig. 2l-m). Taken together with our finding that 

the Wnt signal is received by HE3, these results indicate Fzd9b is required for HSPC 

development, downstream of fate specification, and specifically within HE.

Having identified a specific zebrafish Wnt9a-Fzd9b signal in vivo, we used the STF reporter 

assay and determined that only human FZD9 coupled effectively with WNT9A (Fig. 2a). 

Furthermore, using an established differentiation protocol to drive human embryonic stem 

cells (hESCs) towards haematopoietic fates30 (Fig. 2b), we found that disrupting WNT9A or 

FZD9 expression using short hairpin RNAs (shRNAs, Supplementary Fig. 3a-b) 

significantly compromised the ability of hESCs to generate HSPCs, as assessed by flow 

cytometry for CD34 and CD45 (Fig. 2c-f) and by expression of endothelial (CD34) and 

haematopoietic markers (CD31, CD45, CMYB) (Supplementary Fig. 3c-f). These 

differences were not due to loss of pluripotency of the undifferentiated hESCs, as they still 

abundantly expressed the pluripotency markers TRA1–81 and SSEA431 (Supplementary 

Fig. 3g-i). Thus, Wnt9a/Fzd9b and WNT9A/FZD9 are required for both zebrafish and 

human HSPC development.

Fzd9b/Wnt9a operate upstream of β-catenin

To confirm that Wnt9a and Fzd9b function in the same pathway in vivo, we used genetic 

non-complementation with suboptimal MO dosages. A low dose of either wnt9a or fzd9b 
MO was not sufficient to affect HSPCs, while compound morphant animals had a reduction 

in cmyb+ cells similar to either wnt9a or fzd9b loss of function, supporting that these 

components operate in the same genetic pathway (Fig. 2g, Supplementary Fig. 4a).

The effect of Wnt9a on HSPCs required β-catenin (or the canonical Wnt pathway)3, which 

relies on the assembly of Fzd-Lrp5/6 heterodimers in response to a Wnt ligand1. Consistent 

with this, the Wnt9a-Fzd9b signal could be synergistically increased in vitro in cells co-

transfected with Lrp6 (Supplementary Fig. 4b). To test the requirement for LRP6 in the 

Wnt9a-Fzd9b signal, we generated a HEK293T STF line deficient for LRP6 (Fig. 2h), which 

were compromised in their STF reporter activity upon Wnt3a addition (Supplementary Fig. 

4c). Importantly, treatment with a GSK3 inhibitor (CHIR98014), which activates signalling 

independent of Wnt-Fzd-LRP interactions, stimulated STF activity, indicating that 
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downstream signalling components were intact (Supplementary Fig. 4d). Wnt9a-Fzd9b 

signalling also required LRP6 (Fig. 2i), consistent with a role upstream of β-catenin. 

Accordingly, loss of fzd9b, the putative Wnt9a receptor, should be rescued by expression of 

constitutively-active (CA) β-catenin. Indeed, HE-specific regulatory sequences (gata2b 
promoter) driving expression of CA-β-catenin was sufficient to rescue loss of fzd9b (Fig. 2j-

k), indicating that Fzd9b functions upstream of β-catenin. Altogether, these data indicate 

that Wnt9a and Fzd9b function in the same genetic pathway, upstream of β-catenin.

Intracellular Fzd9b domains mediate specificity

How the Wnt-Fzd signalling complex relays its signal and establishes specificity is poorly 

understood, but is thought to rely on varying affinities of Wnts for the extracellular cysteine 

rich domain (CRD) of Fzd1,32-34. Using the STF assay system and zebrafish cDNAs, we 

found that like other Wnts1, the Fzd9b CRD is required to mediate the Wnt9a signal in vitro 
(Fig. 3a). Signalling differences were not due to differences in protein expression 

(Supplementary Fig. 5a).

We next sought to determine which domains are required for Wnt9a-Fzd9b signalling 

specificity by constructing a series of chimeric Fzd transgenes between Fzd9b and Fzd8a, a 

Fzd that did not activate STF reporter activity with Wnt9a (Fig. 1a). Surprisingly, a chimeric 

receptor in which the CRD of Fzd8a was replaced with that of Fzd9b did not signal (Fig. 

3b), while the opposite chimeric Fzd protein produced wild-type Wnt9a signalling activity 

(Fig. 3b), suggesting that other Fzd domains other than the CRD are critical determinants in 

Wnt9a-Fzd9b signalling specificity.

The signalling events downstream of Wnt-Fzd-Lrp interaction are thought to involve 

interaction with intracellular mediator proteins such as Disheveled (Dsh/Dvl), which 

interacts with Fzd at the third intracellular loop (ICL3) and the C-terminal tail (CTT)1. 

Using further Fzd9b-Fzd8a chimeras, we found that substituting both the ICL3 and CTT 

from Fzd9b with those of Fzd8a was sufficient to completely ablate the signal, and the 

opposite was sufficient to produce wild-type signalling levels (Fig. 3b), whereas single 

substitutions resulted in partial levels of signalling (Fig. 3b), suggesting that signalling 

specificity for Wnt9a-Fzd9b lies entirely within the ICL3 and CTT domains. These chimeras 

were expressed to the same level (Supplementary Fig. 5b), indicating differences in 

signalling were not due to differences in expression. These findings were recapitulated using 

zebrafish and human cDNAs encoding chimeras for Fzd9b/FZD9 and Fzd4/FZD4 

(Supplementary Fig. 5c-d), indicating that the ICL3 and CTT are required for zebrafish 

Fzd9b and human FZD9 signalling.

V5-tagged Fzd constructs had no change in the ability to mature or be modified post-

translationally (Supplementary Fig. 5b), as assessed by their shift in size in immune-

blots35-37. We also confirmed that the non-signalling chimeric Fzd9bs were transported to 

the cell surface using immunofluorescence and flow cytometry with a Fzd9b antibody 

directed to the extracellular region between the CRD and the first transmembrane domain of 

Fzd9b (Supplementary Fig. 5d-f). Therefore, differences in signalling were not due to 

differences in Fzd protein expression, maturation, or transport to the cell surface.

Grainger et al. Page 5

Nat Cell Biol. Author manuscript; available in PMC 2019 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, to determine if these domains were able to fulfill Fzd9b function in HSPC 

development, we co-injected mRNAs for fzd9b, fzd8a or fzd8a with the ICL3 and CTT from 

fzd9b (fzd8a/9b ICL3/CTT) in the context of fzd9b MO and found that only fzd9b and 

fzd8a/9b ICL3/CTT were able to rescue loss of fzd9b (Fig. 3c-d). Taken together, these data 

indicate that Wnt9a-Fzd9b specificity is regulated by the intracellular ICL3 and CTT 

domains of Fzd9b.

Wnt9a, Fzd9b and EGFR form a complex

Since Wnt9a-Fzd9b specificity is mediated intracellularly, we postulated the existence of 

another signalling component that spanned the membrane to contact both Wnt9a and the 

intracellular portion of Fzd9b. Our ability to analyze Wnt9a-Fzd9b signalling specificity 

using zebrafish cDNAs in human cells further suggested that this signalling component 

would be highly conserved. To identify proteins are in proximity to intracellular portions of 

Fzd9b, we generated a stable HEK293T cell line expressing Fzd9b fused via a Glycine-

Serine linker to the peroxidase APEX227 (Fzd9b-5GS-APEX2). In the presence of hydrogen 

peroxide and biotin-phenol, endogenous proteins proximal to APEX2 (generally within 30 

nm) are biotinylated within 1 minute, allowing for their enrichment with streptavidin beads, 

and subsequent identification by mass spectrometry (MS) 27. The Fzd9b-5GS-APEX2 cells 

labelled specifically in the presence of biotin-phenol and hydrogen peroxide induction 

(Supplementary Fig. 6a), had correct Fzd9b localization (Supplementary Fig. 6b-c), and 

were able to signal in response to Wnt9a (Supplementary Fig. 6d).

Gene ontology (GO) analysis of the APEX-MS data revealed that in response to Wnt9a, the 

most changed biological processes included ERBB signalling (Supplementary Fig. 6e). 

Genes from ERBB family encode single-pass transmembrane receptor tyrosine kinases that 

homo- and hetero-dimerize in response to multiple ligands to stimulate a number of 

signalling cascades38. The transmembrane protein most enriched by proximity labeling was 

EGFR (also known as ERBB1) (Supplementary Fig. 6f). We hypothesized that EGFR may 

play a role in Wnt9a recruitment to Fzd9b at the cell membrane. Indeed, disrupting EGFR 

expression in HEK293T cells stably expressing Fzd9b with short interfering RNA (siRNA) 

reduced cell surface binding of Wnt9a (Fig. 4a), suggesting that EGFR expression promotes 

Wnt9a binding to the cell surface. Interestingly, this also occurred in the absence of Fzd9b 

(Fig. 4a), suggesting that Wnt9a binds directly to EGFR. In addition, provision of 

Cetuximab39, which blocks the EGFR ligand binding, dampened the Wnt9a-Fzd9b signal 

(Fig. 4b), consistent with a model in which EGFR forms a complex with Wnt9a and Fzd9b 

to transmit the Wnt signal.

HEK293T cells transfected with siRNA to EGFR compromised the ability of both zebrafish 

and human Wnt9a/WNT9A and Fzd9b/FZD9 to stimulate STF reporter activity 

(Supplementary Fig. 6g-h, Fig. 4c). Using a previously validated MO to egfra40, the number 

of HSPCs at 40 hpf was decreased (Supplementary Fig. 6i-j), an effect that was validated 

with qPCR (Fig. 4d), similar to the phenotypes of fzd9b or wnt9a loss of function, and 

consistent with a role for Egfr in regulating the Wnt9a-Fzd9b signal. Suboptimal MO dosing 

indicated that both Fzd9b and Wnt9a synergize genetically with Egfr during HSPC 

development (Fig. 4e). Furthermore, treatment of cells or zebrafish with the selective EGFR 
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tyrosine kinase inhibitor AG147841 significantly attenuated STF reporter activity or HSPC 

development, respectively (Supplementary Fig. 6k-m). Altogether, these data demonstrate 

that EGFR and its kinase activity are required for the Wnt9a-Fzd9b signal.

There are seven other known ligands for EGFR38, which led us to hypothesize that these 

may be required to assemble EGFR, Wnt9a and Fzd9b into a complex. Of these, only 

heparin bound EGF (HBEGF) is expressed in HEK293T cells42 (Supplementary Fig. 6n). To 

assess the requirement for HBEGF and other EGFR ligands in the Wnt9a/Fzd9b signal, we 

cultured HEK293T STF reporter cells in serum-free media lacking all known EGFR ligands, 

and added a neutralizing antibody targeting HBEGFR. STF reporter activity with Wnt9a/

Fzd9b stimulation was maintained in these conditions (Supplementary Fig. 6o), indicating 

this interaction occurs in the independently of known EGFR ligands.

The C-terminal tail of Fzd9b contains two tyrosine (Y) residues, at 556 and 571 (Fig. 5a), 

which are predicted to be potential kinase substrates43. Additionally, the Y556 on Fzd9b is 

highly conserved among vertebrates, indicative of putative functional importance (Fig. 5b). 

Consistent with these predictions, treatment with Wnt9a increased Y-phosphorylation of 

Fzd9b, which was dependent on EGFR kinase activity as this increase was not observed in 

the presence of the EGFR tyrosine kinase inhibitor AG1478 (Fig. 5c). In addition, mutation 

of the Y556 (but not Y571) sites decreased the in vitro signalling capacity of Wnt9a (Fig. 

5d), and was not able to rescue fzd9b morphants (Fig. 5e); we also found the corresponding 

residue in human FZD9, Y562F is required (Fig. 5f). Together, these data indicate that 

Fzd9b is phosphorylated on tyrosine residue 556 in response to Wnt9a, which is required for 

its downstream signal.

EGFR is known to have effects on signal transduction, as well as receptor internalization and 

trafficking44-46. Consistent with these functions, GO analysis of the APEX-MS data 

indicated that the most enriched cellular component was “clathrin-coated endocytic vesicle” 

(Fig. 6a). The APEX data also showed enrichment for proteins associated with early 

endosomes (RAB5A, RAB5B, RAB5C and RAB14), late endosomes (RAB7A, RAB9A and 

RAB12), and recycling endosomes (RAB11B, RAB35 and RAB13) (Fig. 6b), consistent 

with Fzd9b internalization in response to Wnt9a.

Internalization of transmembrane proteins can be mediated by clathrin- or caveolin-mediated 

endocytosis, as can Fzd-Wnt complexes47,48. The APEX-MS data indicated that the AP-2 

complex and clathrin-mediated endocytosis machinery were recruited to Fzd9b in response 

to Wnt9a, suggesting that internalization was mediated by clathrin (Fig. 6c). Indeed, clathrin 

was required for both the zebrafish Wnt9a/Fzd9b and human WNT9A/FZD signals, as STF 

activity was reduced in the presence of the clathrin inhibitor chlorpromazine (Fig. 6d-e). 

These results indicate that Fzd9b is internalized and sorted through the endosome-lysosome 

in response to Wnt9a.

Taken together, our data suggest a mechanism for the specificity of Wnt9a-Fzd9b signalling, 

and a role for EGFR in directly regulating this Wnt signal. Fzd9b, LRP6 and EGFR are 

resident in proximity at the cell surface (Fig. 6f.i); in the absence of a ligand, β-catenin is 

targeted for proteasomal degradation by the destruction complex (Fig. 6f.ii); in the presence 
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of Wnt9a, these are bridged, allowing EGFR-mediated phosphorylation of the Fzd9b tail at 

Y556 (Fig. 6f.iii), leading to the recruitment of AP-2 and clathrin (Fig. 6f.iv). Once inside 

the cell, Fzd9b-LRP6 oligomerization leads to dissociation of the destruction complex and 

release of β-catenin (Fig. 6f.v). Finally, nuclear β-catenin transactivates a program for HSC 

proliferation (Fig. 6f.vi).

Discussion

One longstanding puzzle in the Wnt field has centered around the requirement for 

genetically encoding such a diverse set of ligands and receptors if Wnt ligands are as 

promiscuous as reported4,33,49. The specificity dogma has been that Wnt-Fzd interactions 

are regulated by (1) physical binding affinities between Wnt and the Fzd CRD32, and (2) 

spatio-temporal localization, driven by the findings that different Wnt-Fzd combinations 

have different affinities, and that many Wnts can physically interact with multiple (if not all) 

Fzd CRDs4,33,49,50. In addition, (3) the ligand availability in the extracellular space is 

regulated by co-receptors, such as Reck and Gpr12451-54, in a mechanism distinct from our 

findings. Our data indicate that signalling specificity is regulated at an additional level 

involving the activation of co-receptors. To this model, we propose the addition of (4) co-

factors enzymatically activating Wnt-Fzd complexes for signalling through internalization. 

We hypothesize that different co-factors are recruited extracellularly by specific Wnt-Fzd 

pairs to target the receptor complex for signalling. These results support the notion that 

specificity of Wnt-Fzd pairs relies on co-receptor complexes; however, the concept that Wnt 

stimulation recruits a co-receptor (EGFR), leading to its enzymatic regulation of the Fzd 

intracellular domains (Y-phosphorylation), and subsequent internalization for signalling is 

unprecedented.

These discoveries have important implications in our understanding of development and 

disease, where overlapping functions of receptor tyrosine kinase families and Wnt, for 

example, may represent co-operative functions in signalling. Understanding Wnt-Fzd and 

co-factor specific interactions will be critical to the advancement of regenerative medicine, 

such as in the development of protocols to derive different tissues in vitro from pluripotent 

precursor cells, where in large part, the requirement for β-catenin dependent Wnt signalling 

in these protocols has been substituted for with the prototypical ligand, Wnt3a, or with 

GSK3 inhibitors, and not a specific ligand/receptor. Finally, determining how individual 

WNTs and FZDs are coupled will have important therapeutic implications, where pan-WNT 

inhibitory therapies cause toxic side effects. Furthermore, our observation that Cetuximab, 

which blocks ligand binding to EGFR, disrupts Wnt9a/Fzd9b (WNT9A/FZD9 in humans) 

signalling suggests potential alternative mechanisms of action for this chemotherapeutic 

agent. Therapies targeting specific WNT-FZD pairs will allow for more precise targeting of 

these cancer cells.

Methods:

Cell culture and luciferase reporter assays

HEK293T cells or HEK293T cells lacking FZD1, FZD2 and FZD7 (kindly provided by 

Professor Michael Boutros)5 with a stably integrated Super-TOP-Flash reporter (STF)55 and 
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Chinese hamster ovary (CHO) cells were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS) under standard 

conditions. HEK293 cells are known to have potential cross contamination with HeLa cells 

(ICLAC Register of Misidentified Cell Lines (iclac.org/databases/cross-contaminations/)), 

which is irrelevant to this study.

For most assays, cells were seeded into six-well plates and transfected using 

polyethyleneimine (PEI), 50ng of renilla reporter vector, 200ng of cDNA expression vector, 

with a total of 1 ug of DNA/well. For co-culture experiments, cells were passaged 24 hours 

after transfection and plated together for analysis. For siRNA experiments, a well of a six-

well plate was also treated with 10pmol of siRNA using RNAiMax transfection reagent 

(Invitrogen). All human WNT9A cell culture experiments except for the initial screen were 

performed by co-culturing stably expressing WNT9A CHO cells with stably expressing 

FZD9 HEK293T STF cells. Assays with Wnt3a were conducted in HEK293T cells lacking 

FZD1, FZD2 and FZD75.

Serum-free conditions were established by gradually adapting our HEK293T STF reporter 

cells to SFM II (Invitrogen), which lacks all known EGFR ligands. Serum-free transfections 

were performed according to the manufacturer recommendations using Lipofectamine 3000. 

500ng/mL HBEGF neutralizing antibody (R&D systems, AF-259-SP) or normal Goat 

Serum (R&D systems, AB-108-C) were added 6 hours after transfection.

All transfected cells were harvested 48-hours post-transfection and all conditioned medium 

or co-cultured cells were harvested 24 hours post-treatment; the lysates processed and 

analyzed using the Promega Dual Luciferase Assay System according to the manufacturer’s 

instructions. Each experiment was performed with at minimum biological triplicate samples 

and reproduced at least one time with a similar trend. Wnt activity was calculated by 

normalizing Firefly Luciferase output to Renilla Luciferase; maximum fold induction was 

set to 100%. All STF reporter assays were conducted with a minimum of 3 biological 

replicates; the assays were always reproduced with a similar trend at least once.

10 cm plates of 293T cells were transfected with 10ug of constructs encoding chimeric Fzd 

cDNAs with a C-terminal V5 tag. For immunofluorescence, cells were plated onto glass 

coverslips after 24 hours, and stained with our Fzd9b antibody, generated to a region 

between the CRD and the first transmembrane domain, under non-permeabilized conditions, 

and according to standard protocols. For flow cytometry, cells were harvested with 

Accutase, pelleted, resuspended in PBS with 1% BSA and 1mM EDTA, filtered through an 

80um filter and sorted using a BD Fortessa flow cytometer. For immune-blots, cells were 

harvested 48 hours after transfection in TNT buffer (1% Triton X-100, 150mM NaCl, 50mM 

Tris, pH8.0), with protease inhibitors. Immunoblotting was performed according to standard 

procedures, using antibodies for V5 (1:5,000, GeneTex, GTX628529) and β-actin (1:20,000, 

Sigma, A2228–100UL).

For immunoprecipitation, cells were washed 3 times in PBS and lysed in radio 

immunoprecipitation assay (RIPA) buffer (10mM Tris-HCl, pH8, 10mM EDTA, 0.5mM 

EGTA, 1%Tx-100, 0.1% deoxycholate, 0.1% SDS, 140mM NaCl), supplemented with 
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protease and phosphatase inhibitor tablets (Pierce) and 20mM N-ethylmaleimide, for 30 

minutes at 4°C with rocking. Resultant lysates were cleared of cell debris by centrifugation 

at 15,000g for 10 minutes at 4°C and quantified by Bradford Assay. A minimum of 200ug of 

protein was diluted into 400uL total volume with RIPA buffer; 2ug of antibody was added 

and incubated at room temperature for 30–60 minutes. Antibody-protein complexes were 

precipitated using Protein A Dynabeads (Invitrogen) for 30 minutes at room temperature, 

washed 3 times with 1mL of RIPA buffer and eluted using Laemmli buffer at room 

temperature. Precipitates were analyzed by Fzd9b immunoblot. Immunoblot intensities from 

pulldowns were quantified by densitometry using ImageJ, normalized to input controls.

EGFR inhibition was performed using a 5mM stock of AG1478 in 50:50 Ethanol: DMSO. 

The final concentration used was 2.5uM. Clathrin-mediated endocytosis was inhibited using 

chlorpromazine from a 1M stock in 50:50 Ethanol: DMSO. Final concentrations used are as 

indicated in the figure.

Wnt9a surface binding assay

Conditioned medium was collected from stably expressing Wnt9a or parental CHO cells and 

concentrated 10X using a 30kDa molecular weight cutoff ultra-filtration device (Millipore). 

HEK293T cells stably expressing Fzd9b were transfected with siControl or siEGFR and 

plated on 0.1% gelatin coated glass coverslips after 24 hours; after a further 24 hours, cells 

were treated with cold conditioned medium for 3 hours at 4°C, rinsed with PBS and fixed 

with 4% PFA at 4°C for 20 minutes and at room temperature for 10 minutes. 

Immunofluorescence was performed using standard non-permeabilizing methods with a 

rabbit polyclonal antibody generated to zebrafish Wnt9a.

Generation of LRP6 knockout HEK293T STF line

A confluent 10cm plate of HEK293T STF cells was transfected with 3μg each of Cas9 and 

two guide RNAs under regulatory control of a U6 promoter. The guide RNAs 

(GGGCTTGGAGGATGCAGCTG and GGATCTAAGGCAATAGCTCT) targeted the 

second exon of LRP6. Single cell clones were validated for loss of LRP6 by sequencing the 

genomic locus, immunoblotting using a rabbit monoclonal antibody (1:1000, C47E12, Cell 

Signalling, 2560S) and STF activity with mouse Wnt3a, which requires LRP6 for 

signalling35. Cell lines are available upon request.

Fzd9b and Wnt9a antibody generation

GST fusion proteins for immunogens of Fzd9b (residues 115–226) and Wnt9a (residues 

233–295) were purified by standard methods. Rabbits were immunized with GST proteins, 

boosted and bled for serum according to standard methods (Lampire Biologicals). 

Antibodies for Wnt9a or Fzd9b were affinity purified against the same antigens fused to 

maltose binding protein (MBP), according to the manufacturer’s recommendations (Fisher), 

and stored in PBS/50% glycerol at −80°C. Antibodies are available upon request.

Animals

Zebrafish were maintained and propagated according to University of California and local 

Institutional Animal Care and Use Committee (IACUC) policies. AB*, Tg(kdrl:Cherry-
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CAAX)y171, Tg(fli1a:eGFP)zf544, Tg(cdh5:Gal4)mu101, Tg(UAS:CA-β-catenin)sd47Tg 

Tg(gata2b:KalTA4sd32; UAS:Lifeact:eGFPmu271), wnt9a Δ28/Δ28,sd49, Tg(UAS:Cre)t32240Tg 

Tg(bactin2:loxP-BFP-loxP-DsRed)sd27Tg lines have been previously described3,10,11,14,36,37. 

For simplicity in the text, these lines are referred to with short forms listed in square 

brackets: Tg(kdrl:Cherry-CAAX) [kdrl:mCherry], Tg(fli1a:eGFP) [fli1a:eGFP], 
Tg(UAS:CA-β-catenin)sd47Tg [UAS:CA-β-catenin], Tg(gata2b:KalTA4)[HSC:Gal4] and 

(UAS:Lifeact:eGFP) [UAS:eGFP], Tg(UAS:Cre) [UAS:Cre], Tg(bactin2:loxP-BFP-loxP-
DsRed) [loxP BFP loxP dsRed].

MO for fzd9b was targeted to block the ATG start codon with sequence 5’- 

AGGTGAGCTTCCCATTCTGGATTTT −3’ from GeneTools. 1-cell stage zygotes were 

injected with 2ng of fzd9b MO and disruption of protein expression was confirmed with a 

fluorescently tagged mRNA. Suboptimal MO dosage was 0.5ng. The wnt9a MO has been 

previously described3 and was used at 0.1ng. The egfra MO has been previously described40 

and was used at 2.5ng or 1ng. Rescue experiments were performed using 20 pg fzd chimeric 

mRNA synthesized using the SP6 mMessage machine kit (Ambion) according to the 

manufacturer’s recommendations.

CRISPR/Cas9 was used to generate germline mutants for fzd9b; sgRNAs were chosen 

according to their ability to cleave DNA in vitro as previously described57. Mutation of the 

fzd9b locus at the N-terminal was achieved 100ng of cas9 mRNA (Trilink) and 100ng of 

sgRNA (GGCTCTTATGACCTGGAGAG) and generated mutants with either a 2bp 

insertion (fzd9b2bp) fb203, or a 7bp deletion (fzd9b7bp)fb204. Similarly, mutation at the C-

terminal tail was achieved by injecting the sgRNA (GGACTCTTCAGTGCCCACAG). For 

simplicity, in the text, these are referred to as fzd9b−/− and fzd9bΔCTT/ΔCTT, respectively. 

Mutations were confirmed by sequencing individuals. Zebrafish lines are available upon 

request.

Tg(fzd9b:Gal4) founders were established by injecting 25pg of a Tol2 kit58 generated 

plasmid with 100pg of transposase mRNA at the 1-cell stage. The transgenic plasmid 

encoded a 4.3 kb fzd9b promoter region amplified using the primers: 5’ 

CTCCCATGAGGCAGAACGTGTGT 3’ and 5’ AGTCCGCGAGCAGCTTGTCTGTT 3’; 

this was cloned into a p5E MCS Tol2 entry vector using XhoI and SacII restriction sites and 

then combined with a Gal4 middle entry and polyA 3 prime entry vector by Gateway 

Assembly to make a full transgene construct with cmlc2:gfp in the backbone. The resultant 

animals were crossed to Tg(UAS:YFP), and expression compared to in situ hybridization for 

fzd9b to identify founders that recapitulated endogenous fzd9b expression.

Lineage tracing experiments were visualized on a Zeiss LSM 880 with Airyscan. 

Representative images were produced by combining 3–4 Z-slices per scan.

Whole-mount in situ hybridization (WISH) and Fluorescent WISH (FISH)

RNA probe synthesis was carried out according to the manufacturer’s recommendations 

using the DIG-RNA labeling kit, or the fluorescein labeling kit for FISH (Roche). Probes for 

fli1a, rag1, dll4, dlc, notch1b, kdrl, cdh17, cmyb and runx1 and WISH protocols have been 
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previously described11. The probe for fzd9b was generated from the full-length cDNA. FISH 

signal was developed as previously described.

Fluorescence activated cell sorting and quantitative PCR

Zebrafish were dissociated using Liberase TM (Roche) and filtered through an 80um filter. 

Cells were sorted on a BD Influx cell sorter according to standard procedures. RNA and 

cDNA were synthesized by standard means and qPCR was performed using FastStart 

Universal SYBR Green Master Mix (Roche) according to the manufacturer’s 

recommendations and analyzed using the 2-ΔΔCt method, as previously3. Sequences of 

primers are shown in the Supplementary table.

Quantifying HSPCs

HSPCs were quantified by counting the number of kdrl:mCherry; gata2b:GFP double 

positive cells in floor of the DA in the region above the yolk extension in a 625μm confocal 

Z-stack encompassing the entire mediolateral segment of the aorta. The number of HSPCs 

per mm was calculated from this data. Confocal images were generated by stacking 1–4 

individual Z-slices. When quantifying WISH data, the number of cmyb+ or runx1+ cells 

were counted above the yolk extension.

Human embryonic stem cell culture and HSPC differentiation

All experiments described in this study were approved by a research oversight committee 

(IRB/ESCRO Protocol #100210, PI Willert). Human embryonic stem (hES) cell H9 (WA09, 

NIH Registration number 062) cells were obtained from WiCell. Cells were maintained in 

Essential 8 (E8) media, with minor modifications, as previously described59. Plasmids 

encoding pools of shRNAs for FZD9 and WNT9A were obtains from ABM. The cell lines 

harboring shRNAs for control, WNT9A and FZD9 were generated by lentiviral transduction, 

as previously described59,60. Virally-infected cells were selected with puromycin (4 ug/mL), 

and differentiated to HSPCs as previously described30. Cells were dissociated and HSPCs 

were quantified by flow cytometry as previously described2.

APEX2-mediated proximity labeling

Chinese hamster ovary (CHO) cells were stably integrated with a CMV:Wnt9a construct. 

Conditioned medium from CHO cells with or without this construct was collected for two 

weeks, pooled together, filtered through a 0.22um filter and tested for Wnt9a activity by 

luciferase STF assay with Fzd9b. HEK293T cells were stably integrated with a 

CMV:Fzd9b-5GS-APEX2 construct. APEX2-mediated proximity labeling was carried out as 

described27. Briefly, confluent 150mm plates of CMV:Fzd9b-5GS-APEX2 cells were treated 

with biotin-phenol for a total of 30 minutes each, ending at the time of hydrogen peroxide 

treatment. Cells were treated with Wnt9a conditioned medium for 1 or 5 minutes, or with 

WT CHO conditioned medium for 5 minutes. Cells were treated with hydrogen peroxide for 

1 minute, quenched, lysed, and biotinylated proteins enriched by streptavidin pulldown, as 

previously described.
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Protein digestion

To denature the eluted proteins, an equal volume of 8 M Urea in 50 mM HEPES, pH 8.5 was 

added to each sample. Protein disulfide bonds were reduced by Dithiothreitol (DTT, Sigma) 

and alkylated with Iodoacetamide (Sigma) as previously described61. Proteins were 

precipitated using trichloroacetic acid and resuspended in 300 μl of buffer (1 M urea 

(Fisher), 50 mM HEPES, pH 8.5) for proteolytic digestion.

Proteins were serially digested with 30 μg of LysC overnight at room temperature, then with 

3 μg of trypsin for 6 hours at 37 °C62, quenched by the addition of trifluoracetic acid (TFA, 

Pierce), and peptides were desalted with C18-StageTips extraction columns (Waters) as 

previously described62. Peptides were dried in a speed vac, then re-suspended in 50% 

Acetonitrile/5% formic acid and quantified by the Pierce Quantitative Colorimetric Peptide 

Assay (Thermo); an equal amount of each sample to be run on a pooled bridge channel63. 

Aliquots were dried under vacuum and stored at −80°C until they were labeled with Tandem 

Mass Tag (TMT) reagents.

TMT labeling

Peptides were labeled with 10-plex TMT reagents (Thermo) as previously described62. 

Briefly, TMT reagents were reconstituted in dry acetonitrile (Sigma) at 20 μg/mL. Dried 

peptides were re-suspended in 30% dry acetonitrile in 200 mM HEPES, pH 8.5, and 8 μL of 

the appropriate TMT reagent was added to the peptides. Reagent 126 (Thermo) was used as 

a bridge between mass spectrometry runs. Remaining reagents were used to label samples in 

a random order. Labeling was carried out for 1 hour at room temperature and was quenched 

by adding 9 μL of 5% hydroxylamine (Sigma) which was allowed to react for 15 mins at 

room temperature. Labeled samples were acidified by adding 50 μL of 1%TFA, pooled into 

appropriate 10-plex TMT samples and desalted with C18 Sep-Paks.

LC-MS2/MS3 Analysis

All LC-MS2/MS3 experiments were performed on an Orbitrap Fusion mass spectrometer 

(Thermo) with an in-line Easy-nLC 1000 (Thermo). Home-pulled, home-packed columns 

(100 mm ID x 30 cm, 360 mm OD) were used for analysis. Analytical columns were triple-

packed with 5 μm C4 resin, 3 μm C18 resin, and 1.8 μm C18 resin (Sepax) to lengths of 0.5 

cm, 0.5 cm, and 30 cm, respectively. Peptides were eluted with a linear gradient from 11 to 

30% acetonitrile in 0.125% formic acid over 165 min at a flow rate of 300 nL/minute and 

heating the column to 60°C. Nano-electrospray ionization was performed by applying 2000 

V through a stainless-steel T-junction at the inlet of the microcapillary column.

The mass spectrometer was operated in a data-dependent mode, with a survey scan 

performed over a mass to charge (m/z) range of 500–1200 at a resolution of 1.2 × 105 in the 

Orbitrap. The target automatic gain control (AGC) was set to 2 × 105 with a maximum inject 

time of 100 ms and an s-lens RF of 60. Top Speed mode was used to select the most 

abundant ions for tandem MS analysis. All data collected was centroided.

Ions above an intensity threshold of 5 × 105 were isolated in the quadrupole and fragmented 

using collision-induced dissociation (normalized energy: 30%) for MS2 analysis. MS2 
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fragments were detected in the ion trap using the rapid scan rate setting with an AGC of 1 × 

104 and a maximum injection time of 35 ms.

For MS3 analysis, synchronous precursor selection was used to maximize quantitation 

sensitivity of the TMT reporter ions64. Up to 10 MS2 ions were simultaneously isolated and 

fragmented with high energy collision induced dissociation (normalized energy: 50%). MS3 

fragment ions were analyzed in the Oribtrap with a resolution of 6 × 104. The AGC was set 

to 5 × 104 using a maximum injection time of 150 ms. MS2 ions 40 m/z below and 15 m/z 

above the MS1 precursor ion were excluded from MS3 selection.

Data Processing

Raw spectral data were processed using Proteome Discoverer 2.1.0.81 (Thermo). MS2 

spectra were identified using the Sequest HT node65, searching against the Human Uniprot 

database (downloaded: 5/1½017) with the zebrafish Fzd9b sequence appended. False 

discovery rate (FDR) estimation was performed using a reverse decoy database66-68. Search 

parameters were as follows. Mass tolerances were set to 50 ppm and 0.6 Da for MS1 and 

MS2 scans, respectively. Full trypsin digestion was specified with a maximum of two missed 

cleavages per peptide. Modifications included static 10-plex TMT tags on peptide n-termini 

and lysine, static carbamidomethylation of cysteine and variable oxidation of methionine. 

Data were filtered to a 1% FDR at both the peptide and protein level.

The intensities of TMT reporter ions were extracted from the MS3 scans for quantitative 

analysis. Prior to quantitation, spectra were filtered to have an average signal to noise of 10 

across all labels and an isolation interference less than 25%. Data were normalized in a two-

step process as previously described63, by normalizing each protein the pooled bridge 

channel value and then normalizing to the median of each reporter ion channel and the entire 

dataset.

Statistics and Reproducibility

For APEX results, two-tailed student’s t-tests were used to determine significantly enriched 

proteins at each time point. If the variances between samples were determined to be unequal 

by an F-test, Welch’s correction was used. Significantly changing proteins were prioritized 

using pi score69, a metric that takes both p-value and fold-change into account. Gene 

ontology of the significant proteins was performed using the database for annotation, 

visualization and integrated discovery (DAVID) server70. For STF assays and qPCR or cell 

counting comparing more than two populations, one-way ANOVA, followed by post-test 

analysis were conducted. For qPCR or cell counting comparing only two populations, two-

tailed student’s t-tests were used. All data analysis and statistical findings are available in the 

Supplementary Table 3.

Plasmids

Expression constructs were generated by standard means using PCR from cDNA libraries 

generated from zebrafish larvae at 24 hpf, or from hES cells; these were cloned into pCS2+, 

downstream of a CMV promoter, and upstream of IRES:mKate2. Addgene provided 

expression vectors for Cas9 (47929), guide RNAs (46759) and zebrafish ctnnb1 (17199).
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Reagents

A list of reagents and catalogue numbers is available in Supplementary Table 2.

Data availability

Mass spectrometry data have been deposited in ProteomeXchange with the primary 

accession code PXD010649 through MassIVE (MSV000082677). Summary data is seen in 

Extended data Figs. 6e, 6f, 7d, 7e. Source data for main and supplementary figures have 

been provided as Supplementary Table 3.

Previously published sequencing data that were re-analysed here are available from the 

European Nucleotide Archive under the accession number PRJEB4197 https://

www.ebi.ac.uk/ena.

All other data supporting the findings of this study are available from the corresponding 

author on reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Fzd9b is required for zebrafish haematopoietic stem cell development.
a. STF assay screen with zWnt9a and zFzds, n=3 biological replicates for each. b. zWnt9a 

cells were mixed with zFzd9b or zFzd5 STF cells and assayed for Wnt activity, quantified in 

c (n=3 biological replicates for each). d. FISH for fzd9b and fli1a in 16 hpf zebrafish 

embryos. MLPM-medial lateral plate mesoderm PLPM- posterior lateral plate mesoderm, 

ALPM- anterior lateral plate mesoderm. Scale bar=10um. Diagram shows haematopoietic 

precursors (green), vascular precursors (blue) and fzd9b (purple). e. Cell emerging from the 

aorta labeled by fzd9b:Gal4; UAS:GFP at 40 hpf. Scale bar=10um. A- aorta, V-vein. f. 
Thymus cells labeled by fzd9b:Gal4; UAS:GFP at 6 dpf. T-thymus, OV- otic vesicle; scale 

bar=25um. g. WISH for cmyb at 40 hpf in fzd9b morphants and controls. Scale bar=30um, 

quantified in h. Each dot represents a biological replicate; n=32 control, n=30 MO. In d-g, 

images are representative of 10 embryos examined in 3 independent experiments. i. qPCR 

for cmyb (black) and runx1 (white) in fzd9b morphants (n=3) and controls (n=3) at 40 hpf. j. 
Quantification of WISH for cmyb at 40 hpf in fzd9b mutants (n=4) and controls (n=5). Each 

dot represents a biological replicate. k. qPCR for cmyb in fzd9b mutants (n=3) and controls 

(n=3) at 40 hpf. In all graphs, dots represent biological replicates from a single experiment, 

bars represent the mean and error bars represent the standard deviation. All STF assays were 

repeated independently with a similar trend. All qPCR data was generated from biological 
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replicates from dissected trunks and tails each represented as a dot. n.s. not significant. 

Statistical analyses by ANOVA compared to controls as indicated.
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Figure 2: Fzd9b interacts genetically with Wnt9a.
a. Quantification of STF assay screen with human WNT9A and FZDs; n=3 biological 

replicates each. b. Schematic of experimental design for HSPC derivation. Representative 

flow cytometry plots of CD34 vs CD45 cells after 14 days of differentiation towards HSPCs 

in shControl (c), shWNT9A (d) and shFZD9 (e) transduced cells. Note the loss of double 

positive cells with the loss of WNT9A or FZD9, quantified in f, n=6 biological replicates 

each. g. Quantification of WISH for cmyb in suboptimal MO (0.1ng wnt9a, 0.5ng fzd9b) 

treated zebrafish at 40 hpf; n=10, 10, 14, 14 biological replicates from left to right. h. LRP6 

immunoblot of lysates from WT HEK293T STF cells (WT parental), CRISPR-treated cells 

without disruption of LRP6 (CRISPR WT), and LRP6 null mutant line (LRP6 KO). Image 

representative of 4 experimental replicates. i. STF activity in WT and LRP6 KO HEK293T 

STF cells transfected with zWnt9a and zFzd9b. n=3 biological replicates for each. j. WISH 

for cmyb at 40 hpf in WT, UAS:CA-β-catenin and gata2b:Gal4;UAS:CA-β-catenin, injected 

with fzd9b MO. Scale bar=30um. k. Quantification of j; n=11, 11, 8 , 9 biological replicates 

from left to right. In all graphs, each dot represents a biological replicate from a single 

experiment, bars represent the mean, error bars represent the standard deviation. All STF 

assays were repeated independently with a similar trend. n.s. not significant. Statistical 

analyses by ANOVA compared to controls as indicated.
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Figure 3: Wnt9a-Fzd9b specificity is mediated intracellularly.
a. STF assay with zWnt9a and zFzd9b with and without the cysteine rich domain (CRD); 

n=3 biological replicates each. b. STF assay with zWnt9a and zFzd9b/zFzd8a chimeras 

(schematics on x-axis; magenta=fzd8a; green=fzd9b); n=6, 3, 4, 9, 5, 3, 3, 6, 3, 3 biological 

replicates from left to right. c. WISH for cmyb at 40 hpf in fzd9b morphants injected with 

mRNAs for fzd9b, fzd8a and fzd8a with ICL3 and CTT from fzd9b and uninjected control. 

Scale bar=30um. d. Quantification of c; n=10, 9, 10, 9, 10 biological replicates from left to 

right. In all graphs, each dot represents a biological replicate; bars represent the mean and 

error bars represent the standard deviation. n.s. not significant. Panel b shows data from 2 

experiments, while all other graphs represent biological replicates from the same 

experiment. All STF assays were repeated independently with a similar trend. Statistical 

analyses by ANOVA compared to controls as indicated.
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Figure 4: EGFR mediates Wnt9a-Fzd9b signalling.
a. Immunofluorescence for zWnt9a in cells treated as shown. Scale bar=15 um. 

Representative of 10 fields of view from 2 experiments. b. STF assay of zWnt9a and zFzd9b 

treated with Cetuximab; n=3 biological replicates each. c. STF assay of zWnt9a and zFzd9b 

with siRNAs; n=3 biological replicates each. d. qPCR for runx1 (grey) and gata2b (white) at 

40 hpf generated from trunks and tails; n=3, 5, 4, 4 biological replicates from left to right. e. 
Quantification of WISH for cmyb at 40 hpf (suboptimal MO dosages 0.1ng wnt9a, 0.5ng 

fzd9b and 0.1ng egfra) n=11, 9, 10, 8, 10, 10 biological replicates from left to right. In all 

graphs, each dot represents a biological replicate from the same experiment; bars represent 

the mean and error bars represent the standard deviation. n.s. not significant. All STF assays 

were repeated independently with a similar trend. Statistical analyses by ANOVA compared 

to controls as indicated.
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Figure 5: EGFR is required to phosphorylate the Fzd9b C-terminal tail in response to Wnt9a.
a. zFzd9b protein with putative EGFR tyrosine phosphorylation sites. CRD: cysteine rich 

domain, ICL3: intracellular loop 3, CTT: C-terminal tail. b. Protein alignment of Fzd9 C-

terminal tails from species shown, using ClustalOmega. c. (See also Supplementary Fig. 7) 

Immunoblot for V5 from phosphotyrosine immunoprecipitation with increase in pY-zFzd9b 

(2.98 vs 1, arbitrary units). Trend observed in 4 independent experiments. d. STF assay of 

zFzd9b point mutants; n=9, 14, 10, 6 from left to right. e. Quantification of WISH for cmyb
+ cells in uninjected, fzd9b MO injected and fzd9b MO+fzd9bY556F mRNA injected fish at 

40 hpf; n=10 zebrafish each. f. Quantification of HEK293T cell STF assay with human 

WNT9A and FZD9 WT and Y562F mutant; n=3 biological replicates each. In all graphs, 

dots represent biological replicates from a single experiment; bars represent the mean and 

error bars represent the standard deviation. n.s. not significant. Statistical analyses by 

ANOVA compared to control as indicated. All STF assays were repeated independently with 

a similar trend.
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Figure 6: Clathrin-mediated endocytosis is required for the Wnt9a-Fzd9b signal.
a. Fold enrichment of GO terms for cellular components identified from the top 5% of 

changed proteins in Fzd9b-APEX2 HEK293T cells treated with Wnt9a. p-values are listed 

next to each bar. n=3 biological replicates, see methods for analysis and statistics. b. 
Heatmap of Fzd9b-APEX2 proximity labeled normalized intensities of RAB members in the 

early endosome, late endosome and recycling endosome over time from n=3 biological 

replicates. c. zFzd9b-APEX2 proximity labeled normalized intensity averages of 3 

biological replicates. d. STF assay with zWnt9a and zFzd9b cultured with chlorpromazine 

(CPZ); n=3 experiments each. e. STF assay of hWNT9A CHO/hFZD9 STF co-culture 

treated with chlorpromazine (CPZ); n=3 experiments each. In all graphs, dots represent 

biological replicates from a single experiment; bars represent the mean and error bars 

represent the standard deviation. n.s. not significant. Statistical analyses by ANOVA 

compared to control as indicated. All STF assays were repeated independently with a similar 

trend. f. i. Fzd9b, LRP6 and EGFR are resident in proximity at the cell surface; f. ii. the 
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destruction complex targets β-catenin for degradation in the absence of a ligand; f. iii. in the 

presence of Wnt9a, EGFR phosphorylates the Fzd9b tail at Y556. f. iv. AP-2 and clathrin are 

recruited. f. v. Fzd9b-LRP6 oligomerization leads to dissociation of the destruction complex 

and release of β-catenin into the cytosol, allowing for nuclear translocation. f. vi. Nuclear β-

catenin transactivates a program for HSC proliferation.
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