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A DETERMINING FORM FOR THE 2D RAYLEIGH-BÉNARD PROBLEM

YU CAO1, MICHAEL S. JOLLY1,†, AND EDRISS S. TITI2

Abstract. We construct a determining form for the 2D Rayleigh-Bénard (RB) system in a strip

with solid horizontal boundaries, in the cases of no-slip and stress-free boundary conditions. The

determining form is an ODE in a Banach space of trajectories whose steady states comprise the

long-time dynamics of the RB system. In fact, solutions on the global attractor of the RB system

can be further identified through the zeros of a scalar equation to which the ODE reduces for each

initial trajectory. The twist in this work is that the trajectories are for the velocity field only, which

in turn determines the corresponding trajectories of the temperature.

This paper is dedicated to Ciprian Foias, a great mathematician, generous collaborator and friend,

on the occasion of his 85th birthday.
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1. Introduction

It was shown in [19] that the long-time dynamics of the 2D Rayleigh-Bénard (RB) problem is

entirely contained in the global attractor A , which is a compact finite-dimensional subset of an

infinite-dimensional Hilbert space H. An inertial manifold, if it exists, is a finite-dimensional invari-

ant smooth manifold that contains the global attractor and attracts all the orbits at an exponential

rate (see, e.g., [21]). The system obtained by restriction to an inertial manifold is called an inertial

form. It is a finite-dimensional system of ODEs which reproduces the dynamics of the original sys-

tem. While the existence of the inertial manifolds has been established for a considerable number

of dissipative systems (see, e.g., [11,20,26,27] and references therein), it has been an open problem

since the 1980s for the 2D Navier-Stokes equations (NSE), and hence for the 2D RB problem as

well.

The 2D NSE and 2D RB problem do enjoy a finite number of determining parameters (see, e.g.,

[9, 14, 18, 25]). For instance, in the case of determining Fourier modes, if two complete trajectories

in the global attractor coincide upon projection Pm on a sufficiently large number m of low Fourier

modes, then they must be the same (see, e.g., [9, 14, 18, 25]). Thus it is natural to expect the

existence of a lifting map W : PmA → A . This property inspired the notion of a determining

form, introduced in [15]. A determining form is an ODE in an infinite-dimensional Banach space of

trajectories that captures the dynamics of the original system in a certain way. Rather than being

a dimension reduction, as is the case for the inertial form, the determining form trades the infinite-

dimensionality of physical space for that of time; the elements in its phase space are trajectories. It

is an ODE in that it is represented by a globally Lipschitz vector field.

There are currently two approaches to constructing a determining form. The key step in either

case is to extend the domain of the lifting map W to a Banach space X of projected trajectories. The

determining form constructed here is based on the nudging approach to continuous data assimilation

(see [1, 2]). It is given by

dv

ds
= −‖v − IhW (v)‖2X (v − Ihu

∗)(1.1)

where u∗ is some steady state of the original system, and ‖ · ‖X is a sup norm on a Banach space of

trajectories that evolve in the finite-dimensional range of some interpolant operator Ih. Note that

the evolutionary variable is now s ∈ R, not time. The trajectories in the global attractor of the

original system are precisely the steady states (s-independent solutions) of (1.1). To show that (1.1)

is an ODE in the true sense boils down to proving that the mapping W is globally Lipschitz on a

ball in X, big enough to accomodate IhA . In addition to the 2D NSE (see [16]), this recipe has

been carried out for the damped-driven nonlinear Schrödinger, damped-driven Korteweg–de Vries,

and surface quasigeostrophic equations (see [3, 4, 22, 23, 24]), each with particular treatment and

subtle twists in the analysis. This general procedure is developed in detail in Section 3.

In this paper we construct a determining form for the Rayleigh-Bénard problem. The novelty

here is that the phase space X corresponds to projections of the velocity field alone. Still, both

velocity and temperature of all trajectories in the global attractor of the 2D RB problem are iden-

tified through steady states of the determining form. This is the first such construction where the

trajectories are in a subset of the system state variables. This was suggested in the context of data
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assimilation by [12,13] where it was proved that coarse velocity data alone is sufficient to synchronize

with a reference solution of the RB problem. The key difficulty in establishing the crucial Lipschitz

property of the lifting map W is in getting a priori estimates that are independent of the nudging

parameter. Doing this with nudging only in the velocity component adds an extra challenge.

We treat both no-slip and stress-free boundary conditions for the velocity field. Different analysis

is needed for each case. In the stress-free case, the problem is equivalent to a periodic boundary

condition problem in an extended domain with particular symmetries, which allows us to eliminate

one of the nonlinear terms in the estimates. On the other hand, we do not in this case have the

Poincaré inequality for (the first component of “velocity”) w, which is worked around by combining

estimates of several norms. We observe that similar techniques are used in [7] to obtain sharper

bounds on the size of the global attractor A in the case of stress-free boundary conditions than

previously known.

2. Notation and Preliminaries

Under a similar change of variables as in [19], the 2D RB problem in an infinite strip {(x1, x2) :
0 < x2 < l} with solid boundaries at x2 = 0 and x2 = l, can be written as

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = gθe2,(2.1a)

∂θ

∂t
− κ∆θ + (u · ∇)θ =

u · e2
l

,(2.1b)

∇ · u = 0,(2.1c)

u(0;x) = u0(x), θ(0;x) = θ0(x),(2.1d)

where g denotes the gravitational acceleration. Unlike [19], we retain the dimension of the velocity

u while the temperature fluctuation θ is dimensionless. In this paper, we consider the following two

sets of boundary conditions of physical interest.

No-slip:

in the x2-variable: u, θ = 0 at x2 = 0 and x2 = l,

in the x1-variable: u, θ, p are of periodic L.

Stress-free:

in the x2-variable:
∂u1
∂x2

, u2, θ = 0 at x2 = 0 and x2 = l,

in the x1-variable: u, θ, p are of periodic L.

2.1. Function spaces. We will use the same notation indiscriminately for both scalar and vector

Lebesgue and Sobolev spaces, which should not be a source of confusion.

We denote

(u, v) :=

∫

Ω
u · v , |u| := (u, u)1/2 , for u, v ∈ L2(Ω) ,

((u, v)) :=

∫

Ω
∇u · ∇v , ‖u‖ := ((u, u))1/2 , for ∇u,∇v ∈ L2(Ω) ,
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for a domain Ω that will be specified for each case of boundary conditions.

2.1.1. No-slip BCs. We define function spaces corresponding to the no-slip boundary conditions as

in [12]. Let Ω = Ω0 := (0, L)× (0, l) and F be the set of C∞(Ω) functions, which are trigonometric

polynomials in x1 with period L, and compactly supported in the x2-direction.

Denote the space of smooth vector-valued functions which incorporates the divergence-free con-

dition by

V := {u ∈ F × F : ∇ · u = 0} ,

and the closures of V and F in L2(Ω) by H0 and H1, respectively, which are endowed with the usual

inner products and associated norms

(u, v)H0
:= (u, v) , (ψ, φ)H1

:= (ψ, φ) , ‖u‖H0
:= (u, u)1/2 , ‖ψ‖H1

:= (ψ,ψ)1/2 .(2.3)

The closures of V and F in H1(Ω) will be denoted by V0 and V1, respectively, endowed with the

inner products and associated norms

((u, v))V0
:= ((u, v)) , ((ψ, φ))V1

:= ((ψ, φ)) , ‖u‖V0
:= ‖u‖ , ‖φ‖V1

:= ‖φ‖ .

2.1.2. Stress-free BCs. Following [13], we consider the equivalent formulation of the 2D RB problem

(2.1) subject to the fully periodic boundary conditions on the extended domain Ω = (0, L)× (−l, l)
with the following special spatial symmetries: for (x1, x2) ∈ Ω,

u1(x1, x2) = u1(x1,−x2) , u2(x1, x2) = −u2(x1,−x2) ,
p(x1, x2) = p(x1,−x2) , θ(x1, x2) = −θ(x1,−x2) .

Observe that for (x1, x2) ∈ Ω with x2 = −l, 0, l, and for smooth enough functions one has

∂u1
∂x2

, u2, θ = 0 ,

that is, one recovers the original corresponding physical boundary conditions when restricted to the

physical domain Ω0.

We define function spaces corresponding to the “stress-free” boundary conditions, i.e., the periodic

BCs with the above symmetries, as in [13], where

F1 is the set of trigonometric polynomials in (x1, x2), with period L in the x1-

variable, that are even, with period 2l, in the x2-variable,

and

F2 is the set of trigonometric polynomials in (x1, x2), with period L in the x1-

variable, that are odd, with period 2l, in the x2-variable.

The symmetries of the two velocity components lead us to take in the stress-free case

V := {u ∈ F1 ×F2 : ∇ · u = 0} .

The space H0 will again be the closure of V in L2(Ω), but H1 shall be that of F2 in L2(Ω), with

inner products and norms as in (2.3).
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Similarly, we denote the closures of V and F2 in H1
per(Ω) by V0 and V1, respectively, but with the

inner products

((u, v))V0
:=

1

|Ω| (u, v) + ((u, v)) , ((ψ, φ))V1
:= ((ψ, φ)) ,

and associated norms

‖u‖V0
:=

(
1

|Ω| |u|
2 + ‖u‖2

)1/2

, ‖φ‖V1
:= ‖φ‖ .

2.2. The linear operators Ai.

2.2.1. No-slip BCs. Let Ai : D(Ai) → Hi (i = 0, 1) be the unbounded linear operators defined by

(Aiu, v)Hi
= ((u, v))Vi

, i = 0, 1, ∀ u, v ∈ D(Ai) ,

where D(A0) = V0 ∩H2(Ω) and D(A1) = V1 ∩H2(Ω).

For each i = 0, 1, the operator Ai is self-adjoint and A−1
i is a compact, positive-definite, self-

adjoint linear operator in Hi. There exists a complete orthonormal set of eigenfunctions (ζi,j)
∞

j=1 in

Hi such that Aiζi,j = λi,jζi,j where

0 < λi,1 6 λi,2 6 · · · 6 λi,m 6 · · · ,

Observe that we have the following Poincaré inequalities:

|φ|2 6 λ−1
1 ‖φ‖2, ∀φ ∈ Vi,(2.4)

‖φ‖2 6 λ−1
1 |A1φ|2, ∀φ ∈ D(Ai),(2.5)

where λ1 := λ1,1 = λ2,1.

Remark 2.1. We observe that in this case |A0φ| is equivalent to ‖φ‖H2 for every φ ∈ D(A0).

2.2.2. Stress-free BCs. Let Ai : D(Ai) → Hi (i = 0, 1) be the unbounded linear operators defined

by Ai = −∆, where D(A0) = V0 ∩H2(Ω) and D(A1) = V1 ∩H2(Ω).

Remark 2.2. The operator A0 is a nonnegative operator and possesses a sequence of eigenvalues

with

0 = λ0,1 < λ0,2 6 · · · 6 λ0,m 6 · · · ,
associated with an orthonormal basis {ζ0,m}m∈N of H0. The operator A1 is a positive self-adjoint

operator and possesses a sequence of eigenvalues with

0 < λ1,1 6 λ1,2 6 · · · 6 λ1,m 6 · · · ,

associated with an orthonormal basis {ζ1,m}m∈N ofH1. Observe that we have the Poincaré inequality

for temperature:

|θ|2 6 λ−1
1 ‖θ‖2, ∀ θ ∈ V1,(2.6)

‖θ‖2 6 λ−1
1 |A1θ|2, ∀ θ ∈ D(A1),(2.7)

where λ1 = λ1,1.
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Remark 2.3. In the stress-free case, we do not have the Poincaré inequality for functions in V0, but

we have

|u|2 6 |Ω| ‖u‖2V0
, ∀u ∈ V0(2.8)

by the definition of the norm ‖·‖V0
.

Remark 2.4. By the elliptic regularity of the operator A0 + I (see [13, Remark 2.3]), we have in the

stress-free case the equivalency

c̃E
2

(
1

|Ω|‖u‖L2 + ‖A0u‖L2

)
6 ‖u‖H2 6 c2E

(
1

|Ω|‖u‖L2 + ‖A0u‖L2

)
, ∀ u ∈ D(A0).(2.9)

2.3. The bilinear maps Bi. Denote the dual space of Vi by V ′

i (i = 0, 1). Define the bilinear map

B0 : V0 × V0 → V ′

0 (and the trilinear map b0 : V0 × V0 × V ′

0 → R) by the continuous extension of

b0(u, v, w) := 〈B0(u, v), w〉V ′
0
= ((u · ∇)v,w), u, v, w ∈ V.

2.3.1. No-slip BCs. Define the scalar analogue B1 : V0 × V1 → V ′

1 (and the trilinear map b1 :

V0 × V1 × V ′

1 → R) by the continuous extension of

b1(u, θ, φ) := 〈B1(u, θ), φ〉V ′
1
= ((u · ∇)θ, φ), u ∈ V, θ, φ ∈ F .

The bilinear maps Bi (and the trilinear maps bi), i = 0, 1, have the orthogonality property:

b0(u, v, v) = 0, b1(u, θ, θ) = 0, u, v ∈ V0, θ ∈ V1.(2.10)

2.3.2. Stress-free BCs. Define the scalar analogue B1 : V0 × V1 → V ′

1 (and the trilinear map b1 :

V0 × V1 × V ′

1 → R) by the continuous extension of

b1(u, θ, φ) := 〈B1(u, θ), φ〉V ′
1
= ((u · ∇)θ, φ), u ∈ V, θ, φ ∈ F2.

The bilinear maps Bi (and the trilinear maps bi), i = 0, 1, have the same orthogonality property

(2.10) as in the no-slip case. Furthermore, we have for each u ∈ D(A0),

b0(u, u,A0u) = 0 ,(2.11)

which is not true in general in the no-slip case.

2.4. Functional setting and bounds for the global attractor. Following [19], we have the

functional form of the RB problem (2.1):

du

dt
+ νA0u+B0(u, u) = Pσ(gθe2),(2.12a)

dθ

dt
+ κA1θ +B1(u, θ) =

u · e2
l

,(2.12b)

u(0;x) = u0(x), θ(0;x) = θ0(x),(2.12c)

where Pσ denotes the Helmholtz-Leray projector from L2(Ω) onto H0.
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2.4.1. No-slip BCs. It is shown in [19] that the RB system (2.1) with no-slip boundary conditions

has a global attractor

A = {(u0, θ0) ∈ H0 ×H1 : ∃ a unique solution (u, θ)(t;u0, θ0) of (2.1) for all t ∈ R(2.13)

and sup
t
(‖u(t)‖V0

+ ‖θ(t)‖V1
) <∞} .

Alternatively, A is the maximal bounded invariant subset of V0 × V1 under the dynamics of (2.12).

Moreover, there exists some (dimensional) constants Ji > 0, i = 1, 2, such that

sup
t∈R

‖u(t)‖V0
6 J1, sup

t∈R
‖u(t)‖H2 6 J2, ∀ (u, θ) ∈ A .(2.14)

Henceforth, lowercase letters cL, cA, ci, · · · will denote universal dimensionless positive constants;

uppercase letters C, Ji,K,Ki, · · · will denote positive dimensional constants that depend on the

physical parameters.

2.4.2. Stress-free BCs. The case of stress-free boundary conditions is studied further in [7]. With the

stress-free boundary conditions, the RB system has steady states with arbitrarily large L2-norms:

u(x) = (c, 0), θ(x) = 0, c ∈ R,

which means that the system is not dissipative. However, since (see also [7])

d

dt

∫

Ω
u(x, t) dx = 0 ,

we may assume in the stress-free case that the velocity field has a fixed average:
∫

Ω
u(x, t) dx = a, ∀ t ∈ R,(2.15)

where a ∈ R is fixed. Observe that the spatial average is conserved and the system is dissipative

within each invariant affine space of fixed average a. It is shown in [7] that the RB system has a

global attractor A = Aa, in each affine subspace of V0 × V1 where the spatial average (2.15) of

velocity is fixed. Moreover, there exist some (dimensional) constants Ji = Ji(a) > 0, i = 1, 2, such

that (2.14) holds. In this case of stress-free boundary conditions, the dependence of Ji, i = 1, 2, is

shown in [7] to be algebraic in the physical parameters ν, κ, l and L. To be specific, we will take

a = 0.

3. Determining Form and Main Results

In order to define the determining form, we need the notion of interpolant operators.

3.1. Interpolant operators. We recall a general class of interpolant operators introduced in [1,2]

for dealing with various determining parameters such as modes, nodes, volume elements, etc. These

operators are finite-rank operators (bounded, linear and with finite-dimensional range) and are

required to satisfy an approximation of identity type condition.

A finite-rank operator Ih : H1(Ω) → H1(Ω) is a Type I interpolant operator if it satisfies

|ϕ− Ih(ϕ)| 6 c0h‖ϕ‖H1 , ∀ϕ ∈ H1 ;(3.1)

‖ϕ− Ih(ϕ)‖H1 6 c̃0‖ϕ‖H1 , ∀ϕ ∈ H1 .(3.2)
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A finite-rank operator Ih : H2(Ω) → H1(Ω) is a Type II interpolant operator if it satisfies

|ϕ− Ih(ϕ)| 6 c1h‖ϕ‖H1 + c2h
2‖ϕ‖H2 , ∀ϕ ∈ H2 ;(3.3)

‖ϕ− Ih(ϕ)‖H1 6 c̃1‖ϕ‖H1 + c̃2h‖ϕ‖H2 , ∀ϕ ∈ H2.(3.4)

In this paper, we construct a determining form for the RB system using Type II interpolants.

The same can be done under slightly weaker assumptions on h for Type I interpolants (see [6]).

Remark 3.1. The orthogonal projection onto low Fourier modes, those with wave numbers k such

that |k| 6 1/h, is one example of a Type I interpolant. Another is finite volume elements. In

addition, an example of a Type II interpolant is an interpolant operator that is based on nodal

values satisfying (3.3) and (3.4). See, e.g., [1] for more details.

Remark 3.2. In the stress-free case, by definition, we have ‖ϕ‖H1 = ‖ϕ‖V0
, for ϕ ∈ V0. Moreover,

by (2.9) in Remark 2.4, replacing the absolute constants when necessary, we can replace ‖ϕ‖H2 by

|A0ϕ| in (3.3) and (3.4), for ϕ ∈ D(A0).

We need to modify the interpolant operator Ih so that its has a range of functions that are

divergence-free and satisfy the boundary conditions. Motivated by [8, Proposition 2.1], we define

the modified Type II interpolant operator Ĩh : H2 → V0 as

Ĩh := PrIh, Prφ =
r∑

i=1

(φ, ζ0,i)ζ0,i, h2 ∼ 1

λ0,r
,(3.5)

where we recall that {ζ0,i} are the eigenfunctions of the operator A0 in Section 2.2. The phase space

(X, ‖·‖X ) of our determining form is then defined as

X := Cb(R; ĨhH
2), ‖v‖X :=

supt∈R ‖v(t)‖V0

νλ
1/2
1

.(3.6)

Remark 3.3. Based on the proof in [8, Proposition 2.1], we observe that Ĩh satisfies conditions (3.3)

and (3.4) with modified constants ci, c̃i, i = 1, 2. Furthermore, in the no-slip case, by the Poincaré

inequality, modifying the constants ci when necessary, we have

|ϕ− Ĩh(ϕ)| 6 c1h‖ϕ‖V0
+ c2h

2 |A0ϕ| , ∀ϕ ∈ D(A0).(3.7)

We also have (3.7) for the stress-free case by Remark 3.2.

3.2. Auxiliary system and determining map. Consider the following auxiliary system:

dw

dt
+ νA0w +B0(w,w) = Pσ(gηe2)− µνλ1(Ĩhw − v),(3.8a)

dη

dt
+ κA1η +B1(w, η) =

w · e2
l

,(3.8b)

where v ∈ BX(0, ρ) := {ξ ∈ X : ‖ξ‖X < ρ} with ρ > 0 and Ĩh is a (modified) Type II interpolant

operator. Note that the nudging term in (3.8) appears only in the momentum equation.

Proposition 3.1 (Solutions to the auxiliary system). Let ρ be a positive real number. Let µ > 0

be sufficiently large and h > 0 sufficiently small (see conditions in Section 4). Then for each
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v ∈ BX(0, ρ), system (3.8) has a unique bounded solution (w(t), η(t)) that exists for all t ∈ R such

that

(w, η) ∈ Cb(R, V0 × V1) ∩ L2
loc(R,D(A0)×D(A1)),

(
dw

dt
,
dη

dt

)
∈ L2

loc(R,H0 ×H1) .(3.9)

The proof of Proposition 3.1 is given in Section 4. Note that this proposition provides a map,

called the determining map,

W̃ : BX(0, ρ) → Cb

(
R;V0 × V1

)
∩ L2

loc

(
R;D(A0)×D(A1)

)
, W̃ (v) := (w, η).

The projection of W̃ to the first component w induces a map W : BX(0, ρ) → Y with

Y := Cb(R;V0) ∩ L2
loc(R;D(A0)), W (v) = w ,

‖w‖Y :=
supt∈R ‖w(t)‖V0

νλ
1/2
1

+

(
1

νλ1
sup
t∈R

∫ t+ 1

νλ1

t
|A0w(τ)|2 dτ

)1/2

.

The induced map W will be used in the definition of the determining form. We denote Z :=

Cb(R;V1) ∩ L2
loc(R;D(A1)) and

‖η‖Z := sup
t∈R

‖η(t)‖V1
+

(
ν sup

t∈R

∫ t+ 1

νλ1

t
|A1η(τ)|2 dτ

)1/2

.

Proposition 3.2. The maps W̃ : (BX(0, ρ), ‖·‖X ) → (Y ×Z, ‖·‖Y +‖·‖Z) and W : BX(0, ρ), ‖·‖X →
(Y, ‖·‖Y ) are Lipschitz.

The proof of Proposition 3.2 is given in Section 5.

Remark 3.4. It is proved in [4] that the determining map W̃ is in fact Frechét differentiable in the

case of the 2D NSE.

3.3. Determining form and long-time dynamics of the RB system. Let (u∗, θ∗) be a steady

state of the RB problem (2.12); for instance, we may take (u∗, θ∗) = (0, 0). Under the assumptions

of Proposition 3.1, we will prove (in Theorem 3.5 (i)) that the differential equation

dv

ds
= F (v) := −‖v − ĨhW (v)‖2X (v − Ĩhu

∗), v(0) = v0 ∈ BX(0, ρ),(3.10)

is an ODE in the sense that the vector field F is globally Lipschitz in the ball BX(0, ρ), where ρ > 0

is to be determined. The ODE (3.10) is called a determining form of the RB problem.

The connection between the long-time dynamics, i.e. the global attractor, of the RB problem

(2.12) and the determining form will be made through the following result:

Proposition 3.3. Let (u(t), θ(t)), t ∈ R, be a solution of the RB problem (2.12) that lies in the

global attractor A . Suppose µ, h satisfy the assumptions in Proposition 3.1. Suppose (w, η) is a

solution to the system

dw

dt
+ νA0w +B0(w,w) = Pσ(gηe2)− µνλ1(Ĩhw − Ĩhu),(3.11a)

dη

dt
+ κA1η +B1(w, η) =

w · e2
l

,(3.11b)
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and satifies

(w, η) ∈ Cb(R, V0 × V1) ∩ L2
loc(R,D(A0)×D(A1)) ,

(
dw

dt
,
dη

dt

)
∈ L2

loc(R,H0 ×H1) .

Then (w(t), η(t)) = (u(t), θ(t)) for all t ∈ R.

The proof of Proposition 3.3 is given in Section 6.

3.4. Main theorem. In order to state the main theorem, we first prove the following result:

Proposition 3.4. Let Ĩh be a (modified) Type II interpolant operator as in (3.5), with h < L. For

every (u, θ) ∈ A , we have

‖Ĩhu‖X 6 R :=
(
(c̃1 + 1)J1 + c̃2LJ2

)
/(νλ

1/2
1 ).(3.12)

Proof. Let (u, θ) ∈ A . By (3.4), Remark 3.3, and the bound (2.14), we have

‖Ĩhu‖V0
6 ‖Ĩhu− u‖V0

+ ‖u‖V0

6 c̃1‖u‖H1 + c̃2h‖u‖H2 + ‖u‖V0
6 (c̃1 + 1)J1 + c̃2LJ2 ,

which completes the proof by (3.6), the definition of the norm ‖·‖X . �

The main results regarding the determining form are summarized in the following theorem:

Theorem 3.5. Suppose the assumptions in Proposition 3.1 hold for ρ = 4R, where R > 0 satisfies

(3.12). Suppose also that h < L as in Proposition 3.4. Then the following hold.

(i) The vector field F : BX(0, ρ) → X in the determining form (3.10) is Lipschitz. Hence the

determining form (3.10) is an ODE in X which has short-time existence and uniqueness of

solutions for every initial data v0 ∈ BX(0, ρ).

(ii) The ball BX(Ĩhu
∗, 3R) ⊂ BX(0, ρ) is forward invariant in the evolution variable s under the

dynamics of the determining form, which implies that (3.10) has a unique global solution for

every initial data v0 ∈ BX(Ĩhu
∗, 3R).

(iii) Every solution of (3.10) with initial data v0 ∈ BX(Ĩhu
∗, 3R) converges to a steady state of

(3.10) as s→ ∞.

(iv) All the steady states of the determining form (3.10) that are contained in BX(0, ρ) have the

form v(t) = Ĩhu(t) for all t ∈ R, where (u(·), θ(·)) is a trajectory in the global attractor A

of the RB problem (2.12) for a uniquely determined termperature θ(·).

We should emphasize that (3.10) governs an evolution of “trajectories” that are with range in

a finite-dimensional space which correspond to velocity only. Yet it determines full trajectories of

both the velocity and temperature on the global attractor of the RB system through the determining

map W̃ .

Remark 3.5. It is easy to see, as in [17], that the solution to (3.10) is always a convex combination

of the initial condition and the chosen steady state:

v(s; t) = β(s)v0(t) + (1− β(s))Ĩhu
∗ s > 0, t ∈ R ,(3.13)
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where

β(s) = exp

(
−
∫ s

0
‖v(τ)− ĨhW (v(τ))‖2X dτ

)
(3.14)

satisfies a scalar ODE, which for the RB problem written in the form (2.12) with (u∗, θ∗) = (0, 0),

amounts to

(3.15) v = βv0 ,
dβ

ds
= −β‖βv0 − ĨhW (βv0)‖2X , β(0) = 1.

The dynamics of (3.15) are completely understood (see [17]). As s → ∞, along the straight line

through v0 and 0 in X, either v(s) → 0, or v(s) → Ĩhu, where (u, θ) is the first trajectory in A ,

with Ĩhu between v0 and 0. Thus the solutions in the global attractor can be identified as the zeros

of the scalar function on the right-hand side of equation (3.15).

Proof of Theorem 3.5. Part (i). Define q : BX(0, ρ) → R with q(v) := ‖v − ĨhW (v)‖X . Let

v1, v2 ∈ BX(0, ρ). By the triangle inequality and the definition of the vector field F ,

‖F (v1)− F (v2)‖X = ‖[q2(v1)− q2(v2)](v1 − Ĩhu
∗) + q2(v2)(v1 − v2)‖X

6
∣∣q2(v1)− q2(v2)

∣∣ · ‖v1 − Ĩhu
∗‖X +

∣∣q2(v2)
∣∣ · ‖v1 − v2‖X .

Hence, to show that F is Lipschitz (in the ball BX(0, ρ)), it suffices to show that the map q is

Lipschitz. Note that

|q(v1)− q(v2)| =
∣∣‖v1 − ĨhW (v1)‖X − ‖v2 − ĨhW (v2)‖X

∣∣

6 ‖v1 − ĨhW (v1)− [v2 − ĨhW (v2)]‖X
6 ‖v1 − v2‖X + ‖ĨhW (v1)− ĨhW (v2)‖X .

It suffices to show that

‖ĨhW (v1)− ĨhW (v2)‖X 6 c‖v1 − v2‖X .(3.16)

Observe the following diagram:

BX(0, ρ) ⊂ (X, ‖·‖X )
W−→ (Y, ‖·‖Y )

Ĩh−→ (X, ‖·‖X ).

To prove (3.16), it suffices to show that

‖w1 −w2‖Y 6 c‖v1 − v2‖X ,(3.17)

‖Ĩhw1 − Ĩhw2‖X 6 c‖w1 − w2‖Y ,(3.18)

where wi :=W (vi) with i = 1, 2.

Proposition 3.2 implies that W is Lipschitz and hence we have (3.17). Inequality (3.18) follows

from Remark 3.3 for the linear operator Ĩh and the definitions of the norms ‖·‖X and ‖·‖Y . The

proof of (i) is done.

By Proposition 3.4 and the triangle inequality1,

BX(Ĩh(u
∗), 3R) ⊂ BX(0, ρ),

1 Note that ‖v‖X 6 ‖v − Ĩhu
∗‖X + ‖Ĩhu

∗‖X 6 3R +R = 4R.
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which implies short-time existence of a solution of the determining form (3.10). Thus, (ii) follows

from the observation that

‖v(s; ·) − Ĩh(u
∗)‖X = β(s)‖v0(·)− Ĩh(u

∗)‖X , s > 0,

where β is as in (3.14). Alternatively, (ii) follows from the dissipativity property of (3.10): for every

fixed t ∈ R,

d

ds
‖v(s; t) − Ĩh(u

∗)‖2V0
= −2‖v − ĨhW (v)‖2X · ‖v(s; t)− Ĩh(u

∗)‖2V0
.

This property implies that the ball BX(Ĩh(u
∗), 3R) is forward invariant for all s > 0, which proves

both (ii) and (iii).

To prove (iv) we observe that the steady states of equation (3.10) in the ball BX(0, ρ) are either

v = Ĩh(u
∗) or v ∈ BX(0, ρ) such that ‖v − ĨhW (v)‖X = 0. In the first case (u∗, θ∗) ∈ A since

(u∗, θ∗) is a steady state of the RB system (2.12). In the second case we have v(t) = ĨhW (v)(t) for

all t ∈ R. Let (w, η) = W̃ (v). It then follows from (3.8) that (w, η) is a bounded solution (thus a

trajectory in the global attractor A by (2.13)) to the RB system (2.12).

Conversely, since ρ = 4R, it follows from Proposition 3.4 that

Ĩh(A ) ⊂ BX(Ĩhu
∗, 3R) ⊂ BX(0, ρ).

Thus, for every trajectory (u(·), θ(·)) ⊂ A it follows from the auxiliary system (3.8) and Proposition

3.3 that u(t) =W (Ĩhu)(t) for all t ∈ R. In particular, Ĩhu = ĨhW (Ĩhu), which implies that Ĩhu is a

steady state of equation (3.10) in BX(0, ρ). �

4. Proof of Proposition 3.1

Let µ, h > 0 and assume that ‖v‖X 6 ρ. For the case of no-slip boundary conditions, we assume

that the following hold:

µλ
1/2
1 c1h 6

1

4
, µλ212c

2
2h

4 6
1

8
,(4.1)

µν2λ21C1 >
5g2K

2ρ2
,(4.2)

1

4
µν − 16K1C

2
1ρ

4 > 0 ,(4.3)

1

2
µνλ1 −

g2

κ(νλ1)2
− λ1ν

4
(K2 logK2)−

2c2Lν
2

κ
ρ2 − 2ν2

l2κ
>
κλ1
2

,(4.4)

where the constants K,C1,K1,K2 are defined in (4.16), (4.23), (4.21) and (5.14); they are all

independent of µ and h.
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For the case of stress-free boundary conditions, we assume that the following hold:

1

4
µνλ1 −

(
2g2

|Ω|κǫ2λ1
+

2g2

κǫ2
+
K̃2

1ǫ2
κl2

)
>
κλ1
2
,(4.5)

1

8
µλ1 −

|Ω|−1

4
> 0,(4.6)

1

4
µνλ1 −K16 >

κλ1
4
,(4.7)

c1h|Ω|−1/2 6
1

8
, 2c22h

4µλ1|Ω|−1 6
1

8
,(4.8)

µνλ1(c
2
1h

2 + c2h
2) 6

ν

2
,(4.9)

where the constants ǫ2, K̃1,K16, being independent of µ and h, are defined in (4.40), (4.46) and

(5.41).

The uniqueness of bounded solutions follows from Proposition 3.2. In this section, we prove the

existence of strong solutions.

Remark 4.1. Assumptions (4.4) and (4.7) are not needed for the proof of existence; they are used

to prove the uniqueness of bounded solution.

Step 1. Let k be a fixed positive integer. For n > r, where r ∈ N is fixed in (3.5), we consider a

Galerkin approximation for system (3.8):

dwn

dt
+ νA0wn + P0,nB0(wn, wn) = P0,nPσ(gηne2)− µνλ1P0,n(Ĩhwn − v) ,(4.10)

dηn
dt

+ κA1ηn + P1,nB1(wn, ηn) = P1,n

(wn · e2
l

)
,

with initial data

wn(−k(νλ1)−1) = 0 , ηn(−k(νλ1)−1) = 0,(4.11)

where Pi,n is the orthogonal projection onto Hi,n = span{ζi,1, · · · , ζi,n}. This is a finite system of

ODEs with a quadratic polynomial nonlinearity. Hence, there exists Tn > −k(νλ1)−1, so that there

exists a solution (wn, ηn) to the initial value problem on the interval [−k(νλ1)−1, Tn).

Thanks to the initial conditions (4.11), following the approach used to prove the existence and

uniqueness of strong solutions for the Navier-Stokes equations and the RB system (see, e.g., [10,27]),

one can show by energy estimates that there exists T∗ > −k(νλ1)−1, independent of n, such that

solutions of (4.10) exist on [−k(νλ1)−1, T∗] and satisfy uniform bounds, in the relevant strong

norms, which are independent of n. Therefore, by the Aubin-Lions compactness theorem, there

exists a subsequence {(wn(j),k, ηn(j),k)}∞j=1 which converges to a unique strong solution (w(k), η(k))

to system (3.8) on a common interval [−k(νλ1)−1, T∗] with initial data w(k)(−k(νλ1)−1) = 0 and

η(k)(−k(νλ1)−1) = 0. Let [−k(νλ1)−1, T∗∗) be the maximum forward interval of existence for

(w(k), η(k)). Note that T∗∗ > T∗ and that from the above mentioned energy type estimates we have

(w(k), η(k)) ∈ C
(
[−k(νλ1)−1, T∗∗), V0 × V1

)
∩ L2

loc

(
[−k(νλ1)−1, T∗∗),D(A0)×D(A1)

)
.
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Step 2. Assume that T∗∗ < ∞. In Section 4.1 and Section 4.2, for the no-slip and stress-free

cases respectively, we show on the maximum interval of existence [−k(νλ1)−1, T∗∗) for (w(k), η(k))

uniform (in time t) bounds on the following quantities (omitting the superscript k for simplicity)

|η|2, |w|2, ‖w‖2,
∫ min(t+T,T∗∗)

t
|A0w(τ)|2 dτ ,(4.12)

‖η‖2,
∫ min(t+T,T∗∗)

t
|A1η(τ)|2 dτ,(4.13)

where T := (νλ1)
−1.

Remark 4.2. All the bounds for (4.12) will be independent of k and T∗∗. On the other hand, bounds

for (4.13) in this step may depend on k; we will however, improve in the next step the bounds so

that they will be independent of k and T∗∗.

For the no-slip case, the bounds (4.16), (4.24), (4.28), (4.35) and (4.37) in Section 4.1 imply that

the solution (w(k), η(k)) cannot blow up in the space

C
(
[−k(νλ1)−1, T∗∗), V0 × V1

)
∩ L2

loc

(
[−k(νλ1)−1, T∗∗),D(A0)×D(A1)

)
,

and thus we may extend it beyond T∗∗, which contradicts the maximality of T∗∗. Therefore, we

must have T∗∗ = ∞.

The same argument works for the stress-free case by considering the bounds (4.54), (4.56), (4.58),

(4.64) and (4.66) in Section 4.2.

Step 3. For (w(k), η(k)), we show uniform bounds on the interval Ik := [−k(νλ1)−1+(νλ1)
−1,∞),

for all the quantities in (4.12) and (4.13). These bounds will all be independent of k. Note that we

need the extra time unit (νλ1)
−1 in Ik due to the use of Lemma 4.1.

By Remark 4.2, the uniform bounds for (4.12) in Step 2, i.e.,

(i) no-slip: (4.16), (4.24), (4.28);

(ii) stress-free: (4.54), (4.56), (4.58),

are all valid on the interval [−k(νλ1)−1,∞) and particularly on Ik; they are independent of k.

For the no-slip case, in subsection 4.1.4, letting αk = T = (νλ1)
−1 and t1 = T∗∗ = ∞, by (4.34),

we have a uniform bound on the interval Ik for ‖η‖2, where C3 in (4.34) is now independent of k.

It follows that the uniform bound (4.36) is also valid for t ∈ Ik.
The similar argument works for the stress-free case by considering (4.63) and (4.65) in subsection

4.2.3.

Step 4. For each positive integer m, consider a (sub)sequence of solutions {(w(k), η(k))}∞k=m+1.

By Step 3, this sequence satisfies all the uniform bounds on (4.12) and (4.13) (with T∗∗ = ∞) on

the interval Im+1 = [−m(νλ1)
−1,∞), and in particular on [−m(νλ1)

−1,m(νλ1)
−1]. Thus,

∫ m(νλ1)−1

−m(νλ1)−1

|A0w
(k)(τ)|2 dτ <∞,

∫ m(νλ1)−1

−m(νλ1)−1

|A1η
(k)(τ)|2 dτ <∞ ,(4.14)
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where the bounds in (4.14) may depend on m, but are independent of k. In particular, (4.14) implies

that

∫ m(νλ1)−1

−m(νλ1)−1

∣∣∣∣∣
dw(k)(τ)

dτ

∣∣∣∣∣

2

dτ <∞,

∫ m(νλ1)−1

−m(νλ1)−1

∣∣∣∣∣
dη(k)(τ)

dτ

∣∣∣∣∣

2

dτ <∞ ,(4.15)

are bounded uniformly in k, with bounds that may depend on m.

Applying the Aubin-Lions compactness theorem using (4.14), (4.15), and the uniform, with re-

spect to t and k, bounds on the quantities

|η(k)|2, |w(k)|2, ‖w(k)‖2, ‖η(k)‖2, t ∈ [−m(νλ1)
−1,m(νλ1)

−1],

we obtain a subsequence {(w(kl ,m), η(kl,m))}∞l=1 that converges to a solution of system (3.8) on the

closed interval [−m(νλ1)
−1,m(νλ1)

−1].

We then apply the Cantor diagonal process to nested subsequences, relabeling when necessary, to

get a subsequence {(w(km,m), η(km,m))}∞m=1 that converges to a solution (w, η) on [−M(νλ1)
−1,M(νλ1)

−1]

for allM ∈ N. Note that (w, η) is defined on (−∞,∞). Hence, (w, η) satisfies all the uniform bounds

on (4.12) and (4.13) for t ∈ R and thus (3.9). The proof of Proposition 3.1 is complete.

4.1. No-slip BCs (bounds on [−k(νλ1)−1, T∗∗) with T∗∗ <∞). For simplicity, we will omit the

superscript k in (w(k), η(k)) in this section and the next (stress-free BCs). All estimates are rigorous

on the maximal interval [−k(νλ1)−1, T∗∗).

4.1.1. Bound for |η|. By a similar argument as in [19, Lemma 2.1], we can show, by employing the

maximum principle for the heat equation, that (see the Appendix)

|η(t)| 6 2|Ω| := K, ∀ t ∈ [−k(νλ1)−1, T∗∗).(4.16)

4.1.2. Bounds for |w| and ‖w‖. Taking the L2 inner product of the auxiliary equation (3.8a) with

w and A0w respectively, we have

1

2

d

dt
|w|2 + ν‖w‖2 = g(ηe2, w)− µνλ1(Ĩhw − v,w) ,(4.17)

1

2

d

dt
‖w‖2 + ν |A0w|2 + (B0(w,w), A0w) = g(ηe2, A0w)− µνλ1(Ĩhw − v,A0w) ,(4.18)

where we use b0(w,w,w) = 0. By the Cauchy-Schwarz, Young and Poincaré inequalities, we have

−µνλ1(Ĩhw − v,w) 6 µνλ1

[
|(Ĩhw −w,w)| + |(v,w)| − (w,w)

]
(4.19)

6 µνλ1

[
c1h‖w‖ · |w|+ c2h

2|A0w| · |w|+ |v| · |w| − |w|2
]

(by Remark 3.3)

6 µνλ1

[
c1hλ

−1/2
1 ‖w‖2 + 2c22h

4|A0w|2 + 2|v|2 − 3

4
|w|2

]

6
ν

4
‖w‖2 + ν

8
λ−1
1 |A0w|2 + 2µνλ1|v|2 −

3

4
µνλ1|w|2 (by (4.1)) ,
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and

−µνλ1(Ĩhw − v,A0w) 6 µνλ1

[
|(Ĩhw − w,A0w)|+ |(v,A0w)| − (w,A0w)

]
(4.20)

= µνλ1

[
|(Ĩhw − w,A0w)|+ |((v,w))| − (w,A0w)

]
(since v(t) ∈ V0)

6 µνλ1

[
c1h‖w‖ · |A0w|+ c2h

2|A0w|2 + ‖v‖ · ‖w‖
]
− µνλ1‖w‖2 (by Remark 3.3)

6 µνλ1

[
c1hλ

−1/2
1 |A0w|2 + c2h

2|A0w|2 + ‖v‖2 − 3

4
‖w‖2

]

6
ν

8
|A0w|2 + µνλ1‖v‖2 −

3

4
µνλ1‖w‖2 (by (4.1)).

For the nonlinear term, we have

|(B0(w,w), A0w)| 6 ‖w‖2L4‖∇w‖2L4 |A0w| (Hölder)(4.21)

6 c2L|w|1/2‖w‖ · |A0w|3/2 (Ladyzhenskaya)

6
ν

8
|A0w|2 +K1|w|2‖w‖4, K1 :=

27c8L
2ν3

.

Combining (4.16)–(4.21), we get

1

2

d

dt
(|w|2 + λ−1

1 ‖w‖2) + ν(‖w‖2 + λ−1
1 |A0w|2)

(4.22)

6 g|η||w| + ν

4
‖w‖2 + ν

8
λ−1
1 |A0w|2 + 2µνλ1|v|2 −

3

4
µνλ1|w|2

+ λ−1
1

(
g|η||A0w|+

ν

8
|A0w|2 + µνλ1‖v‖2 −

3

4
µνλ1‖w‖2

)
+ λ−1

1

(ν
8
|A0w|2 +K1|w|2‖w‖4

)

6
g2K

2νλ1
+
νλ1
2

|w|2 + ν

4
‖w‖2 + 3ν

8
λ−1
1 |A0w|2 +

2g2K

νλ1
+
ν

8
λ−1
1 |A0w|2

+ 3µνλ1‖v‖2Xν2 −
3

4
µνλ1(|w|2 + λ−1

1 ‖w‖2) + λ−1
1 K1|w|2‖w‖4 .

Hence,

1

2

d

dt
(|w|2 + λ−1

1 ‖w‖2) + 1

2
µνλ1(|w|2 + λ−1

1 ‖w‖2)(4.23)

+
(1
4
µνλ1 −K1|w|2‖w‖2

)
λ−1
1 ‖w‖2 + νλ−1

1

2
|A0w|2

6 3µνλ1‖v‖2Xν2 +
5g2K

2νλ1

6 µνλ1C1ρ
2 (by (4.2)) , C1 := 4ν2 .

We now show that

|w|2 + λ−1
1 ‖w‖2 6 4C1ρ

2, t ∈ [−k(νλ1)−1, T∗∗) .(4.24)
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By continuity and the initial condition w(−k(νλ1)−1) = 0, there exists t∗ ∈ [−k(νλ1)−1, T∗∗) such

that

|w|2 + λ−1
1 ‖w‖2 6 4C1ρ

2, t ∈ [−k(νλ1)−1, t∗] .

It then follows from (4.24) and (4.3) that

1

4
µνλ1 −K1|w|2‖w‖2 ≥ 0 , t ∈ [−k(νλ1)−1, t∗] .

Let

T̃ = sup
{
τ ∈ [−k(νλ1)−1, T∗∗) : |w(t)|2 + λ−1

1 ‖w(t)‖2 6 4C1ρ
2 for all t ∈ [−k(νλ1)−1, τ ]

}
.

Notice that T̃ > t∗ > −k(νλ1)−1. We claim that T̃ = T∗∗. If not, then T̃ < T∗∗, and

|w(T̃ )|2 + λ−1
1 ‖w(T̃ )‖2 = 4C1ρ

2,(4.25)

1

2

d

dt
(|w|2 + λ−1

1 ‖w‖2) + 1

2
µνλ1(|w|2 + λ−1

1 ‖w‖2)(4.26)

+
νλ−1

1

2
|A0w|2 6 µνλ1C1ρ

2, ∀ t ∈ [−k(νλ1)−1, T̃ ].

Dropping the term
νλ−1

1

2 |A0w|2, we have by the Gronwall inequality that

|w(T̃ )|2 + λ−1
1 ‖w(T̃ )‖2 6 2C1ρ

2(1− eµνλ1(−k(νλ1)−1
−T̃ )) < 2C1ρ

2,

which contradicts (4.25).

4.1.3. Bound for
∫ min(t+T,T∗∗)
t |A0w(τ)|2 dτ . Henceforth, we let T = (νλ1)

−1.

Inequality (4.26) implies that

1

2

d

dt
(|w|2 + λ−1

1 ‖w‖2) + νλ−1
1

2
|A0w|2 6 µνλ1C1ρ

2.

For any t ∈ [−k(νλ1)−1, T∗∗), integrating on both sides from t to min(t + T, T∗∗), observing that

min(t+ T, T∗∗)− t 6 T, and using the bound (4.24), we have

ν

∫ min(t+T,T∗∗)

t
|A0w(τ)|2 dτ 6 4C1ρ

2λ1 + Tµνλ21C1ρ
2.(4.27)

Since T∗∗ <∞, it follows that

ν

∫ T∗∗

−k(νλ1)−1

|A0w(τ)|2 dτ <∞.(4.28)

4.1.4. Bound for ‖η‖. Taking the L2 inner product of the equation (3.8b) with η, and applying the

Cauchy-Schwarz and Young inequalities, we have

1

2

d

dt
|η|2 + κ‖η‖2 6

κλ1
4

|η|2 + 1

κl2λ1
|w|2 .(4.29)

Let k̃ = k(νλ1)
−1 and αk = T∗∗+k̃

2 . For any t ∈ [−k̃,−k̃ + αk), integrating (4.29) from t to t+ αk,

we have

κ

∫ t+αk

t
‖η(τ)‖2 dτ 6

K2

2
+ αk

(
κλ1K

2

4ρ2
+

4C1

κl2λ1

)
ρ2 =: βk.(4.30)
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By taking the L2 inner product of the equation (3.8b) with A1η, we have

1

2

d

dt
‖η‖2 + κ|A1η|2 + (B1(w, η), A1η) =

(w · e2, A1η)

l
6
κ

4
|A1η|2 +

1

l2κ
|w|2.(4.31)

Integrating by parts, we have (as in [12, (3.22)])

|(B1(w, η), A1η)| 6 ‖w‖ · ‖∇η‖2L4 (Hölder)(4.32)

6 cL‖w‖ · ‖η‖ · |A1η| (Ladyzhenskaya)

6
c2L
κ
‖w‖2‖η‖2 + κ

4
|A1η|2 .

Consequently,

d

dt
‖η‖2 + κ |A1η|2 6

2c2L
κ

‖w‖2‖η‖2 + 2

l2κ
|w|2 6 8c2LC1λ1

κ
ρ2‖η‖2 + 8C1

l2κ
ρ2 .(4.33)

We now recall the following uniform Gronwall inequality from [19].

Lemma 4.1 (Uniform Gronwall). Let g, h, y be three positive locally integrable functions on (t0, t1)

which satisfy for all t with t0 6 t < t+ α < t1,

dy

dt
6 gy + h,

∫ t+α

t
g(τ) dτ 6 a1,

∫ t+α

t
h(τ) dτ 6 a2,

∫ t+α

t
y(τ) dτ 6 a3,

where a1, a2, a3, α are positive constants. Then

y(t+ α) 6
(a3
α

+ a2

)
ea1 , t0 6 t < t+ α < t1 .

Applying Lemma 4.1 to (4.33) with

t0 = −k(νλ1)−1, t1 = T∗∗, α = αk,

g(t) =
8c2LC1λ1ρ

2

κ
, h(t) =

8C1ρ
2

l2κ
, y(t) = ‖η(t)‖2,

a1 =
8c2LC1λ1

κ
ρ2α, a2 =

8C1

l2κ
ρ2α, a3 =

βk
κ
α ,

we get

sup
t∈[−k̃+α,T∗∗)

‖η(t)‖2 6

(a3
α

+ a2

)
ea1 =: C3 ,(4.34)

and thus

sup
t∈[−k̃,T∗∗)

‖η(t)‖2 6

(a3
α

+ a2

)
ea1 + sup

t∈[−k̃,−k̃+α]

‖η(t)‖2 <∞.(4.35)

4.1.5. Bound for
∫ min(t+T,T∗∗)
t |A1η(τ)|2 dτ . For any t ∈ [−k̃ + αk, T∗∗), inserting the bound (4.34)

in (4.33) and then integrating from t to min(t+ T, T∗∗) on both sides, we have

κ

∫ min(t+T,T∗∗)

t
|A1η(τ)|2 dτ 6 C3 +

(
8c2LC1λ1C3

κ
+

8C1

l2κ

)
ρ2T .(4.36)
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Since T∗∗ <∞, it follows that
∫ T∗∗

−k(νλ1)−1

|A1η(τ)|2 dτ <∞.(4.37)

4.2. Stress-free BCs (bounds on [k(νλ1)
−1, T∗∗) with T∗∗ < ∞). The argument using the

maximum principle for showing the bound for |η| in Section 4.1 also works here. Taking advantage

of the orthogonality property that b0(w,w,A0w) = 0 in the case of stress-free BCs, we combine the

estimates of ‖w‖V0
and |η| together.

4.2.1. Bounds for ‖w‖V0
and |η|. Taking the L2 inner products of the auxiliary system (3.8) with

w, A0w and η repectively, we have

ǫ1

(
1

2

d

dt
|w|2 + ν‖w‖2

)
= ǫ1

(
g(ηe2, w)− µνλ1(Ĩhw − v,w)

)
, ǫ1 :=

1

|Ω| ,(4.38)

1

2

d

dt
‖w‖2 + ν|A0w|2 = g(ηe2, A0w)− µνλ1(Ĩhw − v,A0w),(4.39)

ǫ2

(
1

2

d

dt
|η|2 + κ‖η‖2

)
= ǫ2

(
(w · e2, η)

l

)
, ǫ2 := (νλ1)

2,(4.40)

where we used b0(w,w,w) = 0, b0(w,w,A0w) = 0 and b1(w, η, η) = 0. Note that equations (4.38)–

(4.40) have the same dimension and no nonlinear term appears in the equations above.

Now we estimate the right-hand sides of the three equations above as follows:

−µνλ1ǫ1(Ĩhw − v,w) 6 µνλ1ǫ1

(
|(Ĩhw − w,w)| + |(v,w)| − (w,w)

)
(4.41)

6
µνλ1
|Ω|

(
c1h ‖w‖V0

· |w|+ c2h
2|A0w|2 · |w|+ |v|2 + 1

4
|w|2 − |w|2

)
(by Remark 3.3)

6
µνλ1
|Ω|

(
c1h|Ω|1/2 ‖w‖2V0

+ 2c22h
4|A0w|+

1

8
|w|2 + |v|2 + 1

4
|w|2 − |w|2

)
(by (2.8))

6
1

8
µνλ1 ‖w‖2V0

+
ν

8
|A0w|2 + µνλ1ǫ1 |v|2 −

3

4
µνλ1ǫ1|w|2 +

1

8
µνλ1ǫ1|w|2 (by (4.8))

6
1

4
µνλ1 ‖w‖2V0

+ µνλ1ǫ1 |v|2 −
3

4
µνλ1ǫ1|w|2 +

ν

8
|A0w|2

−µνλ1(Ĩhw − v,A0w) 6 µνλ1

(
|(Ĩhw − w,A0w)| + |(v,A0w)| − (w,A0w)

)
(4.42)

6 µνλ1

(
c1h ‖w‖V0

· |A0w|+ c2h
2|A0w|2 + ‖v‖2 + 1

4
‖w‖2 − ‖w‖2

)
(by Remark 3.3)

6 µνλ1

(
1

4
‖w‖2V0

+ c21h
2|A0w|2 + c2h

2|A0w|2 + ‖v‖2 + 1

4
‖w‖2 − ‖w‖2

)

6
1

4
µνλ1 ‖w‖2V0

+
ν

8
|A0w|2 + µνλ1‖v‖2 −

3

4
µνλ1‖w‖2 (by (4.9)) .
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ǫ1|(gηe2, w)| 6
g

|Ω| |η| · |w| 6
gλ

−1/2
1

|Ω| ‖η‖ · |w|(4.43)

6
κǫ2
8

‖η‖2 + 2

κǫ2

g2λ−1
1

|Ω|2 |w|2 6 κǫ2
8

‖η‖2 + 2

κǫ2

g2λ−1
1

|Ω| ‖w‖2V0
,

|(gηe2, A0w)| 6 g‖ηe2‖ · ‖w‖ 6
κǫ2
8

‖η‖2 + 2g2

κǫ2
‖w‖2 6

κǫ2
8

‖η‖2 + 2g2

κǫ2
‖w‖2V0

,(4.44)

ǫ2
l
|(w · e2, η)| 6

ǫ2
l
|w · e2| · |η| 6

K̃1ǫ2
l

‖w‖V0
‖η‖ 6

κǫ2
4

‖η‖2 + K̃2
1ǫ2
κl2

‖w‖2V0
,(4.45)

where

K̃1 := |Ω|1/2λ−1/2
1 .(4.46)

Combining (4.38)–(4.45), we have

1

2

d

dt

(
ǫ1|w|2 + ‖w‖2 + ǫ2|η|2

)
+ ǫ1ν‖w‖2 + ν|A0w|2 + κǫ2‖η‖2(4.47)

6
1

2
µνλ1 ‖w‖2V0

− 3

4
µνλ1(ǫ1|w|2 + ‖w‖2)

+

(
2g2λ−1

1

|Ω|κǫ2
+

2g2

κǫ2
+
K̃2

1ǫ2
κl2

)
‖w‖2V0

+ µνλ1(ǫ1|v|2 + ‖v‖2)

+
1

2
κǫ2‖η‖2 +

ν

2
|A0w|2 ,

and thus, after dropping nonnegative terms on the left,

1

2

d

dt

(
‖w‖2V0

+ ǫ2|η|2
)
+ ‖w‖2V0

(
1

4
µνλ1 −

(
2g2λ−1

1

|Ω|κǫ2
+

2g2

κǫ2
+
K̃2

1ǫ2
κl2

))
+
κλ1
2

· ǫ2 |η|2

6 µνλ1‖v‖2Xν2λ1 ,

By (4.5), we have

d

dt

(
‖w‖2V0

+ ǫ2 |η|2
)
+
(
‖w‖2V0

+ ǫ2 |η|2
)
· (λ1κ) 6 2µνλ1‖v‖2Xν2λ1 ,

which implies by the Gronwall inequality that

‖w‖2V0
+ (νλ1)

2|η|2 6 2µνλ1
λ1κ

‖v‖2Xν2λ1 ,(4.48)

and in particular

|η|2 6 C̃0µ‖v‖2X , C̃0 :=
2νλ1ν

2λ1
λ1κ(νλ1)2

=
2ν

λ1κ
.(4.49)

We use (4.49) to improve the bound on ‖w‖2V0
. Instead of (4.43) and (4.44), we now estimate as

follows

ǫ1|(gηe2, w)| 6 gǫ1|η||w| 6
g2

ν
|η|2 + ν

4
ǫ21|w|2,(4.50)
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|(gηe2, A0w)| 6 g|η||A0w| 6
g2

ν
|η|2 + ν

4
|A0w|2.(4.51)

Combining (4.38), (4.39), (4.41), (4.42), (4.50) and (4.51), we have

1

2

d

dt

(
ǫ1|w|2 + ‖w‖2

)
+ ǫ1ν‖w‖2 + ν|A0w|2(4.52)

6
(1
2
µνλ1 −

3

4
µνλ1

)
‖w‖2V0

+ µνλ1 ‖v‖2V0
+
ν

4
|A0w|2

+
g2

ν
|η|2 + ν

4
ǫ21|w|2 +

g2

ν
|η|2 + ν

4
|A0w|2,

which implies that

1

2

d

dt
‖w‖2V0

+ ‖w‖2V0

(1
4
µνλ1 −

ǫ1ν

4

)
+
ν

2
|A0w|2 6

2g2

ν
|η|2 + µνλ1 ‖v‖2V0

.

Therefore, by (4.6),

d

dt
‖w‖2V0

+
1

4
µνλ1 ‖w‖2V0

+ ν|A0w|2 6 2µ

(
2g2C̃0

ν
+ νλ1ν

2λ1

)
‖v‖2X .(4.53)

Dropping the term ν|A0w|2 in (4.53) and using the Gronwall inequality, we conclude that

‖w‖2V0
6 C̃1‖v‖2X(4.54)

where

C̃1 :=

2µ

(
2g2C̃0

ν + νλ1ν
2λ1

)

1
4µνλ1

=
32g2

λ1κνλ1
+ 8ν2λ1.(4.55)

Note that the constant C̃1 is independent of µ.

By (4.40) and (4.45), we have

1

2

d

dt
|η|2 + κ‖η‖2 6

κ

4
‖η‖2 + K̃2

1

κl2
‖w‖2V0

and thus by (4.54) and the Poincaré inequality,

1

2

d

dt
|η|2 + κλ1

2
|η|2 6 K̃2‖v‖2X , K̃2 :=

K̃2
1 C̃1

κl2
.

Consequently, by the Gronwall inequality again, we have

|η|2 6 C̃2‖v‖2X , C̃2 :=
2K̃2

λ1κ
,(4.56)

where C̃2 is also independent of µ.

4.2.2. Bound for
∫min(t+T,T∗∗)
t |A0w(τ)|2 dτ . For any t ∈ [−k(νλ1)−1, T∗∗), dropping the term 1

4µνλ1 ‖w‖
2
V0

in (4.53) and integrating, then using the bound (4.54), we have

ν

∫ min(t+T,T∗∗)

t
|A0w(τ)|2 dτ 6 C̃1‖v‖2X + 2µT

(
2g2C̃0

ν
+ νλ1ν

2λ1

)
‖v‖2X .(4.57)
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Since T∗∗ <∞, it follows that

ν

∫ T∗∗

−k(νλ1)−1

|A0w(τ)|2 dτ <∞.(4.58)

4.2.3. Bound for ‖η‖. Proceeding as in the no-slip case (Section 4.1.4) but using the bounds (4.54)

and (4.56) for |w| and |η| in (4.29) instead, we get for any t ∈ [−k̃,−k̃ + αk), k̃ = k(νλ1)
−1 and

αk = T∗∗+k̃
2 ,

κ

∫ t+αk

t
‖η(τ)‖2 dτ 6

C̃2

2
+ αk

(
κλ1C̃2

4
+

C̃1

κl2λ1

)
‖v‖2X =: β̃k(4.59)

Similarly as in (4.31), we have

1

2

d

dt
‖η‖2 + κ|A1η|2 + (B1(w, η), A1η)(4.60)

6
κ

4
|A1η|2 +

1

l2κ
|w|2 6 κ

4
|A1η|2 +

|Ω|
l2κ

‖w‖2V0

6
κ

4
|A1η|2 +

|Ω|C̃1

l2κ
‖v‖2X .

For the nonlinear term, we have

|(B1(w, η), A1η)| 6 |A1η| · ‖w‖L4‖∇η‖L4 (Hölder)(4.61)

6 cL|A1η| · |w|1/2 ‖w‖1/2V0
‖η‖1/2|A1η|1/2 (Ladyzhenskaya)

6 cL|Ω|1/2 ‖w‖V0
|A1η|3/2‖η‖1/2 (by (2.8))

6 cL|Ω|1/2C̃1/2
1 ‖v‖X |A1η|3/2‖η‖1/2

6
κ

4
|A1η|2 + K̃3‖v‖4X‖η‖2 (Young) K̃3 :=

27

4κ3
c4L|Ω|2C̃2

1 .

By (4.60) and (4.61), we have

d

dt
‖η‖2 + κ |A1η|2 6 2K̃3‖v‖4X‖η‖2 + K̃4‖v‖2X , K̃4 :=

2|Ω|C̃1

l2κ
.(4.62)

Proceeding as in Section 4.1.4, using Lemma 4.1 with

t0 = −k(νλ1)−1, t1 = T∗∗, α = αk,

g(t) = 2K3ρ
4, h(t) = K4ρ

2, y(t) = ‖η(t)‖2,

a1 := 2K̃3αρ
4, a2 := K̃4ρ

2α, a3 :=
β̃k
κ
α ,

we get

sup
t∈[−k̃+α,T∗∗)

‖η(t)‖2 6 C̃4‖v‖2X , C̃4 := (C̃3 + K̃4T )e
2K̃3Tρ4 ,(4.63)

and as in Section (4.1),

sup
t∈[−k̃,T∗∗)

‖η(t)‖2 <∞ .(4.64)
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4.2.4. Bound for
∫ min(t+T,T∗∗)
t |A1η(τ)|2 dτ . Similarly as in Section 4.1.5, combining (4.62) and

(4.63), we get for any t ∈ [−k̃ + αk, T∗∗),

κ

∫ min(t+T,T∗∗)

t
|A1η(τ)|2 dτ 6 C̃4‖v‖2X + T

(
2K̃3‖v‖4X C̃4‖v‖2X + K̃4‖v‖2X

)
.(4.65)

Also,

κ

∫ T∗∗

−k(νλ1)−1

|A1η(τ)|2 dτ <∞.(4.66)

5. Lipchitz Property of the map W̃

We assume in this section that ‖vi‖X 6 ρ, i = 1, 2. Let ϕ = w1−w2, ψ = η1−η2 and γ = v1−v2
where (wi, ηi) = W̃ (vi). We establish in this section the Lipchitz property of the map W̃ for each

set of boundary conditions.

By the auxiliary system (3.8), we have

dϕ

dt
+ νA0ϕ+B0(w2, ϕ) +B0(ϕ,w1) = Pσ(gψe2)− µνλ1(Ĩhϕ− γ) ,(5.1)

dψ

dt
+ κA1ψ +B1(w2, ψ) +B1(ϕ, η1) =

ϕ · e2
l

.(5.2)

5.1. No-slip BCs.

5.1.1. Bound for ‖ϕ‖2 and |ψ|2 by ‖γ‖2X . Taking the L2 inner product of (5.1)–(5.2) with A0ϕ and

ψ respectively, we have

1

2

d

dt
‖ϕ‖2 + ν|A0ϕ|2 + (B0(w2, ϕ), A0ϕ) + (B0(ϕ,w1), A0ϕ)(5.3)

= (gψe2, A0ϕ)− µνλ1(Ĩhϕ− γ,A0ϕ),

1

2

d

dt
|ψ|2 + κ‖ψ‖2 + (B1(ϕ, η1), ψ) =

1

l
(ϕe2, ψ).(5.4)

Proceeding as for (4.20), we find

−µνλ1(Ĩhϕ− γ,A0ϕ) 6
ν

8
|A0ϕ|2 +

1

2
µνλ1‖γ‖2 −

1

2
µνλ1‖ϕ‖2 .(5.5)

By the Cauchy-Schwarz, Young and Poincaré inequalities, we have

(
gψe2, A0ϕ

)
6 g‖ψ‖ · ‖ϕ‖ 6

κ(νλ1)
2

4
‖ψ‖2 + g2

κ(νλ1)2
‖ϕ‖2 ,(5.6)

1

l
(ϕ · e2, ψ) 6

1

l
|ϕ| · |ψ| 6 1

lλ1
‖ϕ‖ · ‖ψ‖ 6

κ

8
‖ψ‖2 + 2

l2λ21κ
‖ϕ‖2 .(5.7)

For the two nonlinear terms involving B0, we have (see [28])

|(B0(w2, ϕ), A0ϕ)| 6 cT ‖w2‖ · ‖ϕ‖
(
log

e|A0ϕ|
λ
1/2
1 ‖ϕ‖

)1/2

|A0ϕ|(5.8)

6
c2T
ν
‖w2‖2‖ϕ‖2 log

e|A0ϕ|
λ
1/2
1 ‖ϕ‖

+
ν

4
|A0ϕ|2
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and by the Brézis-Gallouet inequality (see [5, 28])

|(B0(ϕ,w1), A0ϕ)| 6 cB‖w1‖ · ‖ϕ‖
(
log

e|A0ϕ|
λ
1/2
1 ‖ϕ‖

)1/2

|A0ϕ|(5.9)

6
c2B
ν
‖w1‖2‖ϕ‖2 log

e|A0ϕ|
λ
1/2
1 ‖ϕ‖

+
ν

4
|A0ϕ|2

For the nonlinear term involving B1, we have

|(B1(ϕ, η1), ψ)| 6 ‖ϕ‖L4‖ψ‖L4‖η1‖ 6 cL|ϕ|1/2‖ϕ‖1/2|ψ|1/2‖ψ‖1/2‖η1‖(5.10)

6
cL√
λ1

‖ϕ‖‖ψ‖‖η1‖ 6
κ

8
‖ψ‖2 + 2c2L

κλ1
‖ϕ‖2‖η1‖2 .

Combining the estimates above, we have for ‖ϕ‖,
1

2

d

dt
‖ϕ‖2 + ‖ϕ‖2

[
1

2
µνλ1 −

g2

κ(νλ1)2
(5.11)

+
ν|A0ϕ|2
4‖ϕ‖2 − (c2T ‖w2‖2 + c2B‖w1‖2)

(
log

e|A0ϕ|
λ
1/2
1 ‖ϕ‖

)
ν−1

]

+ ν|A0ϕ|2
[
1− 1

8
− 1

2
− 1

4

]
− κ(νλ1)

2

4
‖ψ‖2

6
µνλ1
2

‖γ‖2.

But the second line of (5.11) can be estimated by

ν|A0ϕ|2
4‖ϕ‖2 − (c2T ‖w2‖2 + c2B‖w1‖2)

(
log

e|A0ϕ|
λ
1/2
1 ‖ϕ‖

)
ν−1(5.12)

>
ν|A0ϕ|2
4‖ϕ‖2 − c2T ‖w2‖2 + c2B‖w1‖2

ν

(
1 + 2 log

|A0ϕ|
λ
1/2
1 ‖ϕ‖

)

=
λ1ν

4

[ |A0ϕ|2
λ1‖ϕ‖2

− c2T ‖w2‖2 + c2B‖w1‖2
ν2λ1/4

(
1 + log

|A0ϕ|2
λ1‖ϕ‖2

)]

>
λ1ν

4
(−ǫ log ǫ)

where we used the elementary relation (see [16, p.371])

χ− ǫ(1 + logχ) > −ǫ log ǫ, ∀χ > 1,(5.13)

with

ǫ :=
c2T ‖w2‖2 + c2B‖w1‖2

ν2λ1/4
6

4(c2T + c2B)ρ
2

ν2λ1
=: K2 .(5.14)



A DETERMINING FORM FOR THE 2D RAYLEIGH-BÉNARD PROBLEM 25

Hence,

1

2

d

dt
‖ϕ‖2 + ‖ϕ‖2

[
1

2
µνλ1 −

g2

κ(νλ1)2
− λ1ν

4
(K2 logK2)

]
(5.15)

+
ν

8
|A0ϕ|2 −

κ(νλ1)
2

4
‖ψ‖2

6
µνλ1
2

‖γ‖2.

Combining (5.4), (5.7) and (5.10), we have

1

2

d

dt
|ψ|2 − ‖ϕ‖2

[
2c2L
κλ21

‖η1‖2 +
2

l2λ21κ

]
+
[
κ‖ψ‖2 − κ

8
‖ψ‖2 − κ

8
‖ψ‖2

]
6 0 .(5.16)

Combining the differential inequalities (5.15) and (5.16) for ‖ϕ‖2 and |ψ|2, we get

1

2

d

dt

(
‖ϕ‖2 + (νλ1)

2|ψ|2
)
+
κ(νλ1)

2

2
‖ψ‖2 + ν

8
|A0ϕ|2

+ ‖ϕ‖2
[
1

2
µνλ1 −

g2

κ(νλ1)2
− λ1ν

4
(K2 logK2)−

2c2L(νλ1)
2

κλ21
ρ2 − 2(νλ1)

2

l2λ21κ

]

6
1

2
µνλ1‖γ‖2Xν2λ1 .

Consequently, by (4.4) and the Poincaré inequality,

d

dt

(
‖ϕ‖2 + (νλ1)

2|ψ|2
)
+ κ(νλ1)

2‖ψ‖2 + ν

4
|A0ϕ|2 + κλ1‖ϕ‖2(5.17)

6
d

dt

(
‖ϕ‖2 + (νλ1)

2|ψ|2
)
+ κλ1

(
‖ϕ‖2 + (νλ1)

2|ψ|2
)
+
ν

4
|A0ϕ|2

6 µνλ1‖γ‖2Xν2λ1 .

Dropping the terms ν
4 |A0ϕ|2 in the second inequality, using the Gronwall inequality and the fact

that ‖wj‖, |ηj | are bounded, we obtain

‖ϕ‖2 + (νλ1)
2|ψ|2 6

µνλ1
κ

‖γ‖2Xν2 .(5.18)

5.1.2. Bound for
∫ t+T
t |A0ϕ|2 and

∫ t+T
t ‖ψ‖2 by ‖γ‖2X . The inequality (5.17) implies that

d

dt

(
‖ϕ‖2 + (νλ1)

2|ψ|2
)
+
ν

4
|A0ϕ|2 + κ(νλ1)

2‖ψ‖2 6 µνλ1‖γ‖2Xν2λ1 .

Integrating from t to t+ T , T = (νλ1)
−1, and using the bound (5.18), we have

ν

4

∫ t+T

t
|A0ϕ(τ)|2 dτ + κ(νλ1)

∫ t+T

t
‖ψ(τ)‖2 dτ 6 µνλ1

(
λ1T +

1

κ

)
‖γ‖2Xν2 .(5.19)

5.1.3. Bounds for ‖ψ‖2 and
∫ t+T
t |A1ψ|2 by ‖γ‖2X . Taking the L2 inner product of (5.2) with A1ψ,

we have

1

2

d

dt
‖ψ‖2 + κ |A1ψ|2 + b1(w2, ψ,A1ψ) + b1(ϕ, η1, A1ψ) =

1

l
(ϕ · e2, A1ψ), .(5.20)
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Integrating by parts, we have

|b1(w2, ψ,A1ψ)| 6 ‖w2‖ · ‖∇ψ‖2L4 (Hölder)(5.21)

6 cL‖w2‖ · ‖ψ‖ · |A1ψ| (Ladyzhenskaya)

6
κ

8
|A1ψ|2 +

2c2L
κ

‖w2‖2‖ψ‖2 .

Similarly,

|b1(ϕ, η1, A1ψ)| 6 ‖ϕ‖ · ‖∇η1‖L4‖∇ψ‖L4 (Hölder)(5.22)

6 cL‖ϕ‖ · ‖η1‖1/2|A1η1|1/2‖ψ‖1/2|A1ψ|1/2 (Ladyzhenskaya)

6
1

2ν
‖ϕ‖2 + c2Lν

2
‖η1‖ · |A1η1| · ‖ψ‖ · |A1ψ| (Young)

6
1

2ν
‖ϕ‖2 + κ

8
|A1ψ|2 +

c4Lν
2

2κ
‖η1‖2|A1η1|2‖ψ‖2 .

By Cauchy-Schwarz and Young inequalities,

1

l
|(ϕ · e2, A1ψ)| 6

κ

4
|A1ψ|2 +

1

κl2
|ϕ|2 .(5.23)

Combining (5.20)–(5.23), we obtain

1

2

d

dt
‖ψ‖2 + κ

2
|A1ψ|2 6

(
2c2L
κ

‖w2‖2 +
c4Lν

2

2κ
‖η1‖2|A1η1|2

)
‖ψ‖2 + 1

2ν
‖ϕ‖2 + 1

κl2
|ϕ|2 .(5.24)

Let the function g and h in Lemma 4.1 be

g := 2

(
2c2L
κ

‖w2‖2 +
c4Lν

2

2κ
‖η1‖2|A1η1|2

)
, h :=

1

ν
‖ϕ‖2 + 2

κl2
|ϕ|2 .(5.25)

By the bounds (4.24), (4.34) and (4.36), we have
∫ t+T

t
g(s) ds 6

4c2L
κ

· 4C1ρ
2λ1T +

c4Lν
2

κ2
C3

[
C3 +

(
8c2LC1λ1C3

κ
+

8C1

l2κ

)
ρ2T

]
=: a1 .(5.26)

By (5.18) and the Poincaré inequality, we have
∫ t+T

t
h(s) ds 6 T

(
1

2ν
+

1

κl2λ1

)
µνλ1
κ

‖γ‖2Xν2 =: K11‖γ‖2X =: a2 .(5.27)

By (5.19),
∫ t+T

t
‖ψ(τ)‖2 dτ 6

µνλ1
κ(νλ1)

(
λ1T +

1

κ

)
‖γ‖2Xν2 =: K12‖γ‖2X =: a3 .(5.28)

Dropping the term κ
2 |A1ψ|2 in (5.24), applying Lemma 4.1 with (5.26), (5.27) and (5.28) we have

sup
t∈R

‖ψ(t)‖2 6 ea1
(
K11 +

K12

T

)
‖γ‖2X =: K13‖γ‖2X .

Now, by integrating (5.24) from t to t+ T and using (5.26) and (5.27), we get

κ

∫ t+T

t
|A1ψ(τ)|2 dτ 6 (K13 + a1K13 +K11)‖γ‖2X .

5.2. Stress-free BCs.
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5.2.1. Bounds for |ψ|2, |ϕ|2 and ‖ϕ‖2 by ‖γ‖2X . Taking the L2 inner product of (5.1)–(5.2) with ϕ

and ψ respectively and taking the L2 inner product of (5.1) with A0ϕ we have

ǫ1

(
1

2

d

dt
|ϕ|2 + ν‖ϕ‖2 + b0(ϕ,w1, ϕ)

)
= ǫ1

(
g(ψe2, ϕ)− µνλ1(Ĩhϕ− γ, ϕ)

)
(5.29)

1

2

d

dt
‖ϕ‖2 + ν|A0ϕ|2 + b0(w2, ϕ,A0ϕ) + b0(ϕ,w1, A0ϕ)(5.30)

= g(ψe2, A0ϕ)− µνλ1(Ĩhϕ− γ,A0ϕ)

ǫ2

(
1

2

d

dt
|ψ|2 + κ‖ψ‖2 + b1(ϕ, η1, ψ)

)
= ǫ2

(
1

l
(ϕ · e2, ψ)

)
,(5.31)

where, as in (4.38), (4.40), ǫ1 = |Ω|−1, ǫ2 = (νλ1)
2.

For the linear terms, as in (4.41)–(4.45) we have

−µνλ1ǫ1(Ĩhϕ− γ, ϕ) 6
1

4
µνλ1 ‖ϕ‖2V0

+ µνλ1ǫ1 |γ|2 −
3

4
µνλ1ǫ1|ϕ|2 +

ν

8
|A0ϕ|2 ,(5.32)

−µνλ1(Ĩhϕ− γ,A0ϕ) 6
1

4
µνλ1 ‖ϕ‖2V0

+
ν

8
|A0ϕ|2 + µνλ1‖γ‖2 −

3

4
µνλ1‖ϕ‖2 ,(5.33)

ǫ1|(gψe2, ϕ)| 6
κǫ2
8

‖ψ‖2 + 2

κǫ2

g2λ−1
1

|Ω| ‖ϕ‖2V0
,(5.34)

|(gψe2, A0ϕ)| 6
κǫ2
8

‖ψ‖2 + 2g2

κǫ2
‖ϕ‖2V0

,(5.35)

ǫ2
l
|(ϕ · e2, ψ)| 6

κǫ2
4

‖ψ‖2 + K̃2
1ǫ2
κl2

‖ϕ‖2V0
.(5.36)

For the nonlinear terms, we have

ǫ1|b0(ϕ,w1, ϕ)| 6 ǫ1‖w1‖ · ‖ϕ‖2L4 (Hölder)(5.37)

6 ǫ1cL‖w1‖ · |ϕ| · ‖ϕ‖V0
(Ladyzhenskaya)

6 ǫ1cLC̃
1/2
1 ρ|ϕ| · ‖ϕ‖V0

(by (4.54))

6 ǫ1cLC̃
1/2
1 ρ|Ω|1/2 ‖ϕ‖2V0

(by (2.8))

ǫ2|b1(ϕ, η1, ψ)| 6 ǫ2‖ϕ‖L4‖η1‖‖ψ‖L4 (Hölder)(5.38)

6 ǫ2cL|ϕ|1/2 ‖ϕ‖1/2V0
‖η1‖|ψ|1/2‖ψ‖1/2 (Ladyzhenskaya)

6 ǫ2cL|Ω|1/4 ‖ϕ‖V0
‖η1‖λ−1/4

1 ‖ψ‖ (by (2.8))

6 ǫ2cL|Ω|1/4λ−1/4
1 C̃

1/2
4 ρ ‖ϕ‖V0

‖ψ‖ (by (4.63))

6
ǫ2κ

4
‖ψ‖2 + ǫ2K13

κ
‖ϕ‖2V0

(Young) K13 := c2L|Ω|1/2λ
−1/2
1 C̃4ρ

2
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|b0(ϕ,w1, A0ϕ)| 6 ‖ϕ‖L∞‖w1‖|A0ϕ| (Hölder)(5.39)

6 cA|ϕ|1/2‖ϕ‖1/2H2 ‖w1‖|A0ϕ| (2D Agmon)

6 cAcE |ϕ|1/2
(

1

|Ω|1/2 |ϕ|
1/2 + |A0ϕ|1/2

)
‖w1‖|A0ϕ| (by (2.9))

6
cAcE
|Ω|1/2 |ϕ| · |A0ϕ|C̃1/2

1 ρ+ cAcE |ϕ|1/2|A0ϕ|3/2C̃1/2
1 ρ (by (4.54))

6
ν

4
|A0ϕ|2 +

K14

ν
|ϕ|2 (Young)

where

K14 = 2K̂1
2
+

54

ν3
K̂2

4
, K̂1 =

cAcEC̃
1/2
1 ρ

|Ω|1/2 , K̂2 = cAcEC̃
1/2
1 ρ;

|b0(w2,ϕ,A0ϕ)| 6 ‖w2‖L4‖∇ϕ‖L4 |A0ϕ| (Hölder)(5.40)

6 cL|w2|1/2‖w2‖1/2H1 |∇ϕ|1/2‖∇ϕ‖1/2H1 |A0ϕ| (Ladyzhenskaya)

6 cL|Ω|1/4‖w2‖V0
‖ϕ‖1/2‖ϕ‖1/2

H2 |A0ϕ|

6 cLcE |Ω|1/4C̃1/2
1 ρ‖ϕ‖1/2

(
1

|Ω|1/2 |ϕ|
1/2 + |A0ϕ|1/2

)
|A0ϕ| (by (2.9))

6 cLcE |Ω|1/4C̃1/2
1 ρ‖ϕ‖1/2

( |Ω|1/4
|Ω|1/2 ‖ϕ‖

1/2
V0

+ |A0ϕ|1/2
)
|A0ϕ|

6
ν

4
|A0ϕ|2 +

K15

ν
‖ϕ‖2V0

(Young)

where

K15 = 2K̂3
2
+

54

ν3
K̂4

4
, K̂3 = cEcLC̃

1/2
1 ρ, K̂4 = cEcL|Ω|1/4C̃1/2

1 ρ.

Combining (5.29)–(5.40), we have

1

2

d

dt
(ǫ1|ϕ|2 + ‖ϕ‖2 + ǫ2|ψ|2) + ǫ1ν‖ϕ‖2 + ν|A0ϕ|2 + ǫ2κ‖ψ‖2

6 ‖ϕ‖2V0

[
1

2
µνλ1 −

3

4
µνλ1 +

2g2λ−1
1

κǫ2|Ω|
+

2g2

κǫ2
+
K̃2

1ǫ2
κl2

+ ǫ1cLC̃
1/2
1 ρ|Ω|1/2 + ǫ2K13

κ
+
K15

ν
+
K14|Ω|
ν

]

+ µνλ1 ‖γ‖2V0
+

3

4
ν|A0ϕ|2 +

3

4
κǫ2‖ψ‖2.

It follows that

1

2

d

dt
(‖ϕ‖2V0

+ ǫ2|ψ|2) + ‖ϕ‖2V0

(
1

4
µνλ1 −K16

)
+

1

4
ǫ2κ‖ψ‖2 +

ν

4
|A0ϕ|2 6 µνλ1 ‖γ‖2V0

where

K16 :=
2g2λ−1

1

κǫ2|Ω|
+

2g2

κǫ2
+
K̃2

1ǫ2
κl2

+ ǫ1cLC̃
1/2
1 ρ|Ω|1/2 + ǫ2K13

κ
+
K15

ν
+
K14|Ω|
ν

.(5.41)
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By (4.7), we have

d

dt
(‖ϕ‖2V0

+ ǫ2|ψ|2) + (‖ϕ‖2V0
+ ǫ2|ψ|2)

κλ1
4

+
1

4
ǫ2κ‖ψ‖2 +

ν

2
|A0ϕ|2 6 2µνλ1‖γ‖2Xν2λ1.(5.42)

Dropping 1
4ǫ2κ‖ψ‖2 + ν

2 |A0ϕ|2 on the left and using the Gronwall inequality, we conclude that

‖ϕ‖2V0
+ ǫ2|ψ|2 6 µC6‖γ‖2X , C6 :=

8λ1ν
3

κ
,(5.43)

and in particular,

‖ϕ‖2V0
6 µC6‖γ‖2X .(5.44)

5.2.2. Bound for
∫ t+T
t ‖ψ‖2 and

∫ t+T
t |A0ϕ|2 by ‖γ‖2X . Using the inequality (5.42) and proceeding

as in the no-slip case, we get

ǫ2κ

∫ t+T

t
‖ψ(τ)‖2 dτ + ν

∫ t+T

t
|A0ϕ(τ)|2 dτ 6 (8µνλ1ν

2λ1T + 4µC6)‖γ‖2X .(5.45)

5.2.3. Bound for ‖ψ‖2 and
∫ t+T
t |A1ψ|2 by ‖γ‖2X . Proceeding as in the no-slip case, we get (5.24):

1

2

d

dt
‖ψ‖2 + κ

2
|A1ψ|2 6

(
2c2L
κ

‖w2‖2 +
c4Lν

2

2κ
‖η1‖2|A1η1|2

)
‖ψ‖2 + 1

2ν
‖ϕ‖2 + 1

κl2
|ϕ|2 .

Using the bounds (4.54), (4.63) and (4.65), we have

∫ t+T

t
g(s) ds 6

4c2L
κ

· C̃1ρ
2T +

c4Lν
2

κ2
C̃4ρ

2

[
C̃4ρ

2 + T

(
2K̃3ρ

4C̃4ρ
2 + K̃4ρ

2

)]
=: a1 .(5.46)

By (5.43) and (2.8), we have
∫ t+T

t
h(s) ds 6 T

(
1

ν
+

2|Ω|
κl2

)
µC6‖γ‖2X =: K̃11‖γ‖2X .(5.47)

Applying Lemma 4.1 with (5.46), (5.47) and (5.45) yields

sup
t∈R

‖ψ(t)‖2 6 ea1
[
K̃11 +

1

κǫ2T
(8µνλ1ν

2λ1T + 4µC6)

]
‖γ‖2X =: K̃12‖γ‖2X .

By integrating (5.24) from t to t+ T and using (5.46) and (5.47), we get

κ

∫ t+T

t
|A1ψ(τ)|2 dτ 6 (K̃12 + a1K̃12 + K̃11)‖γ‖2X .

6. Proof of Proposition 3.3

Let δ = w − u and ξ = η − θ. Taking the difference of the RB system (2.12) and the auxiliary

equations (3.11), we have

dδ

dt
+ νA0δ +B0(w,w) −B0(u, u) = Pσ(gξe2)− µνλ1(Ĩhδ),

dξ

dt
+ κA1ξ +B1(w, η) −B1(u, θ) =

δ · e2
l

.
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Applying the (essentially) same calculation in Section 5, we conclude that

‖δ(t)‖2 = |ξ(t)|2 = 0, ∀ t ∈ R,

which completes the proof.

7. Appendix

Let T (t;x) = η(t;x) + (1− x2

l ) where x = (x1, x2) ∈ Ω. Observe that for a given smooth enough

w with ∇ · w = 0, T satisfies, on [−k(νλ1)−1, T∗∗),

∂T
∂t

− κ∆T + (w · ∇)T = 0,(7.1)

T (−k(νλ1)−1;x1, x2) = 1− x2
l
.(7.2)

with boundary conditions

in the x2-variable: T = 0 at x2 = 0 and x2 = l,

in the x1-variable: T is of periodic L.

Observe that 0 6 T (−k(νλ1)−1;x) 6 1, and thus

T−(k(νλ1)−1;x) = 0, (T − 1)+(k(νλ1)
−1;x) = 0,

where we denote for any real number M , M+ = max(M, 0) and M− = max(−M, 0).

Note that T̃ := T− satisfies (7.1) a.e. and also the boundary conditions. The chain rule and

integration by parts yield
∫

Ω
((w · ∇)T̃ )T̃ dx =

∑

i,j

∫

Ω
wi(∂iT̃j)T̃j dx =

∑

i,j

∫

Ω
wi∂i

(T̃j)2
2

dx = −
∑

j

∫

Ω
(∇ · w)(T̃j)

2

2
dx = 0,

where the boundary term vanishes due to the boundary conditions. Hence, multiplying (7.1) by T−
and integrating over Ω, we obtain

1

2

d

dt
|T−(t)|2 + κ|∇T−(t)|2 = 0,

which implies that

|T−(t)|2 6 |T−(−k(νλ1)−1)|2 = 0 for t ∈ [−k(νλ1)−1, T∗∗).

It follows that T−(t) = 0 and thus T (t) > 0.

We now show that T 6 1. Observe that

∂

∂t
(T − 1)− κ∆(T − 1) + (w · ∇)(T − 1) = 0.

Proceeding similarly as above, we obtain,

1

2

d

dt
|(T − 1)+|2 + κ|∇(T − 1)+|2 = 0,

which implies that

|(T − 1)+(t)|2 6 |(T − 1)+(−k(νλ1)−1)|2 = 0 for t ∈ [−k(νλ1)−1, T∗∗),
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and thus T (t) 6 1.

We conclude that

0 6 T (t;x) 6 1, a.e. x ∈ Ω, t ∈ [−k(νλ1)−1, T∗∗),

which implies that

|η(t, x)| 6 1 + sup
x∈Ω

|1− x2
l
| 6 2,

and thus

‖η(t)‖L2(Ω) 6 2|Ω|, ∀ t ∈ [−k(νλ1)−1, T∗∗).(7.3)
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