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Nanoscale switch for vortex polarization
mediated by Bloch core formation in magnetic
hybrid systems
Phillip Wohlhüter1,2,*, Matthew Thomas Bryan3,4,*, Peter Warnicke2, Sebastian Gliga1,2,

Stephanie Elizabeth Stevenson2, Georg Heldt5, Lalita Saharan4, Anna Kinga Suszka1,2, Christoforos Moutafis2,

Rajesh Vilas Chopdekar2, Jörg Raabe2, Thomas Thomson5, Gino Hrkac4 & Laura Jane Heyderman1,2

Vortices are fundamental magnetic topological structures characterized by a curling

magnetization around a highly stable nanometric core. The control of the polarization of this

core and its gyration is key to the utilization of vortices in technological applications. So far

polarization control has been achieved in single-material structures using magnetic fields,

spin-polarized currents or spin waves. Here we demonstrate local control of the vortex

core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists

with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its

polarization on crossing a maze domain boundary. This reversal is mediated by a pair

of magnetic singularities, known as Bloch points, and leads to the transient formation of a

three-dimensional magnetization structure: a Bloch core. The interaction between vortex and

domain wall thus acts as a nanoscale switch for the vortex core polarization.
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I
n recent years, the study of magnetic vortices has evolved into
a large and intense field of research due to the fact that vortices
are fundamental magnetic structures that hold promise for

future technological applications such as information carriers,
microwave sources or magnetic sensors. Vortices consist of a
stable magnetic flux-closure domain state characterized by an in-
plane curling of the magnetization around a very stable and
narrow central core, B10 nm in diameter, magnetized out-of-
plane1,2. While the bistability of the vortex core (with
magnetization pointing up or down) is appealing for novel
non-volatile memory storage concepts3,4, the dynamics of
vortices is also of interest for applications such as radio
frequency oscillators5,6, logic devices7,8 and magnonic
crystals9,10, where the gyrotropic motion11 of the vortex core is
exploited.

The key to a reliable implementation of vortices for such
applications is control of the vortex core orientation. Previous
work has shown that the vortex core polarization can be
reversed12 and selected13 using in-plane alternating magnetic
fields as well as ultrashort field pulses14, spin-polarized
currents15,16 and spin waves17,18. Here we demonstrate a route
to locally control the vortex core polarization in a hybrid
magnetic structure, which combines two magnetic films with
orthogonal anisotropies, leading to a mutual imprinting of the
vortex and maze domain states, and therefore new degrees of
freedom in the magnetization dynamics. We show that the vortex
core switching occurs in the in-plane layer of a patterned element
at the maze domain boundary and is driven by the underlying
perpendicular domain state (schematically illustrated in Fig. 1). In
our realization, the in-plane material is a Permalloy (Ni80Fe20)
layer in a flux-closure state, while the perpendicular material is a
[Co(0.3 nm)/Pd(0.9 nm)]8 multilayer. Using micromagnetic
simulations, we elucidate the influence of the magnetic domains
in the Co/Pd multilayer on the vortex core dynamics and show
that the reversal is a complex three-dimensional process mediated
by the formation of a magnetic discontinuity that connects two
Bloch points, which we call a Bloch core. This is a fundamentally
different mechanism compared with reversal in single-material
structures that results from the complex magnetic configuration.
The mutual interaction with a maze domain wall provides a

highly localized switch allowing control of the magnetization at
the nanoscale.

Results
Scanning transmission X-ray microscopy measurements. To
investigate the dynamics in the hybrid system, we fabricated
square thin film structures consisting of a 50 nm thick Permalloy
(Py) layer with 3mm and 5mm side length deposited on top of a
Co/Pd multilayer (Fig. 2a). The structures were imaged using
scanning transmission X-ray microscopy (STXM)19 exploiting
the X-ray magnetic circular dichroism (XMCD) effect20, which
allows for element-specific imaging of the in-plane and out-of-
plane magnetization depending on the orientation of the sample
with respect to the polarization vector of the X-ray beam. On
probing the in-plane component of the magnetization and tuning
the X-ray energy to the Ni absorption edge, the flux-closure
Landau state in the Py is imaged (Fig. 2b; Supplementary Fig. 1;
for experimental details see Methods). When the X-ray energy is
tuned to the Co absorption edge, the maze domains in the Co/Pd
multilayer are observed (Fig. 2c), demonstrating how the
interaction between the Py and Co/Pd causes the Co/Pd
domain walls to preferentially align along the Néel walls in the
Py layer. Imaging the out-of-plane component of the
magnetization of the Py layer reveals the vortex core and the
presence of an imprinted maze domain state (Fig. 2d). The vortex
core is found close to the maze domain boundary rather than in
the centre of the domain, therefore minimizing the energy

Permalloy DW

Co/Pd

Figure 1 | Schematic diagram of vortex core reversal process. The

magnetization in a resonantly excited vortex core (black out-of-plane

arrow) reverses its orientation as it crosses and interacts with a domain

wall (DW) at the boundary between two adjacent, oppositely oriented out-

of-plane maze domains originating in the Co/Pd multilayer (bright and dark

domains). The path followed by the excited vortex core is illustrated in

green: the vortex core (black arrow) initially precesses clockwise, and then

counterclockwise after reversing its polarization (white arrow) at the

domain boundary (orange line). The in-plane magnetization in the Py layer

is illustrated by the blue arrows.
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Figure 2 | Sample geometry and static XMCD images of magnetic

domain configurations. (a) Schematic diagram of the patterned multilayer

square (S) embedded in the stripline, showing the direction of the applied

current, iac and the coordinate convention used as well as the layer stack.

The interface between the Py (Ni80Fe20) and the Co/Pd layers is defined as

z¼0 nm. (b) Typical in-plane Landau pattern measured in a 50 nm thick Py

layer of a 3� 3mm square (30�, Ni L3 edge). The arrows indicate the

direction of the local magnetization. (c) Out-of-plane maze domain state in

the [Co(0.3 nm)/Pd(0.9 nm)]8 multilayer of a similar 3mm� 3mm square

(normal incidence, Co L3 edge) on the same sample. The direction of the

out-of-plane magnetization is indicated. (d) Imprinted out-of-plane maze

domain state in the Py layer with the vortex core visible as a white spot in

the centre of the structure (highlighted by circle; normal incidence, Ni L3

edge). Images c and d are taken from the same square. Image d was taken

after the application of static magnetic fields large enough to move the

vortex core and slightly alter the domain configuration as a result of the

mutual interaction between the Py and the Co/Pd layers. The contrast of

each image is adjusted for better visibility.
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associated with the stray field of the vortex core (B200 mT in a
single-layer Py film)14. The imprinting of the maze domains in
the Py layer is a result of the exchange and magnetostatic
interactions between the Py layer and the Co/Pd multilayer
stack21. In the Py, the vortex core polarization is identical to the
magnetization orientation in the underlying, imprinted
(perpendicular) maze domain.

To study the influence of the maze domains on the dynamics of
the Landau state, the gyrotropic motion of the vortex core is
excited using an alternating magnetic field created by injecting a
sinusoidal alternating current (a.c.) into a Cu stripline fabricated
on top of the magnetic structures. On application of an additional
static magnetic field, the vortex core can be displaced and its
lateral position controlled during the gyration. The polarization
of the vortex core is probed by detecting the sense of the vortex
gyration22, which is determined by the gyrocoupling vector23

G¼ (2pm0Msh/g0)npz, where n is the vortex winding number
(n¼ 1), p the vortex core polarization (p¼±1), h the sample
thickness, Ms the saturation magnetization, m0 the vacuum
permeability and g0 the gyromagnetic ratio. The fitted
trajectories of the vortex core motion in the Py layer of a
5 mm� 5mm structure under application of different static
magnetic fields of 1.2 mT (a), 1.9 mT (b), 1.5 mT (c) and
2.2 mT (d) are shown in Fig. 3. These trajectories are overlaid
on the corresponding images of the maze domain state in the Co/
Pd multilayer. In a static 1.2 mT field (Fig. 3a), the vortex core
gyrates clockwise (see Supplementary Movie 1, Supplementary
Note 1 and Supplementary Fig. 2) in a maze domain displaying
dark contrast, which indicates an out-of-plane magnetization in
the -z direction. An increase in static field strength to 1.9 mT
(Fig. 3b) displaces the vortex core so that it gyrates in a bright
domain within the error bars shown in the inset. At the same
time, the sense of gyration has reversed (counterclockwise),
indicating that the vortex core polarization has switched (+z
direction). Decreasing the static field to 1.5 mT returns the vortex
core to the dark region (Fig. 3c) and the sense of gyration is again
reversed (clockwise). A subsequent increase of the static field to
2.2 mT shifts the vortex core into a bright region and a gyration in
the opposite direction (counterclockwise) is observed (Fig. 3d and
Supplementary Movie 1). Our results indicate that the vortex core
trajectories are confined by the maze domains and that the
polarization of the gyrating vortex core is aligned with the
magnetization in the underlying domain. The vortex core reversal
must therefore occur as it crosses the boundary between maze
domains. Noticeable changes in the maze domain state are also
apparent in the sample, particularly in the vicinity of the vortex
core trajectory. This is seen, for example, in Fig. 3d where the
bright domain, in which the core is located, expands at the
expense of the dark domain that previously contained the core
(Fig. 3c). Such changes are due to the interaction between the
vortex core and the maze domain wall during the vortex
dynamics driven by an external a.c. field.

Micromagnetic simulations. To elucidate the details of this
reversal mechanism, we have performed micromagnetic simula-
tions of the vortex core dynamics as it crosses a Co/Pd maze
domain boundary. In Fig. 4, we first show the static magnetic
structure obtained from the simulations, which confirms the
experimentally observed mutual imprint of domain configura-
tions in the Co/Pd and Py layers. The maze domain state in the
Co/Pd multilayer is modified by the Landau state in the Py layer
as shown in Fig. 4a,b. Here it can be seen that the internal in-
plane magnetization (mx and my) of the maze domain walls fol-
lows the magnetization orientation in the Py film, so that the
maze domain walls bend at the location of the Néel walls

associated with the Landau state in the Py. The out-of-plane
magnetization (mz) is shown in Fig. 4c. At the interface (z¼ 0)
between the Co/Pd and the Py (Fig. 4d–f) the mutual imprint is
strongest. The different magnetic anisotropies of the coupled
Co/Pd and Py layers result in strong depth-dependent magneti-
zation so that the maze domain state is more prominent in the
Co/Pd multilayer and the Landau state is more prominent in the
Py layer (Fig. 4g–i), but both extend throughout the entire
magnetic structure thickness. The vortex core, which is also
imprinted in the Co/Pd multilayer, has a polarization that mat-
ches the orientation of the underlying maze domain structure
(Fig. 4c,f,i). In an isolated Py layer of the same thickness, the core
has a non-uniform structure that is wider in the interior of the
film and narrower towards the surfaces24 and may give rise to
flexure modes25. However, in our sample, the simulations show
that there is little bending of the core structure along the Py
thickness as a result of the coupling with the out-of-plane Co/Pd
layer. In Fig. 4j, an experimental image of an equivalent
configuration is given for comparison with the simulations. The
maze domain pattern is determined by the interplay between
anisotropy, exchange and magnetostatic energies and can
therefore be controlled by the Co/Pd anisotropy, layer thickness
and sample geometry.

1.2 mT 1.9 mT

CW

CCW

CCW

1.5 mT 2.2 mT

a b

c d
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Figure 3 | Vortex core trajectories in Py layer overlaid on Co/Pd maze

domain configuration. Maze domain state of the Co/Pd multilayer with out-

of-plane magnetization in a 5mm� 5mm square measured by XMCD at the

Co L3 edge. The vortex core in the adjacent Py layer with in-plane

magnetization is excited with a 258 MHz a.c. field of amplitude 3.9 mT and

enters a state of dynamic motion marked by the elliptical fit in each panel. The

sense of gyration of this motion, clockwise (CW) or counterclockwise (CCW),

is used as a probe of the polarization of the vortex core. By varying a static

magnetic field (in the direction indicated by arrows), the vortex core is

displaced laterally (a–d) and reversal of the sense of gyration of the vortex

core is observed. The insets show the vortex core positions during the core

gyration together with an elliptical fit of 31 vortex core positions. The bars

indicate the error resulting from the detection of the vortex core position in

each scan. The scale bar is 500 nm and the field of view of the insets is

320 nm� 320 nm. The bright (dark) contrast corresponds to the

magnetization pointing out of (into) the plane and is adjusted for better

visibility.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8836 ARTICLE

NATURE COMMUNICATIONS | 6:7836 | DOI: 10.1038/ncomms8836 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Starting from the remanent state, an a.c. current matching the
experimental parameters is applied in the simulation to probe the
dynamics of the system. The resulting Oersted field causes the
vortex core to gyrate and, as the vortex is excited, it enters a spiral
trajectory and a region with a strong out-of-plane component
with opposite magnetization develops in the vicinity of the vortex
core in the Py layer (bright region adjacent to the dark region
delimiting the vortex core in Fig. 5a). Once the vortex core
reaches an equilibrium radius, it describes a circular motion and
reverses its polarization as it crosses from one maze domain to
another oppositely magnetized domain, passing across a domain
wall with purely in-plane magnetization at its centre (Fig. 5a-f,
centre of wall position indicated with solid green line). As the
initial vortex core (V1 in Fig. 5h) approaches the maze domain
wall, its internal structure is distorted through the sample
thickness, such that the central section of the vortex core (at
the interface between the Py and Co/Pd) merges with the wall
before the top (z¼ 30 nm) and bottom (z¼�9.6 nm; see Fig. 5g,
which represents the same moment in time as Fig. 5b,e,i). When
the vortex core (V1) coincides with the domain wall, its structure
is dissolved by the creation of a pair of magnetic singularities, or
Bloch points (BP1 and BP2 in Fig. 5i). Such singularities occur
when the magnetization cannot continuously unwind, resulting in
a region of locally diverging magnetization over a few
nanometers26,27. The extended region joining the Bloch points

is characterized by a line singularity extending through the
sample thickness. We refer to this new structure as a Bloch core
(orange line in Fig. 5i,j). The Bloch core is topologically related to
the magnetic drops reported to occur during magnetization
reversal in cylindrical nanowires28. Due to the strong out-of-
plane anisotropy in the Co/Pd multilayer, a vortex–antivortex
pair (AV and V2 in Fig. 5i) nucleates in the vicinity of the original
vortex with polarization opposing the original vortex core
(Fig. 5e). The reversal of the vortex core polarization begins
with the annihilation of the original vortex core (V1) and the
antivortex (AV) at the domain wall in the Co/Pd (Fig. 5j). This
annihilation is mediated by one Bloch point (BP1) at the
boundary of the Bloch core. The vortex core polarization
reversal is complete when the new vortex core (V2) expands
and the remaining Bloch point (BP2) is expelled at the surface of
the Py layer (Fig. 5j,k). Despite the complexity of this process, the
reversal itself takes place within less than 100 ps. Excess energy
generated by the polarization reversal is dissipated in the form of
spin waves29. It should be noted that the reversal occurs once a
threshold corresponding to the formation energy of the new
vortex–antivortex pair is reached30. Hence, the reversal requires
an a.c. excitation. The simulations also confirm that the vortex
gyration and the reversal of the core polarization result in local
changes to the maze domain structure in the proximity of the
vortex core (see Supplementary Movie 2 and Supplementary
Note 2). In addition, the maze domain wall magnetization is
locally reversed as the vortex core crosses it, since its
magnetization is defined by the vortex chirality. This change in
the wall structure preserves the time reversal symmetry during
the switching process.

In summary, we have shown that the interaction between the
out-of-plane vortex core magnetization in a Landau state and a
maze domain wall with local in-plane magnetization results in a
fast (B100 ps) and highly localized switch for the vortex
polarization. Moreover, the vortex core reversal mechanism is
distinct from its counterpart in homogeneous structures, which
occurs through the creation and annihilation of a vortex-antivortex
pair12,14 or by punch-through31, that involve the nucleation of a
single Bloch point (see Supplementary Fig. 3). In our hybrid
system, the vortex polarization reversal, mediated by a Bloch core
and characterized by the formation of a pair of singularities, leads
to the temporary suppression of the vortex core magnetization at
the maze domain wall. The possibility to switch the core
polarization at a specific location is of interest for a variety of
low power applications. For example, this added functionality
could be used to trap and release labelled magnetic nanoparticles
with the vortex core stray field. Moreover, the trapped particles
could be identified through detection of the vortex gyration
frequency, which will be modified depending on the material and
size of the trapped particle. Further possibilities include tuneable
RF oscillators and dynamic encryption devices, with the out-of-
plane domain pattern controlled through the sample geometry or
through lithographic engineering of the Co/Pd multilayer.

Methods
Sample fabrication. The [Co/Pd]/Py bilayer square structures with side lengths of
3.0 mm and 5.0 mm were fabricated on a silicon nitride membrane using electron
beam lithography and lift-off processing. The magnetic layer stack is [Co(0.3 nm)/
Pd(0.9 nm)]8/Pd(1.5 nm)/Ni80Fe20(50 nm) with a seed layer of Ta(1.5 nm)/
Pd(1.6 nm) and a 1 nm Al cap to prevent rapid oxidation. We use a 1.5 nm thick Pd
spacing layer between the Co/Pd and the Py, thus reducing the coupling (exchange
and magnetostatic) between the layers and increasing the vortex core mobility. The
stripline consisting of Ti(5 nm)/Cu(200 nm)/Ti(5 nm) is patterned on top of the
structures. The whole sample is covered by 150 nm AlN to dissipate the Joule
heating created by the current flowing through the stripline. All materials were
deposited by d.c. magnetron sputtering at normal incidence without rotation at
room temperature. The base pressure was 10�6 mbar and the Ar pressure
2� 10�3 mbar.
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Figure 4 | Depth-dependent simulated magnetic configurations in the

[Co/Pd]/Py hybrid system. (a–i) Simulated mx, my and mz components of

the initial remanent magnetization states at different thicknesses z in the

hybrid structure (z¼�9.6 nm is the bottom of the Co/Pd multilayer stack,

z¼0 the interface between the Co/Pd and the Py layers and z¼ 30 nm is

the top of the Py layer). In the simulations, the side length of the square is

800 nm and the Py layer is 30 nm thick. In i, the simulated out-of-plane

component of the magnetization state at the top of the sample (Py layer)

displays similar features to those experimentally observed in j, which is an

XMCD image of the central 1.5mm� 1.5mm region of the 3 mm� 3mm

square, taken at normal incidence at the Ni L3 edge.
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Scanning transmission X-ray microscopy. The images were taken using scanning
transmission X-ray microscopy (STXM)19 exploiting X-ray magnetic circular
dichroism (XMCD)20. The contrast depends on the relative orientation of the
sample magnetization and the X-ray polarization vector, being maximum for
parallel and minimum for antiparallel alignment, with intermediate contrast
representing magnetization orthogonal to the X-ray polarization vector. To obtain
XMCD images, we divide two images that are taken with opposite helicities.

The static images were taken both with a 30� angle of incidence and at normal
incidence of the X-ray beam to probe the in-plane and out-of-plane components of
the magnetization, respectively. To investigate the magnetic state of the individual
layers, images were taken at the Co L3 absorption edge for the Co/Pd multilayer
and at the Ni L3 absorption edge for the Py layer.

The dynamic images were recorded at the Ni L3 absorption edge with the
sample rotated about the y axis giving an angle of 30� between the surface normal
and the direction of the X-ray propagation (þz direction in Fig. 2) to be mainly
sensitive to the in-plane component of the magnetization in the Py layer.
Corresponding images of the Co/Pd maze domain configuration were taken at the
Co L3 absorption edge. In Fig. 3, the images have been taken using a single X-ray
helicity, which gives sufficient contrast. The alternating magnetic field was
generated by applying an a.c. current (258 MHz, 62 mA) through the Cu stripline
creating a magnetic field with amplitude 3.9 mT.

The elliptical fits of the vortex core trajectories were performed using the least
squares method. The long/short axes of the fitted ellipses in Fig. 3 are: (a) 136 nm/
64 nm, (b) 117 nm/49 nm, (c) 164 nm/120 nm, (d) 146 nm/106 nm with an error of

o44 nm for the long axes and o32 nm for the short axes. The positions of the
fitted trajectories of the vortex core in the Py were superimposed onto the
perpendicular maze domains in the Co/Pd by matching the edges of the patterned
squares in the respective measurements. The uncertainty in the determination of
this offset is o19 nm. The sense of the vortex core gyration can be directly
determined from the dynamic images (see Supplementary Movie 1). The positions
of the vortex core during the motion were obtained by detecting the maximum
change in contrast. The experimental lateral resolution given by the beam spot size
was B70 nm.

Micromagnetic model. We solved the Landau–Lifshitz–Gilbert equation for
multilayer squares of side length 0.8 to 1.2 mm and a Py thickness of 30 nm (Fig. 2a)
using finite element modelling32. The interlayer exchange between the Co/Pd and
the Py is modelled using an intergrain exchange model33 including the Oersted
field. The element edge size is adaptively increased from 4 nm at the centre of the
square to 12 nm at the edges. The magnetic material was surrounded by Cu
(10 nm) on the top and side surfaces, perpendicular to the x axis. We modelled the
current as a triangular wave of amplitude 36 mA (peak Oersted field 7.4 mT),
matched to the experimental frequency. Other effects due to the current, such as
Ohmic heating and spin-polarization, have been simulated but were found not to
be essential to the vortex core reversal process.

We treated the Co/Pd multilayer as a single material with electrical conductivity
sCo/Pd¼ 3 MSm�1, exchange stiffness ACo/Pd¼ 10 pJ m�1, saturation magnetization
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Figure 5 | Modelled Bloch core reversal. (a–f) Magnetization dynamics in the Py and Co/Pd layers, respectively, 10 nm above (a–c) and 9.6 nm below the

interface (d–f), during vortex core reversal. The green line indicates the centre of the maze domain wall where mz¼0. The sequences show the vortex core

reversing its polarization (dark to bright mz contrast) as it crosses the maze domain wall. The initial bright contrast in a corresponds to the region with out-

of-plane magnetization that forms during the vortex core motion. In the Co/Pd multilayer, a vortex-antivortex pair is created during the reversal process (e).

Thickness-dependent cross-sections of the magnetic structure during the vortex core reversal are shown in g at 8.90 ns, highlighting the vortex core

(circles) and the domain wall (green line). While the vortex core radius is finite at the top and bottom surfaces, it vanishes within the sample where the

magnetization is purely in-plane. Note that the plotted arrow density is lower than in a–f for clarity. (h–k) Schematic representation of the time evolution of

the out-of-plane component of the magnetization during the vortex core reversal via the formation of a Bloch core (BC, orange line) at a domain wall (DW)

separating two oppositely magnetized out-of-plane domains (pale blue and red regions). In i and j, a new vortex–antivortex pair (V2–AV) is created in the

Co/Pd multilayer with opposite polarization compared to the original vortex core (V1). As the Bloch point BP1 moves towards the bottom surface, it

mediates the annihilation of the original vortex core V1 with the antivortex, AV, in the Co/Pd multilayer. The initial vortex core V1 is dissolved in the Py as

BP2 reaches the top surface. The grey scale concerns images a–f and represents the orientation of the out-of-plane magnetization. The colour scale

represents the out-of-plane orientation of the magnetization associated with the arrows in a–g, which are plotted in the (x,y) plane for clarity. In g, the

arrows are plotted with full 3D orientation. Hence, the curl around the vortex and antivortex in e is less obvious in g due to the strong out-of-plane

component. The simulated square has an edge length of 800 nm and the Py layer is 30 nm thick.
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MCo/Pd¼ 400 kA m�1, perpendicular anisotropy KCo/Pd¼ 250 kJ m�3 and
damping constant aCo/Pd¼ 0.02. The Py parameters were sNiFe¼ 3 MSm�1,
ANiFe¼ 13 pJ m�1, MNiFe¼ 800 kA m�1, KNiFe¼ 0 kJ m�3 and aNiFe¼ 0.02. The
conductivity of Cu was sCu¼ 4.5 MSm�1. The smaller size of the simulated
structures was chosen to reduce computation time and, at the same time, to
adequately reproduce the observed magnetic configurations and their dynamics.
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