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Exceptional performance is often considered to be elegant and free of ‘errors’

or missteps. During the most extreme escape behaviours, neural control can

approach or exceed its operating limits in response time and bandwidth.

Here we show that small, rapid running cockroaches with robust exoskeletons

select head-on collisions with obstacles to maintain the fastest escape speeds

possible to transition up a vertical wall. Instead of avoidance, animals use

their passive body shape and compliance to negotiate challenging environ-

ments. Cockroaches running at over 1 m or 50 body lengths per second

transition from the floor to a vertical wall within 75 ms by using their head

like an automobile bumper, mechanically mediating the manoeuvre. Inspired

by the animal’s behaviour, we demonstrate a passive, high-speed, mechani-

cally mediated vertical transitions with a small, palm-sized legged robot. By

creating a collision model for animal and human materials, we suggest a

size dependence favouring mechanical mediation below 1 kg that we term

the ‘Haldane limit’. Relying on the mechanical control offered by soft exoske-

letons represents a paradigm shift for understanding the control of small

animals and the next generation of running, climbing and flying robots

where the use of the body can off-load the demand for rapid sensing and

actuation.
1. Introduction
It is generally held that an animal’s seemingly flawless performance to manoeuvre

around obstacles stems from the extensive reliance on neural feedback from multi-

modal sensory systems, along with the actuators to execute the response.

However, during rapid locomotion, the effectiveness of such neural feedback in

response to perturbations is likely to be reduced due to decreased reaction times

available for sensing, feedback and recovery, thereby increasing the chances of fail-

ure and the risks of sustaining damage from collisions. An alternative strategy for

control of high-speed animal locomotion relies on mechanically mediated naviga-

tion and feedback of near instantaneous responses from viscoelastic mechanical

structures arising from dynamic animal–environment interactions.

Instead of avoidance, animals can use their passive body shape and compli-

ance to negotiate challenging environments. For instance, Li et al. [1] showed

how fast running cockroaches head straight into multicomponent, three-

dimensional terrain composed of grass-like, vertically compliant beams. The

cockroaches’ ‘terradynamically streamlined’ fusiform shape causes them to exe-

cute a novel roll manoeuvre—a form of natural parkour—facilitating rapid

traversal of vertical gaps narrower than half their body width. Exploiting the
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terrain’s properties can enhance traversability by assisting effec-

tive body reorientation via distributed mechanical feedback.

Jayaram & Full [2] discovered that cockroaches can capitalize

on their soft-bodied, shape-changing ability to traverse horizon-

tal crevices smaller than a quarter of their height in less than

a second by permitting the compression of their bodies’

compliant exoskeletons in half.

Given the diversity in size of animal bodies, spanning

over 10 orders of magnitude in mass [3], and its constituent

materials ranging from soft to stiff, and brittle to tough [4],

the dynamic responses from such mechanical structures,

and, consequently, their effectiveness in mitigating the

effect of obstacle collisions during locomotion must vary.

Certainly, mechanically mediated strategies for negotiating

obstacles must be size dependent. As observed by Haldane

[5], ‘you can drop a mouse down a thousand-yard mine

shaft; and, on arriving at the bottom, it gets a slight shock

and walks away. A rat is killed, a man is broken and a

horse splashes,’ pointing to the fact that the cost of collision

damage increases with the size of the animal.

To escape from predators, cockroaches run at speeds

approaching 1.5 m s21 [6], climb up walls [7], race along ceil-

ings [8] and then ingress into narrow crevices [2]. Aided by

their low mass and moment of inertia, cockroaches can rapidly

change direction by turning [9,10] or disappear rapidly

by swinging under ledges [11]. During these high-speed

behaviours, collisions with the ground and obstacles in their

environment are frequent. We question whether these behav-

ioural observations of collisions should be characterized as

‘missteps’, ‘failures’ [12] or ‘disasters’ [13], but rather be

considered an effective strategy as part of the speed versus

accuracy trade-offs proposed by models of escape [14]. Here,

we explore the capability of cockroaches to rely on the visco-

elastic properties of their exoskeleton to negotiate a transition

from horizontal ground running to vertical wall climbing via

mechanically mediated collisions.

We selected the American cockroach, Periplaneta americana,

because of its ability to seamlessly transition between running

and climbing. Since it tends to use high-speed manoeuvres to

escape [15,16], there is a high probability of collisions with

obstacles and opportunities for using mechanically mediated

strategies. To elucidate the mechanism of rapid horizontal to

vertical transitions, we elicited an escape response towards a

high-contrast vertical wall. Following Haldane’s predictions

[5], we hypothesized that body collision resistance decreases

with an increase in size. We developed a model relating bulk

mechanical properties such as stiffness, damping and damping

ratio to performance metrics such as kinetic energy, coefficient

of restitution and percentage energy dissipation as a function

of body size. Further, using elastic energy [4] and toughness

[17] as measures critical for preventing bodily injury and

thus robustness, we estimate the Haldane limit—maximum

body size for dissipating energy upon collision without

damage. Inspired by the mechanically mediated cockroach

transition strategy, we modified our palm sized robot

(DASH, Dynamic Autonomous Sprawled Hexapod [18]) man-

ufactured using Smart Composite Microstructures (SCM, [19])

to perform rapid horizontal to vertical transitions by relying

only on viscoelastic responses from its tuned body structures.

The reliance on the body’s mechanical mediation of obstacles

represents a paradigm shift for understanding the control

of small animals and the next generation of mesoscale and

smaller running, climbing and flying robots.
2. Material and methods
2.1. Animals
We used 18 male cockroaches P. americana (Carolina Biological

Supply, Burlington, NC, USA) with an average mass of 0.71+
0.13 g (mean+ s.d.). Prior to experimentation, cockroaches were

kept in communal plastic containers at room temperature (228C)

on a 12 h : 12 h light dark cycle and provided water and food

(fruit and dog chow) ad libitum.

2.2. Track and climbing surfaces
To demonstrate horizontal to vertical transitions, we constructed a

horizontal acrylic track—100 cm long and 10 cm wide (electronic

supplementary material, figure S1). The sidewalls of the track

were coated with petroleum jelly to prevent the cockroach from

climbing. The running surface was lined with paper for the stan-

dard condition to ensure adequate friction. A vertical wall made

of hard posterboard (Royal Brites, US) 10 cm high was placed

across the track to elicit a transition. Our preliminary experiments

showed no effect of wall properties. The vertical wall had a black

and white checkerboard design to provide a high contrast for

visual detection.

2.3. Kinematics
We recorded videos of cockroaches running on a level surface,

transitioning to a vertical posture, and climbing the wall using

synchronized high-speed video cameras (AOS X-PRI, AOS Tech-

nologies, Switzerland) recording at 500 frames per second (fps)

at a resolution of 1280 by 1024 pixels. One camera was positioned

directly above the track, capturing the top view, and the other

recorded the side view. Additionally, the track was evenly lit

with minimal shadows using diffusers and two large high-

power flood lamps (Lowel, Brooklyn, NY, USA) located on either

ends of the track. We determined the kinematics of the transition

from the captured videos using a motion tracking software pack-

age (Pro Analyst v. 6, Itronx Imaging Technologies, Westlake

Village, CA, USA).

2.4. Animal experimental protocol
All experiments were performed at 28+28C (mean+ s.d.). Before

starting any experiment, a total of four kinematic markers (small

dots of white liquid paper, BIC Wite-out) were placed on the pro-

notum and the abdomen (one each on dorsal surface and the side

at both positions) to aid in the motion tracking. The top (or dorsal)

markers were used to calculate running velocity and yaw, whereas

the side markers were used to estimate body pitch. To encourage

the animals to run and climb up the wall, we evoked a stereotypical

escape response by light stimulation of their cerci or by gently

blowing using a gas duster (Dust-off Inc.). We accepted trials

when the animal ran rapidly and transitioned successfully onto

the vertical wall. We rejected trials where (i) the cockroaches

stopped or climbed the side-wall within 25 cm of the vertical

wall or during the transition, (ii) their body (excluding their legs)

collided with the side-wall, or (iii) exhibited turns of more than

158 during the run or while transitioning.

Cockroaches with intact antenna, compound eyes and ocelli,

running on a paper surface with wall preview distance (available

track length) of about 55 cm, under ambient lighting conditions rep-

resented our standard or control condition (seven animals). To

ensure that these particular conditions were not biasing the

behaviour of the cockroaches, we varied lighting conditions,

visual input, wall preview distance and type of running surface.

From the additional pool of 11 animals, four were randomlyselected

for each of the following treatments: lighting, visual input, wall pre-

view distance and running substrate. Experiments with blinded

animals to test the effect of visual input were performed last and



Table 1. Data for the transition experiments performed under different conditions for the head-first and body-angled transitions. Head-first is the dominant
strategy used by the cockroaches to climb onto the vertical wall. The transition times are similar for the two strategies whereas the running speeds before
transition is higher when the animals perform the head-first transition. For transition times and running speeds, we show mean+ s.d.

control condition

# trials [# animals] transition times (ms) running speeds (cm s21)

head-first body-angled head-first body-angled head-first body-angled

none standarda 47 [7] 10 [6] 73+ 29 75+ 24 97+ 14 79+ 10

light ambient 16 [4] 1 [1] 84+ 40 68 94+ 16 75

low 13 [4] 6 [4] 68+ 23 92+ 29 99+ 16 81+ 1

visual input normal 15 [4] 4 [3] 94+ 24 69+ 21 94+ 12 84+ 12

blind 17 [4] 4 [3] 76+ 13 97+ 11 101+ 12 96+ 2

wall preview distance 55 cm 9 [4] 6 [3] 75+ 18 69+ 26 100+ 11 91+ 10

80 cm 7 [3] 1 [1] 98+ 34 72 105+ 10 78

30 cm 12 [4] 7 [4] 94+ 17 65+ 13 90+ 10 88+ 7

running surface paper 11 [4] 5 [3] 102+ 24 91+ 34 99+ 15 88+ 15

sandpaper 12 [4] 4 [2] 99+ 31 81+ 14 80+ 12 102+ 36

felt 12 [4] 6 [4] 105+ 27 113+ 31 90+ 23 85+ 16
aStandard: ambient lighting, intact vision, 55 cm wall preview distance, paper as running surface.
Italic text represents test conditions different from the standard.
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those animals were not returned to the pool for further experimen-

tation. Since the same animals were run in the standard condition

(ambient light) and varied condition (low light) just prior, we

were able to use paired statistics for comparison (table 1).

We tested two lighting conditions—ambient and dark. ‘Ambi-

ent’ lighting condition was about 21 000 lux bright. Since

cockroaches prefer dark conditions in nature, we tested the

animals under low-light conditions to remove possible biases

induced by the brighter environment. The ‘low-light’ condition

was the minimum lighting that enabled high-speed video capture

at 500 fps (approx. 200 lux).

To allow the cockroach sufficient time to detect the wall and

prepare for transition, we varied the wall preview distance. We

chose 80 cm as the upper limit of the wall preview distance because

the cockroaches either slowed down or stopped during the runs of

longer lengths. Thirty centimetres was chosen as lower limit to

allow for a steady-state run satisfying our operational definitions.

A mean value of 55 cm was used as the standard.

To test of the role of visual sensors involved in the transition

behaviour, we blinded cockroaches by covering their compound

eyes and the ocelli with white nailpaint, taking care to avoid the

head/scape joint [20]. To test the role of mechanosensory anten-

nal contact we attempted to modify the antennae. Unfortunately,

any modifications resulted in animals reluctant to run. Finally,

we switched the running substrate from the default paper to

felt, a softer material and 40-grit sandpaper, a hard and rough

surface to test for the effect of substrates.

2.5. Robot experimental protocol
We simulated a head-on impact transition using DASH by running

the robot into the vertical wall at maximum speed (�80 cm s21).

A cone shaped, inclined extension (20 mm wide)—henceforth

referred to as the ‘nose’—was added to the front of DASH to facili-

tate the robot orienting upward upon wall collision (see electronic

supplementary material, figure S2). Cardboard laminates (4-ply

Railroad board, Peacock Inc.) with flexible, polymer (Dura-lar,

Grafix Inc.) joints were used to construct the nose using the

Smart Composites Manufacturing (SCM) process, the same tech-

nique used to build the rest of the robot. We lined the running

surface with cork to provide effective traction and used a preview
distance of 55 cm. We video recorded the robot using the same

protocol described for the animals.

2.6. Coefficient of restitution estimation
To perform controlled head-on impacts, we suspended freshly

deceased cockroaches like a pendulum at their centre of mass

using light music wire (5/100000; 30 cm in length). The cockroach

pendulum reached speeds of about 1 m s21 before collision similar

to head-first impact transitions. A heavy brass paperweight (1 lb)

was used as the wall into which the animals collided. The entire

process was filmed at 1000 Hz providing us the time resolution

to measure the velocities before and after impact. The rationale

for these experiments was twofold. First, this allowed us to

obtain consistent measurements of coefficient of restitution.

Second, the measured energy losses during collision could be

attributed to the passive mechanical properties of the insect exo-

skeleton and not active muscular actions, since we used freshly

deceased specimens.

2.7. Data analyses and statistics
We analysed the data using custom software (MatLab, Mathworks

Inc.). We performed statistics on animal data with at least five trials

per experimental condition using Minitab (Minitab Inc.). We used

repeated measures analysis of variance (ANOVA) and Pearson’s

chi squared (x2) tests for continuous and nominal variables

respectively. A repeated measures design with a mixed model

was used to determine the effect of condition. In our model, the

condition (head-first/body angled as the case may be) was

included as a fixed effect while the animal was included as

random effect. The response was our performance metric (running

velocity, transition time, etc.).
3. Results
3.1. Strategies for transition
Under the naked eye, cockroaches appeared to perform a

smooth, ‘elegant’ transition onto the vertical wall. However,
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(approx. 75 ms). (a) Head-first impact strategy (table 1). Head-first impact
is the primary (approx. 80%) transition strategy and often occurs at higher
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high-speed videography revealed two prominent transition

strategies: head-first impact and body-angled impact. For the

former strategy, cockroaches approached the wall at full

speed, crashed head-on, before transitioning up the wall (elec-

tronic supplementary material, video S1). We refer to this

behaviour as the head-first impact strategy (figure 1a). For

the latter strategy, cockroaches ran towards the wall with

their body pitched head upwards and used their legs to decele-

rate and climb up the wall (electronic supplementary material,

video S2). We refer to this as the body-angled impact strategy

(figure 1b). Under the standard condition (n¼ 18 animals,

107 trials), we observed that the head-first strategy represented

by far the major portion of our trials (86/107, �80%). In the

remaining cases, the animals employed the body-angled

impact strategy to transition. Animals collided with the wall

in over 90% of the total trials attempted. In extremely rare
instances, cockroaches either jumped (4/330) or flew (1/330)

towards the target. We found no effect of individuals on tran-

sition strategy for animals running under standard conditions

(n ¼ 18 animals, Pearson x2 test, p ¼ 0.289).

To ensure that our standard conditions were not biasing

behaviour, we varied the following experimental conditions:

light, visual input, wall preview distance and running surface

(table 1). We found no statistically significant differences

(Pearson x2 test, p ¼ 0.631) in the strategy across lighting con-

ditions (low light or ambient), visual input (blinding or intact

vision), wall preview distance (30, 55 or 80 cm) and running

surface properties (sandpaper, paper or felt). Further, the ani-

mals used in the standard and above experimental groups

showed no statistically significant differences in strategy

(Pearson x2 test, p ¼ 0.224). This allowed us to combine the

datasets and reveal no effect of individuals (n ¼ 18) on tran-

sition strategy (Pearson x2 test, p ¼ 0.839). These results

suggest that head-first impact is not an anomalous behaviour

introduced by the experimental conditions.

3.2. Performance comparison for the transition
strategies

To compare the transition performance for the two strategies

under the standard condition, we measured transition

time, the time from the first wall contact—excluding the

antennae—to both hind-legs on the wall. Contrary to our

expectations, the two strategies showed no statistically signifi-

cant difference in the mean transition time (75+28 ms;

ANOVA, p ¼ 0.635; table 1). This result indicates that head-

first impacts do not pose a disadvantage to the animal in

terms of transition times. It must also be noted that irrespective

of the strategy used, the transition times are extremely brief

(about 1–2 strides). As shown in figure 1c, irrespective of the

transition strategy, the animals maintained steady horizontal

velocities while approaching the wall. But during transition,

the kinetic energy was rapidly dissipated and the horizontal

velocity decreased to below zero within about 20–30 ms. We

measured negative horizontal velocities which showed that

some animals even bounced back after impacting the wall.

Further, it is interesting to note that head-first transitions

(65–148 cm s21) occurred at significantly greater (ANOVA,

p , 0.001; table 1) mean running speeds (averaged over at

least 25 cm before first wall contact) compared to the body-

angled transitions (51–92 cm s21). Therefore, using the head-

first impact strategy to transition is potentially advantageous

to the cockroach as it allows the fastest running speed with

no decrease in the transition time. Further, a typical transition

was characterized by rapid changes in pitch angle following

wall contact for both strategies (figure 1c). Prior to transition,

we found no evidence of any characteristic changes in body

pitch angle enabling body posture adjustment to facilitate a

particular transition strategy. The lack of clear changes in

horizontal velocity and body pitch angle as the animal

approaches the wall suggests limited neural influences during

horizontal-to-vertical transition.

To further characterize the head-first transition, we used

the coefficient of restitution (COR) as our metric. COR is

defined as the ratio of the velocity of separation to the vel-

ocity of approach [21] and is often used as a measure of

kinetic energy loss (¼1 2 COR2) upon impact to describe

the severity of collisions. For our case, we used the instan-

taneous running speed of the animal, one frame before and
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after head-contact as the approach and separation velocities

respectively (figure 2). The mean COR for head-first impact

transitions was 0.22, indicating that about 95% of the kinetic

energy was dissipated by the cockroach exoskeleton. The

independently measured COR using a cockroach pendulum

was 0.26+ 0.1 (2 animals, 14 trials), which is in close

agreement with the experimental measurements.

3.3. Scaling of mechanical properties
Not all animals can use a head-first strategy to transition without

severe injuries. Collision resistance, defined as the ability of a

viscoelastic body to dissipate energy (as determined by the coef-

ficient of restitution, COR) is size-dependent (figure 2).

Assuming an animal’s body to be composed of linear visco-

elastic elements consistent with the Kelvin–Voigt model [17],

we model the head-first impacts as a mass-spring-damper

system whose dynamics are governed by the following

second-order ordinary differential equation (equation (3.1)).

m
d2x
dt2
þ C

dx
dt
þ Kx ¼ 0, ð3:1Þ

where m, K, C represent the effective body mass, spring constant

(stiffness) and damping for deformation x, respectively. The

above equation may be re-parametrized as follows (equation

(3.2)) in terms of natural frequency (v) and damping ratio ( j).

d2x
dt2
þ 2jv

dx
dt
þ v2x ¼ 0 ð3:2Þ

and

j ¼ C
2
ffiffiffiffiffiffiffi
Km
p ; v ¼

ffiffiffiffi
K
m

r
: ð3:3Þ

Damping ratio (equation (2.3)) is a dimensionless number

indicative of how oscillations in a system decay after a dis-

turbance. Several studies on impact pounding [22–24] have

correlated damping ratio with the COR as an inverse relation-

ship and it is therefore a measure of system’s ability to

dissipate energy. Using COR-damping ratio relationship

[22], we estimate the damping ratio and natural frequency

for a typical head-first transition (COR ¼ 0.22) as j ¼ 0.479

and v ¼ 377.96 rad s21. We acknowledge that most of the

above relationships have been derived for well-behaved

engineering materials and additional detailed modelling

likely will be required before adapting them to nonlinear bio-

logical materials. However, the inverse relationship between

damping ratio and COR is expected to hold, and careful

determination of the above relationship will aid in generating

useful engineering design constraints as we discuss later.

Having established damping ratio as a proxy for COR, we

can determine the dependence of damping ratio on mass,

stiffness and damping, which scale with size (figure 2a,b).

Assuming geometric scaling and homogeneous (isotropic)

material composition, a structure, say cube of length, l, scaled

‘k’ times (kl) can be decomposed into ‘k3’ originally sized

cubic units and arranged in ‘k’ layers in series, each composed

of ‘k2’ such units. Therefore, using parallel and series laws, we

obtain that stiffness and damping both increase with body

length (l ) and thus, the damping ratio decreases with length

(l21) (figure 2a). Therefore, a high damping ratio and conse-

quently low COR value [22] places small animals at a

definite advantage for impact mitigation because of their

higher energy dissipation capabilities and lower kinetic

energies (l4) relative to their larger counterparts (figure 2b).
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Figure 3. Scaling of robustness to collisions. (a) Log – log plot of the scaling of specific kinetic energy in terrestrial animals. Kinetic energy increases with mass
exponentially and closely follows the trend predicted by inverted pendulum running (M0.33). Green cloud: invertebrate runners including cockroaches. Red cloud:
vertebrate runners including humans. Tan cloud: human-engineered transportation (car, jet plane, train). (b) Haldane Limit Estimate. Plotting the data from figures
(2c with 3a) shows that the curves intersect around 1 kg (blue line) quantifying the Haldane Limit. For sizes below 1 kg, animals might be able to absorb kinetic
energy with their body materials, avoid injury during collisions and even select mechanical mediation of manoeuvres. However, for sizes to the right of the blue line,
animals are less likely to completely dissipate their kinetic energy by material properties alone and would need to use mechanisms to either reduce speed if
colliding into the environment or avoid collisions completely. Our model predictions match well with Haldane’s observations about size dependence on energy
dissipation and magnitude of injury upon collision. Our robot DASH (16 g) is well below the Haldane limit.
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To predict the scaling of specific energy absorption,

another measure of body collision resistance, for a variety

of materials used for construction of animals (bone, skin

and cuticle) and human technologies (wood, concrete, plas-

tics), we used elastic-plastic fracture toughness (J [4]). Since

toughness (expressed in units of strain energy release per

unit area [4,17]) is constant for a material and independent

of size, we found that specific energy absorption (¼(JA)/

M ), computed as the product of toughness (J ) and cross-sec-

tional area (A) per unit mass, decreased linearly with body

length (l21) (figure 2c). Likewise, we scaled specific elastic

energy storage, yet another measure of collision resistance,

using Young’s modulus (Y ), yield strength (s) and material

density (r). Since these properties are constants for a material,

we found that the elastic energy storage capacity ð¼s2=2rYÞ
is independent of body size (figure 2d ).

Further, we expect velocity (v) to scale as M0.17, where M is

the mass, assuming dynamic similarity across animal sizes for

an inverted pendulum locomotion template [25,26]. This pre-

diction is in close agreement with studies on the scaling of

maximum running speed of animals, estimated at M0.17+0.04

[27,28]. Using data from [27] and [28], the specific kinetic

energy (¼ v2=2) for an animal running at its top speed
increased with body mass as M0.33 for vertebrates and as

M0.28 for invertebrates respectively (figure 3a).

We then computed the cost of collision damage for an

organism as the difference between its maximum possible

specific kinetic energy at the time of collision and its maximum

possible specific energy absorption given its constituent bio-

logical materials. To simplify the above calculation, we

assumed animals were homogeneous cubes with uniform den-

sity of equal to that of water (1000 kg m23) [29] that scaled

geometrically with body size. The resulting plot (figure 3b)

reveals that at the smallest sizes, energy absorption capacity

dominates the kinetic energy, while at the largest sizes, kinetic

energy overcomes absorption capacity. The intersection of the

above trend lines yields the Haldane limit of about 1 kg. For

animals larger than this critical body mass, it means that

their entire kinetic energy cannot be fully dissipated without

undergoing irreversible plastic deformation and such animals

are therefore likely to incur significant body damage. Thus,

this plot serves as indicator of the approximate size scales

(below the Haldane limit) where mechanics and material prop-

erties can potentially influence obstacle avoidance behaviour.

While the data presented here are mainly from cursorial ani-

mals, the performance-collision resistance trade-off is generic
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Figure 4. Mechanically mediated control in human technologies. (a) Dynamic Autonomous Sprawled Hexapod Robot (DASH) [19] performing a rapid head-first
impact transition with no sensory input. Its robust construction enables it to perform high-speed manoeuvres without suffering damage while approaching the wall
at over 80 cm s21. (b) Volkswagen Beetle after incurring significant damages during a frontal impact crash test (Courtesy: Insurance Institute for Highway Safety,
www.iihs.org). A typical coefficient of restitution for a front automobile bumper is �0.3 or 91% energy absorption. (c) Miniature (7 g) jumping robot [33] with self-
recovery capabilities enabled by the robust exoskeletal cage. (d ) Gimball robot with passive exoskeletal cage to use collisions for manoeuvring in cluttered environ-
ments [34]. (e) Airburr [35], an indoor flying robot designed specifically to withstand collision and self-manoeuvre using a shock-absorbing exoskeleton. ( f ) Insect
inspired mechanically resilient multicopter [36] whose frame can undergo large deformations without permanent damage during collisions.
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and may broadly hold across different modes of movement—

flying, falling, parachuting and jumping. Numerous studies

on medium to large sized vertebrates such as cats [30], dogs

[31] and humans [32] are consistent with the limit. Figure 3b
can be particularly useful for engineers to make initial designs,

approximate choices about mass, material and geometry of

robots, and lessen the burden on sensor based regulatory

mechanisms to overcome perturbations or prevent collisions

and damage.

3.4. Mechanically mediated transitions in a robot
The robust exoskeletons of cockroaches provided inspiration

for DASH (figure 4a). The robot without any kind of sensing

collided with a wall at maximum speed (�80 cm s21) and

performed a mechanically mediated transition (figure 4a,

electronic supplementary material, video S3, COR � 0.4),

remaining undamaged. SCM technology [19] enabled

DASH to not only be small (10 cm body length) and light

(16 g), but also physically very robust allowing it to passively

overcome obstacles and even sustain 8-story falls (over 28 m)

without damage. Thus, we successfully demonstrated a pas-

sive, head-first impact transition using DASH as a physical

model which supports the hypothesis that the cockroach

head-first transition is a mechanically mediated manoeuvre.

As next steps, we aim to incorporate substrate attachment

mechanisms [37–39] into the feet of the robot in order to

achieve climbing.
4. Discussion
Effective negotiation of the environment is most often charac-

terized by smooth, nimble avoidance of obstacles. Yet, the

American cockroach, P. americana, completed a high-speed

horizontal to vertical transition within 75 ms (table 1) while

suffering a head-on impact at maximum speed of 1.5 m s21

into a vertical wall (figure 1a; electronic supplementary

material, video S1). Even at half this speed, cockroaches have

been observed to collide head-first into obstacles 10% of the
time, despite being able to negotiate them using a single

front limb movement without that limb ever touching the

front of the obstacle [12,40]. Similar strategies during obstacle

climbing have been observed at slower speeds in false death-

head cockroaches, Blaberus discoidalis, and categorized as a

head-butt [40] or as brute-force climbs where ‘the cockroaches

pushed their head and body into an obstacle until that force

resulted in its body pushing up and over the obstacle’ [41].

Baba et al. [12] found an increased frequency of collisions at

higher ranges of speed (0.50 m s21), along with the tendency

to elevate the body. They state that, ‘It is tempting to suggest

that these collisions represent failures to fully initiate a climb

response despite the presence of the obstacle.’ Instead of a fail-

ure, a head-first impact transition may be potentially

advantageous as it enables the animal to approach an obstacle

or a vertical wall at highest possible speeds. Therefore, we con-

tend that such collisions represent the animal’s ability to use

alternate mechanical mediation strategies rather than rely

solely on neural feedback systems.

4.1. Selecting a mechanically mediated strategy
for a maximal speed escape transition

The role of neural feedback in enabling escape behaviour has

been studied extensively. In particular, cockroaches have been

examined for their ability to follow walls using mechanosensory

cues from their long antennae [20,42], avoid collisions during

running by combining visual and antennal mechanosensory

inputs [10], and even begin to escape from approaching

predators using wind-receptive cerci in 60 ms [15,16]. These

behaviours have been adopted as models for engineering

control systems and sensors [43–45], and even inspired the

development of crash avoidance systems for road vehicles

[46]. Regardless of the multisensory arrays available, cock-

roaches in the present study predominantly crashed into the

wall head-first to mediate the horizontal-to-vertical transition.

Although insufficient information exists to assess the field

relevance of mechanical mediated transitions in this species,

its origin in cave-like environments with walls/large rocks

http://www.iihs.org
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[47] is likely one reason this species predominantly adopts

present day, human-made structures [48]. Changing the mag-

nitude of sensory stimuli in our control experiments had no

significant effect on the transition strategy, supporting the

possibility that the behaviour is not unique to the laboratory.

Specifically, varying light intensity and blinding the animals

had no effect relative to controls (table 1). A weak effect of

visual information agrees with earlier studies examining col-

lision avoidance [12]. Similarly, we found no significant effect

on speed or transition strategy when wall preview distance or

running surfaces was varied (table 1). Previous studies [12] at

slower escape speeds showed the importance of antennal

mechanosensation in preventing collisions, since all manipu-

lations altering the antennal system changed behaviour.

Reducing antennal length, or severing the main antennal

nerve without altering the length produced significantly

increased collision frequency. These experiments found that

nearly simultaneous contact with both antennae was required

to make the cockroach stop and prevent a collision. Individ-

uals in our experiment simply did not run with altered

antennae. However, we suspect that antennal influences are

minimal in our experiments because the typical time between

the antenna contact to head impact was about 20 ms, which is

of the same order as the neural conduction delays in antennae

of Periplaneta [10] and faster than known antennae-touch escape

responses (approx. 35–40 ms) (see [16] and its references).

Therefore, under the extreme computational and bandwidth

limitations of the nervous system, we could not find any

evidence that cockroaches implemented sensor-based control.

Instead, cockroaches relied on mechanically mediated

control to negotiate the horizontal to vertical transition at

maximum speed.

Running at maximal speed for escape is rare, especially for

animals in the field, because the costs are considered to be too

great [13]. Wynn et al. [13] state that ‘movement speed, even

during extreme situations like escaping predation, should be

based on a compromise between high speed, manoeuvrability,

and motor control’. They ‘advocate that optimal—rather than

maximal—performance capabilities underlie fitness defining

behaviours such as escaping predators and capturing prey.’

and that slower speeds are selected to reduce the likelihood

of ‘mistakes’ such as slipping, falling, and crashing. The

reasons as to why the American cockroach does attain near

maximal speed during a transition are likely complex.

However, we contend that the present study removes crashing

from the costs, and, instead, suggests that this mechani-

cally mediated manoeuvre is a benefit allowing maximal

speed running with minimal transition time and a low

probability of injury.
4.2. The effect of size on collisions
Given the ubiquitous use of high-speed video, we now see

that many more small animals undergo frequent collisions.

Bees have been routinely observed to collide into walls at

high-speed while attempting to enter hives [49]. Fruit flies

experience head-on collisions and crash landings [50]. Coco-

nut crabs habitually descend to the ground by jumping off

trees [51]. Mosquitoes survive the high-speed impacts of rain-

drops [52], fire ants fall in their tunnels [53] and cockroaches

crash land [54].

Haldane [5] attributed the different fates of a mouse, rat,

man, and horse falling to relatively greater resistance to air in
smaller animals owing to larger ratio of surface area to

volume. Alternately, it can be argued that the terminal velocity

[5,29] increases with body length (�l0.5), and therefore, the

speed of impact is higher for larger animals making them

more susceptible to damage. Similarly, the maximum running

speeds [26–29,55] of animals also increase with size (�l0.5)

resulting in higher kinetic energy (�l4) in large animals leaving

them vulnerable to head-on collisions [56]. Went [57] further

argued that while infants trip and fall routinely and usually

stay uninjured, adult humans are far more likely to end up

with fractured bones because the momentum at ground contact

upon tripping increases dramatically (�l5). Using a Kelvin–

Voigt model to represent an animal’s body, we showed that

the energy dissipation capability during head-on collision

while running was size dependent leaving large animals

at a further disadvantage. The maximum specific energy

absorption (figure 3b) values calculated based on material

toughness decreased with size (�l21) suggesting that except

for invertebrates and a few small vertebrates, animals in gen-

eral, are susceptible to permanent body deformation and

bone fractures if involved in high-speed collisions. Therefore,

mechanical properties favour small animals for survival

during impacts [5,56] confirming one reason why cockroaches

in the present study can use head-first impact transitions.

Furthermore, this allows small animals to be less precise in con-

trolling their behaviour, as the outcome in case of failure is not

catastrophic compared to larger counterparts or traditional

human-engineered technologies. Thus, animals with body

sizes below the ‘Haldane Limit’, estimated to be about 1 kg,

gain access to a variety of alternate, effective strategies that

ensure successful performance.
4.3. Mechanically mediated transitions in robots
Biological studies have revealed that in dynamic, unpredictable

environments, musculoskeletal structures [58] play a vital role

in stabilizing locomotion [59] by managing any energetic devi-

ations from steady state produced by perturbations from the

environment [60–63]. Many of these principles have even

been and continue to be adopted as models for engineering

control systems [20,64]. Here, we have demonstrated a mechani-

cally mediated transition at high speed using our hexapod robot

DASH (figure 4a). The robot does not carry any sensors

onboard and relies solely on the robust mechanical construction

of its body elements to enable it to mitigate the impact and facili-

tate the transition. The role of such energy absorbing and

deflecting body elements in control and manoeuvres of a

robot is not limited to running, but has been successfully

demonstrated during jumping (figure 4c, [33]) and flying

(figure 4d–f, [34–36]). The analytical models developed in the

impact studies [22–24] indicate an inverse relationship between

damping ratio and COR, which means a high damping ratio

correlates with low COR, i.e. a high-energy dissipation

capability. This result highlights the importance of tuning the

mechanical properties of the exoskeleton as it poses a trade-

off between energy dissipation and possible energy redirection

during mechanically mediated manoeuvres. In particular, such

tuning would be critical to ensure successful performance

during passive transition behaviours, especially in the case of

robots inspired by the cockroach head-first transition.

Fortunately, advancements in meso-scale manufacturing

technologies can now enable the production of robots in

varying size scales with fine control over mechanical properties
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of individual body elements. Techniques such as Shape

Deposition Manufacturing (SDM) [65], Smart Composite

Microstructures (SCM) [19] and Printed Circuit Microelectro-

mechanical Systems (PC-MEMS) [66] allow for precise

machining and rapid prototyping of robots with dimensions

in the centimetre scale [18,66,67]. Moreover, the above tech-

niques offer the possibility of integration with the electronics,

sensors and actuators during manufacturing [68], facilitating

robots to robustly operate in real world environments, or

allow them to be manufactured consistently and in high

volume. In particular, flexure based millirobots, due to their

inherent lightweight, low-loss joints and high-power densities,

can easily be extremely dynamic and agile, making it possible

to realize the amazing capabilities we see in nature’s small

animals. Therefore, they not only serve as ideal platforms for

testing biological predictions, but also, can generate novel

insights and testable hypotheses about biological systems.
 5:20170664
4.4. Mechanically mediated control—a paradigm shift
By relying on the mechanics of the body to mediate manoeuvres

rather than only careful sensor-based control makes animals

and robots robust even under extreme conditions (figures 1

and 4). We see this as a paradigm shift in defining performance

and contend that a successful performance must include a

greater emphasis on morphological control and computation

[69]. Although there remains contention as to if and what qua-

lifies as actual computation, there is more of a consensus toward

the notion of morphological control as described by Pfeifer &

Bongard [70] where agents ‘off-load some neural processing

into their morphology’. Hoffmann & Müller [71] point out

that ‘the rich properties of ‘soft’ bodies (highly dimensional,

dynamic, nonlinear, compliant and deformable) have been
largely overlooked or deliberately suppressed by classical

mechatronic designs, as they are largely incompatible with tra-

ditional control frameworks, where linear plants are preferred.’

Combining mechanical responses with neuromechanical feed-

back [58] involving multimodal sensory systems [72] leads to

effective performance in biology. Incorporating the same in

the design of robots can improve their overall robustness

more significantly than regulatory mechanisms [73] added

after the fact. Using this approach also overcomes the shortcom-

ings resulting from limited response times (delays) during high-

speed tasks in typical sensor based control systems in engineer-

ing. Furthermore, in a sensor based control system, the cost of

recovery in such situations is significant [74,75] and often

results in a failure at the intended task incurring irreversible

damage to the system and environment. With the current

trend of moving towards smaller, lighter and softer robotic

platforms [76], nature tells us that we are likely to benefit

from these more robust designs.
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