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Breast cancer is the most common cancer of women in the United States. It is also proving to be one of the most
treatable. Early detection, surgical intervention, therapeutic radiation, cytotoxic chemotherapies andmolecularly
targeted agents are transforming the lives of patients with breast cancer, markedly improving their survival.
Although current breast cancer treatments are largely successful in producing cancer remission and extending
lifespan, there is concern that these treatments may have long lasting detrimental effects on cancer survivors,
in part, through their impact on non-tumor cells. Presently, the impact of breast cancer treatment on normal
cells, its impact on cellular function and its effect on the overall function of the individual are incompletely under-
stood. In particular, it is unclear whether breast cancer and/or its treatments are associated with an accelerated
aging phenotype. In this review, we consider breast cancer survivorship from the perspective of accelerated
aging, and discuss the evidence suggesting that women treated for breast cancer may suffer from an increased
rate of physical and cognitive decline that likely corresponds with underlying vulnerabilities of genome instabil-
ity, epigenetic changes, and cellular senescence.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Breast cancer is the most frequent cancer amongst women in the
United States and the second leading cause of cancer death for women
[1]. An estimated 250,000 new cases of invasive breast cancer are diag-
nosed each year in the United States [1]. Patients with breast cancer are
surviving longer as early detection measures improve and as advances
in breast cancer treatment lead to increasingly improved survival out-
comes. The five-year survival has risen from 75% in 1976 to 91% in
2017 [1].With increased overall life expectancies, long-term breast can-
cer survivors are at risk formanifesting features of accelerated aging, the
underpinnings of which likely involve overlapping hallmarks of aging
and cancer development [2, 3]. While multiple epidemiological studies
have highlighted long-termhealth complications associatedwith breast
cancer treatments, the molecular mechanisms that underlie these
apparent elevated health risks in breast cancer survivors have yet to
be well elucidated.

From a clinical standpoint, careful evaluation and management of
long-term and late side effects in patients with breast cancer are
emerging as a critical challenge, particularly for patients who have
undergone chemotherapy and require long-term adjuvant treatment
[4–7]. Impairments in physical and cognitive functioning following
treatment can considerably impact survivors' quality of life (QOL)
[8–10] and treatment decision-making [11, 12]. Thus, the overall ob-
jective of this review is to begin to merge together two crucial fields
of study in relationship to breast cancer long-term survival: 1) clini-
cal studies that provide insight into how treatment affects patient-
Telomere Attrition
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Deregulating cellular 
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Fig. 1. Cytotoxic therapy effects on tumor versus normal cells.
centered important health outcomes; and 2) laboratory studies that
elucidate the underlying molecular mechanisms of aging, particularly
in response to breast cancer treatments. While ground-breaking
advances in breast cancer treatment and survival have occurred in
the last 30 years, there is a still a lot of room to further improve ther-
apeutic protocols by better understanding treatment effects on the
rates of normal cellular aging.

As shown in Fig. 1, any pharmacologic treatment, targeted or not,
also affects normal cells. Because of intrinsic differences in the genomes,
epigenomes and transcriptomes between tumor cells and normal
tissues, along with shifts in cellular metabolism and inherent genome
instability that occurs in most tumors, cancer cells and normal cells in
the body may respond quite differently to pharmacologic treatments
in ways that could have profound long-term impact on health [2, 3,
13]. Importantly, unlike cancer cells that frequently lose tumor suppres-
sor proteins, active tumor suppressive checkpoints remain in most nor-
mal cells, potentially leading to cell senescence, and possibly associated
treatment induced cellular and organ damage that could contribute to
accelerated aging.

Here, we examine the clinical health outcomes in patients treated
with breast cancer in the context of well-described cellular and molec-
ular hallmarks of aging that are likely affected by breast cancer cytotoxic
therapies- summarizing the current state of the field and providing
recommendations for future studies.

2. Clinical Manifestations of Advanced Physiologic Aging in Breast
Cancer Survivors

2.1. Breast Cancer Therapies and Physical Health

A number of studies of the physical, functional and cognitive
changes following breast cancer diagnosis and treatment reveal a
landscape of challenges experienced by breast cancer survivors.
Although the potential contribution of accelerated aging to cancer
initiation cannot be excluded [14, 15], the cumulative data indicate,
unequivocally, that breast cancer treatments are associated with
either transient or long-lasting physical dysfunction and an acceler-
ated aging phenotype. Currently, the treatment associated accelerated
aging phenotype is an inescapable consequence of life-saving ther-
apy. However, understanding the processes that contribute to this
phenotype could shed new light on potential interventions that mit-
igate, or possibly even eliminate these adverse long-term health
effects.

2.1.1. Accelerated Reproductive Aging
Though the exact cellular mechanisms and their relation to what

patients experience post-chemotherapy has not been well delineated,
the clinical manifestations may in part result from accelerated physio-
logic aging. Perhaps the clearest example is treatment-induced repro-
ductive aging. Young women experience unavoidable and irreversible
amenorrhea, infertility, and early hormonally-induced menopause as a
consequence of ovarian chemotoxicity. Age is the most relevant bio-
logical factor influencing chemotherapy related amenorrhea; however,
type of chemotherapy and schedule of administration may influence
premature ovarian failure [16]. While imperative to treat the breast
cancer, the induction of early menopause may have other long-term



348 L. Chang et al. / Journal of Geriatric Oncology 10 (2019) 346–355
implications. For example, in a large observational study of 16,251
women, later age of natural menopause and longer reproductive
lifespan was significantly associated with increased longevity [17],
suggesting that longer reproductive capacity may reflect more favor-
able cellular aging.

2.1.2. Compromised Cardiopulmonary Fitness
Cardiorespiratory fitness may be one of the best markers of physio-

logical age that tends to decline over time, and evidence suggests that
patients with breast cancer treated with adjuvant therapies may age
more quickly. In a recent review of 27 breast cancer studies that
included randomized controlled trials, exercise interventions or obser-
vational studies of cardiorespiratory fitness assessed by V02 max,
there was a strong consensus that compared to pre-adjuvant therapy
or healthy sedentary controls, thosewhohad received adjuvant therapy
had the worst performance [18].

Early clinical trials demonstrate that adjuvant chemotherapy, espe-
cially anthracyclines, can cause short-term cardiotoxicity; however,
the clinical benefit of decreased annual breast cancer death rates by
20–38% are the reason for continued use [19–22]. Pre-treatment cardiac
screening and dose adjustment have served to improve clinical out-
comes with decreased cardiac toxicity, but there remain concerns
about possible long-term cardiac sequelae. While some smaller studies
suggested no long-term cardiac complications associated with
anthracycline use, the largest to date of 43,338 women demonstrated
an increased number of heart failure cases in older breast cancer survi-
vors who received anthracyclines comparedwith other treatments [23].
Aromatase inhibitor therapy, which increases bone turnover and de-
creases bone mineral density, increases the risk of fractures and osteo-
porosis [24–27]. Peripheral neuropathy and neuropathic pain are
other common chemotherapy related adverse effects and in particular,
neuropathy may be very debilitating for older survivors as it may
precipitate falls and fractures [28]. Taken together, an abundance of
evidence suggests that someof the breast cancer therapiesmay increase
the rate of physiological aging, with long-term adverse health
consequences.

2.2. Breast Cancer Therapies and Cognitive Decline

Cognitive impairment is one of most common symptoms among
breast cancer survivors [29–31]. Impairments can range from subtle to
severe and last for up to 20 years following treatment [32–34]. While
the high prevalence of cognitive impairment amongbreast cancer survi-
vors is well documented, data are conflicting regarding the extent to
which cognitive deficits are related to treatment. A summary of relevant
studies of cognitive function and cognitive imaging in patients with
breast cancer is provided (see Table 1) where the study findings have
been compared and contrasted in different age groups, classified by out-
come, treatmentmodality, and study design [33, 35–47]. A meta-analy-
sis by Jim et al. [48] that analyzed results of 17 studies found cognitive
deficits in verbal and visuospatial abilities in patients treated with che-
motherapy. This is consistent with results of several previous meta-
analyses reporting significant impairments across multiple domains
among patients with cancer treated with chemotherapy [49–53]. How-
ever, some longitudinal studies have found weak or null associations
between chemotherapy and objectively measured neurocognitive defi-
cits or self-reported cognitive concerns [54, 55]. Likewise, evidence for a
negative association between endocrine therapy and cognition is mixed
[56–59], with at least one longitudinal study finding significant im-
provements in neurocognitive performance after completion of endo-
crine therapy [60] or both chemotherapy and endocrine therapy [61].
A recent prospective study found that while chemotherapy was linked
to self-reported cognitive concerns, those who received aromatase
inhibitors alone did not report clinically meaningful concerns [59].
Other research has shown that cognitive deficits are not limited to
those undergoing adjuvant treatment. Some studies have found pre-
treatment impairments in objectively measured cognition [52, 62, 63].
Ameta-analysis by Ono et al. [53] reported that levels of neurocognitive
impairment in chemotherapy versus non chemotherapy treated pa-
tients did not significantly differ, providing evidence that factors other
than treatment regimen may influence risk of cognitive impairment.

2.2.1. Influence of Age on Models of Cognitive Decline After Breast Cancer
Another important factor contributing to cognitive decline among

cancer survivors may be increasing age [64, 65]. Aging is a strong risk
factor for cancer [66] and older adults (age 65 years or older) represent
the majority of cancer cases [67]. Cognitive impairment among breast
cancer survivors may result from common risk factors for both the de-
velopment of cancer and age-related cognitive decline [30, 68, 69].
Mandelblatt et al. [40] and Ahles et al. [70] describe two possible trajec-
tories of cognitive impairment after cancer treatment relative to age-re-
lated decline. The phase shift hypothesis asserts that patients with cancer
experience post-treatment cognitive declines that are slightly worse
than those without cancer (or its treatment), but parallel the non-can-
cer population over time. Conversely, the accelerated aging hypothesis
proposes that cancer and/or its treatment may accelerate normal
aging, that is, patients with cancer may experience steeper and earlier
declines in cognitive function compared to non-cancer populations
[40, 70, 71]. Mandelblatt and colleagues [45] performed trajectory
group analysis on a cohort of 1280 breast cancer survivors aged 65–
91 years, assessed at six months post-treatment and annually for up to
seven years. Over the follow-up period, 42.3% of survivors maintained
high self-reported cognitive scores, 50.1% showed a phase shift pattern,
and 7.6% showed accelerated decline.While agewas not directly related
to trajectory, age-related characteristics (having N2 vs ≤ 2) comorbidi-
ties and frailty, respectively)were associatedmore stronglywith the ac-
celerated aging group than the phase shift group. These results
demonstrate that impairment among breast cancer survivors does not
follow a uniform course but rather, may result from a complex synergy
of age, comorbidities, cancer treatment, and cancer itself [72].

2.2.2. Breast Cancer Treatments and Self-reported and Objective Cognition
Although mixed, several studies show that breast cancer survivors

exhibit impaired neurocognitive functioning compared to age-matched
controls [40, 41, 73]. Breast cancer survivors have self-reported greater
cognitive concerns compared to age-matched controls. In one of the
largest published longitudinal studies of 581 breast cancer survivors,
36.5% of patients with breast cancer self-reported meaningful cognitive
decline at six months, compared with only 13.6% of age-matched con-
trols [74]. Longitudinal objective assessments are useful to determine
whether age-associated declines in cognitive function in breast cancer
survivors mirror adults without a cancer history and two that assessed
patients six months or longer post-treatment reported that cancer sur-
vivors had lower scores on tests of processing speed and executive func-
tion [42, 75]. Taken together, these studies lend support to a prevailing
hypothesis that cognitive impairments may be a symptom of acceler-
ated aging caused by cancer and/or its treatments.

2.2.3. Breast Cancer Treatments and Neuroimaging Findings
Impairments observed through self-reported and objective

neurocognitive testing are supported by evidence of physiological
changes to the brain. Neuroimaging studies in breast cancer survivors
have revealed structural alterations in both grey and white matter
[76–78]. Functional changes including abnormal activation in frontal
regions during cognitive tasks [35, 79] and reduced brain network resil-
ience to attacks [38] have been reported inmost, but not all studies [80].
fMRI changes in brain areas involved in executive control, memory, and
emotional regulation were determined to be different between breast
cancer survivors and healthy, age, education and intelligence matched
controls [124]. However, the most compelling evidence of an ill effect
frombreast cancer treatments comes frommagnetic resonance imaging
(MRI) measurements of grey matter volume before and after



Table 1
Studies of cognitive function and aging among breast cancer survivors, by study design.

Authors Study objectives Study population Mean age
(SD, range)

Na Treatments Main study findings Comments

Cross-sectional
Conroy SK et
al. [35]

Examine structural and
functional effects of chemo
and post-chemotherapy
interval (PCI), and
relationship of neuroimaging
to neurocognitive testing,
self-reported cognition, and
oxidative DNA damage

24 breast cancer
survivors, PCI mean
6.4, range 3–10
years

Cases: 57.8
(9.6)

47 100% C PCI was positively correlated
with structural and functional
changes on MRI, which were
related to neurocognitive
performance. Compared to
controls, breast cancer
survivors had increased
neurocognitive impairment
(memory dysfunction),
cognitive complaints, and
DNA damage

Potential clinical significance
of imaging results
underscored by association
with neurocognitive testing

Controls:
61.2 (9.9)

23 age- and
education-matched
controls

De Ruiter
MB et al.
[36]

Assess brain activation and
cognitive performance ~10
years after high-dose chemo

34 breast cancer
survivors:

Breast cancer
survivors
treated with
chemo: 56.3
(5.5)

34 Among those
treated with
chemo

~10 years after treatment,
high dose chemo was
associated with long-term
cognitive impairments
including decreased
responsiveness of brain
regions related to executive
functioning and memory
encoding

Comparisons with non-breast
cancer controls are necessary
to assess trajectory of
cognitive decline over time

19 treated with
chemo
15 not treated with
chemo

100% H
Breast cancer
survivors not
treated with
chemo: 58.2
(5.8)

100% R
100% S
Among those not
treated with
chemo:
6.6% H
100% R
100% S

Kesler SR et
al. [37]

Examine differences in
prefrontal-executive
functioning between breast
cancer survivors with and
without treatment with
chemotherapy compared to
control, and to assess
relationships between
prefrontal cortex deficits and
behavioral impairments

44 breast cancer
survivors:

Breast cancer
survivors
treated with
chemo: 56.2
(7.8)

62 Among those
treated with
chemo:

Women treated with chemo
had significant reduced left
caudal lateral prefrontal
cortex activation, increased
perseverative errors, and
reduced processing speed
compared to non-chemo
breast cancer survivors or
controls. Older age was
associated with greater
executive functioning
impairment in patients
treated with chemo

Chemotherapy may interact
with increasing age to
accelerate cognitive decline

56% H25 treated with
chemo 56% R
19 not treated with
chemo

Breast cancer
survivors not
treated with
chemo 58.1
(6.5)

Among those not
treated with
chemo:

18 healthy controls 53% H
68% R

Controls:
55.6 (9.4)

Kesler SR et
al. [38]

Use brain network models to
study the effects of chemo on
white matter organization
and connectivity, and brain
network tolerance

34 breast cancer
survivors

Cases: 56.9
(7.6,
43.8–72.7)

70 100% C Cases showed reduced brain
network tolerance (brain
resilience) to simulated
neurodegeneration, which
was associated with
neurocognitive deficits.
Despite larger overall impacts
of attacks on brain network
among cases, both groups
experienced similar rate of
decline.

Findings support phase shift
(parallel) rather than
accelerated decline among
breast cancer survivors
treated with chemo

60% H
36 matched healthy
controls

80% R
Controls:
56.9 (8.2,
42.8–73.4)

100% S

Lange M et
al. [39]

Assess cognitive functioning
among elderly breast cancer
patients before adjuvant
treatment

123 breast cancer
patients

70 (4.1,
65–83)

123 100% S 41% of patients had cognitive
impairment before any
adjuvant treatment,
significantly higher than what
is reported in normative data
based on age and education.
Proportion of patients
reporting pre-treatment
impairments was higher than
published rates of
pre-treatment impairments
in younger survivors.

Older patients may be more
sensitive to the effects of
cancer on cognition, but
longitudinal studies are
needed to determine if cancer
treatment accelerates normal
cognitive aging

Mandelblatt
JS et al.
[40]

Determine if older breast
cancer patients show
cognitive impairment before
systemic treatment

164 breast cancer
patients
(pre-treatment)

Cases: 68.1
(6.7, 60–98)

346 100% S No differences in unadjusted
rates of neurocognitive
impairment in breast cancer
patients (14%) before
systemic treatment compared
to age-matched controls
(15%)

Results do not support an
effect of cancer on
pre-treatment cognition.Controls:

67.3 (6.5,
60–90)

182 age-matched
non-cancer controls

Von Ah D et
al. [8]

Examine the frequency of
clinically significant cognitive
dysfunction in breast cancer
survivors and possible
associations with treatment

52 breast cancer
survivors

Cases: 58.2
(9.2)

104 55.8% C Breast cancer survivors
exhibited impaired
neurocognitive functioning
compared to age-matched
controls. Exploratory analysis

Longitudinal studies needed
to examine long-term
trajectory of cognitive declineControls:

59.0 (9.0)
79% H

52 individually
matched healthy

80.8% R
100% S

(continued on next page)
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Table 1 (continued)

Authors Study objectives Study population Mean age
(SD, range)

Na Treatments Main study findings Comments

showed no association
between exposure to chemo
or hormonal therapy and
neurocognitive function

controls

Case-control
Koppelmans
V et al.
[33]

Examine if chemo is
associated with worse
cognitive performance in
breast cancer survivors more
than 20 years after treatment

196 breast cancer
survivors (avg. 21.2
years since
diagnosis)

Cases: 64.1
(6.4)

1705 100% C Up to 20 years later, women
exposed to chemo performed
significantly worse on
neurocognitive tests
(memory, processing speed,
executive functioning,
psychomotor speed) and had
greater self-reported memory
impairment

Lack of baseline or interim
cognitive scores limits
comment on rate of decline
compared to healthy controls.
Longer longitudinal studies
are needed to understand
cognitive trajectories over
time.

1509 controls Controls:
57.9 (5.4)

Prospective longitudinal
Ahles TA et
al. [42]

Examine, longitudinally, the
impact of age and cognitive
reserve on cognition among
breast cancer patients
receiving adjuvant treatment

132 breast cancer
survivors:

Breast cancer
survivors
treated with
chemo: 51.7
(7.1, 31–66)

177 Among those
treated with
chemo: 80% H

Breast cancer survivors
showed lower scores on
neurocognitive tests
(processing speed and
executive function) compared
to healthy controls. Older
survivors and those treated
with chemo performed
poorest. Age was related to
post-treatment decline in
women exposed to chemo.

Influence of cancer treatment
on cognitive functioning may
vary by age60 treated with

chemo 81% R
Among those not
treated with
chemo: 66% H,
72% R

72 not treated with
chemo

Breast cancer
survivors not
treated with
chemo: 56.6
(8.3, 37–69)

45 healthy controls

Controls:
52.9 (10,
30–68)

Collins B et
al. [43]

Examine neurocognitive
outcomes in breast cancer
patients pre-treatment,
during treatment, and 1 year
after completion of chemo

60 breast cancer
patients

Cases: 51.8
(7.8)

120 100% C 48% of breast cancer survivors
showed steady cognitive
decline during and
immediately post-chemo,
with partial recovery in
cognitive function (working
memory) at 1 year follow-up.
Higher proportion of patients
(22%) showed persistent
impairment at follow-up
compared to the control
group (6%).

A sub-set of breast cancer
patients show long-term
treatment-related cognitive
decline. Findings provide
some support for accelerated
aging hypotheses

84% H
60 healthy, age,
education, and
language-matched
controls

Controls:
51.3 (7.7)

100% S

Lepage C et
al. [44]

Assess relationship between
grey matter attenuation via
functional magnetic
resonance imaging (fMRI)
and neurocognitive function
in breast cancer patients prior
to treatment, during chemo,
one month following chemo,
and one year after completion
of treatment

19 breast cancer
survivors

Cases: 50.2
(8.6, 35–64)
Controls:
49.3 (9.0,
31–61)

38 Among cases: Cases showed reduced grey
matter volume one month
post-chemo, with a partial
recovery one year
post-treatment.
Neurocognitive testing
showed similar pattern, with
poorest processing speed
scores one month
post-treatment and some
improvement at one year.
These changes were not
observed in controls.

Changes in brain volume
observed through
neuroimaging had a similar
trajectory to neurocognitive
deficits. Partial recovery does
not support accelerated aging
hypothesis

100% C
19 controls 52.6% H

68.4% R
100% S

Mandelblatt
JS et al.
[45]

Determine long-term
trajectories of self-reported
cognitive function and test
the effects of chemo on
cognitive trajectories among
older breast cancer survivors
6 months post-chemo and
annually for up to 7 years

1280 breast cancer
survivors

72.7 (6.6) 1280 67.6% S Through follow-up, 42.3%
maintained high self-reported
cognitive scores, 50.1%
showed a phase shift
(parallel) pattern, and 7.6%
showed accelerated decline.
While age was not directly
related to trajectory,
age-related traits (having N2
vs ≤ 2) comorbidities and
frailty, respectively) were
associated more strongly with
the accelerated aging group
than the phase shift group.

Cognitive impairment in
breast cancer survivors varies
and may result from the
complex interaction of age,
cancer treatment, and cancer
itself.

40.5% C (with or
without H)
53.7% H only

Schagen SB
et al. [46]

Assess the effects of high vs.
standard dose chemo on
cognitive function up to 12
months post-treatment

124 breast cancer
patients

Cases: High
dose: 45.2
(5.8)

184 High dose: 22.6%
(100% H)

Greater proportion of
high-dose chemo patients,
compared to controls,
exhibited deterioration of
cognitive functioning over
time. No difference for
standard dose or controls

Results support the notion
that breast cancer survivors
treated with high-dose
chemo may experience
accelerated cognitive decline
compared to controls

Standard
dose: 45.5
(6.6)

Standard dose:
31.5% (97% H)

60 healthy controls

No chemo:
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Table 1 (continued)

Authors Study objectives Study population Mean age
(SD, range)

Na Treatments Main study findings Comments

50.5 (7.7)
Controls:
48.8 (6)

Schilder CM
et al. [47]

Examine the influence of
tamoxifen and exemestane on
cognitive functioning 1 year
post-treatment in
postmenopausal breast
cancer patients

179 breast cancer
patients:80
tamoxifen

Cases:
Tamoxifen:
68.7 (7.6,
51–84)

299 Tamoxifen: 100%
H

At one year, compared to
controls, those treated with
tamoxifen showed cognitive
impairments, while
exemestane group did not.
Among tamoxifen group,
older survivors (N 65 yrs)
showed greater deficits than
younger survivors (≤ 65 yrs)

Tamoxifen may be associated
with persistent decline and
effects may be age-dependent58.8% R

100% S
Exemestane:100%
H

Exemestane:
68.3 (6.8,
50–82)99 exemestane 20.2% R

120 healthy
controls

100% SControls:
66.2 (7.9,
49–86)

Acronyms: C- Chemotherapy H- Hormonal therapy. R- Radiation therapy. S- Surgery.
a N= number of study participants.
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chemotherapy. Compared to a matched cohort of healthy women, MRI
scans of breast cancer survivors demonstrate an initial reduction in
grey matter volume, which tends to improve by one year post-treat-
ment. Neuropsychological tests revealed that the grey matter changes
correlated with some level of cognitive impairment, specifically in the
processing speed domain [81].

3. Molecular Mechanisms of Normal Cellular Aging in Patients with
Breast Cancer

The pathology behind cancer cells and aging is most simply defined
as the accumulation of cellular damage; whereas cancerous mutations
provide advantages in certain cells for growth, cellular damage causes
loss of fitness in aging cells. We use cytotoxic treatments to inhibit
tumor growth; however, this treatment is indiscriminate and also
affects the non-tumor cells. Describing the cellular and molecular hall-
marks of aging including: 1) telomere attrition; 2) mitochondrial dys-
function; 3) genomic instability; 4) epigenetic alterations; and 5)
cellular senescence, we discuss how each may be affected in the setting
of normal aging versus breast cancer and its related treatments.

3.1. Telomere Attrition

Telomeres are particularly prone to age-related DNA damage [82]
and most somatic cells do not express telomerase, limiting their ability
to replicate the terminal ends of chromosomes [83]. Thus, telomere
de-protection and shortening have been cited as a Hallmark of Aging
[2]. In patients with breast cancer, the treatments given could contrib-
ute to accelerated aging at least in part by its effects on telomeres [84].
One recent systematic review of telomere length (TL) included 33 stud-
ies that reported on TL measured in blood, tumor and normal tissues in
relation to prognostic factors [85]. The authors reported that with the
exception of one negative study, there was an overall trend toward a
positive association of longer telomeres in breast tissue with a better
prognosis. It was notable that in peripheral blood, blood TL was not as-
sociatedwith chemotherapy in three out of four studies [85]. Apart from
TL, telomere deprotection mechanisms are potentiated by anti-mitotic
therapies such as colcemid, vinblastine, Taxol, and Velcade [86].

3.2. Cellular Energetics

Declines in mitochondrial function and corresponding somatic
mtDNA mutations have been reported in normal human aging [87,
88]. Specifically, insulin/IGF-1 and rapamycin (TOR) signaling pathways
that regulate cellular aging have been linked to dysfunctionalmitochon-
dria [89–91]. How cancer therapies affect cellular energetics as they
relate to rate of aging is unclear, but mitochondrial energetics appear
to play an important role in cancer metabolism and growth, Somatic
mitochondrial DNA alterations allow cancer cells to adapt to the
tumor microenvironment of hypoxic and acidic conditions, and some
have proposed a mechanism of metabolic coupling between cancer
cells and stromal cells. Tumor cells induce reprogramming in surround-
ing non-tumor cells to undergo mitophagy, reducing the number of
mitochondria, resulting in conversion to glycolytic metabolism (the
Warburg phenotype). These stromal fibroblasts generate excessive lac-
tate and ketones; producing fuel for anabolic cancer cells (‘reverseWar-
burg’) [92, 93]. Additionally, mitochondrial dysfunction may promote
breast cancer malignancy as dysregulated mitochondria may affect on-
cogenic regulation by elevated ROS, decreased apoptosis and resistance
to chemotherapeutic agents [94–96].
3.3. Genome Instability

Genome instability is a hallmark of cancer and it is also a hallmark of
aging, as DNA damage accumulates in normal cells over time, primarily
though endogenous processes such as replication errors and reactive
oxygen species-inducedDNA damage [3].Many of the cytotoxic chemo-
therapies used to treat cancer, includingmicrotubule poisons, alkylating
agents, anti-metabolites, topoisomerase inhibitors and DNA cross-
linking agents, as well as radiation therapy, are designed to kill tumor
cells by causing lethal DNA damage. Indeed, these exogenous agents
also damage DNA in normal cells, but the presence of intact tumor sup-
pressive checkpoints and competent DNA repair pathways in non-can-
cer cells, aswell as their generally lower proliferation rate, usually result
in preferential tumor cell death. However, these treatments greatly
accelerate the rate of nuclear and mitochondrial DNA damage, also
synergizing with endogenous mechanisms of DNA damage such as ele-
vated ROS levels, potentially contributing to accelerated aging [97, 98].
3.4. Epigenetic Alterations

Epigenetic alterations are also likely to contribute to the aging phe-
notype, and may be accelerated in breast cancer survivors. Sehl et al.
have examined the breast tissue and peripheral blood of 40 patients
with breast cancer and found that breast cancer tissue had a higher epi-
genetic age, with the difference diminishingwith advancing chronolog-
ical age [99]. Certainly, changes in DNA methylation, post-translational
modification of histones, and alterations of chromatin remodeling com-
plexes are characteristic of aging [100], and could potentially be im-
pacted by cancer treatment. Although some of the key regulators of
these processes have begun to be identified, including DNA and histone
methylases and demethylases, histone acetylases and de-acetylases and
chromatin remodelers, how they regulate the changes in aging through
alteration of global transcriptional programs, remains to be elucidated.
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3.5. Suppressor Checkpoints for Cellular Senescence

In normal tissues, the p16INK4A/Rb and p19ARF/p53 pathways are two
critical regulatory pathways that are usually suppressed, but becomeac-
tivated to prevent cells with damaged DNA from replicating [101, 102].
In cancer cells, one or both of these pathways is commonly disrupted,
enabling tumor cells bearing markedly damaged DNA to proliferate.
These dysregulated pathways can be targeted by cytotoxic chemother-
apies, resulting in preferential cell death of tumor cells, but how these
treatments also affect normal cells with intact p16INK4a/Rb and p19ARF/
p53 pathways is unclear.

DNAdamage accumulates over the lifespanwith a corresponding in-
crease of p16INK4a/Rb and p19ARF/p53 noted with advancing chronolog-
ical age [103]. In breast cancer survivors, including those undergoing
cytotoxic chemotherapy, the levels of p16 and p19, potential bio-
markers of accelerated aging, are markedly increased and the extent
of accelerated aging was calculated to be equivalent to 14.7 years of
chronological aging [104]. Additionally p16INK4a expression at later
time points found that the increased levels of p16INKa persisted for at
least several years after initial chemotherapy exposure [104].

3.6. Other Markers of Cellular Senescence

In one longitudinal study of 315 women, 209 were diagnosed and
treated for breast cancer and 106 were diagnosed with benign disease.
At baseline there were no differences in cellular senescence or comor-
bidities; however, after follow-up of eighteen months, patients with
breast cancer treated with surgery, radiation, and chemotherapy had
elevated IL-6 and tumor necrosis factor-alpha levels as compared to
controls [105]. Importantly, compared to controls, there was a signifi-
cant increase in comorbidities in survivors, whowere treatedwithmul-
timodal therapy, suggesting that they may be at highest risk of
accelerated aging and comorbidity development.

4. Concluding Remarks

Integrated DNA, RNA, epigenetic and immunohistochemical analy-
ses [106–110] are reshaping the understanding of themolecular under-
pinnings of breast cancer. Increasingly sophisticated molecular
classification systems are emerging [111] that promise to further
improve outcomes by helping match the right patient with the right
drug or combination of drugs. This is welcome news for women with
breast cancer; however, as they survive, they experience an array of
health challenges that need to be better understood. In addition to the
risk of developing second malignancies that could be related to
germline vulnerabilities or post-treatment effects, survivors experience
chronic health problems characteristic of accelerated aging [112],
including chemotherapy related amenorrhea, decreased cardiorespira-
tory fitness, increased risk of fracture, osteoporosis and neuropathy,
and cognitive decline which can persist for months to years following
treatment [33, 113].

As more women become long-term breast cancer survivors, the
accumulated toll of treatment-induced damage to normal cells becomes
increasingly significant. In this review, we have highlighted five of nine
previously described cellular hallmarks of aging that have been
described in the context of cytotoxic breast cancer treatments [2].The
biology of aging in itself is an active area of investigation and under-
standing how perturbations such as cytotoxic therapies affect the rate
of aging could lend to the development of novel therapeutics. As an
example, p16INK4a is now being used a biomarker of chemotherapy tox-
icity to identify chemotherapy induced senescent (TIS) cells [114].With
development of blood-based biomarkers, new senolytic drugs, such as
ABT-263, have shown promise in human cells andmouse studies by se-
lectively eliminating TIS, leading to better outcomes such as reduced
bone marrow suppression and less cardiac toxicity [114, 115].
By solving the problem of immediate survival for the vast major-
ity of patients with breast cancer we now face new challenges. Scien-
tists and clinicians together should make efforts to combine their
expertise so that each can be aware of the emerging technologies
in the context of real live patient experiences. Ideally, longitudinal
mechanistic studies should be designed to identify the molecular
basis of accelerated cancer aging in tandem with assessing clinically
important outcomes so that interventions can be developed to max-
imize therapy anti-tumor effects while also optimizing the long-term
health of breast cancer survivors.
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