
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Autonomous Vehicles: Their Capabilities and Limitations

Permalink
https://escholarship.org/uc/item/60n5n5sc

Author
Paz Ruiz, David Fernando

Publication Date
2020

Supplemental Material
https://escholarship.org/uc/item/60n5n5sc#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/60n5n5sc
https://escholarship.org/uc/item/60n5n5sc#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Autonomous Vehicles: Their Capabilities and Limitations

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Electrical Engineering (Intelligent Systems, Robotics and Control)

by

David Paz Ruiz

Committee in charge:

Professor Henrik I Christensen, Chair
Professor Todd Hylton, Co-Chair
Professor Nikolay Atanasov

2020

Copyright

David Paz Ruiz, 2020

All rights reserved.

The thesis of David Paz Ruiz is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Co-Chair

Chair

University of California San Diego

2020

iii

DEDICATION

To my parents, Catalina Ruiz and Bertin Paz.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita . xi

Abstract of the Thesis . xii

Chapter 1 Introduction . 1
1.1 Related Work . 3
1.2 Thesis Overview . 4

Chapter 2 System Architecture and Vehicles . 6
2.1 Sensor Configurations and Drive-by-Wire System 6
2.2 Module Abstractions and Containerization 8

Chapter 3 Core Perception, Planning and Controls 10
3.1 Open Source Modules . 10
3.2 Localization, Mapping and HD Maps 12
3.3 Perception . 14

3.3.1 LiDAR Detection . 14
3.3.2 Multi-Object Detection using Cameras 16
3.3.3 LiDAR/Camera Fusion . 20

3.4 Planning . 23
3.4.1 Global and Motion Planning 24
3.4.2 Cruising and Speed Keeping 25
3.4.3 Vehicle Following and Planned Stops 27

3.5 Path Tracking and Controls . 30
3.5.1 Vehicle Geometry for Steering Control 30
3.5.2 Acceleration and Braking Controls 32

v

Chapter 4 Benchmarking and Performance Evaluation for Autonomous Vehicles . . 35
4.1 Safety . 36
4.2 UMAV: Unbiased Metrics for Autonomous Vehicle Benchmarking . 37
4.3 Vehicle Performance for Mail Delivery 40
4.4 Autonomous vs Manual Driving 41

Chapter 5 Achieving Full Autonomy - L5 . 44
5.1 Overview . 44
5.2 Intent for Unstructured Environments 46
5.3 Moving Away from High Definition maps 49
5.4 Future Work . 53

Bibliography . 56

vi

LIST OF FIGURES

Figure 2.1: Sensor and System Configuration onboard GEM e6 7
Figure 2.2: Docker Containers and Services running onboard autonomous vehicle platforms 9

Figure 3.1: Extended Autoware software stack comprised of localization, perception,
global planner, motion planner and control modules. 11

Figure 3.2: 3D Point Cloud Maps (top-down view) from UC San Diego. 13
Figure 3.3: Gilman/Voigt Intersection road network at UC San Diego. Trajectories

shown in gray define lanes while the trajectory shown in blue corresponds to
a planned trajectory. 14

Figure 3.4: Three hyper planes are defined for ground removal. 15
Figure 3.5: Blue LiDAR scans correspond to points removed while red scans are consid-

ered as potential obstacles. 16
Figure 3.6: Realtime multi-object detection using YOLOv3 and the COCO dataset. . . 17
Figure 3.7: Image frame correspondences for front two cameras (a and b) and side

cameras (c and d). 19
Figure 3.8: Projection from image frame (left) to ground plane (right) using Homographies. 19
Figure 3.9: LiDAR Cluster Classification: Bounding boxes on the left (a and c) are used

to provide labels for the LiDAR clusters shown on the right (b and d). . . . 22
Figure 3.10: Planning FSA . 25
Figure 3.11: Estimating distance to obstacles . 27
Figure 3.12: Planning for Stops . 29
Figure 3.13: Bicycle Model Approximation . 31
Figure 3.14: PID Controller . 32
Figure 3.15: Target Speed (m/s) shown in red and Current Vehicle Speed (m/s) shown in

blue as functions of time(s) . 34

Figure 4.1: Emergency Stop on AV dashboard . 36
Figure 4.2: Enable signal as a function of time. 38

Figure 5.1: Mail delivery route intervention map. 45
Figure 5.2: Scenes of Warren college mail delivery route. 47
Figure 5.3: Active traffic in Gilman Dr. and Voigt Dr. Intersection 49
Figure 5.4: Active construction across Warren college mailing center. 50
Figure 5.5: Point Cloud Representation of construction fence and route from Figure 5.2a. 51
Figure 5.6: Global Planner and Dynamic Motion Planner. 55

vii

LIST OF TABLES

Table 4.1: MDBI and MTBI Summary Interventions for summer and fall quarters. . . 40
Table 4.2: MDBI and MTBI Overall Summary Interventions. 41
Table 4.3: UMAV Metrics . 42

viii

ACKNOWLEDGEMENTS

I would like to express my most sincere appreciation to my research advisors, Dr. Henrik

I. Christensen and Dr. Todd Hylton, for providing me with indispensable support and resources

throughout my undergraduate and graduate education. With their constant support, I have learned

how to contribute and develop collaborations with the research and tech communities. I am

grateful for all of the meaningful discussions and constructive feedback that I have received over

the past two years.

I would also like to extend my deepest gratitude to UCSD facilities, operations, mailing

center, police station and risk management offices for collaborating with us as part of the active

campus-wide autonomous vehicle project.

Special thanks to all of my lab mates at the Cognitive Robotics Lab and the Autonomous

Vehicle Laboratory for allowing me to collaborate with them on multiple projects: Po-Jung Lai,

Hengyuan Zhang, Nathan Chan, Dominique Meyer, Sumukha Harish, Francis Joseph, Shawn

Winston, Yuqing Jiang, Emily Le, Carlos Nieto, Shengye Wang, Ruffin White, Ploy Temiyasathit,

and Shixin Li.

Thank you.

The following describes author and co-author contributions as well material being prepared

for publication.

Chapter 3 includes material as it appears in Lessons Learned From Deploying Autonomous

Vehicles at UC San Diego in Field and Service Robotics, Tokyo, JP, August 2019. David Paz,

Po-Jung Lai, Sumukha Harish, Hengyuan Zhang, Nathan Chan, Chun Hu, Sumit-Binnani, and

Henrik Christensen. The thesis author was the primary author of this paper.

The methods introduced on LiDAR-based detection (section 3.3.1) and LiDAR/Camera

fusion (section 3.3.3) were the result of a collaborative effort between Hengyuan Zhang, Sumukha

Harish and the primary author. With Zhang’s work on multi-plane fitting methods and Harish’s

early work on Camera/LiDAR fusion, these modules were incorporated into the Autoware

ix

software stack and deployed using the two autonomous vehicle platforms introduced in this study.

Chapter 4 includes material as it appears in Lessons Learned From Deploying Autonomous

Vehicles at UC San Diego in Field and Service Robotics, Tokyo, JP, August 2019. David Paz,

Po-Jung Lai, Sumukha Harish, Hengyuan Zhang, Nathan Chan, Chun Hu, Sumit-Binnani, and

Henrik Christensen. The thesis author was the primary author of this paper.

The Unbiased Metrics for Autonomous Vehicle Benchmarking (UMAV) introduced in

section 4.2 are the result of a year-long study in which Po-Jung Lai, the primary author and

principal investigator Henrik Christensen participated in. Po-Jung Lai and the primary author

developed the logging devices and performed system evaluation on the two autonomous vehicle

platforms introduced in this study. Lai participated as the project lead for the UCSD/TuSimple

study discussed in section 4.4.

In addition, chapter 4 contains pre-publication material and statistics obtained during the

UCSD mail delivery project being prepared for review.

x

VITA

2015 A.A.S, Physics, San Diego Mesa College

2016 Undergraduate Research Assistant, i-Trek, Massachusetts Institute of Tech-
nology

2017 Undergraduate Research Assistant, San Diego Supercomputer Center

2017 Undergraduate Research Assistant, Computation Structures Group, Mas-
sachusetts Institute of Technology

2018 Bachelor of Science in Computer Engineering, University of California,
San Diego

2018-Present Research Assistant/Project Lead, Autonomous Vehicle Laboratory, Uni-
versity of California, San Diego

2020 (Expected) Master of Science in Electrical Engineering (Intelligent Systems, Robotics
and Control)

PUBLICATIONS

David Paz, Po-Jung Lai, Sumukha Harish, Hengyuan Zhang, Nathan Chan, Chun Hu, SumitBin-
nani, and Henrik Christensen. Lessons learned from deploying autonomous vehicles at UC San
Diego. In Field and Service Robotics, Tokyo, JP, August 2019

Emily Le and David Paz. Performance analysis of applications using singularity container on
sdsccomet. In Proceedings of the Practice and Experience in Advanced Research Computing
2017 on Sustainability, Success and Impact, PEARC17, pages 66:1–66:4, New York, NY, USA,
2017. ACM

xi

ABSTRACT OF THE THESIS

Autonomous Vehicles: Their Capabilities and Limitations

by

David Paz Ruiz

Master of Science in Electrical Engineering (Intelligent Systems, Robotics and Control)

University of California San Diego, 2020

Professor Henrik I Christensen, Chair
Professor Todd Hylton, Co-Chair

Despite the latest breakthroughs and technological advancements in state of the art

autonomous vehicle systems, many of these systems still experience challenges in a variety of

realistic scenarios and environments that prevent them from generalizing to new situations. In this

study, two development platforms are designed, tested, deployed and benchmarked to analyze

the implications of micro-transit applications and the autonomy needed for fully autonomous

systems.

xii

Chapter 1

Introduction

From advanced driver-assistance systems to level-4 and level-5 autonomous systems∗, a

significant number of industry leaders and institutions have undertaken the task to attempt to make

autonomous vehicles a reality. Given the diverse number of constraints experienced from day to

day driving, an ideal autonomous vehicle system must be capable of navigating through dynamic

environments including intersections, crowded city streets, highway driving and unstructured

environments in a similar fashion as a human drivers.

Although many of these system requirements may seem a reality today with today’s

technology, these requirements are simply basis of what is required and do not fully reflect long

term implications on autonomy, generalizability, system robustness, and scalability. In other

words, performing the same route plan and iterations under a well controlled environment, may

not generalize well under different road conditions and unseen environments. This introduces an

entire field of research in autonomous driving system evaluation and benchmarking.

In the state of California alone, the Department of Motor Vehicles (DMV) requires au-

tonomous vehicle companies with a valid testing permit to submit annual reports with a summary

of system disengagements †. While a publicly available summary of these disengagement reports

∗https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
†https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/auto

1

provide an understanding on the number of annual interventions each self-driving car company is

generating, temporal and spatial information is not included. Without the time elapsed during

trips, the distance driven in autonomous mode, testing location, and the number of vehicles

involved in testing, the disengagement reports alone do not fully encompass system performance

and robustness. As a result, data normalization is required to characterize autonomous vehicle

system performance in order to be compared with human driver performance and analyze safety

statistics as a whole.

With these notions in mind, this study aims to shed light on autonomous system technology

performance, safety and short-comings through the implementation, testing, deployment, and

evaluation of autonomous vehicle systems. As part of a collaborative effort with UC San Diego’s

Autonomous Vehicle Laboratory (AVL), Mailing Center, Fleet Services, and Police Department,

two vehicles were retrofitted with complete drive-by-wire systems and full sensor suites to conduct

field tests at the UC San Diego campus. Throughout this collaboration, I worked at the AVL

with multiple UCSD students to develop new perception, planning and control models as well

benchmarking tools to extend the functionality of an open-source software stack and evaluate its

performance as discussed in Chapter 3 and 4. This work has been made possible by the support

from the advisors, students, and staff aforementioned in the acknowledgement section.

The vehicles used in this study operated in diverse environments to collect data while

serving practical purposes. During summer 2019, the autonomous vehicle platforms were

retrofitted to serve as mail delivery vehicles as part of a partnership between the Mailing Center

at UC San Diego and the AVL. Using a complete set of unbiased performance metrics, the data

collected was analyzed with the purpose of understanding the challenges that autonomous vehicle

systems experience today. A number of conclusions are formulated from the results obtained with

an emphasis on future work and solutions needed to address system scalability, robustness and

generalizability.

2

1.1 Related Work

While autonomous vehicle technology has most recently received a vast amount of

popularity, the core concepts, fundamentals and pioneering work were conceived in the early

1980s by Ernst Dickmanns. Dickmanns’ fundamentals are built on the notion of using vision as a

primary sensing modality without the computational benefits from high performance CPUs or

GPUs available today. With these computational constraints, adaptive computer vision methods

were applied with implications on dynamic scene understanding, obstacle detection, tracking,

navigation and control [Dic07]. Dickmanns has deployed multiple autonomous systems over the

past three decades with highway and intersection navigation capabilities.

Clearly, autonomous vehicle systems have been under development over the course of

30 years [Pom95] [JPKA95] [Lei86] [TMD+06]. With the rapid computational power evolution

since the 1980s, today’s performance benefits have facilitated the development of complex

algorithms that would have been impossible without dedicated hardware in past decades such as

the latest deep learning and statistical based methods for perception, localization and planning.

Along these computational developments, better performing camera sensors have been

introduced with capabilities of achieving over 120dB in high dynamic range (HDR). With a wide

range of lighting conditions experienced in field robotics, these camera sensors are addressing the

short-comings experienced under low-light conditions and high contrast outdoor environments.

While cameras have drastically improved over the years, different sensing modalities have also

been introduced that work remarkably well.

One type of such devices is based on electromagnetic pulses that measure the time elapsed

between pulse returns to estimate distances with a high degree of accuracy; these are widely

known as LiDARs–Light Detection and Ranging. These sensors can generate very detailed 3D

representations of space with varying resolution that can be used to accurately measure distances

to objects or even build dense point cloud maps often used for vehicle localization.

3

By pairing these high resolution sensors with the latest developments on deep learning,

state of the art perception methods have been proposed in recent years for object 3D pose

estimation using computer vision [MAFK16] [MSM+19], LiDAR [QSMG16] [HKLS12] or

fusion [XAJ17]. Additional areas that benefit from these sensor technology breakthroughs

and developments include Simultaneous Localization and Mapping (SLAM). Although SLAM

covers a broad set of methodologies, dense point cloud mapping and localization using LiDAR

technology have become essential for many industry leaders in the areas of autonomous driving

due to the accuracy and precision provided by these methods while remaining invariant to lighting

conditions. Despite the fact that exceptional performance and reliability can be achieved from

dense point clouds, they introduce an excessive overhead and generate scalability limitations.

To measure the advantages and shortcomings of today’s available technology including

core LiDAR technology, this study covers the development and testing of multiple vehicles while

addressing the last-mile problem for micro-transit.

1.2 Thesis Overview

This thesis begins by covering different design considerations, algorithm implementation

details, testing, and safety. Once the technical implementations are covered, attention is shifted

towards benchmarking and comparing human drivers to autonomous vehicle technology while

performing mail delivery. With the key takeaways and lessons learned from deploying mail

delivery carts at UC San Diego, a number of considerations are made for achieving full autonomy

and the active problems in the field.

System architecture, sensors configurations, as well as the module abstractions used on the

development platforms are discussed in Chapter 2 to provide a foundation on the ecosystem that

served as a basis for development. This chapter incorporates some recent software engineering

practices for encapsulation and containerization; the autonomous vehicles used in this study

4

are among the first systems to apply these concepts for robotics applications [WC17] [WC18]

[PLH+19]

In Chapter 3, algorithm design and implementations for the perception, planning, and

control systems are introduced. During the initial experiments at UC San Diego, the perception

stack was entirely LiDAR based. Additionally, key takeaways from live-testing and using open

source modules are reported.

As previously introduced, reported disengagement data requires spatial and temporal

normalization for it to be interpreted as an unbiased statistic. The material covered in Chapter

4 focuses on proposing unbiased metrics for benchmarking autonomous vehicle performance

using intervention maps, Mean Distance Between Interventions (MDBI) and Mean Time Between

Interventions (MTBI). Additional material in regards to safety and vehicle testing are included in

this chapter.

With the results discussed in Chapter 4, conclusions are formulated in Chapter 5 to make

note of the limitations experienced with today’s technology. While scalability is one of the major

factors that influences this technology, additional research directions are proposed to address the

generalized problem for self driving cars.

5

Chapter 2

System Architecture and Vehicles

2.1 Sensor Configurations and Drive-by-Wire System

Two development vehicles have been retrofitted by ranging and vision sensors for per-

ception applications along with a complete drive-by-wire (DBW) system to control steering,

acceleration and braking. The locations of the sensors and cameras are shown in Figure 2.1:

16 ultrasonic sensors, six cameras, one LiDAR and one complete Inertial Navigation Unit. Ad-

ditional systems on board include the main computer with 32GB RAM, one 1TB solid-state

drive, and a high-end graphics card. The logger device shown on board has been actively used

to record vehicle signals such as vehicle speed reports, location, target velocities, and vehicle

control inputs over time. A combination of these signals are being actively used characterize

system performance; additional details are discussed in Chapter 4.

6

Figure 2.1: Sensor and System Configuration onboard GEM e6

The actuation of steering and brake controls is controlled using two servo motors capable

of controlling angular position and velocity. Given the steering wheel motor mounting position,

the state of the steering wheel can be tracked over time in manual and autonomous mode. This

provides additional data that can be used for comparing human steering behavior against the

control generated by the automated system. The brake system on the other hand has been

retrofitted with a pulley system to actuate the brake pedal in order to engage the front and rear

brakes. Given this design implementation, the steel-braided wire over pulley system can not

provide a tension when manual input is being applied, and as a result, measuring human braking

behavior is not as trivial as steering. Since the GEM e6 vehicles used are fully electric, control

input for the accelerator is entirely drive-by-wire and does not require additional mechanical

adjustments.

While steering control inputs can readily be computed as steering angle and angular

velocity inputs due to finer grain control over the servo motor, accelerator and brake inputs are

7

treated as unitless intensity inputs that range between zero and one instead of values with units of

m/s2.

2.2 Module Abstractions and Containerization

Although the drive-by-wire system is one major part of controls, device and sensor drivers,

logging modules, as well as the diverse high level decision making modules must be installed in a

way that it is easy to maintain and keep track of the changes over time using version control. Given

these constraints as well as package interdependencies that many libraries often require, one tool

that facilitated software integration is Docker. Docker provides a set of tools including Docker

Compose that has allowed the software modules to be isolated into different environments. With

these abstractions introduced, issues related to compiling source code with incompatible software

versions are bypassed making the software integration process faster and more efficient among

multiple platforms. Additional benefits of using Docker include automatic module instantiation

during boot-time and version control to guarantee that the software running among multiple

vehicles behaves the same. The module abstractions actively used are shown in Figure 2.2. In the

diagram, the modules shown in blue correspond to ROS nodes that are instantiated automatically

using Docker Compose, while the modules shown in gray are manually operated by the user.

While the latter is under user control to provide the flexibility of choosing which global plans

to execute, the entire system is encapsulated using multiple Docker images as shown by the

different labels. To the best of my knowledge, the systems used in the course of this study

are among the first to utilize the concept of containerization for robotics applications [WC17]

[WC18][PLH+19]Ẇith all of the data generated from vehicle position and reliability score, speed

reports, steering angle positions, acceleration, and brake inputs, the avl logging service collects

this information and transmits it over HTTPs to a logging device. This logging device consists

of a RaspberryPi based on Flask and a RESTful API that stores the collected information in

8

an SQLite database automatically. The data stored in the logger can then be transferred for

offline processing without interfering with the host operating system or increasing computational

overhead. Additional details on how the data collected is processed are covered in Chapter 4.

Figure 2.2: Docker Containers and Services running onboard autonomous vehicle platforms

9

Chapter 3

Core Perception, Planning and Controls

3.1 Open Source Modules

Localization, perception, planning, and controls modules discussed in this chapter have

been written in C++ and tested using the ROS ecosystem [QCG+09]. ROS provides the flexibility

of integrating a large number of modules with a trivial communication framework that can be

shared among many modules at once. Given that many ROS drivers and modules are open-

source, this framework has become the ideal tool for fast prototyping in the robotics community.

One popular ROS based framework geared towards self driving functionality is Autoware.AI

[KTI+15]. This framework provides a platform of open source modules that provide certain

features for localization, mapping, perception, and planning.

Although Autoware provides many tools that work great for specific applications, during

the course of this study, a number of shortcomings were identified in perception, planning and

localization. The methods introduced in this chapter aim to improve generalization and robustness

while Autoware was used as the basis for the development framework. The software stack with

extended functionality and modules introduced in this chapter is represented in Figure 3.1

10

Figure 3.1: Extended Autoware software stack comprised of localization, perception, global
planner, motion planner and control modules.

11

3.2 Localization, Mapping and HD Maps

Without accurate localization, motion planning and navigation becomes a cumbersome

task. Even for human subjects, to be able to navigate through the diverse environments, the

concept of relative location within a given environment is needed to execute an action and must

be well understood. This is an area of research that has been actively explored over the years

in robotics and has given rise to many robust implementations that work well under dynamic

scenarios using both visual and LiDAR based methods [MMT15] [KRD08].

The approach taken in this study incorporates the concepts of Three Dimensional Normal

Distributions Transform (NDT) [Mag09] that are applied for both mapping and localization.

Using the 16-channel Velodyne LiDAR affixed to each development platform, the process of

mapping and location consists of three steps: data collection, processing and downsampling.

In the data collection process, a vehicle was driven along the roads and areas of interest.

Given that NDT does not provide loop closure guarantees, special consideration has to be made to

ensure that reasonable scan alignments are made at intersections by driving through overlapping

scans multiple times. The data generated in this process was saved for offline postprocessing.

For small maps, the Point Cloud Library (PCL) [RC11] implementation of NDT is capable

of generating point clouds close to real time sequentially or using a GPU; however, as the maps

grow in size and complexity, LiDAR data processing must be performed sequentially. For point

cloud maps with mile-long distances, the process of mapping can last several hours. The point

cloud in Figure covers an extensive part of the UC San Diego campus and took approximately

28 hours to complete. Multiple point-cloud maps generated for the UCSD campus are shown in

Figure 3.2.

Once the point cloud map has been generated, it is downsampled using the Voxel 3D Grid

filter with one meter leaf size. While the data collection, mapping and post-processing process

can take a couple of days and is sufficient for localization, manual annotation must be performed

12

(a) 3.9 mi dense-point cloud map. (b) Mail delivery route dense-point cloud map.

Figure 3.2: 3D Point Cloud Maps (top-down view) from UC San Diego.

to define lanes and intersection networks in order for the planner to generate a global plan and

execute lower level actions during motion planning and control. Although aspects of this process

can be automated to reduce overhead, certain portions of map maintenance and updates on road

networks cannot be entirely delegated to automated systems and, as such, impact scalability; an

example of a complex road network is shown in Figure 3.3 that uses the OpenPlanner format

[DTT+17]. In the figure, a four-way intersection is defined by multiple lanes and stop lines. Due

to constant campus construction, permitted turns and lane definitions changed multiple times

in the course of a year and were redefined manually multiple times. Mitigations being actively

explored will be revisited in Chapter 5.

13

Figure 3.3: Gilman/Voigt Intersection road network at UC San Diego. Trajectories shown in
gray define lanes while the trajectory shown in blue corresponds to a planned trajectory.

3.3 Perception

The perception modules explored in this section utilize a combination of camera and

LiDAR data. Although this is still an active area in development, some important aspects that

impact perception are resolution, sensor configuration and location, and external environment

conditions.

3.3.1 LiDAR Detection

Although good results have been achieved using end-to-end learning and probabilistic

methods, important factors to consider include LiDAR scan sparsity and range. With the 16-

channel LiDARs mounted on the test vehicles, object definition and classification at distances

above 20-30m becomes less than trivial. Given that many of the LiDAR detection algorithms

utilize higher resolution LiDARs with 32 or 64 channels, a geometric approach is instead

considered here.

14

LiDAR data is filtered and post-processed to define unlabeled clusters of objects based

on distance and thresholds for the number of points each cluster can have. While an additional

step for shape fitting can be performed for defining bounding boxes using L-shape fitting, the

performance may depend on the perspective [Rac17]. Although the process for object clustering

is trivial at a high level, the filtering step requires special attention to road conditions.

In the raw LiDAR data, relevant object information may be combined with objects

with minimal interest including road surfaces. Without removing ground and road points, road

obstacles are hard to distinguish during planning. Thus, in order to isolate objects of interest, one

goal during the filtering step is ground removal.

One possible implementation can be readily implemented by identifying the LiDAR’s

pitch angle, defining a plane normal to the ground, and eliminating any points that fall below

the plane. Although this approach works well on flat roads, in practice, false detections are

experienced while operating the vehicle along roads with high degree of inclination such as the

roads at UC San Diego.

Instead, the method implemented uses multi-plane definitions to separate ground points

from potential obstacles[PLH+19]. In Figure 3.4, three planes are defined dynamically to adjust

for road conditions using RANSAC and any points that fall below the defined region are removed.

The remaining LiDAR points are clustered based on their relative distance and size as shown in

Figure 3.5.

Figure 3.4: Three hyper planes are defined for ground removal.

15

Figure 3.5: Blue LiDAR scans correspond to points removed while red scans are considered as
potential obstacles.

Even though consistent LiDAR based object detection for certain applications can be

achieved with the approach discussed, critical information such as object and class types are

often needed for planning and full scene understanding. As discussed in later sections, robust and

consistent perception often requires multi-sensor fusion.

3.3.2 Multi-Object Detection using Cameras

As previously discussed, the LiDAR-only based approach discussed may miss road scene

information including object classification. To provide additional information, camera data can

be processed using multi-object detectors such as Faster-RCNN[RHGS15] and YOLOv3[RF18].

Given YOLO’s real-time capabilities and fast inference times, this architecture was chosen as a

the primary deep-learning driven multi-object detector trained with the COCO dataset[LMB+14].

Figure 3.6 consists of a image frame extracted and classified in real-time at UC San Diego.

This portrays the dynamic environment that is often overlooked from LiDAR information alone.

16

Figure 3.6: Realtime multi-object detection using YOLOv3 and the COCO dataset.

With this additional information, object behavior can be characterized and used to in-

fer pedestrian and vehicle actions. However, introducing image data without depth information

presents the task of estimating object pose in a world coordinate frame. Although there exist multi-

ple methods for estimating depth, a simple approach explored involves perceptive transformations

assuming plane-to-plane mappings.

To characterize a linear operator that can perform a perspective transformation, the Direct

Linear Transformation for over-determined solutions is applied [HZ00]. This process consists

of finding four or more correspondences on image frame and on an external plane that satisfy

x′ = Hx.

To minimize the errors and discrepancies between correspondences, it is often preferred

to introduce additional data and optimize. This leads to an over-determined solution that can

be solved using Singular Value Decomposition on A as defined in Equation 3.1 where h j>

corresponds to the j-th row of the homography matrix H. Given A = UDV>, the solution,[
h1> h2> h3>

]>
, corresponds to the last vector of V if the singular values of D are sorted

17

in descending order.

A


h1

h2

h3

=

 0T −w′ix>i y′ix>i

w′ix>i 0> −x′ix>i




h1

h2

h3

= 0 (3.1)

H =


h1 h2 h3

h4 h5 h6

h7 h8 h9

 (3.2)

In order to apply this method, four or more correspondences are needed. This can be

readily performed as shown in Figure 3.7 making the process of estimating homography matrices

trivial. By combining a camera’s intrinsic properties, a location on an image can be projected

onto the ground plane. Although this provides relatively good accuracy for pixel coordinates

with ground plane correspondences, the ground is rarely flat: the formulation considered assumes

plane-to-plane projections. Therefore, if an object protrudes above the ground or if the ground is

curved, the estimate will be off.

In Figure 3.8, a point of interest on image plane is obtained using multi-object detection

and it is projected on the ground plane. Even though the bounding box extracted provides a

region for searching on image frame, choosing a pixel coordinate that best describes the object

becomes a task for objects too close to the camera. Thus, the advantage of using perspective

transformations for estimating locations relative to the vehicle works better for objects that are

further away or that are represented at a smaller scale with respect to the image frame.

18

(a) Front driver side camera. (b) Front passenger side camera.

(c) Left side camera. (d) Right side camera.

Figure 3.7: Image frame correspondences for front two cameras (a and b) and side cameras (c
and d).

Figure 3.8: Projection from image frame (left) to ground plane (right) using Homographies.

19

3.3.3 LiDAR/Camera Fusion

LiDARs and cameras alone each solve perception tasks in different ways. LiDARs can

provide information about whether there is an object around the vehicle or not but may not be able

to help infer with full confidence if it is a vehicle or simply a ground-removal cluster of points

misclassified as a potential obstacle. On the other hand, multi-object detection using a monocular

camera can provide these details on image frame with higher confidence but without 3D pose

information. Thus, sensor fusion becomes indispensable for robust sensing and estimation in

dynamic environments such as autonomous driving. Camera and LiDAR fusion is discussed in

this section but–in general–multi-sensor fusion can extend to other ranging and imaging sensors.

To determine LiDAR and camera correspondences and associations, calibration must be

performed to identify the relative transformation between the camera and the LiDAR: extrinsics.

This process assumes that the cameras used have been individually calibrated to determine their

intrinsic characteristics. In the course of this study, intrinsic parameters for each camera were

estimated using a checkerboard and the ROS camera calibration tools. Once camera intrinsics

have been determined, the process of estimating the relative transformation between each camera

and the LiDAR consists of solving the Perspective-n-Point problem (PnP). Although different

algorithms have been proposed over the years, a non-iterative approach with O(n) complexity

has been applied [LMNF09]. This process requires identifying at least four correspondances

that can be matched between camera and LiDAR frames without needing a calibration target.

Once enough correspondences are determined, an estimate for the relative sensor rotation is

given by R ∈ SO(3) and a translation vector t ∈ IR2. These two quantities effectively specify

the relative sensor transformation known as extrinsics and can be expressed as T ∈ SE(3) as

shown in Equation 3.3. It should be noted that the transformations determined are converted

into their corresponding quaternion representations as ROS provides a convenient abstraction for

20

quaternions.

T :=

 R t

0> 1

 (3.3)

These extrinsics calculated can then be applied for multiple problems such as LiDAR

cluster classification and LiDAR-camera based mapping. In Figure 3.9, clusters extracted from

LiDAR data are projected on image frame and matched to the closest bounding box label provided

by multi-object detection. For this data, a postprocessing step is often needed to eliminate LiDAR

clusters that project to the same bounding box as described in Algorithm 1 by effectively matching

a LiDAR cluster centroid to the closest LiDAR point projected on the center of its corresponding

image bounding box using the L2 norm as a distance metric.

21

(a) Multi-object detection for parking lot scene. (b) Labeled LiDAR clusters for parking lot scene
using (a) (top-down view).

(c) Multi-object detection for road features and
markings.

(d) Labeled LiDAR clusters for road features
and markings using (c) (top-down view).

Figure 3.9: LiDAR Cluster Classification: Bounding boxes on the left (a and c) are used to
provide labels for the LiDAR clusters shown on the right (b and d).

22

Algorithm 1: Fusion and Association
Data: LiDAR cluster centroids C, multi-object detection bounding boxes B, image

projected LiDAR points Limg, LiDAR points L, camera intrinsics matrix K,

camera-LiDAR extrinsics matrix T

Result: Labeled cluster centroids C∗

for ci ∈ C do

cimg←KTci;

for bi ∈ B do

if cimg is within bi then

Limg,i← closest lidarpoint pixel(bi);

Li←→ Limg,i;

if distance(Li,ci) < ∆ then

ci.label← bi.label;

end

end

end

end

C∗← C

3.4 Planning

While the ability to determine the relative position of an AV with respect to obstacles

and roads is indispensable, the robot must also generate a plan for reaching an intended goal and

revise existing plans based on real-time information to prevent collisions and execute actions as

simple as making intersection stops or turns. Performing these actions requires a global planner

and a motion planner to be in place to find an optimal path for the intended goal and to execute

immediate short term actions, respectively.

23

In this section, the OpenPlanner [DTT+17] is used as a basis for implementing state-

specific actions for dealing with vehicle following, cruising, and planned stops as well as in-

corporating complete road network functionality for global planning and replanning. Once a

global plan is generated, the motion planner enforces speed limits and short term actions based

on obstacles and publishes a final set of speed-encoded waypoints for path tracking.

3.4.1 Global and Motion Planning

The core functionality for global planning starts with the design and annotation of vector

maps [TKLD19]. As described in section 2, the process of annotation requires hours and often

days to complete the detailed annotations for definition road networks, crosswalks, trajectories

and stop lines. In practice, an additional step to encode speed limits on the predefined trajectories

must be done.

With the required maps completed, the optimal shortest path between a starting point and

a destination is determined recursively as long as road network connectivity exists. Although this

path generated can be used for path tracking and executing low-level control actions, obstacles

and rules of traffic must be incorporated. These constraints are enforced by a motion planner with

a limited horizon to handle critical spatiotemporal tasks.

To process the continuous information provided from the perception stack while enforcing

traffic rules, six of the OpenPlanner vehicle states are extended: Init, Forward, Follow, StopSign,

StopSignWait and Goal. With this basis, target speeds are imposed based on speed limits,

obstacles and intersections. Figure 3.10 reflects the Finite State Automata used while performing

mail delivery trials at UC San Diego.∗

∗Due to limited testing with ObstacleAvoidance, this state is not included in live testing and this study.

24

Figure 3.10: Planning FSA

3.4.2 Cruising and Speed Keeping

Cruising and speed keeping is handled in the Forward state. In this state, the target speeds

are a function of vehicle speed, speed limits and the drive-by-wire enable signal. When the

vehicle’s drive-by-wire is disabled, the planner relaxes the previous target speed to avoid integral

windup effects that often cause erratic behavior once the drive-by-wire system is re-enabled.

When the vehicle’s drive-by-wire is enabled for the first time or re-enabled after a disengagement,

the last known vehicle speed is used to initialize an incremental speed signal depending on the

acceleration required. This design approach was taken to enforce speed requirements while

maintaining invariance to road condition effects and reducing the overall dependence on low level

25

controllers. The implementation details are shown in Algorithm 2.
Algorithm 2: Speed Keeping

Data: drive-by-wire enable signal auto enabled, vehicle speed v, previous target

speed v prev

Result: target speed v target

v target = v;

if auto enabled then

v target = v prev;

end

if v target > speed limit +∆ then

a = adecel;

else

a = aaccel;

end

v target = v target+a ·dt
A trivial implementation initially explored was entirely dependent on the vehicle’s last

known speed report along with a desired acceleration to update the target speed as shown in

Equation 3.4.

vtarget = vcurrent +a ·dt (3.4)

Although this approach works well along flat roads or roads with low degree of inclination, speed

keeping becomes highly dependent on the low level controllers and their ability to react to small

errors. As a result, this shifts the overall robustness to the controllers and their ability to recover

from cumulative effects such as the integral sum from a PID controller.

26

3.4.3 Vehicle Following and Planned Stops

In the Follow state, the perception information is used to measure the relative distances

between the ego vehicle and potential obstacles. Using the intended trajectory and the dimensions

of the vehicle, if the lateral distance between a potential obstacle and the reference trajectory is

larger than half of the ego vehicle’s width, the trajectory is marked as blocked by assigning a

high cost. This approach is shown in detail in Figure 3.11 with additional lateral and longitudinal

safety distances. While it is possible to generate alternative lateral trajectory rollouts for obstacle

avoidance, this implementation is still under active development and testing. As a result, the

details discussed here focus on the special case in which selected trajectory rollouts are fully

blocked.

Figure 3.11: Estimating distance to obstacles

For fully blocked trajectory rollouts, the distance to the next obstacle is measured by

finding the closest rollout waypoint wobstacle with respect to the obstacle and the closest rollout

waypoint wego with respect to the ego vehicle. With these trajectory waypoints, the obstacle

27

distance is estimated by iteratively measuring the adjacent waypoint distances between wobstacle

and wego and adding them up as represented by dobstacle in Equation 3.5–where wego→ wi and

wobstacle→ w j for i≤ k < j. The accuracy of these estimates are clearly dependent on waypoint

discretization and density between points.

dobstacle =
j

∑
k=i

√
(wk+1−wk)

> (wk+1−wk) (3.5)

Given the estimate for the distance to the closest obstacle dobstacle, the initial approach

consists of generating target speeds entirely based on linear kinematics under the assumption

that a constant follow distance is to be achieved. Equation 3.6 represents the inverse relationship

between the distance to the closest obstacle dobstacle and the acceleration required for the ego

vehicle with velocity vego to reach vobstacle.

2a ·dobstacle = (v2
ego− v2

obstacle)−→ a = (v2
ego− v2

obstacle)/2dobstacle (3.6)

Although constant acceleration is assumed, sampling the ego vehicle’s speed and updating

the estimate for the distance to the closest obstacle continuously can provide good acceleration es-

timates that can be used to estimate a target speed by applying Equation 3.4. This approach works

well for lower speed driving and scenarios where obstacles’ speeds do not differ considerably

with respect to the ego vehicle’s speed; however, the bottleneck for this approach is generally

experienced during high speed driving due to the assumption that a constant follow distance must

be kept. Faster moving vehicles require the following distance to be relaxed in order to ensure a

safe stopping distance in the event that an emergency stop needs to be made.

To mitigate the effects of using constant following distances, the vehicle following state

is entered as soon as the distance to the closest obstacle comes less than the expected distance

for a complete stop dstop as estimated based on Equation 3.7, where abrake is a precalculated

deceleration rate in m/s2 based on an average of worst-case braking performance. Estimates

28

for abrake were determined by performing a series of stops at different speeds while applying

constant braking force and measuring the complete stopping distance. This vehicle deceleration

rate estimate can be generalized for other behaviors such as planning for intersections.

dstop = v2
ego/2abrake (3.7)

While intersections with stop signs require different logical actions and maneuvers than

intersections with traffic lights, the details for stopping at intersection lines generalize to both,

stop-line intersections and traffic-light intersections along different road conditions.

Given the ego vehicle speed vego and a stopping distance estimate under a precalculated

constant deceleration estimate that is given by dstop = v2
ego/2abrake, planning for stops and in-

tersections becomes a special case of vehicle following. See Figure 3.12. The same planning

approach can then be defined for both, vehicle following and stopping where dobstacle −→ dstopline,

wobstacle −→ wstopline and vobstacle = 0 for stops and intersections.

Figure 3.12: Planning for Stops

29

While the precalculated deceleration abrake is simply an estimate that roughly describes

the ego vehicle’s braking performance, the measured distance to the next obstacle or in the case

of intersections, stop line distances, provide a larger weight for the acceleration estimated in

Equation 3.6 as it is inversely proportional to the distance from Equation 3.7. As the distance

to the next intersection or obstacle decreases, the acceleration’s magnitude approaches infinity.

Hence, while the precalculated deceleration rate abrake is used as a trigger for switching states,

the accuracy and robustness of vehicle following and stopping relies on accurate measurements

of obstacle distance and stop/intersection distance. During live testing, the combination of the

precalculated deceleration rate and measured obstacle/intersection distances provided the most

constant and accurate results.

3.5 Path Tracking and Controls

3.5.1 Vehicle Geometry for Steering Control

Path Tracking and Steering Angle

With the final set of speed-encoded waypoints generated during motion planning with

a limited horizon, the radius of curvature and tire angles can be approximated by Pure Pursuit

[Con92]. Pure Pursuit is a path tracking algorithm that uses a lookahead distance to determine a

moving target waypoint along the ego vehicle’s intended trajectory. With the waypoint determined,

an arch is fit between the moving waypoint and the location of the rear axle of the vehicle. This

arch essentially determines the curvature K required for the ego vehicle to reach the target

waypoint.

Given that the radius of curvature is inversely proportional to curvature, R = 1/K the

vehicle’s tire angle can be modeled using a basic bicycle kinematics model. Equation 3.8

and Figure 3.13 describe the relationship between the radius of curvature and the geometric

30

approximations needed to estimate the tire angle. With the vehicle-specific steering-rack ratio

Crack, the steering angle θtire can be determined by Equation 3.9.

Figure 3.13: Bicycle Model Approximation

θtire = arctan

(
Lwheelbase

(R2−LCR)
1/2

)
(3.8)

θsteer =Crackθtire (3.9)

Steering Angular Velocity

The angular velocity for the steering wheel is modeled under the notion that minimal

steering should be performed at high speeds while offering high maneuverability at low speeds.

Thus, a trivial relationship that offers this flexibility is given by Equation 3.10. where β is a

constant greater than 1.0 and smaller than 2.0. By analyzing the boundary conditions, it can be

observed that when the vehicle is operating at high speeds, the vehicle-speed to max-speed ratio

(vcurrent
vmax·β) becomes close to one and as a result the angular speed drops. On the other hand, when

the vehicle is driving at low speeds, the ratio drops close to zero and a maximum angular velocity

31

can be achieved. This relationship is linear on the speed of the vehicle.

w = wmax[1−
vcurrent

vmax ·β
] (3.10)

3.5.2 Acceleration and Braking Controls

Acceleration and Braking

The drive by wire system consists of floating point control inputs for acceleration and

braking between zero and one. Given that target speeds and accelerations set by the planner must

be mapped to unitless quantities, two traditional PID controllers are employed for the task as

shown in Figure 3.14.

Figure 3.14: PID Controller

The error e(t) is defined as the difference of the target speed and the current vehicle’s speed

as reported by odometry measurements. To keep the signs and units consistent. eaccel = e(t) and

ebrake =−e(t) are defined for each PID controller. Given this convention, the control equations

32

are trivially applied as shown in Equation 3.11.

u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ+Kd

de(t)
dt

(3.11)

It should be noted that as with other applications of the PID controller, there are cases in

which the integral sum must be reset. For this control strategy, the integral sums are reset every

time the vehicle’s speed is relatively close to zero. An additional step taken involves integral

sum thresholding. Thresholding prevents the integral sums from generating a greater weight than

other terms while providing faster response times and less overshooting. Adequate values for

the threshold were determined based on the minimum and maximum control values: 0.0 and

1.0. In Figure 3.15, the target speed and current vehicle speed are shown as a result of vehicle

acceleration, followed by an intersection stop under the control strategy discussed.

33

Figure 3.15: Target Speed (m/s) shown in red and Current Vehicle Speed (m/s) shown in blue
as functions of time(s)

Chapter 3 includes material as it appears in Lessons Learned From Deploying Autonomous

Vehicles at UC San Diego in Field and Service Robotics, Tokyo, JP, August 2019. David Paz,

Po-Jung Lai, Sumukha Harish, Hengyuan Zhang, Nathan Chan, Chun Hu, Sumit-Binnani, and

Henrik Christensen. The thesis author was the primary author of this paper.

The methods introduced on LiDAR-based detection (section 3.3.1) and LiDAR/Camera

fusion (section 3.3.3) were the result of a collaborative effort between Hengyuan Zhang, Sumukha

Harish and the primary author. With Zhang’s work on multi-plane fitting methods and Harish’s

early work on Camera/LiDAR fusion, these modules were incorporated into the Autoware

software stack and deployed using the two autonomous vehicle platforms introduced in this study.

34

Chapter 4

Benchmarking and Performance

Evaluation for Autonomous Vehicles

The UC San Diego campus covers diverse terrain conditions with an area that spans 2,178

acres. With 10,625 academic staff, 35,827 non-academic staff, and over 38,000 undergraduate

and graduate students enrolled for fall 2018, the campus experiences active traffic∗. Taking

into consideration these factors, along with the healthcare system and remote campus locations,

transportation and mobility becomes an important factor for students, staff, faculty and visitors.

While this project is conducted in a campus scenerario, last mile transportation generalizes to

many scenarios in which mobility may be restricted due to parking or walking-distance constraints.

With these logistic challenges in mind, this project is motivated by exploring alternative solutions

such as on-demand automated shuttle service and mail delivery services that can enhance mobility

for the last-mile without impacting congestion. In the initial phase of this project, the two GEM

e6 vehicles introduced in earlier chapters were used for software development and testing between

fall 2018 and mid-spring 2019. During this phase, mail delivery logistics were discussed with the

UC San Diego operations to determine the routes of interest that the mailing center covers. This

∗https://ucpa.ucsd.edu/campus-profile/

35

led to the automated mail delivery pilot phase which began summer 2019 and has been an active

project since.

4.1 Safety

Given the complexity of the autonomous system actively deployed during standard tests

and mail delivery runs, precautions are actively taken to ensure that the vehicles operate safely.

In the event that the vehicle requires manual interventions to be performed, a trained safety

driver † will take control of the vehicle by applying a torque on the steering wheel or engaging

on the brake pedal. This drive-by-wire provides convenient functionality that allows the safety

driver to immediately regain control of the vehicle at any point in time. An emergency physical

disengagement button is also made available as shown in Figure 4.1.

Figure 4.1: Emergency Stop on AV dashboard

†All safety drivers participating in this project have been trained by the UC San Diego Risk Management’s
Office. Each safety driver is required to maintain his or her attention on the road at all times and must be capable of
performing actions as if him or her were operating the vehicle.

36

4.2 UMAV: Unbiased Metrics for Autonomous Vehicle Bench-

marking

As of fall 2019, the vehicles have driven more than 89.9km in autonomous mode at the UC

San Diego campus; this corresponds to driving 6.9 hours with the autonomous system engaged.

For every trip in which the system was engaged, the logger introduced in Section 2.1 recorded

position and reliability information, vehicle speed reports, steering control inputs and reports,

acceleration control inputs and reports, braking control inputs and reports, system enable signals,

as well as the target speeds imposed by the planner. In addition to the data recorded by the logger,

these signals were also recorded along with camera and LiDAR data using the ROSBAG file

format provided by ROS.

While system uptime and distance data provides an idea of the amount of data collected

during mail delivery, information in regards to the number of interventions performed within

these periods of time is highly relevant for characterizing performance. As introduced in Chapter

1, without spatial and temporal information, unbiased statistics cannot be readily assessed. To

generate a comprehensive evaluation, an initial set of statistics are proposed for measuring

robustness in terms of the number of manual interventions performed: Mean Distance Between

Interventions (MDBI) and Mean Time Between Interventions (MTBI). By definition, these

statistics can be computed by Equation 4.1 and Equation 4.2, respectively.

MDBI =
Total Distance

Number of Interventions
(4.1)

MTBI =
Total Uptime

Number of Interventions
(4.2)

To measure the number of interventions performed over time, the enable/disable signal

is recorded over time. This signal is set to “True” when the vehicle is operating in autonomous

37

mode and it is toggled to “False” as soon as an intervention is performed: the safety driver

applies a torque on the steering wheel or taps the brake or accelerator pedals. With the ability of

measuring these enable/disable signals, the number of interventions per trip can be accurately

measured by the number of enable/disable signal toggles. This idea can be visualized by Figure

4.2–where the blue segments correspond to autonomous operation and the orange segments to

manual operation. The green segments correspond to mission start and mission end segments;

during the mail delivery deployment at UC San Diego, these segments correspond to manual

operation since the vehicle had started recording data before any planning or execution began.

This was often the case when packages and mail were loaded onto the vehicle and an enable

signal had not been set. For this reason, these starting and ending segments are relaxed and are

not considered as interventions.

Figure 4.2: Enable signal as a function of time.

To estimate MTBI and MDBI, distance and time are calculated as given by Equation 4.3

and Equation 4.4, respectively. Given the time sequence t1, t2, ..., t2N , the distances and times

measured correspond to the regions in blue from Figure 4.2. This effectively measures how much

time elapsed and how much distance was covered while the autonomous system was engaged.

d =
N

∑
i=1

(d (t2i)−d (t2i−1)) (4.3)

38

t =
N

∑
i=1

(t2i− t2i−1) (4.4)

In the ideal system, the number of interventions will approach zero. Therefore, estimates

for MDBI and MTBI follow a C
0 limit form. While this can be expressed as a limit, it is

more convenient to analyze the inverses MDBI−1 and MTBI−1 to prevent divide-by-zero errors.

Following this convention, the new expressions are given by Equation 4.5 and Equation 4.6;

where optimal values for MDBI−1 and MTBI−1 approach zero.

MDBI−1 =
Number of Interventions

Total Auto Distance
(4.5)

MTBI−1 =
Number of Interventions

Total Auto Uptime
(4.6)

Depending on how these quantities are measured, additional information about safety

driver dependability can be measured. Considering the case in which, very long interventions are

happening, it is useful to know additional statistics that describe the time elapsed and distance

covered while the interventions were performed. To do this, MDBI and MTBI can be measured

for both, the time and distances in which the vehicle is operating autonomously and the time and

distances in which the safety driver is operating the vehicle manually. It should be noted that

special attention must be paid when estimating the manual operation statistics; in the ideal system

the statistics measured for manual operation will have an indeterminate limit form. To denote the

difference between these statistics, subscripts are used to differentiate these statistics as shown in

Equation 4.7, Equation 4.8, Equation 4.9, and Equation 4.10.

MDBI−1
A =

Number of Interventions
Total Auto Distance

(4.7)

39

MTBI−1
A =

Number of Interventions
Total Auto Uptime

(4.8)

MDBI−1
M =

Number of Interventions
Total Manual Distance

(4.9)

MTBI−1
M =

Number of Interventions
Total Manual Uptime

(4.10)

4.3 Vehicle Performance for Mail Delivery

Using the metrics proposed, the data collected from mail delivery runs at UC San Diego

is actively being used to measure vehicle performance over time. Table 4.1 corresponds to the

baseline collected over a period of 13 days which include summer and fall quarter 2019. From

the table that corresponds to Summer 2019, it can be inferred that–on average–the vehicle drove

414.2m autonomously before an intervention was made. In a similar way, the vehicle drove

autonomously, on average, for 113.8 seconds before an intervention was made. During the same

period, the dependency on the safety driver can be characterized by the metrics generated during

manual driving. On average, each intervention performed lasted 24m or 12.77 seconds. These

statistics extend for fall 2019 and have been combined in Table 4.2.

Table 4.1: MDBI and MTBI Summary Interventions for summer and fall quarters.

Summer 2019 MDBI MDBI−1 MTBI MDBI−1

Autonomous 414.201 0.0024 113.82 0.00878
Manual 24.00 0.0416 12.77 0.07829

Fall 2019

Autonomous 283.08 0.0035 84.44 0.0118
Manual 19.25 0.0519 11.54 0.0866

40

Table 4.2: MDBI and MTBI Overall Summary Interventions.

Overall MDBI MDBI−1 MTBI MDBI−1

Autonomous 380.42 0.0026 106.25 0.0094
Manual 22.77 0.0439 12.46 0.08028

It can be observed that the statistics significantly vary between summer and fall quarters.

This significant difference can be explained by campus traffic and ongoing activities experienced

early in fall quarter. In the fall, the UC San Diego campus experiences higher traffic and foot

activity from students moving in or starting classes. Separating these results by quarterly basis

and testing location can potentially help explain trends and traffic patterns. At the same time, it

is important to estimate collective averages to make note of the impact of the software release

versions on the performance. To facilitate this process, manual notes are taken during mail

delivery runs that include safety driver, co-pilot, route information, weather conditions, and the

type of interventions defined.

4.4 Autonomous vs Manual Driving

While the data and statistics introduced in this chapter represent early results from an

active project, the metrics defined effectively quantify the performance in terms of the number of

interventions performed of an autonomous vehicle system independently of the vehicle type. By

simply collecting speed information, drive-by-wire enable signals, and vehicle status reports, a

complete system characterization can be performed. UCSD’s AVL has started using this system

along with an additional suite of tools for benchmarking control, fuel/energy efficiency and even

cost of ownership as shown in Table 4.3.

41

Table 4.3: UMAV Metrics

Trigger Metric Type

Intervention Mean Distance Between Interventions Event Driven
Intervention Mean Time Between Interventions Event Driven

Energy Miles per Gallon (MPG) Or Charge Consumed (A) Continuous
Maintenance Cost Brakes and Tire Wear Continuous

Up-time Time Elapsed Per Trip Event Driven
Control Speed, Acceleration, Steer Angle Fourier Transform Continuous

These additional metrics provide vehicle specific information for comparison between

autonomous vs manual modes. As previously introduced, MDBI and MTBI permit system

evaluation at the software level. On the other hand, the introduction of an energy consumption

metric is geared towards vehicle specific evaluation such as autonomous trucks, but it also permits

a direct comparison with manual driving fuel consumption. Given the variety of vehicle-specific

powertrains, fuel consumption models or battery power measurement devices may be required.

With the logging devices introduced in Section 2.2, a fuel consumption model was explored as part

of a UC San Diego/TuSimple collaboration to evaluate the performance of level-4 autonomous

trucks. These studies show that the use of autonomous driving trucks can improve fuel efficiency

by approximately 10% and up to 20% compared to manual driving ‡. In addition to modeling and

evaluating fuel consumption, there are a number of implications on energy consumption and cost

of ownership as a result from autonomous systems’ control strategies. For example, depending

on the steering, acceleration and braking controls, more energy may be required to drive along

the same routes if a system overcompensates for small errors. As a result, this can impact fuel

consumption, and brake and tire wear. These cumulative effects can affect the overall cost of

ownership of a vehicle, as well as the environmental impact. For benchmarking purposes, the

measured steering, acceleration and braking status reports can be compared in the frequency

domain for autonomous and manual driving.

‡https://finance.yahoo.com/news/study-finds-tusimple-trucks-least-153452983.html

42

Chapter 4 includes material as it appears in Lessons Learned From Deploying Autonomous

Vehicles at UC San Diego in Field and Service Robotics, Tokyo, JP, August 2019. David Paz,

Po-Jung Lai, Sumukha Harish, Hengyuan Zhang, Nathan Chan, Chun Hu, Sumit-Binnani, and

Henrik Christensen. The thesis author was the primary author of this paper.

The Unbiased Metrics for Autonomous Vehicle Benchmarking (UMAV) introduced in

section 4.2 are the result of a year-long study in which Po-Jung Lai, the primary author and

principal investigator Henrik Christensen participated in. Po-Jung Lai and the primary author

developed the logging devices and performed system evaluation on the two autonomous vehicle

platforms introduced in this study. Lai participated as the project lead for the UCSD/TuSimple

study discussed in section 4.4.

In addition, chapter 4 contains pre-publication material and statistics obtained during the

UCSD mail delivery project being prepared for review.

43

Chapter 5

Achieving Full Autonomy - L5

5.1 Overview

The design considerations introduced in Chapter 2 and 3 have been crucial for collecting

and benchmarking autonomous vehicle data at UC San Diego. While a comprehensive study is

actively being performed, the UMAV system introduced and discussed in Chapter 4 provide a

comprehensive set of benchmarks for autonomous cars in general.

During the initial mail delivery trial on the UC San Diego campus, the results obtained us-

ing UMAV have provided a comprehensive means for benchmarking control robustness and safety

driver dependability–these are statistics that are continuously varying as system development

continues and overall system robustness improves.

With 89.9km of autonomous driving data collected during initial mail delivery runs, one

important tool that has facilitated the analysis of traffic patterns and dynamic planning bottlenecks

involves intervention maps. Given that each autonomous vehicle navigates with respect to a fixed

frame of reference continuously, it is possible to associate each intervention performed by the

safety driver with a pose. This leads to the notion of building complete normalized intervention

maps as shown in Figure 5.1. Figure 5.1 contains normalized intervention information for two

44

mail delivery routes on campus. Each route has been normalized and superimposed with a 1m2

grid resolution based on location and intervention count. It should be noted that the statistics

reported in Tables 4.1 and 4.2, correspond to the intervention map introduced in this section.

Figure 5.1: Mail delivery route intervention map.

In general, it can be seen that the highest number of interventions occur at intersections

and unstructured environments such as walkways: locations A, B and C. Some of these locations

and places of interest will be analyzed closely in the upcoming sections.

The patterns observed at these locations shed light on some of the bottlenecks experienced

but at the same time provide a sense of the challenges in autonomous driving in general. Au-

tonomous driving systems must be capable of negotiating the right-of-way at road intersections

just as well as detecting pedestrian traffic and determining intent in unstructured environments.

While many regular vehicles are not allowed to navigate through pedestrian walkways such as the

45

ones at UCSD∗, there exist other unstructured environments that are continuously changing and

become dynamic problems that must be solved in real-time such as SLAM. With these cases in

mind, potential research directions will be discussed closely in the following sections.

5.2 Intent for Unstructured Environments

In this section, the challenges related to scene understanding and intent for dynamic plan-

ning will be discussed whereas the implications of fast-changing environments on the generalized

problem of autonomous driving will be left for the next section.

The road segments from locations A, B and C in Figure 5.1. correspond to some locations

in which a higher number of interventions were experienced. These segments in particular demon-

strate multiple challenges including navigating through tight environments, analyzing pedestrian

intent and determining the appropriate order for navigating through a four-way intersection.

Location A corresponds to the beginning of a large pedestrian walkway that forks off

from the main road as shown in Figure 5.2a and is protected by bollards as seen in Figure

5.2b–the bollards are represented on Figure 5.1 by green circles. The bollards on campus are not

always equally spaced apart and may not always be traversable with the GEM e6 vehicles; the

bollards protecting the walkway shown in the images range between 163.8cm and 168.9cm. For

comparison, each GEM e6 vehicle measures 141cm in width–which leaves approximately 11cm

of clearance on each side.

Since a lateral safety margin of 50cm was integrated for additional safety in the planning

modules, the vehicle automatically comes to a stop and waits for a safety driver intervention

when it reaches these bollards; these types of interventions were captured on the intervention map

and the UMAV system. During testing, these bollards were not always present due to different

∗At UCSD, the golf carts used for mail delivery operate in different scenarios including side walks, pedestrian
walkways and off-road paths. While UCSD vehicles–including the self-driving vehicles used in this study–are
authorized to operate in these areas, many of these paths are not intended for public use.

46

construction patterns and as a result the bollard-protected trajectories shown on the intervention

map do not have the same intervention counts. Additional perception and planning improvements

such as adaptive lateral and longitudinal safety distances are being performed to address these

corner cases; however, this becomes a more challenging task to perform when there are human

subjects or other stochastic events are in the loop.

(a) Mail delivery route fork. (b) Walkway protection bollards.

Figure 5.2: Scenes of Warren college mail delivery route.

Navigation through shared pathways such as parking lots, crosswalks and even side walks

require additional attention. In the case of the pathway to follow location A, it can be seen that

consistent interventions occur along the broad shared walkway. Many of these interventions

experienced occur due to inaccurate expectations for pedestrian movement. During early tests,

the autonomous vehicles utilized traditional tracking methods such as the Kalman Filter but fell

short while attempting to negotiate with pedestrians and determine the correct right-of-way. As

an example, a pedestrian waiting to cross the road should be given the right-of-way at crosswalks;

however, if a tracking methodology based on traditional methods is applied, the pedestrian will be

treated as stationary and the correct right-of-way may not be enforced. With this notion in mind,

the surroundings, context and bodily language becomes highly relevant. For the same case, if the

stationary human subject standing by the side of the road is looking down, it is highly unlikely

that he or she will cross the road. In contrast, if the same subject is looking directly at the vehicle

47

while standing close to the road, it is likely that he or she is preparing himself or herself to cross

and the autonomous vehicle should slow down and stop.

In any of the cases described, safety guarantees are needed. Statistically speaking, even

though a pedestrian looking down on the side of the road is very unlikely to cross the road, the

probability that he or she will step off the curb still exists. For this reason, pedestrian intent

may be used as a prior but any expectations should be updated dynamically based on real time

information.

Another pattern captured in the intervention map introduced involves road intersections.

Road intersections in particular can encompass multiple intricacies that encapsulate some of the

patterns described such as pedestrian intent but also introduce additional latent dynamics. An

example of this complexity can be illustrated by location C from Figure 5.1 with its corresponding

image shown in Figure 5.3. This four-way intersection is one of the busiest intersections on

campus protected by stop signs. During the morning mail delivery runs, a high volume of

vehicles is constantly experienced due to regular commuter traffic, and as such, one of the biggest

challenges involves obeying the right-of-way and analyzing pedestrian behavior. In the state of

California, drivers are required to perform a three-second stop at stop signs before proceeding;

however, in the presence of traffic, the right-of-way is enforced based on a first-in-first-out

order. Although the correct right-of-way can be determined based on a queuing mechanism for

intersections of this type, additional attention must be paid to human drivers. Even with the

correct right-of-way determined by updating an internal queue, other drivers’ behaviors can be

stochastic. In many cases observed, other drivers were unable to determine the correct queuing

order based on the DMV right-of-way rule which often resulted in confusion among human

drivers. This implies that a robust planning strategy must be capable of adjusting dynamically for

human error–even if an autonomous vehicle is capable of generating the correct plans 100% of

the time.

48

(a) Camera View of intersection. (b) Point Cloud view of intersection

Figure 5.3: Active traffic in Gilman Dr. and Voigt Dr. Intersection

5.3 Moving Away from High Definition maps

In the last section, a number of shortcomings were discussed while considering pedestrian

and human driver behavior. Many of the scenarios correspond to scene specific challenges

that, if solved, would allow the vehicle to significantly improve based on the UMAV system.

Nevertheless, there are additional considerations to keep in mind when autonomous vehicle

scalability and generalizability is in question.

The software architecture introduced in Chapter 3 utilizes dense point clouds for vehicle

pose localization and vector maps for path planning and tracking that are essential for autonomous

vehicle operation. One drawback of these types of maps also known as HD maps is robustness,

scalability and generalizability. Without having a prior point cloud map and manually annotated

trajectories on the map, a vehicle cannot navigate through unseen environments. In a similar way,

if the software modules utilize outdated HD maps, detrimental errors are likely to occur. To better

illustrate this, Figure 5.1’s construction sites will be used as a reference and multiple cases will

be discussed.

In the intervention map introduced in Figure 5.1, a number of construction sites can be

observed around the time the mail delivery project started on campus. Many of these rapidly

changed or shifted. In Figure 5.4, one of the autonomous vehicles is shown performing mail

49

delivery across from a construction site shown in Figure 5.1’s location B.

Figure 5.4: Active construction across Warren college mailing center.

At the time the vehicle started performing mail delivery along this route, construction was

quite active, and as a result, the point cloud and vector maps were built with many of these fast-

changing features encoded. While the construction changed rapidly over time, the localization

system introduced in Section 3.2 remained robust to many of these changes even after the fences

shown in Figure 5.4 were entirely removed. The point cloud representation is also shown in

Figure 5.5.

50

Figure 5.5: Point Cloud Representation of construction fence and route from Figure 5.2a.

These results are highly encouraging but there are other factors to consider such as

dynamic point cloud updating, vector map updates, scalability and unseen environments. Although

the localization module remained invariant to many of the changes due to construction, localization

robustness can be impacted if most of the prominent features are lost. The first case to consider

involves Figures 5.4 and 5.5; even though the construction fence moved over time and was

eventually removed, the buildings around the walkway remained in place. Since the localization

methodology is based on optimal grid-based Gaussian distributions, the vehicle pose is estimated

based on the optimal LiDAR scan alignment probabilities and is robust to small map changes.

The tolerance to small errors is certainly a good characteristic of robust localization but these

errors should be accounted for through progressive map updates or pose and estimation related

failures are likely to occur and can be detrimental to planning and safety. Minor localization

related errors were experienced during testing and are included as part of Figure 5.1’s intervention

map.

The second case to consider involves vector map updates. For context, the lane definitions

for the four-way intersection introduced shown in Figure 5.3 and Figure 5.1’s location C changed

51

multiple times in a matter of weeks due to construction. Even with partially automated updates,

if these are not updated at the time new lane definitions or changes take place, the vehicle will

operate with outdated information and potentially cause unsafe scenarios. Some examples of this

include lane repainting and shifting, and turn-lane logic changes.

This leads to the third case in which HD maps experience troublesome scenarios: unseen

environments and scalability. Without an up-to-date point cloud map or previously annotated

vector maps, the vehicle will be unable to localize itself and identify where it should and should

not drive. Unseen environments without annotations imply that an HD map does not exist, and

as a result, a self-driving vehicle that requires these maps cannot operate. With these HD map

methodologies in mind, it becomes apparent that solving the general autonomous driving that

would allow any car to navigate anywhere autonomously requires real-time updates when the

environment and logic changes, and a mechanism to handle the the size of all of these maps. In

the cases that involve smaller scale deployment such as micro-transit applications, the bottlenecks

experienced from HD maps can be addressed with significant manual work for maintenance.

However, as the scale of the problem increases, it becomes challenging to keep track of the

changes being performed to logic and the environment without manual annotation in the loop.

For larger scale deployments, alternative methodologies need to be considered that can fulfill the

requirements of scalability, adaptability and robustness. In order for a self-driving car to scale and

navigate long distances, it must be capable of understanding its relative location without requiring

highly detailed maps such as HD maps. At the same time, the vehicle must be capable of adjusting

any prior expectations on the environment such as road and lane definitions which ultimately

influences how robust the system is. These are among some of the topics that have motivated this

work. Future research directions that align with these shortcomings will be discussed in the next

section.

52

5.4 Future Work

While there are constant engineering developments being performed such as robust sensor

fusion and obstacle avoidance for the autonomous vehicle project introduced in this study, the

unsolved problems are research oriented and involve pedestrian and vehicle intent, as well as

scalability and generalizability.

With the introduction of pedestrian and vehicle intent models, improvements can be per-

formed to the perception stack that can ultimately facilitate the interaction between an autonomous

vehicle and other agents. A combination of deep learning and traditional filtering methods can be

used to explore solutions for pedestrian and vehicle intent. For pedestrian intent, deep learning

methods such as OpenPose [CHS+18] can be used as additional features to better interpret pedes-

trian behavior. With additional behavioral models based on Conditional Random Field methods

[NHD+19] and Generative Adversarial Neural network methods [GJFF+18] [FDSF18] [AHP19]

[SKS+18] [KSMM+19], an abstraction can be developed to learn and capture the different types

of behaviors expected and assign probabilities on how likely a pedestrian is to cross a road.

To analyze the behavior of other drivers, similar deep learning and traditional computer

vision methods can be used to determine if a driver is using his or her turn signals, emergency

lights or braking. For road intersections, it is often important to estimate the direction of travel

for each vehicle. This can be performed by analyzing turn signals [CHX+17], but also by the

orientation of the other vehicles and even tire angles. Since these are heavily dependent on

perception robustness, sensor fusion and tracking is inherently important.

An equally important topic in self-driving technology involves scalability and generaliz-

ability as previously introduced in the last section. With continuous maintenance and constant

updates, HD maps are ideal for small scale applications such as mail delivery or micro-transit.

However, as the scale of the intended application drastically increases, it becomes troublesome to

keep track of all of the changes that occur and to update the maps in real-time. To address these

53

shortcomings, a new planning strategy that consists of a high level global planner and a dynamic

motion planner may need to be adopted. In this planning strategy, a high level global planner is

introduced to generate a high level set of instructions that describe how long does a vehicle have

to navigate until the next intersection and whether it should make a left turn, right turn or continue

driving straight. With these high level instructions, a motion planner must handle immediate

actions such as dynamic path generation based on real-time information for lane changing, lane

keeping, obstacle avoidance, intersection logic and parking. Figure 5.6 corresponds to a revised

architecture with the proposed changes that incorporate the new planners.

With these high-level dynamic planners, an alternative approach for navigation is taken

that removes the dependency of dense point clouds and HD maps by working on a local frame of

reference and estimating road features and path generation dynamically. In the methods discussed

in Chapter 3, the localization method as shown in Figure 3.1 utilizes dense point cloud information

to determine the location of the vehicle over time. This position information is then used during

planning for obstacle detection and avoidance to update a previously defined reference path.

On the other hand, in order to move away from dense point clouds and avoid the overhead

associated with manual path annotations and road features, the planner must be capable of

recognizing lanes, intersections, crosswalks, traffic signs and lights, as well as estimating its

relative location within a local frame of reference. This methodology follows a similar approach

as human drivers in which given a set of high level instructions, local planning is performed

dynamically and in real-time. While this method focuses on generalizing autonomous driving

techniques by removing the inter-dependencies on HD maps, its overall robustness relies on the

capabilities of perception and motion planning: lane detection, dynamic path generation, traffic

sign recognition, and feature extraction. This proposes a new set of research topics to address for

future work.

54

Figure 5.6: Global Planner and Dynamic Motion Planner.

With the autonomous vehicle platforms introduced in Chapter 2 and their corresponding

software architectures in Chapter 3, applications for mail delivery were explored. Even though

there are active developments on robust perception and fusion, dynamic point cloud map updating,

obstacle avoidance, and pedestrian and vehicle intent, the architectures introduced have shown

to be ideal for small scale environments such as campus scenarios. With the introduction of the

UMAV system in Chapter 4, the development cycles can be tracked over time to better understand

how system performance improves as a function of time and where most of the challenging

scenarios take place. For applications that require large-scale deployments, other techniques are

needed such as the architecture introduced in Figure 5.6 that can generalize for fast-changing

environments.

55

Bibliography

[AHP19] Javad Amirian, Jean-Bernard Hayet, and Julien Pettre. Social ways: Learning
multi-modal distributions of pedestrian trajectories with gans, 2019.

[CHS+18] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Open-
pose: Realtime multi-person 2d pose estimation using part affinity fields. CoRR,
abs/1812.08008, 2018.

[CHX+17] Long Chen, Xuemin Hu, Tong Xu, Hulin Kuang, and Qingquan Li. Turn signal
detection during nighttime by cnn detector and perceptual hashing tracking. IEEE
Transactions on Intelligent Transportation Systems, PP:1–12, 04 2017.

[Con92] R. Craig Conlter. Implementation of the pure pursuit path tracking algorithm,
1992.

[Dic07] Ernst D. Dickmanns. Dynamic Vision for Perception and Control of Motion.
Springer, London, 2007.

[DTT+17] Hatem Darweesh, Eijiro Takeuchi, Kazuya Takeda, Yoshiki Ninomiya, Adi Sujiwo,
Y. Morales, Naoki Akai, Tetsuo Tomizawa, and Shinpei Kato. Open source
integrated planner for autonomous navigation in highly dynamic environments.
Journal of Robotics and Mechatronics, 29:668–684, 08 2017.

[FDSF18] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton Fookes. Gd-
gan: Generative adversarial networks for trajectory prediction and group detection
in crowds, 2018.

[GJFF+18] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi.
Social gan: Socially acceptable trajectories with generative adversarial networks,
2018.

[HKLS12] Jaehyun Han, Dongchul Kim, Minchae Lee, and Myoungho Sunwoo. Enhanced
road boundary and obstacle detection using a downward-looking lidar sensor.
IEEE Transactions on Vehicular Technology - IEEE TRANS VEH TECHNOL,
61:971–985, 03 2012.

56

[HZ00] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, USA, 2000.

[JPKA95] Todd Jochem, Dean Pomerleau, B. Sarath Chandra Kumar, and J. Scott Armstrong.
Pans: a portable navigation platform. Proceedings of the Intelligent Vehicles ’95.
Symposium, pages 107–112, 1995.

[KRD08] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and
mapping. IEEE Trans. on Robotics (TRO), 24(6):1365–1378, December 2008.

[KSMM+19] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n, Ian Reid, S. Hamid
Rezatofighi, and Silvio Savarese. Social-bigat: Multimodal trajectory forecasting
using bicycle-gan and graph attention networks, 2019.

[KTI+15] shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, and Kazuya
Takeda. An open approach to autonomous vehicles. IEEE Micro, vol.48, 11 2015.

[Lei86] Robert D Leighty. Darpa alv (autonomous land vehicle) summary. Technical
report, ARMY ENGINEER TOPOGRAPHIC LABS FORT BELVOIR VA, 1986.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft coco: Common objects in context, 2014.

[LMNF09] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate
o(n) solution to the pnp problem. International Journal of Computer Vision, 81,
02 2009.

[MAFK16] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka. 3d bound-
ing box estimation using deep learning and geometry. CoRR, abs/1612.00496,
2016.

[Mag09] Martin Magnusson. The Three-Dimensional Normal-Distributions Transform —
an Efficient Representation for Registration, Surface Analysis, and Loop Detection.
PhD thesis, 12 2009.

[MMT15] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. Orb-slam: A versatile and
accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–
1163, Oct 2015.

[MSM+19] Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Mo-
hamed Elgharib, Pascal Fua, Hans-Peter Seidel, Helge Rhodin, Gerard Pons-Moll,
and Christian Theobalt. Xnect: Real-time multi-person 3d human pose estimation
with a single rgb camera, 2019.

[NHD+19] Satyajit Neogi, Michael Hoy, Kang Dang, Hang Yu, and Justin Dauwels. Context
model for pedestrian intention prediction using factored latent-dynamic conditional
random fields, 2019.

57

[PLH+19] David Paz, Po-Jung Lai, Sumukha Harish, Hengyuan Zhang, Nathan Chan, Chun
Hu, Sumit Binnani, and Henrik Christensen. Lessons learned from deploying
autonomous vehicles at UC San Diego. In Field and Service Robotics, Tokyo, JP,
August 2019.

[Pom95] D. Pomerleau. Ralph: rapidly adapting lateral position handler. In Proceedings of
the Intelligent Vehicles ’95. Symposium, pages 506–511, Sep. 1995.

[QCG+09] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

[QSMG16] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Point-
net: Deep learning on point sets for 3d classification and segmentation. CoRR,
abs/1612.00593, 2016.

[Rac17] Arya S. Abdul Rachman. 3d-lidar multi object tracking for autonomous driving:
Multi-target detection and tracking under urban road uncertainties. 2017.

[RC11] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation (ICRA), Shanghai,
China, May 9-13 2011.

[RF18] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv,
2018.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks, 2015.

[SKS+18] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, S. Hamid
Rezatofighi, and Silvio Savarese. Sophie: An attentive gan for predicting paths
compliant to social and physical constraints, 2018.

[TKLD19] Wai Tun, Sangho Kim, Jae-Woo Lee, and Hatem Darweesh. Open-source tool of
vector map for path planning in autoware autonomous driving software. pages 1–3,
02 2019.

[TMD+06] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann,
Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Stro-
hband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey,
Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessandrini, Gary Bradski,
Bob Davies, Scott Ettinger, Adrian Kaehler, Ara Nefian, and Pamela Mahoney.
Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics,
23(9):661–692, 2006.

58

[WC17] Ruffin White and Henrik Christensen. ROS and Docker, pages 285–307. Springer
International Publishing, Cham, 2017.

[WC18] S. Wang and H. I. Christensen. Tritonbot: First lessons learned from deployment
of a long-term autonomy tour guide robot. In RoMan, Nanjing, China, August
2018. IEEE/RSJ.

[XAJ17] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfusion: Deep sensor fusion
for 3d bounding box estimation. CoRR, abs/1711.10871, 2017.

59

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Thesis
	Introduction
	Related Work
	Thesis Overview

	System Architecture and Vehicles
	Sensor Configurations and Drive-by-Wire System
	Module Abstractions and Containerization

	Core Perception, Planning and Controls
	Open Source Modules
	Localization, Mapping and HD Maps
	Perception
	LiDAR Detection
	Multi-Object Detection using Cameras
	LiDAR/Camera Fusion

	Planning
	Global and Motion Planning
	Cruising and Speed Keeping
	Vehicle Following and Planned Stops

	Path Tracking and Controls
	Vehicle Geometry for Steering Control
	Acceleration and Braking Controls

	Benchmarking and Performance Evaluation for Autonomous Vehicles
	Safety
	UMAV: Unbiased Metrics for Autonomous Vehicle Benchmarking
	Vehicle Performance for Mail Delivery
	Autonomous vs Manual Driving

	Achieving Full Autonomy - L5
	Overview
	Intent for Unstructured Environments
	Moving Away from High Definition maps
	Future Work

	Bibliography

