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Outage-Optimized Multicast Beamforming with
Distributed Limited Feedback

Erdem Koyuncu, Member, IEEE, Christian Remling,
Xiaoyi (Leo) Liu, Student Member, IEEE, and Hamid Jafarkhani, Fellow, IEEE

Abstract
We consider a slowly-fading multicast channel with one T -antenna transmitter and K single-

antenna receivers with the goal of minimizing channel outage probability using quantized beam-

forming. Our focus is on a distributed limited feedback scenario where each receiver can only

quantize and send feedback information regarding its own receiving channels.

A classical result in point-to-point quantized beamforming is that a necessary and sufficient

condition for full diversity is to have �log2 T � bits from the receiver with an appropriate quantizer.

We first generalize this result to multicast beamforming systems and show that a necessary and

sufficient condition to achieve full diversity for all receivers is to have �log2 T � bits from each re-

ceiver with an appropriate quantizer. Achievable diversity gains with a long-term power constraint

are also discussed. Moreover, for a two-receiver system and with R feedback bits per receiver,

we show that the outage performance with quantized beamforming is within O(2− R
32T 2 )dBs to

the performance with full channel state information at the transmitter (CSIT). This constitutes,

in the context of multicast channels, the first example of a distributed limited feedback scheme

whose performance can provably approach the performance with full CSIT. Numerical simulations

confirm our analytical findings.

I. Introduction

Multicasting refers to the transmission of common information to several physically-
separated receivers. In the context of physical layer, a particularly well-investigated scenario
is the multiple-input single-output (MISO) multicast channel, where a T -antenna transmitter
wishes to communicate to K single-antenna receivers over fading channels [1]–[6]. In such
a scenario, when channel state information (CSI) is available to the transmitter, one can
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maximize the overall performance (e.g., the ergodic capacity, or the outage probability)
using beamforming or precoding. The capacity limits of MISO multicast channels with such
CSI-adaptive transmission strategies have first been investigated in [1], where several scaling
results have been derived with different assumptions on T and K. Other work on the capacity
of multicast channels in the large system limit have studied the case of correlated channels
[2], and the performance of antenna subset selection [3].

Unlike a point-to-point MISO system where the optimal transmitter covariance matrix is
simply a beamformer along the channel direction, closed-form expressions for the optimal
covariance matrices or beamforming vectors are not known for a general MISO multicast
system. A significant amount of work thus also exists [4]–[6] on the numerical optimization of
multicast covariance matrices and beamforming vectors, with closed-form optimal solutions
being available for certain values of K and T [5]. In particular, it is known that beamforming
is optimal for K ≤ 3, or close to optimal when T is much larger than K [1], [5], [6]. In
addition, the optimal beamforming problem for a single transmitter multicasting to multiple
groups of receivers have been investigated [7], [8]. Multicell networks consisting of several
interfering transmitters multicasting to several groups of receivers have also been studied
[9]–[14]. Multicast beamforming also finds applications to cognitive networks [15].

Most of these previous studies assume that the transmitter has perfect knowledge of the
CSI. In fact, CSI at the transmitter (CSIT) can be acquired through feedback from the
receivers, each of which can acquire the knowledge of their own receiving channels through
transmitter training sequences. On the other hand, since the CSI can assume any value in
a multi-dimensional complex space, the assumption of perfect CSIT requires an “infinite
number of feedback bits” from every receiver. In practice, each receiver can communicate
only a finite number of bits per channel state as feedback information. A mathematical
formulation of such a limited feedback scenario leads to a distributed quantization problem
where each receiver quantizes only a part of the entire CSI.

A special case is a point-to-point MISO system with K = 1, where the distributed
quantization problem boils down to a simple point-to-point quantization problem and several
solutions are available [16]–[20]. However, very little work exists on the design of limited
feedback schemes when K > 1. In [21], the authors study a scenario where only the channel
direction information is quantized with channel magnitude information still being perfectly
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available at the transmitter (this would again require infinitely many receiver feedback
bits.). In [22], the performance of variable-length quantizers with a central encoder have
been analyzed. To the best of our knowledge, the first “true” distributed quantizers for
beamforming in multicast channels have been proposed in [23]. Although the quantizers in
[23] can provide full diversity, they do not provide rate optimality, and cannot provably ap-
proach the performance with full CSIT. Also, although there are several studies on quantized
feedback for general multi-user systems (including e.g. broadcast [24]–[27], relay [28], [29],
or interference [30]–[32] channels), the corresponding solutions are not directly applicable to
multicast networks due to entirely different quantizer distortion functions.

In this work, we consider outage-optimized distributed quantization of beamforming vec-
tors for a MISO multicast channel. We construct distributed quantizers that can achieve
full diversity in a rate-optimal manner. We also extend our diversity results to the case of
a long-term power constraint at the transmitter. Moreover, for a two-receiver system, we
design distributed quantizers that can approach the performance with full CSIT. Numerical
simulations suggest that a similar result holds for more than two receivers.

The rest of this paper is organized as follows. In Section II, we introduce the system model
and the distributed quantizers. In Section III, we construct rate-optimal distributed quan-
tizers that can provide full diversity. In Section IV, we design quantizers that can approach
the performance with full CSIT. Finally, in Section V, we draw our main conclusions.

Notation: C
m×n is the set of m × n complex matrices with C

T � C
T ×1. �(·) and �(·) are

the real and imaginary parts of a complex number, respectively. 0m×n is the m × n all zero
matrix. X† is the conjugate transpose of a complex matrix X. loga is the base-a logarithm;
log � loge. ‖·‖ is the Euclidean norm, ‖·‖1 is the matrix 1-norm, ‖·‖2 is the matrix 2-norm,
and |〈·, ·〉| is the inner product. | · | is the norm of a complex number or the cardinality of
a set. �·� is the ceiling function. For a set A, Ak is its kth Cartesian power. For a logical
statement S, we let 1(S) = 1 if S is true, and otherwise, we let 1(S) = 0.

II. Preliminaries

A. System Model

We consider a slow fading MISO multicast channel with one transmitter with T antennas
and K single-antenna receivers. Denote the channel from Transmitter Antenna t to Receiver
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k (t ∈ {1, . . . , T} and k ∈ {1, . . . , K}) as htk ∈ C. Also, let hk � [h1k · · · hT k]T ∈ C
T ×1 and

H � [h1 · · · hK ] ∈ C
T ×K denote the channels from the transmitter to Receiver k, and the

entire channel state, respectively. We assume that Receiver k knows the vector hk of its own
receiving channels perfectly.

Let s ∈ C denote the information symbol that we wish to multicast to the receivers. For
a given channel state H, the transmitter sends sx†√P over its T antennas, where P is the
transmitter short-term power constraint, x ∈ X is a beamforming vector, and

X � {x ∈ C
T ×1 : ‖x‖ = 1} (1)

is the set of all beamforming vectors. The channel input-output relationships are

yk = s〈hk, x〉
√

P + ηk, k = 1, . . . , K, (2)

where yk ∈ C and ηk ∈ C are the received signal and the noise at Receiver k, respectively.
Let CN (0, Q) denote a zero-mean circularly-symmetric complex Gaussian random vector
with covariance Q. We assume that for any k ∈ {1, . . . , K}, we have ηk ∼ CN (0, σ2

1k) and
hk ∼ CN (0, σ2

2kIT ) for some σ1k, σ2k > 0, where “∼” denotes equality in distribution, and IT

is the T × T identity matrix. We also assume that η1, . . . , ηK , h1, . . . , hK are independent.
The signal-to-noise ratio (SNR) at Receiver k is |〈x, hk〉|2P . We refer to the quantity

γ(x, H) � min
k

|〈x, hk〉|2P (3)

as the “network SNR.” For a fixed H and x, the capacity of the multicast channel as defined
above is then log2(1 + γ(x, H)) bits/sec/Hz. Without loss of generality, we set the target
data transmission rate to be 1 bit/sec/Hz, in which case an outage occurs if γ(x, H) < 1.

When H is random, we consider a general scenario where the transmitter can utilize
different beamforming vectors for different channel states. For this purpose, consider an
arbitrary mapping M : CT ×K → X , and suppose that the transmitter uses the beamforming
vector M(H) for a given H. We define the outage probability with M as

out(M) � P(γ(M(H), H) < 1). (4)

We also let

d(M) � lim
P →∞

− log out(M)
log P

(5)

denote the diversity gain with M, provided that the limit exists.
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B. Full-CSIT System

If the transmitter somehow knows the entire channel state H perfectly, we say that we have
a “full-CSIT system.” In such a scenario, the transmitter can utilize an optimal beamforming
vector, say F(H), for a given H, so as to minimize the outage probability. It should be clear
that the minimum-possible outage probability can be reached by maximizing the network
SNR for every channel state. Hence, we define the corresponding full-CSIT mapping F as

F(H) � arg max
x∈X

γ(x, H) = arg max
x∈X

min
k

|〈x, hk〉|2, (6)

with ties broken arbitrarily. For K = 1, we have a point-to-point MISO system where the
optimal transmission strategy is simply beamforming along the direction of the sole channel
state h1. We may thus set F(H) = h1

‖h1‖ when K = 1. The first non-trivial case is when K = 2,
for which a solution has been provided in [5]. No closed-form expression for F(H) is known
for K ≥ 3, although numerical solution methods are available [4]. Moreover, no closed-form
expression is known for the resulting minimum-possible outage probability out(F) unless we
have the trivial case K = 1. However, it is straightforward to at least show that d(F) = T

for any K; for completeness, a proof will be provided later on.

C. Partial CSIT Systems via Distributed Limited Feedback

As evident from (6), the calculation of the optimal beamforming vector requires the
knowledge of the entire channel state H. On the other hand, none of the terminals in
the network can acquire H in its entirety. In fact, Receiver k can only acquire its own local
channel states hk via transmitter training. To calculate F(H), the K parts h1, . . . , hK of the
channel state H should be available to the transmitter, which would require an “infinite rate
of feedback” from all the receivers. Therefore, while a full-CSIT system provides the best
possible performance, it is very difficult, if not impossible, to realize in a practical system.

We thus wish to design practical limited feedback schemes that can provably achieve,
or at least approach, the performance with full CSIT. For this purpose, given n ∈ N, let
Bn denote the set of all binary codewords of length n (e.g., B2 = {00, 01, 10, 11}.). Also,
suppose Receiver k can only send bk bits of feedback for every channel state. We consider
a quantizer Q defined by K encoders Ek : CT → Bbk

, k = 1, . . . , K, with the kth encoder Ek

available at the kth receiver, and a unique decoder D : ∏K
k=1 Bbk

→ X that is available at
all terminals. In the following, we describe the corresponding feedback transmission phase
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for a given channel state H. Note that this phase occurs after the transmission of channel
training sequences and before the data transmission phase.

For every k ∈ {1, . . . , K}, by using the encoder Ek, Receiver k encodes only its own channel
state hk and broadcasts the corresponding bk-bit feedback information Ek(hk).1 The receivers
may broadcast the feedback bits sequentially in time in arbitrary order, or they may also
broadcast the feedback bits simultaneously provided that there are dedicated orthogonal
feedback channels for each receiver. Regardless, we assume that all the broadcast feedback
bits are received at every receiver and the transmitter without any errors or delays.2 At this
stage, each receiver and the transmitter thus have perfect knowledge of the K feedback mes-
sages Ek(hk), k = 1, . . . , K. The K feedback messages are jointly decoded at all the terminals
to reproduce a common quantized beamforming vector Q(H) � D(E1(h1), . . . , EK(hk)).
Finally, the transmitter begins data transmission via Q(H). The receivers can decode the
transmitted symbols as they know Q(H) and their own receiving channels. The purpose
of providing the feedback information of a given receiver to all other receivers is thus to
ensure that every receiver will know which quantized beamforming vector Q(H) is used by
the transmitter. The receivers will then be able to do coherent decoding.

In practice, the feedback message of one receiver may not be heard by another receiver due
to, for example, spatial separation. This may complicate coherent decoding of transmitted
data. For such scenarios, instead, one can consider the following modified feedback transmis-
sion scheme: First, all the receivers broadcast their feedback information as in the original
scheme above. Then, the transmitter broadcasts all its K received feedback messages so that
the receivers can also acquire perfect knowledge of all the feedback messages. Alternatively,
one can observe that the knowledge of 〈hk, Q(H)〉 is, in fact, just sufficient for coherent
decoding at Receiver k. Hence, once the transmitter acquires the knowledge of Q(H) through
receiver feedback, it may transmit pilot signals via beamforming through Q(H). This allows

1Hence, unlike some of the existing work [21] on multicast networks with feedback, Receiver k does not encode the

gain ‖hk‖ and the direction hk/‖hk‖ separately; it encodes hk in its entirety via the unique encoder mapping Ek. In

other words, the receivers do not employ magnitude-direction product quantizers, which are suboptimal in general.
2Typically, the transmission duration for the low-rate feedback information will be much less than the channel

coherence time, which may span hundreds to thousands of symbol transmissions. This enables delay-free transmission

of feedback information. Also, the low-rate feedback information can be protected against errors by a sufficiently

powerful channel code without much extra overhead, allowing an error-free or close-to-error-free transmission of

feedback. Analyzing the effects of possible feedback errors, as done in [33], is beyond the scope of the present paper.
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Receiver k to estimate the inner product 〈hk, Q(H)〉 and thus perform coherent decoding.
Our quantizers are thus well-suited for practical applications as they only rely on each

receiver quantizing only its own channels and broadcasting the corresponding feedback
information. Moreover, they do not require multiple exchanges of feedback messages between
the receivers in the form of conferencing. In fact, as discussed above, our quantizers can still
be implemented even if the receivers are unable to overhear each other’s feedback messages.

The quantizer Q maps the channel state H = [h1 · · · hK ] ∈ C
r×t to the beamforming vector

Q(H) = D(E1(h1), . . . , EK(hK)) ∈ X . In fact, it is a special case of the general mapping M as
described in Section II-A. The outage probability with Q is thus out(Q) = P(γ(Q(H), H) < 1),
which is achieved with a feedback rate of Rk(Q) � bk bits per channel state at the kth receiver.

When K > 1, we call Q a “distributed quantizer” as there are then many non-commun-
icating quantizer encoders E1, . . . , EK each of which encodes only a part of the entire CSI.
When K = 1, we call Q a “centralized quantizer” as then only one quantizer encoder encodes
the entire CSI. To gain initial insight on the problem of designing distributed quantizers,
we discuss the existing centralized quantizer design methodology for K = 1, and show why
the same design ideas cannot immediately be applied to the case of K > 1.

D. Centralized vs. Distributed Quantization

For any given compact set (a codebook of beamforming vectors) C ⊂ X , let

M�
C(H) � arg max

x∈C
γ(x, H). (7)

It can be shown that M�
C(H) is an optimal mapping for codebook C in the sense that for any

other mapping M : CT ×K → C, we have out(M�
C) ≤ out(M).

In a point-to-point system (K = 1), the mapping (7) can easily be realized with limited
feedback: The sole receiver can determine the SNR-maximizing beamforming vector M�

C(H) in
C, and feed back �log2 |C|� bits that can uniquely represent M�

C(H). Using these feedback bits,
the transmitter can recover and transmit via the beamforming vector M�

C(H). Therefore, when
K = 1, it is clear how to optimally design the quantizer encoding and decoding functions
for a given codebook. The problem of designing a good quantizer boils down to the design
of good codebooks, and several constructions (e.g., Grassmannian codebooks) are available.

On the other hand, in a multicast network with more than one receiver (K > 1), none
of the receivers can, by itself, determine the beamforming vector M�

C(H) that provides the
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highest network SNR. This is because the network SNR γ(x, H) = mink |〈x, hk〉|2P provided
by a given beamforming vector x ∈ C, depends in general on all the KT channels from the
transmitter to the K receivers. Therefore, when K > 1, for a general codebook C, it is
not immediately clear how to implement the optimal mapping in (7), or whether such an
implementation is even possible.

The absence of a rate-limited distributed implementation of (7) is a fundamental difficulty
in designing structured distributed quantizers. Our general quantizer design strategy is thus
to forget about picking the best beamforming vector, and instead focus on not picking
the worst beamforming vector(s) in a given codebook. For an optimal execution of this
design strategy, we also take into account the specific performance measure at hand and the
corresponding performance goal.

We first show how to achieve the full-CSIT diversity gain d(F) using distributed limited
feedback. Before proceeding, it is worth mentioning that one can achieve full diversity by
transmitting independent complex Gaussian symbols over each antenna (without the need of
any feedback) instead of the rank-1 beamforming strategy that we consider in this paper. The
advantage of beamforming is that it provides the opportunity of using the already-available
point-to-point codes for Gaussian channels for simpler encoding/decoding of data.

III. Diversity Gains of Distributed Quantizers

In this section, we design distributed quantizers that can achieve the full-CSIT diversity
gain T . For a point-to-point MISO system with beamforming, it is a well-known fact that a
necessary and sufficient condition to achieve full diversity is to have �log2 T � feedback bits
from the receiver [17] with an appropriate quantizer. We generalize this result to multicast
networks by showing that a necessary and sufficient condition to achieve the full-diversity
gain T is to have �log2 T � feedback bits from every receiver with an appropriate quantizer.

Let us first verify that indeed we have d(F) = T for any K. Let et � [01×(t−1) 1 01×T −t], t =
1, . . . , T denote the antenna selection vectors, and E � {e1, . . . , eT } represent their codebook.

Proposition 1. For any K, the full-CSIT system provides a diversity gain of T . In other
words, for any K, we have d(F) = T .

Proof. For any x and H, we have γ(x, H) = mink |〈x, hk〉|2P ≤ mink ‖hk‖2P ≤ ‖h1‖2P .
Hence, γ(F(H), H) ≤ ‖h1‖2P . This final upper bound provides a diversity gain of T , which
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implies d(F) ≤ T . On the other hand, we have γ(F(H), H) = maxx∈X mink |〈x, hk〉|2P ≥
maxx∈E mink |〈x, hk〉|2P = maxt mink |〈et, hk〉|2P = maxt mink |hkt|2P . Since the random
variables mink |hkt|2P, t = 1, . . . , T are independent with each providing a diversity gain of
1, their maximum provides a diversity gain of T . Hence, d(F) ≥ T . Combining this with the
inequality d(F) ≤ T that we have already proved, we obtain d(F) = T , as desired.

The proof of Proposition 1 above also suggests the following possible strategy for the
construction of a quantizer that can achieve full diversity: If one can select the best antenna
with the highest network SNR for every channel state, then one can achieve full diversity.
This is, however, equivalent to using the mapping M�

E , which does not admit a distributed
implementation as discussed in Section II-D. In order to design a distributed quantizer that
achieves full diversity, we recall our general design strategy (see Section II-D): Instead of
trying to pick the best beamforming vector in a given codebook (such as E), we shall instead
focus on not picking the worst beamforming vector(s) in a given codebook.

For this purpose, for any given n ≥ T , let Cn � {x1, . . . , xn} ⊂ X be an arbitrary set of
beamforming vectors such that for any n ≥ T , any T of the vectors in Cn (chosen without
repetition) are linearly independent.3 For example, for T = 2, n = 3, and C3 = {x1, x2, x3},
(i) the vectors x1 and x2 should be linearly independent, (ii) the vectors x1 and x3 should
be linearly independent, and (iii) the vectors x2 and x3 should be linearly independent.

Consider now a MISO system where K = 1. For any given h1 ∈ C
T and n ≥ T , the vectors

in Cn can be ordered from the worst to the best in terms of the SNR provided by each. In
other words, we have |〈xi1 , h1〉|2P ≤ · · · ≤ |〈xin , h1〉|2P for some permutation (i1, . . . , in) of
{1, . . . , n}. For example, for n = 3, we have (i1, i2, i3) ∈ {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),
(3, 1, 2), (3, 2, 1)}. Note that the ordering indices i1, . . . , in depend on the channel state h1.
We consider the mapping Wn(h1) � xiT

that chooses the “T th worst” beamforming vector
in Cn. For example, for T = 2, n = 4, and C4 = {x1, x2, x3, x4}, suppose that |〈x3, h′〉|2 ≤
|〈x1, h′〉|2 ≤ |〈x2, h′〉|2 ≤ |〈x4, h′〉|2 for some h′ ∈ C

2. Then, we have W4(h′) = x1.
The mapping Wn just avoids the T − 1 worst beamforming vectors in Cn. We now show

3The following argument guarantees the existence of such codebooks for n ≥ T : Let u1, . . . , un be independent and

uniformly distributed on X . Let p be the probability that there are T vectors in {u1, . . . , un} which are not linearly

independent. It is sufficient to show p = 0. For this purpose, let p′ be the probability that the T vectors u1, . . . , uT

are not linearly independent. We have p′ = 0. By a union bound, we obtain p ≤
(

n
T

)
p′ = 0, which means p = 0.



10

that it provides full diversity.

Proposition 2. Let K = 1, n ≥ T , and Cn be an arbitrary set of beamforming vectors
such that any T vectors in Cn are linearly independent. Then, choosing always the T th worst
beamforming vector in Cn provides a diversity gain of T . In other words, d(Wn) = T .

Proof. Suppose n = T . Then, by definition, WT (h1) = arg maxx∈CT
|〈x, h1〉|2. In other words,

one chooses the best beamforming vector out of T linearly independent beamforming vectors.
It is known (see [17]) that this mapping provides full diversity. For n > T , let J represent
the collection of all subsets of {1, . . . , n} with cardinality T . We have |J| =

(
n
T

)
. For any

J ∈ J, let A(J ) = {h1 : J = {i1, . . . , iT }} ⊂ C
T . In other words, A(J ) represents the set

of channel states for which the T worst beamforming vectors have the indices in J . Note
that if h1 ∈ A(J ), then Wn chooses the best beamforming vector in codebook {xj : j ∈ J }.
In other words, if h1 ∈ A(J ), then Wn(h1) = M�

{xj :j∈J }(h1). Therefore,

out(Wn) =
∑
J ∈J

P
(

|〈M�
{xj :j∈J }(h1), h1〉|2 <

1
P

, h1 ∈A(J )
)

≤ ∑
J ∈J

P
(

|〈M�
{xj :j∈J }(h1), h1〉|2 <

1
P

)
=

∑
J ∈J

out
(
M�

{xj :j∈J }
)

. (8)

This implies d(Wn) ≥ minJ ∈J d(M�
{xj :j∈J }). For any J ∈ J, the T vectors xj, j ∈ J are linearly

independent by the construction of the codebook Cn. By invoking the already-established
special case of the proposition for n = T , we have d(M�

{xj :j∈J }) = T for any J ∈ J, and thus
d(Wn) ≥ T . Since (obviously) d(Wn) ≤ T as well, we obtain d(Wn) = T .

The proposition shows that in the MISO setting, it is not necessary to choose the best
beamforming vector in a codebook to achieve full diversity. One just has to avoid the T − 1
worst beamforming vectors and pick at least the T th worst vector in the given codebook.
We now show how this observation can be applied to the multicast setting for designing a
distributed quantizer that can achieve full diversity. We first provide an example for T = 4,
K = 2, and then state and prove the general case.

Example 1. Let T = 4, K = 2. We design a distributed quantizer that achieves full diversity
with 2 feedback bits per receiver per channel state. Consider the codebook C16 = {x1, . . . , x16}.
Note that any 4 of the 16 vectors in C16 are linearly independent. We imagine the vectors in
C16 as cells of a 4 × 4 grid as shown in Fig. 1. In a sense that is to be made precise in the
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following, Receiver 1 will be “working on” the columns of the grid, while Receiver 2 will work
on the rows of the grid. Each row/column is uniquely represented by one of the 2-bit binary
codewords. All the data in Fig. 1 will be available at both receivers and the transmitter.

x1

x5

x9

x13

x2

x6

x10

x14

x3

x7

x11

x15 x16

x12

x8

x4

Receiver 1
00 01 10 11

00

01

10

11

R
ec

ei
ve

r
2

Fig. 1: An example quantizer for T = 4, K = 2.

Consider now a distributed quantizer, namely Q̃, that operates as follows: Given channel
state H = [h1 h2], Receiver 1 calculates and sorts its SNR values as |〈xi1 , h1〉|2P ≤ · · · ≤
|〈xi16 , h1〉|2P for some {i1, . . . , i16} = {1, . . . , 16}. Then, for Receiver 1, as far as its re-
ceived SNR is concerned, the 3 worst beamforming vectors are xi1 , xi2 and xi3. In the grid
representation of the 16 beamforming vectors in Fig. 1, there exists a column index, say
Ic ∈ {1, . . . , 4}, that does not contain any one of the 3 worst beamforming vectors xi1 , xi2

and xi3. Receiver 1 feeds back the 2-bit binary codeword that represents Ic (For example,
if i1 = 9, i2 = 7 and i3 = 16, we have Ic = 2, and Receiver 1 feeds back 01.). Similarly,
Receiver 2 calculates and sorts its SNR values as |〈xj1 , h2〉|2P ≤ · · · ≤ |〈xj16 , h2〉|2P for
some {j1, . . . , j16} = {1, . . . , 16}. There exists, this time, a row index Ir ∈ {1, . . . , 4} that
does not contain any one of the 3 worst beamforming vectors xj1 , xj2 , xj3 for Receiver 2.
Receiver 2 feeds back 2 bits that represents Ir. The transmitter recovers the indices Ir and Ic,
and transmits over the beamforming vector in the Ith

r row, Ith
c column of the grid in Fig. 1.

We now analyze the diversity gain with Q̃. Using a union bound over all receivers, we have

out(Q̃) = P
(

min
k∈{1,2}

|〈Q̃(H), hk〉|2P < 1
)

≤
2∑

k=1
P

(
|〈Q̃(H), hk〉|2P < 1

)
. (9)

On the other hand, by construction, the quantizer Q̃ avoids any of the 3 worst beamforming
vectors for any of the receivers. Hence, by Proposition 2, for any k ∈ {1, 2}, we have
P(|〈Q̃(H), hk〉|2P < 1) ∈ O(P −4). This implies d(Q̃) = 4.
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The construction in Example 1 extends to the case of an arbitrary T and K in a straightfor-
ward manner. In fact, let I be the collection of all K-dimensional vectors whose components
are elements of the set {1, . . . , T}. We use the notation i = [i1 · · · iK ] ∈ I for members of I.
Consider now the reindexing of the codebook CT K as {xi : i ∈ I} = CT K . For any H, and
any k ∈ {1, . . . , K}, there is an index Ik ∈ {1, . . . , T} such that the set {xi : ik = Ik, i ∈ I}
does not contain any of the T − 1 worst beamforming vectors for Receiver k. The index
Ik can be calculated at Receiver k and fed back using �log2 T � bits. The transmitter uses
the beamforming vector x[I1···IK ]. Let Q̃C

T K
denote the corresponding distributed quantizer.

Proposition 2 applied to a union bound over all receivers reveals that Q̃C
T K

provides full
diversity. We summarize this result by the following proposition.

Proposition 3. For any T and K, there is a quantizer that achieves the full diversity gain
of T with �log2 T � feedback bits per receiver.

Let us now state the converse result. The proof is provided in Appendix A.

Proposition 4. Let hk ∼ CN (0, Qk), k = 1, . . . , K. If the feedback rate is less than �log2 T �
bits at any one of the receivers, the maximum-possible diversity gain is less than T . In other
words, for any quantizer Q with Rk(Q) < �log2 T � for some k ∈ {1, . . . , K}, we have d(Q) < T .

We then have the following combined restatement of Propositions 3 and 4.

Theorem 1. A necessary and sufficient condition to achieve the full diversity gain in a
quantized multicast beamforming system is to have �log2 T � feedback bits from each receiver
with an appropriate quantizer.

This generalizes the classical result for point-to-point MISO systems to multicast systems.

A. Diversity Gains with Power Control

We now analyze the achievable diversity gains with a long-term term power constraint. For
a simpler exposition, we first consider the transmission of independent circularly-symmetric
complex Gaussian data symbols with covariance q(H)IT over the T transmitter antennas,
where q(H) ∈ R≥0 is the quantized transmission power for channel state H. The formulation
of the power-control quantizer q follows the same steps as in Section II-C. The outage
probability with q is out(q) � P(log2(1 + q(H) mink ‖hk‖2) < 1). Due to the long-term
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power constraint, we require E[q] ≤ P
T

. We may also assume σ1k = σ2k = 1, ∀k, since the
diversity gain is invariant under a constant scaling of channel/noise variances.

In a point-to-point MISO system (K = 1), it is known [34] that for any quantizer q, we
have d(q) ≤ ∑2R

i=1 T i, where R is the feedback rate of the sole receiver. In fact, there are
P -dependent variables αi, i = 1, . . . , 2R such that the circular channel-inversion quantizer

q�(h1) � 1
(
‖h1‖2 ∈ [0, α1)

) 1
α2R

+
2R∑
i=1

1
(
‖h1‖2 ∈ [αi, αi+1)

) 1
αi

, α2R+1 � ∞,

achieves the full diversity gain of d(q�) = ∑2R

i=1 T i with E[q�] = P
T

. Now, for x ∈ R≥0, let
I(x) = 2R if x ∈ [0, α1)∪ [α2R , ∞), and I(x) = i if x ∈ [αi, αi+1) for some i ∈ {1, . . . , 2R −1}.
Note that q�(h1) = α−1

I(‖h1‖2). If K > 1 and R feedback bits are available per receiver,
Receiver k can feed back the R-bit binary representation of I(‖hk‖2). The transmitter can
then transmit with a power of α−1

mink I(‖hk‖2). With this strategy, an outage event occurs if
‖hk‖2 ∈ [0, α1) for some k ∈ {1, . . . , K}. Using a union bound over receivers, it follows that
the diversity gain is ∑2R

i=1 T i as in the case of K = 1. The average transmission power is
E[α−1

mink I(‖hk‖2)] = E[maxk α−1
I(‖hk‖2)] ≤ ∑K

k=1 E[α−1
I(‖hk‖2)] = KP

T
. Since the diversity gain is

invariant under a constant scaling of transmission power, with a power constraint of P , a
diversity gain of ∑2R

i=1 T i is achievable with R feedback bits per receiver. Using an argument
that is similar to the proof of Proposition 4, it can also be shown that the diversity gain of∑2R

i=1 T i is, in fact, the best possible. We omit a formal proof for brevity.
For beamforming, we recall that with �log2 T � feedback bits per receiver and a short-term

power constraint, the quantizer Q̃C
T K

provides an SNR of at least c‖hk‖2P at Receiver k,
where c depends only on CT K . Transmission with covariance P

T
IT , on the other hand, provides

an SNR of P
T

‖hk‖2 at Receiver k. Hence, the SNRs of beamforming and scaled-identity
covariance transmission are equal up to constant multipliers. We can thus couple Q̃C

T K
with

the power control strategy discussed in the preceding paragraph to achieve a diversity gain
of ∑2R

i=1 T i with �log2 T �+R feedback bits per receiver. By utilizing only t of the T antennas
at the transmitter (1 ≤ t ≤ T ), a diversity gain of ∑2R

i=1 ti is achievable with �log2 t�+R bits.
Hence, with R bits, a diversity gain of max{∑2R−�log2 t�

i=1 ti : 1 ≤ t ≤ min{T, R}} is achievable.
Determining the optimality of this result will remain as an open problem. Nevertheless, with
a long-term power constraint, the achievable diversity thus grows exponentially with the per-
receiver feedback rate. This is in contrast to a system with a short-term power constraint
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where the maximum diversity is bounded from above at any feedback rate.

IV. Approaching the Full-CSIT Performance with Distributed Feedback

We now consider the design of distributed quantizers whose outage probabilities can
be made arbitrarily close to that of a full-CSIT system. This will be accomplished via
the following two steps. As the first step, in Section IV-A, we will show that for any
arbitrary codebook C, one can synthesize a distributed quantizer that can achieve the
same performance as the optimal mapping M�

C for codebook C. Then, as the second step,
in Section IV-B, we will show that the outage probabilities of optimal mappings for well-
designed codebooks can approach the full-CSIT outage probability. A combined restatement
of our results in these two steps will show the existence of distributed quantizers whose
performances can approach that of a full-CSIT system.

A. The Synthesis of a Distributed Quantizer out of an Optimal Mapping

As we have mentioned in Section II-D, the fundamental difficulty in designing distributed
quantizers is the absence of a rate-limited distributed implementation of the optimal map-
ping M�

C(H) = arg maxx∈C mink |〈x, hk〉| for a given codebook C. If this difficulty could be
overcome, the problem of designing a good distributed quantizer would boil down to the
much easier problem of designing a good quantizer codebook.

Fortunately, for the outage probability performance measure, we do not need to implement
M�

C as it is. In fact, an outage event with M�
C, i.e. the event maxx∈C mink |〈x, hk〉|2P < 1, occurs

if and only if there is no beamforming vector in C that provides an SNR of at least 1 at
every receiver, or equivalently, if and only if maxx∈C mink 1(|〈x, hk〉|2P ≥ 1) = 0. Hence, for

QC(H) � arg max
x∈C

min
k

1
(
|〈x, hk〉|2P ≥ 1

)
(10)

(with ties broken arbitrarily), we have out(QC) = out(M�
C). Hence, similar to the mapping

M�
C, the new mapping QC provides a beamforming vector in C that avoids outage at every

receiver, whenever such a beamforming vector exists. On the other hand, in contrast to M�
C,

the mapping QC can be realized as a distributed quantizer. In fact, Receiver k can calculate
the |C| binary values 1(|〈x, hk〉|2P ≥ 1), x ∈ C and feed them back using |C| feedback bits.
The transmitter can then determine QC(H) for every given H via |C| feedback bits from each
receiver. We summarize these results by the following proposition.
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Proposition 5. For any codebook C, the distributed quantizer QC achieves the same outage
probability as the optimal mapping M�

C for codebook C with |C| feedback bits per receiver. In
other words, for any codebook C, we have out(QC) = out(M�

C) with Rk(QC) = |C|, ∀k.

There is one particular disadvantage of our construction so far: The synthesis of the
distributed quantizer given an R-bit codebook (a codebook of cardinality 2R) requires 2R

bits per receiver. In other words, there is an exponential rate amplification while transitioning
from the codebook rate to the feedback rate. For example, an 8-bit codebook requires 256
bits per receiver to be realized in a distributed manner.

In order to resolve the exponential rate amplification problem, we revisit the operation of
the encoders of QC at the receivers. Consider, for example, the quantizer encoding operation
at Receiver 1. For a given codebook C = {xi : i = 1, . . . , |C|}, what Receiver 1 feeds back
can be thought as a configuration {i : |〈xi, h1〉|2P < 1}, i.e. a set of beamforming vectors in
C that result in outage at Receiver 1 given that the channel state from the transmitter to
Receiver 1 is h1. Now, let

χ(C) �
∣∣∣{{i : |〈xi, h1〉|2P < 1} : h1 ∈ C

T ×1
}∣∣∣ (11)

denote the cardinality of the collection of all configurations given C. In order to convey the
binary values 1(|〈x, hk〉|2P < 1), x ∈ C to the transmitter, it is then sufficient for each
receiver to send �log2 χ(C)� feedback bits for every channel state. The reason |C| feedback
bits is sufficient for this purpose is a result of the trivial estimate χ(C) ≤ 2|C|.

As it turns out, for codebooks with large enough cardinalities, the quantity χ(C) is in
fact much smaller than 2|C|, i.e. most of the configurations are, in fact, not feasible. To show
this, we will utilize an existing result on hyperplane arrangements on real Euclidean spaces.
Let F = {fi : i = 1, . . . , |F|} ∈ R

d be an arbitrary codebook of d-dimensional real vectors.
A hyperplane {f ∈ R

d : 〈f , d〉 = b} where d ∈ R
d − {0} and b ∈ R then induces the

configuration {i : 〈fi, d〉 ≤ b} on codebook F . We let

χ(F) �
∣∣∣{{i : 〈fi, d〉 < b} : b ∈ R, d ∈ R

d
}∣∣∣ . (12)

One can readily observe that when d = 1, we have χ(F) ≤ 2|F| with equality if and only if
the elements of F are all distinct. For a general d, Harding [36] has proved the tight bound

χ(F) ≤ 2
d∑

i=0

(|F| − 1
i

)
. (13)
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whenever |F| ≥ d + 1. Equality holds in (13) if the points in F are in general position, i.e.,
if every hyperplane of Rd contains less than or equal to d points of F .

The bound (13) implies that for any non-empty F , we have χ(F) ∈ O(|F|d). This greatly
improves upon the trivial estimate χ(F) ≤ 2|F|, especially when |F| is large.

Coming back to our problem, the quantity χ(C) in (11) can be thought as a “complex
version” of χ(F). Intuition suggests that a similar bound on χ(C) should hold. We verify
this intuition via the following proposition, which essentially follows from Harding’s result.
The proof of the proposition can be found in Appendix B.

Proposition 6. For any codebook C = {x1, . . . , x|C|}, the cardinality χ(C) = |{{i : |〈xi, h1〉|2P <

1} : h1 ∈ C
T ×1}| of the collection of all configurations given C admits the upper bound

χ(C) ≤ min
⎧⎨⎩2|C|, 16

( 2T∑
i=0

(|C| − 1
i

))4⎫⎬⎭ . (14)

Note that the upper bound in (14) is O(|C|8T ) as |C| → ∞. Therefore, for any fixed
codebook C with a large cardinality, and for any given channel state H, the binary values
1(|〈x, hk〉|2P < 1), x ∈ C can be losslessly conveyed from Receiver k to the transmitter using
8T log2 |C| + O(1) bits (As we shall also demonstrate in Section V, for codebooks with small
cardinalities, we typically have χ(C) = 2|C| and thus need |C| bits). Using these feedback
bits, the transmitter can determine QC(H) in the same manner as discussed at the beginning
of this section. The resulting quantizer, which we shall refer to as QC from now on, achieves
out(QC) = out(QC) = out(M�

C). This establishes the following main result of this section.

Theorem 2. For any codebook C, the quantizer QC achieves the same outage probability as the
optimal mapping M�

C for codebook C with 8T log2 |C| + O(1) feedback bits per receiver. In other
words, for any codebook C, we have out(QC) = out(M�

C) with Rk(QC) ∈ 8T log2 |C| + O(1), ∀k.

Hence, for any codebook C with |C| ≤ 2R, we can synthesize a distributed quantizer that
achieves the same performance as the optimal mapping for C and can operate with roughly
8TR bits per receiver when R is large. For small R, as discussed in the beginning of this
subsection, the synthesis can be accomplished with 2R bits per receiver via the quantizer QC.

B. The Existence of Good Quantizer Codebooks

In Section IV-A, for any given codebook C, we have shown how to synthesize a distributed
quantizer out of an optimal mapping for C in a rate-efficient manner. Therefore, to design
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a good distributed quantizer whose performance can approach the full-CSIT performance,
it is sufficient to design a good quantizer codebook.

Since the full-CSIT beamforming vector can take any value in X , we wish to design our
codebook, say C, in such a way that for any beamforming vector x ∈ X , there should be a
codebook element, say y ∈ C, that is “close enough” to x. This way, we hope to minimize
the losses due to quantization of an optimal beamforming vector. Also, a desirable property
is to have some control on the precision of quantization, i.e., how close we want y to be
to x. In this context, high precision translates to low quantization losses but high feedback
rates, while low precision means high losses but low rates. Such a control over precision thus
allows us to determine the dependence of the achievable performance on the feedback rate.
These properties that we wish to have in our codebook design lead to the following notion
of a “δ-covering codebook.”

Definition 1. Let δ ∈ (0, 1). We call Dδ a δ-covering codebook if ∀x ∈ X , ∃y ∈ D such that
|〈y, x〉|2 ≥ 1 − δ.

Though not vital for our discussions in this paper, explicit constructions of δ-covering
codebooks for any δ ∈ (0, 1) is available [20]. We summarize the construction in [20] below.

Example 2. For δ ∈ (0, 1), let sδ � 2�log2(2T/δ)	+1, Sδ � {−1 + ksδ, k = 0, . . . , 2s−1
δ }, and

Yδ � {y/‖y‖ : �(y1), �(y1), . . . , �(yT ), �(yT ) ∈ Sδ, and 0 < ‖y‖ ≤ 1}. According to [20,
Proposition 3], for any δ ∈ (0, 1), the codebook Yδ is a δ-covering codebook with |Yδ| ∈ O(δ−2t).

Let us now discuss how to utilize the δ-covering codebooks in a point-to-point MISO
system with K = 1. Consider the optimal quantizer M�

Dδ
(H) = arg maxx∈Dδ

|〈x, h1〉|2 for
codebook Dδ. Note that M�

Dδ
can be implemented using �log2 |Dδ|� feedback bits. By the

definition of Dδ, for any given channel state h1, there exists y ∈ Dδ such that |〈 h1
‖h1‖ , y〉|2 ≥

1 − δ. This leads to the lower bound

|〈M�
Dδ

(h1), h1〉|2P ≥ |〈F(h1), h1〉|2P (1 − δ) = ‖h1‖2P (1 − δ). (15)

Therefore, in the worst case scenario, a well-designed quantizer results in a uniformly bounded
multiplicative SNR loss. This is a very useful property as most performance measures (such
as outage probability or ergodic capacity) are monotonic functions of the SNR. We can thus
conclude that the performance of a rate-�log2 |Dδ|� quantized beamforming system at power



18

P is at least that of a full-CSIT system at power P (1 − δ). In particular, for the codebook
Yδ, the performance with R bits of feedback at power P is no worse than the full-CSIT
performance at power P (1 − O(2− R

2t )).
Then, a fundamental question is to determine whether or not the SNR loss due to

quantization can similarly be uniformly bounded for a general multicast system with K > 1
receivers. The positive answer is provided by the following theorem for the special case of
K = 2 receivers. The proof of the theorem can be found in Appendix C.

Theorem 3. Let K = 2, and Dδ be a δ-covering codebook, i.e. ∀x ∈ X , ∃y ∈ D, |〈y, x〉|2 ≥
1 − δ. Then, for any H, we can quantize the full-CSIT beamforming vector F(H) to a vector
y ∈ Dδ such that the resulting network SNR is always within (1−O(

√
δ)) of the network SNR

with full CSIT. In other words, ∀H ∈ C
T ×K , ∃y ∈ Dδ, γ(y, H) ≥ γ(F(H), H)(1 − O(

√
δ)).

A major open problem is to study whether a similar result holds for more than two
receivers. We shall note the following in this context.

Remark 1. Let
−→
hk = hk

‖hk‖ , k = 1, . . . , K. In [1, Section III.B], it is claimed that (with our
notation)

|〈F(H), −→
hk〉|2 ≥ 1

K2 , ∀k, ∀H. (16)

If (16) were true, then Theorem 3 could easily be shown to hold for any K. In fact, suppose
(16) holds. Due to the δ-covering property of Yδ, there is a beamforming vector y ∈ Yδ such
that |〈F(H), y〉|2 ≥ 1 − δ. Using Lemma 1 in Appendix C, we could then obtain |〈y,

−→
hk〉|2 ≥

|〈F(H),
−→
hk〉|2(1−K2

√
δ), ∀k, ∀H. Multiplying each side of this inequality by ‖hk‖2 and then

taking the minimum over all k, we would obtain γ(y, H) ≥ γ(F(H), H)(1 − K2
√

δ), which
generalizes Theorem 3 to any number of receivers K.

Unfortunately, the claim in (16) does not hold (despite the fact that mink |〈F(H), hk〉|2 ≥
1

K2 mink ‖hk‖2 holds for every H as shown in [35, Claim 2.4.2(i)].). As a counterexample,
let T = K = 2 with h1 = [2 0]T, h2 = [0 1]T. For z = [z1 z2]T = F([h1 h2]), suppose
|z1|2 = |〈z,

−→
h1〉|2 ≥ 1

K2 = 0.25. Then, since |z1|2 + |z2|2 ≤ 1, we have |z2|2 ≤ 0.75. This
implies γ(z, H) = mink∈{1,2} |〈z, hk〉|2 ≤ |〈z, h2〉|2 = |z2|2 ≤ 0.75. On the other hand, for the
beamforming vector z′ = [

√
0.2

√
0.8]T, we have γ(z′, H) = 0.8 > 0.75, which contradicts

the optimality of z. In fact, it can be shown (we omit the proof here as it is not relevant to
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our major focus) that for any K and T there exists a set H ⊂ C
T ×K of channel states such

that P(H) > 0 and |〈F(H), −→
hk〉|2 ≥ 1

K2 , ∀k fails to hold for any H ∈ H.

Combining Theorems 2 and 3, we obtain the following main result for a two-user multicast
system with distributed quantized beamforming.

Theorem 4. Let K = 2. With R feedback bits per receiver per channel state, an outage
performance of out(F; P (1 − O(2− R

32T 2 ))) is achievable at any P , where out(F; P ) represents
the outage probability of a full-CSIT system for a given transmitter power constraint P .

Proof. Theorem 3 implies that for the optimal mapping M�
Yδ

for Yδ, we have out(M�
Yδ

; P ) ≤
out(F; P (1 − O(

√
δ))). On the other hand, by Theorem 2, M�

Yδ
can be realized as the dis-

tributed quantizer QYδ
using 8T log2 |Dδ| + O(1) = 16T 2 log2

1
δ

+ O(1) bits per each receiver.
The equality follows since |Yδ| ∈ O(δ−2T ) as shown in Example 2. Setting R = 16T 2 log2

1
δ

+
O(1) and solving for δ, we obtain the statement of the theorem.

One way to visualize the outage probability loss due to quantization is that in the usual
graph of P in the horizontal axis versus the outage probability in the vertical axis (where
both axes are in the logarithmic scale), the outage probability with R bits of feedback per
receiver is at most the full-CSIT curve shifted −10 log10(1 − O(2− R

32T 2 ))dBs to the right.
Equivalently, since as x → 0, − log(1 − O(x)) = O(x), the outage probability with R bits of
feedback is within O(2− R

32T 2 )dBs to the outage probability with full CSIT.
It is also instructive to compare our result for K = 2 to that of a point-to-point MISO

system where K = 1. For the case K = 1, it is known (see e.g. [18]) that the performance
with quantized beamforming is at most within O(2− R

T −1 )dBs to the outage probability with
full CSIT. Hence, despite the complicated distributed nature of the quantizer design problem
for K = 2, the performance loss due to quantization can still be made to decay exponentially
with the per-receiver feedback rate R as O(2− R

32T 2 ). Here, we also note that the factor 32T 2

is likely not the best possible, and can perhaps be improved (made smaller) with more work.
Let us now discuss the case of more than two receivers K ≥ 3. In this case, our results

are not strong enough to prove that one can uniformly approach the full-CSIT performance
using distributed feedback. The difficulty is to show the existence of good codebooks whose
performances (with optimal mappings) can uniformly approach the full-CSIT performance.
The existence of such codebooks can be proved e.g. by an extension of Theorem 3 to more
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than two receivers. Nevertheless, if such an extension had been available, it would have
been straightforward to synthesize good distributed quantizers via the same arguments as
in Section IV-A (Note that the results of Section IV-A hold for any number of receivers.).
On the other hand, intuition suggests, without much room for doubt, that the performance
of a sequence of δ-covering codebooks should uniformly approach the full-CSIT performance
as δ → 0. Part of the next section verifies this intuition with numerical simulations for the
special case of three receivers.

V. Numerical Results

In this section, we provide numerical simulations that verify our analytical results. We
first show examples of quantizers that can achieve full diversity in a rate-optimal manner
for a three-receiver system with two or three transmitter antennas.

We recall from Section III that the necessary and sufficient condition to achieve full
diversity with an appropriate quantizer is to have �log2 2� = 1 bit of feedback per receiver
when T = 2, and �log2 3� = 2 bits of feedback per receiver when T = 3. Such a performance
can be achieved with the quantizer Q̃C

T K
, where CT K is an arbitrary codebook of cardinality

T K with the property that any of its T − 1 elements are linearly independent. Hence, for
the case T = 2 and K = 3, we have constructed one codebook C8,1 of cardinality 23 = 8
by drawing 8 samples independently and uniformly at random on X . We have constructed
a second codebook C8,2 of cardinality 8 via the same procedure. For the case T = 3 and
K = 3, we have constructed the codebooks C27,1 and C27,2 of cardinality 33 = 27 in the same
manner. The performance of the corresponding quantizers Q̃C8,1 , Q̃C8,2 , Q̃C27,1 and Q̃C27,2 are
then as shown in Fig. 2 together with the performance of the open-loop beamforming system
(R = 0) with no feedback4 and the full-CSIT systems (R = ∞). In the figure, the horizontal
axis represents P in decibels, and the vertical axis represents the outage probability.

We can observe that the open-loop beamforming system can only achieve a diversity gain
of 1, the quantizers Q̃C8,1 and Q̃C8,2 can achieve a diversity gain of 2, and the quantizers Q̃C27,1

and Q̃C27,2 achieve a diversity gain of 3. In other words, the quantizers Q̃C8,1 , Q̃C8,2 , Q̃C27,1 and
Q̃C27,2 achieve the maximal diversity gains of their respective systems. Obviously, and as we

4The open-loop beamforming system refers to the scenario where the transmitter uses a unique beamforming vector,

say xo ∈ X , for every channel state. The resulting outage probability can be shown to be independent of the number

of transmitter antennas T and the choice of the beamforming vector xo.



21

0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

100� � � � �
�

�
�

�
�

�
�

�
�

�
�

♦ ♦ ♦ ♦ ♦
♦

♦
♦

♦
♦

♦
♦

♦
♦

�

�

�

�

�

�

�

�

P (dB)

O
u
ta

g
e
p
ro

b
a
b
il
it
y

T ∈{2, 3}, R=0

T =2, R=1 (˜QC8,1
)

� T =2, R=1 (˜QC8,2
)

T =3, R=2 (˜QC27,1
)

♦ T =3, R=2 (˜QC27,2
)

T =2, R=∞
� T =3, R=∞

Fig. 2: Achieving full diversity in a rate-optimal manner using distributed limited feedback.

can also observe from Fig. 2, the array gains of quantizers of the form Q̃C will depend on the
exact values of the elements of C. Further optimizations of the codebook C in this context
is an interesting direction for future work.

We now verify that we can approach the full-CSIT performance by increasing the per-
receiver feedback rates. Also, in order to demonstrate that our constructions can be ap-
plied to different codebook designs, we consider here Grassmannian codebooks. Let GT,N �
arg minC∈X N max{|〈x, y〉| : x, y ∈ C, x �= y} denote a cardinality-N Grassmannian code-
book for a system with T transmitter antennas. We have constructed GT,N for (T, N) ∈
{(2, 2), (2, 4), (2, 16), (3, 4), (3, 8), (3, 16), (3, 256)} via numerical methods [17]. The perfor-
mance of the corresponding distributed quantizers QGT,N

(which can be implemented using
R = N bits per receiver) are shown in Fig. 3 for a three-receiver system with either T = 2
and T = 3. We can observe that for both T = 2 and T = 3, as the per-receiver feedback rate
R = N increases, the performance of the distributed quantizers approaches uniformly to the
full-CSIT performance. This suggests that Theorem 4 will also hold for K = 3. We have
obtained similar results for a two-receiver system K = 2, and have thus verified Theorem 4.

We now consider the performance of the quantizers QGT,N
for different T and N ; we refer to

Section IV-A for the definition of QC for a given codebook C. Note that for any T and N , the
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Fig. 3: Approaching the full-CSIT performance using distributed limited feedback.

quantizer QGT,N
can achieve the exact same performance as the quantizer QGT,N

, and it uses
only �log2 χ(GT,N)� ∈ O(log4 N) feedback bits instead of the N bits as required by QGT,N

. In
general, implementing the quantizer QC requires one to determine the collection of all possible
configurations C � {{i : |〈xi, h1〉|2P ≤ 1} : h1 ∈ C

T ×1} given C. Therefore, as a first step,
we have estimated C via C′ � {{i : |〈xi, h1j〉|2 ≤ 1} : j = 1, . . . , J}, where h1j, j = 1, . . . , J

is a sequence of circularly-symmetric complex Gaussian random vectors with unit variance
for each component, and J is chosen to be a sufficiently large number so as to (hopefully)
observe all configurations. Using this method, we have identified 4 configurations for G2,2,
16 for G2,4, 1090 for G2,16, 16 for G3,4, 256 for G3,8, and finally, 14496 for G3,16. We have then
simulated the actual communication system as follows: Given codebook C, each receiver
calculates the configuration c corresponding to the given (generated) channel state. This is
followed by each receiver feeding back the index of the configuration in C′ with the smallest
Hamming distance to c. The quantizer decoder uses the beamforming vector that avoids
outage at all the receivers according to the received configurations. If no such beamforming
vector exists, the quantizer decoder uses an arbitrary beamforming vector. Note that the
performance of the resulting quantizer will be the same as QC (and thus QC) provided that
C′ = C. In fact, for the Grassmannian codebooks, the resulting simulated outage probabilities
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was an exact match with the outage probabilities in Fig. 3. This shows, for example, that
the cost of implementing G2,16 can be lowered down to �log2 1090� = 11 bits per receiver
instead of 16 bits per receiver.

Unfortunately, determining the set of all configurations of a codebook with our “exhaustive
Monte Carlo” method is not a feasible task when the codebook cardinality is large. For
example, interpolation suggests that the codebook G3,256 will have around 240 configurations
(so that it can be implemented with 40 bits per receiver instead of 256 bits per receiver.). One
solution may be to find good structured codebook designs that will induce a structured set of
configurations. Finding such codebook designs, or, in general, designing efficient algorithms
for finding good distributed quantizers will remain as challenging open problems.

VI. Conclusions

We have studied the design of outage-optimal distributed quantizers for beamforming in
MISO multicast channels. We have constructed rate-optimal quantizers that can achieve full
diversity. For the special case of a two-receiver system, we have also designed quantizers that
can provably approach the outage probability with full CSIT. Determining whether a similar
results holds for more than two receivers remains as an open problem. Also, beamforming
is not optimal for more than 3 receivers. Therefore, the extensions of our results for general
covariance transmission is another important future research direction.

Appendix A

Proof of Proposition 4

Without loss of generality, suppose Receiver 1 provides less than �log2 T � bits of feedback.
Given k ∈ {1, . . . , K}, let Bk � {Ek(hk) : hk ∈ C

T } denote the range of the encoder mapping
Ek at Receiver k. We have |B1| < T . Also, given k ∈ {1, . . . , K} and a non-empty binary
codeword b, let Bk,b � {hk ∈ C

T : Ek(hk) = b} denote the set of all channel states for which
Receiver k feeds back b. For any given k ∈ {1, . . . , K}, let f(hk) denote the probability
density function of hk. We can then find a lower bound on the outage probability with Q as

out(Q) = P(min
k

|〈Q(H), hk〉|2P < 1) (17)

≥ P
(
|〈Q(H), h1〉|2P < 1

)
(18)
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=
∑

bK∈BK

∫
BK,bK

· · · ∑
b1∈B1

∫
B1,b1

1
(
|〈D(b1, . . . , bk), h1〉|2P < 1

) K∏
k=1

f(hk)dhk (19)

≥ ∑
bK∈BK

∫
BK,bK

· · · ∑
b1∈B1

∫
B1,b1

1
(
|〈yb1 , h1〉|2P < 1

) K∏
k=1

f(hk)dhk (20)

=
∑

b1∈B1

∫
B1,b1

1
(
|〈yb1 , h1〉|2P < 1

)
f(h1)dh1 (21)

≥ ∑
b1∈B1

∫
B1,b1

1
(

max
b∈B1

|〈yb, h1〉|2P < 1
)

f(h1)dh1 (22)

= P
(

max
b∈B1

|〈yb, h1〉|2P < 1
)

, (23)

where

yb � arg min
x∈X

∫
B1,b

1
(
|〈x, h1〉|2 < 1

)
f(h1)dh1, b ∈ B1 (24)

are the outage-minimizing centroids of the quantization cells of Encoder 1. In the derivation
above, (19) is the re-expression of the outage probability in (18) with respect to the quantizer
encoder cells and feedback codewords. Inequality (20) is by the definition of yb1 in (24). Also,
(21) follows from the evaluation of the integrals and summations in (20) for k �= 1. Finally,
(22) follows since |〈yb1 , h1〉|2 ≤ maxb∈B1 |〈yb, h1〉|2 for every b1 ∈ B1.

Let Y′ be the T ×|B1| matrix whose columns are yb, b ∈ B1. Consider the decompositions
Q1 = WE2W† and Y � E†W†Y′ = U1DU2, where W, U1 ∈ C

T ×T , U2 ∈ C
|B1|×|B1| are

unitary matrices, and D ∈ C
T ×|B1|, E ∈ C

T ×T are diagonal matrices. For g ∼ CN (0, IT ), we
have h1 ∼ WEg and g ∼ Ug for any unitary U. In particular, h1 ∼ WEU1g. Therefore,

max
b∈B1

|〈yb, h1〉|2 ∼ max
b∈B1

|〈yb, WEU1g〉|2 (a)= ‖g†U†
1E†W†Y′‖2

1 = ‖g†U†
1Y‖2

1
(b)= ‖g†DU2‖2

1

(c)
≤ ‖g†D‖2

1‖U2‖2
1

(d)
≤ |B1|‖g†D‖2

1‖U2‖2
2

(e)= |B1|‖g†D‖2
1

(f)= |B1| max
i∈{1,...,|B1|}

d2
i |gi|2, (25)

where di is the ith diagonal entry of D, and gi is the ith component of g. Also, (a) and (f) are
by the definition of 1-norm, (b) follows once we substitute Y = U1DU2, (c) follows from the
submultiplicity of the 1-norm, (d) follows from the inequality ‖A‖1 ≤ √

n‖A‖2, A ∈ C
n×n,

and (e) follows as the 2-norm of any unitary matrix is unity. This implies

out(Q) ≥ P
(

|B1| max
i∈{1,...,|B1|}

d2
i |gi|2P < 1

)
. (26)

Note that Y depends only on the beamforming vectors and the covariance matrix Q1. Hence,
the singular values d1, . . . , d|B1| of Y are independent of g. This means that (26) involves
the maximum of |B1| independent exponential random variables. Thus, d(Q) ≤ |B1| < T .
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Appendix B

Proof of Proposition 6

We begin with the following definitions. For any given y ∈ C
T ×1, let

yR � [�(y1) �(y1) �(y2) �(y2) · · · �(yT ) �(yT ) ] ⊂ R
2T ×1, (27)

yI � [−�(y1) �(y1) − �(y2) �(y2) · · · − �(yT ) �(yT ) ] ⊂ R
2T ×1. (28)

Note that for any y1, y2 ∈ C
T ×1, we have �(〈y1, y2〉) = 〈yR

1 , yR
2 〉 and �(〈y1, y2〉) = 〈yR

1 , yI
2〉.

We also let CR � {xR : x ∈ C}. Now, without loss of generality, suppose that P = 1 (The
collection of all possible configurations remain the same unless P = 0). We have

χ(C) =
∣∣∣{{i : |〈xi, y〉| < 1} : y ∈ C

T ×1
}∣∣∣ (29)

=
∣∣∣{{i : −u ≤ 〈xR

i , yR〉 ≤ u, −v ≤ 〈xR
i , yI〉 ≤ v} : y ∈ C

T ×1, u, v ≥ 0, u2 + v2 < 1
}∣∣∣ (30)

≤
∣∣∣{{i : −u ≤ 〈xR

i , yR〉 ≤ u, −v ≤ 〈xR
i , yI〉 ≤ v} : y ∈ C

T ×1, u, v ≥ 0
}∣∣∣ . (31)

The inequality follows since omitting a condition (which, in the above derivation, is the con-
dition u2 +v2 ≤ 1) on the configurations cannot decrease the total number of configurations.
Consider now the general problem of estimating the cardinality of the collection

A � {{i : S1(i, z) and · · · and SL(i, z)} : z ∈ Z} , (32)

where i takes values on a finite set, S1(i, z), . . . , SL(i, z) are L arbitrary logical statements
whose truth depend on i and z, and Z is some arbitrary space where z takes its values. Let
B� � {{i : S�(i, z)} : z ∈ Z} and B � ∏L

�=1 B�, with the understanding that the product is
Cartesian. We claim that the map [B1 · · · BL] �→ ⋂L

�=1 B� is a surjection from B to A. In
fact, if A ∈ A, then A = ⋂L

�=1{i : S�(i, z0)} for some z0 ∈ Z, and for B′
� = {i : S�(i, z0)}, � =

1, . . . , L, we have [B′
1 · · · B′

L] �→ A. The surjectivity implies |A| ≤ |B|. Moreover, since
B�, � = 1, . . . , L are finite collections of sets, we have |B| = ∏L

�=1 |B�|, and therefore

|A| ≤
L∏

�=1
|B�| =

L∏
�=1

|{{i : S�(i, z)} : z ∈ Z}| . (33)

In particular, for the expression in (31), we can identify 4 different conditions (L = 4)
corresponding to the 4 inequalities. We can then obtain

χ(C) ≤
∣∣∣{{i : −u ≤ 〈xR

i , yR〉} : y ∈ C
T ×1, u, v ≥ 0

}∣∣∣×∣∣∣{{i : 〈xR
i , yR〉 ≤ u} : y ∈ C

T ×1, u, v ≥ 0
}∣∣∣ ×

∣∣∣{{i : −v ≤ 〈xR
i , yI〉} : y ∈ C

T ×1, u, v ≥ 0
}∣∣∣×
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∣∣∣{{i : 〈xR
i , yI〉 ≤ v} : y ∈ C

T ×1, u, v ≥ 0
}∣∣∣. (34)

The first factor can be evaluated to be∣∣∣{{i : −u≤〈xR
i , yR〉} : y∈C

T ×1, u, v ≥ 0
}∣∣∣ =

∣∣∣{{i : −u≤〈xR
i , yR〉} : y∈C

T ×1, u ≥ 0
}∣∣∣ (35)

=
∣∣∣{{i : −u≤〈xR

i , d〉} : d∈R
2T ×1, u ≥ 0

}∣∣∣ (36)

≤
∣∣∣{{i : −u≤〈xR

i , d〉} : d∈R
2T ×1, u ∈ R

}∣∣∣ (37)

=
∣∣∣{{i : u≤〈xR

i , d〉} : d∈R
2T ×1, u ∈ R

}∣∣∣ (38)

=
∣∣∣{{i : u>〈xR

i , d〉} : d∈R
2T ×1, u ∈ R

}∣∣∣ (39)

= χ(CR). (40)

Each remaining factor in (34) can similarly be bounded by χ(CR). Therefore, we have χ(C) ≤
[χ(CR)]4. Applying (13) to this final inequality proves the proposition.

Appendix C

Proof of Theorem 3

We need the following two lemmas. The following lemma has originally been stated in
[22], but the provided proof had flaws. Here, we provide a corrected proof.

Lemma 1. For any u, v, w ∈ X , we have
∣∣∣|〈u, v〉|2 − |〈u, w〉|2

∣∣∣ ≤
√

1 − |〈v, w〉|2.

Proof. Let G � vv† − ww†, z � 〈v, w〉, and μ =
√

1 − |z|2. After some straightforward
calculations, one can verify that G admits the decomposition G = μ(u1u†

1 − u2u†
2), where

u1 = αv − βv0 exp(j∠z) and u2 = βv + αv0 exp(j∠z) are orthonormal vectors with v0 =
1
μ
(w − vv†w), α =

√
1
2(1 + μ), and β =

√
1
2(1 − μ). Therefore,∣∣∣∣|〈u, v〉|2 − |〈u, w〉|2

∣∣∣∣ = |u†Gu| = μ
∣∣∣|〈u, u1〉|2 − |〈u, u2〉|2

∣∣∣ (41)

≤ μ
(
|〈u, u1〉|2 + |〈u, u2〉|2

)
= μ‖u‖2 = μ. (42)

This concludes the proof.

Lemma 2. Let Dδ be a δ-covering codebook, i.e. ∀x ∈ X , ∃y ∈ D, |〈y, x〉|2 ≥ 1 − δ. Then,
for every ε > 0 and every v, w ∈ X with |〈v, w〉|2 ≤ 1 − ε, there are constants δ̃, C̃ > 0 (that
may depend on ε) such that ∀δ ≤ δ̃, ∃z ∈ Dδ with |〈z, w〉| ≥ |〈v, w〉| and |〈z, v〉| ≥ 1 − C̃δ.
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Proof. We first define some auxiliary variables. Let

A � 2 exp(j∠〈v, w〉)
ε

, L � ‖v + A
√

δw‖, u � v + A
√

δw
L

. (43)

Note that L2 = 1 + δ|A|2 + 2|A||〈v, w〉|√δ. Therefore,

L = 1 + |A||〈v, w〉|
√

δ + O(δ), and 1
L

= 1 − |A||〈v, w〉|
√

δ − O(δ). (44)

By the δ-covering property of Dδ, for every δ > 0, there exists z ∈ Dδ with

|〈z, u〉|2 ≥ 1 − δ. (45)

We shall prove that such a choice of z satisfies |〈z, w〉| ≥ |〈v, w〉| and |〈z, v〉| ≥ 1 − O(δ)
for every sufficiently small δ, and this will conclude the proof of the lemma. First, we show
that |〈z, w〉| ≥ |〈v, w〉|. Let z̃ � z exp(−j∠〈z, u〉). We have ‖z̃ − u‖2 = 2 − 2�(〈z̃, u〉) =
2 − 2|〈z, u〉| ≤ 2 − 2

√
1 − δ < 2 − 2

√
(1 − δ)2 = 2δ, where the first inequality follows from

(45). Therefore, ‖z̃ − u‖ ≤ √
2δ, and thus z̃ = u + t

√
2δ for some ‖t‖ ≤ 1. We now have

|〈z, w〉| = |〈z̃, w〉| =
∣∣∣〈u, w〉 + 〈t, w〉

√
2δ

∣∣∣ (46)

=
∣∣∣∣∣〈v, w〉 + A

√
δ

L
+ 〈t, w〉

√
2δ

∣∣∣∣∣ (47)

≥ |〈v, w〉 + A
√

δ|
L

−
∣∣∣√2δ

∣∣∣ (48)

= (|〈v, w〉| + |A|
√

δ)(1 − |A||〈v, w〉|
√

δ − O(δ)) −
√

2δ (49)

= |〈v, w〉| +
(

2(1 − |〈v, w〉|2)
ε

− √
2

) √
δ − O(δ), (50)

≥ |〈v, w〉| +
(
2 − √

2
) √

δ − O(δ) (51)

where (48) follows from the reverse triangle inequality and the fact that |〈t, z〉| ≤ ‖t‖‖z‖ = 1;
(49) follows since the phase of 〈v, w〉 equals that of A

√
δ and by the substitution of the value

of 1
L

in (44); (50) follows once we substitute the value of A and after some straightforward
simplifications; and, finally, (51) follows since 1−|〈v,w〉|2

ε
≥ 1 by our initial assumption on v

and w. The last inequality implies |〈z, w〉| ≥ |〈v, w〉| for sufficiently small δ.
We now show that |〈z, v〉| ≥ 1 − O(δ). By (43), we have v = Lu − A

√
δw, and thus,

|〈v, z〉| =
∣∣∣L〈u, z〉 − A

√
δ〈w, z〉

∣∣∣ ≥ L|〈u, z〉| − |A|
√

δ|〈w, z〉|. (52)

The inequality follows from the reverse triangle inequality. Let us now consider the terms
in the final lower bound one by one. The quantity L has already been evaluated in (44).
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We also have |〈u, z〉| > 1 − δ according to (45). We find an upper bound on |〈w, z〉| using
the same arguments as in (46) through (50). The only difference is that for (48), we use
the triangle inequality instead of the reverse triangle inequality, and this leads to the bound
|〈w, z〉| ≤ |〈v, w〉| + O(

√
δ). Substituting all these bounds and equalities to (52), we obtain

|〈v, z〉| ≥ (1 + |A||〈v, w〉|
√

δ + O(δ))(1 − δ) − |A|
√

δ(|〈v, w〉| + O(
√

δ)). (53)

Upon expanding the parenthesis and simplifying, we have |〈v, z〉| ≥ 1 − O(δ).

We are now ready to prove the theorem. Let z = F(H). We shall prove that for every
sufficiently small δ, there exists y ∈ Dδ such that γ(y, H) ≥ (1 − δ)γ(z, H).

When K = 2, it is well-known [5] that γ(z, H) = maxX∈Ct×t:‖X‖≤1 mink ‖Xhk‖2. In other
words, if we consider beamforming as transmission over a rank-1 covariance matrix, the
network SNR provided by the best rank-1 covariance matrix is already equal to the network
SNR provided by a general-rank covariance matrix. Hence, for any X ∈ C

t×t with ‖X‖ ≤ 1,
we have γ(z, H) ≥ mink ‖Xhk‖2. In particular, for X = 1√

T
IT , we have

γ(z, H) ≥ 1
T

min
k

‖hk‖2. (54)

Now, for any given k ∈ {1, 2}, let −→
h k = hk/‖hk‖ and αk = |〈z,

−→
h k〉|2. We have γ(z, H) =

mink(αk‖hk‖2). The lower bound in (54) then implies that either α1 ≥ 1
T

or α2 ≥ 1
T

(As
otherwise, if α1 < 1

T
and α2 < 1

T
, we have γ(z, H) < 1

T
mink ‖hk‖2 and this contradicts

(54).). Suppose that α1 ≥ 1
T

and α2 ≥ 1
T

. By the δ-covering property of Dδ, there exists
y′ ∈ Dδ such that |〈z, y′〉|2 ≥ 1 − δ. Using Lemma 1, we can then obtain

|〈y′,
−→
h k〉|2 ≥ αk −

√
1 − |〈z, y′〉|2 ≥ αk −

√
δ ≥ αk(1 − T

√
δ) (55)

for any k ∈ {1, 2}. The last inequality follows since αk ≥ 1
T

. Therefore,

γ(y′, H) = min
k

(|〈y′,
−→
h k〉|2‖hk‖2) ≥ min

k
(αk‖hk‖2)(1 − T

√
δ) = γ(z, H)(1 − T

√
δ), (56)

and this concludes the proof of the theorem for the special case where α1, α2 ≥ 1
T

.
Suppose now that α1 ≥ 1

T
but α2 < 1

T
. We apply Lemma 2 with the choice of variables

v = z and w = −→
h 2. Note that since |〈v, w〉|2 = |〈z,

−→
h 2〉|2 = α2 < 1

T
, Lemma 2 is applicable

for the special case ε = 1 − 1
T

, and moreover, in such an application, the constants δ′ and C ′

in the statement of Lemma 2 will depend only on T . Hence, according to Lemma 2, there are
constants C1, C2 > 0 (that depend only on T ) such that ∀δ < C1, ∃y′′ ∈ Dδ, |〈y′′, z〉|2 ≥ 1−C2δ
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and |〈y′′,
−→
h 2〉|2 ≥ |〈z,

−→
h 2〉|2 = α2. The inequality |〈y′′, z〉|2 ≥ 1−C2δ implies (using the same

arguments as in (55)) that |〈y′′,
−→
h 1〉|2 ≥ α1(1 − T

√
C2δ). Combining this with the bound

|〈y′′,
−→
h 2〉|2 ≥ α2, we obtain γ(y′′, H) ≥ γ(z, H)(1 − T

√
C2δ), which proves the theorem for

the case α1 ≥ 1
T

and α2 < 1
T

. The remaining case α1 < 1
T

and α2 ≥ 1
T

can be handled in
the same manner. This concludes the proof.
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