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A HIGH-ORDER METHOD FOR STIFF BOUNDARY VALUE
PROBLEMS WITH TURNING POINTS*

DAVID L. BROWNT AND JENS LORENZ}

Abstract. This paper describes some high-order collocation-like methods for the numerical solution of
stiff boundary-value problems with turning points. The presentation concentrates on the implementation of
these methods in conjunction with the implementation of the a priori mesh construction algorithm introduced
by Kreiss, Nichols and Brown [SIAM J. Numer. Anal., 23 (1986), pp. 325-368] for such problems. Numerical
examples are given showing the high accuracy which can be obtained in solving the boundary value problem
for singularly perturbed ordinary differential equations with turning points.
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Introduction. In recent papers [6], [12], Kreiss, Nichols and Brown introduced a
new numerical method for solving boundary value problems for stiff linear systems of
ordinary differential equations (ODEs). The method they presented is unique among
methods for boundary value problems in that it provides an a priori procedure for
constructing a difference mesh which will be appropriate for resolving rapidly varying
features of the solutions of these problems, such as those that arise in connection with
“turning points.” Once the mesh has been constructed, the differential equations are
approximated using a combination of symmetric and unsymmetric two-point difference
formulas in a way which essentially gives second order accuracy. In this paper, we
show how high-order collocation methods can be used in a natural way in conjunction
with the ideas presented in [6], [12] in order to increase the accuracy of the computed
solutions. Numerical experiments show that extremely accurate results can be obtained
in this way.

It should be emphasized that the use of collocation methods for solving stiff
boundary value problems is not a new idea (see e.g. the papers of Ascher and Weiss
[2], [3], and Ringhofer [13]). Symmetric collocation formulas, such as those used in
[2], [3] have been shown to work well for stiff boundary value problems if the mesh
is carefully constructed so as to resolve boundary layers, and if no turning points are
present. (A certain eigenvalue condition must be satisfied as well (see [1], [10], [11]).)
For problems with turning points, however, numerical experiments have shown that
there can be difficulties with applying symmetric schemes directly (see e.g. [12]). For
this reason, as suggested by the ideas in [12], we describe a combination of symmetric
and unsymmetric formulas which can be used for a discretization of the problem. In
order to apply these formulas the system of ODEs must be transformed to a form
where growing, moderate, and decaying modes are essentially decoupled. This transfor-
mation is done automatically in our code, and in fact done simultaneously with the a
priori mesh construction. For certain problems without turning points in which fast-
growing, moderate, and fast-decaying modes are decoupled in the given differential
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system Ringhofer [13] has suggested and analyzed collocation methods similar to those
we present here.

In § 1 we discuss the derivation of the collocation formulas that we use. Section
2 discusses their application to systems of ODEs. In § 3 we briefly discuss the local
elimination procedure by which the interior collocation points are eliminated. In order
to apply our formulas to systems of ODEs, each equation in the system is considered
as a scalar equation, and depending on the size of the real part of the diagonal element
in the coefficient matrix, either a symmetric formula or the appropriate unsymmetric
formula is applied. The choice of which formula to apply depends on accuracy
considerations; this is discussed in § 4. The a priori construction of the difference mesh
is done in such a way that the resulting computed solution is guaranteed to be resolved
by that mesh. A discussion of the mesh construction procedure is given in § 5. In § 6
we present numerical examples which demonstrate the accuracy of the collocation
formulas when applied to a system of two second-order singularly perturbed ODEs
for which the exact solution is known.

1. Derivation of the difference formulas for scalar equations. Consider the linear
scalar ODE given by

dy(x)

(1) T

=a(x)y(x)+f(x), 0=x=1.

This ODE is to be approximated using collocation formulas. Let m =2 be the number
of nodes on the normalized interval [0,1]: 0=po<p,< --- <p,, =1. The p; are
assumed to be placed symmetrically with respect to p =3; for example, the p; can
denote the Lobatto points on [0, 1] or the Radau points on [0, 1) together with the
Radau points on (0, 1]. For the time being, we assume that mesh points 0=x; <x,<
-+ <xy =1 have been constructed already, and we consider a fixed mesh interval
X, =X=X,4, =X, + h. The nodes

O0=po<p;< -+ <pn=1, m = 2 fixed,

in the normalized interval 0<p <1 lead on each mesh interval [x,, X,+1] to auxiliary
points x,; = x,+hp;, j=0, - -, m, the collocation points.

Ultimately, the formulas derived here will be applied to systems of ODEs in the
following way: Each differential equation in the system is considered separately, and
based on information about the corresponding diagonal element of the coefficient
matrix, either a symmetric or an appropriate unsymmetric formula is selected and
applied to that scalar equation. Collocation formulas of the type we will describe lead
to two-point difference formulas of a high order of accuracy. The high accuracy is
obtained by using values of the coefficients of the ODE at auxiliary points between
the actual meshpoints as well as the values at the meshpoints. Since the differential
equations for each scalar component of the unknown dependent variable in the system
of ODEs involves values of the other components at these auxiliary points as well, it
is clear that the same set of collocation points must be used for each scalar equation
even if the same difference formulas are not used. We are thus led to difference formulas
similar to those studied by Ringhofer [13] for problems without turning points.

Three formulas will be described:

(a) A symmetric formula, suitable for h|a|= O(1):

(b) A right-biased formula, suitable for Re a « —1:

(c) A left-biased formula, suitable for Re a » 1.
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(a) The symmetric formula. Forj=1, - - -, m there are uniquely determined weights
Wi (k=0,1,- -+, m) such that for all polynomials p(s) of degree =m

[0 5= 3 wiintoo.

0

(These weights can be expressed as integrals of the Lagrange interpolation polynomials
(see e.g. [16]).) Now let x,.,, =x,+h, x,;,=x,+hp;, j=0, - -, m. Integrating (1.1), we
have

Y(x,) = y(x,)=h f (ay+1) (x, +hs) ds,

which motivates the difference equations
(12) uy—u,=h ¥ wila()ua+fx)l,  j=1,-",m
k=0

This is a system of m linear equations for the m+ 1 unknowns U, j=0,---,m
(b) The right-biased formula. For j=1,---, m there are uniquely determined
weights wﬁ( (k=1,- -, m) such that for all polynomials p(s) of degree =m —1

(1.3) j " p(s) d“é wEp(pe).

0

In contrast to the symmetric formula, the node p, =0 is not allowed on the right-hand
side of (1.3). As above, this motivates the difference equations

Uy —u,= h Z w}lz([a(ka)uvk +f(ka)]’ ]= 1, i ( (M
k=1

Again we have a system of m equations for m + 1 unknowns.
(c) Theleft-biased formula. Forj=1, - - - , m there are uniquely determined weights
ijk (k=0,- -, m—1) such that for all polynomials p(s) of degree =m —1

J p(s)ds= mz wip(pe)-

Pj—1

Integrating (1.1), we obtain
1

Y(Xp41) —y(x,;-)=h J (ay+£)(x,+hs) ds

Pj—1

which motivates the difference equations
m-—1

(1'4) Uy~ uuj—l = h Z wﬁc[a('ka)uuk +f(ka)]’ ] = 1’ T, m
k=0

Summary. With suitable definition for the coefficients e and w}, each of these
three sets of differences formulas can be written in the form

(1.5)

T3

e;'i;cuvk = h z W}I;c[a(ka)uvk +f(xuk)]3 J = 1’ T, m
0 k=0
These difference formulas are equivalent to collocation or implicit Runge-Kutta type
formulas (cf. [16]).

Remark. The local truncation error of the symmetric formula is O(h™*|y™*?|))
whereas the one-sided formulas lead to a local truncation error of the order
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O(h™|ly"™*"||). This holds for all choices of nodes p;. In particular, we have studied
two choices for the set of nodes { p;}, namely the Lobatto points, and the Radau points
used twice (as explained below). As is well known, the special choice of Lobatto points
leads to an error O(h>™) at the mesh points for the symmetric formula. This favorable
“superconvergence” result is lost for the one-sided formulas, and indeed we were not
able to make use of superconvergence results for the mixed schemes which we describe
in the next section. If one uses the Radau points on (0, 1] as nodes P1,° ", Pm, then
superconvergence will be obtained for the right-biased formula. For symmetry
reasons, the Radau points on [0, 1) should be included as nodes also if both fast-growing
and fast-decaying modes are present in the differential equation. However, for the
examples tested these schemes with “Radau points twice” do not compare favorably
with the schemes using Lobatto points. (See Table 3 in § 7 for an example.) It should
also be emphasized that the concept “order of convergence” must be used with care
in the present context of stiff equations since one is not studying the case h— 0. The
estimates of the local truncation error are relevant, however, since by the mesh
construction employed the solution will be smooth with respect to the underlying grid.

2. Application of the collocation formulas to systems of equations. Consider now
the system of ODEs given by

dy(x)
dx

where A(x) e C™", y(x), f(x)e C". It follows from the results of [12] that if the matrix
A(x) is essentially diagonally dominated, the pth row of (2.1) can be discretized using
one of the three formulas introduced in § 1, and the choice of which formula to use
for each row is determined by looking at the size and sign of the real part of the
diagonal element of that row, Re a,,(x). Specifically, denoting by z*” the ith component
of a vector ze C", we can look at the scalar equation

dv'?) |
yT(x)_ pp(x)y(P)(X)_—'Z: api(x)y(!)(x)+f(p)(x)

as if the variables y”, i # p are known functions when we make the choice of which
formula to use. Applying (1.5) to (2.2) leads to the system of equations

(2.1) —Ax)y(x)+f(x), O0=x=1

(2.2)

m m
23 ¥ Pupon % w}f’[a,,,,(xyk)u‘ui’+ 5 () ull +f<P><x,k>],
k=0 k=0 i#*p
pzl,.”ana J:L,m

Here the coefficients w’, j=1,--+,m, k=0, - -, m can take on the values Wi, Wi
or wj. and similarly for the e{f’. With the notation u, = (u7, ..., uT )7 (2.3) can be

written as a system of mn linear equations for u, of the form
(2.4) Mu,=r,

where M e C*hmmn p = Cmn Identifying u,,, = u(,+1)0, and including n boundary
conditions for (2.1) we arrive at a system of mnN linear equations for a total of mnN
unknowns, where N is the number of meshpoints x, to be used. As is well known, by
a process of local elimination, this can be reduced to a banded system of Nn equations
for the approximate solution of (2.1) at the meshpoints x,,v=1,- - - , N. Our
implementation of this reduction is discussed in the next section.

As discussed in [12], the assumption that the system (2.1) is in essentially diagonally
dominant form initially is usually too restrictive. As in that paper, it is generally
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required that the system be transformed to a form in which the diagonal elements
essentially dominate the rows of the matrix A(x). In general, then, it is required that
the system (2.1) be discretized in the transformed form.

Define A, = A(x,) and assume that T,, T,., are determined such that T,A, T, =
D Tosa Ay i i =, - TS essentially diagonally dominated. (It is assumed that
|T,+,— T,| is not large.) Set

(x=x,)

T(x)= TV+ (Tu+l_Tv)y xVEX§xv+]

and introduce the transformed variable
¥(x) = T(x)y(x).
From (2.1) we obtain
(2.5) F=Ty'+ T'y=(TAT '+ T'T 5+ Tf
By our assumptions, the matrix
PAT + T L.

is essentially diagonally dominated: thus the equation for 7 can be treated as described
above. For technical reasons, we prefer to discretize directly in terms of y instead of
¥ and use the following equation:

(Ty)'=(TA+T')y+ Tf.
With the notation
B(x)=T(x)A(x)+T'(x),  g(x)=T(x)f(x),
we have
(2.6) (Ty))=By+g.
For each component p, 1=p=n, of (2.6), the appropriate collocation formula (sym-
metric, right-biased or left-biased) can be determined by looking at the diagonal element

of the pth row of the matrix TAT ™' in (2.5). Once this choice has been made, the
scalar equation

d(Ty)'”(x)

(2.7) o

= (By)"(x) +¢'"(x)

can be discretized, and equations analogous to (2.4) can be obtained. With appropriate
definitions of the matrices Ej, Wy, they are given by

(2'8) Z EjkT(ka)uuk = h kz “/]'k[B(ka)uuk+g(xuk)]’ ] = 1’ P (8
k=0 —0
This is again a system of mn equations for (m+1)n unknowns of the form (2.4).

3. Local elimination. For efficient numerical computation using these formulas,
it is desirable to reduce the system (2.4) to one in which only u,, and u,,, appear:

3.1) Bu,,,+Cu,,=r

with B, C € C™", re C". To do this, we eliminate the unknowns u,,, " * -, U, locally.
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After an interchange of columns in the matrix M, we write the system (2.4) as

A

u,
(32) (I)’ MOaMm) Uyo =f
Upm

where i, = (ul;, -+, uln_1)", Pis mnx(m—1)n, My and M,, are mn X n. We assume
now that at least (m —1)n rows of the mn rows of P are linearly independent, i.e.,
that P has rank (m —1)n. Applying a Gaussian elimination process with column pivoting
we transform the system (3.2) to an equivalent system

A

i
UlMulMB] .
(3.3) [OI c|B U, |=r.

The desired matrices B, C and the n-vector r in (3.1) can now be read off from the
last n equations of (3.3).

4. The choice of collocation formula to apply. So far, we have introduced the
collocation formulas that we use, but we have not discussed how the choice is made
of which formula to apply to each component of the ODE system. Consider again the
scalar equation (1.1) with a(x)=a a constant and the forcing function f(x) set to
zero. Assume for the moment that A = Re a =0, so that either the centered or right-
biased formulas will be appropriate to apply. After elimination of the auxiliary variables
Uy, j=1,- -+, m—1, each collocation formula leads to an equation of the form

(41) Uyr1= G(ha)uu

where h=x,,,—x, is the local meshwidth. By definition, G(z) is the growth function
of the method. From consistency considerations, it is clear that G(z) must be an
approximation to e®. Under reasonable assumptions on the pj, it can be shown that
for fixed m, and small |z|, the growth functions G,(z) of the symmetric formulas
introduced in § 1 will be better approximations to e than will be the growth functions
Gk(z) for the right-biased formulas. However, as z > —co, we have that

|Go(z) = €*| > 1,
while
|Gr(z) —e?|>0.
There is therefore a largest negative number z = —z-(m) for which
|Go(2) — €*|=|Gr(z) — €.

Table 1 lists the values of z-(m) for the Lobatto points and for the Radau points
used twice (cf. §1). Note that as the number of collocation points increases, the
symmetric formula can be used for larger and larger values of h Re a. This is clear
from looking at the graphical representations of the growth functions given in Figs. 1
and 2 for the Lobatto points.

Since a desirable property of a method is that its growth function approximate
e® as well as possible, it is natural to switch from the symmetric formula to the
right-biased formula if h Re a is less than —z. Correspondingly, for the case h Re a > 0,
the switch should be made to the left-biased formula when h Re a exceeds Zc.

For the variable coefficient case, the situation is slightly more complicated, since
a(x,) and a(x,.,) may not have the same properties. Similarly to [9], we choose the
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TABLE 1
Values of z. for different num-
bers of collocation points. (ncol =
m+1 is the number of collocation
points per mesh interval.)

Lobatto points

ncol Ze
2 1.00
2.00
3.60
3.77
5.29
5.56
7.05
7.35

O 0NN Wn AW

Radau points twice

4 3.74
6 5.03
8 6.27

appropriate method for the interval [x,, x,.,] as follows. Let a, := h Re a(x,), a, .., =
h Re a(x,,); then there are four cases to consider:

(1) (Moderate case) If |a,|= zc and |a, .| = z¢, then use the symmetric formula.

(2) (Decaying case) If @, < —z¢, and a,+; =0, or @, ,; < —zc and a, =0, then use
the right-biased formula.

(3) (Growing case) If a,>zc and @, =0, or a,.,>z- and a, =0, take the
left-biased formula.

(4) If @, and a,., have opposite signs, and either |a,| or |, .| exceeds zc there
is no natural choice of formula. If this case occurs, Kreiss and Kreiss [9] require that

1.000

0.000

—1.000

L 1 N
—200. —100. 0.

F1G. 1. Growth functions for Lobatto points, symmetric formulas.
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=)
S
S
8 m odd
S
IS
m even
=3
S
S
T L 1 )
—200. —100. 0.

FIG. 2. Growth functions for Lobatto points, right-biased formulas.

a meshpoint be added within the interval [x,, x,.,] such that on each of the resulting
two intervals, one of the above 3 cases will apply. In practice, the mesh construction
algorithm of Kreiss, Nichols and Brown [12] always leads to a mesh in which this
fourth case never arises. This is basically because this situation would mean that the
coefficient a(x) was not logarithmically smooth with respect to the constructed mesh
which is not allowed (cf. § 5 and [6], [12]).

il

5. Basic principles of a priori mesh construction. An important feature of the
method described in [12] for solving stiff two-point boundary value problems was the
automatic construction of a mesh which will resolve the solution to be computed. In
the code described here we have implemented a similar automatic mesh construction.
For the convenience of the reader we describe the basic underlying principles in this
section. Consider a change of the independent variable from x to % given by x = g(X).
Then a function y(x) is said to be resolved in the new variable % if in the neighborhood
of any point X =X, a number of derivatives of y with respect to X are bounded by a
moderate constant times the function itself, more precisely,

d’y(g(x))

(5.1) i5”

= K[|yl 5y-e,50+c +1), v=1,--,p.

Xo—e,Xp+€

(The size of the “smoothness constant” K, the size of the neighborhood 2¢, and the
degree of smoothness p can very with the application.) Similarly, the function is said
to be resolved by a mesh if (5.1) holds with derivatives replaced by divided differences
with respect to the meshpoints. The importance of constructing a mesh that will resolve
the computed solution follows from standard truncation error analysis for finite
difference methods: If a number of derivatives of the solution are of moderate size,
then the truncation error for a high order method will be small. It then follows that
for a stable difference approximation, the error in the computed solution will be small
also as long as the problem is not too ill posed. We conclude that (5.1) is the essential
condition for adjusting the mesh. If (5.1) holds, we take a uniform mesh with respect
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to the variable X; this will then lead in general to a nonuniform mesh with respect to
the variable x.

In [12] it is shown how the stretching function g can be found using only
information about the coefficients A(x) and f(x) of the system of ODEs (1.1). Since
this information is available a priori for linear systems, a corresponding mesh can be
constructed before the difference method is applied to the system of ODEs. This is an
alternative approach to an adaptive mesh construction strategy.

The analysis in [12] begins with a study of systems of ODEs that are in essentially
diagonally dominant form. Ultimately it will be required to make a transformation of
a given system of ODEs to this form. However, for the purposes of presenting the
following definition and theorem, we consider for the moment a system (2.1) for which
such a transformation has already been made.

DEeriNITION (Kreiss, Nichols and Brown [12]). A matrix function

Aj(x) Alz(x)> ccrn

ks (AZI(x) A (x)

(where A,; € C™ """ A,,e C™™, A,,, As of appropriate dimensions, n,+n_+
no=: n) is said to be essentially diagonally dominated if the elements a; of A, satisfy

(5.2a) Rea; <0, i=1,---,n_, Rea;>0, i=n_+1,---,n_+n,,

(5-2b) IAEIB11|§1_6, By, = An—An
for some 0<6<1
(5.2¢) AR'AL|=p

for some constant p = O(1), and
(5.2d) AR AL, A=K, =152,

where Apg:=diag{Re a;}/+]"-, A;=diag{Im a;}’+1", A,;:=Ag+iA; and K, is a
constant of moderate size (more about this later)." (Note that in this definition there
is no restriction on the size of the elements of A,;; this is the stiff part of the matrix.)

If A(x) is essentially diagonally dominated, then the system of ODEs (2.1) is said
to be in essentially diagonally dominant (EDD) form. The relevant theorem given in
[12] that leads to a mesh construction algorithm is repeated here.

THEOREM. Consider the system of ODEs (2.1) on 0 < x < c and partition the forcing
JSunction f(x) in a corresponding way to the matrix A, i.e.,

f(x)= (;III(();)))’ flecm*n, flecn,
If (2.1) is in EDD form and there are constants K, and K, of moderate size such that
(5.3a) AT d”Ayy/dx”|= K, (eigenvalue smoothness),
(5.3b) AT d”(Bn|Ar)/dx*|= K, (off-diagonal element smoothness),
(5.3¢) |d”A,;/dx”|=K,, j=1,2 (smoothness of the O(1) part),
(ot [0)air t de? = K
(5.3d) (smoothness of RHS),

ld"f"/dx"|= K,

'If ye C", then |y| denotes its maximum norm. If Ae C™" then |Al:=max, ., (|Ay|/|y]).
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v=1,---,p,and

|aii(0)|§K2, i=1,' 2 ',n_
(5.4) (boundary layer resolution),
las(c)|=K,, i=n_+1,-++,n,+n_

then thereis a constant K = K (K,, K, , K,, p, 8) of moderate size such that the derivatives
of the solution can be estimated by (5.1) with x = X.

In a few places above, we have introduced ‘“‘constants of moderate size.” Let us
explain here what this means in terms of stiff boundary value problems. The systems
of ODEs (2.1) that are of interest here are ones where |A;;|>|A,,| and hence can have
solutions which vary on two (or more) scales. It is typical for these problems that the
solution will be quite smooth everywhere except for isolated narrow regions where the
variation is quite rapid; the latter regions are called internal or boundary layers. An
example of a nonuniform mesh that would resolve such a solution is one which is
quite fine in the layers, but relatively coarse in the regions where the solution is smoothly
varying. Suppose h is the maximum meshsize used in the regions of smooth variation.
Then typically in these regions h|A,;|» 1 (which is why such a problem is called “stiff”’)
while h|A,,|« 1. With these ideas in mind, a constant of moderate size, C >0, can be
defined as one for which hC « 1.

6. Construction of the mesh and transformation. In this section we will discuss the
practical application of the theorem of § 5. In general, of course, we cannot restrict
our consideration to problems which are in EDD form. An important feature of the
stiff BVP method is the ability to automatically construct a ( piecewise smooth) transfor-
mation matrix T(x) that transforms the differential equation to EDD form. To be
precise, in our code we transform to essentially block diagonally dominant form with
at most three diagonal blocks. This transformation is somewhat easier to implement
than a transformation to EDD form and seems to be sufficient for most applications.
(More refined implementations are currently under investigation.)

We use two different procedures for the construction of T(x). The first one, which
we call transform-from-scratch in the pseudocode below, transforms a given fixed
matrix A to a certain block form. The second procedure, which we call update-
transformation, is used to obtain a transformation matrix at neighboring meshpoints
and can only be used as long as the appropriate block structure does not change as a
function of x. The way in which these two routines are used within the mesh construction
process is described below.

First consider the problem of transforming a given fixed matrix A = A(x). (At this
point and below we assume that the matrix A is real.) Bavely and Stewart [5] have
described a method for doing this which is similar to the one we will describe here.
Using the QR method, the matrix A is first transformed to quasi-upper triangular form.
(Quasi-upper triangular form is a real block upper triangular form with diagonal
blocksize at most two. If two-by-two blocks occur, they contain complex conjugate
eigenvalues of the matrix.) The QR method is applied in such a way that the eigenvalues
occur in the diagonal blocks ordered according to the size of their real parts. In [15]
Stewart gives a code that arranges the eigenvalues in order of decreasing absolute
value along the diagonal. We have modified this code to order the eigenvalues strictly
in terms of their real parts. After this first transformation we group the eigenvalues
into three groups: Let h denote the local meshsize. G, contains those eigenvalues A
of A= A(x) with A Re A > zc. G_ contains those with i Re A < —z¢, and G, contains
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those with ﬁ|Re A|=zc. The transformed matrix can be partitioned accordingly:

Ay A Agp
0 AO A23 s
0 0 A_

i.e., A, has the elements A € G, as eigenvalues, etc. As a second transformation, the
nonzero off-diagonal blocks A,,, A3, A,; are transformed to zero by elimination (or
equivalently, by solving linear matrix Riccati equations [4], [12]) leaving a matrix of
the form

A 5 i
A=TAT'=| 0 A, 0
07 05 - An

This procedure is summarized in the following segment of pseudocode:

PROCEDURE Transform-from-scratch
(input: A; output A,, T,, blockstructure, eigenvalues)
{comments: This procedure is used to transform a general matrix A to block-
diagonal form A, via a transformation with T,. The eigenvalues in the blocks are
also ordered appropriately}
Upper-triangularize-and-order-eigenvalues (input: A; output: A,, T,, eigenvalues);
{comments: A, = T,AT," is now in quasi-upper-triangular form}
Choose-diagonal-blocks (input: eigenvalues, h; output: blockstructure);
Eliminate-off-diagonal-blocks (input: A,, blockstructure, T,; output: A,, T,, suc-
cess); If (success = false) Stop;
{comments: When the matrix is quasi-upper-triangular, the diagonal block elimina-
tion can only fail if the blockstructure is incorrectly chosen}

END PROCEDURE;

Remarks. For most applications, the block matrix A constructed above seems to
be close enough to EDD form though the occurrence of large outer diagonal entries
is possible. By an additional transformation using a diagonal matrix D these large
outer diagonal entries could be scaled down. In general, |D|+|D~'| would be large,
which would increase | T|+|T~"|. In practice, we have not used such diagonal scalings.

In principle, the procedure described above could be used repeatedly at different
locations x to construct a transformation function T(x). However, this has not only
the disadvantage of being somewhat expensive, but also the smoothness of such a
transformation as a function of x is not guaranteed. We thus use an updating procedure
to compute a transformation T(x+ h) from the given transformation T(x) whenever
possible. In most cases, the matrix A= T(x)A(x+h)T(x)'is a perturbation of the
matrix A = T(x)A(x)T(x)™", and so T(x+h) can be determined from A without first
transforming to upper trlangular form. The details involve the solution of several
quadratic matrix Riccati equations which is done using a simple iterative technique
discussed in [12] and also mentioned by Stewart [14]. The technique has the feature
that as a byproduct, the eigenvalues of the blocks are computed, so the eigenstructure
of the matrix can be monitored. The updating procedure is summarized in the following
piece of pseudocode:

ProceDURE Update-transformation
(input: A, T,, blockstructure; output: A, .., Sy, S,, success)
{comments: This procedure first pretransforms the matrix A with the similarity
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transformation T, and then by operating on this pretransformed matrix, computes
a transformation S, which blocks the (original) matrix A.}

Ap oa = TbATgl;

Eliminate-off-diagonal-blocks (input: A, .., blockstructure; output: T,, success);
If (success = true) Then

Sp=T,Tp;
Ap new=T.Ay o1 TZ‘;
End;

END PROCEDURE;

Remarks. The variable success in this procedure is included to indicate that the
iterative technique for eliminating the off-diagonal blocks can fail to converge. From
practical experience, it is always possible to remedy this situation, by decreasing h,
the distance to the next point at which the transformation is to be constructed. Since
these are effects that are relevant to the overall method, the nonconvergence of this
iteration is used as another way to monitor these changes. Note that, in general, the
three diagonal blocks of the transformed matrix resulting from the updating procedure
are full. This is in constrast to the diagonal blocks of the transformed matrix resulting
from the procedure transform-from-scratch which are quasi-upper-triangular. This
difference is another reason for not using the full transformation procedure at every
meshpoint. If the blocked matrix is forced to be upper-triangular, then necessarily at
least one eigenvector of the matrix is being computed. The smoothness properties of
an eigenvector of a matrix are in general worse than the smoothness properties of the
corresponding eigenvalue. On the other hand, one can show that a transformation that
simply decouples blocks containing well-separated groups of eigenvalues can be chosen
to depend smoothly on the matrix elements (cf. Kato [8]). Since information about
eigenvectors is not needed for our purposes, it is therefore more reasonable to construct
a transformation function T(x) that does not attempt to upper-triangularize the
diagonal blocks of the matrix. The only reason for first making a full transformation
of the matrix to upper triangular form is to make sure that the eigenvalues appear in
the correct order and end up in the correct blocks of the matrix. The method described
in “transform-from-scratch” is therefore used only at a few isolated points x = x;, while
in the intervals between these points, the method described in “update-transformation”
is used.

Having described the two procedures for blocking a matrix, we now describe some
details of the mesh construction. In order to use the theorem of § 5, the coefficient
matrix A(x) must be blocked in the manner described above. Then the conditions that
are checked are the condition that the transformation matrix be resolved by the mesh,
the smoothness of the transformed right-hand side (5.3d), the boundary layer resolution
conditions (5.4) and the condition that the imaginary part of the large eigenvalues not
be too large (5.2c). If the latter condition is violated, the mesh is refined until these
eigenvalues become O(1) with respect to the mesh, and then become part of the block
Ay. The constants K,, K; and K, are taken as O(1) constants in the numerical code.
Typical values are K,=3, K; =3, and K,=0.4. In the code we have implemented, the
option is also given to check the smoothness of the off-diagonal elements of the
transformed matrix (conditions (5.3b) and (5.3c)), but in practice we have never found
it necessary to do this.

Suppose the interval on which the problem (2.1) is to be solved is given by 0 < x < 1.
Then the mesh construction procedure starts by first setting up a preliminary mesh
which is uniform except near the boundaries where an exponentially stretched mesh
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is put in if either of the conditions (5.4) would be violated otherwise. This preliminary
mesh is used as a guide to the maximum meshsize that will be permitted at any location
on the final mesh that will be constructed. Then beginning at x =0 and proceeding
towards x =1, the transformation matrix T is constructed at every fourth meshpoint;
the condition that the mesh resolve the piecewise linear interpolation of T at the
meshpoints, and the remaining conditions (5.2c) and (5.3), are checked. If none of
the conditions is ever violated, then the final computational mesh will be the same as
the guide mesh. If any of the conditions are violated, then meshpoints will be spaced
closer together until the conditions are locally not violated any more. The mesh
construction procedure will, however, always try to use the maximum allowable
meshsize which does not result in the violation of any of the conditions (5.2¢) and
(5.3) and which does not have any local meshsize larger than that indicated by the
guide mesh. This somewhat complicated procedure is outlined in the diagram of Fig. 3.

PROCEDURE Determine—local-meshsize
Input variables:
hsugg :A suggested value for the local meshsize which is to be accepted or improved upon
T(x): the similarity transformation matrix at x
Ai(x): the eigenvalues of A(x)
oldblockstructure: the blockstructure in the previous mesh interval

Oldblockstructure in
sufficient agreement
yes with Aj(x) no

h :=
hsugg Transform from scratch to obtain T(x)

¥ and newblockstructure

Update T(x) to obtain T(x+h)

Successful?

yes

\< First or second time? >

™ Check coefficient smoothness yes

I .

< Smooth enough?

Transform from
no scratch to obtain

1es h =h/~2 T(x+h) and
newblockstructure

Update T(x+h) to obtain
T(x)

hace=h

hsugg=min (v/2hace, hguide(x))

h =h/v2

Successful?

yes

F1G.3
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As a final remark about the mesh construction, let us note that the procedure
outlined so far might result in an abrupt decrease of the local mesh size. The theory
presented in [12] requires a “smooth” mesh, however. Thus, it is necessary to provide
the possibility of disregarding meshpoints already constructed and to approach a region
again starting with a smaller mesh size at an appropriate point to the left of the
“problem zone.” This is implemented in our code.

7. Numerical examples. In this section we present the results of the computation
of solutions to some stiff boundary value problems with turning points for which the
exact solution is known. The first example is a scalar second order ODE given by [7]

(7.1) —e;i]—xE:ewzcos (7x)+ mx sin (7wx) = f(x), ==x=

with boundary conditions y(—1) = -2, y(1) =0. The exact solution is given by

erf (x/(2¢)"?)
erf (2¢)™Y/?

where erf (x) is the error function. The equation is written as a first-order equation by
introducing a second variable by the equation dv/dx=—y+f(x), and then solved
using our code. The maximum errors in the computed values for y for different values

of the parameter ¢ and using different numbers of collocation points are tabulated in
Table 2.

(7.2) y(x)=cos (7x)+

TABLE 2
Maximum error in the first component for the model second-order system
(7.1). The values given in brackets [ ] are the number of meshpoints used in
each computation. ncol=m+1 is the number of collocation points per mesh
interval.

Lobatto points:

€= 13E=2 1.E—-4 1.LE-6

ncol
2 12E-2[53] 9.8E—3[100] 9.8E—3[164]
3 1.6E—4[43] 1.4E—-4[92] 8.2E—5[156]
4 99E—6[43] 23E—6[88] 1.4E—6[148]
5 1.9E—7[43] 9.2E—8[88] 6.0E —8[148]
6 2.7E-9[40] 9.1E—-9[88] 2.6E—9[148]
7 1.5E—10[40] 42E-10[88] S5.4E—11[148]
8 6.6E—12[40] 52E-12[88] 1.2E—12[140]

Radau points twice:

ncol
4 2.0E—5[43] 6.1E—6[88] 4.2E—6[148]
6 7.2E—-9 [40] 3.5E—8[88] 7.2E-9[148]
8 20E—-11[40] 24E-11[88] 4.2E—12[148]

The second example presented here is a system of two singularly perturbed
second-order ODEs given by

5 d d 1
: —e%—%‘;ﬁ%—gd—:—ku:swzcos (7rx)+577xsin(7rx)=:g(x),
(7.3
d2u+u 0 1=x=1
—e——tu= -1=x=1,
dx? :
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TABLE 3
Maximum error in the first component for the model fourth-order system
(7.3). The values given in brackets [ ] are the number of meshpoints used in
each computation. ncol =m+1 is the number of collocation points per mesh
interval.

Lobatto points:

£= 1.E—4 1.E-6 1.LE—-8

ncol
2 6.5E—2[143] 6.3E—2[250] 6.3E—2[332]
3 1.2E-4[122] 7.0E-5[231] 4.1E-5[315]
4 34E-7[122] 3.5E-7[223] 9.0E—6[315]
5 1.1IE-8[122] 1.2E-8[223] 1.4E-8[308]
6 93E—-10[122] 1.0E—9[223] 4.1E—10[308]
7 54E—11[122] 5.7E-11[223] 2-5E—11[308]
8 24E—-12[122] 3.0E—-12[122] 1.5E—12[308]

Radau points twice:

ncol
4 3.5E—6[122] 3.6E—6[223] 2.0E—6[315]
6 5.0E—9[122] S.1E-9[223] 4.8E—9[308]
8 1.2E-11[122] 1.2E-11[223] 1.2E-11[308]
2.9729
y
-1.9995
-1.0 X 1.0
1.0
u
L
=008 X 1.0

FiG. 4
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with boundary conditions y(—1)=-1, u(-1)=1, y(1)=u(1)= e V¢ The exact
solution for this problem is given by

(7.4) Y(X)Z%i—fg))‘+ u(x)+cos (mx), u(x)ze—(x+1)/s/;.

Equation (7.3) is written as a first-order system by introducing additional variables w
and v by edu/dx =v and dw/dx =3y +3xv+u—g(x). The maximum computed errors
in the variable y are shown in Table 3 for three values of ¢ and for various numbers
of collocation points. A plot of the solution is included in Fig. 4. It is clear from the
tables of errors that the collocation formulas we have discussed here can compute very
accurate solutions to singular perturbation problems with turning points.
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