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A H I G H - O R D E R M E T H O D F O R S T I F F B O U N D A R Y VA L U E
P R O B L E M S W I T H T U R N I N G P O I N T S *

D A V I D L . B R O W N t a n d J E N S L O R E N Z t

Abstract. This paper describes some high-order collocation-like methods for the numerical solution of
stiff boundary-value problems with turning points. The presentation concentrates on the implementation of
these methods in conjunction with the implementation of the a priori mesh construction algorithm introduced
by Kreiss, Nichols and Brown [SIAM J. Numer. Anal., 23 (1986), pp. 325-368] for such problems. Numerical
examples are given showing the high accuracy which can be obtained in solving the boundary value problem
for singularly perturbed ordinary differential equations with turning points.
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Introduction. In recent papers [6], [12], Kreiss, Nichols and Brown introduced a
new numerical method for solving boundary value problems for stiff linear systems of
ordinary difierential equations (DDEs). The method they presented is unique among
methods for boundary value problems in that it provides an a priori procedure for
constructing a difEerence mesh which will be appropriate for resolving rapidly varying
features of the solutions of these problems, such as those that arise in connection with
"turning points." Once the mesh has been constructed, the differential equations are
approximated using a combination of symmetric and unsymmetric two-point difference
formulas in a way which essentially gives second order accuracy. In this paper, we
show how high-order collocation methods can be used in a natural way in conjunction
with the ideas presented in [6], [12] in order to increase the accuracy of the computed
solutions. Numerical experiments show that extremely accurate results can be obtained
in this way.

It should be emphasized that the use of collocation methods for solving stiff
boundary value problems is not a new idea (see e.g. the papers of Ascher and Weiss
[2], [3], and Ringhofer [13]). Symmetric collocation formulas, such as those used in
[2], [3] have been shown to work well for stiff boundary value problems if the mesh
is carefully constructed so as to resolve boundary layers, and if no turning points are
present. (A certain eigenvalue condition must be satisfied as well (see [1], [10], [11]).)
For problems with turning points, however, numerical experiments have shown that
there can be difficulties with applying symmetric schemes directly (see e.g. [12]). For
this reason, as suggested by the ideas in [12], we describe a combination of symmetric
and unsymmetric formulas which can be used for a discretization of the problem. In
order to apply these formulas the system of DDEs must be transformed to a form
where growing, moderate, and decaying modes are essentially decoupled. This transfor
mation is done automatically in our code, and in fact done simultaneously with the a
priori mesh construction. For certain problems without turning points in which fast-
growing, moderate, and fast-decaying modes are decoupled in the given differential
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