
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Identifying and Mitigating Trust Violations in the Mobile Ecosystem

Permalink
https://escholarship.org/uc/item/60k610h0

Author
Bianchi, Antonio

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/60k610h0
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Identifying and Mitigating Trust Violations

in the Mobile Ecosystem

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Antonio Bianchi

Committee in charge:

Professor Giovanni Vigna, Co-Chair
Professor Christopher Kruegel, Co-Chair
Professor Tevfik Bultan

September 2018

The dissertation of Antonio Bianchi is approved.

Professor Tevfik Bultan

Professor Christopher Kruegel, Co-Chair

Professor Giovanni Vigna, Co-Chair

July 2018

Acknowledgements

First of all, I want to thank my family, because they have always helped me, in their

own way.

Surely, I have to thank Yanick Fratantonio, because you are the reason why I ended

up at UCSB, and Jacopo Corbetta, because you are a wise friend and the only one that

really knows how things work. Also, I want to thank Ruoyu “Fish” Wang, because you

are a good genius, and Yan Shoshitaishvili, because you are a good leader. Moreover, I

cannot avoid saying thank you to Aravind Machiry, because you are a nofos person, and

Eric Gustafson, because you are an always positive person.

Obviously, I also need to say a huge thank you to my advisors, Professor Giovanni

Vigna and Professor Christopher Kruegel. You not only guided me through my Ph.D.,

but you also gave me the opportunity to meet great persons, visit interesting places,

and end up in “very strange” situations. Your example is something that (shamelessly

quoting Yan Shoshitaishvili’s thesis) “I will strive to emulate throughout my academic

career, and it is my hope that a student of mine will one day be as thankful to me as I

am to them.”

All the people I have worked with at SecLab own my respect and gratitude. I cannot

mention you all, but you know who you are.

Finally, to all the great teachers, professors, colleges, and friends I had the honor

to meet during my career as a student, I want to say that your passion has been my

strongest motivation.

iii

Curriculum Vitæ
Antonio Bianchi

Education

2012 – 2018 Ph.D. in Computer Science
Security Lab — Computer Science Department
University of California, Santa Barbara.
GPA: 4.0 out of 4.0

2009 – 2012 M.Sc. in Computer Science
University of Illinois at Chicago.
GPA: 3.71 out of 4.0

2008 – 2012 M.Sc. in Computer Engineering
Politecnico di Milano, Italy.
Final grade: 110 cum laude out of 110

2005 – 2008 B.Sc. in Computer Engineering
Politecnico di Milano, Italy.
Final grade: 108 out of 110

Research and Professional Experience

2012 – 2018 Research Assistant
Security Lab — Computer Science Department
University of California, Santa Barbara

2017 Research Intern
Institute for Information Security & Privacy
Georgia Institute of Technology

2011 Visiting Researcher
Security Lab — Computer Science Department
University of California, Santa Barbara

2010 – 2011 Student Tutor
Politecnico di Milano, Italy

2006 – 2008 Web Developer

iv

Publications

1. Yan Shoshitaishvili, Antonio Bianchi, Kevin Borgolte, Amat Cama, Jacopo Corbetta, Francesco
Disperati, Audrey Dutcher, John Grosen, Paul Grosen, Aravind Machiry, Chris Salls, Nick
Stephens, Ruoyu Wang, Giovanni Vigna.
Mechanical Phish: Resilient Autonomous Hacking.
In IEEE Security & Privacy Magazine – SPSI: Hacking without Humans, Mar 2018.

2. Antonio Bianchi, Yanick Fratantonio, Aravind Machiry, Christopher Kruegel, Giovanni Vigna,
Simon Pak Ho Chung, Wenke Lee.
Broken Fingers: On the Usage of the Fingerprint API in Android.
In Proceedings of the Network & Distributed System Security Symposium (NDSS), Feb 2018.

3. Antonio Bianchi, Eric Gustafson, Yanick Fratantonio, Christopher Kruegel, Giovanni Vigna.
Exploitation and Mitigation of Authentication Schemes Based on Device-Public Information.
In Proceedings of the Annual Computer Security Applications Conference (ACSAC), Dec 2017.

4. Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric
Gustafson, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna.
BootStomp: On the Security of Bootloaders in Mobile Devices.
In Proceedings of the USENIX Security Symposium (Usenix SEC), Aug 2017.

5. Aravind Machiry, Eric Gustafson, Chad Spensky, Chris Salls, Nick Stephens, Ruoyu Wang, An-
tonio Bianchi, Yung Ryn Choe, Christopher Kruegel, Giovanni Vigna.
BOOMERANG: Exploiting the Semantic Gap in Trusted Execution Environments.
In Proceedings of the Network & Distributed System Security Symposium (NDSS), Feb 2017.

6. Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen, Paul
Grosen, Christopher Kruegel, Giovanni Vigna.
Ramblr: Making Reassembly Great Again.
In Proceedings of the Network & Distributed System Security Symposium (NDSS), Feb 2017.
Distinguished Paper Award

7. Antonio Bianchi, Kevin Borgolte, Jacopo Corbetta, Francesco Disperati, Andrew Dutcher, John
Grosen, Paul Grosen, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Nick Stephens,
Giovanni Vigna, Ruoyu Wang — Authors listed alphabetically.
Cyber Grand Shellphish.
In Phrack Magazine, Jan 2017.

8. Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christopher Kruegel,
Giovanni Vigna.
TriggerScope: Towards Detecting Logic Bombs in Android Apps.
In Proceedings of the IEEE Symposium on Security and Privacy (S&P), May 2016.

9. Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doup, Mario Polino, Paulo de Geus,
Christopher Kruegel, Giovanni Vigna.
Going Native: Using a Large-Scale Analysis of Android Apps to Create a Practical Native-Code
Sandboxing Policy.
In Proceedings of the Network & Distributed System Security Symposium (NDSS), Feb 2016.

10. Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Invernizzi, Jacopo Corbetta, Dhilung
Kirat, Christopher Kruegel, Giovanni Vigna.
BareDroid: Large-Scale Analysis of Android Apps on Real Devices.
In Proceedings of the Annual Computer Security Applications Conference (ACSAC), Dec 2015.

v

11. Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, Giovanni Vigna.
NJAS: Sandboxing Unmodified Applications in non-rooted Devices Running Stock Android.
In Proceedings of the ACM Workshop on Security and Privacy in Smartphones and Mobile Devices
(SPSM), Oct 2015.

12. Yanick Fratantonio, Aravind Machiry, Antonio Bianchi, Christopher Kruegel, Giovanni Vigna.
CLAPP: Characterizing Loops in Android Applications.
In Proceedings of the Symposium on the Foundations of Software Engineering (FSE), Sep 2015.

13. Yanick Fratantonio, Aravind Machiry, Antonio Bianchi, Christopher Kruegel, Giovanni Vigna.
CLAPP: Characterizing Loops in Android Applications.
In Proceedings of International Workshop on Software Development Lifecycle for Mobile (DeMo-
bile), Aug 2015.

14. Yanick Fratantonio, Antonio Bianchi, William Robertson, Manuel Egele, Christopher Kruegel,
Engin Kirda, Giovanni Vigna.
On the Security and Engineering Implications of Finer-Grained Access Controls for Android De-
velopers and Users.
In Proceedings of the Conference on Detection of Intrusions and Malware & Vulnerability Assess-
ment (DIMVA), Jul 2015.

15. Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christopher Kruegel,
Giovanni Vigna.
What the App is That? Deception and Countermeasures in the Android User Interface.
In Proceedings of the IEEE Symposium on Security and Privacy (S&P), May 2015.

16. Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni
Vigna, Yan Chen.
EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through the Android
Framework.
In Proceedings of the Network & Distributed System Security Symposium (NDSS), Feb 2015.

17. Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni
Vigna, Yan Chen.
Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading in Android Applications.
In Proceedings of the Network & Distributed System Security Symposium (NDSS), Feb 2014.

18. Antonio Bianchi, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna.
Blacksheep: Detecting Compromised Hosts in Homogeneous Crowds.
In Proceedings of the ACM Conference on Computer and Communications Security (CCS),
Oct 2012.

vi

Abstract

Identifying and Mitigating Trust Violations

in the Mobile Ecosystem

by

Antonio Bianchi

Mobile systems, such as smartphones and tablets, are now the most common way users

handle digital information and interact with online services. The interaction with these

devices encompasses different actors, trusting each other in different ways. Users interact

with apps, trusting them to access valuable and privacy-sensitive information. At the

same time, apps usually communicate with remote backends and mediate user authenti-

cation to online services. Finally, all these interactions are mediated, on one side, by the

user interface and, on the other, by the operating system.

In this thesis, I will present my studies on how all these different actors trust each

other and how this trust can be unfortunately violated by attackers. This is possible due

to limitations on how the operating system, apps, and the user interface are currently

designed and implemented. To assist my work, I developed automatic analysis tools to

perform large-scale analyses of Android apps. In this thesis, I will describe both the tools

I have developed and my findings.

Specifically, I will first describe my work on how, in an Android system, it is possible

to lure users to interact with malicious apps which “look like” legitimate ones. This

completely violates the trust relationship, mediated by the user interface, between users

and apps. As a countermeasure, I implemented modifications of the Android user inter-

face and evaluated their effectiveness with a user study. Then, I will explain how many

apps unsafely authenticate their users to remote backends, due to misplaced trust in

vii

the operating system. In particular, I identified different apps that only rely on values

provided by the operating system to perform authentication. For this reason, an attacker

can trivially spoof these values, and logins in behalf of a legitimate user. Finally, I will

show how many apps misuse hardware-backed authentication devices, such as trusted

execution environments and fingerprint readers, making them vulnerable to a variety of

authentication bypass attacks

viii

Contents

Curriculum Vitae iv

Abstract vii

1 Introduction 1
1.1 Lines of Research and Approach . 2

1.1.1 Understanding the Trust Relationships in the Mobile Ecosystem . 3
1.1.2 Developing Scalable Automated Analyses 4
1.1.3 Approach . 5

1.2 Summary of the Main Contributions . 8
1.2.1 User/User-Interface Trust Relationship 8
1.2.2 Trusting the Operating System for Authentication 9
1.2.3 Hardware-Assisted Authentication 11

1.3 Permissions and Attributions . 13

2 User/User-Interface Trust Relationship 14
2.1 Background . 18

2.1.1 Android graphical elements . 21
2.2 GUI confusion attacks . 23

2.2.1 Attack vectors . 23
2.2.2 Enhancing techniques . 29
2.2.3 Attack app examples . 32

2.3 State exploration of the Android GUI API 33
2.3.1 Study of the startActivity API . 33
2.3.2 Study of “inescapable” fullscreen Windows 35

2.4 Detection via static analysis . 37
2.4.1 Tool description . 37
2.4.2 Results . 45

2.5 UI Defense mechanism . 49

ix

2.5.1 Which app is the user interacting with? 52
2.5.2 Who is the real author of a given app? 54
2.5.3 Conveying trust information to the user 58
2.5.4 Implementation . 60

2.6 Evaluation . 62
2.6.1 Experiment procedure . 63
2.6.2 Results . 67
2.6.3 Limitations . 69

2.7 Conclusions . 70

3 Trusting the Operating System for Remote Authentication 71
3.1 Authentication Schemes . 74
3.2 Identity-Transfer Attack . 76

3.2.1 Threat Model . 76
3.2.2 Device-Public Information Sources 78
3.2.3 Proof-of-Concept Attack Implementation 81

3.3 Vulnerability Detection . 82
3.3.1 Step 1: Capturing Initial Behavior 85
3.3.2 Step 2: Vulnerability Detection 85
3.3.3 Step 3: Exploit Verification . 86
3.3.4 Dynamic Analysis . 86
3.3.5 App States Extraction and Comparison 88

3.4 Experimental Results . 90
3.4.1 Datasets . 90
3.4.2 Experimental Setup . 91
3.4.3 Results . 92

3.5 Case Studies . 93
3.5.1 Messaging Applications . 93
3.5.2 Free-to-play Games . 97

3.6 Proposed Defenses . 98
3.6.1 Securing the SMS Channel . 99
3.6.2 Secure Device IDs . 101

3.7 Limitations and Future Work . 103
3.8 Conclusions . 104

4 Hardware-Assisted Authentication 105
4.1 Background . 109

4.1.1 Android Security Mechanisms . 109
4.1.2 TEE and TrustZone . 111
4.1.3 The Fingerprint API in Android 112
4.1.4 Two-Factor Authentication Schemes 114

x

4.2 Threat Model . 115
4.2.1 Levels of Compromise . 115
4.2.2 Attacker Capabilities . 117
4.2.3 Out-of-Scope Attacker Capabilities 119

4.3 Fingerprint API usages . 120
4.3.1 Weak Usage . 121
4.3.2 Decryption Usage . 121
4.3.3 Sign Usage . 123
4.3.4 Sign + Key Attestation Usage . 124

4.4 Protocol Weaknesses and Attack Scenarios 124
4.4.1 Weak Usage: Fake TEE response 125
4.4.2 Decryption Usage: Replay Attack 125
4.4.3 Sign Usage: Man-in-the-Middle Attack 126
4.4.4 Sign + Key Attestation Usage: Key Proxying 126

4.5 Discussion . 127
4.5.1 Application Contexts . 127
4.5.2 Practicality and Impact of UI Attacks 130

4.6 Automatic Analysis Tool . 132
4.6.1 Challenges and Design Choices 132
4.6.2 Pre-processing . 133
4.6.3 Call Graph Construction & Data Flow Analysis 134
4.6.4 Feature Extraction . 135
4.6.5 App Classification . 137

4.7 Automatic Analysis Results . 138
4.7.1 Evaluation Methodology . 138
4.7.2 Dataset . 140
4.7.3 Apps Classification . 140
4.7.4 Case Study: Unlocking “Unlocked” Keys 142
4.7.5 Case Study: Google Play Store 143
4.7.6 Case Study: Square Cash . 144
4.7.7 Case Study: Key Attestation . 144

4.8 Fingerprint API Improvements . 145
4.8.1 Trusted-UI . 145
4.8.2 Other UI Changes . 148
4.8.3 Better Attestation Mechanisms 148

4.9 Limitations and Future Work . 150
4.10 Conclusions . 151

5 Related Work 152
5.1 Attacks to Mobile User-Interfaces . 152
5.2 Authentication-Related Vulnerabilities in Mobile Devices 155
5.3 Automated Analysis of Mobile Applications 158

xi

6 Conclusions and Future Directions 160

Bibliography 162

xii

Chapter 1

Introduction

Mobile systems, such as smartphones and tablets, have become part of the everyday life

of billions of people. Given the ability of these devices to continuously collect potentially-

private information from the environment around them, and the fact that users trust them

to perform an increasing amount of sensitive tasks, in an ideal world, the software they

run should be free from security issues. However, the complexity of these devices and of

the ecosystem revolving around them (which is composed of millions of apps, application

markets, different manufacturers, and multiple vendors) hinders the developers’ ability

to safely implement functionalities. The goal of my research has been to study the new

security issues introduced by the mobile ecosystem, showing how they can be exploited

by attackers and implementing solutions for these problems.

As an introductory example, consider a user using an app on a mobile device to

transfer money. This simple and common use case hides several challenges that my

research has unveiled and addressed: How can the user be sure that they are interacting

with the legitimate mobile banking app (and not with a look-alike malicious application)?

How can the app authenticate the user to the remote banking backend? Is password-

1

Introduction Chapter 1

based authentication sufficient? What are the alternatives to improve both usability and

security? Can authentication and authorization be implemented securely, even when a

device is in a non-secure state (e.g., the operating system is compromised)?

All these questions correspond to currently open problems in the field of Mobile Sys-

tem Security. As a result, smartphones are exploited every day by attackers, causing

privacy violations, monetary loss, and even property loss when, for instance, a smart-

phone is used to control a house’s lock.

In this section, first I will introduce the lines of research I followed and my general

approach. Then, I will briefly present the three projects that form the main body of this

thesis.

1.1 Lines of Research and Approach

In this thesis work, I followed two complementary lines of research:

• Understanding the trust relationships in the mobile ecosystem: Mobile

systems involve different actors, such as users, user-interfaces, apps, devices, hard-

ware, remote backends, and hardware manufacturers. Understanding how they

interact is crucial to evaluate the security of a mobile system.

• Developing scalable automated analyses: To evaluate the security of mobile

systems rigorously and at scale, a combination of static and dynamic automated

analyses is necessary. Existing techniques need to be adapted to work in the mobile

ecosystem.

2

Introduction Chapter 1

Chapter 2:
User/User-Interface Trust Relationship

Chapter 4:
Hardware-Assisted Authentication

Chapter 3:
Trusting the Operating System for
Remote Authentication

Figure 1.1: A summary of the different mobile ecosystem’s components studied in this thesis.

1.1.1 Understanding the Trust Relationships in the Mobile

Ecosystem

The interaction with mobile systems encompasses different actors, trusting each other

in different ways. First of all, we have users, interacting with apps and trusting them

to access valuable and privacy-sensitive information. At the same time, apps usually

communicate with remote backends and mediate user authentication to online services.

Finally, all these interactions are mediated on one side by the user interface and on the

other by the operating system.

If any of these components is compromised the entire “chain-of-trust” is violated.

For instance, consider the case in which a user wants to use a mobile banking app. If

an attacker can compromise the device’s user interface (for instance, luring the user to

insert her credentials in an attacker-controlled app, instead of the legitimate one) the

3

Introduction Chapter 1

entire authentication schema is defeated, regardless of how well its other components are

implemented. Likewise, if the application stores an authentication token in a publicly

readable location, the authentication schema can be violated by an attacker able to install

a malicious app on the victim’s device.

Figure 1.1 presents an overview of the different components in the mobile ecosystem

studied by this thesis and their relationships. On the top, we have users interacting with

apps. The user interface mediates this interaction. How this interaction is carried out

and how attackers can compromise it will be the topic of Chapter 2. On the left, we

have remote backends. In fact, most of the apps continuously communicate with remote

backends and implement some form of authentication between their users and their re-

mote backends. The way in which an attacker can exploit some of the authentication

schemas used by these apps, which are vulnerable because they use untrusted informa-

tion to perform authentication, will be the topic of Chapter 3. Finally, on the right, the

figure shows Trusted Execution Environments (TEEs), which, in modern devices, can be

used to implement safer and more usable authentication schemas. The way in which apps

use (often incorrectly) TEEs and weaknesses in their current design will be the topic of

Chapter 4.

1.1.2 Developing Scalable Automated Analyses

The sheer amount of applications available for mobile systems and the complexity

of these applications rule out manual analysis to carry on any comprehensive security

analysis. For this reason, throughout my research I have developed tools, based both on

static and dynamic analysis, to automatically study security issues at scale.

4

Introduction Chapter 1

These tools are not only useful for security researchers, but also for developers to

identify vulnerabilities in their apps, and for application market operators to vet submit-

ted applications for both vulnerabilities and malicious code. In fact, automated analysis

of mobile apps is in itself an open research problem, since the mobile environment poses

significant challenges to this task. All the three works I will present in this thesis required

the creation of automated analysis tools, which will be described in details throughout

this thesis.

1.1.3 Approach

Each of the three main works presented in this thesis has been carried out by using

the following three-step approach:

1. First, I identified a component, within the mobile ecosystem, which is vulnerable

to different types of attackers, and I systematically studied its attack surface.

2. Then, I performed large-scale, automated, studies to characterize the presence of

the previously identified problems in real-world applications.

3. Finally, I proposed and implemented mitigations to the identified security issues.

5

Introduction Chapter 1

The following thesis statement summarizes my motivations, approach, and results:

In the mobile ecosystem, different components trust each other. The con-

sequences of these trust relationships are not well understood by both apps’

developers and operating systems’ designers.

To solve this issue, first, we need to systematically study the attack surfaces

of the different components trusting each other. Then, we need to perform

automated large-scale studies to identify both benign apps, misplacing trust

in untrusted components, and malicious apps, exploiting weaknesses in the

ecosystem. Finally, we need to fix these weaknesses by better designing, im-

plementing, and documenting these components.

6

Introduction Chapter 1

T
ab

le
1.

1:
S

u
m

m
ar

y
of

th
e

m
ai

n
co

n
tr

ib
u

ti
on

s
of

th
e

th
re

e
w

or
k
s

p
re

se
n
te

d
in

th
is

th
es

is
,

w
it

h
re

sp
ec

t
to

th
e

af
or

em
en

ti
on

ed
th

re
e-

st
ep

ap
p

ro
ac

h
.

S
A

in
d

ic
at

es
to

ol
s

u
si

n
g

S
ta

ti
c

A
n

al
y
si

s,
D

A
in

d
ic

at
es

to
ol

s
u

si
n

g
D

y
n

am
ic

A
n

al
y
si

s

.
C
h
a
p
te
r

A
n
a
ly
z
e
d

C
o
m
p
o
n
e
n
ts

Im
p
le
m
e
n
te
d

A
u
to

m
a
te
d

A
n
a
ly
se
s

P
ro

p
o
se
d
/
Im

p
le
m
e
n
te
d

S
o
lu
ti
o
n
s

2

–
U

se
rs

–
U

se
r

In
te

rf
ac

e
–

A
p

p
s

–
D

A
:

U
I

st
at

e
ex

p
lo

ra
ti

on
[2

.3
]

–
S

A
:

D
et

ec
ti

on
of

ap
p

s
p

er
fo

rm
in

g
G

U
I-

co
n

fu
si

on
s

at
ta

ck
s

[2
.4

]

–
M

ar
ke

t-
L

ev
el

d
et

ec
ti

o
n

[2
.4

]
–

U
I

m
o
d

ifi
ca

ti
o
n

s
co

n
ve

y
in

g
th

e
o
ri

g
in

of
th

e
sh

ow
ed

co
n
te

n
t

[2
.5

]

3
–

A
p

p
s

–
O

p
er

at
in

g
S

y
st

em
–

R
em

ot
e

B
ac

ke
n

d
s

–
D

A
:

Id
en

ti
fi

ca
ti

on
of

ap
p

s
u

si
n

g
“d

ev
ic

e-
p

u
b

li
c”

in
fo

rm
at

io
n

fo
r

au
th

en
ti

-
ca

ti
on

[3
.3

]

–
S

ec
u

re
S

M
S

C
h

a
n

n
el

[3
.6

.1
]

–
S

ec
u

re
D

ev
ic

e
ID

[3
.6

.2
]

4

–
A

p
p

s
–

O
p

er
at

in
g

S
y
st

em
–

R
em

ot
e

B
ac

ke
n

d
s

–
T

ru
st

ed
E

x
ec

u
ti

on
E

n
v
ir

on
m

en
ts

–
S

A
:
F

in
ge

rp
ri

n
t

A
P

I
u

sa
ge

cl
as

si
fi

er
[4

.6
]

–
T

ru
st

ed
U

I
fo

r
a
u

th
en

ti
ca

ti
o
n

[4
.8

.1
]

–
U

I
m

o
d

ifi
ca

ti
on

s
sh

ow
in

g
h

ow
T

ru
st

Z
o
n

e
an

d
th

e
fi

n
ge

rp
ri

n
t

re
a
d

er
se

n
so

r
a
re

u
se

d
[4

.8
.2

]
–

Im
p

ro
ve

d
ke

y
a
tt

es
ta

ti
o
n

m
ec

h
a
-

n
is

m
[4

.8
.3

]

7

Introduction Chapter 1

1.2 Summary of the Main Contributions

In this thesis, I will present three main works. This section gives an overview of these

works and their the main contributions. Table 1.1 summarizes their contributions with

respect to the aforementioned three-step approach.

1.2.1 User/User-Interface Trust Relationship

Users are the final consumers of any operation carried on by a mobile device, and user

interfaces mediate all the interactions between users and their devices. This observation

motivated me to start my research on mobile security by focusing on the implementation

of these user interfaces. In particular, I studied how it is possible, in the Android op-

erating system, to lure users in interacting with malicious apps that look like legitimate

ones. Specifically, an attacker who is able to install a malicious app on a user’s device,

can wait for the user to open any app requiring a login (e.g., the popular “Facebook”

app) and cover the app’s legitimate login interface with an attacker-controlled one, which

leaks the inserted credentials to the attacker.

As part of this research project, I first systematically identified all the ways in which

it is possible to perform this kind of attack. Due to the complexity of the Android user

interface (UI) API and inadequacy in the Android documentation, even conceptually

simple questions, such as “How can an attacker draw content on top of a legitimate

app?”, do not have an easy answer. Therefore, the systematization of the behavior of the

Android UI required the development of automated dynamic analysis tools exploring the

entire UI API’s parameter space, looking for combinations of API calls and parameters

allowing attackers to achieve their nefarious goals.

8

Introduction Chapter 1

Afterward, I developed a static analysis system to detect malicious apps exploiting

this issue. This system was able to automatically detect applications that interfered with

the Android UI. As an example, one detected sample presented to the user a malicious

interface asking for credit card information, mimicking the legitimate UI normally shown

by the official Google Play Store.

Finally, I designed and implemented modifications to the Android UI to inform the

users about the origin of the apps they are interacting with (e.g., the legitimate PayPal

app is developed by “PayPal, Inc.”). To evaluate this on-device defense mechanism,

I performed a user-study involving hundreds of users. The results of this study showed

that, while in a standalone system is trivial for an attacker to lure users to interact

with a “spoofed” login interface, when the developed defense mechanism is in place, the

majority of the users can detect when they are attacked.

1.2.2 Trusting the Operating System for Authentication

After addressing issues in the UI of mobile devices, I focused on analyzing how An-

droid applications authenticate users while interacting with remote backends.

In particular, I was able to identify a class of authentication mechanisms which are

intrinsically insecure. These authentication schemes are based on what I define as device-

public information, which consists of properties and data that any application running on

a device can obtain, such as the device’s identifiers, files in publicly accessible locations,

and the content of received text messages. While these schemes are convenient to users

(since they require little or no interaction to perform authentication), they are vulnerable

by design, because all the needed information to authenticate a user is available to any

9

Introduction Chapter 1

app installed on a device. An attacker with a malicious app on a user’s device could

easily hijack the user’s account, steal private information, send (and receive) messages

on behalf of the user, or steal valuable virtual goods.

To understand how widespread this class of vulnerability is and to help developers and

application market operators identify vulnerable apps, I developed a dynamic analysis

system that aims to uncover apps affected by this problem. The developed system records

the app’s UI behavior during its first execution on a device, when authentication is

likely to happen. Then, as a second step, the system wipes the app’s private data and

runs the app again, still recording its UI behavior. The key intuition is that if the

UI behavior of an app changes after its re-installation, it means the app may rely on

device-public information for authentication and is very likely to be vulnerable to this

attack. This is due to the fact that re-installation deletes all the private data of an app.

Therefore, if the user is still authenticated, it means that the authentication procedure

must leverage device-public information. As a final step, the system attempts to confirm

the vulnerability by exploiting it to login on behalf of the legitimate user from a different,

attacker-controlled device, on which the device-public information present in the victim’s

device has been cloned.

I used this analysis system to vet 1,000 of the most popular applications from the

Google Play Store, and found that 41 of them were vulnerable to this attack. Two of

these vulnerable apps were WhatsApp and Viber, two of the most popular messaging

apps, with hundreds of millions of installations. For both these apps, I discovered that

it was sufficient to steal the content of a publicly accessible file (and spoof the value of

some device’s identifiers) to fully hijack a user account. I reported these findings to the

respective security teams, which quickly acknowledged the problems and addressed the

vulnerabilities.

10

Introduction Chapter 1

1.2.3 Hardware-Assisted Authentication

Application developers strive to create authentication mechanisms that, unlike user-

names and passwords, require minimal user interaction. Unfortunately, this can lead to

unsafe authentication schemes, as the ones I mentioned before. Recently, new technolo-

gies have been developed to support authentication and authorization schemes that are

both more usable and more secure than traditional username and password authentica-

tion.

In particular, most smartphones come with Trusted Execution Environments (TEEs)

that can be used to generate and store cryptographic keys. Furthermore, TEEs can be

programmed to directly communicate with a fingerprint reader sensor (which is widely

available on modern smartphones). In this way, it is possible to build systems in which

non-exportable, safely-stored cryptographic keys are only usable when the fingerprint

reader detects a registered legitimate fingerprint, signaling the user’s explicit consent to

perform a specific security-sensitive operation, such as transferring money. Since a TEE is

a hardware-enforced isolated execution environment, the keys it stores and the operations

performed with those keys cannot be leaked or misused even if the smartphone’s operating

system is compromised. In addition, even if a device is stolen, an attacker cannot misuse

the keys stored on it without the owner’s fingerprint.

The combination of these factors allows, at least in theory, to implement authenti-

cation and authorization systems that provide strong security guarantees, even against

powerful attackers who are able to compromise the operating system of a device. How-

ever, the reality is very different due to both the way in which most of the apps use the

fingerprint API in Android and some weaknesses in its implementation.

11

Introduction Chapter 1

To understand how developers use in practice this functionality, I performed the

first systematic study on the usage of the fingerprint API in Android. This study was

enabled by a static-analysis-based tool which I developed. The results are worrisome. For

example, the tool identified that 53.69% of the 501 analyzed apps, including the widely

deployed Google Play Store app, do not make use of the cryptographic keystore, unlocked

by a legitimate fingerprint touch. As a consequence, an attacker having root privileges

can completely bypass the fingerprint security mechanism simply by programmatically

“simulating” the user’s touch. Moreover, the current implementation of this API does

not allow users to understand what they are authorizing by touching the fingerprint

reader sensor. Therefore, an attacker can show an interface asking the user to touch

the sensor to, for instance, “Transfer 100 dollars to Friend A,” while, in reality, the

user is authorizing the operation “Transfer 100 dollars to Attacker.” To address this

issue, I proposed modifications to the implementation of the Android fingerprint API and

provided recommendations on how this API, and its documentation, should be improved

to increase the number of developers using it correctly.

12

Introduction Chapter 1

1.3 Permissions and Attributions

The content of Chapter 2 is the result of a collaboration with Jacopo Corbetta, Luca

Invernizzi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna, and part of a

previously published paper [1].

The content of Chapter 3 is the result of a collaboration with Eric Gustafson, Yanick

Fratantonio, Christopher Kruegel, and Giovanni Vigna, and part of a previously pub-

lished paper [2].

The content of Chapter 4 is the result of a collaboration with Yanick Fratantonio,

Aravind Machiry, Christopher Kruegel, Giovanni Vigna, Simon Chung, and Wenke Lee,

and part of a previously published paper [3].

13

Chapter 2

User/User-Interface Trust

Relationship

Today, smartphone and tablet usage is on the rise, becoming the primary way of accessing

digital media in the US [4]. Many users now trust their mobile devices to perform tasks,

such as mobile banking or shopping, through mobile applications, typically called “apps.”

This wealth of confidential data has not gone unnoticed by cybercriminals: over the last

few years, mobile malware has grown at an alarming rate [5].

Popular mobile operating systems run multiple apps concurrently. For example, a

user can run both her mobile banking application and a new game she is checking out.

Obviously, a game should not receive financial information. As a consequence, the ability

to tell the two apps apart is crucial. At the same time, it is important for these apps

to have user-friendly interfaces that make the most of the limited space and interaction

possibilities.

Let us assume that a victim user is playing the game, which is malicious. When this

user switches to another app, the game will remain active in the background (to support

background processing and event notifications). However, it will also silently wait for the

14

User/User-Interface Trust Relationship Chapter 2

user to login into her bank. When the malicious game detects that the user activates

the banking app, it changes its own appearance to mimic the bank’s user interface and

instantly “steals the focus” to become the target with which the victim interacts. The

user is oblivious to this switch of apps in the foreground, because she recognizes the

graphical user interface (GUI) of the banking application. In fact, there have been no

changes on the user’s display throughout the attack at all, so it is impossible for her

to detect it: she will then insert her personal banking credentials, which will then be

collected by the author of the malicious app.

In the work presented in this chapter, we study this and a variety of other GUI

confusion attacks. With this term, we denote attacks that exploit the user’s inability to

verify which app is, at any moment, drawing on the screen and receiving user inputs.

GUI confusion attacks are similar to social engineering attacks such as phishing and

click-jacking. As such, they are not fundamentally novel. However, we find that the

combination of powerful app APIs and a limited user interface make these attacks much

harder to detect on Android devices than their “cousins” launched on desktop machines,

typically against web browsers.

The importance of GUI-related attacks on Android has been pointed out by several

publications in the past, such as [6, 7] (with a focus on “tapjacking”), [8] (with a focus

on phishing attacks deriving from control transfers), and [9] (with a focus on state disclo-

sure through shared-memory counters). Our work generalizes these previously-discovered

techniques by systematizing existing exploits. Furthermore, we introduce a number of

novel attacks. As an extreme example of a novel attack, we found that a malicious app

has the ability to create a complete virtual environment that acts as a full Android in-

terface, with complete control of all user interactions and inputs. This makes it very

hard for a victim user to escape the grip of such a malicious application. Even though at

15

User/User-Interface Trust Relationship Chapter 2

the time of this writing the number of known samples performing GUI confusion attacks

is limited, we believe that this is a real, currently unsolved, problem in the Android

ecosystem.

This work also introduces two novel approaches to defend against GUI confusion

attacks. The first approach leverages static code analysis to automatically find apps that

could abuse Android APIs for GUI confusion attacks. We envision that this defense could

be deployed at the market level, identifying suspicious apps before they hit the users.

Interestingly, we detected that many benign apps are using potentially-dangerous APIs,

thus ruling out simple API modifications as a defense mechanism.

Our static analysis approach is effective in identifying potentially-malicious apps.

More precisely, our technique detects apps that interfere with the UI in response to some

action taken by the user (or another app). The apps that we detect in this fashion

fulfill two necessary preconditions of GUI confusion attacks: They monitor the user and

other apps, and they interfere with the UI (e.g., by stealing the focus and occupying the

top position on the screen). However, these two conditions are not sufficient for GUI

confusion attacks. It is possible that legitimate apps monitor other apps and interfere

with the UI. As an example, consider an “app-locker” program, which restricts access

to certain parts of the phone (and other apps). When looking at the code, both types

of programs (that is, malicious apps that launch GUI confusion attacks as well as app-

lockers) look very similar and make use of the same Android APIs. The difference is in

the intention of the apps, as well as the content they display to users. Malicious apps

will attempt to mimic legitimate programs to entice the user to enter sensitive data.

App-lockers, on the other hand, will display a screen that allows a user to enter a PIN or

a password to unlock the phone. These semantic differences are a fundamental limitation

for detection approaches that are purely code-based.

16

User/User-Interface Trust Relationship Chapter 2

Figure 2.1: Comparison between how SSL Extended Validation information is shown
in a modern Browser (Chrome 33) and what our implemented defense mechanism
shows on the navigation bar of an Android device.

To address the limitations of code-based detection, we devised a second, on-device

defense. This approach relies on modifications to the Android UI to display a trusted

indicator that allows users to determine which app and developer they are interacting

with, attempting to reuse security habits and training users might already have. To this

end, we designed a solution (exemplified in Figure 2.1) that follows two well-accepted

paradigms in web security:

• the Extended Validation SSL/TLS certification and visualization (the current-best-

practice solution used by critical businesses to be safely identified by their users)

• the use of a “secure-image” to established a shared secret between the user interface

and the user (similarly to what is currently used in different websites [10], [11] and

recently proposed for the Android keyboard [12])

We evaluate the effectiveness of our solution with a user study involving 308 human

subjects. We provided users with a system that implements several of our proposed

defense modifications, and verified that the success ratio of the (normally invisible) de-

ception attacks significantly decreases.

To summarize, the main contributions of this work are:

17

User/User-Interface Trust Relationship Chapter 2

• We systematically study and categorize the different techniques an attacker can

use to mount GUI deception attacks. We describe several new attack vectors that

we found, and we introduce a tool to automatically explore reachable GUI states

and identify the ones that can be used to mount an attack. This tool was able to

automatically find two vulnerabilities in the Android framework that allow an app

to gain full control of a device’s UI.

• We study, using static analysis, how benign apps legitimately use API calls that

render these attacks possible. Then, we develop a detection tool that can identify

their malicious usage, so that suspicious apps can be detected at the market level.

• We propose an on-device defense that allows users to securely identify authors of

the apps with which they interact. We compare our solution with the current

state of the art, and we show that our solution has the highest coverage of possible

attacks.

• In a user study with 308 subjects, we evaluate the effectiveness of these attack

techniques, and show that our on-device defense helps users in identifying attacks.

For the source code of the proof-of-concept attacks we developed and the prototype

of the proposed on-device defense, refer to our repository1.

2.1 Background

To understand the attack and defense possibilities in the Android platform, it is

necessary to introduce a few concepts and terms.

1https://github.com/ucsb-seclab/android ui deception

18

User/User-Interface Trust Relationship Chapter 2

The Android platform is based on the Linux operating system and it has been designed

mainly for touchscreen mobile devices. Unless otherwise noted, in this work we will

mainly focus on Android version 4.4. When relevant, we will also explain new features

and differences introduced by Android 5.0 (the latest available version at the time of

writing).

In an Android device, apps are normally pre-installed or downloaded from the Google

Play Store or from another manufacturer-managed market, although manual offline in-

stallation and unofficial markets can also be used. Typically, each app runs isolated from

others except for well-defined communication channels.

Every app is contained in an apk file. The content of this file is signed to guarantee

that the app has not been tampered with and that it is coming from the developer that

owns the corresponding private key. There is no central authority, however, to ensure

that the information contained in the developer’s signing certificate is indeed accurate.

Once installed on a device, an app is identified by its package name. It is not possible to

install apps with the same package name at the same time on a single device.

Apps are composed of different developer-defined components. Specifically, four

types of components exist in Android: Activity, Service, Broadcast Receiver, and Con-

tent Provider. An Activity defines a graphical user interface and its interactions with

user’s actions. Differently, a Service is a component running in background, performing

long-running operations. A Broadcast Receiver is a component that responds to specific

system-wide messages. Finally, a Content Provider is used to manage data shared with

other components (either within the same app or with external ones).

To perform sensitive operations (e.g., tasks that can cost money or access private user

data), apps need specific permissions. All the permissions requested by a non-system app

must be approved by the user during the app’s installation: a user can either grant all

requested permissions or abort the installation. Some operations require permissions

19

User/User-Interface Trust Relationship Chapter 2

Toast

Status Bar

Top
Activity

Navigation
Bar

Figure 2.2: Typical Android user interface appearance. The status bar is at the top
of the screen, while the navigation bar occupies the bottom. A browser app is open,
and its main Activity is shown in the remaining space.

20

User/User-Interface Trust Relationship Chapter 2

that are only granted to system apps (typically pre-installed or manufacturer-signed).

Required permissions, together with other properties (such as the package name and the

list of the app’s components), are defined in a manifest file (AndroidManifest.xml),

stored in the app’s apk file.

2.1.1 Android graphical elements

Figure 2.2 shows the typical appearance of the Android user interface on a smart-

phone. The small status bar, at the top, shows information about the device’s state,

such as the current network connectivity status or the battery level. At the bottom,

the navigation bar shows three big buttons that allow the user to “navigate” among all

currently running apps as well as within the focused app.

Details may vary depending on the manufacturer (some devices merge the status

and navigation bars, for instance, and legacy devices may use hardware buttons for the

navigation bar). In this work we will use as reference the current guidelines2, as they

represent a typical modern implementation; in general, our considerations can be adapted

to any Android device with minor modifications.

Apps draw graphical elements by instantiating system-provided components: Views,

Windows, and Activities.

Views. A View is the basic UI building block in Android. Buttons, text fields,

images, and OpenGL viewports are all examples of views. A collection of Views is itself

a View, enabling hierarchical layouts.

2http://developer.android.com/design/handhelds/index.html,
http://developer.android.com/design/patterns/compatibility.html

21

http://developer.android.com/design/handhelds/index.html
http://developer.android.com/design/patterns/compatibility.html

User/User-Interface Trust Relationship Chapter 2

Activities. An Activity can be described as a controller in a Model-View-Controller

pattern. An Activity is usually associated with a View (for the graphical layout) and

defines actions that happen when the View elements are activated (e.g., a button gets

clicked).

Activities are organized in a global stack that is managed by the ActivityManager

system Service. The Activity on top of the stack is shown to the user. We will call this

the top Activity and the app controlling it the top app.

Activities are added and removed from the Activity stack in many situations. Each

app can reorder the ones it owns, but separate permissions are required for global mon-

itoring or manipulation. Users can request an Activity switch using the navigation bar

buttons:

• The Back button (bottom left in Figure 2.2) removes the top Activity from the

top of the stack, so that the one below is displayed. This default behavior can be

overridden by the top Activity.

• The Home button lets the user return to the base “home” screen, usually managed

by a system app. A normal app can only replace the home screen if the user

specifically allows this.

• The Recent button (bottom right in Figure 2.2) shows the list of top Activities of the

running apps, so the user can switch among them. Activities have the option not to

be listed. In Android 5.0, applications can also decide to show different thumbnails

on the Recent menu (for instance, a browser can show a different thumbnail in the

Recent menu for each opened tab).

Windows. A Window is a lower-level concept: a virtual surface where graphical

content is drawn as defined by the contained Views. In Figure 2.2, the Status Bar, the

Navigation Bar and the top Activity are all drawn in separate Windows. Normally, apps

22

User/User-Interface Trust Relationship Chapter 2

do not explicitly create Windows; they just define and open Activities (which in turn

define Views), and the content of the top Activity is drawn in the system-managed top-

activity Window. Windows are normally managed automatically by the WindowManager

system Service, although apps can also explicitly create Windows, as we will show later.

2.2 GUI confusion attacks

In this section, we discuss classes of GUI confusion attacks that allow for launching

stealthy and effective phishing-style or click-jacking-style operations.

In our threat model, a malicious app is running on the victim’s Android device, and

it can only use APIs that are available to any benign non-system app. We will indicate

when attacks require particular permissions. We also assume that the base Android

operating system is not compromised, forming a Trusted Computing Base.

We have identified several Android functionalities (Attack Vectors, categorized in

Table 2.1) that a malicious app can use to mount GUI confusion attacks. We have

also identified Enhancing Techniques : abilities (such as monitoring other apps) that do

not present a GUI security risk in themselves, but can assist in making attacks more

convincing or stealthier.

2.2.1 Attack vectors

Draw on top

Attacks in this category aim to draw graphical elements over other apps. Typically,

this is done by adding graphical elements in a Window placed over the top Activity. The

Activity itself is not replaced, but malware can cover it either completely or partially

and change the interpretation the user will give to certain elements.

23

User/User-Interface Trust Relationship Chapter 2

Table 2.1: Attack vectors and enhancing techniques. We indicate with a dash attacks
and techniques that, to the best of our knowledge, have not been already mentioned
as useful in GUI confusion attacks.

Category Attack vector Mentioned in

Draw on top
UI-intercepting draw-over [6, 8]

Non-UI-intercepting draw-over [6], [7], [8]

Toast message [6], [13]

App switch

startActivity API [9]

Screen pinning —

moveTaskTo APIs —

killBackgroundProcesses API —

Back / power button (passive) —

Sit and wait (passive) —

Fullscreen
non-“immersive” fullscreen —

“immersive” fullscreen —

“inescapable” fullscreen —

Enhancing
tech-
niques

getRunningTask API [8]

Reading the system log [14]

Accessing proc file system [15, 9]

App repackaging [16], [17], [18]

Apps can explicitly open new Windows and draw content in them using the addView

API exposed by the WindowManager Service. This API accepts several flags that de-

termine how the new Window is shown (for a complete description, refer to the original

documentation3). In particular, flags influence three different aspects of a Window:

• Whether it is intercepting user input or is letting it “pass through” to underlying

Windows.

3http://developer.android.com/reference/android/view/WindowManager.LayoutParams.

html

24

http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html
http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html

User/User-Interface Trust Relationship Chapter 2

• Its type, which determines the Window’s Z-order with respect to others.

• The region of the screen where it is drawn.

Non-system apps cannot open Windows of some types, while Windows with a higher

Z-order than the top-activity Window require the SYSTEM ALERT WINDOW permis-

sion.

Windows used to display toasts, text messages shown for a limited amount of time, are

an interesting exception. Intended to show small text messages even when unrelated apps

control the main visualization, toast messages are usually created with specific APIs and

placed by the system in Windows of type TOAST, drawn over the top-activity Window.

No specific permission is necessary to show toast messages. Their malicious usage has

been presented by previous research (refer to Table 2.1).

Two other types of attack are possible:

• UI-intercepting draw-over: A Window spawned using, for instance, the PRIOR-

ITY PHONE flag can not only overlay the top-activity Window with arbitrary

content, but also directly steal information by intercepting user input.

• Non UI-intercepting draw-over: By forwarding all user input to the underlying

Windows, classical “click-jacking” attacks are possible. In these attacks, users are

lured to perform an unwanted action while thinking they are interacting with a

different element.

App switch

Attacks that belong to this category aim to steal focus from the top app. This is

achieved when the malicious app seizes the top Activity: that is, the malicious app

replaces the legitimate top Activity with one of its own. The malicious app that we

25

User/User-Interface Trust Relationship Chapter 2

developed for our user study (Section 3.4) uses an attack in this category: it waits until

the genuine Facebook app is the top app, and then triggers an app switch and changes

its appearance to mimic the GUI of the original Facebook app.

Replacing the currently running app requires an active app switch. Passive app

switches are also possible: in this case, the malicious application does not actively change

the Activity stack, nor it shows new Windows, but it waits for specific user’s input.

We have identified several attack vectors in this category:

startActivity API. New Activities are opened using the startActivity API. Nor-

mally, the newly opened Activity does not appear on top of Activities of other apps.

However, under particular conditions the spawned Activity will be drawn on top of all

the existing ones (even if belonging to different apps) without requiring any permission.

Three different aspects determine this behavior: the type of the Android component from

which the startActivity API is called, the launchMode attribute of the opened Activity,

and flags set when startActivity is called.

Given the thousands of different combinations influencing this behavior and the fact

that the official documentation4 does not state clearly when a newly Activity will be

placed on top of other apps’ Activities, we decided to develop a tool to systematically

explore the conditions under which this happens.

Our tool determined that opening an Activity from a Service, a Broadcast Receiver, or

a Content Provider will always place it on top of all the others, as long as the NEW TASK

flag is specified when the startActivity API is called. Alternatively, opening an Activity

from another one will place the opened Activity on top of all the others if the sin-

gleInstance launch mode is specified. In addition, our tool found other, less common,

situations in which an Activity is placed on top of all the others. For more details and a

description of our tool, refer to Section 2.3.1.

4http://developer.android.com/guide/components/tasks-and-back-stack.html

26

http://developer.android.com/guide/components/tasks-and-back-stack.html

User/User-Interface Trust Relationship Chapter 2

moveTaskTo APIs. Any app with the REORDER TASKS permission can use

the moveTaskToFront API to place Activities on top of the stack. We also found another

API, moveTaskToBack, requiring the same permission, to remove another app from the

top of the Activity stack.

Screen pinning. Android 5.0 introduces a new feature called “screen pinning” that

locks the user interaction to a specific app. Specifically, while the screen is “pinned,”

there cannot be any switch to a different application (the Home button, the Recent

button, and the status bar are hidden). Screen pinning can be either manually enabled

by a user or programmatically requested by an app. In the latter case, user confirmation

is necessary, unless the app is registered as a “device admin” (which, again, requires

specific user confirmation).

killBackgroundProcesses API. This API (requiring the

KILL BACKGROUND PROCESSES permission) allows killing the processes spawned

by another app. It can be used maliciously to interfere with how benign apps work:

besides mimicking their interface, a malicious app could also prevent them from

interacting with the user. Android does not allow killing the app controlling the top

Activity, but other attack vectors can be used to first remove it from the top of the

stack.

Back/Power Button. A malicious app can also make the user believe that an

app switch has happened when, in fact, it has not. For example, an app can intercept

the actions associated with the back button. When the user presses the back button, she

expects one of two things: either the current app terminates, or the previous Activity

on the stack is shown. A malicious app could change its GUI to mimic its target (such

as a login page) in response to the user pressing the back button, while at the same

time disabling the normal functionality of the back button. This might make the user

27

User/User-Interface Trust Relationship Chapter 2

believe that an app switch has occurred, when, in fact, she is still interacting with the

malicious app. A similar attack can be mounted when the user turns off the screen while

the malicious app is the top app.

Sit and Wait. When a malicious app is in the background, it can change its GUI to

that of a victim app, so that when the user switches between apps looking, for example,

for the legitimate banking application, she could inadvertently switch to the malicious

version instead. This type of attack is known in the browser world as tabnabbing [19].

Fullscreen

Android apps have the possibility to enter the so called fullscreen mode, through which

they can draw on the device’s entire screen area, including the area where the navigation

bar is usually drawn. Without proper mitigations, this ability could be exploited by

malicious apps, for example, to create a fake home screen including a fake status bar and

a fake navigation bar. The malicious app would therefore give the user the impression

she is interacting with the OS, whereas her inputs are still intercepted by the malicious

app.

Android implements specific mitigations against this threat [20]: An app can draw

an Activity on the entire screen, but in principle users always have an easy way to close

it and switch to another app. Specifically, in Android versions up to 4.3, the navigation

bar appears on top of a fullscreen Activity as soon as the user clicks on the device screen.

Android 4.4 introduces a new “immersive” fullscreen mode in which an Activity remains

in fullscreen mode during all interactions: in this case, the navigation bar is accessed by

performing a specific “swipe” gesture.

Given the large number of possible combinations of flags that apps are allowed to use

to determine the appearance of a Window in Android, these safety functionalities are

intrinsically difficult to implement. In fact, the implementation of the Android APIs in

28

User/User-Interface Trust Relationship Chapter 2

charge of the creation and display of Windows has thousands of lines of code, and bugs

in this APIs are likely to enable GUI confusion attacks. Therefore, we used our API

exploration tool to check if it is possible to create a Window that covers the entire device’s

screen area (including the navigation bar) without giving any possibility to the user to

close it or to switch to another application. We call a Window with these properties an

“inescapable” fullscreen Window.

Our tool works by spawning Windows with varying input values of GUI-related APIs

and, after each invocation, determines whether an “inescapable” fullscreen mode is en-

tered. By using it, several such combinations were found, thus leading to the discovery

of vulnerabilities in different Android versions. Upon manual investigation, we found

that Google committed a patch5 to fix a bug present in Android 4.3; however, our tool

pointed out that this fix does not cover all possible cases. In fact, we found a similar

problem that affects Android versions 4.4 and 5.0. We notified Google’s Security Team:

a review is in progress at the time of this writing.

Section 2.3.2 presents more technical details about the tool we developed and its

findings.

There is effectively no limit to what a malicious programmer can achieve using an

“inescapable” fullscreen app. For instance, one can create a full “fake” environment that

retains full control (and observation powers) while giving the illusion of interacting with

a regular device (either by “proxying” app Windows or by relaying the entire I/O to and

from a separate physical device).

2.2.2 Enhancing techniques

Additional techniques can be used in conjunction with the aforementioned attack

vectors to mount more effective attacks.

5https://android.googlesource.com/platform/frameworks/base/+/b816bed

29

https://android.googlesource.com/platform/frameworks/base/+/b816bed

User/User-Interface Trust Relationship Chapter 2

Techniques to detect how the user is currently interacting with the system

To use the described attack vectors more effectively, it is useful for an attacker to

know how the user is currently interacting with the device.

For instance, suppose again that a malicious app wants to steal bank account creden-

tials. The most effective way would be to wait until the user actually opens the specific

login Activity in the original app and, immediately after, cover it with a fake one. To do

so, it is necessary to know which Activity and which app the user is currently interacting

with.

We have identified a number of ways to do so: some of them have been disabled

in newer Android versions, but others can still be used in the latest available Android

version.

Reading the system log. Android implements a system log where standard apps,

as well as system Services, write logging and debugging information. This log is readable

by any app having the relatively-common READ LOGS permission (see Table 2.4 in the

next section). By reading messages written by the ActivityManager Service, an app can

learn about the last Activity that has been drawn on the screen.

Moreover, apps can write arbitrary messages into the system log and this is a common

channel used by developers to receive debug information. We have observed that this

message logging is very commonly left enabled even when apps are released to the public,

and this may help attackers time their actions, better reproduce the status of an app,

or even directly gather sensitive information if debug messages contain confidential data

items.

Given the possible malicious usage of this functionality, an app can only read log

messages created by itself in Android version 4.1 and above.

30

User/User-Interface Trust Relationship Chapter 2

getRunningTasks API. An app can get information about currently running apps

by invoking the getRunningTasks API. In particular, it is possible to know which app is on

top and the name of the top Activity. The relatively-common GET TASKS permission

is required to perform such queries.

The functionality of this API has been changed in Android 5.0, so that an app can

only use it to get information about its own Activities. For this reason, in Android 5.0

this API cannot be used anymore to detect which application is currently on top.

Accessing the proc file system. It is possible to get similar information by

reading data from the proc file system, as previous research [15, 9] studied in detail both

in a generic Linux system and in the specific setup of an Android device.

For instance, an app can retrieve the list of running applications by listing the /proc

directory and reading the content of the file: /proc/<process pid>/cmdline. However,

most of the apps have a process running in the background even when a user is not

interacting with them, so this information cannot be used to detect the app showing the

top Activity.

More interestingly, we have identified a technique to detect which is the app

the user is currently interacting with. In particular, the content of the file

/proc/<process pid>/cgroups changes (from “/apps/bg non interactive” to “/apps”)

when the app on top is run by the <process pid>. This is due to the fact that An-

droid (using Linux cgroups) uses the specific “/apps” scheduling category for the app

showing the top activity. We have tested this technique in Android 5.0 and, to the

best of our knowledge, we are the first one pointing out the usage of this technique for

GUI-related attacks in Android.

Finally, as studied in [9], by reading the content of /proc/<process pid>/statm, an

application can infer the graphical state of another app, and precisely identify the specific

Activity with which a user is interacting.

31

User/User-Interface Trust Relationship Chapter 2

Techniques to create graphical elements mimicking already existing ones

To effectively replace an Activity of a “victim app,” a convincing copy is necessary. Of

course, an attacker could develop a malicious app from scratch with the same graphical

elements as the original one. However, it is also possible to take the original app, change

its package name, and just add the attack and information-gathering code.

The procedure of modifying an existing app (called repackaging) is well-known in the

Android ecosystem. In the context of this work, repackaging is a useful technique to

expedite development of interfaces that mimic those of other apps. Note, however, that

the attacks described in this section are entirely possible without repackaging. Detecting

and defending from repackaging is outside the scope of this work.

2.2.3 Attack app examples

In practice, malicious apps can combine multiple attack vectors and enhancing tech-

niques to mount stealthy attacks. For instance, the attack app we implemented for our

user study portraits itself as a utility app. When launched, it starts to monitor other run-

ning apps, waiting until the user switches to (or launches) the Facebook app. When that

happens, it uses the startActivity API to spawn a malicious app on top of the genuine

Facebook app. The malicious app is a repackaged version of the actual Facebook app,

with the additional functionality that it leaks any entered user credentials to a remote

location. To be stealthier, it informs Android that it should not be listed in the Recent

Apps view.

We also developed a proof-of-concept malicious app that covers and mimics the home

screen of a device, and demonstration videos. The displayed attack uses the “immersive”

fullscreen functionality, but it can be easily adapted to use the “inescapable” fullscreen

mode described in Section 2.2.1.

32

User/User-Interface Trust Relationship Chapter 2

2.3 State exploration of the Android GUI API

We have developed a tool to study how the main Android GUI APIs can be used to

mount a GUI confusion attack. The tool automatically performs a full state exploration

of the parameters of the startActivity API, which can be used to open Activities on top

of others (including Activities of different apps). Also, our tool systematically explores

all Window-drawing possibilities, to check if it is possible to create Windows that:

1. entirely cover the device’s screen;

2. leave the user no way to close them or access the navigation bar.

In the following two sections, we will explain our tool in detail, and we will show what

it has automatically found.

2.3.1 Study of the startActivity API

First, using the documentation and the source code as references, we determined that

three different aspects influence how a newly-started Activity is placed on the Activities’

stack:

• The type of Android component calling startActivity.

• The launchMode attribute of the opened Activity.

• Flags passed to startActivity.

Table 2.2 lists the possible Android component types, all the relevant flags and launch-

Mode values an app can use.

Our tool works by first opening a “victim” app that controls the top Activity. A

different “attacker” app then opens a new Activity calling the startActivity API with

every possible combination of the listed launch modes and flags. This API is called

33

User/User-Interface Trust Relationship Chapter 2

Table 2.2: Component types, flags, and launchMode values tested by our tool

Component type Activity, Service,Content Provider, Broadcast Receiver

launchMode attribute standard, singleTop, singleTask, singleInstance

startActivity flags MULTIPLE TASK, NEW TASK, CLEAR TASK,
CLEAR TOP, PREVIOUS IS TOP,
REORDER TO FRONT, SINGLE TOP,
TASK ON HOME

in four different code locations, corresponding to the four different types of Android

components. Our tool then checks if the newly-opened Activity has been placed on top

of the “victim” app, by taking a screenshot and analyzing the captured image.

Our tool found, in Android version 4.4, the following three conditions under which

an Activity is drawn on top of every other:

1. The Activity is opened by calling the startActivity API from a Service, a Broadcast

Receiver, or a Content Provider and the NEW TASK flag is used.

2. The Activity is opened by calling the startActivity API from another Activity and

it has the singleInstance launch mode.

3. The Activity is opened by calling the startActivity API from another Activity and

one of the following combinations of launch modes and flags is used:

• NEW TASK and CLEAR TASK flags.

• NEW TASK and MULTIPLE TASK flags, and launch mode different from

singleTask.

• CLEAR TASK flag and singleTask launch mode.

34

User/User-Interface Trust Relationship Chapter 2

Table 2.3: Window types and flags. Flags in italics are only available starting from An-
droid version 4.4, whereas TYPEs in bold require the SYSTEM ALERT WINDOW
permission.

TYPEs TOAST, SYSTEM ERROR, PHONE, PRIORITY PHONE,
SYSTEM ALERT, SYSTEM OVERLAY

Layout flags IN SCREEN, NO LIMITS,

System-UI
Visibility flags

HIDE NAVIGATION, FULLSCREEN,
LAYOUT HIDE NAVIGATION, LAYOUT FULLSCREEN,
IMMERSIVE, IMMERSIVE STICKY

We are only aware of one previous paper [9] that (manually) studies the behavior

of this API for different parameters and under different conditions. Interestingly, the

authors do not find all the conditions that we discovered. This underlines how the com-

plexity of the Android API and omissions in the official documentation are prone to

creating unexpected behaviors that are triggered using undocumented combinations of

flags and APIs. Such behaviors are hard to completely cover through manual investiga-

tion. Hence, our API exploration tool can effectively help Android developers to detect

these situations. As one example, we will now discuss how our tool revealed the existence

of an “inescapable” fullscreen possibility.

2.3.2 Study of “inescapable” fullscreen Windows

We first checked the documentation and source code to determine the three different

ways in which an app can influence the appearance of a Window that are relevant to our

analysis:

• Modifying the Window’s TYPE.

• Specifying certain flags that determine the Window’s layout.

35

User/User-Interface Trust Relationship Chapter 2

• Calling the setSystemUiVisibility API with specific flags to influence the appearance

and the behavior of the navigation bar and the status bar.

Table 2.3 lists all the relevant flags and Window types an app can use.

Our tool automatically spawns Windows with every possible combination of the listed

types and flags. After spawning each Window, it injects user input that should close a

fullscreen Window, according to the Android documentation (e.g., a “slide” touch from

the top of the screen). It then checks if, after the injection of these events, the Window is

still covering the entire screen, by taking a screenshot and analyzing the captured image.

Using our tool we were able to find ways to create an “inescapable” fullscreen Window

in Android 4.3, 4.4 and 5.0, which we will now briefly describe.

In particular, a Window of type SYSTEM ERROR created with the flag NO LIMITS,

can cover the device’s entire screen in Android 4.3. To specifically address this problem,

a patch has been committed in the Android code before the release of the version 4.4.

This patch limits the position and the size of a Window (so that it cannot cover the

navigation bar) if it has this specific combination of type and flag.

However, this patch does not cover all the cases. In fact, the “immersive” fullscreen

mode introduced in Android 4.4 opens additional ways to create “inescapable” fullscreen

Windows, such as using the SYSTEM ERROR type and then calling the setSystemUiV-

isibility API to set the LAYOUT HIDE NAVIGATION, HIDE NAVIGATION, LAY-

OUT FULLSCREEN, and IMMERSIVE STICKY flags. We verified that the same pa-

rameters create an “inescapable” fullscreen Window in Android 5.0 as well.

It is important to notice that all the ways we discovered to create “inescapable”

fullscreen Windows require using the SYSTEM ERROR type. To fully address this

problem, we propose removing this type or restricting its usage only to system compo-

nents.

36

User/User-Interface Trust Relationship Chapter 2

2.4 Detection via static analysis

We developed a static analysis tool to explore how (and whether) real-world apps

make use of the attack vectors and enhancing techniques that we previously explained in

Section 2.2. Our goals with this tool are two-fold:

1. Study if and how the techniques described in Section 2.2 are used by benign apps

and/or by malicious apps, to guide our defense design.

2. Automatically detect potentially-malicious usage of such techniques.

2.4.1 Tool description

Our tool takes as input an app’s apk file and outputs a summary of the potentially-

malicious techniques that it uses. In addition, it flags an app as potentially-malicious if

it detects that the analyzed app has the ability to perform GUI confusion attacks.

Specifically, it first checks which permissions the app requires in its manifest. It then

extracts and parses the app’s bytecode, and it identifies all the invocations to the APIs

related to the previously-described attack techniques. Then, the tool applies backward

program slicing techniques to check the possible values of the arguments for the identified

API calls. The results of the static analyzer are then used to determine whether a

particular technique (or a combination of them) is used by a given application. Finally,

by analyzing the app’s control flow, it decides whether to flag it as (potentially) malicious.

In this section, we will discuss the static analyzer, the attack techniques that we can

automatically detect, and the results we obtained by running the tool on a test corpus

of over two thousand apps. We would like to note that the implementation of the basic

37

User/User-Interface Trust Relationship Chapter 2

static analysis tool (namely, the backward program slicer) is not a contribution of this

work: We reused the one that Egele et al. developed for Cryptolint [21], whose source

code was kindly shared with us.

Program slicer

The slicer first decompiles the Dalvik bytecode of a given app by using Andro-

guard [22]. It then constructs an over-approximation of the application’s call graph

representing all possible method invocations among different methods in the analyzed

app. Then, a backward slicing algorithm (based on [23]) is used to compute slices of

the analyzed app. Given an instruction I and a register R, the slicer returns a set of

instructions that can possibly influence the value of R. The slice is computed by recur-

sively following the def-use chain of instructions defining R, starting from instruction I.

If the beginning of a method is reached, the previously-computed call graph is used to

identify all possible calling locations of that method. Similarly, when a relevant register

is the return value of another method call, the backward slicer recursively continues its

analysis from the return instruction of the invoked method, according to the call graph.

As most of the static analysis tools focusing on Android, the slicer may return in-

complete results if reflection, class loading, or native code are used. Dealing with such

techniques is outside the scope of this project.

Detecting potential attack techniques

In the following, we describe how our tool identifies the different attack vectors and

enhancing techniques.

Draw on top. We detect if the addView API, used to create custom Windows, is

invoked with values of the TYPE parameter that give to the newly-created Window a

Z-order higher than that of the top-activity Window.

38

User/User-Interface Trust Relationship Chapter 2

In addition, to detect potentially-malicious usage of a toast message, we first look

for all the code locations where a toast message is shown, and then we use the slicer to

check if the setView API is used to customize the appearance of the message. Finally,

we analyze the control flow graph of the method where the message is shown to detect

if it is called in a loop. In fact, to create a toast message that appears as a persistent

Window, it is necessary to call the show API repeatedly.

App Switch. Our tool checks if:

• The startActivity API is used to open an Activity that will be shown on top of

others. As we already mentioned, three aspects influence this behavior: the type of

the Android component from which the startActivity API is called, the launchMode

attribute of the opened Activity, and flags set when startActivity is called. We

determine the first aspect by analyzing the call graph of the app, the launchMode

is read from the app’s manifest file, whereas the used flags are detected by analyzing

the slice of instructions influencing the call to the startActivity API.

• The moveTaskToFront API is used.

• The killBackgroundProcesses API is used.

We do not use as a feature the fact that an app is intercepting the back or power buttons,

as these behaviors are too frequent in benign apps and, being passive methods, they have

limited effectiveness compared to other techniques.

Fullscreen. Our tool checks if the setUiVisibility API is called with flags that cause

it to hide the navigation bar.

Getting information about the device state. Our tool checks if:

• The getRunningTasks API is used.

39

User/User-Interface Trust Relationship Chapter 2

• The app reads from the system log. Specifically, since the native utility logcat is

normally used for this purpose, we check if the Runtime.exec API is called specifying

the string “logcat” as parameter.

• The app accesses files in the /proc file system. We detect this by looking for string

constants starting with “/proc” within the app.

We did not use as a feature the fact that an app is a repackaged version of another, as

its usage, even if popular among malware, is not necessary for GUI confusion attacks. If

desired, our system can be completed with detection methods as those presented in [16,

17].

During our study, we found that some apps do not ask (on installation) for the

permissions that would be necessary to call certain APIs for which we found calls in their

code. For instance, we found some applications that contain calls to the getRunningTask

API, without having the GET TASKS permission. The reason behind this interesting

behavior is that this API is called by library code that was included (but never used) in

the app.

In the threat model we consider for this work, we assume that the Android security

mechanisms are not violated. So, calling an API that requires a specific permission will

fail if the app does not have it. For this reason, we do not consider an app as using one

of the analyzed techniques if it lacks the necessary permissions.

Since the version 5.0 of Android has been released too close to the time of this research

was carried out, we expect only a very limited (and not statistically significant) number

of applications using techniques introduced in this version. For this reason, we decided

not to implement the detection of the techniques only available in Android 5.0.

App classification. We classify an app as suspicious if the following three condi-

tions hold:

40

User/User-Interface Trust Relationship Chapter 2

1. The app uses a technique to get information about the device state.

2. The app uses an attack vector (any of the techniques in the Draw on top, App

Switch, Fullscreen categories)

3. There is a path in the call graph of the app where Condition 1 (check on the running

apps) happens, and then Condition 2 (the attack vector) happens.

Intuitively, the idea behind our classification approach is that, to perform an effective

attack, a malicious app needs to decide when to attack (Condition 1) and then how to

attack (Condition 2). Also, the check for when an attack should happen is expected to

influence the actual launch of this attack (hence, there is a control-flow dependency of

the attack on the preceding check, captured by Condition 3).

It is important to note that our tool (and the classification rules) are designed to

identify the necessary conditions to perform a GUI confusion attack. That is, we expect

our tool to detect any app that launches a GUI confusion attack. However, our classifi-

cation rules are not sufficient for GUI confusion attacks. In particular, it is possible that

our tool finds a legitimate app that fulfills our static analysis criteria for GUI confusion

attacks. Consider, for example, applications of the “app-locker” category. These apps ex-

hibit a behavior that is very similar to the attacks described in Section 2.2. They can be

configured to “securely lock” (that is, disable) certain other apps unless a user-defined

password is inserted. To this end, they continuously monitor running applications to

check if one of the “locked” apps is opened and, when this happens, they cover it with a

screen asking for an unlock password. At the code level, there is no difference between

such apps and malicious programs. The difference is in the intent of the program, and

the content shown to users when the app takes control of the screen.

41

User/User-Interface Trust Relationship Chapter 2

We envision that our tool can be used during the market-level vetting process to spot

apps that need manual analysis since they could be performing GUI confusion attacks.

App-lockers would definitely need this analysis to check whether they are behaving ac-

cording to their specification. In the following evaluation, we do not count app-lockers

and similar programs as false positives. Instead, our system has properly detected an

app that implements functionality that is similar to (and necessary for) GUI confusion

attacks. The final decision about the presence of a GUI confusion attack has to be made

by a human analyst. The reason is that static code analysis is fundamentally unable to

match the general behavior of an app (and the content that it displays) to user expec-

tations. Nonetheless, we consider our static analysis approach to be a powerful addition

to the arsenal of tools that an app store can leverage. This is particularly true under the

assumption that the number of legitimate apps that trigger our static detection is small.

Fortunately, as shown in the next section, this assumption seems to hold, considering

that only 0.4% of randomly chosen apps trigger our detection. Thus, our tool can help

analysts to focus their efforts as part of the app store’s manual vetting process.

One possibility to address the fundamental problem of static code analysis is to look

at the app description in the market6. However, this approach is prone to miss mali-

cious apps, as cybercriminals can deceive the detection system with a carefully-crafted

description (i.e., disguising their password-stealer app as an app-locker).

A second possibility to address this fundamental problem is to devise a defense mech-

anism that empowers users to make proper decisions. One proposal for such a defense

solution is based on the idea of a trusted indicator on the device that reliably and con-

tinuously informs a user about the application with which she is interacting. We will

discuss the details of this solution in Section 2.5.

6A similar concept has been explored in Whyper [24], a tool to examine whether app descriptions
indicate the reason why specific permissions are required.

42

User/User-Interface Trust Relationship Chapter 2

T
ab

le
2.

4:
N

u
m

b
er

of
ap

p
s

re
q
u

es
ti

n
g

p
er

m
is

si
on

s
u

se
d

b
y

G
U

I
co

n
fu

si
on

at
ta

ck
s

a
n

d
n
u

m
b

er
of

ap
p

s
u

si
n

g
ea

ch
d

et
ec

te
d

te
ch

n
iq

u
e

in
th

e
an

al
y
ze

d
d

at
a

se
ts

p
e
rm

is
si

o
n

n
a
m

e
be

n
ig
n
1

se
t

be
n
ig
n
2

se
t

m
a
li
c
io
u
s

se
t

a
p
p
-l
o
c
k
e
r

se
t

G
E

T
T

A
S
K

S
32

6.
4%

80
16

.0
%

21
7

17
.2

%
19

95
.0

%
R

E
A

D
L

O
G

S
9

1.
8%

35
7.

0%
24

0
19

.1
%

13
65

.0
%

K
IL

L
B

A
C

K
G

R
O

U
N

D
P

R
O

C
E

S
S
E

S
3

0.
6%

13
2.

6%
13

1.
0%

5
25

.0
%

S
Y

S
T

E
M

A
L

E
R

T
W

IN
D

O
W

1
0.

2%
34

6.
8%

3
0.

2%
10

50
.0

%
R

E
O

R
D

E
R

T
A

S
K

S
0

0.
0%

4
0.

8%
2

0.
2%

2
10

.0
%

te
ch

n
iq

u
e

be
n
ig
n
1

se
t

be
n
ig
n
2

se
t

m
a
li
c
io
u
s

se
t

a
p
p
-l
o
c
k
e
r

se
t

st
ar

tA
ct

iv
it

y
A

P
I

53
10

.6
%

13
5

27
.0

%
75

1
59

.6
%

20
10

0.
0%

ki
ll

B
ac

kg
ro

u
n

dP
ro

ce
ss

es
A

P
I

1
0.

2%
8

1.
6%

6
0.

5%
4

20
.0

%
fu

ll
sc

re
en

0
0.

0%
22

4.
4%

0
0.

0%
1

5.
0%

m
ov

eT
oF

ro
n

t
A

P
I

0
0.

0%
0

0.
0%

1
0.

1%
1

5.
0%

d
ra

w
ov

er
u
si

n
g

ad
dV

ie
w

A
P

I
0

0.
0%

9
1.

8%
0

0.
0%

3
15

.0
%

cu
st

om
to

as
t

m
es

sa
ge

0
0.

0%
1

0.
2%

0
0.

0%
1

5.
0%

ge
tR

u
n

n
in

gT
as

ks
A

P
I

23
4.

6%
68

13
.6

%
14

7
11

.7
%

19
95

.0
%

re
ad

in
g

fr
om

th
e

sy
st

em
lo

g
8

1.
6%

18
3.

6%
28

2.
2%

8
40

.0
%

re
ad

in
g

fr
om

pr
oc

fi
le

sy
st

em
3

0.
6%

26
5.

2%
43

3.
4%

4
20

.0
%

43

User/User-Interface Trust Relationship Chapter 2

T
ab

le
2.

5:
D

et
ec

ti
on

of
p

ot
en

ti
al

G
U

I
co

n
fu

si
on

at
ta

ck
s.

D
a
ta

se
t

T
o
ta

l
D

e
te

ct
e
d

C
o
rr

e
ct

ly
D

e
te

ct
e
d

N
o
te

s

be
n

ig
n

1
se

t
50

0
2

2
T

h
e

d
et

ec
te

d
ap

p
s

ar
e

b
ot

h
ap

p
-l

o
ck

er
s.

be
n

ig
n

2
se

t
50

0
26

23
10

ch
at

/v
oi

p
ap

p
(j

u
m

p
in

g
on

to
p

on
an

in
co

m
in

g
p
h
on

e
ca

ll
/m

es
sa

ge
),

4
ga

m
es

(w
it

h
d
is

ru
p
ti

ve
ad

s)
,
4

en
h
an

ce
rs

(b
ac

k
gr

ou
n
d

ap
p
s

m
on

it
or

in
g

an
d

k
il
li
n
g,

p
er

si
st

en
t

on
-

sc
re

en
ic

on
ov

er
an

y
ap

p
),

2
an

ti
-v

ir
u
s

p
ro

gr
am

s
(j

u
m

p
-

in
g

on
to

p
w

h
en

a
m

al
ic

io
u
s

ap
p

is
d
et

ec
te

d
),

2
ap

p
-

lo
ck

er
s,

an
d

1
ke

y
b

oa
rd

(j
u
m

p
in

g
on

to
p

to
off

er
a

p
ai

d
u
p
gr

ad
e)

.

ap
p-

lo
ck

er
se

t

20
18

18
O

f
th

e
tw

o
w

e
ar

e
n
ot

d
et

ec
ti

n
g,

on
e

is
cu

rr
en

tl
y

in
op

-
er

ab
le

,
an

d
th

e
ot

h
er

h
as

a
d
at

a
d
ep

en
d
en

cy
b

et
w

ee
n

ch
ec

k
in

g
th

e
ru

n
n
in

g
ap

p
s

an
d

la
u
n
ch

in
g

th
e

at
ta

ck
(w

e
on

ly
ch

ec
k

fo
r

d
ep

en
d
en

cy
in

th
e

co
n
tr

ol
fl
ow

).

m
al

ic
io

u
s

se
t

1,
26

0
25

21
21

of
th

e
d
et

ec
te

d
ap

p
s

b
el

on
g

to
th

e
D

ro
id

K
u

n
gF

u
m

al
-

w
ar

e
fa

m
il
y,

w
h
ic

h
ag

gr
es

si
ve

ly
d
is

p
la

y
s

an
A

ct
iv

it
y

on
to

p
of

an
y

ot
h
er

.

44

User/User-Interface Trust Relationship Chapter 2

2.4.2 Results

We ran our tool on the following four sets of apps:

1. A set of 500 apps downloaded randomly from the Google Play Store (later called

benign1).

2. A set of 500 apps downloaded from the “top free” category on the Google Play

Store (later called benign2).

3. A set of 20 apps described as app-lockers in the Google Play Store (later called

app-locker).

4. A set of 1,260 apps from the Android Malware Genome project[25] (later called

malicious).

The top part of Table 2.4 shows the usage of five key permissions that apps would

need to request to carry out various GUI confusion attacks, for each of the four different

data sets we used to evaluate our tool. From this data, it is clear that three out of five

permissions are frequently used by benign applications. As a result, solely checking for

permissions that are needed to launch attacks cannot serve as the basis for detection,

since they are too common.

The bottom part of Table 2.4 details how frequently apps call APIs associated with

the different techniques. Again, just looking at API calls is not enough for detection.

Consider a simplistic (grep-style) approach that detects an app as suspicious when it uses,

at least once, an API to get information about the state of the device and one to perform

an attack vector. This would result in an unacceptable number of incorrect detections.

Specifically, this approach would result in classifying as suspicious 33 apps in the benign1

(6.6%) set and 95 in the benign2 set (19.0%).

45

User/User-Interface Trust Relationship Chapter 2

Figure 2.3: A screenshot acquired while the sample of the svpeng malware family,
detected by our tool, is attacking the user. The Activity shown in the picture (asking,
in Russian, to insert credit card information) is spawned by the malware while the
user is on the official Google Play Store. Data entered in this Activity is then sent to
a malicious server.

On the benign1 set, our tool flagged two apps as suspicious. Manual investigation

revealed that these applications monitor the user’s Activity and, under specific conditions,

block normal user interaction with the device. Even though these samples do not perform

a GUI confusion attack (since they do not mimic the appearance of another application),

they are both app-lockers. Hence, we expect our tool to report them.

46

User/User-Interface Trust Relationship Chapter 2

On the benign2 set, the tool detected 26 applications. When reviewing these apps,

we found that two of them are app-lockers, ten of them are chat or VOIP apps, which

display custom notifications using a separate mechanism than the status bar (such as

stealing focus on an incoming phone call), four are games with disruptive ads, and four

are “performance enhancers” (which monitor and kill the background running apps and

keep a persistent icon on the screen). We also detected two anti-virus programs (which

jump on top when a malicious app is detected) and one (annoying) keyboard app that

jumps on top to offer a paid upgrade. We also had three false positives; two apps that

could be used to take pictures, and one browser. These three apps satisfy the three

conditions used to flag an app as potentially-malicious, but they do not interfere with

the device’s GUI.

The difference between results on sets benign2 and benign1 is due to the fact that

popular apps are significantly bigger and more complex than the randomly-selected ones.

In general, they do more and call a larger variety of APIs. Nonetheless, the total number

of apps that would need to be manually analyzed is small, especially considering the set

of random apps. Hence, an app store could use our system to perform a pre-filtering to

check for apps that can potentially launch GUI confusion attacks, and then use manual

analysis to confirm (or refute) this hypothesis.

To evaluate the detection capabilities (and false negative rate) of our tool, we ran-

domly downloaded from the Google Play Store a set of 20 apps (called app-locker),

described as app-lockers on the store. Since, as previously explained, this category of ap-

plications exhibits a behavior that is very similar to the attacks described in Section 2.2,

we expected our tool to detect them all. Our tool detected 18 out of 20 samples. Manual

investigation revealed that of the two undetected samples, one is currently inoperable

and the other has a data dependency between checking the running apps and launching

the attack (we only check for dependency in the control flow).

47

User/User-Interface Trust Relationship Chapter 2

Finally, we tested our tool on the malicious set of 1,260 apps from the Android

Malware Genome project [25]. Overall, most current Android malware is trying to sur-

reptitiously steal and exfiltrate data, trying hard to remain unnoticed. Hence, we would

not expect many samples to trigger our detection. In this set, we detected 25 apps as

suspicious. Upon manual review, we found that 21 of the detected samples belong to the

malware family DroidKungFu. These samples aggressively display an Activity on top of

any other, asking to the user to either grant them “superuser” privileges or enable the

“USB debugging” functionality (so that the root exploit they use can work). Due to code

obfuscation, we could not confirm whether the other four samples were correct detections

or not. To be on the safe side, we count them as incorrect detections.

We also ran our tool on a sample of the svpeng [26] malware family. To the best

of our knowledge, this is the only Android malware family that currently performs GUI

confusion attacks. Specifically, this sample detects when the official Google Play Store is

opened. At this point, as shown in Figure 2.3, the malicious sample spawns an Activity,

mimicking the original “Enter card details” Activity. As expected, our tool was able to

detect this malicious sample. Furthermore, we tested our tool on an Android ransomware

sample known to interfere with the GUI (Android.Fakedefender). As expected, our tool

correctly flagged the app as suspicious, since it uses an enhancing technique (detecting

if the user is trying to uninstall it) and an attack vector (going on top of the uninstall

Activity to prevent users from using it).

Finally, we used our tool to check for the “inescapable” fullscreen technique. Our

tool did not find evidence of its usage in any of the analyzed sets. This suggests that

removing the possibility of using this very specific functionality (as we will propose in

the next section) will not break compatibility with existing applications.

48

User/User-Interface Trust Relationship Chapter 2

2.5 UI Defense mechanism

As mentioned, we complete our defense approach with a system designed to inform

users and leave the final decision to them, exploiting the fact that the Android system is

not being fooled by GUI attacks: Recall from Section 2.1.1 that all user-visible elements

are created and managed via explicit app-OS interactions.

What compromises user security (and we consider the root cause of our attacks) is

that there is simply no way for the user to know with which application she is actually

interacting. To rectify this situation, we propose a set of simple modifications to the

Android system to establish a trusted path to inform the user without compromising UI

functionality.

In particular, our proposed modifications need to address three different challenges:

1. Understanding with which app the user is actually interacting.

2. Understanding who the real author of that app is.

3. Showing this information to the user in an unobtrusive but reliable and non-

manipulable way.

49

User/User-Interface Trust Relationship Chapter 2

T
ab

le
2.

6:
E

x
am

p
le

s
of

d
ec

ep
ti

on
m

et
h

o
d

s
an

d
w

h
et

h
er

d
ef

en
se

sy
st

em
s

p
ro

te
ct

ag
ai

n
st

th
em

.

F
e
rn

a
n
d
e
s
e
t
a
l.

[1
2
]

C
h
e
n

e
t
a
l.

[9
]

O
u
r
o
n
-d

e
v
ic
e
d
e
fe
n
se

K
ey

b
oa

rd
in

p
u

t
to

th
e

w
ro

n
g

ap
p

3
7

3

C
u

st
om

in
p

u
t

m
et

h
o
d

to
th

e
w

ro
n

g
ap

p
(i

.e
.,

G
o
og

le
W

al
le

t’
s

P
IN

en
tr

y
),

on
-

sc
re

en
in

fo
fr

om
th

e
w

ro
n

g
ap

p

O
ff

b
y

d
ef

au
lt

,
re

q
u

ir
es

u
se

r
in

-
te

ra
ct

io
n

:
T

h
e

p
ro

te
ct

io
n

is
ac

-
ti

va
te

d
on

ly
if

th
e

u
se

r
p

re
ss

es
a

sp
ec

ifi
c

ke
y

co
m

b
in

at
io

n
.

7
3

C
ov

er
t

ap
p

sw
it

ch
K

ey
b

oa
rd

on
ly

3
(a

n
im

at
io

n
)

3

F
ak

ed
ap

p
sw

it
ch

(t
h

ro
u

gh
th

e
b

ac
k

or
p

ow
er

b
u

tt
on

)
K

ey
b

oa
rd

on
ly

7
3

“S
it

an
d

W
ai

t”
(p

as
si

ve
ap

p
ea

ra
n

ce
ch

an
ge

)
K

ey
b

oa
rd

on
ly

7
3

S
im

il
ar

-l
o
ok

in
g

ap
p

ic
on

an
d

n
am

e,
in

-
st

al
le

d
th

ro
u

gh
th

e
m

ar
ke

t
7

(t
h

e
se

cu
ri

ty
in

d
ic

at
or

d
is

p
la

y
s

th
e

si
m

il
ar

-l
o
ok

in
g

ap
p

ic
on

an
d

n
am

e.
N

o
v
er

ifi
ca

ti
on

of
th

e
au

-
th

or
of

th
e

ap
p

h
ap

p
en

s.
)

7
3

S
id

e-
lo

ad
ed

ap
p

,
w

it
h

th
e

sa
m

e
ap

p
ic

on
an

d
n

am
e

(p
os

si
b

ly
,

th
ro

u
gh

re
p

ac
ka

g-
in

g)

7
(t

h
e

se
cu

ri
ty

in
d

ic
at

or
d

is
p

la
y
s

th
e

or
ig

in
al

ap
p

ic
on

an
d

n
am

e.
N

o
ve

ri
fi

ca
ti

on
of

th
e

au
th

or
of

th
e

ap
p

h
ap

p
en

s.
)

7
3

C
on

fu
si

n
g

G
U

I
el

em
en

ts
ad

d
ed

b
y

ot
h

er
ap

p
s

(i
n
te

rc
ep

ti
n

g
or

n
on

-i
n
te

rc
ep

ti
n

g
d

ra
w

-o
v
er

,
to

as
t

m
es

sa
ge

s)

O
ff

b
y

d
ef

au
lt

,
re

q
u

ir
es

u
se

r
in

-
te

ra
ct

io
n

7
3

(y
el

lo
w

lo
ck

)

P
re

se
n
ti

n
g

d
ec

ep
ti

ve
el

em
en

ts
in

n
on

-
im

m
er

si
ve

fu
ll

sc
re

en
m

o
d

e
O

ff
b
y

d
ef

au
lt

,
re

q
u

ir
es

u
se

r
in

-
te

ra
ct

io
n

7
3

P
re

se
n
ti

n
g

d
ec

ep
ti

ve
el

em
en

ts
in

im
m

er
-

si
ve

fu
ll

sc
re

en
m

o
d

e
O

ff
b
y

d
ef

au
lt

,
re

q
u

ir
es

u
se

r
in

-
te

ra
ct

io
n

7
3

(“
se

cr
et

im
a
g
e”

)

50

User/User-Interface Trust Relationship Chapter 2

Three independent components address these challenges. The combination of the

states of components one and two determines the information presented to the user by

component three.

Overall, two principles guided our choices:

• Offering security guarantees comparable with how a modern browser presents a

critical (i.e., banking) website, identifying it during the entire interaction and pre-

senting standard and recognizable visual elements.

• Allowing benign apps to continue functioning as if our defense were not in place,

and not burdening the user with extra operations such as continuously using extra

button combinations or requiring specific hardware modifications.

In particular, we wish to present security-conscious users with a familiar environment

consistent with their training, using the same principles that brought different browser

manufacturers to present similar elements for HTTPS-protected sites without hiding

them behind browser-specific interactions.

An overview of the possible cases, how our system behaves for each of them, and the

analogy with the web browser world that inspired our choices is presented in Table 2.7,

while a more detailed description of each of our three components will be presented in

the following sections.

Our implementation will be briefly described in Section 2.5.4, whereas Table 2.6

exemplifies deception methods and recaps how users are defended by our system and

those described in [12] and [9], which target attacks similar to the ones we described

(Section 5.1 provides more details).

51

User/User-Interface Trust Relationship Chapter 2

2.5.1 Which app is the user interacting with?

Normally, the top Activity (and, therefore, the top app) is the target of user interac-

tion, with two important exceptions:

1. Utility components such as the navigation bar and the status bar (Section 2.1.1)

are drawn separately by the system in specific Windows.

2. An app, even if not currently on top of the Activity stack, can direct a separate

Window to be drawn over the top-activity Window.

Interactions with utility components are very common and directly mediated by the

system. Thus, we can safely assume that no cross-app interference can be created (the

“Back” button in the navigation bar, for instance, is exclusively controlled by the top

Activity) and we don’t need to consider them (Point 1) in our defense.

However, as exemplified in Section 2.2, Windows shown by different apps (Point 2)

can interfere with the ability of a user to interact correctly with the top app.

While we could prohibit their creation (and thus remove row 3 of Table 2.7), the

ability to create “always-visible” Windows is used by common benign apps: for instance,

the “Facebook Messenger” app provides the ability to chat while using other apps and

it is currently the most popular free app on the Google Play Store. Therefore, we have

decided to simply alert users of the fact that a second app is drawing on top of the current

top app, and leave them free to decide whether they want this cross-app interaction or

not.

52

User/User-Interface Trust Relationship Chapter 2

T
ab

le
2.

7:
P

os
si

b
le

sc
re

en
st

at
es

an
d

h
ow

th
ey

ar
e

v
is

u
al

iz
ed

.

if
th

en

R
e
su

lt
in

g
U

I
st

a
te

V
is

u
a
li

za
ti

o
n

E
q
u
iv

a
le

n
t

in
b
ro

w
se

rs
V

is
u

a
li
za

ti
o
n

in
b

ro
w

se
rs

n
o

d
om

ai
n

sp
ec

ifi
ed

in
th

e
m

an
if

es
t

A
p
p
s

n
ot

as
so

ci
-

at
ed

w
it

h
an

y
or

-
ga

n
iz

at
io

n

R
eg

u
la

r
b
la

ck
n
av

ig
at

io
n

b
ar

R
eg

u
la

r
H

T
T

P
p
ag

es
n
o

lo
ck

ic
on

D
om

ai
n

sp
ec

ifi
ed

in
th

e
m

an
if

es
t,

su
cc

es
sf

u
l

ve
ri

fi
ca

ti
on

,
n

o
v
is

ib
le

W
in

d
ow

s
fr

om
ot

h
er

ap
p
s

S
u
re

in
te

ra
ct

io
n

w
it

h
a

ve
ri

fi
ed

ap
p

G
re

en
lo

ck
an

d
co

m
p
an

y
n
am

e
H

T
T

P
S

ve
ri

fi
ed

p
ag

e
G

re
en

lo
ck

,
d
om

ai
n

n
am

e,
an

d
(o

p
ti

on
-

al
ly

)
co

m
p
an

y
n
am

e

D
om

ai
n

sp
ec

ifi
ed

in
th

e
m

an
if

es
t,

su
cc

es
sf

u
l

ve
ri

fi
ca

ti
on

,
v
is

ib
le

W
in

d
ow

s
fr

om
ot

h
er

ap
p
s

L
ik

el
y

in
te

r-
ac

ti
on

w
it

h
a

ve
ri

fi
ed

ap
p
,

b
u
t

ex
te

rn
al

el
em

en
ts

ar
e

p
re

se
n
t

Y
el

lo
w

h
al

f-
op

en
lo

ck
M

ix
ed

H
T

T
P

an
d

H
T

T
P

S
co

n
te

n
t

V
ar

ie
s

w
it

h
b
ro

w
se

rs
,

a
ye

ll
ow

w
ar

n
in

g
si

gn
is

co
m

m
on

D
om

ai
n

sp
ec

-
ifi

ed
in

th
e

m
an

if
es

t,
u
n
k
n
ow

n
va

li
d
-

it
y,

In
co

m
p
le

te
ve

ri
-

fi
ca

ti
on

(n
et

w
or

k
in

g
is

su
es

)

R
ed

w
ar

n
in

g
p
ag

e,
u
se

r
al

lo
w

ed
to

p
ro

ce
ed

S
el

f-
si

gn
ed

or
m

is
si

n
g

C
A

ce
rt

ifi
ca

te

U
su

al
ly

,
re

d
w

ar
n
in

g
p
ag

e,
u
se

r
al

lo
w

ed
to

p
ro

ce
ed

(o
th

er
ca

se
s)

F
ai

le
d

ve
ri

fi
ca

-
ti

on
R

ed
er

ro
r

p
ag

e
F

ai
le

d
ve

ri
fi
ca

-
ti

on
R

ed
er

ro
r

p
ag

e

53

User/User-Interface Trust Relationship Chapter 2

The official Android system also provides a limited defense mechanism:

1. As mentioned, a specific permission is necessary to create always-visible custom

Windows. If it is granted during installation, no other checks are performed. It is

impossible for the top app to prevent extraneous content from being drawn over its

own Activities. Toasts are handled separately and do not require extra permissions.

2. The top app can use the filterTouchesWhenObscured API on its Views (or override

the onFilterTouchEventForSecurity method) to prevent user input when content

from other apps is present at the click location.

Given the attack possibilities, however, these defenses are not exhaustive for our

purposes if not supplemented by the extra visualization we propose, as they still allow

any extraneous content to be present over the top Activity. Moreover, the protection

API can create surprising incompatibilities with benign apps (such as “screen darkeners”)

that use semi-transparent Windows, and does not prevent other apps’ Windows from

intercepting interactions (that is, it can protect only from Windows that “pass through”

input).

The Android API could also be extended to provide more information and leave

developers responsible to defend their own apps, but providing a defense mechanism at

the operating system level makes secure app development much easier and encourages

consistency among different apps.

2.5.2 Who is the real author of a given app?

In order to communicate to the user the fact that she is interacting with a certain

app, we need to turn its unique identifier (the package name, as explained in Section 2.1)

into a message suitable for screen presentation. This message must also provide sufficient

information for the user to decide whether to trust it with sensitive information or not.

54

User/User-Interface Trust Relationship Chapter 2

To this aim, we decided to show to the user the app’s developer name and to rely

on the Extended-Validation [27] HTTPS infrastructure to validate it, since Extended-

Validation represents the current best-practice solution used by critical business entities

(such as banks offering online services) to be safely identified by their users. As we will

discuss in the following paragraphs, other solutions could be used, but they are either

unpractical or unsafe.

As a first example, the most obvious solution to identify an application would be

to show the app’s name as it appears in the market, but we would need to rely on

the market to enforce uniqueness and trustworthiness of the names, something that the

current Android markets do not readily provide. The existence of multiple official and

unofficial markets and the possibility of installing apps via an apk archive (completely

bypassing the markets and their possible security checks), make this a complex task. In

fact, we observed several cases in which apps mimic the name and the icon of other apps,

even in the official Google Play market: as an example, Figure 2.4 shows how a search

for the popular “2048” game returns dozens of apps with very similar names and icons.

For this reason, establishing a root of trust to app names and icons (such as in [12]) is

fundamentally unreliable, as these are easily spoofed, even on the official market.

The only known type of vetting on the Google Play market involves a staff-selected

app collection represented on the market with the “Top Developer” badge [28]. This is,

to our knowledge, the only case where market-provided names can be reasonably trusted.

Unfortunately, this validation is currently performed on a limited amount of developers.

Moreover, no public API exists to retrieve this information. When an official method to

automatically and securely obtain this information is released, our system could be easily

adapted to show names retrieved from the market for certified developers, automatically

protecting many well-known apps.

55

User/User-Interface Trust Relationship Chapter 2

Relying on market operators is not, however, the only possible solution. The existing

HTTPS infrastructure can be easily used for the same effect. This system also allows

users to transfer their training from the browser to the mobile world: using this scheme,

the same name will be displayed for their bank, for instance, whether they use an Android

app or a traditional web browser.

As far as identifying the developer to the user, two main choices are possible in the

current HTTPS ecosystem. The first one simply associates apps with domain names.

We need to point out, however, that domain names are not specifically designed to resist

spoofing and the lack of an official vetting process can be troublesome.

On the other hand, Extended-Validation (EV) certificates are provided only to legally-

established names (e.g., “PayPal, Inc.”), relying on existing legal mechanisms to protect

against would-be fraudsters, thus preventing a malicious developer to use a name mim-

icking the one of another (e.g., using the name “Facebuuk” instead of “Facebook”).

Extended-Validation certificate are the current mechanism in use by web browsers to

safely identify the owner of a domain and they are available for less than $150 per year:

in general, a substantially lower cost than the one involved in developing and maintaining

any non-trivial application.

Concretely, to re-use a suitable HTTPS EV certification with our protection mech-

anism, the developer simply needs to provide a domain name (e.g., example.com) in a

new specific field in the app’s manifest file, and make a /app signers.txt file available

on the website containing the authorized public keys. During installation (and periodi-

cally, to check for revocations), this file will be checked to ensure that the developer who

signed the app7 is indeed associated with the organization that controls example.com. If

desired, developers can also “pin” the site certificate in the app’s manifest.

7Recall that all apk archives must contain a valid developer signature, whose public key must match
the one used to sign the previous version during app updates.

56

User/User-Interface Trust Relationship Chapter 2

Figure 2.4: A search for the popular “2048” game, returning several “clones.” The
app developed by the inventor of the game is listed in fifth position.

It should be noted that several issues have been raised on the overall structure of the

PKI and HTTPS infrastructure (for a summary see, for instance, [29]). Our defense does

not specifically depend on it: in fact, it should be kept in line with the best practices in

how secure sites and browsers interact.

57

User/User-Interface Trust Relationship Chapter 2

2.5.3 Conveying trust information to the user

The two components we have described so far determine the possible statuses of the

screen, summarized in the first two columns of Table 2.7. The three right columns of

Table 2.7 present our choices, modeled after the user knowledge, training, and habit ob-

tained through web browsers, since the mobile environment shares with them important

characteristics:

• The main content can be untrusted and interaction with it can be unsafe.

• It is possible for untrusted content to purport to be from reputable sources and

request sensitive user information.

• Cross-entity communications must be restricted and controlled appropriately.

Browsers convey trust-related information to the user mainly via the URL bar. Details

vary among implementations, but it is generally a user element that is always visible

(except when the user or an authorized page requests a fullscreen view) and that shows

the main “trusted” information on the current tab.

For a web site, the main trust information is the base domain name and whether the

page shown can actually be trusted to be from that domain (determined by the usage of

HTTPS, and shown by a “closed lock” icon). A different element is shown when “mixed”

trusted-untrusted information is present. Also, the user is warned that an attack may be

in effect if the validation fails.

Most importantly, information presented in the URL bar is directly connected to the

page it refers to (pages cannot directly draw on the URL bar, nor can they cause the

browser to switch to another tab without also changing information shown on the URL

bar).

58

User/User-Interface Trust Relationship Chapter 2

On the Android platform, we choose the navigation bar as the “trusted” position that

will behave like the URL bar. As browsers display different URL bars for different tabs,

we also dynamically change information shown on the navigation bar: at every instant

in time, we make sure it matches the currently visible status (e.g., the bar changes as

Activities are moved on top of the stack, no matter how the transition was triggered).

In other words, the security indicators are always shown as long as the navigation bar is.

The navigation bar is in many ways a natural choice as a “trusted” GUI in the

Android interface, as apps cannot directly modify its appearance and its functionality is

vital to ensure correct user interaction with the system (e.g., the ability for a user to go

back to the “home” page or close an app).

Fullscreen apps. To ensure our defense reliability and visibility, our defense

mechanism needs to deal with scenarios in which an application hides the content of

the navigation bar (on which we show our security indicator) by showing a fullscreen

Activity. This allows a malicious application to render a fake navigation bar in place of

the original one.

For this reason, to further prove the authenticity of the information shown by our de-

fense system, we complemented our system by using a “secret image” (also called security

companion). This image is chosen by the user among a hundred different possibilities

(images designed to be recognizable at a small size) and it is displayed together with

our lock indicator (see Figure 2.1) making it impossible to correctly spoof it. In fact, a

malicious application has no way to know which is the secret image selected by the user.

This system is similar to the “SiteKey” or “Sign-in Seal” mechanisms used by several

websites to protect their login pages (i.e., [10], [11]), with the considerable advantage that

users are constantly exposed to the same security companion whenever they interact with

verified apps or with the base system.

59

User/User-Interface Trust Relationship Chapter 2

The user has the opportunity to select the secret image during the device’s first-boot

or by using a dedicated system application. After that a secret image is selected, its

functionality is briefly explained to the user. To prevent a malicious application from

inferring the image chosen by the user, we store it in a location unreadable by non-system

applications.

In addition, we modify the system so that the chosen image will not appear in screen-

shots (note that the Android screenshot functionality is mediated by the operating sys-

tem). Also note that non-system applications cannot automatically take screenshots

without explicit user collaboration.

We also propose the introduction of a fullscreen mode which still shows security

indicators (but not the rest of the navigation bar), in case apps designed for fullscreen

operation wish to show their credentials on some of their Activities.

Finally, we prevent applications from creating “inescapable” fullscreen Windows, by

simply removing the possibility to use the specific Window’s type that makes it possible

(refer to Section 2.3.2 for the technical details). As pointed out in Section 2.4.2, we do

not expect this change in the current Android API to interfere with any existing benign

application.

2.5.4 Implementation

Our prototype is based on the Android Open Source Project (AOSP) version of

Android (tag android-4.4 r1.2). Some components are implemented from scratch, others

as modifications of existing system Services.

60

User/User-Interface Trust Relationship Chapter 2

The proposed modifications can be easily incorporated into every modern Android

version, since they are built on top of standard, already existing, user-space Android

components. Their footprint is around 600 LOCs, and we ported them from Android 4.2

to 4.4 without significant changes.

Interaction-target app detection. This component retrieves the current state of

the Activity stack and identifies the top app, by accessing information about the Activity

stack (stored in the ActivityManager Service).

We also check (via the WindowManager Service) if each Window currently drawn on

the device respects at least one of the following three properties:

1. The Window has been generated by a system app.

2. The Window has been generated by the top app.

3. The Window has not been created with flags that assign it a Z-order higher than

that of the top-activity Window.

If all the drawn Windows satisfy this requirement, we can be sure that user interaction

can only happen with the top app or with trusted system components. This distinguishes

the second and third row of Table 2.7.

Database and author verification Service. A constantly-active system Service

stores information about the currently installed apps that purport to be associated with a

domain name. This Service authenticates the other components described in this section

and securely responds to requests from them.

This Service also performs the HTTPS-based author verification as described previ-

ously8. The PackageManager system Service notifies this component whenever a new

app is installed.

8For our evaluation prototype, static trust information was used to demonstrate attacks and defense
on popular apps without requiring cooperation from their developers.

61

User/User-Interface Trust Relationship Chapter 2

User interaction modification. The navigation bar behavior is modified to

dynamically show information about the Activity with which the user is interacting, as

described in Table 2.7. We also added a check in the ActivityManager Service to block

apps from starting when necessary (cases listed in the fourth and fifth rows of Table 2.7).

2.6 Evaluation

We performed an experiment to evaluate:

• The effectiveness of GUI confusion attacks: do users notice any difference or glitch

when a malicious app performs a GUI confusion attack?

• How helpful our proposed defense mechanism is in making the users aware that the

top Activity spawned by the attack is not the original one.

We recruited human subjects via Amazon Mechanical Turk9, a crowd-sourced Internet

service that allows for hiring humans to perform computer-based tasks. We chose it to

get wide, diversified subjects. Previous research has shown that it can be used effectively

for performing surveys in research [30]. IRB approval was obtained by our institution.

We divided the test subjects into three groups. Subjects in Group 1 used an unmodi-

fied Android system, to assess how effective GUI confusion attacks are on stock Android.

Subjects in Group 2 had our on-device defense active, but were not given any additional

explanation of how it works, or any hint that their mobile device would be under attack.

This second group is meant to assess the behavior of “normal” users who just begin using

the defense system, without any additional training. To avoid influencing subjects of the

first two groups, we advertised the test as a generic Android “performance test” without

mentioning security implications. Finally, subjects in Group 3, in addition to using a

9https://www.mturk.com

62

https://www.mturk.com

User/User-Interface Trust Relationship Chapter 2

system with our on-device defense, were also given an explanation of how it works and

the indication that there might be attacks during the test. This last group is meant

to show how “power users” perform when given a short training on the purpose of our

defense.

Subjects interacted through their browser10 with a hardware-accelerated emulated

Android 4.4 system, mimicking a Nexus 4 device. For subjects in Group 2 and Group 3,

we used a modified Android version in which the defense mechanisms explained in Sec-

tion 2.5 had been implemented.

2.6.1 Experiment procedure

The test starts with two general questions, asking the subjects i) their age and ii) if

they own an Android device. These questions are repeated, in a different wording, at

the end of the test. We use these questions to filter out subjects that are just answering

randomly (once given, each answer is final and cannot be reviewed or modified).

Then, subjects in Group 2 and Group 3 are asked to choose their “security companion”

in the emulator (which is, for example, the image of the dog in Figure 2.1), picking among

several choices of images as they would be asked to do at the device’s first boot to set

up our defense. The selected image will be then shown in our defense widget on the

navigation bar.

Then, subjects are instructed to open the Facebook app in the emulator. We chose

this particular app because it is currently the second most popular free app, and it asks

for credentials to access sensitive information. The survey explains to our subjects that

the screen of a real Nexus 4 device is being streamed to their browser, and that the

application they just opened is the real one. We have included this step because, in a

10We used the noVNC client, http://kanaka.github.io/noVNC

63

http://kanaka.github.io/noVNC

User/User-Interface Trust Relationship Chapter 2

Task B1 and Task B2 (real Facebook app)

Task Astd (non-fullscreen attack app)

Task Afull (fullscreen, defense-aware, attack app)

Figure 2.5: Appearance of the navigation bar for subjects using our defense (Group
2 and Group 3), assuming they chose the dog as their security companion. Note that
a non-fullscreen app cannot control the navigation bar: only a fullscreen app can try
to spoof it. In all attacks, the malicious application was pixel-perfect identical to the
real Facebook app.

previous run of our experiment, a sizable amount of our subjects did not believe that the

phone was “real,” and so they did not considered as “legitimate” any interaction they

had with it.

Subjects are then instructed to open the Facebook app in the emulator several times,

leaving them free to log in if they want to. After a few seconds, we hide the emulator and

ask our subjects about their interaction. Specifically, we ask if they think they interacted

with the original Facebook application as they did at the very beginning. Subjects had

to respond both in a closed yes-no form and by providing a textual explanation. We used

the closed answers to quantitatively evaluate the subjects’ answers and the open ones to

get insights about subjects’ reasoning process and to spot problems they may have had

with our infrastructure.

64

User/User-Interface Trust Relationship Chapter 2

T
ab

le
2.

8:
R

es
u
lt

s
of

th
e

ex
p

er
im

en
t

w
it

h
A

m
az

on
T

u
rk

u
se

rs
.

P
er

ce
n
ta

ge
s

ar
e

co
m

p
u

te
d

w
it

h
re

sp
ec

t
to

th
e

n
u

m
b

er
of

V
a
li

d
S

u
bj

ec
ts

.

G
ro

u
p

1
:

S
to

ck
A

n
d
ro

id
G

ro
u
p

2
:

D
ef

en
se

ac
ti

ve
.

S
u
b

je
ct

s
n
ot

aw
ar

e
of

th
e

p
os

si
b
il
it

y
of

at
ta

ck
s

G
ro

u
p

3
:

D
ef

en
se

ac
ti

ve
,

b
ri

efl
y

ex
p
la

in
ed

.
S
u
b

je
ct

s
aw

ar
e

of
th

e
p

os
si

b
il
it

y
of

at
ta

ck
s

T
o
ta

l
S
u
b

je
ct

s
11

3
10

2
13

2

V
a
li

d
S
u
b

je
ct

s
99

93
11

6

S
u
b

je
ct

s
a
n
sw

e
ri

n
g

co
rr

e
ct

ly
to

T
a
sk

s:

B
1

an
d
B

2
67

(6
7.

68
%

)
70

(7
5.

27
%

)
85

(7
3.

28
%

)

A
st
d

19
(1

9.
19

%
)

60
(6

4.
52

%
)

80
(6

8.
97

%
)

A
f
u
ll

17
(1

7.
17

%
)

71
(7

6.
34

%
)

86
(7

4.
14

%
)

A
st
d

an
d
A

f
u
ll

8
(8

.0
8%

)
55

(5
9.

14
%

)
67

(5
7.

76
%

)

A
st
d

an
d
B

1
an

d
B

2
4

(4
.0

4%
)

51
(5

4.
84

%
)

73
(6

2.
93

%
)

A
f
u
ll

an
d
B

1
an

d
B

2
6

(6
.0

6%
)

63
(6

7.
74

%
)

76
(6

5.
52

%
)

A
st
d

an
d
A

f
u
ll

an
d
B

1
an

d
B

2
2

(2
.0

2%
)

50
(5

3.
76

%
)

66
(5

6.
90

%
)

65

User/User-Interface Trust Relationship Chapter 2

We decided against evaluating the effectiveness of our defense by checking if users have

logged in. This is because, in previous experiments, we noticed that security-conscious

users would avoid surrendering their personal credentials in an online survey (regardless

of any security indicator), but would not be careful if provided with fake credentials.

Instead, we decided to ask the subjects to perform four different tasks: B1, B2, Astd, and

Afull.

During Task B1 and Task B2, subjects are directed to open the Facebook app. In

these two tasks, this will simply result in opening the real Facebook app.

In Task Astd we deliver the attack described in Section 2.2.3 while the subjects are

opening Facebook. As a result, the device will still open the real Facebook app, but on

top of it there will be an Activity that (even though it looks just like the real Facebook

login screen) actually belongs to our malicious app. In Groups 2 and Group 3, which

have our defense active, our widget in the navigation bar will show that the running

app is not certified, by showing no security indicator on the navigation bar. Therefore,

subjects in Group 2 and 3 may detect the attack by noticing the missing widget.

Differently, in Task Afull, we simulate a fullscreen attack. In this case, our malicious

app will take control of the whole screen. The malicious app can mimic perfectly the

look and feel of anything that would be shown on the screen, but it cannot display the

correct security companion (because it does not know which one it is). The fullscreen

attack app must then mimic to its best the look of our defense widget, but it will show

a different security companion, hoping that the user will not notice. For this reason,

subjects in Group 2 and Group 3 can detect the attack if (and only if) they notice that

our widget is not showing the “correct” security companion they had chosen. Note that

this puts our defense in its worst-case scenario, with pixel-perfect reproduction of the

original app and the defense widget except for the user-selected secret image.

66

User/User-Interface Trust Relationship Chapter 2

Note that for subjects in Group 1 this task looks exactly the same as Task Astd: if the

navigation bar never shows security indicators, we assume it would be counterproductive

for an attacker to drastically alter it by showing a “spoofed” security indicator.

The four tasks are presented in a randomized order. This prevents biasing results in

case performing a task during a specific step of the experiment (e.g., at the beginning)

could “train” subjects to answer better in subsequent tasks.

Figure 2.6.1 summarizes what has been shown on the navigation bar to the subjects

in Group 2 and Group 3 during the execution of the different tasks.

2.6.2 Results

In total, 347 subjects performed and finished our test. However, we removed 39

subjects because the control questions were inconsistent (e.g., How old are you? More

than 40. What’s your age? 21.), the same person tried to retake the test, or the subject

encountered technical problems during the test. This left us with 308 valid subjects in

total. The results of the experiment are shown in Table 2.8.

The vast majority of subjects in Group 1, using stock Android, were not able to

correctly identify attacks and often noticed no difference (typically, answering that they

were using the real Facebook in all tasks) or reported minimal animation differences due

to the reduced frame rate and emulator speed (unrelated to the attacks). This corrobo-

rates our opinion that these attacks are extremely difficult to identify. In particular, only

8.08% of the subjects detected both attacks and only 2.02% of the subjects answered all

questions correctly. Manual review of the textual answers revealed that this happened

randomly (that is, the subjects did not notice any relevant graphical difference among

the different tasks).

67

User/User-Interface Trust Relationship Chapter 2

Comparing results for Group 1 and Group 2, it is clear that the defense helped subjects

in detecting the attacks. Specifically, the percentage of correct detections increased from

19.19% to 64.52% for Task Astd (χ2 = 40.68, p < 0.0001)11 and from 17.17% to 76.34%

(χ2 = 67.63, p < 0.0001) for Task Afull. Also, the number of subjects able to answer

correctly all times increased from 2.02% to 53.76% (p < 0.0001, applying Fisher’s exact

test).

Comparing detection results of the two attacks, we found that the detection rate for

the fullscreen attack is slightly better than the one for the non-fullscreen one. However,

this difference is not statistically significant. In particular, considering Group 2 and

Group 3 together, 66.99% of the subjects answered correctly during Task Astd and 75.12%

answered correctly during Task Afull (χ2 = 3.36, p = 0.0668).

We also noticed that the number of subjects answering correctly during the non-

attack tasks (Tasks B1 and B2) did not increase when our defense was active. In other

words, we did not find any statistical evidence that our defense leads to false positives.

Finally, results for Group 2 and Group 3 are generally very similar, with just a

slight (not statistically significant) improvement for subjects in Group 3 in the ability to

answer correctly all questions (χ2 = 0.21, p = 0.6506). This may hint to the fact that our

additional explanation was not very effective, or simply to how the mere introduction of

a security companion and defense widget puts users “on guard,” even without specific

warnings.

11We evaluate results using 95% confidence intervals. Applying the Bonferroni correction, this means
that the null hypothesis is rejected if p < 0.01.

68

User/User-Interface Trust Relationship Chapter 2

2.6.3 Limitations

As mentioned, we took precaution not to influence users’ choices during the experi-

ment. In particular, subjects in Group 2 used a system with our defense in place, but

without receiving any training about it before. Nonetheless, they had to set up their

security companion prior to starting the experiment, as this step is integral to our de-

fense and cannot be skipped when acquiring a new device. We designed our experiment

to simulate, as accurately as possible, the first-use scenario of a device where our pro-

posed defense is in place. In this scenario, users would be prompted to choose a security

companion during the device’s first boot. We acknowledge, however, that this step may

have increased the alertness of our subjects so that our results may not be completely

representative of the effect that our defense widget has on users, especially over a long

period of time.

Similarly, the fact that subjects, at the beginning of the experiment, were made to

interact with the original Facebook application may have helped them in answering to

the different tasks. However, we assume it is unlikely that users are being attacked by

a malicious app performing a GUI confusion attack during the very first usage of their

device.

It is also possible that the usage of an emulator, accessed using a web browser, may

have had a negative impact on the subjects’ ability to detect our attacks. It should

be noted, however, that the usage of an x86 hardware-accelerated emulator (and VNC)

resulted in a good-performance, to the point we would recommend this setup to future

experimenters (unless, of course, they have the time and resources to gather enough

participants and use real devices).

69

User/User-Interface Trust Relationship Chapter 2

Finally, there is a possibility that the subject’s network was introducing delays. From

the network’s point of view, the emulation appears as a continuous VNC session from

the beginning to the end. This setup should not specifically affect individual tasks, but

may have caused some jitter for subjects.

2.7 Conclusions

In this work, we analyzed in detail the many ways in which Android users can be

confused into misidentifying an app. We categorized known attacks, and disclose novel

ones, that can be used to confuse the user’s perception and mount stealthy phishing and

privacy-invading attacks.

We have developed a tool to study how the main Android GUI APIs can be used

to mount such an attack, performing a full state exploration of the parameters of these

APIs, and detecting problematic cases.

Moreover, we developed a two-layered defense. To prevent such attacks at the market

level, we have developed another tool that uses static analysis to identify code in apps

that could be leveraged to launch GUI confusion attacks, and we have evaluated its

effectiveness by analyzing both malicious applications and popular benign ones.

To address the underlying user interface limitations, we have presented an on-device

defense system designed to improve the ability of users to judge the impact of their

actions, while maintaining full app functionality. Using analogies with how web browsers

present page security information, we associate reliable author names to apps and present

them in a familiar way.

Finally, we have performed a user study demonstrating that our on-device defense

improves the ability of users to notice attacks.

70

Chapter 3

Trusting the Operating System for

Remote Authentication

Mobile applications (“apps”) have evolved from being simple conveniences, into com-

plex systems, aimed at powering the latest generation of Internet-connected, distributed,

massively multi-user services. This implies that these apps depend to some extent on

backend services to function. For example, many apps function as frontends for existing

online services, where their entire behavior is tightly coupled to the remote service. To

handle multiple users securely on these backends, some sort of authentication needs to

occur.

Traditionally, this procedure relies on a combination of “user-private” credentials,

such as username and password. However, given the incredibly crowded market in which

these apps compete and the fickle nature of users, there is a significant pressure to lower

the “friction” new users encounter when using an app. For this reason, applications are

moving away from authentication schemes based on user-private credentials, toward those

schemes that are more automatic. An existing solution that is often used to accomplish

this is OAuth, an authorization mechanism that can enable users to leverage accounts

71

Trusting the Operating System for Remote Authentication Chapter 3

on identity services, such as Google and Facebook, without creating new, ad-hoc, ones.

Nonetheless, developers constantly strive to create novel, custom authentication mecha-

nisms to increase the ease-of-use of their applications.

In this paper, we study and characterize a new broad class of vulnerable authentica-

tion schemes, which fully rely on what we call device-public information. With this term,

we refer to all information, properties, and data that can be accessed by any application

(with proper permissions, as explained in Section 3.2.2) installed on the same device.

As an example, consider a messaging app that, after users identify themselves, stores

a token in the device’s external storage, which any app can access. The app then sends

this token to the app’s backend server each time it is used, as a form of authentication.

This technique has the advantage that if the user uninstalls the app and later wants to

use it again, the token will persist on the external storage, and no re-authentication will

be required. Unfortunately, this versatility comes at a price: a malicious app running on

the same device can obtain and leak this token to a remote attacker, who can now easily

hijack the user’s account. Even if an app is leveraging a technology such as OAuth, poor

handling of the resulting tokens could render them device-public as well. This is just one

possible scenario for the mis-use of device-public information; apps can and do use such

schemes as the only form of authentication, without requiring private data from the user

such as a password, rendering their associated accounts wide-open to malicious apps on

the device.

In work presented in this chapter, we perform the first comprehensive analysis and

characterization of vulnerable authentication schemes based on device-public information.

We start by describing the identity-transfer attack, a generic exploitation technique,

composed by two steps. First, a malicious app, termed the “ID Leaker,” steals all device-

public information from a victim’s device without any user interaction. Then, this app

transfers this data to “ID Injector,” an app installed on the attacker’s device that collects

72

Trusting the Operating System for Remote Authentication Chapter 3

the received information and injects them into the device. Once this step is completed,

the attacker can simply install the vulnerable target app, which will automatically log

the attacker in the victim’s account.

We also take the first step toward understanding how widespread this class of vulner-

abilities is, by developing a dynamic analysis system that aims at uncovering potentially-

vulnerable apps among a much larger set. While “authentication” is a difficult behavior

to characterize, we can leverage interesting behavioral patterns to locate authentication

with enough accuracy to help a human analyst determine if a vulnerability is present.

In particular, the system we developed records the app’s user interface behavior during

its first execution on a device, when authentication and registration is likely to appear.

Then, as a second step, the system wipes the app’s private data (by uninstalling and

then re-installing the app), and it runs the app once again. The key intuition is that if

the behavior of an app changes after the re-installation, it means the app somehow relies

on device-public information for authentication, and is very likely to be vulnerable to

our attack. As a final step, our system attempts to confirm the vulnerability by using

the generic exploitation technique described above to transfer the identity used in the

previous steps to an entirely new device.

Although some of the ideas and intuitions behind this work can be applied to any

mobile operating system (and the corresponding apps), in this work we focus on Android.

This choice has been motivated by two main reasons: the fact that Android is currently

the most widespread mobile operating system [31] and the ease of performing automatic

analyses on Android apps.

We used this analysis system to vet 1,000 of the most popular applications from the

Google Play Store, and 41 of them were correctly identified as vulnerable. Two of these

vulnerable apps were WhatsApp and Viber, two of the most popular messaging apps,

which are used by hundreds of millions of users. For both these apps, we discovered that

73

Trusting the Operating System for Remote Authentication Chapter 3

it was sufficient to steal the content of a single file (and spoof the value of some device’s

identifiers) to fully hijack a user account. We reported our findings to the respective

security teams, which quickly acknowledged the vulnerabilities. Among the apps flagged

as vulnerable, our system also identified several popular games that allow a user to

purchase virtual objects or currency: our automatically generated exploit was able to

hijack these accounts as well. We conclude this work by proposing and implementing

solutions for the identified class of vulnerabilities.

In summary, the contributions of this work are as follows:

• We identify and study a new class of insecure authentication schemes that rely on

device-public information.

• We demonstrate how it is possible to automatically exploit these vulnerable schemes

by developing a generic “identity-transfer” attack, which is capable of stealing and

replaying device-public information to hijack accounts.

• We explore the scope of the vulnerability in 1,000 popular apps from the Google

Play Store using an automated dynamic analysis system, and identified 41 vulner-

able apps, including Viber and WhatsApp.

• We propose and implement solutions to the identified problems.

3.1 Authentication Schemes

Authentication in mobile applications can take on a variety of distinct forms, with

differing security properties. The first, and most obvious, authentication scheme is the

traditional username and password, in which the user is asked directly by the authenticat-

ing app for credentials. The app then sends these credentials to its backend server, which

74

Trusting the Operating System for Remote Authentication Chapter 3

verifies their correctness. After this step, the server sends to the app a token, which is a

shared secret string that can be used for authenticating all following interactions between

the client and the server.

Another way to authenticate is to use third-party authentication services. This

method removes the need to handle tedious per-app registrations. In Android, the

AccountManager [32] offers a generic API that can be used to obtain an OAuth-like

authentication token from third-party identity providers, such as Google or Facebook.

The obtained token is presented with the app’s requests to its backend, and can then be

used by the backend to ask the third-party service for more information about the user.

Another popular scheme uses text messages (SMS) and the user’s phone number as

a form of authentication. In this scenario, the user would need to prove that they own a

given phone number. As a part of the verification process, the user would typically enter

the phone number manually. A code is then sent via SMS to the user, and is typically

parsed automatically from the user’s SMS inbox and verified. After this step, the phone

number is used as the user’s primary identity.

Lastly, some Android apps employ schemes in which distinguishing information about

the device itself is used to bind a device to an account. This works under the implicit

assumption that these identifiers are static and unique per device. To authenticate,

the required identifiers are sent to the app’s backend server, an authentication token is

obtained, and such token is then sent along with future requests.

To reach the widest possible audience, many apps offer multiple authentication

schemes, such as Facebook, Google, or regular user name and password authentication.

While some of these methods may be securely implemented, the app may still be vul-

nerable if it allows users to use unsafe login-less methods that rely only on device-public

information.

75

Trusting the Operating System for Remote Authentication Chapter 3

At their core, all these authentication schemes aim to obtain some sort of token

that can be used to authenticate a user to the app’s remote backend. However, if the

authentication token can be obtained using information that another application on the

same device can obtain, the authorization scheme is not safe. We also note that, even

when apps employ schemes that are thought to be secure, they can still be vulnerable to

account hijacking if they store authentication tokens in publicly accessible locations.

3.2 Identity-Transfer Attack

Our key observation is that if an app only relies on device-public information to

authenticate the user to its backend, it is possible for a malicious app to mine and leak

all relevant information. If such a scheme is in use, an attacker can perform an identity-

transfer attack, transferring information from the victim’s device to the attacker’s, so

that the user’s identity associated to a given app is effectively transferred.

3.2.1 Threat Model

In this chapter, we assume that an attacker is able to lure the user into installing

an attacker-controlled malicious application. This application requests all the needed

permissions to acquire the device-public information being stolen, as outlined in Sec-

tion 3.2.2. Moreover, we assume the operating system of the device to be uncompro-

mised, and it thus constitutes a trusted computing base. Furthermore, we assume that

the victim’s device is not rooted (if it is, our attack does not take advantage of it), which

means that an attacker cannot get root privileges. Therefore, the malicious app does not

have access to app-private data, as the separation of the apps’ private storage is strictly

enforced by the OS.

76

Trusting the Operating System for Remote Authentication Chapter 3

T
ab

le
3.

1:
C

on
si

d
er

ed
so

u
rc

es
of

d
ev

ic
e-

p
u

bl
ic

in
fo

rm
at

io
n

.

S
o
u
rc

e
R

e
q
u
ir

e
d

P
e
rm

is
si

o
n

S
u
rv

iv
e
s

fa
ct

o
ry

re
se

t

L
in

k
e
d

to
a

G
o
o
g
le

A
cc

o
u

n
t

L
in

k
e
d

to
a

S
IM

C
a
rd

A
N

D
R

O
ID

ID
–

–
–

–

IM
E

I
R

E
A

D
P

H
O

N
E

S
T

A
T

E
X

–
–

W
iF

i
M

A
C

ad
d
re

ss
A

C
C

E
S
S

W
IF

I
S
T

A
T

E
X

–
–

B
lu

et
o
ot

h
M

A
C

ad
d
re

ss
B

L
U

E
T

O
O

T
H

X
–

–

G
o
og

le
ac

co
u
n
t

em
ai

l
G

E
T

A
C

C
O

U
N

T
S

–
X

–

G
o
og

le
S
er

v
ic

e
F

ra
m

ew
or

k
ID

R
E

A
D

G
S
E

R
V

IC
E

S
–

X
–

G
o
og

le
A

d
ve

rt
is

in
g

ID
–

–
X

–

P
h
on

e
N

u
m

b
er

R
E

A
D

P
H

O
N

E
S
T

A
T

E
or

R
E

A
D

C
A

L
L

L
O

G
–

–
X

In
co

m
in

g
P

h
on

e
C

al
ls

R
E

A
D

C
A

L
L

L
O

G
–

–
X

S
IM

C
ar

d
S
er

ia
l

N
u
m

b
er

R
E

A
D

P
H

O
N

E
S
T

A
T

E
–

–
X

R
ec

ei
ve

d
S
M

S
M

es
sa

ge
s

R
E

C
E

IV
E

S
M

S
or

R
E

A
D

S
M

S
–

–
X

E
x
te

rn
al

S
to

ra
ge

R
E

A
D

E
X

T
E

R
N

A
L

S
T

O
R

A
G

E
–

–
–

77

Trusting the Operating System for Remote Authentication Chapter 3

3.2.2 Device-Public Information Sources

We refer to device-public information as information that can be accessed from any

app on the device that requests the permissions needed to obtain it. We will focus

primarily on Android versions ranging from Android 4.4 to Android 7. When necessary,

we will describe differences among different versions.

Here we will discuss the different sources of device-public information we have consid-

ered in our study, which are used by apps to identify users (also summarized in Table 3.1).

Some of these identifiers are related to a specific hardware device, and cannot be changed

by the user, whereas others can be changed after a “factory reset” of the device, or are

linked to a Google Account. Google has recently attempted to hide some identifiers from

apps to thwart tracking. That said, as of Android 7.1.1, we found that we are still able

to access every identifier mentioned here, save for the Bluetooth MAC address.

Apps may need specific permissions to access some of these sources of device-public

information, therefore a careful user may be able to notice that a malicious application is

accessing some device-public information. However, while Android 6 introduced a feature

alerting the user at the time some permissions are used, a malicious app can bypass this

alert by lowering its own “Target SDK Version.” By doing this, the old permission model,

in which the user is not informed the moment an app uses a permission, is used.

ANDROID ID. This is a device’s unique ID number, set by Android upon a device’s

first boot or factory reset.

IMEI. The IMEI is a hardware identifier given to each piece of cellular equipment,

including the baseband radios of mobile phones.

WiFi MAC address. Similar to the IMEI, MAC addresses are uniquely assigned to

most conventional network hardware. The WiFi MAC address can be obtained by any

app requesting the ACCESS WIFI STATE, using the API WifiInfo.getMacAddress(). In

78

Trusting the Operating System for Remote Authentication Chapter 3

Android 6 (and later versions), the behavior of this API has been changed, so that it

always returns the value 02:00:00:00:00:00. However, we found that it is still possible

to access this identifier using the NetworkInterface.getHardwareAddress() API.

Bluetooth MAC Address. The device’s Bluetooth MAC address is a persistent hard-

ware identifier that can be queried by using the API BluetoothAdapter.getAddress().

This API requires the BLUETOOTH permission. Starting from Android 6, the behavior of

this API has been changed, so that it always returns the value 02:00:00:00:00:00.

ADB serial number. The device’s ADB Serial Number, which is used to identify

devices on the Android Debug Bridge, is an identifier that persists across factory resets.

It can be accessed by querying the android.os.SystemProperties object using the key

ro.serialno.

Google account email. Many Android devices use Google account emails as a form

of Single Sign-On, and the email address used can be easily obtained using the Account-

Manager API.

Google Service Framework ID. This ID is used to identify a user when accessing

Google Service Framework applications.

Google Advertising ID. In an attempt to allow users to opt-out of mobile ad tracking

campaigns, Google created a specific persistent identifier [33] to be used with advertising.

It can be queried by any app (through the AdvertisingIdClient class in the Google

Play Services), but, unlike the other identifiers, also freely reset by the user. Google’s

policy [34] states that all advertising must use exclusively this identifier for tracking (“in

place of any other device identifiers for any advertising purposes”), although in practice

it is often not used [35].

Phone number. We consider the phone number associated with the SIM card inserted

in a device as device-public information. A specific API (getLine1Number, requiring

the READ PHONE STATE permission) exists to retrieve this value, however the re-

79

Trusting the Operating System for Remote Authentication Chapter 3

turned value is not always reliable, depending on the SIM Card manufacturer. Various

workarounds do exist, including reading the call log, which requires the READ CALL LOG

permission.

Received SMS Messages. Any app (with proper permissions) can request to be

notified of the origin and content of new SMS messages.

Incoming Phone Calls. Apps can request to be notified about the basic data of

incoming calls, including the caller’s number. Additionally, Apps can also read the call

history. Interestingly, phone calls can be used for authentication, by using part of the

sender’s phone number (which remote services can control) as a verification code.

SIM Card Serial Number. In devices where a SIM Card is present, apps can access

this identifier, which is tied to the used SIM Card, by using the getSimSerialNumber

API.

External Storage. Many Android devices today come with, or have the ability to add,

some form of external storage, usually in the form of a larger Flash-based storage device

or SD card. The precise behavior of external storage differs among Android versions and

devices, but, typically, any app can request the READ EXTERNAL STORAGE permission to

access its contents. This gives the app access to the public areas of the external storage,

shared by all apps.

Files stored in here are publicly accessible and some of them are not deleted upon

app’s uninstallation [36]. Therefore, as a usability feature for the users, some apps

store authentication cookies in this location, so that the credentials survive app’s re-

installation. Unfortunately, while this may sound a reasonable practice, it is not secure.

In fact, in this scenario, an attacker would be able to easily hijack the user’s account

by reading the files containing these authentication cookies and using their content to

authenticate with the victim apps’ remote backends.

80

Trusting the Operating System for Remote Authentication Chapter 3

3.2.3 Proof-of-Concept Attack Implementation

In simple terms, the attack consists of an app on the victim’s device, which steals a set

of device- and user-specific information, and exfiltrates it to the attacker. The attacker

can then inject this information into their own device, so that apps behave seamlessly

as if they are still on the victim’s device. In particular, the attacker can use vulnerable

apps as if authenticated as the victim on the victim’s phone.

We implemented the “identity transfer” attack in two different components: the “ID

Leaker,” and the “ID Injector.” The “ID Leaker” app, which could be thought of as a

prototypical third-party malicious application, requires the Android permissions to access

the SMS, device call notifications, external storage contents, and static device identifiers

(refer to Table 3.1). The app then uses the well-documented Android APIs to access

and leak the device-public data that constitutes the user’s identity, and it sends it to the

attacker’s device. We note that the app’s functionality could be easily hidden inside a

seemingly legitimate app, and that it can run on completely unmodified devices without

requiring any admin privileges (therefore on un-rooted devices). We also note that if an

attacker aims at hijacking the account of a specific victim app, the “ID Leaker” only

requires the permissions needed to access the specific device-public information used by

the victim app for authentication purposes.

For the attacker’s device, we created the “ID Injector,” which takes data from the

“ID Leaker” and injects them into an attacker-controlled device. We use the Xposed

framework [37] (a tool for performing run-time patching of the Android framework) to

easily hook the Android API methods used to query device-public information, and spoof

their results to return the data leaked from the victim. The external storage’s content

is also transferred from the victim and copied into place. Without external information,

81

Trusting the Operating System for Remote Authentication Chapter 3

there is no way for the app under analysis to tell that the data has been spoofed. Because

of our usage of the Xposed framework, the attacker-controlled device (but not the victim’s

one) must be rooted to properly spoof the received identity.

3.3 Vulnerability Detection

In order to understand how widespread device-public authentication schemes are on

Android, we created an automated system to locate vulnerable apps in the wild. This

system could also be used by security researchers, software developers, and app market

operators to automatically spot weakness in the authentication mechanisms used by the

analyzed apps.

While the attack described in Section 3.2.3 is very effective against vulnerable apps,

we cannot simply use it against all apps to build a detection system, for two main

reasons. First, it is difficult to differentiate success of the attack from other application

behaviors, as we have no baseline of the app’s normal behavior to compare it to, and

cannot link changes in this behavior to device-public information. Second, as we discuss

in Section 3.1, “authentication” can be implemented in a variety of ways, making it

difficult, if not impossible, to concretely define and locate authentication behaviors in a

generalized way. We therefore cannot rely on any direct knowledge of the authentication

itself to help understand when our exploit is having an effect.

To address these challenges, we developed an approach that aims at identifying au-

thentication behaviors indirectly. We build our approach on the observation that an app

behaves differently depending on whether or not it has already authenticated its user to

a previously created account, and that this difference will be reflected in the app’s user

interface.

82

Trusting the Operating System for Remote Authentication Chapter 3

Thus, as a first step, the system executes the app, provides any requested device-

public information to the app, and records the app’s behaviors. These behaviors are in

the form of a trace of different UI states (as detailed in Section 3.3.4). The aim of this

initial execution is both to trigger the app’s authentication or registration mechanism,

as well as to get the server’s backend to store some sort of state for the user, which can

be observed in future traces.

Next, all app-private information for the app is deleted. We achieve this by unin-

stalling and re-installing the app. This operation deletes all app’s files in private locations.

At this point, the app is executed again and, if the behavior is different from the

one observed during the first run, it is possible that the app may be using device-public

information (which could be both device’s identifiers or publicly accessible files in the

external storage) to authenticate the user. Typically, a difference may be observable

because of the absence of a “login” screen due to already being authenticated, or the

absence of an introductory “welcome” screen due to restoring the previously-saved user

state, but more subtle UI modifications are possible.

As a last step, the system confirms the vulnerability, by transferring the device-

public information to a different device, executing the app again, and comparing these

behaviors with the previous ones. This transfer operation encompasses copying both

publicly accessible files and device’s identifiers.

In the remainder of this section, we will first discuss in detail the three steps of our

analysis, as shown in Figure 3.1. We will then provide several technical details about the

underlying dynamic analysis and the comparison of states and traces.

83

Trusting the Operating System for Remote Authentication Chapter 3

1
2

3

1
3

4

1
2

3

...

...

Device 1

1
3

R
ei

ns
ta

lla
tio

n

IN
VA

R
IA
N
T

Device 2Device N

In
va

ria
nt

G

en
er

at
io

n

Id
en

tit
y-

Tr
an

sf
er

 A
tta

ck

?
?

...

Device N+1Device N+2Device N+M

?
?

?
?

?
?

...

?
?

?
?

...

C
om

pa
ris

on
C

om
pa

ris
on

ST
EP

 3
ST

EP
 2

ST
EP

 1

F
ig

u
re

3.
1:

O
ve

rv
ie

w
of

th
e

d
ev

el
op

ed
d

y
n

am
ic

an
al

y
si

s
sy

st
em

.

84

Trusting the Operating System for Remote Authentication Chapter 3

3.3.1 Step 1: Capturing Initial Behavior

First, we need to characterize the behavior of a given application when installed for

the first time on an Android device. Our system functions primarily by collecting and

comparing traces, consisting of an ordered list of UI states encountered during a given

execution of the app. Details of how states and traces are collected and compared can

be found in Section 3.3.4.

However, our system truly needs to characterize the “normal” behavior, not just

merely record one execution. This is far from trivial, mainly due to the fact that dy-

namic analysis is hindered by non-deterministic behaviors present in apps, the OS, and

network communications. To address this challenge, we first execute the analyzed ap-

plication on multiple devices, collecting multiple traces. Recent work has shown that

running the same app multiple times is, in Android, effective in reducing the effects of

non-deterministic behaviors during dynamic analysis [38]. The collected app behaviors

are then used to compute a so-called Invariant, representing the most common set of

behaviors. Specifically, the Invariant set is computed as the set of all states that appear

in all the collected traces.

3.3.2 Step 2: Vulnerability Detection

In this step, we delete all app-private data from the devices used in Step 1, collect new

traces, and compare them with the Invariant. We accomplish clearing the app-private

data by re-installing the app, which is known to remove all app-private information,

including authentication tokens, cookies, databases and other private files.

After re-installation, the app is dynamically stimulated, and traces are collected in

the same way as in Step 1. Then, we compare the new traces against the Invariant,

looking for behavioral differences in the traces. These discrepancies are typically due to

85

Trusting the Operating System for Remote Authentication Chapter 3

setup, registration, or login interfaces. Therefore, they are a strong signal the app was

able to authenticate with the remote backend, only using information that survived the

app’s re-installation, which must therefore be device-public.

More precisely, if we determine that, during the execution of the analyzed app in this

step, at least one state present in the Invariant has been skipped in all the collected

traces, the app is flagged as potentially vulnerable.

3.3.3 Step 3: Exploit Verification

In Step 3, we verify if an app uses an insecure authentication scheme by actually

attempting an identity-transfer attack against it.

To perform the attack, we transfer the device-public information stored in the devices

used during Step 1 and Step 2 to new devices (which have not been used in the analysis

of this app before), as explained in Section 3.2.3. Then, the same procedure used in

Step 1 is used to obtain execution traces from the previously-unused devices.

These traces are then compared against the Invariant, as in Step 2. If we detect that

at least one of the states skipped during Step 2 is also always skipped during Step 3, we

conclude that the attack succeeded, and we flag the app as vulnerable.

3.3.4 Dynamic Analysis

In order to accomplish the above steps, we need to deterministically execute an ap-

plication to trigger the authentication behavior, while minimizing behavioral divergences

due to non-deterministic operating system or network behaviors. To this end, our system

stimulates apps through their UIs, including buttons, text fields, and other interactive

elements, as well as taking note of any incoming SMS and phone calls the used device

may receive.

86

Trusting the Operating System for Remote Authentication Chapter 3

We rely on uiautomator [39], both to control the device and to obtain state information

about the device itself. We control uiautomator from a normal PC by connecting it to the

device using the Android Debug Bridge (ADB) and the uiautomator Python wrapper [40].

Possible actions are derived from the UI’s content (button labels, text field descrip-

tions, . . .), and inserted into a priority queue. The priorities are arranged such that

the most specific actions are performed first. The developed system also keeps track

of previously touched UI elements, removing them from the priority list, so that every

element is touched at most once. This is done to prevent the stimulation from entering

an infinite-loop by continuously interacting with the same element.

The following is a list of the actions that our detection system can perform, in order

of priority:

Fill text fields. Our system automatically fills some text fields. In particular, it first

determines the type of information a text field is suppose to contain by (similar to [41])

checking labels and IDs associated to each text field against a pre-determined list of

strings. Then, if a text field is determined as asking for a phone number, our system fills

it with the device’s phone number. Likewise, if a text field is determined as asking for a

username, our system inserts a randomly generated one. It is important to note that no

user-private information (e.g., a password) is inserted during this (or any other) step of

the dynamic stimulation of an app.

Touch button. Our system interacts with UI elements that are “clickable.” All clickable

objects found are prioritized based on their type (e.g., buttons have higher priority than

text fields) and their content; this allows us to, for example, touch an “OK” button before

a “Cancel” button.

87

Trusting the Operating System for Remote Authentication Chapter 3

Pseudo-random touch events. If none of the previously mentioned actions can be per-

formed on a state, our system will try to explore the app’s behavior by simply randomly

clicking on its UI. This situation usually happens, when the application uses custom UI

elements, which do not export standard layout information to the OS.

In addition, if the analyzed app loses its focus (e.g., a window is opened in the system

browser), we perform appropriate actions to make the analyzed app regain focus.

3.3.5 App States Extraction and Comparison

In order to make meaningful comparisons of different executions, we need a way to

collect the current state of an app (e.g., which content it is showing to the user) at

different times during our analysis and compare those states. The way in which states

are encoded and compared needs to be sufficiently informative to capture significant

behavioral changes, but also flexible enough to help ignore minor changes unrelated to

the app’s functionality. Specifically, the behavior of an app is encoded as a trace of states,

which are then compared, looking for evidence of vulnerable authentication schemes.

State Extraction. Every five seconds, the system checks if the current device’s UI is

in a steady state. By this, we mean a situation in which the UI is likely not to change if

no action is performed. If so, we record the current app’s state (as better defined below)

and we perform an action. Otherwise, the system waits up to a maximum threshold

of 30 seconds. We employ this approach to perform actions and capturing states only

when the effects of previous actions on the app’s UI are completed. This also allows

the sample rate of our system to be dynamic, and it helps to ensure that the captured

states make the most sense when compared later. We use information provided by the

Android video and input subsystems to know when an animation is being rendered (and

88

Trusting the Operating System for Remote Authentication Chapter 3

therefore the current state is not steady). However, if we are unable to reach a steady

state (e.g., the app uses OpenGL, or is otherwise constantly animating), we resort to an

image-comparison approach.

Once the UI is steady, the system records a state, consisting of the following:

• The activity name (in Android, an Activity is a specific UI window)

• A hash of the simplified UI layout data

• A perceptual hash of the device’s screen-shot

Hash of simplified UI layout data. To hash the information about the UI elements,

we make important simplifications to the UI data, so that it is more easily comparable. In

particular, from the layout tree describing the UI state, we remove the information about

the location of the different layout’s components and the text shown. These positioning or

text differences are oftentimes due to intrinsically non-deterministic or rapidly changing

UI elements, which are not relevant to our analysis.

Additionally, we take steps to avoid comparing deliberately dynamic content, espe-

cially advertising and web content. Advertising on Android is difficult to locate through

explicit UI information. However, most mobile advertising is standardized by the Interna-

tional Advertising Bureau [42], which dictates specific pixel dimensions for ads, therefore

we filter out elements from the simplified layout that have these sizes. Furthermore, we

also filter out all WebView objects, since dynamic web content is typically a significant

source of non-determinism. Lastly, we use the MD5 algorithm to condense the state

information.

Hash of device’s screen-shot. To hash the image acquired during the screen-shot, we

use the algorithm called average hash provided by the ImageHash Python library [43].

This algorithm was chosen to provide meaningful fuzziness for images, abstracting away

89

Trusting the Operating System for Remote Authentication Chapter 3

small, unimportant differences, such as constantly-animating UI elements. Specifically,

this algorithm compresses every image in a 64-bit locality-sensitive fuzzy hash. The

algorithm is designed so that images “appearing” as similar for humans are hashed to

the same value, regardless of small graphical differences they may have.

State Comparison. We consider two states as equal if all the 3 components described

above are equal. Moreover, when comparing states in traces collected during Step 2

against the Invariant, we also consider two states as equal if their image hashes only

differ slightly (less than 10% of the bits composing the image hash). This threshold was

determined empirically, by taking a subset of the apps from our dataset, and manually

determining the optimal value.

Additionally, if during the dynamic stimulation of an app the device receives an SMS

or a phone call, we add special states to the trace.

3.4 Experimental Results

3.4.1 Datasets

We used the vulnerability detection system to probe apps from two different datasets:

“Top Free” dataset. A dataset of 606 apps containing all the most popular available

free Android apps. To generate this dataset, we first downloaded all the 539 available apps

listed in the “Top Free” category on the Google Play market. Then we supplemented this

set with other 67 applications starting from the ones that have the highest cumulative

number of installations.

“Top Grossing” dataset. A dataset containing the 394 most popular free apps in the

“Top Grossing” category on the Google Play market (excluding the ones already present

in the “Top Free” dataset). We chose this specific category because experimental results

90

Trusting the Operating System for Remote Authentication Chapter 3

on the “Top Free” dataset and previous executions of our experiment revealed that apps

from this category often allow users to authenticate using non-secure methods to ease

their adoption.

Apps from both datasets were downloaded in January 2016. These datasets constitute

a heterogeneous corpus of very popular applications both in terms of installations and

developers’ revenue. In total, we analyzed 1,000 distinct apps.

3.4.2 Experimental Setup

Our system is implemented using a series of Nexus 5 handsets tethered to a controlling

PC. Specifically, we used 3 phones during the Invariant Generation and Vulnerability

Detection phases (Step 1 and Step 2) and 3 additional phones during Step 3. All handsets

run Google’s official Android 4.4.4 images (the most adopted Android version at the time

the apps were downloaded [44]).

During the collection of every trace of our analysis, we dynamically stimulated an

app for two minutes. To ease the deployment of our infrastructure, devices’ identifiers

and phone numbers were modified during different runs of the experiment, effectively

simulating the usage of a new device every time the experiment was run.

Averagely, the experiment needed 458 seconds per app to run Step 1 and Step 2 (in-

cluding time necessary to reboot a device and install an application). For apps flagged as

potentially vulnerable after these two steps, the analysis required, in average, additional

223 seconds per app to run Step 3 (including the time necessary to transfer the device’s

identity).

91

Trusting the Operating System for Remote Authentication Chapter 3

3.4.3 Results

Our system flagged 50 apps as vulnerable in our corpus of 1,000 distinct apps. Using

manual analysis, we verified that 41 out of the 50 detected apps were actually vulnerable

to the identity-transfer attack. Among these, two apps are Viber and WhatsApp, two

very popular messaging apps with hundreds of millions of installations. We postpone the

discussion of the vulnerabilities identified in these two apps to Section 3.5.1. Another

group of 38 apps is composed by popular games, in which an attacker can perform an

identity-transfer attack to steal the victim’s virtual currency or objects. We will provide

more details about them in Section 3.5.2.

Another detected app authenticates users by using standard SMS authentication.

Specifically, this app identifies users with their phone number, by sending an authenti-

cation code to their phone number using an SMS, which is then automatically read by

the app. If this code is stolen, an attacker can login and control all aspects of the user’s

account.

This security issue is different from the one found in the messaging apps described

in Section 3.5.1, as it needs the attacker to steal the content of an SMS received by the

victim. However, it still falls into our threat model, since the SMS content is device-public

information.

In other 7 detected apps, we were able to transfer an identity with the exploit, but

the identity was not protecting anything sensitive. Our system cannot, of course, detect

which content is truly sensitive (e.g., related to a user’s account) to a particular app, but

the differences in the UI were present.

92

Trusting the Operating System for Remote Authentication Chapter 3

For example, in one app, the device-public information was used to track whether

a user had accepted the application’s End-User License Agreement (EULA), and, in

another one, whether the user configured application preferences. In the other 4 apps,

the backend uses this information to track whether a user has viewed certain full-screen

“special offers” or advertisement from the app’s developer.

In addition, we found an app that, on first usage, shows a sign-in interface, since it

assumes that the user does not already have an account. However, on subsequent re-

installations, this app shows a username and password login interface, because it infers,

using device-public information, that a returning user would already have an account.

While not allowing any sort of account compromise, this information can still be leveraged

by any other app to infer valuable information about the user, as explored in [45].

Finally, 2 additional apps were detected because of problems of our testing infras-

tructure, such as connectivity issues of the apps that caused the appearance of different

graphical elements between the first installation and the subsequent ones. Subsequent

runs of our experiment on these samples confirmed that these apps were detected for

temporary problems. We consider these two apps as false positives.

3.5 Case Studies

3.5.1 Messaging Applications

Two of the detected applications are the very popular messaging apps, WhatsApp

and Viber, which allow users to send and receive text messages, VOIP calls, and media.

While the statistics on the Google Play market are not precise, WhatsApp is estimated

to have more than 1 billion installations and Viber has more than 500 million.

93

Trusting the Operating System for Remote Authentication Chapter 3

Figure 3.2: Examples of states recorded during the Invariant Generation phase
(Step 1). Since these states were not present during Step 2 and Step 3 of our analy-
sis, our system correctly classified these apps as vulnerable. In the left example, the
skipped state shows to the user an introductory tutorial of the game. In the right one,
the skipped state asks the user to confirm the entered phone number before validating
it.

Our vulnerability detection system flagged WhatsApp as vulnerable, since it detected,

in the Vulnerability Detection and Exploit Verification phases, the absence of the “confirm

your phone number” interface (shown in Figure 3.2), and the missing reception of an

incoming SMS, used for authentication. Similarly, while analyzing Viber, the system

detected this app as vulnerable because of the missing “Enter Your Name” dialog (shown

only to new users) and the missing reception of a phone call whose part of the caller

number is used as an authentication token.

Initially, we speculated that those apps were detected as vulnerable because they

use the user’s phone number, verified using received SMS or incoming phone calls, as

their authentication method. This authentication method is common among popular

messaging apps, and we consider it as vulnerable in our threat model. In fact, an attacker

94

Trusting the Operating System for Remote Authentication Chapter 3

with a malicious application installed on the victim’s device can pretend to own the

victim’s phone number and verify it by sending the authentication SMS received (or the

caller phone number) from the victim’s device to an attacker-controlled device.

However, further analysis surprisingly revealed that an even simpler attack is possible

against these apps. The identity-transfer attack was successfully performed for both apps

even though their backend did not send any SMS or phone call. This was possible because

these apps used the content of a hidden file stored in the external storage to authenticate

users upon re-installation.

Therefore, in the version of the apps we have analyzed, an attacker controlling an app

on the victim’s device could authenticate to the remote backend on behalf of the victim

by:

1. Copying the content of a specific file (stored in the external storage of the victim’s

device) to an attacker-controlled device.

2. In case of WhatsApp, spoof the value of the Google email account. To achieve

this, an attacker can use a malicious controlled app on the victim’s device to query

the AccountManager API and exfiltrate its value to an attacker-controlled device.

Then, on the controlled device, the attacker can spoof it by using, for instance,

the Xposed framework (as we implemented in the “ID Injector,” explained in Sec-

tion 3.2.3).

3. Open the app.

4. When asked to insert a phone number, specify the victim’s one.

95

Trusting the Operating System for Remote Authentication Chapter 3

After these operations, the vulnerable app running on the attacker’s device is auto-

matically logged in as the victim, without even having the victim’s device receiving an

authentication text message. This exploit gives attackers full use of the victim’s account,

allowing them to send messages on the victim’s behalf, and to receive all future messages

sent to the victim.

Vendor Reaction. Upon discovery of these vulnerabilities, we contacted both vendors

in August 2015. Both vulnerabilities were quickly acknowledged and, after working with

the vendors, mitigations were deployed.

Specifically, both WhatsApp and Viber removed reliance on static identifiers and

publicly-accessible files. However, they still rely on the content of a received text message

(or, in case of Viber, the caller’s number of an authentication phone call) for their primary

means of authentication.

Interestingly, after our first notification, Viber was initially changed in a way that was

ineffective against our attack. In particular, the file in the external storage remained, but

just spoofing it was not enough. We discovered that Viber was changed to also check that

other device’s identifiers matched the ones used during a previous registration. However,

an attacker could just query the values of the different device identifiers using an attacker-

controlled app on the victim’s device (see Section 3.2.2) and then spoof them on an

attacker-controlled device, as implemented in the “ID Injector” (see Section 3.2.3). We

note that this attack was working until Viber issued another update, in September 2017,

removing reliance on the content of publicly-accessible files to perform authentication.

In addition, after our notification to the vendors (but likely independently from our

disclosure), in 2016 both apps implemented new cryptographic measures limiting an

attacker’s ability to impersonate a user when an account is stolen (via ours or other

attacks). In particular, both apps implemented an end-to-end encryption mechanism,

based on the usage of a per-user key pair. This functionality allows users to authenticate

96

Trusting the Operating System for Remote Authentication Chapter 3

and encrypt exchanged messages. For instance, suppose that two users A and B com-

municate together. This system encrypts the communication channel between A and B

using their keys. Moreover, a user, for instance A, can check the value of B’s public key

and, in case B’s public key changes, A would be notified (however, A and B could still

communicate together). The same notification would be shown after the aforementioned

attack is performed because the per-user key is stored in an app-private location, so it

cannot be stolen and transferred to the attacker-controlled device.

3.5.2 Free-to-play Games

The other 38 identified vulnerable applications are games, in which an attacker can

perform an identity-transfer attack to, steal the victim’s virtual currency or in-game

objects. In these apps, the system detected, for instance, the fact that graphical inter-

faces used to enter the user’s name, or to show game tutorials and welcome messages

were skipped during the Vulnerability Detection and Exploit Verification phases (see Fig-

ure 3.2). This indicated that the app authenticated with the remote backend and was

able to obtain the user’s state.

After an identity-transfer attack was performed, we noticed three different kinds of

behaviors on the victim’s device, when attacked while the victim is using them. Some of

the apps show to the user a generic error message after the attack, such as “Connection

Timeout.” Others show a message informing the users that “another device” accessed

their account. Finally, some of them do not show any information to the victim.

All these games offer in-app purchases, and the virtual currency used is derived from

real money, using the Google’s In-App billing API (IAB). For this reason, these vulner-

abilities are particularly worrisome, since they can represent actual financial loss to the

97

Trusting the Operating System for Remote Authentication Chapter 3

victims and the apps’ developers. One surprising result was that the account transferred

during the Exploit Verification phase can include virtual currency purchased through

Google’s In-App Billing API [46].

Notably, this is not an explicit attack against the In-App Billing API, as explored in

previous work [47], but rather that its use in conjunction with the discovered vulnerabil-

ities makes this data vulnerable as well. This is due to how the IAB API is implemented

and how it is typically used by developers. In particular, even though the IAB mechanism

offers to store information about a user’s purchases (in a way which is secure under our

threat model), it cannot be easily used as a store of the user’s current account balance,

since precise accounting is not possible.

Therefore, developers need to store the virtual currency balance differently, in the

(potentially unsafe) app’s backend. In case of applications vulnerable to identity-transfer

attacks, this means the user’s paid-for currency is as easy to steal as any other information

in the user’s account. This is particularly of concern, given the already-established trend

in malware on other platforms targeting online game accounts [48].

3.6 Proposed Defenses

We propose two defenses against the attack studied in this work: one aimed at creating

secure device identifiers, and another aimed at safeguarding SMS-based authentication.

A fully working prototype implementation of our defenses is publicly available [49], as

an Xposed framework’s module.

98

Trusting the Operating System for Remote Authentication Chapter 3

3.6.1 Securing the SMS Channel

Design. All installed apps on a device (that request the proper permission) can request

to be notified of the content of incoming SMS messages, even when these messages are

only intended for use by a particular app. As we shown, this behavior is particularly

problematic when received SMS messages contain authentication codes destined for only

a particular app.

Our proposed solution, similar to one discussed in [50], works by delivering au-

thentication SMS only to the apps intended to receive them. Specifically, we propose

a convention that authentication-related SMS should be pre-pended with the string

AUTHCODE: app cert fingerprint, where app cert fingerprint is the fingerprint of the

certificate used to sign the destination app. The OS would then route the message only

to the main SMS reader app, and the app bearing the included fingerprint. This improves

on Mulliner et al.’s previous solution by not requiring the OS to be notified ahead of time

about how incoming messages should be routed.

For example, consider an app named “Foo Messaging” signed with a certificate whose

fingerprint is 0d5af23c. In this case, users enter their phone number into the app, which

is sent to the app’s backend. As a response, the app’s backend sends an SMS message

with the content AUTHCODE: 0d5af238c Verification Code: 34782. When received, the

OS would then only notify the user’s default SMS reader and “Foo Messaging” about

the new message.

To improve usability, we propose that the default messaging app, by default, hides this

routing information. Alternatively, the default messaging app could replace it with an

indication of the app the message was delivered to. This functionality can be implemented

without any modification to existing apps. However, it would require a small modification

to the app’s backends to prepend the app’s fingerprint to the outgoing SMS.

99

Trusting the Operating System for Remote Authentication Chapter 3

We note that the recently-released Android version 8 introduces a new API called

createAppSpecificSmsToken. This API “creates a single use app specific incoming SMS

request for the calling package” [51]. When using this API, an app would first get a secret

token from the operating system. Then the app’s backend would send an SMS containing

that specific token to the user’s device and the SMS will be subsequently automatically

routed by the OS to the correct app (through the token) and it will not be made readable

by any other apps (or visible by the user).

While it may seem that this new feature mitigates the weakness of the usage of SMS

to authenticate user, we argue that, on the contrary, it eases the attack we have described

in this chapter. In fact, while the usage of this API would stop an attacker from stealing

and replaying authentication codes when the user attempts to authenticate, the attacker

can just attempt their own authentication (simulating a user re-installing the app on

the same device), at which point the SMS will be sent and routed to the attacker’s app

and it can thus be easily stolen. From the conceptual point of view, the attack works

because the app’s backend does not have enough information to determine whether the

app receiving the SMS is the legitimate app or the attacker’s app.

There are two additional aspects that make apps using this new API more vulnerable

to the attacks presented. First, neither the user nor the legitimate app will notice the

incoming SMS message (triggered by the attacker), since it will be routed only to the

attacker’s app. Second, the attacker’s app does not need to require the READ SMS

permission when receiving messages using this API, thus making this malicious app

stealthier.

Implementation. There are two ways an app can access SMS in Android: an app can

ask to the operating system to be notified when a new message is received, or an app

can access the list of received messages. Thus, to implement our defense, we modified

both the Android InboundSmsHandler component, responsible to notify apps of incoming

100

Trusting the Operating System for Remote Authentication Chapter 3

messages, and the SmsProvider component, mediating apps’ accesses to received SMS.

Globally, our modifications consist of approximately 100 LOC added to the original

Android code. The added code introduces an average slowdown of 5.381ms every time

an SMS is received and a slowdown of 2.064ms every time an app queries the operating

system for received SMS. We consider both slowdowns as negligible, given the fact that,

receiving a text message it is not a frequent event.

3.6.2 Secure Device IDs

Design. The most common and easily obtained device-public identifier is the AN-

DROID ID, which is intended to be used to allow apps and their backends to differentiate

Android devices.

In our defense we modify the API used to access the ANDROID ID, so that it returns

a Private Device ID (PDID) different for every app (more precisely, different for every

app’s signing certificate), instead of the original device-wide value. Specifically, the first

time a device boots (or after a factory reset) a random Secret ID (SID) is generated. The

Private Device ID is then derived from the Secret ID using the signing certificate included

with each app, which uniquely identifies its developer. In this way, the semantics of the

ANDROID ID are preserved, apps from different developers cannot steal each other’s

identifiers, but no convenience is lost for a developer with multiple apps on the same

device. Moreover, the PDID does not change after app’s re-installation.

Specifically, the PDID is computed as follows:

HMAC(SID, caller app cert fingerprint) where: caller app cert fingerprint is

the certificate fingerprint of the app calling the API and HMAC is a cryptographically

secure keyed-hash message authentication code (e.g., HMAC-SHA256) in which SID is

used as “key” and caller app cert fingerprint as “message.”

101

Trusting the Operating System for Remote Authentication Chapter 3

The security of this method is bolstered by the fact that

1. Upon installation, Android verifies that an app has been correctly signed.

2. The operating system can securely identify the caller of a framework API [52].

3. No API is provided to get the value of SID.

For these reasons, as long as the developer’s private key remains uncompromised, the

privacy of the PDID to an app is maintained.

We implemented this modification as complete transparent replacement of the current

API used to get the ANDROID ID. In this way this defense could be deployed without

requiring code changes to existing apps. This will necessarily interfere with advertising

libraries, which seek to use the ANDROID ID to track the usage of multiple apps on the

same device. However, as explained in Section 3.2.2, the only identifier that advertisement

libraries are supposed to use to track users is the Google Advertisement ID. A possible

alternative implementation would be providing the PDID to apps trough a separate API.

It is interesting to note that, concurrently (and independently) to the development of

this work, Google changed the behavior of the ANDROID ID to follow our proposed mod-

ification. Although the implementation details differ, the functionality achieved by this

change is the same. This modification is available starting from Android version 8 [53].

Implementation. We implemented this defense by modifying the Android Set-

tingsProvider, the operating system component responsible to deliver the ANDROID ID

value to the running apps. Our modifications consist of approximately 70 LOC added to

the original Android code. The added code introduces an average slowdown of 1.497ms

when the API to get the ANDRODID ID is called. The standard Android API caches this

value after the first time an app access it, thus we consider this slowdown as negligible.

102

Trusting the Operating System for Remote Authentication Chapter 3

3.7 Limitations and Future Work

While we were able to find a surprising number of vulnerable apps, our system is far

from perfect. There are a few conceptual ways in which our system might miss vulnerable

apps. The most important one is the inability to influence a change in the user’s state

stored by the app’s backend server. For instance, in some games, the dynamic analysis

system would need to effectively play the game and, for example, score points or spend

virtual currency.

An important source of error in dynamic analysis is the non-determinism inherent in

today’s operating systems and apps. Some apps explicitly perform random behaviors,

which our Invariant Generation step attempts to remove, but it is by no means perfect.

For example, if the non-deterministic behaviors are time-dependent or influenced by

network delays, they may produce the same result during the Invariant generation, but

not during the other phases. Some previous work has been done to try to have fully

deterministic replay of actions (see Section 5.3), but the current state-of-the-art does not

handle all the source of indeterminism that our system has to deal with.

One other source of future improvement is in the number of identifiers spoofed and

transferred by our system. We used a large set of known identifiers for which we could

locate Android APIs, but apps could conceivably invent their own identifiers based on

collections of obscure system properties, or implement other means of fingerprinting

devices. Finding all possible ways this can happen is an open problem.

We would also like to explore the use of network traffic as part of the Invariant gen-

eration, to attempt to more precisely determine when a backend is saving and retrieving

user state. In particular, a way to assist with the network traffic analysis, as well as other

data sources and sinks, is to use a taint-tracking-based analysis system, such as Taint-

Droid [54]. Unfortunately, we have noticed that many identifiers are sent to the app’s

103

Trusting the Operating System for Remote Authentication Chapter 3

backend, even if they are not directly used for authentication purposes, which represents

a significant source of noise for this kind of analysis. This is potentially done to aid in

gathering metrics about apps, or to aid in advertising.

Finally, an interesting future work would be to study if the authentication problems

we have identified in this work also affect applications running in other mobile operating

systems.

3.8 Conclusions

In this work, we explored the real-world vulnerabilities of apps that authenticate their

users using device-public information. Some app authors appear to make the assumption

that this information is somehow hard to obtain or spoof.

To disprove this, first we developed an “identity-transfer” attack that can be auto-

matically applied to any apps relying on device-public information to authenticate its

users. Then, we developed a system, based on dynamic analysis, that infers informa-

tion about the apps’ backend states to locate insecure authentication mechanisms, and

perform our attack against them. After analyzing 1,000 popular apps from the Google

Play market, we found 41 that were vulnerable to our generic identity-transfer attack,

including two major messaging apps used with hundreds of millions of installations.

Finally we proposed and implemented solutions to the identified problems, requiring

minimal modifications to the Android operating system and no modifications to the

existing apps.

104

Chapter 4

Hardware-Assisted Authentication

As smartphones become widely used, more and more security-sensitive tasks are per-

formed using these devices. For instance, mobile payment or mobile banking applica-

tions have been steadily increasing for the past few years [55]. That is, smartphones

are increasingly used to access remote accounts containing valuable and sensitive user

information such as purchase histories or health data. Needless to say, the security of

smartphones and mobile apps, including authenticity, integrity, and confidentiality, is of

paramount importance.

Smartphone technologies bring both new opportunities and threats to security. A

smartphone is a very convenient choice to be the “second factor” in two-factor authenti-

cations (2FA) because the users do not have to carry additional security tokens. A very

common two-factor scheme is to authenticate a user based on both the user’s password

and proof that the user is in possession of her smartphone, with the latter commonly

achieved by sending text messages to the registered smartphone. On the other hand, as

more and more sensitive operations that are protected by 2FA are performed using smart-

phones, the security threat from a stolen/compromised phone or malicious apps running

105

Hardware-Assisted Authentication Chapter 4

on the phone significantly increases. In particular, by performing sensitive operations on

smartphones, both factors required by 2FA will be available on the smartphone, making

it a single point of failure.

In theory, technologies commonly available on modern smartphones can be used to

implement 2FA schemes that are secure even in the face of stolen/compromised phones

or malicious apps running on the phone. In particular, most smartphones already come

with Trusted Execution Environments (TEE) that can be used to generate and store

cryptographic keys.1 Furthermore, the TEE can already be programmed to directly

communicate with a fingerprint reader (which is widely available on modern smartphones)

so that it will only perform operations using the stored keys when the fingerprint reader

detects a registered fingerprint, signaling the user’s explicit consent to such operations.

Since the TEE is a hardware-enforced isolated execution environment, the keys it stores

and the operations performed with those keys cannot be leaked or misused even if the

smartphone’s operating system (OS) is compromised.2

A second factor implemented by combining the TEE and the fingerprint reader is at

least as strong as what proposed in the Security Key protocol [58] (and implemented by

YubiKey [59]), the current state-of-the-art authentication solution in the desktop world,

promoted by Google, as a member of the FIDO Alliance [60]. Under the Security Key

protocol, a cryptographic private key is stored on an external hardware device and is

used to sign authentication tokens provided by the remote service the user wants to

authenticate with. This signing operation only happens if the user authorizes it, by

pressing a physical button on the external hardware device. In fact, one can argue that

1In devices running Android, the TEE is typically enforced by using the ARM TrustZone technol-
ogy [56].

2As an empirical measure, among all the vulnerabilities mentioned in the “Security Bulletins” released
by Google about Android security [57] up to August 2017, 33 of them allow an attacker “to execute
arbitrary code within the context of the kernel,” whereas only 2 allow “to execute arbitrary code in the
TrustZone context.”

106

Hardware-Assisted Authentication Chapter 4

a second factor that combines a smartphone’s TEE and its fingerprint reader is going to

provide more security than YubiKeys in the scenario where the hardware security token is

stolen; in the former, the attacker cannot misuse the hardware token without the owner’s

fingerprint, while in the latter, anybody in possession of the token can misuse it to bypass

2FA. Additionally, the device’s screen (which is not present in standard hardware tokens),

could be used to inform users about the operation they are authorizing by touching the

sensor.

Motivated by the significant security benefits that the TEE-backed fingerprint sensor

can offer, in this work we perform the first comprehensive study on the usage of the

fingerprint API in Android. In particular, we first systematically explore the various

nuances of this API, and we uncover several aspects, many of which subtle, that can lead

to this complex API to be misused. As an example, developers could just check if the

user touched the sensor, without binding this operation to the usage of a cryptographic

key, contrary to what is suggested by Google’s guidelines [61].

We then bring some clarity to the many threat models that should be considered when

performing security evaluations concerning the fingerprint API. For example, we explore

what are the capabilities of an attacker that can compromise the untrusted operating

system, i.e., a “root attacker.” At first glance, one may say that a root attacker will

trivially defeat any fingerprint API and that the fingerprint API itself is not designed

to protect from root attackers. On the contrary, we argue that many important design

choices related to this API are motivated specifically to protect from root attackers. The

most significant example is that current implementations of the fingerprint API work by

unlocking a TEE-backed cryptographic keystore: if the threat model were not considering

root attackers, apps could simply store cryptographic material in app-private storage

(that non-root attackers cannot access), without needing to rely on any TEE support.

107

Hardware-Assisted Authentication Chapter 4

We hypothesized that the lack of clearly stated design goals and, as we will see,

misleading documentation bring confusion and app developers might misuse this API.

To explore this hypothesis, we first developed a static analysis approach to characterize

how Android apps use the fingerprint API, whether this API is misused, and how they

are resilient to the various threat models. We then use this system to perform the first

systematic empirical study of how the current fingerprint API is used in the Android

ecosystem. Specifically, we used our tool to analyze 501 apps requiring the fingerprint

permission (out of a dataset of 30,459 popular apps). The results are worrisome. For

example, the tool identified that 53.69% of the apps, including the widely deployed Google

Play Store app, do not make use of the cryptographic keystore unlocked by a successful

fingerprint touch: this means that a root attacker can easily completely bypass the

fingerprint security mechanism by just programmatically “simulating” the user’s touch

to, for example, perform in-app purchases.

One explanation for this low percentage could be that not all use case scenarios for

the fingerprint API can be protected from root attackers. One example is an app that

uses the fingerprint to merely assess user presence: in this case, it is very challenging to

find a “role” for the cryptographic material, and it is thus not possible to protect this

use case from root attackers. To determine how many apps fall into this category, we

then performed manual analysis on a subset of applications flagged as problematic. For

example, we manually analyzed a random subset of 20 apps for which our tool identify

usages of the fingerprint API flagged as “fully bypassable.” To our surprise, 16 of them

are apps that use the fingerprint API to authenticate the user against a remote backend,

or apps that store secret information: These are exactly the use case scenarios that a

proper usage of the fingerprint API could easily protect even from powerful attackers

such as root attackers. This manual analysis effort, even though admittedly limited,

108

Hardware-Assisted Authentication Chapter 4

suggests that the number of apps misusing the fingerprint API is significant. Moreover,

our tool also flagged only the 1.80% of the apps in our dataset as using the fingerprint

API to sign transactions, which is the most secure way to use this API.

In summary, this work makes the following contributions:

• We systematically study the various ways in which the fingerprint API can be used

in Android and how attackers with different capabilities can exploit sub-optimal

usages of it.

• We develop a static-analysis tool to automatically identify how real-world popular

apps use the fingerprint API. We make its code publicly available online [62].

• By using this tool, we perform the first systematic study of the usage of the fin-

gerprint API in Android, and we uncover a significant number of apps potentially

misusing the fingerprint API. This improper usage significantly weakens the secu-

rity guarantees these apps could achieve if using the API correctly.

• We identify shortcomings and weaknesses of the current API and its implementa-

tion, and we propose different improvements to it.

4.1 Background

4.1.1 Android Security Mechanisms

The Android operating system is a customized Linux kernel on top of which the

Android framework runs. User-installable third-party apps run as user-mode processes

and are typically written in Java, even though apps may also include libraries written

in native code. These apps interact with the Android framework using system calls or

invoking remote procedures in “system services.”

109

Hardware-Assisted Authentication Chapter 4

Third-party apps run in separate containers with isolated resources (e.g., private

files) and a limited set of capabilities. The precise list of capabilities is determined by

the “Android permissions” granted to an app. In modern Android versions (starting

from Android 6), permissions classified as dangerous need to be specifically approved by

the user. Other permissions are instead automatically granted to any app that requires

them, but the app still needs to request them in its Manifest file. The USE FINGERPRINT

permission, which grants the ability to use the fingerprint reader sensor, is an example

of “normal” permission.

This separation between different apps and the different apps’ capabilities is enforced

by using a combination of standard Linux mechanisms (e.g., Linux groups), SELinux

rules, and specific checks in the Android framework. In fact, apps cannot perform any

sensitive operation directly, but they have to send a request to a running system service,

which verifies whether the app calling it has the permission required to perform the

requested operation. Thus, system services (which run as users with higher privilege

than normal apps) mediate most of the interactions between apps and the kernel.

Attackers often try to exploit bugs in either the system services or the kernel to

gain root privileges, using what are typically called “root exploits.” Although a signif-

icant effort has been made to limit the attack surface exposed by system services and

the kernel to normal apps [63], root exploits are still a concrete danger in the Android

ecosystem [57]. However, even when an attacker can fully compromise the Linux kernel,

achieving persistent kernel-level code execution (by bypassing the Verified Boot mecha-

nism) requires further exploitation of the system [64]. Similarly, achieving code execution

within the TrustZone-enforced TEE, which we describe in the next section, requires the

exploitation of significantly less common vulnerabilities in the relatively small code base

running within the TEE.

110

Hardware-Assisted Authentication Chapter 4

4.1.2 TEE and TrustZone

A TEE is an isolated environment designed to execute sensitive code with more iso-

lation/protection than what provided by a standard “feature-rich” operating system.

While other instantiations of TEE exist, in this chapter, we will focus on ARM’s imple-

mentation of the TEE, called TrustZone, which is available on the majority of Android

devices.

Under ARM’s TrustZone, a “trusted” kernel and a set of Trusted Applications (TAs)

run in the “secure” world, isolated by hardware from the Android OS and third-party

apps, which, conversely, run in the “non-secure” world. Only code signed by the hardware

manufacturer can run in the “secure” world. Also, while third-party apps run in isolation

from the TAs, these apps can utilize services provided by the TAs through well-defined

APIs. Two services offered by the TAs are relevant to fingerprint-based authentication:

• keymaster: It allows to create cryptographic keys, store them inside secure-

storage, and use them to encrypt, decrypt, verify, or sign data, coming from the

untrusted world. Internally, this service utilizes the secure-storage capability of-

fered by the trusted kernel to securely store encrypted and authenticated data on

the device’s mass memory.

• fingerprintd: It handles the storage of fingerprint data, acquired from the finger-

print reader sensor, and verifies that the finger touching the sensor corresponds to

any previously registered fingerprint. It is important to notice that “raw” finger-

print data (i.e., the image of the registered fingerprint) never leaves the TEE and

therefore it is not accessible by any untrusted code.

111

Hardware-Assisted Authentication Chapter 4

4.1.3 The Fingerprint API in Android

In the discussions that follow, we will focus on apps that access the fingerprint reader

(which is commercially named the “Imprint” sensor) through the Java API provided

by Google. Unless otherwise specified, we will consider the implementation of this API

running in Android version 7 on Google’s devices. In particular, for our experiments we

used a Google’s Nexus 5X.

Also, we will follow Google’s [61] and OWASP [65] guidelines and consider that the

best way to use the fingerprint reader is in conjunction with some cryptographic op-

erations. In particular, instead of just recognizing the legitimate user has touched the

fingerprint sensor, an app should use this fingerprint reading to unlock a cryptographic

key protected by the TEE. In other words, by utilizing both the keymaster and the fin-

gerprint in the TrustZone, this method can guarantee that even an attacker with root

privilege cannot misuse the cryptographic key without presenting the right fingerprint.

As we will see in Section 4.4, the latter method is significantly stronger.

We will now briefly provide the major steps an app has to perform to interact with

the fingerprint sensor and determine whether a legitimate user touched it. For clarity, we

will omit unnecessary details of the complex Android cryptographic API, and we suggest

interested readers to read the official documentation for a more detailed explanation [66,

67].

Generate a cryptographic key: An app can generate a cryptographic key or a

public/private key pair by using the method initialize of the class KeyGenerator or

KeyPairGenerator. Developers must specify properties of the generated key (e.g., the

algorithm used) by passing a KeyGenParameterSpec object to the mentioned initialize

method.

112

Hardware-Assisted Authentication Chapter 4

Among the various aspects a developer can control about a generated

key, the most important one in this context is triggered by calling the

setUserAuthenticationRequired method (passing true for its required parameter).

By calling this method, a developer can ensure that the generated key is usable (i.e., it

is “unlocked”) only after a legitimate user has touched the fingerprint reader sensor. In

case a pair of keys is generated, calling this method will only constraint the usage of the

private key, leaving the public one freely accessible by the app.

Unlock the key by authenticating the user: By calling the authenticate

method, an app activates the fingerprint reader sensor. Two parameters of this method

are important: the cryptographic key that is unlocked if a legitimate user touches the

sensor and a list of callback functions, called after the sensor is touched.

Override the fingerprint callbacks: When a user touches the sensor, specific

callback functions are called. In particular, the method onAuthenticationSucceeded

is called when a legitimate user touches the sensor, whereas other callback functions are

called in case of error conditions (e.g., a non-legitimate user touched the sensor).

Use the unlocked key: After the onAuthenticationSucceeded method is called,

an app should use the now unlocked key. For authentication purposes, Google’s guidelines

suggest the use of a previously generated private key to sign a server-provided authenti-

cation token and then send this authentication token to the app’s remote backend.

It is worth mentioning two properties of the generated keys. First, the Android

framework ensures that only the app generating a key can use it. Second, in modern

devices, private keys are stored within the TEE (an app can verify if in a specific device

keys are stored within the TEE by calling the isInsideSecurityHardware API) and

cannot be exported (not even by the app generating them and not even after a legitimate

user has touched the fingerprint sensor). In other words, “unlocking” a key does not

113

Hardware-Assisted Authentication Chapter 4

allow an app to read its “raw” value, but only to use it to encrypt, decrypt, or sign data.

If the key is stored in the TEE, these operations are guaranteed to happen within the

TEE.

4.1.4 Two-Factor Authentication Schemes

To overcome security and usability limitations of classical username and password

authentication, many service providers suggest or mandate the usage of an additional

“second factor” during authentication. One common solution is to use a One-Time

Passcode (OTP). However, OTPs are still vulnerable to phishing and man-in-the-middle

attacks [68, 69] and have serious usability drawbacks, since they require the user to some-

how receive the OTP code and insert it into the authentication interface. Furthermore,

protocols based on OTPs rely on the confidentiality of the communication channel of the

OTP, which is often not guaranteed. For instance, text messages are a common com-

munication channel used to send OTPs to smartphones. However, the insecurity of this

channel has been shown in many occasions [70, 71].

Secure authentication schemes using challenge/response offer better security and us-

ability. In particular, the current state-of-the-art is constituted of the Security Keys for-

malized in the Universal Second Factor (U2F) protocol [72]. This protocol is composed

of two phases. During the registration phase, a key pair is generated in an external hard-

ware device. The generated public key is sent to the remote server, whereas the private

key remains securely stored within the hardware device. Later, during the authentication

phase, the server sends the client a challenge. The client then asks the hardware device

to sign this challenge with the stored private key, and the signed response is then sent

back to the remote server, which can verify it using the previously obtained public key.

114

Hardware-Assisted Authentication Chapter 4

Both during the registration and the generation phases, the user is required to physically

touch the hardware device as a Test of User Presence (TUP) to authorize creation and

usage of cryptographic keys.

4.2 Threat Model

This section explores the different threat and attacker models considered in this chap-

ter. We first define different “levels of compromise” that an attacker may achieve. Then,

we discuss several different threat models, ranging from being just able to install a ma-

licious app on the victim’s device to be able to fully compromise the Android Linux

(untrusted) operating system. We will also argue why each of these threat models are

particularly relevant for any work studying the fingerprint API. We end this section by

clarifying which threat models are considered as out of scope.

4.2.1 Levels of Compromise

To ease our exposition, we now define three labels describing three different levels of

compromise an attacker can achieve in the different scenarios. We discuss the three levels

starting from the least powerful. We note that, of course, an attacker will always attempt

to achieve the third and most powerful level of compromise. However, depending on the

attacker capabilities and how a given app uses the fingerprint API, this may not always

be possible.

Confused Deputy. An attacker might be able to interfere with the usage of the fin-

gerprint API to change the intended effect a user wants to achieve when she touches the

fingerprint sensor. For example, consider a user who wants to authorize the transaction

“pay $1,000 to Friend” by pressing the fingerprint sensor: an attacker might be able to

115

Hardware-Assisted Authentication Chapter 4

change this transaction to “pay $1,000 to Attacker.” Another example is an attacker that

can lure the user to provide the fingerprint by spoofing a completely unrelated scenario,

such as the lock screen.

More in general, these examples are instances of a confused deputy problem. An

attacker can achieve her goal by abusing this problem, but she needs the user to touch

the fingerprint sensor once for each malicious attempt.

Once For All. In this scenario, the attacker can completely bypass the need for “fin-

gerprint” by just luring the user to provide a fingerprint once. That is, after the attacker

obtains one fingerprint, the attacker can spoof any subsequent fingerprint request. We

note that, in this context, the term “spoofing” does not entail spoofing the “real” physical

fingerprint. Instead, with this term, we indicate that an attacker can trick the vulnera-

ble app, and the backend it communicates with, to believe a legitimate fingerprint was

provided.

As a representative example, consider an app that, after the user provides a finger-

print, decrypts, using a TEE-backed cryptographic key, an authentication token. If an

attacker manages to access this decrypted token, the attacker can now just reuse the

token undisturbed for subsequent authentication and authorization attempts, without

needing to lure additional fingerprints. Thus, this scenario provides a more practical

opportunity for an attacker.

Full Fingerprint Bypass. In this last case, an attacker can completely bypass the need

of luring fingerprint touches without requiring a “real” touch, not even once. For example,

consider a banking app that requires the user to confirm every monetary transaction by

pressing the fingerprint sensor. If an attacker can compromise the app to this last level,

the attacker can authorize an unlimited number of transactions, at will, without having

116

Hardware-Assisted Authentication Chapter 4

the user touch the sensor. This case provides significant practicality benefits for an

attacker. In fact, the attacker does not need to “wait” to hijack a user’s touch: as a

matter of fact, in this scenario the attack does not need any user interaction at all.

We note that it may not always be possible for a root attacker to indefinitely wait for

a user’s touch, because, for instance, thanks to the Verified Boot protection mechanism,

it may be impossible to persistently compromise a device.

4.2.2 Attacker Capabilities

We consider the following three increasingly powerful attacker capabilities.

Non-Root Attacker. In this threat model, we consider an attacker that is just able

to install a malicious application on the victim’s device. In this case, we assume that

the attacker is unable to subvert the security of the operating system, and therefore the

installed malicious app is still constrained by all the limitations imposed by the Android

framework. The installed app can, however, request permissions (as any other benign

third-party app installed on the device) to obtain specific capabilities, and, in this case,

we assume that the user will grant them.

Additionally, the installed app, can show maliciously crafted messages or, more in

general, interfere with the device’s user interface (UI), to lure a legitimate user to touch

the fingerprint reader sensor. These UI attacks greatly vary in terms of complexity and

flexibility, and they are well explored by several existing works [73, 74, 1], some of which,

such as Cloak & Dagger [75], achieve almost complete compromise of the device. While

these attacks are indeed powerful, we note that the fingerprint API might be one of

the few aspects that could, at least in principle, prevent full compromise. In fact, even

though the Cloak & Dagger attack can simulate arbitrary user input, it cannot “spoof”

a physical fingerprint user’s touch.

117

Hardware-Assisted Authentication Chapter 4

The key conceptual point here is that there is no trusted path from the fingerprint

API to the UI. Thus, as previous works have shown, the attacker can exploit an instance

of the confused deputy problem. We postpone the discussion on the practicality and

implications of these attacks to Section 4.5.2.

Root Attacker. In this threat model, we assume that an attacker can fully compromise

the Android operating system, by using, for instance, a “root exploit.” Therefore, the

attacker can completely bypass apps’ restrictions put in place by the Android framework.

For example, the attacker can access app-private storage (which is usually protected by

the sandboxing mechanism). Moreover, exploiting confused deputy instances via the UI

attacks mentioned above becomes much simpler for a root attacker.

Additionally, the attacker can spoof “messages” from the operating system: Specif-

ically, an attacker can freely communicate with the TEE, and thus send arbi-

trary messages to it. At this point the attacker can programmatically invoke the

onAuthenticationSucceeded method implemented within the victim app (and thus sim-

ulating a user’s touch), even if the user has never touched the fingerprint sensor.

We note that, although a root attacker is powerful, she does not get access to every-

thing. In particular, the fingerprint API enforces the following three security properties

even on a system in which the untrusted OS is completely compromised:

1. an attacker cannot retrieve “raw” fingerprint data;

2. an attacker cannot retrieve the value of cryptographic key stored into the TEE (i.e.,

keys are not exportable);

3. an attacker cannot use TEE-backed cryptographic keys, unless a legitimate user

touches the fingerprint sensor.

However, if the victim app does not properly use such TEE-backed cryptographic keys,

the attacker might be able to achieve her goal anyways, as we will explain later.

118

Hardware-Assisted Authentication Chapter 4

That being said, we also note that, for some usage scenarios, an app does not have

any technical way to secure itself from root attackers. For example, if the app uses

fingerprint not to secure a secret or token, but as a local “Test of User Presence” (TUP),

there is currently no way a developer could make use of cryptographic algorithms. On

the other hand, crypto primitives can be definitively used when implementing remote

user-authentication mechanisms. We postpone the discussion about these scenarios to

Section 4.5.1.

Finally, for this threat model, we will assume that the device is not in a compromised

state when the cryptographic keys (“unlocked” by touching the fingerprint sensor) were

first created by the app that the attacker wants to compromise. The creation of cryp-

tographic keys typically happens only during the first usage of an app and, therefore, it

may be impossible for an attacker to interfere with their creation if the compromise of a

device happens only after this stage of an app’s lifecycle.

Root-at-Bootstrap Attacker. In this threat model, we consider an attacker with

the same capabilities of the previous one. Additionally, we also assume that the device

is in a compromised state even in the moment in which the victim’s app generates the

cryptographic keys. Therefore, in this case, the attacker can interfere with their creation.

4.2.3 Out-of-Scope Attacker Capabilities

We assume that the TEE is not compromised. In other words, we consider an attacker

that can compromise the code running (or the data stored) within the TEE as out of

scope. In fact, an attacker able to compromise the TEE can trivially fully compromise

the fingerprint functionality, by stealing all the cryptographic keys in the secure storage.

Moreover, as previously mentioned, exploits able to gain this capability for an attacker

are extremely rare.

119

Hardware-Assisted Authentication Chapter 4

We will consider attacks on the physical recognition of the fingerprint as out of scope.

These attacks, although possible [76], deal with the physical aspects of the fingerprint

acquisition process and with the algorithms used to compare fingerprint data. Conversely,

in this chapter, we focus on a higher-level aspect: the operations inside TEE that are

triggered by the legitimate user touching the fingerprint sensor, the operating system, and

the apps using the fingerprint sensor API. Therefore, we will assume that the fingerprint

sensor and the code inside the TEE handling it are always able to understand if the user

that is touching the sensor is the legitimate one (i.e., a user who has previously registered

her fingerprint as valid using the appropriate operating system interface).

4.3 Fingerprint API usages

In this section, we will explain how the fingerprint API is used by Android apps. In

particular, we will classify apps’ usages of the fingerprint API based on if and how cryp-

tographic keys (stored inside the TEE) are used to verify that a legitimate user touched

the fingerprint sensor. This aspect has profound implications on what attackers can do

to subvert the fingerprint checks and how they can achieve their malicious goals. In Sec-

tion 4.5.1, we will then explain how the verification of the user touching the sensor is used

as a part of the authentication schemes implemented by apps and their corresponding

backends.

120

Hardware-Assisted Authentication Chapter 4

4.3.1 Weak Usage

The easiest way to use the fingerprint API is to execute some code after a legitimate

user touched the sensor, without using any cryptography. To achieve this, a developer

just has to call the authenticate method to activate the fingerprint reader sensor and

override the onAuthenticationSucceeded method to be notified when the user touched

it.

From the implementation standpoint, recall that the authenticate method takes, as

an argument, the cryptographic key that is unlocked when the user touches the sensor

(see Section 4.1.3). Thus, an app can set this parameter to NULL and, as a side-effect,

the fingerprint will not unlock any cryptographic keystore. Of course, an app could

also require access to the keystore and it could then discard this object without using

it. In other words, a specific fingerprint-protected functionality is not “protected” by

cryptographic operations if a cryptographic key is unlocked but never properly used.

4.3.2 Decryption Usage

In this case, a cryptographic key is created, stored inside the TEE, and used to

decrypt (once the key is “unlocked” by a legitimate user touching the fingerprint sensor)

locally stored files. Google’s guidelines suggest using the fingerprint API in this way when

“securing access to databases or offline files.” In practice, we have seen this method often

used to decrypt an authentication cookie stored in an encrypted vault within the app’s

private storage. This authentication cookie, typically valid for multiple sessions, can be

used by the app to authenticate with the remote server.

We have found two ways in which this mechanism is implemented. The easiest case

is when a symmetric key is created and used to encrypt/decrypt the content of the

“encrypted vault.” The disadvantage of this method is that it requires the user to touch

121

Hardware-Assisted Authentication Chapter 4

the sensor (to “unlock” the key) to both read something from the vault and to write

something into it. As a consequence, if, for instance, the remote backend decides to

change the value of the authentication cookie stored inside the vault, the user would

need to touch the fingerprint sensor to unlock the key.

A more user-friendly way is to use an asymmetric key pair. In this case, the public

key (which does not need to be “unlocked” before usage), is used to write inside the

vault, and the private key (which requires the user’s touch) is only used to read from

the vault (e.g., when the stored authentication cookie is needed to authenticate with the

app’s backend).

Surprisingly, the example officially provided by Google [77] about using the fingerprint

API together with a symmetric key does not show how to use cryptography safely. In fact,

the provided code generates a symmetric key and, after the user touches the sensor, uses it

to encrypt a fixed, hardcoded string. Then, the code just checks whether the encryption

operation (performed using the doFinal API) threw an exception, an indication that

the used key is (still) locked (i.e., it has not been unlocked). While the intent might

have been to verify that the user has touched the sensor, this particular example code

makes the usage of cryptography pointless because an attacker with “root” privileges can

just fake the result of the decryption operation and clear the thrown exception (as we

will describe better in Section 4.7.1). In practice, in terms of security, we consider the

Google’s example on how to use symmetric keys as a case of Weak usage of the fingerprint

API, rather than a case of Decryption usage.

122

Hardware-Assisted Authentication Chapter 4

4.3.3 Sign Usage

The fingerprint API can also be used to implement challenge/response authentication

schemes. This offers significantly more security over a wide range of attackers, but,

unfortunately, it is rarely used by developers.

In this case, typically during the app’s first usage, a key pair is generated: the public

key is sent to the app’s remote backend server, whereas the private one is stored within

the TEE. When the app needs to authenticate a user to the remote backend, the following

steps take place:

1. The remote backend sends a challenge to the app.

2. The app calls the authenticate API to “unlock” the previously stored private key.

3. The legitimate user touches the fingerprint reader sensor, and the private key is

“unlocked” by the TEE.

4. The onAuthenticationSucceeded method (overridden by the app) is called.

5. The app uses the now-unlocked private key to sign the challenge from the app’s

backend.

6. The app sends the signed challenge to the backend.

7. The backend verifies the signature on the challenge, using the public key previously

obtained from the client.

8. The backend communicates to the app the result of the verification and considers

the user as authenticated.

123

Hardware-Assisted Authentication Chapter 4

4.3.4 Sign + Key Attestation Usage

As we discuss in more detail in Section 4.4.3, the “Sign” usage is vulnerable to an

attacker that can perform a man-in-the-middle attack at the app bootstrap time, when

the initial key exchange takes place. In this attack, the attacker would provide to the

backend her public key (for which she has the associated private key), and she could

then bypass the fingerprint. However, starting from Android 7, a countermeasure to this

attack is possible, since Android can provide an “attestation” certificate chain, attesting

that a key has been created by a “trusted” TEE. A similar attestation mechanism is

present in the Security Keys protocol [58].

To enable it, a developer, when creating a key pair, has to call the

setAttestationChallenge(attestationChallenge) API with a non-NULL value for

attestationChallenge. Then, the app can retrieve the certificate chain, attesting the

generated public key using the getCertificateChain API. The app’s backend can then

verify that the root of this chain is signed by a trustworthy Certificate Authority (typi-

cally Google). The certificate, among other pieces of information about properties of the

generated keys, contains the attestationChallenge previously set, allowing the app’s

backend to verify that the retrieved key was created as a consequence of a specific request.

4.4 Protocol Weaknesses and Attack Scenarios

We will now highlight the weaknesses of each usage scenarios described in Section 4.3.

For each identified weakness, we will also determine which classes of attacker (as defined

in Section 4.2) can exploit it. Our findings are summarized in Table 4.1.

124

Hardware-Assisted Authentication Chapter 4

4.4.1 Weak Usage: Fake TEE response

In the Weak usage scenario, fingerprint-based authentication is considered successful

as long as the TEE communicates that a legitimate touch happened. This message is

delivered by the OS to the client app (by invoking the onAuthenticationSucceeded

method). In this case, any entity that can control/impersonate the OS to deliver such

message can successfully authenticate and authorize any transaction to the server, with-

out having to wait for the user to present the fingerprint even once. In other words,

any “root” attacker can achieve Full Fingerprint Bypass against Weak usage by faking

OS messages. Additionally, a non-root attacker can exploit confused deputy problems

by mounting UI attacks. Once again, these attacks are possible because of the lack of

trusted UI in Android. We also note that these attacks are possible independently from

the specific attacker capabilities and from the specific usage scenario. We refer the reader

to Section 4.5.2 for more details.

4.4.2 Decryption Usage: Replay Attack

In the Decryption usage scenario, the TEE is used to decrypt a value (e.g., an authen-

tication cookie), and the same value is communicated to the client app (and the backend

server) for every attempt to authenticate or authorize a transaction. In this scenario, an

attacker only needs to capture this value once to then be able to fully authenticate and

authorize any transaction any time in the future, by simply replaying this captured value

over and over.

125

Hardware-Assisted Authentication Chapter 4

4.4.3 Sign Usage: Man-in-the-Middle Attack

In the Sign usage scenario, the TEE is used to protect a private key used in a chal-

lenge/response scheme. In this scenario, a root attacker cannot easily compromise the

system — in a way, she has similar capabilities as a non-root attacker, and she could

thus attempt to exploit confused deputy problems via UI attacks.

However, we note that an attacker can launch a man-in-the-middle attack if she can

interfere with the “app bootstrap” process, during the initial key exchange. The attack

would work in this way: at bootstrap, instead of sending to the backend server the real

key output by the TEE, the attacker can use her own key instead. In this way, the

attacker can use the key thus registered to answer any future challenge (because the

attacker knows both the public and the private key), thus achieving Full Fingerprint

Bypass. Clearly, since this attack requires the attacker to have control over when the key

exchange is carried out, it is only possible for Root-at-Bootstrap attackers.

4.4.4 Sign + Key Attestation Usage: Key Proxying

The “Sign + Key Attestation” usage scenario significantly raises the bar for attacks,

even for a very powerful attacker such as Root-at-Bootstrap attacker. However, from a

conceptual point of view, it is possible to attack this usage scenario as well, by performing

a so-called cuckoo attack [78]. Specifically, while this mechanism attests that a key has

been created by the TEE on a user’s device with the goal of preventing an attacker from

knowing its private value, it cannot prevent an attacker from “proxying” the app’s request

for creating a key pair to her attacker-controlled device and using the TEE of her device.

We note that this attack scenario presents serious practicality and scalability issues for

the attackers. That being said, we will further discuss this aspect in Section 4.8.3, where

we propose improvements on the current implementation of this mechanism.

126

Hardware-Assisted Authentication Chapter 4

Table 4.1: Summary of attack possibilities with respect to attacker capabilities and
fingerprint API usage.

Attacker Capabilities

Fingerprint API Usage

Weak Decryption Sign

Sign
+

Key Attestation

Non-Root C.D. 1 C.D. C.D. C.D.

Root Full Once C.D. C.D.

Root-at-Bootstrap Full Full Full C.D.

1 “C.D.” stands for Confused Deputy.

4.5 Discussion

This section discusses aspects related to the fingerprint API that are not strictly

related to the API itself or to the specific vulnerable “usage scenarios” described above.

4.5.1 Application Contexts

Typically, the fingerprint API is used as a part of an authentication scheme. In this

section, instead of focusing on how apps use the fingerprint sensor in terms of API calls

and encryption, we will discuss common functionality apps aim to accomplish when they

use the fingerprint sensor.

“Local-Only” Usage. Some apps use the fingerprint API to implement the “screen-

lock” functionality. For instance, they prevent access to a list of user-selectable apps,

unless the fingerprint sensor is touched by a legitimate user. In this case, the fingerprint

sensor just constitutes a local Test of User Presence (TUP).

For these apps, only a Weak usage of the fingerprint API is reasonable. In fact, the

app does not have any remote backend to authenticate with nor it stores any secret data.

127

Hardware-Assisted Authentication Chapter 4

Remote User-Authentication. More interestingly, in many cases, the fingerprint API

is used as one part of an authentication scheme. Upon first usage, apps have to provide

a single-factor or multi-factor user authentication system, since no cryptographic key is

created and stored by the app inside the TEE yet. On subsequent usages, the app

(and the corresponding backend) may require the user to touch the fingerprint sensor.

Some apps can be configured to require the user to touch the sensor every time the

app is opened and it connects to the remote backend. Others ask for this action before

performing any sensitive operation, such as a payment.

Typically, when the fingerprint functionality is enabled, the app will allow the use

of a fingerprint touch instead of inserting the account’s password. While this is con-

venient in term of usability, it has mixed security consequences. As a security benefit,

an attacker achieving “root” cannot steal the account password, since the user is not

asked to insert it. However, as we will explain in Section 4.5.2, even a non-root attacker

can potentially lure a user to touch the fingerprint sensor and, compared to phishing a

password, stealing a fingerprint touch is significantly easier. In fact, touching the finger-

print sensor is a common action, since it is used, for instance, very frequently to unlock

the phone. Therefore an attacker can just pretend to be the lock-screen without raising

much suspicion. Secondly, a fingerprint touch requires less user’s effort and time to be

performed and therefore is more likely to happen. Finally, an attacker does not need to

ask for a specific password, but just to generically touch the sensor.

128

Hardware-Assisted Authentication Chapter 4

B
yt

ec
od

e
S

S
A

 IR

Fe
at

ur
es

–
au
te
nt
ic
at
e

us
ag

e
–
on
A
ut
he
nt
ic
at
io
nS

uc
ce
de
d

us
ag

e
–

cr
yp

to
gr

ap
hi

c
ke

y
pr

op
er

tie
s

P
er

m
is

si
on

A

na
ly

si
s

IR
 g

en
er

at
io

n

C
al

l G
ra

ph

D
at

a-
Fl

ow

G
ra

phFe
at

ur
e

Ex
tr

ac
tio

n

A
nd

ro
id

A
pp

A
P

I u
sa

ge

an
al

ys
is

Pr
e-

Pr
oc

es
si

ng

- N
ot

 U
se

d
- W

ea
k

- D
ec

ry
pt

io
n

- S
Ig

n

A
pp

 C
la

ss
ifi

ca
tio

n

C
la

ss
ifi

er

F
ig

u
re

4.
1:

O
ve

rv
ie

w
of

th
e

d
ev

el
op

ed
st

at
ic

an
al

y
si

s
to

ol

129

Hardware-Assisted Authentication Chapter 4

4.5.2 Practicality and Impact of UI Attacks

As we mentioned earlier, a malicious app can show maliciously crafted messages or,

more in general, interfere with the device’s user interface to lure a legitimate user to

touch the fingerprint reader sensor. In particular, we mentioned how several existing

works [73, 74, 1] show the possibility to perform UI attacks, and that a very recent work,

dubbed Cloak & Dagger [75], can achieve almost complete compromise of the device.

In particular, this last work showed that apps installed from the Play Store are auto-

matically granted the SYSTEM ALERT WINDOW permission (which allows to create overlays

windows on top of any other) and that it is possible to lure the user to unknowingly

grant accessibility permissions to a malicious app through “clickjacking.”

These attacks are powerful, especially because they can be performed by any un-

privileged app (what we refer to as “non-root attacker”). However, we note that the

fingerprint API might be one of the few aspects that could, at least in principle, prevent

full compromise: a physical fingerprint “touch” cannot be spoof via UI-only attacks.

That being said, there are many attacks that one could perform. These attacks are

all instances of a confused deputy problem, and they are all possible due to one key

observation: no “Secure UI” is currently used by the fingerprint API, and the user does

not have any mechanism to establish with which app she is interacting with. As a very

practical example of these attacks, Zhang et al. [79] show how an attacker can create a

fake “screen lock” to lure the user to provide her fingerprint: the fingerprint, under the

hood, is actually “passed” to a security sensitive app in the background.

130

Hardware-Assisted Authentication Chapter 4

More in general, the lack of “secure UI” allows an attacker (independently from

the fingerprint usage scenarios described in Section 4.3) to lure the user to present her

fingerprint believing she is authenticating with app A or authorizing transaction X,

while the fingerprint is actually used to unlock keys for a different app B or to authorize

transaction Y .

These attacks are affected by practicality aspects. First of all, an attacker needs to

solve two issues:

1. Put the victim app in a state in which, once the fingerprint sensor is touched, an

unwanted malicious action happens.

2. Lure a legitimate user to touch the sensor.

Second, the attacker needs to steal a fingerprint touch every single time she wants to

perform the attack. However, this last challenge can be easily addressed: since the

fingerprint is often used to perform “screen unlock” and since the “screen unlock” action

is an action that a user is used to perform tens of times every day, it is straightforward

for an app to create a situation for which the user would provide a fingerprint.

From a technical standpoint, an attacker can exploit this by simulating that a device

got automatically locked (which, by default, happens after a few seconds of non-usage).

To achieve this, the attacker can show a fullscreen, black overlay on top of any existing

Activity.3 Moreover, by requiring the permission WRITE SETTINGS, the attacker can also

minimize the background light of the screen. At this point, the attacker can prevent

the device from automatically locking itself (by using the WakeLock API, requiring the

automatically-granted WAKE LOCK permission). In this scenario, a user will likely assume

that the device got automatically locked and try to unlock it by touching the fingerprint

sensor.
3An Activity is the standard “unit of interaction” in Android and loosely corresponds to a window

in a desktop environment.

131

Hardware-Assisted Authentication Chapter 4

As an attempt to defeat these UI attacks, a countermeasure is currently implemented

by the Android framework. Specifically, an app can only request the usage of the finger-

print sensor if it is displayed in the foreground. Unfortunately, in evaluating if an app

is in the foreground, the Android framework only evaluates its position in the Activity

stack. Since the Android framework does not deem screen overlays as part of the Activity

stack, an Activity will still be considered as in foreground, even when maliciously covered

by an overlay.

4.6 Automatic Analysis Tool

We have developed a tool to automatically analyze how an app uses the fingerprint

API. The tool takes an Android app as input and classifies its usage of the fingerprint API

into Weak , Decryption, and Sign usage, as defined in Section 4.3. We use the tool above

to perform the first systematic study on how Android applications use the fingerprint

sensor, pinpointing cases in which this API is incorrectly used. We believe app developers

and app market operators can also use this tool to automatically understand if there is

any issue in how an app uses the fingerprint API. Figure 4.1 provides an overview of the

developed tool.

4.6.1 Challenges and Design Choices

Our tool performs static analysis on an app’s bytecode. We choose static analysis

on bytecode to be able to perform our analysis without needing source code (which

is typically unavailable both to security researchers and market operators). Moreover,

many apps using the fingerprint API belong to the “finance” category. This makes very

difficult to automatically perform dynamic analysis on these apps, since we do not have

the required financial account information needed to get past the login stage. Even

132

Hardware-Assisted Authentication Chapter 4

approaches able to automatically register accounts while performing dynamic analysis,

such as AppsPlayground [41], cannot solve this problem by automatically creating bank

(or other financially related) accounts. This aspect also significantly complicates our

manual investigation of the results and our attempts to dynamically execute a given app.

One of the main challenges when analyzing recent real-world Android apps is the

amount of code these applications include (on average, the apps we have analyzed have

about 51,000 methods). This is often because apps include big libraries, which, even if

only marginally used, substantially increase the amount of code a static-analysis tool may

end up analyzing. Empirically, recent research [80] has shown that even relatively easy

data-flow analysis, such as flow-insensitive taint analysis, often ends up using unpractical

amounts of resources and time, when applied to an entire app. However, for the analysis

we are interested in, we only need to precisely characterize the usage of very specific API

methods. For these reasons, we adopted a more localized approach, which constructs

call graph and data-flow graphs starting from the APIs of interest, limited to the specific

parameters we are interested in.

4.6.2 Pre-processing

The first step of our analysis is to determine which apps potentially use the fingerprint

API. Since, to use the fingerprint hardware, an app has to require the USE FINGERPRINT

permission, our tool first checks whether a given app requires this permission by reading

its manifest file. Apps not requesting this permission cannot use the fingerprint API.

After this step, we use the Java static analysis framework SOOT [81] to obtain an

intermediate representation of the app’s bytecode. To simplify further data-flow analysis,

we choose the Shimple intermediate representation, which is in single static assignment

(SSA) form.

133

Hardware-Assisted Authentication Chapter 4

4.6.3 Call Graph Construction & Data Flow Analysis

Our analysis is based on two static analysis primitives: call graph generation and

data-flow graph analysis. The call graph represents method invocations among different

methods in the analyzed app. In building the call graph, we perform intra-procedural

type-inference [82] to determine the possible dynamic types of the object on which a

method is called. If this analysis fails, we over-approximate the possible dynamic types

as all the subclasses of its static type (including the static type itself).

Our call graph also considers some implicit control flow transitions introduced by the

Android framework [83]. In particular, when the onAuthenticationSucceeded callback

is invoked by the Android framework, typically developers call the postDelayed method,

by passing, as parameter, an instance of a specific inner-class, implementing the Runnable

interface. On this inner-class, the method run will be later called and executed in a

different thread. This is a common behavior in Android, since code dealing with UI

elements has to run in a different thread than code dealing with network operations, to

ensure app’s responsiveness.

Our tool handles these cases by identifying the possible dynamic types of the instance

passed to the postDelayed method. Then, it adds edges in the call graph between the

postDelayed method and the implementations of the run methods that can be possibly

called, according to the identified types (typically, just one).

To perform data-flow analysis, starting from a variable of interest V (e.g., a specific

parameter of an API call), we recursively follow the def-use chain to obtain an inter-

procedural backward slice. Moreover, when a field access is encountered, we continue the

analysis starting from all the instructions accessing it. As an output of this analysis, we

obtain a slice of instructions (encoded as a tree) in which each instruction uses variables

that may influence the value of V .

134

Hardware-Assisted Authentication Chapter 4

Table 4.2: Overview of the collected features

authenticate Null/NonNull

onAuthenticationSucceeded NoCrypto/Constant/Decrypt/Signature

Key Properties
DecryptionKey/SigningKey

UnlockedKey/LockedKey

4.6.4 Feature Extraction

At a high-level, our analysis extracts three kinds of features:

1. how the authenticate API is used;

2. which code is triggered when the onAuthenticationSucceeded callback is called;

3. the parameters used to create cryptographic keys.

Table 4.2 enumerates the features we extract to characterize these three aspects.

authenticate API Usage. For the authenticate API, for each occurrence of a call to

this method, our analysis generates a backward slice, starting from the parameter named

crypto. This parameter is used to specify the cryptographic key that is “unlocked”

whenever a legitimate user touches the fingerprint sensor. Then, by analyzing the gen-

erated slice, we check if the value of this parameter is NULL. In this case, it means that

the authenticate API will activate the fingerprint sensor, but no key will be unlocked

when the user touches it. We mark this case as Null, otherwise we mark it as NonNull.

onAuthenticationSucceeded Callback Usage. We analyze the code that is executed

when the onAuthenticationSucceeded callback is invoked, to determine if and how

cryptographic operations happen after the user touched the fingerprint sensor. Starting

from each occurrence of a method overriding onAuthenticationSucceeded, we start a

forward exploration of the call graph, looking for calls to specific cryptographic methods.

135

Hardware-Assisted Authentication Chapter 4

Specifically, if we encounter a call to the methods sign or update of the class

Signature, we mark this usage of onAuthenticationSucceeded as Signature, whereas

if we encounter a call to the methods doFinal or update of the class Cipher, we mark

it as Decrypt.

As a special case, if after the onAuthenticationSucceeded callback a decryption

operation is detected, but it is performed on a fixed, hardcoded string (as explained in

Section 4.3.2), we mark this case as Constant (instead of Decrypt). To determine this, we

generate a backward slice starting from the parameter specifying the decrypted content,

and we analyze it to determine if it results in a constant string.

In case we do not encounter any of the aforementioned cryptographic methods we

mark the usage of the onAuthenticationSucceeded callback as NoCrypto, since it shows

that no cryptographic operation is performed as a consequence of the user touching the

fingerprint sensor.

Cryptographic Key Properties. To determine the type of the used cryptographic

keys, we generate a backward slice starting from the purpose parameter of the

KeyGenParameterSpec.Builder constructor. In case we determine it to have the value

PURPOSE SIGN we mark the key as a SigningKey otherwise we mark it as a DecryptionKey.

We also verify if the setUserAuthenticationRequired method is invoked (by pass-

ing true for its required parameter). If this is the case, we mark the key as Locked,

otherwise, we mark it as Unlocked.

Other Features. To integrate the information collected by the features just

described, we also check if an app is using the getCertificateChain and

setAttestationChallenge APIs. While we do not use this information to classify how

an app uses the fingerprint API, we will use this information to study if apps use key

attestation (see Section 4.4.4 and Section 4.7.7).

136

Hardware-Assisted Authentication Chapter 4

4.6.5 App Classification

After collecting the aforementioned features, we use them to classify how the analyzed

app uses the fingerprint API. The rationale behind this classification rules is first to

identify cases in which the fingerprint API is not used (e.g., no fingerprint-related API

is called) or used in a Weak way (e.g., no cryptographic operation is performed). Then,

we analyze the properties of the used cryptographic keys and the cryptographic methods

called to determine whether to classify the app as Decryption or Sign.

First of all, we note that for some of the analyzed apps that request the

USE FINGERPRINT permission, we cannot identify any usage of the authenticate API or

the onAuthenticationSucceeded callback. We classify these apps, together with those

not requesting the USE FINGERPRINT permission, as “Not Used.”

Then, we classify an app as Weak if any of the following conditions are met:

1. We do not detect any key generation (i.e., the KeyGenParameterSpec.Builder API

is never used).

2. All the usages of the authenticate API are marked as Null. This corresponds to

the case in which no cryptographic key is unlocked as a consequence of the user

touching the fingerprint sensor.

3. All the usages of the onAuthenticationSucceeded callback are marked as

NoCrypto or Constant. This corresponds to the case in which no cryptographic

operation is performed after the user touched the sensor (or the only cryptographic

operation happening is performed on a constant value).

4. An Unlocked key is used. In fact, in this case, the used key is not locked, and

any root attacker can immediately use it, without having the user touching the

fingerprint sensor.

137

Hardware-Assisted Authentication Chapter 4

Table 4.3: Static analysis tool results summary

Total Apps Analysis Errors Not Used

501 5 (1.00%) 72 (14.37%)

Category Weak Decryption Sign

Detected apps 269 (53.69%) 146 (29.14%) 9 (1.80%)

Misclassifications 0/20 1/10 1/9

At this point, we know that some proper cryptographic operation happens after

the user touches the fingerprint sensor. To determine whether the app uses the fin-

gerprint API in a Decryption or in a Sign way, we use the following rule. We classify

an app as Sign if any key marked as SigningKey is generated and any usage of the

onAuthenticationSucceeded callback is marked as Signature. Otherwise, we classify

the app as Decryption.

4.7 Automatic Analysis Results

4.7.1 Evaluation Methodology

To determine the correctness of the classification of our tool, we employed the follow-

ing two-step methodology:

Driving the App to Ask for Fingerprint

In the first step of our evaluation, we manually drive the analyzed app to the point

where it starts communicating with the TEE for fingerprint-based authentication.

One significant challenge in this step is that most of the considered apps require

specific accounts to go beyond the initial login interface, and it is impractical to create

accounts for many such apps. This is because many of the apps we analyzed are mobile-

138

Hardware-Assisted Authentication Chapter 4

banking apps, for which it is not possible having an account without also being customers

of the connected bank. In other cases, the app’s backend requires financial information

such as Social Security Numbers or debit card numbers to create an account, which

further hindered our ability to interact with these apps.

Verify the Existence of Expected Weaknesses

Once we drive the analyzed app to start interacting with the TEE, we verify our

tool’s classification for this app by simulating a root attacker and see if the fingerprint-

based authentication is vulnerable to weaknesses of the corresponding class as predicted

in Section 4.4. For simulating a root attacker, we used the Xposed Framework [37], a

tool which allows us to easily modify apps’ and framework’s Java code at runtime.

In particular, if our tool classifies the app as using the Weak usage, our sim-

ulated attack modifies the behavior of the authenticate API to directly call the

onAuthenticationSucceeded callback. Furthermore, we deal with the case in which

the victim app invokes any cryptographic operation using a key stored inside the TEE.

In this case, the app would raise an exception, since this key has not been “unlocked.”

This scenario may occur in the case in which the result of the decryption is not used

(and therefore we classify the app as Weak), but still, a TEE-protected key is used to

decrypt a hardcoded string, as it happens, for instance, in the Google’s sample code [77].

We deal with this case, by masking the generated “User Not Authenticated” exception.

For apps classified as using the fingerprint API in a Decryption way, we first record the

outputs of decryption operations using TEE-protected keys (simulating a Root attacker).

Then, we modify the authenticate API as explained before and, additionally, we replay

the collected decryption outputs when necessary.

139

Hardware-Assisted Authentication Chapter 4

4.7.2 Dataset

We collected all the free apps classified as “Top” (i.e., most popular) in each category

of the Google Play Store. These apps were downloaded in February 2017. Additionally,

we added apps preinstalled on a Nexus 5X device running Android 7. In total, we created

a dataset of 30,459 apps. Among these apps, 501 (1.64%) declare the USE FINGERPRINT

permission and, therefore, can potentially use the fingerprint API. In the rest of this

section, we will focus on this subset of 501 apps.

4.7.3 Apps Classification

Table 4.3 summarizes the outputs of our tool. We ran our tool in a private cloud, and

for the analysis of each app we provided 4 virtual-cores, 16 GB of RAM and 1 hour time

limit. For the 501 apps, our tool needed on average 354 seconds (σ = 363) of computation

and used 6.13 GB (σ = 1.07) of RAM per app. In 5 cases (1.00%), our analysis did not

finished due to bugs in the SOOT framework or analysis timeout.

For 72 (14.37%) apps, although they ask for the USE FINGERPRINT permission, our tool

did not detect any usage of the fingerprint API. This result is not particularly surprising

since previous research has shown that apps tend to require more permissions than they

use [84]. To further verify this finding, we manually analyzed a random sample of 10 of

these apps. We both manually run them and perform tool-assisted reverse engineering.

For 7 of them, we could confirm that they do not use the fingerprint API, whereas for

the other 3 our tool was unable to detect its usage because these apps use native code

components to activate the fingerprint reader sensor, which our tool is unable to analyze.

For apps classified as Weak we took a random sample of 20 apps among those in

which we were able to dynamically reach the fingerprint interface. Our dynamic analysis

confirmed that they were all correctly classified (i.e., our simulated attack in Section 4.7.1

140

Hardware-Assisted Authentication Chapter 4

is successful). Among these 20 apps, 16 access a remote account or store secret data,

therefore a Weak usage of the fingerprint API is not appropriate (as explained in Sec-

tion 4.5.1).

For apps classified as Decryption we took a random sample of 10 apps and we con-

firmed that 9 were correctly classified (using, again, the simulated attack explained in

Section 4.7.1), whereas 1 was classified as Decryption while in reality is Weak .

Finally, about the 9 apps classified as Sign, we were able to dynamically reach the

fingerprint interface in one app and dynamic analysis confirmed the classification of this

app as correct. This app, called “True Key,” requires to sign an authentication token

during login and performs this operation with a TEE-protected private key, “unlocked”

only when the user touches the fingerprint reader sensor. To have a better evaluation,

we also extensively reverse engineer the other 8 samples classified as Sign. Our man-

ual analysis revealed that 7 of them have been classified correctly, whereas 1 has been

classified as Sign while being Decryption.

In summary, we manually analyzed (either by reproducing our attacks as explained

in Section 4.7.1 or by reverse engineering) 39 apps and we found that all the apps except

2 were classified correctly. In one case the misclassification is due to overapproximations

in the call graph. In the other, the app “signs” some data, but this data is constant,

since it is provided by the backend when the user logins the first time. For this reason,

the app falls into the Decryption category. In fact, an attacker can trivially replay the

result of this signing operation after it happened once. However, our tool was unable to

detect this scenario and, therefore, it classified the app as Sign.

Overall, results show how our tool is reasonably accurate in determining how an app

uses the fingerprint API. Moreover, the few misclassifications “overestimate” the security

of an app (classifying it as using the fingerprint API in a stronger way than in reality).

Therefore, we believe that our results, showing a low usage of the fingerprint API in the

141

Hardware-Assisted Authentication Chapter 4

Sign way and a high usage in the Weak way, are particularly worrisome and confirm our

intuition that apps generally do not use appropriately the fingerprint API. In the next

sections, we will provide concrete examples of these inappropriate usages.

4.7.4 Case Study: Unlocking “Unlocked” Keys

As explained in Section 4.1.3, a key is stored inside the TEE and “unlocked” by a

fingerprint touch only if the setUserAuthenticationRequired method is invoked (by

passing true for its required parameter) when the key is generated. On the contrary,

without calling this method, a generated key is always “unlocked,” regardless of the usage

of the fingerprint API.

Surprisingly, we found this aspect as a source of implementation errors. In par-

ticular, we looked for apps implementing proper cryptographic operations as a conse-

quence of the user touching the fingerprint sensor (i.e., calling the authenticate API

to “unlock” a key used to decrypt or sign some data), but not calling properly the

setUserAuthenticationRequired method. This indicates that the developers wanted

to have a key “unlocked” when the legitimate user touches the fingerprint sensor, but

forgot to “lock” the key in the first place.

To identify these apps, we checked for apps that

1. are classified as Weak by our tool;

2. do not call the setUserAuthenticationRequired method (or they call it specifying

false as its parameter);

3. if they had called the setUserAuthenticationRequired method properly they

would have been classified as Decryption or Sign.

142

Hardware-Assisted Authentication Chapter 4

Our tool identified 15 apps in this scenario and we were able to fully dynamically interact

with 4 of them, verifying their improper usage of the fingerprint API.

As an example, one of these applications allows a user to purchase items in an online

marketplace and requires the user to touch the fingerprint sensor during the checkout

procedure. The user’s password is stored encrypted by a supposedly TEE-secured key,

as is common when the fingerprint API is used in a Decryption way. During the check-

out, when the user touches the fingerprint sensor, this key is used to decrypt the user’s

password. However, we verified that the decryption key is not really “locked” since

the setUserAuthenticationRequired method is not called. Therefore, from a crypto-

graphic perspective, the use of the fingerprint API is useless. As a consequence, a root

attacker can easily bypass its usage.

4.7.5 Case Study: Google Play Store

Among the apps our tool classified as Weak , one is the “Google Play Store” app.

This app is present on every Google-branded phone, and it handles the purchase of

apps, media, and in-app purchases and can be setup to “protect” these purchases by a

fingerprint touch. In this case, the user would be required to touch the sensor before

every purchase. Since this app can directly spend user’s money and interacts with a

remote server, the most appropriate usage of the fingerprint API would be Sign, as also

stated and exemplified in the guidelines from Google itself.

However, our tool classified the Google Play Store app as using the fingerprint API in

a Weak way and our evaluation (as described in Section 4.7.1) confirmed this result. In

fact, this app calls the authenticate API with a NULL value for its crypto parameter,

and, therefore, no key is “unlocked” and no sign operation certifies that the purchase

happened as a consequence of the user touching the fingerprint reader sensor.

143

Hardware-Assisted Authentication Chapter 4

On July 2017, we contacted the Android’s security team. The team promptly replied

and forwarded our report to the Google Play’s team, which is now aware of the issue and

investigating it.

4.7.6 Case Study: Square Cash

Among the apps our tool classified as Decryption, one is the “Square Cash” app.

This app is a personal payment app, which allows users to transfer money to and from

connected debit cards and bank accounts.

The app can be configured to require the user to touch the fingerprint sensor before

any transaction. The most appropriate usage of the fingerprint API in this case would be

to use it to sign these transactions. However, Whorlwind, the open source library that

Square (and other apps in our dataset) uses to implement the fingerprint functionality,

implements a weaker scheme. In particular, this library is used to decrypt a locally stored

authentication token. For this reason, by simulating an attacker with Root capabilities,

we were able to reuse the same decrypted token to perform different payments.

We contacted the developers of the Whorlwind library in August 2017, detailing our

findings and why we think that a Sign usage of the fingerprint API is more appropriate

in this case.

4.7.7 Case Study: Key Attestation

We mentioned in Section 4.4.4 that, starting from Android 7, a new mechanism

has been implemented to allow developers to “attest” public keys, ensuring they

have been generated from “trusted” TEEs. According to the API, a properly ver-

144

Hardware-Assisted Authentication Chapter 4

ified certificate chain, “rooted at a trustworthy CA key,” is only provided if the

setAttestationChallenge API, with a non-NULL value for attestationChallenge, is

called.

Conceptually, apps using both the fingerprint API in a Sign way and key attestation

should be categorized in a different group in Table 4.3. However, in our dataset, our tool

found no app calling this API. This indicates that every app in our dataset is vulnerable

to a Root-at-Bootstrap attacker, who can interfere with the initial key exchange process

between the app and its remote backend.

4.8 Fingerprint API Improvements

We will now propose some changes to the current fingerprint API, which would signif-

icantly improve its security. In this section, we will assume that apps use the fingerprint

API in a Sign way, which, as previously shown in Section 4.4, it is the right way to

provide stronger security. However, even with proper usage, this API currently has some

shortcomings, which we will address here.

4.8.1 Trusted-UI

The biggest limitations of the current API and its implementation are:

1. Users have no trusted way to understand what they are signing by touching the

fingerprint sensor.

2. A malicious application (with or without “root” privileges) can interfere with what

is shown to the user when asked to touch the sensor.

145

Hardware-Assisted Authentication Chapter 4

To solve both issues, we propose a mechanism in which the TEE can directly show to

the user the content of a sign operation performed by a fingerprint-unlocked key. This

mechanism is based on the known idea of having a trusted video path directly between

the TEE and the device’s screen. TEE-enforced video paths are already implemented

in some Android devices (for DRM purposes) [85] and academia explored its use for

authentication purposes [86]. However, differently from previous solutions, what we

propose is also based on a trusted input which is the fingerprint reader sensor, able to

directly communicate with the TEE.

We propose to change the current authenticate method to also take as an input a

message string parameter, for instance “Do you want to authorize a payment of $1,000

to Friend?” This message would be shown on a TEE-enforced Secure UI dialog window,

alongside with a standardized graphic UI asking the user to touch the fingerprint sensor.

Untrusted code, outside the TEE, cannot interfere with the visualization of this window,

due to the usage of a secure video path. Specifically, untrusted code cannot read the

content of this dialog window nor modify it.

When the sensor is touched by a legitimate user, a signature of this string (generated

using the private key “unlocked,” specified when the authenticate method is called) is

available using a method called getSignedMessage. The remote backend can then verify

that this message has been signed correctly and, therefore, be sure of what the user has

authorized by touching the sensor. In other words, the remote backend can verify the

“user intention,” which is signed by the TEE.

The security of this system is guaranteed by the fact that both the code for handling

the sign operation and the code for visualizing the message are within the TEE. Therefore,

an attacker, even having root privileges, cannot decouple what is being shown to the user

with what is being signed by the fingerprint-unlocked key. An attacker can still interfere

with the communication between the backend, the app, and the TEE. However, this will

146

Hardware-Assisted Authentication Chapter 4

be detectable by the user. In fact, suppose that the attacker changes the request the

app sends to the backend from “Pay Friend $1,000” to “Pay Attacker $1,000.” As a

consequence the backend will send the following message to be signed by the TEE: “Do

you want to authorize a payment of $1,000 to Attacker?”. In this case, the user will be

able to notice that the message does not correspond to her intention.

Another issue is how to prevent an attacker from showing a malicious dialog window

that resembles the window shown by the TEE when asking the user to touch the finger-

print sensor. Without requiring extra hardware (e.g., an LED would be turned on when

“secure output” is displayed), we can exploit the fingerprint sensor itself to mitigate this

attack. Since the fingerprint sensor can communicate directly and exclusively with the

TEE, we propose that the TEE shows a hard-to-spoof visual clue (e.g., a loading bar)

while the user touches the sensor.

Attackers would be unable to show this bar at the right time, since, outside the

TEE, it is unknown when the user touched the sensor. Therefore, the absence (or the

improper behavior) of this visual element would indicate to the user that the shown

dialog window is not legitimate. Another possible solution, although less practical since

it requires a setup phase, would be to use a secret (i.e., only know by the user and the

TEE) personalized security indicator. This mechanism has been shown as an effective

defensive mechanism in the Android ecosystem [1].

It is important to notice, however, that even without this defense, an attacker would

not be able to lure users to sign a malicious transaction, but only to pretend that a

transaction happened.

147

Hardware-Assisted Authentication Chapter 4

4.8.2 Other UI Changes

While a solution based on hardware-enforced secure-UI is the best way to address

current API shortcomings, we understand that its adoption and deployment may be

problematic because it requires non-trivial modifications to the code running inside the

TEE and the coordination between this code, the Android operating system, and the

display hardware. Therefore, we also propose easier-to-implement modifications to the

current Android user-level framework. While attackers having “root” privileges can triv-

ially bypass these mechanisms, they are still effective against a non-root attacker.

In particular, Android should automatically dismiss overlay windows on top of in-

terfaces asking the user to touch the fingerprint sensor. A similar solution is already

applied in the latest Android versions to protect “security sensitive” interfaces, such as

the one used to grant/remove apps’ permissions. In addition, the name (and the icon) of

the app asking the user’s touch should be clearly shown. To implement both solutions,

a standard interface, which apps cannot modify except showing some text on it, should

be shown when the authenticate API is called. In the current implementation, custom

interfaces are possible, but uncommon. In fact, most of the apps show very similar inter-

faces (Android guidelines precisely define how this dialog should appear [87]), thus they

will not need to significantly change their UI.

4.8.3 Better Attestation Mechanisms

As we previously mentioned, a key attestation mechanism has been implemented,

starting from Android 7. However, in its current implementation state, this mechanism

has several weaknesses.

148

Hardware-Assisted Authentication Chapter 4

First of all, the API defines two possible “levels” for the attestation “software” and

“hardware,” where only the latter guarantees that a key has been generated by the de-

vice’s TEE. The level of attestation can be retrieved by parsing the attestation certificate

associated with a generated public key. However, in the devices we have tried (Nexus 5X

and Pixel XL, running Android 7), the generated keys are always “software” attested.

More fundamentally, while analyzing the generated certificates, we did not find any

indication of the specific instance of the device generating a key. As also pointed out by

the paper presenting the Security Key protocol [58], there is a trade-off between user’s

privacy and security of the protocol. Having a system that can identify the specific

device generating a key would allow remote backends to detect suspicious situations in

which the key associated with a specific user changes. Moreover, it would hinder the

ability of an attacker to “proxy” key creation to an attacker-controlled TEE, since too

many keys (used by many different users) generated by the same device would be easily

detected as suspicious. However, this would violate user’s privacy, allowing unique user’s

identification among different apps. Therefore, we recommend, as in the Security Key

protocol, the implementation of a batch attestation scheme, in which a set of devices,

using the same hardware (and potentially affected by the same security issues), shares

the same attestation key.

Finally, we note that the current documentation about how to verify key attestation

certificates is insufficient and the only official sample code [88] does not cover all the

possible cases that need to be handled while parsing this type of certificates.

149

Hardware-Assisted Authentication Chapter 4

4.9 Limitations and Future Work

This work focuses on the most common fingerprint API in Android, used by Google’s

devices. However, Samsung’s and Huawei’s devices offer their custom fingerprint hard-

ware and a different API. Moreover, outside of the Android ecosystem, similar systems

are offered on Apple’s devices [89, 90]. Studying similarities and differences among these

APIs and how apps that want to be compatible with multiple devices handle this frag-

mentation is the main future direction of this work.

Our static analysis is based on call graph generation and data-flow graph analysis.

This approach has been proved effective by previous research [91] in determining how

specific APIs are used in Android. However, this approach is unable to analyze reflective

code, dynamically loaded, or native components. Regarding the first two aspects, we do

not expect them to be a significant source of imprecision when analyzing non-malicious

code and we did not find any sample misclassified because of these reasons. We consider

the analysis of components written in native code outside the scope of this chapter.

Empirically, we found that the usage of native code prevented us from analyzing three

apps (among those manually verified), as explained in Section 4.7.3.

More fundamentally, the implemented static analysis can indicate the way in which

an app uses locally the fingerprint API, but it cannot fully evaluate how this aspect

affects the overall authentication mechanism implemented by the app and its backend.

This analysis usually requires probing the remote backend (when, as it is typically, the

backend’s code is not available) to determine if it properly checks user’s authentication.

Merging our tool with more general remote protocol analyzers (as, for instance, the one

proposed by Zuo et al. [92]) represents another interesting future direction.

150

Hardware-Assisted Authentication Chapter 4

4.10 Conclusions

This work provides the first systematic study on the usage of the fingerprint API

in Android. We show that its usage is not well understood and often misused by apps’

developers. In particular, our study shows that several apps, including popular ones such

as Google Play Store and Square Cash, do not use this API in the most secure way. We

believe that the fingerprint API could significantly improve the security and the usability

of existing authentication and authorizations schemes, especially because the hardware it

needs is commonly available in modern mobile devices. We hope this work will highlight

current weaknesses and push Google to provide better documentation and to address the

remaining problematic issues.

151

Chapter 5

Related Work

5.1 Attacks to Mobile User-Interfaces

As mentioned in the introduction of Chapter 2, previous papers have already shed

some light on the problem of GUI confusion attacks in Android. In particular, [6] de-

scribes tapjacking attacks in general, whereas [7] focuses on tapjacking attacks against

WebViews (graphical elements used in Android to display Web content). Felt et al. [8]

focus on phishing attacks on mobile devices deriving from control transfers (compara-

ble to the “App Switching” attacks we described), whereas Chen et al. [9] describe a

technique to infer the UI state from an unprivileged app and present attack examples.

Our work generalizes these previously-discovered techniques by systematizing existing

exploits and introducing additional attack vectors. We also confirmed the effectiveness

of these attacks through a user study. More importantly, we additionally proposed two

general defense mechanisms and evaluated their effectiveness.

152

Related Work Chapter 5

Fernandes et al. present a GUI defense focusing on keyboard input in [12]: the “Au-

thAuth” system augments the system keyboard by presenting a user-defined image and

the app name and icon. Our proposed defense system uses the same “UI-user shared

secret” mechanism: in both cases, users must first choose an image that will be known

only by the OS and the user, making it unspoofable for an attacking app.

However, our works significantly differ in how this mechanism is used and what is

presented to the user. For instance, as we have shown before (e.g., see Figure 2.4),

app names and icons are not valid or reliable roots of trust, as they are easy to spoof.

Apps with similar-looking names and icons are commonly present in Android markets,

and fake apps with the same name and icon can be side-loaded on the device. Our work,

instead, establishes a root of trust to the author of the app and extends the covered attack

surface by considering more attack scenarios and methods. In particular, we opted to

secure all the user interactions instead of focusing only on the keyboard, because users

interact with apps in a variety of ways. For instance, some payment apps (e.g., Google

Wallet) use custom PIN-entry forms, while others get sensitive input such as health-

related information through multiple-choice buttons or other touch-friendly methods.

Roesner et al. [93] studied the problem of embedded user interfaces in Android and

its security implications. Specifically, they focus on the common practice of embedding

in an app’s graphical elements, created by included libraries. The problem they solve is

related and complementary to the one we focus on. Specifically, they focus on how users

interact with different elements within the same app, whereas we focus on how users

interact with different apps.

Felt et al. performed a usability study to evaluate how users understand permission

information shown during the installation process of an app [94]. They showed that cur-

rent permission warnings are not helpful for most users and presented recommendations

for improving user attention. Possible modifications to how permissions are displayed to

153

Related Work Chapter 5

users and enforced have also been studied in Aurasium [95]. Our work has in common

with these the fact that it proposes a set of modifications to give users more information

on the current status of the system, although we address a different threat.

Many studies investigated how to show security-related information and error mes-

sages in browsers, both from a general prospective [96, 97, 98] and specifically for

HTTPS [99, 100, 101, 102, 103]. Akhawe et al. [103] showed that proper HTTPS se-

curity warning messages are effective in preventing users from interacting with malicious

websites. The knowledge presented by these works has been used as a baseline for our

proposed defense mechanism. It should be noted, however, that other studies have shown

that indicators are not always effective. In fact, over the years, the situation has signif-

icantly improved in browsers: compare, for instance, the almost-hidden yellow lock on

the status bar of Internet Explorer 6 from [102] with Figure 2.1. We believe that our

solution may also have benefited from the EV-style presentation of a name in addition to

a lock and the consequent increase in screen area. In general, effectively communicating

the full security status of user interactions is an open problem.

Phishing protection has been extensively studied in a web browser context (e.g.,

in [104, 105, 106]) and is commonly implemented using, for example, blacklists such

as Google’s SafeBrowsing [107]. Our work is complementary to these approaches and

explores GUI confusion attacks that are not possible in web browsers.

In addition, the problem of presenting a trustworthy GUI has been studied and im-

plemented in desktop operating systems, either by using a special key combination [108]

or decorations around windows [109]. Given the limited amount of screen space and con-

trols, applying these solutions in mobile devices would be impossible in an unobtrusive

way.

154

Related Work Chapter 5

Zhang et al. [79] show how UI attacks were extremely easy in Samsung devices (Sam-

sung Galaxy S5 and S6) running Android 5. Specifically, these attacks were possible

because, after a legitimate user touched the fingerprint reader sensor, a malicious app

could use fingerprint-protected cryptographic keys generated by other apps. In addition,

they show how in some devices it was possible to steal raw fingerprint information. In

the work presented in Chapter 4, we focus primarily on the newer Google’s fingerprint

API (released with Android 6), in which each app utilizes app-specific keys.

Finally, a recent work shows how redressing attacks can even lead to complete com-

promise of the device UI [75], since an app can use these attacks to stealthy obtain

“accessibility” permission and take full control of the user’s input and the display’s out-

put.

5.2 Authentication-Related Vulnerabilities in Mo-

bile Devices

Zhang et al. explore the issue of uninstallation residue, where uninstalling an app

does not correctly clean up all data and references in the system, creating an opportunity

for an attacker to elevate their privileges and steal sensitive information [110]. While

the detection system we explained in Chapter 3 uses uninstallation of apps to trigger

a removal of app-private data, the vulnerabilities targeted in this work and ours are

very different. In fact, the system we described in Section 3.3 detects authentication

vulnerabilities that involve the usage of both device identifiers and files in public locations.

The paper entitled Mayhem in the Push Clouds [111] explores the related issue of push

messaging platforms, which are commonly used by apps to communicate asynchronously

with their backends. The paper found that authentication tokens for these services are

155

Related Work Chapter 5

often handled insecurely, especially when sent using Android’s Intents. Our work focuses

on what can happen when these tokens are created using device-public information, or

are in turn stored as device-public information.

Chen et al., in OAuth Demystified for Mobile Application Developers [112], explore

the usage of OAuth-like mechanisms for authentication. Their work included a manual

study of 149 applications using OAuth and found that 89 used it incorrectly. Moreover,

Wang et al. investigate OAuth misuse from a different angle in their paper Explicating

SDKs [113], which examines the way applications use authentication and authorization

SDKs from companies such as Facebook and Microsoft. A related, but distinct, vul-

nerability can occur in improperly implemented services using OAuth, which implicitly

trust responses from identity providers without verification [114]. In contrast to web

platforms, in mobile apps, these responses originate from the user being authenticated,

meaning they can be tampered with, allowing an attacker to authenticate as the victim

without their private credentials.

As we do in our work, Liu et al. [115] studies how apps unsafely use public storage.

However, their work focuses on how the public storage is used to store sensitive informa-

tion (such as the user’s contact list), whereas we focus on how the public storage is used

to store information that, together with device’s identifiers, is used to authenticate with

remote backends. Similarly, a work by Bai et al. [116] studies how a specific class of apps

(backup tools) leaks information in publicly accessible files in the external storage. How-

ever, the apps studied by this work require either root or shell privileges, not obtainable

by normal apps under the threat model we considered in Chapter 3 (non-compromised

operating system).

Zuo et al. [92] developed a system, named AutoForge, to automatically find au-

thentication vulnerabilities revolving around user-private information. Specifically, they

focused on detecting apps’ backends vulnerable to password brute-forcing, leaked user-

156

Related Work Chapter 5

name and password probing, and Facebook access-token hijacking. We consider this

work as complementary to ours. In fact, their work studies how apps’ backend behaves

when probed with supposedly-secret data, such as usernames, passwords, and Facebook

authentication tokens. Conversely, our work focuses on an entire class of authentication

schemes that do not rely on this supposedly-secret data.

A paper by Mulliner et al. [50] looks directly at the issue of SMS-based one-time

passwords. They explore various layers of the problem, including issues of wireless in-

terception, and smartphone Trojans, similar to our “ID Leaker.” While their work was

primarily motivated by the use of mobile Transaction Authorization Numbers in the

banking industry, this same idea has also spread to most areas of the mobile world that

require verification of a user’s phone number, as we explore in our study. SMS authenti-

cation is further investigated by Schrittwieser et al. [117]. In this work, authors manually

analyze a selection of messaging apps, verifying their security properties and finding

different vulnerabilities in them.

The intrinsic weakness of SMS-based authentication has been recently pointed out.

For instance, security researchers have shown that, by exploiting vulnerabilities of the

SS7 network used by telecom company to route phone calls and SMS, it is possible

for an attacker to intercept SMS and steal authentication codes [118]. Moreover, state-

sponsored attackers could easily interfere with local telecom companies to intercept these

authentication messages [70]. For this reason, the latest security guidelines advise against

the use of SMS as a two-factor authentication method [119]. It is important to notice

that the vulnerabilities we found in popular messaging apps (see Section 3.5.1) were not

due to the usage of SMS content for authentication, but a consequence of the usage of

publicly accessible files and device’s identifiers to authenticate their users.

157

Related Work Chapter 5

A few other works focus on aspects concerning the security of the fingerprint hard-

ware sensor and the storage of fingerprint data [120, 121]. In the work presented in

Chapter 4 we expand and generalize findings of these previous works and, in addition,

we systematically study how apps use the fingerprint API and how this aspect affects

the overall security of an app’s authentication scheme.

There is a number of works related to two-factor authentication and authentication

in mobile systems. Lang et al. [58] describe “Security Keys,” second-factor devices that

protect users against phishing and man-in-the-middle attacks. They also discuss the

deployment of this technology to the Chrome browser and Google online services. In our

work, we show how the fingerprint API could potentially offer the same or better security

properties, but some shortcomings in its implementation and in how apps use it prevent

this from happening.

One-Time Passwords (OTPs) are a (weaker) alternative to Security Keys.

TrustOTP [86] shows how smartphones can act as secure OTP tokens. Dmitrienko

et al. [68] highlight weaknesses in the design and adoption of two-factor authentica-

tion protocols and mechanisms. In particular, they show how an attacker can mount

cross-device attacks and bypass 2FA mechanisms such as SMS-based TANs (Transaction

Authentication Numbers) used by banks, or login verification systems such as Google,

Twitter, and Facebook. Chen et al. [122] discuss different OAuth implementations and

their adoption by mobile applications.

5.3 Automated Analysis of Mobile Applications

Rastogi et al. proposed AppsPlayground [41], a dynamic analysis framework aimed

at maximizing code coverage of dynamic analysis. Other works with similar goals are

Brahmastra by Bhoraskar et al. [123] and DynoDroid by Machiry et al. [124]. The vul-

158

Related Work Chapter 5

nerability detection system described in Chapter 3 utilizes similar techniques to interact

with apps, however, our goal is different, since we do not aim to maximize code coverage

but to trigger the authentication mechanisms in a deterministic manner.

Different tools have been proposed to deterministically record and playback input

events on Android: RERAN [125], MOSAIC [126], MobiPlay [127], and VALERA [128].

The usage of these tools as a part of our dynamic-analysis based vulnerability detec-

tion system constitutes an interesting future direction, since they could remove non-

deterministic behaviors which currently hinder our analysis. However, in their current

state, these tools do not completely solve the problem. For instance, RERAN, MOSAIC,

and MobiPlay do not deterministically replay network traffic, whereas in our experiments

we determined that most of the non-deterministic behaviors are due to discrepancies or

delays in the network traffic between an app and its backend. The approach of VALERA

can deal with network traffic, however, it cannot replay user’s interaction in case of ap-

plications using customized rendering, like many of the ones we detected as vulnerable

(see Section 3.5.2). Unfortunately, most of the apps we correctly detected as vulnerable

actually use customized interfaces and heavily interact with online backends.

Several works focus on the automatic detection of classes of vulnerabilities in Android

apps. Previous work focused on detecting over-privileged apps [129], component-hijacking

vulnerabilities [130], vulnerable content providers [131], permission leaking [132], and

vulnerabilities related to the unsafe usage of crypto-related APIs [91, 92], SSL connec-

tions [133], and dynamic code loading [134]. Other recent works show how some apps

implement vulnerable custom authentication schemes (trying to minimize users’ effort

during login) [2] and how apps often use payment libraries insecurely [135]. Acar et al.

provide an overview of the different security mechanisms implemented in Android and

the improvements suggested by academia [136].

159

Chapter 6

Conclusions and Future Directions

In this thesis, I presented my studies on the current mobile ecosystem, how its components

trust each other, and how an attacker can exploit these trust relationships.

It is important to notice that during my studies, some countermeasures to the

identified security issues have been implemented in Android, in some cases with so-

lutions similar to what we proposed. For instance, the behavior of the Android UI

has been significantly changed over the years, progressively constraining how an app

can control the device’s UI, and giving more possibility to the user to limit app’s

capabilities.[137, 138, 139, 140]

More fundamentally, newer Android versions include mechanisms to ensure that an

attacker cannot hinder user authentication, even when the standard, untrusted, operating

system has been compromised. These recent additions constitute a radical change in the

trust relationships between apps, remote backends, the operating system, and Trusted

Execution Environments. We discussed some of these mechanisms in Chapter 4, but

others have been proposed, and some of them will be implemented in the upcoming

Android version (“Android P”)[141, 142]. For instance, a secure UI mechanism, similar

to what proposed in Section 4.8.1, will be available in this upcoming version.

160

While these new security mechanisms undoubtedly improve the security of the An-

droid operating system, at this stage, it is unclear how devices’ manufacturers will im-

plement them and if apps’ developers will use them correctly. Therefore, the primary

future direction of this work will be to study if and how these mechanisms will be used,

identifying common developers’ mistakes and proposing modifications to the APIs used

to control them, to ease their adoption.

161

Bibliography

[1] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and G. Vigna,
What the App is That? Deception and Countermeasures in the Android User
Interface, in Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2015.

[2] A. Bianchi, E. Gustafson, Y. Fratantonio, C. Kruegel, and G. Vigna, Exploitation
and Mitigation of Authentication Schemes Based on Device-Public Information, in
Proceedings of the Annual Computer Security Applications Conference (ACSAC),
2017.

[3] A. Bianchi, Y. Fratantonio, A. Machiry, C. Kruegel, G. Vigna, S. P. H. Chung,
and W. Lee, Broken fingers: On the usage of the fingerprint api in android, in
Proceedings of the Annual Network & Distributed System Security Symposium
(NDSS), 2018.

[4] comScore, “The U.S. Mobile App Report.”
http://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/

The-US-Mobile-App-Report, 2014.

[5] ESET, “Trends for 2013.” http://www.eset.com/us/resources/white-papers/

Trends_for_2013_preview.pdf.

[6] M. Niemietz and J. Schwenk, UI Redressing Attacks on Android Devices, Black
Hat Abu Dhabi (2012).

[7] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du, Touchjacking Attacks on Web
in Android, iOS, and Windows Phone, in Proceedings of the 5th International
Conference on Foundations and Practice of Security (FPS), (Berlin, Heidelberg),
pp. 227–243, Springer-Verlag, 2012.

[8] A. P. Felt and D. Wagner, Phishing on Mobile Devices, in Proceedings of the
IEEE Workshop on Web 2.0 Security & Privacy (W2SP), 2011.

[9] Q. A. Chen, Z. Qian, and Z. M. Mao, Peeking into Your App Without Actually
Seeing It: UI State Inference and Novel Android Attacks, in Proceedings of the
23rd USENIX Security Symposium, (Berkeley, CA, USA), pp. 1037–1052,
USENIX Association, 2014.

162

http://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report
http://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report
http://www.eset.com/us/resources/white-papers/Trends_for_2013_preview.pdf
http://www.eset.com/us/resources/white-papers/Trends_for_2013_preview.pdf

[10] Bank of America, “SiteKey Security.” https://www.bankofamerica.com/

privacy/online-mobile-banking-privacy/sitekey.go.

[11] Yahoo, “Yahoo Personalized Sign-In Seal.” https://protect.login.yahoo.com.

[12] E. Fernandes, Q. A. Chen, G. Essl, J. A. Halderman, Z. M. Mao, and A. Prakash,
“TIVOs: Trusted Visual I/O Paths for Android.” University of Michigan CSE
Technical Report CSE-TR-586-14, 2014.

[13] TrendLabs, “Tapjacking: An Untapped Threat in Android.”
http://blog.trendmicro.com/trendlabs-security-intelligence/

tapjacking-an-untapped-threat-in-android/, December, 2012.

[14] TrendLabs, “Bypassing Android Permissions: What You Need to Know.”
http://blog.trendmicro.com/trendlabs-security-intelligence/

bypassing-android-permissions-what-you-need-to-know/, November, 2012.

[15] S. Jana and V. Shmatikov, Memento: Learning Secrets from Process Footprints,
in Proceedings of the IEEE Symposium on Security and Privacy (SP),
pp. 143–157, May, 2012.

[16] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, Juxtapp: A Scalable
System for Detecting Code Reuse Among Android Applications, in Proceedings of
the 9th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), (Berlin, Heidelberg), pp. 62–81,
Springer-Verlag, 2012.

[17] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, Detecting Repackaged Smartphone
Applications in Third-party Android Marketplaces, in Proceedings of the Second
ACM Conference on Data and Application Security and Privacy (CODASPY),
(New York, NY, USA), pp. 317–326, ACM, 2012.

[18] W. Zhou, X. Zhang, and X. Jiang, AppInk: Watermarking Android Apps for
Repackaging Deterrence, in Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security (ASIA CCS), (New York,
NY, USA), pp. 1–12, ACM, 2013.

[19] P. De Ryck, N. Nikiforakis, L. Desmet, and W. Joosen, TabShots: Client-side
Detection of Tabnabbing Attacks, in Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security (ASIA
CCS), (New York, NY, USA), pp. 447–456, ACM, 2013.

[20] Google, “Using Immersive Full-Screen Mode.”
https://developer.android.com/training/system-ui/immersive.html.

163

https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/sitekey.go
https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/sitekey.go
https://protect.login.yahoo.com
http://blog.trendmicro.com/trendlabs-security-intelligence/tapjacking-an-untapped-threat-in-android/
http://blog.trendmicro.com/trendlabs-security-intelligence/tapjacking-an-untapped-threat-in-android/
http://blog.trendmicro.com/trendlabs-security-intelligence/bypassing-android-permissions-what-you-need-to-know/
http://blog.trendmicro.com/trendlabs-security-intelligence/bypassing-android-permissions-what-you-need-to-know/
https://developer.android.com/training/system-ui/immersive.html

[21] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, An Empirical Study of
Cryptographic Misuse in Android Applications, in Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security (CCS), (New
York, NY, USA), pp. 73–84, ACM, 2013.

[22] A. Desnos and G. Gueguen, Android: From reversing to decompilation, Black Hat
Abu Dhabi (2011).

[23] M. Weiser, Program slicing, in Proceedings of the 5th international conference on
Software engineering, pp. 439–449, IEEE Press, 1981.

[24] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, WHYPER: Towards
Automating Risk Assessment of Mobile Applications, in Proceedings of the 22nd
USENIX Security Symposium, (Berkeley, CA, USA), pp. 527–542, USENIX
Association, 2013.

[25] Y. Zhou and X. Jiang, Dissecting Android Malware: Characterization and
Evolution, in Proceedings of the IEEE Symposium on Security and Privacy (SP),
pp. 95–109, May, 2012.

[26] R. Unuchek, “The Android Trojan Svpeng Now Capable of Mobile Phishing.”
http://securelist.com/blog/research/57301/

the-android-trojan-svpeng-now-capable-of-mobile-phishing/, November,
2013.

[27] CA/Browser Forum, “Guidelines For The Issuance And Management Of
Extended Validation Certificates.”
https://cabforum.org/wp-content/uploads/Guidelines_v1_4_3.pdf, 2013.

[28] Google, “Featured, Staff Picks, Collections, and Badges.” https://developer.

android.com/distribute/googleplay/about.html#featured-staff-picks.

[29] J. Clark and P. van Oorschot, SoK: SSL and HTTPS: Revisiting Past Challenges
and Evaluating Certificate Trust Model Enhancements, in Proceedings of the IEEE
Symposium on Security and Privacy (SP), pp. 511–525, May, 2013.

[30] A. Kittur, E. H. Chi, and B. Suh, Crowdsourcing User Studies with Mechanical
Turk, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, (New York, NY, USA), pp. 453–456, ACM, 2008.

[31] StatCounter, “Operating system market share worldwide – may 2017.”
http://gs.statcounter.com/os-market-share#monthly-201705-201705-bar,
2017.

[32] Google, “AccountManager.” https://developer.android.com/reference/

android/accounts/AccountManager.html, 2016.

164

http://securelist.com/blog/research/57301/the-android-trojan-svpeng-now-capable-of-mobile-phishing/
http://securelist.com/blog/research/57301/the-android-trojan-svpeng-now-capable-of-mobile-phishing/
https://cabforum.org/wp-content/uploads/Guidelines_v1_4_3.pdf
https://developer.android.com/distribute/googleplay/about.html#featured-staff-picks
https://developer.android.com/distribute/googleplay/about.html#featured-staff-picks
http://gs.statcounter.com/os-market-share#monthly-201705-201705-bar
https://developer.android.com/reference/android/accounts/AccountManager.html
https://developer.android.com/reference/android/accounts/AccountManager.html

[33] Google, “Advertising ID.” https://support.google.com/googleplay/

android-developer/answer/6048248?hl=en, 2016.

[34] Google, “Google Play Developer Program Policies.”
https://play.google.com/about/developer-content-policy.html, 2016.

[35] S. Son, D. Kim, and V. Shmatikov, What Mobile Ads Know About Mobile Users,
in Proceedings of the 22nd Annual Network & Distributed System Security
Symposium (NDSS), 2016.

[36] Google, “Using the External Storage.” https://developer.android.com/

guide/topics/data/data-storage.html#filesExternal, 2017.

[37] “Xposed Installer.”
http://repo.xposed.info/module/de.robv.android.xposed.installer,
2017.

[38] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C. Kruegel,
and G. Vigna, Obfuscation-Resilient Privacy Leak Detection for Mobile Apps
Through Differential Analysis, in Proceedings of the 24th Network & Distributed
System Security Symposium (NDSS), February, 2017.

[39] Google, “Testing Support Library.”
https://developer.android.com/tools/help/uiautomator/, 2016.

[40] X. Cong, “uiautomator.” https://github.com/xiaocong/uiautomator, 2015.

[41] V. Rastogi, Y. Chen, and W. Enck, AppsPlayground: Automatic Security
Analysis of Smartphone Applications, in Proceedings of the ACM Conference on
Data and Application Security and Privacy (CODASPY), 2013.

[42] I. A. Bureau, “Ad Unit Guidelines.”
http://www.iab.net/guidelines/508676/508767/ad_unit, 2015.

[43] J. Buchner, “Image Hash library.”
https://github.com/JohannesBuchner/imagehash, 2015.

[44] Google, “Platform Versions.”
https://web.archive.org/web/20160131030000/https:

//developer.android.com/about/dashboards/index.html, 2016.

[45] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. Gunter, Free for All!
Assessing User Data Exposure to Advertising Libraries on Android, in Proceedings
of the 23rd Network & Distributed System Security Symposium (NDSS), 2016.

[46] Google, “Implementing In-app Billing.” https:

//developer.android.com/google/play/billing/billing_integrate.html,
2016.

165

https://support.google.com/googleplay/android-developer/answer/6048248?hl=en
https://support.google.com/googleplay/android-developer/answer/6048248?hl=en
https://play.google.com/about/developer-content-policy.html
https://developer.android.com/guide/topics/data/data-storage.html#filesExternal
https://developer.android.com/guide/topics/data/data-storage.html#filesExternal
http://repo.xposed.info/module/de.robv.android.xposed.installer
https://developer.android.com/tools/help/uiautomator/
https://github.com/xiaocong/uiautomator
http://www.iab.net/guidelines/508676/508767/ad_unit
https://github.com/JohannesBuchner/imagehash
https://web.archive.org/web/20160131030000/https://developer.android.com/about/dashboards/index.html
https://web.archive.org/web/20160131030000/https://developer.android.com/about/dashboards/index.html
https://developer.android.com/google/play/billing/billing_integrate.html
https://developer.android.com/google/play/billing/billing_integrate.html

[47] C. Mulliner, W. Robertson, and E. Kirda, VirtualSwindle: An Automated Attack
Against In-App Billing on Android, in Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security (Asia CCS), 2014.

[48] C. Feng, Playing with shadows – exposing the black market for online game
password theft, in Virus Bulletin Conference, 2008.

[49] A. Bianchi, “Implementation of the proposed defense mechanisms.”
https://github.com/ucsb-seclab/android_device_public, 2017.

[50] C. Mulliner, R. Borgaonkar, P. Stewin, and J.-P. Seifert, SMS-Based One-Time
Passwords: Attacks and Defense, in Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2013.

[51] Google, “Android Documentation: SmsManager.” https:

//developer.android.com/reference/android/telephony/SmsManager.html,
2016.

[52] Google, “Binder.” https://developer.android.com/reference/android/os/

Binder.html#getCallingUid(), 2016.

[53] Google, “Android O Behavior Changes.” https:

//developer.android.com/preview/behavior-changes.html#privacy-all,
2017.

[54] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth,
TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones, in Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation (OSDI), 2010.

[55] Board of Governors of the Federal Reserve System, “Consumers and Mobile
Financial Services 2016.” https://www.federalreserve.gov/econresdata/

consumers-and-mobile-financial-services-report-201603.pdf, 2016.

[56] ARM, “ARM TrustZone.”
https://www.arm.com/products/security-on-arm/trustzone, 2017.

[57] Google, “Android Security Bulletins.”
https://source.android.com/security/bulletin/, 2017.

[58] J. Lang, A. Czeskis, D. Balfanz, and M. Schilder, Security Keys: Practical
Cryptographic Second Factors for the Modern Web, in Proceedings of the
International Conference on Financial Cryptography and Data Security (FC),
2016.

[59] yubico, “YubiKeys.” https://www.yubico.com/products/yubikey-hardware/,
2017.

166

https://github.com/ucsb-seclab/android_device_public
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/os/Binder.html#getCallingUid()
https://developer.android.com/reference/android/os/Binder.html#getCallingUid()
https://developer.android.com/preview/behavior-changes.html#privacy-all
https://developer.android.com/preview/behavior-changes.html#privacy-all
https://www.federalreserve.gov/econresdata/consumers-and-mobile-financial-services-report-201603.pdf
https://www.federalreserve.gov/econresdata/consumers-and-mobile-financial-services-report-201603.pdf
https://www.arm.com/products/security-on-arm/trustzone
https://source.android.com/security/bulletin/
https://www.yubico.com/products/yubikey-hardware/

[60] FIDO Alliance, “What is FIDO?.”
https://fidoalliance.org/about/what-is-fido/, 2017.

[61] Google, “New in Android Samples: Authenticating to remote servers using the
Fingerprint API .” https://android-developers.googleblog.com/2015/10/

new-in-android-samples-authenticating.html, 2015.

[62] A. Bianchi, “Source Code of the Developed Static Analysis Tool.”
https://github.com/ucsb-seclab/android_broken_fingers, 2018.

[63] J. V. Stoep, “Android: protecting the kernel.”
https://events.linuxfoundation.org/sites/events/files/slides/

Android-%20protecting%20the%20kernel.pdf, 2016.

[64] Google, “Verifying Boot.”
https://source.android.com/security/verifiedboot/verified-boot, 2017.

[65] OWASP-MSTG, “Local Authentication on Android.”
https://github.com/OWASP/owasp-mstg/blob/master/Document/

0x05f-Testing-Local-Authentication.md, 2017.

[66] Google, “FingerprintManager.” https://developer.android.com/reference/

android/hardware/fingerprint/FingerprintManager.html, 2017.

[67] Google, “Android Keystore System.”
https://developer.android.com/training/articles/keystore.html, 2017.

[68] A. Dmitrienko, C. Liebchen, C. Rossow, and A. Sadeghi, On the (In)Security of
Mobile Two-Factor Authentication, in Proceedings of the International Conference
on Financial Cryptography and Data Security (FC), 2014.

[69] J. Scott-Railton and K. Kleemola, “London Calling – Two-Factor Authentication
Phishing from Iran.”
https://citizenlab.ca/2015/08/iran_two_factor_phishing/, 2015.

[70] Telegram, “Keep Calm and Send Telegrams!.”
https://telegram.org/blog/15million-reuters, 2016.

[71] D. Goodin, “Thieves drain 2fa-protected bank accounts by abusing SS7 routing
protocol.” https:

//arstechnica.com/information-technology/2017/05/thieves-drain-2fa,
2017.

[72] yubico, “FIDO U2F.” https://www.yubico.com/solutions/fido-u2f/, 2017.

[73] M. Niemietz and J. Schwenk, UI Redressing Attacks on Android Devices, Black
Hat Abu Dhabi (2012).

167

https://fidoalliance.org/about/what-is-fido/
https://android-developers.googleblog.com/2015/10/new-in-android-samples-authenticating.html
https://android-developers.googleblog.com/2015/10/new-in-android-samples-authenticating.html
https://github.com/ucsb-seclab/android_broken_fingers
https://events.linuxfoundation.org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf
https://events.linuxfoundation.org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf
https://source.android.com/security/verifiedboot/verified-boot
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-Testing-Local-Authentication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-Testing-Local-Authentication.md
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.html
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.html
https://developer.android.com/training/articles/keystore.html
https://citizenlab.ca/2015/08/iran_two_factor_phishing/
https://telegram.org/blog/15million-reuters
https://arstechnica.com/information-technology/2017/05/thieves-drain-2fa
https://arstechnica.com/information-technology/2017/05/thieves-drain-2fa
https://www.yubico.com/solutions/fido-u2f/

[74] Q. A. Chen, Z. Qian, and Z. M. Mao, Peeking Into Your App Without Actually
Seeing It: UI State Inference and Novel Android Attacks, in Proceedings of the
USENIX Security Symposium (Usenix SEC), 2014.

[75] Y. Fratantonio, C. Qian, P. Chung, and W. Lee, Cloak and Dagger: From Two
Permissions to Complete Control of the UI Feedback Loop, in Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2017.

[76] A. Roy, N. Memon, and A. Ross, MasterPrint: Exploring the Vulnerability of
Partial Fingerprint-Based Authentication Systems, IEEE Transactions on
Information Forensics and Security 12(9) (2017).

[77] Google, “Android FingerprintDialog Sample.”
https://github.com/googlesamples/android-FingerprintDialog, 2017.

[78] B. Parno, Bootstrapping Trust in a “Trusted” Platform, in Proceedings of the
USENIX Summit on Hot Topics in Security (HotSec), 2008.

[79] Y. Zhang, Z. Chen, and T. Wei, Fingerprints On Mobile Devices: Abusing and
Leaking, in Black Hat USA, 2015.

[80] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, and
E. Bodden, Mining Apps for Abnormal Usage of Sensitive Data, in Proceedings of
the International Conference on Software Engineering (ICSE), 2015.

[81] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, Soot –
a Java Bytecode Optimization Framework, in Proceedings of the Conference of the
Centre for Advanced Studies on Collaborative Research, 1999.

[82] J. Palsberg and M. I. Schwartzbach, Object-Oriented Type Inference, in
Proceedings the ACM Conference on Object-Oriented Programming: Systems,
Languages, and Applications (OOPSLA), 1991.

[83] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and
Y. Chen, EdgeMiner: Automatically Detecting Implicit Control Flow Transitions
through the Android Framework, in Proceedings of the Annual Network &
Distributed System Security Symposium (NDSS), 2015.

[84] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, Permission Evolution in the
Android Ecosystem, in Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2012.

[85] Widevine, “Widevine DRM Architecture Overview.” https://storage.

googleapis.com/wvdocs/Widevine_DRM_Architecture_Overview.pdf, 2017.

[86] H. Sun, K. Sun, Y. Wang, and J. Jing, TrustOTP: Transforming Smartphones
into Secure One-Time Password Tokens, in Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2015.

168

https://github.com/googlesamples/android-FingerprintDialog
https://storage.googleapis.com/wvdocs/Widevine_DRM_Architecture_Overview.pdf
https://storage.googleapis.com/wvdocs/Widevine_DRM_Architecture_Overview.pdf

[87] Google, “Material Design – Patterns – Fingerprint.”
https://material.io/guidelines/patterns/fingerprint.html, 2017.

[88] Google, “Android Key Attestation Sample.” https://github.com/

googlesamples/android-key-attestation/tree/master/server, 2016.

[89] Apple, “About Touch ID advanced security technology.”
https://support.apple.com/en-us/HT204587, 2015.

[90] Apple, “Get your apps ready for Touch Bar..”
https://developer.apple.com/macos/touch-bar/, 2017.

[91] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, An empirical study of
cryptographic misuse in Android applications, in Proceedings of the 20th ACM
SIGSAC conference on Computer & communications security (CCS), ACM, 2013.

[92] C. Zuo, W. Wang, R. Wang, and Z. Lin, Automatic Forgery of Cryptographically
Consistent Messages to Identify Security Vulnerabilities in Mobile Services, in
Proceedings of the Annual Network & Distributed System Security Symposium
(NDSS), 2016.

[93] F. Roesner and T. Kohno, Securing Embedded User Interfaces: Android and
Beyond, in Proceedings of the 22nd USENIX Security Symposium, (Berkeley, CA,
USA), pp. 97–112, USENIX Association, 2013.

[94] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, Android
Permissions: User Attention, Comprehension, and Behavior, in Proceedings of the
Eighth Symposium On Usable Privacy and Security (SOUPS), (New York, NY,
USA), pp. 3:1–3:14, ACM, 2012.

[95] R. Xu, H. Säıdi, and R. Anderson, Aurasium: Practical Policy Enforcement for
Android Applications, in Proceedings of the 21st USENIX Security Symposium,
(Berkeley, CA, USA), pp. 27–27, USENIX Association, 2012.

[96] Z. E. Ye and S. Smith, Trusted Paths for Browsers, in Proceedings of the 11th
USENIX Security Symposium, (Berkeley, CA, USA), pp. 263–279, USENIX
Association, 2002.

[97] A. Neupane, N. Saxena, K. Kuruvilla, M. Georgescu, and R. Kana, Neural
Signatures of User-Centered Security: An fMRI Study of Phishing and Malware
Warnings, in Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS), 2014.

[98] Y. Niu, F. Hsu, and H. Chen, iPhish: Phishing Vulnerabilities on Consumer
Electronics., in Proceedings of the 1st Conference on Usability, Psychology, and
Security (UPSEC), 2008.

169

https://material.io/guidelines/patterns/fingerprint.html
https://github.com/googlesamples/android-key-attestation/tree/master/server
https://github.com/googlesamples/android-key-attestation/tree/master/server
https://support.apple.com/en-us/HT204587
https://developer.apple.com/macos/touch-bar/

[99] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor, Crying Wolf:
An Empirical Study of SSL Warning Effectiveness, in Proceedings of the 18th
USENIX Security Symposium, (Berkeley, CA, USA), pp. 399–416, USENIX
Association, 2009.

[100] J. Lee, L. Bauer, and M. L. Mazurek, The Effectiveness of Security Images in
Internet Banking, Internet Computing, IEEE 19 (Jan, 2015) 54–62.

[101] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith,
Why Eve and Mallory love Android: An analysis of Android SSL (in) security, in
Proceedings of the 2012 ACM conference on Computer and communications
security, ACM, 2012.

[102] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer, The Emperor’s New
Security Indicators, in Proceedings of the IEEE Symposium on Security and
Privacy (SP), pp. 51–65, May, 2007.

[103] D. Akhawe and A. P. Felt, Alice in Warningland: A Large-scale Field Study of
Browser Security Warning Effectiveness, in Proceedings of the 22nd USENIX
Security Symposium, (Berkeley, CA, USA), pp. 257–272, USENIX Association,
2013.

[104] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. C. Mitchell, Client-side
defense against web-based identity theft, in Proceedings of the 11th Annual
Network and Distributed System Security Symposium (NDSS), 2004.

[105] R. Dhamija and J. D. Tygar, The Battle Against Phishing: Dynamic Security
Skins, in Proceedings of the Symposium On Usable Privacy and Security
(SOUPS), (New York, NY, USA), pp. 77–88, ACM, 2005.

[106] E. Kirda and C. Kruegel, Protecting users against phishing attacks with
AntiPhish, in Proceedings of the Computer Software and Applications Conference
(COMPSAC), vol. 1, pp. 517–524 Vol. 2, July, 2005.

[107] Google, “Safe Browsing.”
http://www.google.com/transparencyreport/safebrowsing/.

[108] D. Clercq and Grillenmeie, Microsoft Windows Security Fundamentals. Digital
Press, (Chapter 5.2.1), Connecticut, USA, October, 2006.

[109] J. Rutkowska, “Qubes OS Architecture (Section 5.3).”
http://files.qubes-os.org/files/doc/arch-spec-0.3.pdf, January, 2010.

[110] X. Zhang, K. Ying, Y. Aafer, Z. Qiu, and W. Du, Life after App Uninstallation:
Are the Data Still Alive? Data Residue Attacks on Android, in Proceedings of the
23rd Network & Distributed System Security Symposium (NDSS), 2016.

170

http://www.google.com/transparencyreport/safebrowsing/
http://files.qubes-os.org/files/doc/arch-spec-0.3.pdf

[111] T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang, and X. Han, Mayhem in
the Push Clouds: Understanding and Mitigating Security Hazards in Mobile
Push-Messaging Services, in Proceedings of the 21st ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014.

[112] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, OAuth
Demystified for Mobile Application Developers, in Proceedings of the 21st ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2014.

[113] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich, Explicating
SDKs: Uncovering Assumptions Underlying Secure Authentication and
Authorization., in Proceedings of the 22nd USENIX Security Symposium
(USENIX Security), 2013.

[114] R. Yang, W. C. Lau, and T. Liu, “Signing into One Billion Mobile App Accounts
Effortlessly with OAuth2.0.” BlackHat Europe, 2016.

[115] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, An empirical study on android for
saving non-shared data on public storage, in Proceedings of the IFIP International
Information Security Conference, 2015.

[116] G. Bai, J. Sun, J. Wu, Q. Ye, L. Li, J. S. Dong, and S. Guo, All Your Sessions
Are Belong to Us: Investigating Authenticator Leakage through Backup Channels
on Android, in Proceedings of the 20th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), 2015.

[117] S. Schrittwieser, P. Frühwirt, P. Kieseberg, M. Leithner, M. Mulazzani, M. Huber,
and E. R. Weippl, Guess Who’s Texting You? Evaluating the Security of
Smartphone Messaging Applications, in Proceedings of the 19th Network &
Distributed System Security Symposium (NDSS), 2012.

[118] Thomas Fox-Brewster, “Watch As Hackers Hijack WhatsApp Accounts Via
Critical Telecoms Flaws.” http://www.forbes.com/sites/thomasbrewster/

2016/06/01/whatsapp-telegram-ss7-hacks/#43e6fc1c745e, 2016.

[119] NIST, “Digital Authentication Guideline.”
https://pages.nist.gov/800-63-3/sp800-63b.html, 2016.

[120] M. Rehman Zafar and M. Ali Shah, Fingerprint Authentication and Security
Risks in Smart Devices, in Proceedings of the International Conference on
Automation and Computing (ICAC), 2016.

[121] T. Does and M. Maarse, “Subverting Android 6.0 fingerprint authentication.”
Master Thesis at University of Amsterdam, 2016.

171

http://www.forbes.com/sites/thomasbrewster/2016/06/01/whatsapp-telegram-ss7-hacks/#43e6fc1c745e
http://www.forbes.com/sites/thomasbrewster/2016/06/01/whatsapp-telegram-ss7-hacks/#43e6fc1c745e
https://pages.nist.gov/800-63-3/sp800-63b.html

[122] E. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, OAuth Demystified
for Mobile Application Developers, in Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2014.

[123] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath, R. Wang, and
D. Wetherall, Brahmastra: Driving Apps to Test the Security of Third-Party
Components, in Proceedings of the 23rd USENIX Security Symposium (USENIX
Security), 2014.

[124] A. Machiry, R. Tahiliani, and M. Naik, Dynodroid: An Input Generation System
for Android Apps, in Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering (FSE), 2013.

[125] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, RERAN: Timing- and
Touch-Sensitive Record and Replay for Android, in Proceedings of the 35th
International Conference on Software Engineering (ICSE), 2013.

[126] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi, Mosaic: Cross-Platform
User-Interaction Record and Replay for the Fragmented Android Ecosystem, in
Proceedings of the 2015 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2015.

[127] Z. Qin, Y. Tang, E. Novak, and Q. Li, MobiPlay: a Remote Execution based
Record-and-Replay Tool for Mobile Applications, in Proceedings of the 38th
International Conference on Software Engineering (ICSE), 2016.

[128] Y. Hu, T. Azim, and I. Neamtiu, Versatile yet Lightweight Record-and-Replay for
Android, in ACM SIGPLAN Notices, vol. 50, 2015.

[129] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, PScout: Analyzing the Android
Permission Specification, in Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2012.

[130] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, CHEX: Statically Vetting Android
Apps for Component Hijacking Vulnerabilities, in Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2012.

[131] Y. Zhou and X. Jiang, Detecting Passive Content Leaks and Pollution in Android
Application, in Proceedings of the Annual Network & Distributed System Security
Symposium (NDSS), 2013.

[132] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, Systematic Detection of Capability
Leaks in Stock Android Smartphones, in Proceedings of the Annual Network &
Distributed System Security Symposium (NDSS), 2012.

172

[133] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith,
Why Eve and Mallory Love Android: An Analysis of Android SSL (in)Security, in
Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2012.

[134] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna, Execute This!
Analyzing Unsafe and Malicious Dynamic Code Loading in Android Applications,
in Proceedings of the Annual Network & Distributed System Security Symposium
(NDSS), 2014.

[135] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu, Show Me the
Money! Finding Flawed Implementations of Third-party In-app Payment in
Android Apps, in Proceedings of the Annual Network & Distributed System
Security Symposium (NDSS), 2017.

[136] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith, SoK: Lessons
Learned From Android Security ResearchFor Appified Software Platforms, in
Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2016.

[137] R. Whitwam, “Android O feature spotlight: Android tells you if an app is
displaying a screen overlay.” https://www.androidpolice.com/2017/05/21/

android-o-feature-spotlight-android-tells-app-displaying-screen-overlay/,
2017.

[138] Google, “Android 6.0 Changes – Runtime Permissions.”
https://developer.android.com/about/versions/marshmallow/android-6.

0-changes#behavior-runtime-permissions, 2015.

[139] J. Rummler, “Android Processes & Security.”
https://jaredrummler.com/2017/09/13/android-processes/, 2016.

[140] Google, “Android 8 Behavioral Changes – Alert windows.” https://developer.

android.com/about/versions/oreo/android-8.0-changes#all-aw, 2017.

[141] Google, “Android P Preview – Security updates – Android Protected
Confirmation.” https:

//developer.android.com/preview/features/security#user-confirmation,
2018.

[142] Google, “Android P Preview – Security updates – Hardware security module.”
https://developer.android.com/preview/features/security#

hardware-security-module, 2018.

173

https://www.androidpolice.com/2017/05/21/android-o-feature-spotlight-android-tells-app-displaying-screen-overlay/
https://www.androidpolice.com/2017/05/21/android-o-feature-spotlight-android-tells-app-displaying-screen-overlay/
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-runtime-permissions
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-runtime-permissions
https://jaredrummler.com/2017/09/13/android-processes/
https://developer.android.com/about/versions/oreo/android-8.0-changes#all-aw
https://developer.android.com/about/versions/oreo/android-8.0-changes#all-aw
https://developer.android.com/preview/features/security#user-confirmation
https://developer.android.com/preview/features/security#user-confirmation
https://developer.android.com/preview/features/security#hardware-security-module
https://developer.android.com/preview/features/security#hardware-security-module

	Curriculum Vitae
	Abstract
	Introduction
	Lines of Research and Approach
	Understanding the Trust Relationships in the Mobile Ecosystem
	Developing Scalable Automated Analyses
	Approach

	Summary of the Main Contributions
	User/User-Interface Trust Relationship
	Trusting the Operating System for Authentication
	Hardware-Assisted Authentication

	Permissions and Attributions

	User/User-Interface Trust Relationship
	Background
	Android graphical elements

	GUI confusion attacks
	Attack vectors
	Enhancing techniques
	Attack app examples

	State exploration of the Android GUI API
	Study of the startActivity API
	Study of ``inescapable'' fullscreen Windows

	Detection via static analysis
	Tool description
	Results

	UI Defense mechanism
	Which app is the user interacting with?
	Who is the real author of a given app?
	Conveying trust information to the user
	Implementation

	Evaluation
	Experiment procedure
	Results
	Limitations

	Conclusions

	Trusting the Operating System for Remote Authentication
	Authentication Schemes
	Identity-Transfer Attack
	Threat Model
	Device-Public Information Sources
	Proof-of-Concept Attack Implementation

	Vulnerability Detection
	Step 1: Capturing Initial Behavior
	Step 2: Vulnerability Detection
	Step 3: Exploit Verification
	Dynamic Analysis
	App States Extraction and Comparison

	Experimental Results
	Datasets
	Experimental Setup
	Results

	Case Studies
	Messaging Applications
	Free-to-play Games

	Proposed Defenses
	Securing the SMS Channel
	Secure Device IDs

	Limitations and Future Work
	Conclusions

	Hardware-Assisted Authentication
	Background
	Android Security Mechanisms
	TEE and TrustZone
	The Fingerprint API in Android
	Two-Factor Authentication Schemes

	Threat Model
	Levels of Compromise
	Attacker Capabilities
	Out-of-Scope Attacker Capabilities

	Fingerprint API usages
	Weak Usage
	Decryption Usage
	Sign Usage
	Sign + Key Attestation Usage

	Protocol Weaknesses and Attack Scenarios
	Weak Usage: Fake TEE response
	Decryption Usage: Replay Attack
	Sign Usage: Man-in-the-Middle Attack
	Sign + Key Attestation Usage: Key Proxying

	Discussion
	Application Contexts
	Practicality and Impact of UI Attacks

	Automatic Analysis Tool
	Challenges and Design Choices
	Pre-processing
	Call Graph Construction & Data Flow Analysis
	Feature Extraction
	App Classification

	Automatic Analysis Results
	Evaluation Methodology
	Dataset
	Apps Classification
	Case Study: Unlocking ``Unlocked'' Keys
	Case Study: Google Play Store
	Case Study: Square Cash
	Case Study: Key Attestation

	Fingerprint API Improvements
	Trusted-UI
	Other UI Changes
	Better Attestation Mechanisms

	Limitations and Future Work
	Conclusions

	Related Work
	Attacks to Mobile User-Interfaces
	Authentication-Related Vulnerabilities in Mobile Devices
	Automated Analysis of Mobile Applications

	Conclusions and Future Directions
	Bibliography

