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Abstract Recent evidence has implicated EFL1 in a phenotype overlapping Shwachman–
Diamond syndrome (SDS), with the functional interplay between EFL1 and the previously
known causative gene SBDS accounting for the similarity in clinical features. Relatively little
is known about the phenotypes associated with pathogenic variants in the EFL1 gene, but
the initial indication was that phenotypes may be more severe, when compared with SDS.
We report a pediatric patient who presented with ametaphyseal dysplasia andwas found to
have biallelic variants in EFL1 on reanalysis of trio whole-exome sequencing data. The var-
iant had not been initially reported because of the research laboratory’s focus on de novo
variants. Subsequent phenotyping revealed variability in her manifestations. Although her
metaphyseal abnormalities were more severe than in the original reported cohort with
EFL1 variants, the bonemarrow abnormalities were generally mild, and there was equivocal
evidence for pancreatic insufficiency. Despite the limited number of reported patients, var-
iants in EFL1 appear to cause a broader spectrum of symptoms that overlap with those seen
in SDS. Our report adds to the evidence of EFL1 being associated with an SDS-like pheno-
type and provides information adding to our understanding of the phenotypic variability of
this disorder. Our report also highlights the value of exomedata reanalysis when a diagnosis
is not initially apparent.

[Supplemental material is available for this article.]
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INTRODUCTION

Shwachman–Diamond syndrome (SDS; OMIM 260400) is an autosomal recessive condition
that is characterized by a triad of exocrine pancreatic insufficiency, bonemarrowdysfunction,
and metaphyseal dysostosis (Bodian et al. 1964; Shwachman et al. 1964; Burke et al. 1967).
Most patients present as infants with growth failure due to pancreatic insufficiency and/or
recurrent infections due to neutropenia (Dror et al. 2011), whereas the metaphyseal changes
leading to short stature typically become evident in childhood or later (Levin et al. 2015). The
pancreatic dysfunction varies in severity, and a subset of patients may show improvement in
pancreatic function in late childhood (Ginzberg et al. 1999). Hematologic abnormalities in
patients with SDS vary in type of lineage affected, as well as severity (Dror et al. 2011).
Neutropenia and anemia are the most common bone marrow abnormalities, but thrombo-
cytopenia and pancytopenia may also be seen (Dror et al. 2011). Metaphyseal chondrodys-
plasia seen in SDS is present in all patients but shows variability, even within the same family
(Levin et al. 2015). Skeletal findings are typically symmetrical and are more severe in the low-
er limbs. By age 2 yr, metaphyseal changes seen include broadening of the metaphyses with
characteristic lucent and sclerotic changes, which disappear when the physes fuse at puberty
(Levin et al. 2015).

Approximately 90% of patients with SDS phenotypes have been found to carry patho-
genic variants in the SBDS gene (Warren 2017). The SBDS protein promotes the activation
of Elongation factor-like 1 (EFL1) in order for EFL1 to remove the antiassociation factor
eIF6 and subsequently facilitate cytoplasmic maturation of the large (60S) ribosomal subunit
(García-Márquez et al. 2015). EFL1 variants have recently been implicated in an SDS-like
phenotype (OMIM 617941) (Stepensky et al. 2017). In the cohort of six patients reported
with EFL1 variants, half the patients presented with severe failure to thrive presumably
due to untreated pancreatic insufficiency and died prior to age 15 mo (Stepensky et al.
2017). The other three patients (ages 15 mo to 6 yr) manifested the hallmarks of SDS, includ-
ing neutropenia (in isolation or with other bone marrow abnormalities), pancreatic insuffi-
ciency, and metaphyseal dysostosis (Stepensky et al. 2017). In addition to EFL1, the
DNAJC21 protein also plays a role in 60S ribosome maturation (Meyer et al. 2010) and
has been associated with bone marrow failure (OMIM 617052; [Tummala et al. 2016]), as
well as an SDS phenotype (Dhanraj et al. 2017). Thus, it is evident that ribosomopathies
can include a spectrum of abnormalities with overlapping findings in organ systems such
as the bone marrow, skeleton, and pancreas. Recently, variants in SRP54, which encodes a
signal recognition particle involved in the translocation of nascent polypeptides, have also
been implicated in the SDS phenotype (Carapito et al. 2017).

We report a 14-yr-old patient who was referred to the Undiagnosed Diseases Network
(UDN; https://undiagnosed.hms.harvard.edu/) with a radiologic diagnosis of spondylometa-
physeal dysplasia, corner fracture type, who also had a history of thrombocytopenia, growth
failure, liver fibrosis, scoliosis, and learning difficulties. She had extensive clinical and molec-
ular evaluations in the previous 12 years, including trio whole-exome sequencing (WES),
without a unifying diagnosis. Exome reanalysis as part of the UDN revealed a homozygous
missense variant in EFL1, which likely explains her phenotypic features and adds to the ev-
idence of EFL1 being associated with an SDS-like syndrome.

RESULTS

Clinical Presentation and Family History
The patient is a 14-yr-old Caucasian female enrolled in the UDN with a previous clinical
diagnosis of spondylometaphyseal dysplasia—corner fracture type and other multiple
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manifestations with no unifying diagnosis. There is a paternal family history of short stature.
Her father is 5′4′′, paternal grandmother was 4′11′′, and paternal great-grandmother was
4′6′′. The family history was otherwise noncontributory; the parents are not consanguineous.
The patient was born at 39 wk gestational age following a pregnancy complicated by intra-
uterine growth restriction. Her birthweight was 1956 grams (<5th percentile). Neonatal com-
plications included thrombocytopenia (initial platelet count 82×109/l, normal 140–300×
109/l) which improved to 108×109/l on day of life 4. She first presented to endocrinology
at 22 mo because of failure to thrive (height and weight below the third percentile) despite
appropriate nutrition. A comprehensive endocrinology workup detected transaminitis and
urine organic acids profile revealed a nonspecific pattern concerning for a possible mito-
chondrial disorder. Workup for mitochondrial disorder, including muscle and liver biopsies,
was inconclusive. However, the liver biopsy did demonstrate moderate portal, periportal
bridging, and centrilobular fibrosis (Fig. 1). Transient elevated transaminases were present
at age 2–4 yr with no identified cause for the liver disease. Short stature failed to respond
to growth hormone therapy.

Thrombocytopenia was mild and intermittent between the ages of 2 and 5 yr, but
became persistent at age 6 yr when her platelet counts ranged from 45 to 136×109/l.
However, there were no clinical manifestations related to thrombocytopenia. She has never
been neutropenic or anemic except for an episode of pancytopenia at age 9 yr with a fever
and presumed viral illness. Bone marrow biopsy performed during this illness showed low
cellularity (10%, normal for age ∼60%–70%) but no other specific abnormalities. Prior to

A B

C D

Figure 1. Liver biopsy showing decrease in liver fibrosis with age. Liver biopsy obtained at age 2 yr stained
with (A) hematoxylin and eosin (H&E) and (B) Masson trichrome stain, and a liver needle biopsy obtained at
age 14 yr stained with (C ) H&E and (D) Masson trichrome stain. All 100× magnification.

EFL1-related Shwachman–Diamond-like syndrome

C O L D S P R I N G H A R B O R

Molecular Case Studies

Tan et al. 2018 Cold Spring Harb Mol Case Stud 4: a003046 3 of 12



age 2 yr, she had four episodes of pneumonia, but none required hospitalization, and she has
not had recurrent infections since.

A skeletal survey at age 6 yr (Fig. 2) demonstrated mild S-shaped scoliosis, irregularity of
the vertebral body endplates (Fig. 2A), metaphyseal irregularity of the femoral necks (Fig. 2B)
and the left proximal humerus (Fig. 2C), irregularity of the bony acetabular roofs and iliac
crests, and metaphyseal cupping involving the metacarpals of the hands (not shown), later
classified as spondylometaphyseal dysplasia—corner fracture type, after review by the
International Skeletal Dysplasia Registry (ISDR). She developed restrictive lung disease sec-
ondary to worsening scoliosis. The patient underwent surgery at age 13 yr to correct left
genu varum.

The patient presented with hematuria at age 4 yr, which recurred at age 7 yr, with hyper-
calciuria on laboratory testing (24 h urine calcium 6.2 mg/kg/day, normal <4 mg/kg/day).
She was started on hydrochlorothiazide with resolution of urine calcium levels. Renal

A

D E F

B

C

Figure 2. Skeletal anomalies on radiography. The three images on the top row were obtained at age 6 yr, and
the three images on the lower row were obtained at age 14 yr. (A) Arrows show vertebrae with irregularity and
scalloping subjacent to the disc spaces that are more pronounced in the radiograph (D) obtained at age 14 yr.
(B) There is bilateral coxa vara and arrows demonstrate metaphyseal abnormalities of bilateral proximal femurs
of mixed sclerosis and lucency. (E) Hip imaging at age 14 yr shows abnormal configuration (flattening) of the
femoral heads, with continuedmetaphyseal heterogeneity in proximal and distal femurs (arrows). (C ) Arrow on
left proximal humerus shows heterogeneity in the ossification in themetaphysis (right humerus was normal; not
shown). (F ) Similar abnormal mixed sclerosis and lucency found in both humeri at age 14 yr (arrows).
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ultrasound examinations were normal. There were no developmental concerns in early child-
hood. Learning disabilities were diagnosed in the second grade, for which she received an
Individualized Education Plan. She also had multiple dental caries that required full oral
rehabilitation.

At age 14 yr, she was referred to the UDN and reanalysis of the previous WES data com-
pleted prior to her evaluation reported a homozygous variant in EFL1. Because of this find-
ing, the patient’s UDN evaluation was subsequently tailored to look for manifestations
described in the prior report of EFL1-associated SDS-like phenotype (Stepensky et al.
2017). At age 14 yr, her height and weight were below the first percentile. A repeat skeletal
survey at age 14 yr demonstrated progression of the previously identified metaphyseal ab-
normalities (Fig. 2). Upon review by the ISDR and skeletal dysplasia experts at the Baylor
School of Medicine within the UDN, themetaphyseal changes were thought to be consistent
with SDS, but with greater severity than typically observed in these patients. A repeat bone
marrow biopsy at age 14 yr demonstrated a hypocellular bone marrow (50%, normal for age
∼60%–70%) with trilineage hematopoiesis (Fig. 3) and no cytogenetic abnormalities. There
was no history of intractable diarrhea. Evaluation for pancreatic insufficiency revealed high
spot fecal fat (25%, normal <20%), low serum amylase (18 U/l, normal 31–119 U/l) with nor-
mal stool pancreatic elastase and normal fat-soluble vitamin levels. Sample collection for 72-
h fecal fat was not completed because of lack of patient compliance. The pancreas was not
well visualized on abdominal ultrasound. Although her pancreatic phenotype was not
completely delineated, she appeared to have mild pancreatic insufficiency based on history
of failure to thrive and available laboratory assessments. A repeat liver biopsy showed regen-
erative changes, improved fibrosis with no inflammation or steatosis (Fig. 1), and liver en-
zymes and liver synthetic function were normal. Cognitive testing revealed a borderline IQ
of 73 (4th %) on the Wechsler Abbreviated Scale of Intelligence Second Edition and specific
impairments in perceptual-motor functioning and visual memory. She remains in a regular
classroom with accommodations.

Genomic Analysis
Trio WES had been performed on a research basis (Zhu et al. 2015) at age 10 yr and was neg-
ative, with no variants of interest. On reanalysis of the WES data through the UDN in 2017, a
homozygousmissense variant (c.379 A>G; p.Thr127Ala) in EFL1was identified (Table 1). The
variant results in a nonconservative amino acid substitution in theGTPbindingdomain, which
is located in the amino terminus of the protein (Fig. 4). The variant is absent from internal con-
trols (13,119 samples) aswell as theExomeAggregationConsortium (ExAC)database (60,706

A B C

Figure 3. Bone marrow biopsy at age 14 yr. Hypocellular bone marrow (50%) at (A) 40× and (B) 200× magni-
fication, showing trilineage hematopoiesis (H&E stain). (C ) Touch preparation showing normal maturation of
the myeloid and erythroid lineages (500× magnification, Wright–Giemsa stain).
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samples) (Leket al. 2016) andExomeVariant Server (EVS) database (6503 samples) (http:// evs
.gs.washington.edu/EVS/). One individual was heterozygous for this variant in gnomAD (1 al-
lele out of 240,260), but it is absent in a homozygous state. The site is strongly conservedwith
the Genomic Evolutionary Rate Profiling (GERP++RS) score of 4.01 (Davydov et al. 2010).
EFL1 is intolerant to homozygous loss of function variants with a pREC score of 0.966 (Lek
et al. 2016). Multiple in silico tools, including CADD (25.9) (Kircher et al. 2014), PolyPhen
(0.993) (Adzhubei et al. 2010), SIFT (0) (Kumar et al. 2009), and MutationTaster (D,1.0)
(Schwarz et al. 2010), predicted that the variant was damaging. Parental testing confirmed
carrier status for each parent. No pathogenic variants were identified in the SBDS gene.

DISCUSSION

Disorders that affect ribosome production or function are referred to as ribosomopathies, of
which SDS is one of the more well-known examples (Nakhoul et al. 2014). For the 10% of pa-
tients with manifestations of SDS who have no associated variants in the SBDS gene, next-
generation sequencing has begun to uncover pathogenic variants in additional genes
with similar functions who present with SDS-like phenotypes. Six patients from three families
who presented with SDS-like features were identified by Stepensky et al. (2017) to have ho-
mozygous variants in the EFL1 gene. These patients presented with developmental delay,
failure to thrive, symptoms of pancreatic insufficiency, and cytopenias of one or more blood
lineages (Stepensky et al. 2017). The severity of the disorder was such that mortality was
high, with three patients dying in childhood likely because of untreated pancreatic insuffi-
ciency. Metaphyseal anomalies were also observed on radiographs for all six patients
(Stepensky et al. 2017).

Table 1. EFL1 variant information

Gene
Chr: position
GRCh37(hg19)

HGVS DNA
reference

HGVS
protein

reference
Variant
type

Predicted
effect Genotype

ClinVar
accession Inheritance

EFL1 Chr15:
82532896

NM_024580.5
c.379A>G

p.Thr127Ala Substitution Missense Homozygous SCV000746595.2 Maternal and
paternal

Figure 4. Schematic of the EFL1 protein highlighting theGTP-binding domain (domain 1) (Finch et al. 2011) in
the amino terminus and the variants associated with human disease, as reported by the referenced articles.
Numbers refer to amino acid position. G1–G5 refer to conserved motifs important for GTP binding
(Wittinghofer and Vetter 2011) (domains labeled according to Asano et al. [2014]).
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Contrary to the initial cohort of patients (Stepensky et al. 2017) whose primary presenta-
tion was similar to SDSwith growth failure and pancreatic insufficiency, our patient presented
primarily with striking metaphyseal anomalies which worsened with age. Although she did
have mild thrombocytopenia, the bone marrow manifestations had not been medically sig-
nificant, with no documented episodes of neutropenia other than an episode of pancytope-
nia during a viral illness, nor has she needed transfusions. Additionally, the lack of overt
pancreatic insufficiency resulted in lack of clinical recognition that she had an SDS-like phe-
notype, with the skeletal manifestations becoming the main diagnostic focus. Table 2 com-
pares the features in our patient and those of Stepensky et al. (2017).

The identification of a homozygous EFL1 variant led to further investigation of pancreatic
insufficiency in our patient. The failure to gain weight could be related to pancreatic insuffi-
ciency, with laboratory findings of high fecal fat and low amylase, but the otherwise normal
pancreatic tests could be indicative of mild insufficiency. Additional testing, including further
imaging studies, and direct measurement of pancreatic enzymes are being considered, as
well as a trial of enzyme supplementation. Our patient’s hypercalciuria could also represent
a manifestation of the EFL1-associated SDS phenotype. Renal lithiasis has been reported in
patients with SDS (Ginzberg et al. 1999). Dental caries, as well as neurodevelopmental de-
lays, as seen in our patient, are common as well (Dror et al. 2011). Specific impairments in
perceptual-motor functioning and visual memory are consistent with prior neurocognitive in-
vestigations in children with SDS (Kerr et al. 2010).

Table 2. Clinical features associated with ELF1 variants

Stepensky et al. case series Duke case

Stature −2.6 to −4.8 SD −3.7 SD

Head circumference Normal in 2/6 patients (other 4 were
from consanguineous families)

Normal

Radiologic findings Metaphyseal irregularities in proximal
and distal femurs, fibulae, and
humeri; anterior rib cupping

Metaphyseal irregularities in proximal
and distal femurs, tibia, fibulae,
humeri; flattening of hip epiphyses;
iliac crest apophyseal irregularity;
vertebral body endplate irregularities;
scoliosis

Pancreatic
insufficiency

6/6 patients (5/6 with diarrhea) No diarrhea; equivocal pancreatic
laboratory results

Liver disease 1 patient with mild hepatomegaly Transaminitis (ages 2–4 yr) (AST 64–169
U/l; ALT 73–238 U/l)a; moderate
portal, periportal bridging, and
centrilobular fibrosis (age 2 yr)

Anemia 4/5 patients Absent; hemoglobin 11.1–12.1 g/dlb,c

Neutropenia 4/5 patients Absent; ANC 1353–14874 cells/µlc

Thrombocytopenia 4/5 patients Present; chronic since age 6 yr (platelets
96–136×109/l)c,d

Development 6/6 developmental delay Learning disabilities in school

Outcome 3/6 deceased (ages 7 mo–15 mo);
3/6 alive (ages 15 mo to 6 yr)

Alive (age 14 yr)

SD, standard deviation; AST, aspartate transaminase; ALT, alanine transaminase; ANC, absolute neutrophil count.
aReference ranges for AST: 10–60 U/l; ALT: 10–45 U/l.
bReference ranges for hemoglobin: normal 11.5–13.5 g/dl ages 2–5 yr; 11.5–15.5 g/dl ages 6–11 yr; 12.0–16.0 g/dl ages
12–17 yr.
cExcluding blood counts obtained during episode of pancytopenia (see text).
dReference range for platelet counts: normal 150–400×109/l.
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Patients with SDS have been reported to present with transaminitis, hyperbilirubinemia,
hepatomegaly, and cirrhosis (Toiviainen-Salo et al. 2009). In one longitudinal study of 12 pa-
tients with SDS, the transaminitis resolved by age 5 yr, hepatomegaly by age 3 yr, and hyper-
bilirubinemia by age 4 yr, but elevated bile acids and hepatic microcysts were seen in some
adult patients (Toiviainen-Salo et al. 2009). Our patient’s mild transaminitis and fibrosis, with
no sign of liver dysfunction after age 4 yr, is certainly consistent with the SDS phenotype, al-
though none of the six patients reported previously had liver dysfunction except for one pa-
tientwithmildhepatomegaly (Stepenskyet al. 2017). Thediagnosis in ourpatient hasmedical
management implications such as periodic monitoring for hematological malignancies and
possible treatment for mild pancreatic insufficiency to determine if it would help with growth.

Interestingly, all the patients in the prior report had variants associated with the carboxyl
terminus of the protein, and Stepensky et al. (2017) observed that these mutant protein var-
iants fail to release eIF6 from the 60S subunit, hence interrupting the formation of mature ri-
bosomes.Our variant is located near the amino terminus of the protein (Fig. 4) and results in a
missense, nonconservative amino acid substitution in the EFL1 protein within the GTP-bind-
ing domain (Finch et al. 2011). This variant may hence affect the GTPase function of EFL1, al-
though we are not able to confirm the actual functional change conferred by the variant
without functional assays. Perhaps the variants being in different regions of the protein result
in phenotypic differences in our patient compared with the previously reported patients with
EFL1 pathogenic variants (Stepensky et al. 2017), although it is worth noting that there is little
genotype–phenotype correlation even for well-studied ribosomopathies such as SDS (Myers
et al. 2014).

The features of our patient and the other six patients with EFL1 biallelic variants may be
representative of a SDS-like disorder or may be indicative of the genetic heterogeneity of
SDS, which until recently has been known to be associated with only one gene. Further lit-
erature reports will help clarify if these are distinct ribosomopathies with overlapping fea-
tures or could be classified as one entity.

Using American College of Medical Genetics and Genomics (ACMG) variant classifica-
tion guidelines (Richards et al. 2015), the EFL1 variant is denoted as a variant of un-
certain significance. Using the ClinGen Gene-Disease Association curation framework
(Strande et al. 2017) with protocol updates published on the ClinGen website (www.
clinicalgenome.org), the evidence supporting an association between EFL1 and SDS-like
syndrome is currently considered “limited.” However, considering the functional interaction
of SBDS with EFL1, as well as our patient’s overlap with features of SDS and SDS-like pheno-
types in unrelated individuals with EFL1 variants (Stepensky et al. 2017), we strongly favor
that the homozygous EFL1 variant is a likely diagnosis for our patient. The combination of
uncommon clinical features in our patient—that is, both spondylometaphyseal dysplasia
(population prevalence estimated to be at 1/100,000; www.orpha.net) and childhood exo-
crine pancreatic insufficiency (cystic fibrosis tested and excluded; not shown)—also argues
for a diagnosis of an SDS-like syndrome. In addition, we note that the ACMG variant classi-
fication guidelines are specifically developed to assess pathogenicity in well-characterized
disease genes or variants that occur de novo in a patient; both of which are not applicable
in this case. We find the ClinGen curation framework useful in assessing gene-disease rela-
tionships, and we believe that evidence for EFL1-SDS syndrome association will be stronger
with the inclusion of more cases and functional data.

A notable finding with our patient is that the EFL1 variant was not initially prioritized from
the exome data obtained in 2013. The EFL1 gene was not associated with human disease at
the time, but EFL1 was known to interact physically with SBDS and function epistatically in
yeast (Menne et al. 2007) and to release eIF6 in mammalian cells (Finch et al. 2011) in
pre-60S ribosomal processing. The research laboratory that performed and analyzed the se-
quence data utilizes an agnostic approach to the genome, but despite the strong
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bioinformatics signatures, this variant was not reported. Retrospectively, it is difficult to
determine the exact reason for this, but it could be related to the focus of the laboratory
at that time on de novo variants. It is certainly very plausible that this variant would also
not have been reported by clinical laboratories, given the lack of association with human dis-
ease until very recently. Indeed, many of the cases that get resolved withWES reanalyses are
due to interim new gene-disease associations (Wenger et al. 2017). Thus, this experience
adds credence to the value of WES reanalysis when the initial report is negative.

In conclusion, our report provides further clinical and genomic evidence for EFL1 being
associated with an SDS-like phenotype, highlighting the phenotypic variability that can oc-
cur. It also illustrates the current conundrum within genomic medicine of bioinformatically
compelling variants not being prioritized inWES data, emphasizing the value of WES reanal-
ysis when a diagnosis is not evident initially.

METHODS

Whole-Exome Sequencing
The sequence data were reanalyzed using our established trio sequencing protocols
(Zhu et al. 2015) that identifies qualifying variants forming novel genotypes not observed
in the parents or in a set of 13,119 controls or external databases provided by the
Exome Sequencing Project (ESP6500SI) (NHLBI GO Exome Sequencing Project; evs.gs.
washington.edu), and the Exome Aggregation Consortium (Lek et al. 2016). Samples se-
quenced at the Institute for Genomic Medicine (IGM) (previously the Center for Human
GenomeVariation atDukeUniversity) were collected as peripheral blood. Exome enrichment
was done using the SeqCap EZ Exome v3 (RocheNimblegen,Madison,WI). Sequencingwas
performed in the Genomic Analysis Facility on an Illumina HiSeq 2000. Please see
Supplemental Table S1 for sequencing coverage.

Our standard bioinformatics pipeline was used to analyze data. Briefly, the pipeline
uses GATK best practices, utilizing BWA 0.5.1023, picard tools 1.59, and the Unified
Genotyper from GATK 1.6-1124–26. Reads are aligned to the hg19 reference sequence
utilized in 1000 genomes phase 2, which includes EBV derived decoy sequences. Variant
calls are functionally annotated with SnpEff 3.327 using Ensembl build 73. All samples are
processed individually through the bioinformatics pipeline and single sample calling is
performed.

Variant calls are loaded into our internal mysql database AnnoDB and further analyzed
using our software Analysis Tool for Annotated Variants (ATAV). Newly homozygous calls
are made by comparing proband variant calls to parents and ensuring both parents have
a high quality heterozygous call at the site.
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