
UC Irvine
ICS Technical Reports

Title
Expectations of a high-level programming facility : some examples

Permalink
https://escholarship.org/uc/item/60h293pk

Author
Smith, David A.

Publication Date
1978-04-03

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/60h293pk
https://escholarship.org
http://www.cdlib.org/

EXPECTATIONS OF A HIGH--LEVEL

PROGRAMMING FACILITY" s

SOME EXAMPLES ^

\Pj

David Ai, Smith

Technical Report #121

Department of Information and Computer Science
University of California» Irvine

April 39 1978

♦This work was supported by the National Science Foundation under grant
#MCS75-13875A01.

Contents

Introduction

The Example Erograms

Philosophy of the Programming Assistant

Features of the Language, MPD

The Examples, Rendered in MPD

Concluding Remarks

Note: In this document a number of liberties are taJcen with the type
font in order to represent mathematical symbols and other special
characters,

(• •) denote braces;
I denotes vertical bar: 1
in, notin denote set membership:
or, not boolean/set operations:
gt, ge, 1^, 1^ comparison operators: >g > ^< , <
up. down up/down arrow; f ^ ^
lambda lambda: }\
all "for all": V

Expectations of a High-Level Frogramming Facility; Some Examples

Introduction

In order to make substantial progress in the area of automatic

software development, it is helpful to limber up one's imagination in

order to see where an automated programming assistant may be helpful.

This paper takes such an approach by considering a number of programming

problems and showing how solutions to these problems can be given,

suppressing a comparatively large amount of detail, and assuming a

a relatively large amount of knowledge and initiative in the programming

assistant. Of the many considerations in automated programming assistance,

the greatest emphasis in this paper is on enhancing the expressive power
of the human programmer. While practical considerations of implementation

must be addressed sooner or later, steps must first be taken both to

enrich and to unify the medium of program-expression. It is the purpose

here to propose language features and philosophy so that more programs

which are easy to think about will also be easy to express.

Although no attempt is made to give a formal language definition at this

point, the features proposed here can be attributed to a language which we

shall call MPD, Mathematical Programming Domain. It may well be:that the

programmer will have more than one channel or kind of eoiainunication .with the

programming assistant, MPD being used for the high-^lsvel description .of,.

programs, while other kinds of direction will,also be needed regarding new

semantic domains, or specific program implementations.

The Example Erograms

Four example prohlems were selected which illustrate the need for

expressive power in a programming languageo They can each be understood

with ease by a reasonably competent programmer and should therefore find

easy expression in a suitable high-level language. The problem definitions

below are in English, and are intended for human consumption only. The

problems themselves are stated somewhat incompletely, perhaps as the

problem might first be stated to the human programmer. Having proposed

language features (described below), we shall see how each of these problems

can be expressed without resort to extensive detail.

Problem A; Gross-Reference Program. The input to this program is

a text file divided into lines. The program prints this file with the

lines numbered. The program identifies the set of "identifiers" or "words"

which occur in the text and prints a summary, in alphabetical order,

showing for each identifier the line numbers on which it occurs in the

text.

Problem B; Minimal-Cost Spanning Tree. Given an undirected graph

where a nonnegative cost function is defined on the edges of the graph,

and given that the graph is connected, find a subgraph which spans all

the vertices of the original graph such that the sum of the costs of its

edges is minimal.

Problem G: Di.jkstra's Shortest Path Alg:orithm. Given a directed

graph where a nonnegative cost function is defined on the edges of the

graph, and also given a distinguished node VO, find for each node X

whether there is a path from VO to X, and if so find the path with the

minimum cost.

Problem D: Change Making Problem. Given a repertoire of coin values

(e.g., pennies = nickles = 50, etc.) and given a desired amount A,

count all the unique ways of making change for A using combinations of

any number of each kind of coin.

Philosophy of the If-ogramming Assistant

To an experienced programmer each of the above problems is fairly

clear in its meaning, although the "words" of problem A are not well

defined. In spite of some incidental ambiguities and the absence of

any precise definitions, the basic intent of each problem is understood.

This is because education or experience has given the programmer familiarity

with the concepts of "identifiers", sorting, following paths in graphs,

generating permutations and combinations, and so on. By analogy, we

would expect a "well educated" programming assistant to be conversant in

these and other common terms so that program steps involving their use do

not require excessive elaboration. A major provision (and a major problem)

in building a high-level programming assistant will be to permit regular

and orderly augmentation of the "education" of the assistant.

As An aid in conceptualizing the data structures in'a program.it

was occasionally useful to TOitean expression which "typically" represented

the form of the item, but which did not require the precision of a formal

declaration. For example, to show that an item x is a sequence of ordered

pairs one can write "x; ((al,a2), (bl,b2), ...)". These may be termed

"expository declarations" and are distinguished from formal declarations

since they do not have sufficient precision to serve as formal definitions.

Still, they are desirable since they are easier to write. In the present

examples all data declarations are written in this manner, although there

may be equally useful notations which are completely rigorous.

It should be clear that when we attempt to limit the information in a

4

channel of communication (i.e., from the programmer to the assistant) that

some capability must be lost. To a certain extent we can recover lost

precision of expression by relying on mutually understood ellipses in

frequently occurring cases. The philosophy of MPD is to go further,

however, and to expect the programmer to write programs which are compact

in expression and correct in a literal rendering of the algorithms, but

which may be inefficient if implemented in the most obvious or direct

translation from MPD statements. Transforming inefficient programs into

efficient programs is an important area of research, and in general the

problem is a very difficult one. It is hoped that once a "basic" version

of MPD has been defined that a class of first-level transformations can

be defined which are in fact a repertoire of implementations which are

keyed to certain subsets of operations which have been used, or to certain

patterns of reference. It may be said that the algorithms described in

the examples of this paper are somewhat "optimized" versions of very

abstract programs which would be horribly inefficient. It is not the

object here to place an impossible re-programming burden on the transformation

and optimization phase of the programming assistant but rather to increase

the expressive power available to the programmer and to provide a certain

level of "coverage" for him as he takes expressive shortcuts.

In general not too much consideration has been given to possibilities

for syntactic ambiguities in MPD» In the process of language definition

it is always possible to require keyword-type lexemes here and there to

keep things straight, but while these make the job of the parser easier,

they place "unnatural" constraints on the programmer and hence are an

Impediment to expression. It is expected that the programmer will not

get into trouble very often, and when he does he can be informed of the

of the ambiguity and be asked to> clarify it by suitable parenthesisation

or other revrriting. It is the intent of the design of MFD always to allow

ellipsis of some operators when the meaning is "clear". The goal here is

to make the interpretation of MPD expressions as flexible as possible. It

is also intended that explicit, fully qualified forms of expression be

available when necessary. MPD should also do as much type checking as

possible within the declarations available in order to help avoid obvious

errors. It should also be possible to check different references to the

same data for consistency with respect to data types.

Features of the Language,

We assume the availability of the primitive data types, operations,

and statements shown in Table 1. Note that the scoping of nested statements

in MPD is determined by textual indentation. The language elements in

this table are not intended to be definitive, but merely to provide a

vocabulary for the remaining discussion in this paper. The remainder

of this section describes the basic data structuring techniques of MPD

sets and sequences, after which some meta-operators are introduced. The

higher-level concepts of relations and graphs are then presented using

sets and sequences. There remains more work to be done to unify the

ideas of input/output, co-routines, and formal grammars.

A set is an unordered collection of values. A set with a fixed number

of elements is an unordered n-tuple. Membership in sets is determined by

value. If unique objects are to be created and moved around where their

presence in one place or another is a matter of concern, then some attribute

must be attached to each item and assigned a unique value as the item is

created. For graphs a particular scalar value can be designated as the

"identity" of a given node. The elements of a set need not all be of the

Table 1.

Basic Data Typess Operations, and Statements

Data types

real: min,ma^,!x! (absolute value)
integer: mod,min.max,IxS (absolute value)
boolean: &,or,not

character

Comparison operators (yield boolean values)

Statements

V := expr

while expr ^
e a 0

if expr then ..e
e 6 •

else o 0«

Abbreviations

V

V

V

V

V

:+ expr

expr

;or expr

:& expr
:not

means v i= v + expr

means v := v - expr

means v := v or expr

means v := v & expr
means v := not v

of the same type, although this is probably the typical case. Table 2

shows the operations that can be used with sets.

A sequence is an ordered collection of values. A sequence with a

fixed number of elements is an n-tuple. The elements of a sequence need

not all be of the same type, although this will happen frequently. Simple

Pascal records are nonhomogeneous n-tuples. A homogeneous n-tuple is like

an array, but a more general concept of arrays will be presented below.

Table 3 shows the operations that can be used with sequences.

It seems convenient to make no distinction between a single item

and a sequence which is a 1-tuple. This makes definitions pertaining to

relations (below) easier to state, and makes pcirentheses unambiguous when

they are used for arithmetic grouping in expressions. A singleton set,

however, is distinguished from the single item by itself.

We have seen that the meta-operator "j" is used with monadic and

dyadic operators to denote various abbreviations for the assignment statement.

(The assignment statement itself "s=" is an exception.) These can be

generalized as follows:

V :(dyadic op) expr means V ;= V (dyadic op) expr

V .'(monadic op) means V ;= (monadic op) V

(There is some syntactic ambiguity in the precedence of the "(dyadic op)"

and "(monadic op)" in the right hand statements, but this is a detail.)

Another meta-operator is necessary to indicate that an element operator

is to be "distributed" insid® a compound data structure. This is the

character " and has a monadic as well as dyadic use;

A '(dyadic op) E means that A and B are Isomorphic structures
and that the result of this expression is a
similar structure formed by applying the
(dyadic op) to corresponding pairs of elements,

'(monadic op) S denotes a value isomorphic to 3, but with
(monadic op) applied to each element of S.

declarations;

predicates:

constant:

expressions;

statements:

expression. •
abbreviations;

statement

abbreviations;

Table 2.

Notation for Sets

Ss(t^-) or S;(-tlst2 9 0 0 8 9 tn-)

S1=S2, S1;^S2, SI It S2, SI 1^ S2, SI gt S2, SI ge S2
X in S, X notln S

^ (the null set)

SI or S2, SI & S2, S1-S2
(•xljX2 xn-) = the set formed from the enumerated elements
IS! = the number of elements in S

(•all t") = the set of all values of type t

V ;= S

all X ^ S ^ (the indicated statementsj, containing
"x" as a free variable, are executed

once for each element x inS)

s- *4: X means S or (x^
s X means S - (X') •

V :or S means V ;= V or S

V :& S means V := V & S

V S means V := V - S

V ;+ X means V := V + X

V X means V ;= V — X

S: a set expression
V; a set variable

x: an element expression
t: a type

Table 3«
Notation for Sequences

declarations:

predicates s

constant s

expressions:

S;(t^) or Si(tl,t28 ... stn)
31=32, ,Si;^S2

0 (the sequence with no elements)

31 • 32

i 3!

xl..x2

3(1), 3(2)
(xl,x2, ..
'message®

= concatenation of 31 and 32
= the length of 3
= the sequence of Integer values xl..xn

, ... = the elements of S
. ,xn) = the sequence of enumerated elements

= a sequence of characters

statements j V ;= S

all X in 3 do (the indicated statements, containing
x as a free variable, are executed
once for each element x in 3^' in order)

expression

abbreviations: 3 + x
— S

statement

abbreviations: V :! 3

V s+ X

V ;~

S: a sequence expression
V: a sequence variable
xs an element expression
ti a type

means 3 1 , (x)
means (3(2), ... ,S(!SS))

means V := V ! S

means V := V + x

means V := — V

10

This meta-operator can also be used with "(" and in various contexts.

The distribution meta-operator makes explicit the process available in APL

which distributes a scalar operator into a vector or matrix. This can be

elided in MPD when the application of the operator to the structure as a

v/hole is not defined. Explicit notation is necessary in certain cases to

cause a structure operator to operate on lower level elements (which are

structures themselves). For example, we can give an alternative definition

for the "tall" operator on sequences, as follows:

~S = S«(2..!S!)

Distributing a dyadic operator into two sets is not defined, since there

is no structure in the sets to say what elements should be paired.

The reduction meta-operator "/" is stolen directly from APL, and can

operate on sets as sell as sequences, "(dyadic op)/ S" can be used whenever

"(dyadic op)" is an associative operator which returns a value of the same

type as its arguments. The meaning of this statement is the same as if

all of the elements had been written on a line with "(dyadic op)" between

consecutive elements in the list. For example,

max/ S = the maximum of all elements in S, and

+/ S = the sum of all elements in S.

A general control statement is proposed for NPD which implies exhaustive

search, which (upon guided optimisation, if necessary) may be reduced to

more efficient code in special cases:

find X in S ^ P(x)

find X in S st mir F(x) or min x in S: F(x)

find X in S st max F(x) or m^ x in S: F(x)

Each of these constructs can be used to designate a value (in an enclosing

expression) or to assign a value to "x" for use by subsequent statements.

The first statement finds an instance of x which is an element of S and

11

which satisfies some predicate, P(x)o The value returned is jZi if there

is no such x. The second and third statements find a value of x such that

some function of x, F(x), is minimized or maximized. If the result is

ambiguous — that is, there is more than one appropriate x in S — then

the set of values can be designated as follows:

find (x 3^ S-) st P^x) or find y=tx in S') st P(x)

find fx ^ S-) st min F(x),or find y={-x in S-) st min F(x)

find fx in S-) st max F(x),or find y=fx in S-) st max F(x).

^ relation is defined to be a set of n-tuples. The n-tuples must all

be of the same length, and for each i, the i'th component of all n-tuples

must be of the same data type. If for a given i there is at most one

n-tuple with a given value in component i, then the relation is said to

be functional on component i. In addition to the set notation for dealing

with relations as sets of n-tuples, we introduce some additional notation

which is familiar and handy for programmers.

R(x1, ... ,xn) means the expression "(xl, ... ,xn) in R"

r(x) requires that R be functional on component 1.
The meaning is as follows:

find v in R st y(l)=x
if then the result = ^
else the result = y''(2..!yi)

R(x) ;= expr requires that R be functional on component 1,
The meaning is as follows:

find y In R st y(l)=x
if then R :— y.
R s-s- xlexpr

Rfx-) This doesn't require functionality. The
meaning is as follows;

find z=fy R-) st y(i)=x
the result = z'(2..n)

Rfxf := expr ' This doesn't require functionality. The
meaning is as follows (expr is a set of
n-1"tuples):

R x'!R{-x-)
R :or X°!expr

12

r(^) The sequence of all elements of R (n-tuples)
with their first elements sorted in
increasing order.

R(2up.down) The sequence of elements of R (n-tuples)
sorted in decreasing order on the second
element. Within groups having the same
second element, the first elements are
sorted in increasing order.

The R(x) operations provide for generalized arrays or functions. Note

that if R consists of ordered pairs, then R(xi) is a 1-tuple, (:^2), which

is just the single item x2i. , The component being "indexed 'on.", can be more

general than integers; using character strings, for example, one has an

instant dictionary notation. These notations can be extended by using

other components than the first. For example if R has two components and

is functional on both of them, then the inverse of R(x) can be written R(,x).

The R(x') operations can be used for operating on a directed graph — for

example, collecting all the sons of a node in a tree. It is convenient

to use special notation when declaring a relation that is used as a function.

For example, the following are equivalent;

R: { (tl,t2)^ •) and R; tl t2.

The facilities described above can be used to give mPD the mathematical

definition of a graph. A directed graph is a pair (V,E) where V is a set

of vertices (possibly whose only property is that they are distinguishable

from each other) and E is a set of ordered pairs of elements of V. We can

tag the vertices with information using functions, and we can do the same

with edges. Notice that in implementation the identity of vertices can

be established by pointers, or by integer values. Edges can be pairs of

integers, or may not even be used explicitly. Relation notation can be

used for traversing a graph. A path can be defined as a sequence of vertices,

or as a sequence of edges.

13

The libcamples, Rendered in Mud

This section discusses the four example programs ^ as they can be solved

using the language features of MPD<, They show that the concepts presented

in the preceding sections are useful in defining the required data

manipulations o

Table ^ shows an implementation of the Gross-Reference Program« Line 1

is a prototype statement showing how the program "xref" is to be called. This

statement shows that "xref" is used as a function of one argument, "input"

(a sequence of character strings), and yields a value, "output" (also a

sequence of character strings). Line 2 in its literal interpretation takes

the entire input sequence and forms a sequence of ordered pairs, assigning

a line number to each input line. Line 3 causes the program to sequence

through these.numbered lines. Line k causes each line to be printed with

its line number. Line 5 uses a function, "translate" (undefined here),

which takes the line and produces a sequence of tokens (themselves character

strings). It is intended that provision be made in MPD for defining such

lexical mapping using regular expressions or perhaps, more generally,

with formal grammars. Line 6 builds the dictionary," each dictionary entry

is a sequence of line numbers. Line 7 causes the dictionary to be rendered

as a sequence of ordered pairs, sorted on the tokens in increasing older.

The remaining lines of the program print each token along with the list

of references to that token. Provision is made for the list to occupy

more than one output line. It would seem from the comparative awkwardness

of the code that generates the output that something could be done to express

the same function more economically — perhaps also along the lines of

regular expressions or a formal grammar.

Table 5 shows an implementation of the fiinimal-Cost Spanning Tree

program. Line 1 is a prototype statement declaring the output value T

14

Table 4,

Gross-Reference Erogram

1 define output; ((char^)^) s= xref(input: ((char^)^))
2 temp := '((l.Jinput!), input)
3 3-11 (linenumbersline) in temp do
4 output :+ char 5(UnenumberT^! ! line
5 all token translate(line) ^
6 diction^y(token) linehumber

7 3.11 (id, linelist) ^ dictionary(up) do
8 line := id

9 all n 3^ linelist ^
10 If !line!+6 gt 132 then
11 output line? line :=
12 line : ! char 5(n)
13 output :+ line

Table 5>
Minimal-Cost Spanning Tree Program

15

1 define Tj^ {-vlsVZ-) •) j= minspan(V:(v -J, Esf 4^1.v?.-). •)-» G: E real)
i XI

2 T J= ^
3 P :=

temp ;= G(,up)
5 all (4^1 (V^, c) 3^ temp ^
6 find pi ^ P sjt vl ^ pi
7 find p2 P ^ v2 ^ p2
8 IP pi / p2 then
9 T 2+ 4^1»v2")
10 P 2= P — pi — p2 + (pi or p2)

16

(a Bot of edges) and the input values V (a set of nodes), E (a set of edges),

and G (a function from E into the real numbers). Line 2 initializes T

to the empty set and line 3 initializes P (a partition of V) to the finest

partition of V, all singletons. Line ^ sorts the edges on increasing cost.

Line-5 sequences through these edges in increasing order, and lines 6 and

7 find the partitions containing the endpoints of each edge. If these

partitions are distinct, then they are coalesced and the edge under consider

ation is added to T. Although the MPD formulation of this program suppresses

a lot of significant detail from the point of view of execution efficiency —

in particular the "find" operations on lines 6 and 7 — it should be noted

that this program is a complete formal solution to the problem.

Table 6 shows an implementation of Dijkstra's Shortest Path Algorithm.

This program assumes the availability of a real value "infinity", 00, which

when added to any finite real number yields infinity," comparisons will

always show "infinity" to be greater than any finite real number. Lines 1-3

define the function "cost" of a path in the graph. Note in line 2 the use

of in-line lambda notation to define a function to be distributed across

the sequence y. This causes an undefined edge in the path to make the

path cost infinite. Lines 6 and 7 initialize the data structure D which

thnroughout the algorithm contains the shortest known path from VO to each

vertex. The set N, initially empty from line 5, identifies the set of

vertices whose paths in D are known to be minimal. Line 9 finds the

"closest" vertex not in N, and the path to it which is recorded in D is

taken to be minimal. Hence this vertex is added to N in line 10 and all

of D is updated to reflect possible shortcuts through this vertex. When

N has grown to include all of V (line 8), the algorithm terminates. This

implementation of Dijkstra's shortest path algorithm is comparable in

complexity to the Algol/English description found in Aho, Hopcroft, and

Table 6.
Dijkstra's Shortest Path Algorithm

^ define xsreal cost(ys ((vl,v2),))
2 temp := lambda x (_y; x ^ E then ctx) else oo) °(y)
3 X 8= +/ temp

17

4 define D;S->(E) dijk(E:((vl,v2). •), VO V, GsE-^real)
-J- 11

5 N 0
6 V in V—VO ^
7 TvOjv) 1^1 E then D(v) ;= (VOsv)

8 while N V ^
9 find w ^ V-N £t min cost(D(w))
10 N :+ w

11 all V in V-N ^
12 B(vT"-°= min jx in ('-D(vj^ I)(w)t('Wf)v).). -cdst(x)

18

Ullman (p. 208)» The three MPD lines defining "cost" do not appear in the

Algol/English version, since this function is defined in the text description

of the program. The >^0 program has the added power of keeping track of

the actual paths, and not just their costs, and has the advantage of

being completely precise without^, the use of English.

Table 7 shows an implementation of the Change Making Problem. Lines 1

and 2 define a function which calculates the value of a sequence of coin

values. The main program,itself, "count", takes as input a sequence of

coin denominations and a total desired amount. For output it produces a

count of the number of ways of making change, and a list of coin combinations.

The program calls a recursive procedure, "makechange", which builds a list

of trial combinations. This procedure generates and tests all coin

combinations whose total value is less than or equal to A. This illustrates

quite well the convenience of MFD notation for building and sequence x in

successive recursive calls, and also demonstrates the flexibility of building

the output data structure "combinations" as a sequence v/hich can then be

handled in whatever way is desired.

Concluding flemarks

The programming examples considered here have demonstrated the usefulness

of well-defined higher-level operators based on familiar notions of mathematics

and programming. Programs written using these language concepts are brief,

fairly easily understood, and are semantically precise. On the other hand,

by suppressing programming details the implementation implied most literally

by a MPD program may be quite inefficient and quite remote from the program

that would be written by a programmer with more leisure in which to write.

It is the intended thrust of this research to continue by investigating

techniques for making MFD programs run efficiently, and for augmenting in a

Table

Change Making Problem

1 define xj integer 3= value (x: (integer
2 X := +/ x°Mfenominations(1.0 !x!)

3 define nways; integer, combinations: ((integer.).)
count(denominations: (integer^), A: integer) ^

^ nways s= 0; combinations := 0
5 makechange(^)

6 procedure mcLkechange(x: (integer^))
7 !x! = Idenominations! then
8 if value(x) = A then
9 combinations :+ x; nways :+ 1
10 else "discard combination"

11 "• else X :+ 0

12 while value(x) le A do
13 makechange(xTr x^x!) :+ 1

19

20

uniform way the knowledge domains and "bag of implementation tricks" of

the programming assistant.

Some areas of interest also remain as refinements to the linguistic

attributes of MPD considered in this paper. These are in the areas of

input/output specification, the use of formal grammars, data declarations,

and in the area of MPD disambiguation and more flexible language processing.

STUDENTS ASSIGNED TO SURGERY

To help us evaluate the teaching ability of the lectures in Surgery in
a more objective and critical fashion, we would appreciate if you could
take time to fill out this evaluation. These evaluations are an attempt
to help the individual lecturers pinpoint their deficient areas and apply
corrective procedures. Please write in the number which indicates the
degree you feel descriptive of the instructor.

1 is very poor; 2-3 is average; k is above average and 5 is superior.

NAME OF LECTURER

Weight 1 through S

is) Preparation of lecture

(5) Presentation of lecture

(5) Organization of lecture

(5) Relevance of material (to esoteric, to
basic, practical, etc.)

(5) Involvement of group (questions, discussion)

(3) Use of blackboard or visual aids

(3) Reference to other sources, periodicals
regarding subject

Additional comments or suggestions....

Please return to: Surgery Administrative Office, Room 207, Bldg 53.

