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L GENERAL INTRODUCTION 

Solid state electrochemical methods were applied to the study of 

the thermodynamic properties of Ga.-In-Sb liquid alloys. The experi­

mental investigations on the ternary required that the available 

data on two of the corresponding binaries be verified. The In-Sb 

system has been investigated quite thoroughly by Terpilowsky,l 

Hoshino et ~1.,2 and Chatterji and Smith3 using liquid and solid 

electrolyte techniques. Also, the Ga-Sb s~stem has been experimentally 

explored on a limited basis by Danilin and Yatsenk04 using an electrolyte 

technique, adding to the earlier study by Schottky and BeverS through 

liquidus measurements. The Ga-In system has been somewhat more 

thoroughly explored by Klinedinst et al. 6 using a solid state electrolyte 

technique, by Svirbely et al. 7 using studies of the liquidus as 

determined by resistivity measurements, and by Denny et al. 8 using 

cooling and melting studies of given alloy compositions followed by 

metallographic examination of the quenched· alloy melts. 

The liquidus in the Ga-In-Sb ternary system has been explored 

experimentally by Koster and Thomas. 9 Component activities in the 

ternary system have been calculated by Blom and PlaskettlO using 

activity data for In-Sb, Ga-Sb,and In-Ga,activity data for the 

InSb~GaSb psuedo-binary, and liquidus data for the ternary. In this 

study, activities of gallium in the Ga-Inand Ga-Sb systems were studied 

·further and the gallium activities in the Gaxlnl_xSb system studied ·for 

a gallium rich alloy. 
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Recent work on the Ga-In-Sb system was spurred on by the important 

semiconducting properties of the intermeta11ics GaSb and InSb and by 

Gunn-effect device applications of Ga In1 Sb solid solutions. The x -x 
semiconducting properties of GaSb are much like those of Ge or are superior. 

Also, both GaSb and InSb are good candidates for light emitting diode 

(LED) materials in the infrared region. The interest in InSb is 

mainly due to the Gunn effect exhibited when a magnetic field is 

applied. The greatest interest is in GaxInl_xSb as a Gunn-effect 

device material. 1l - 13 Gunn-effect devices are useful for the 

amplification of small signals, generation of microwave signals, and 

generation of microwave power. 

Studies of Ga Inl Sbhave shown the Gunn effect for the composition x -x 

range 0.3<x<0.54. 16 The important characteristics of Gunn effect 

materials, such as the bandgap between the valence and conduction bands 

and the energy separation of the sub-bands of the conduction band, have 

been studied by a number of methods. 17- 22 From such data, as described 

above, and from Monte Carlo calculations of the characteristics important 

to the operation of Gunn-effect devices, Hilsum and Rees 12 have 

theorized that Ga Inl Sb with 0.7<x<0.95 will have very favorable x -x 
Gunn-effect characteristics due to electron transfer between 3 sub-

bands in the conduction band; in GaAs, the Gunn effect depends on 

transfer between two sub-bands. As of 1970 efforts to fabricate a Gunn-

effect device from Ga In1 Sb have failed for values of x>0.55. The x -x 
failures have been attributed to the lack of sufficiently lightly 

doped n-type Ga In1 Sb. 12 x -x 
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Because of the interest shown recently in the quasi-chemical 

treatment, a closer examination was accorded this treatment and its 

derivation. By using mathematical procedures described by Guggenheim,23 

the quasi-chemical treatment was extended to next-nearest neighbors 

and third nearest neighbors for a simple cubic lattice. Though the 

mathematical procedures of Guggenheim were followed, a new method of 

bond counting was used. This difference led to a conclusion different 

from that reached by Guggenheim regarding the consolute temperature. 

In addition, by going to higher order approximations, the quasi-chemical 

model was shown to yield activity coefficients approaching those of the 

a-parameter model (i.e., oth order quasi-chemical model). 
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I I. THEORY 

A. Introduction 

The study of the activity of Ga in Ga-In, Ga-Sb,and Ga-In-Sb melts 

was conducted with the use of solid oxide electrolyte. Use of such 

oxides for the purpose of determining Gibbs energies at elevated 

temperatures was pioneered by Kiukkola and wagner. l These materials have 

since been used for the measurement of the Gibbs energies of formation 

of many oxides l -9 and the partial molar Gibbs energies of components 

of alloys!,2,10-15 

B. The Nernst Equation. 

As in emf measurements in aqueous electrolyte applications, 

the interpretation of high temperature solid oxide electrolyte emf 

measurements util izes the Nernst equation. In the system used here, the 

relevant equilibrium for the development of the Nernst equation is the 

one that concerns the formation of Ga203 form 02 and Ga(s)' The cell 

is the following: 

A B 
wlGa,Ga203l1solid oxide electrolytellGa203, GaAlloylw . 

The Gibbs energy of formation of Ga203 is expressed for either 

hal f-cell as: 

~GO = ~Ga ° + 6~ _ - 2~Ga - 3~ 2-
2 3 e ° 

Thus, 

(1) 

(~Ga ° -~Ga ° ) (2) 
2 3B 2 ·3A 

t'. 
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~ _ - ~ _ = ~G = -FE 
eB eA e 

aGa 
RT ln _. _B 

~Ga - ~Ga = a
Ga B.A A 

Choosing pure Ga as the reference state gives: 

= 1 

(3) 

(4) 

(5) 

In the experimental situation given; the Ga203 remains the only solid 

and the Ga and Ga-alloy are liquid so that the following holds: Since 

the electrolytes used are predominante1y conductors of 02- ions with 
2 . 

transport numbers of 0 - better than 0.99, if the external circuit 

represented by the emf measurement circuit has a resistance greater 

than a factor of 103 of that of the internal resistance of the cell to 

minimize meter loading, then 02- will equilibrate between the two 

half-cells giving: ~ 2- = ~ 2-· Under the above conditions, Eq. (2) 
0B 0A 

reduces to: 

3FE 
1n aGa(alloy) = - RT (6) , 

Thus, the gallium activities' can be obtained from the measured concentration 

ce 11 voltages. 
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C. Solid Oxide Electrolytes 

Solid oxide electrolytes are materials which carry current 

predominately in the form of doubly negatively charged oxygen sub1attic.e 

vacancies. The theory for the conductivity of these materials is 

t d . 1 th 1· 16-20 d 1 b· . f . f h presen e 1n severa 0 er p aces, an on y a r1e reV1ew 0 t e 

material is presented here. 

The crystals of interest for use as solid electrolytes are those 

ionic crystals with a large band gap between the valence and con-

duction bands,serving to minimize electronic conduction. The conduction 

in such cases is due to the existence of charged defects., Ionic 

conduction was first studied in pure crystals. In those crystals, the 

defects are created by thermodynamic equilibrium which result in 

either pairs of interstitial atom and lattice vacancies (Frenkal defects) 

or pairs of cationic and anionic sublattice vacancies (Schottky defects). 

The interstitia1s and vacancies are subject to diffusion and thermal 

motion. Thus, the motion of these defects is random. However, once 

charged and subjected to an extern~l electric field these defects no 

longer move randomly but with the field, giving rise to the ionic 

current. In pure ionic crystals where Frenkel defects dominate,the 

ionic current can be due to chargedinterstitia1s, charged vacancies, 

or both, since the diffus;vities of these defects are not in general 

equal. The same is true in crystals dominated by Schottky defects. 

These crystals, as ionic conductors, are normally highly dependent 

on the partial pressure of one of the components over the crystal and 

as such are ionic conductors over only a narrow range of partial 

pressure of that component, usually the anionic component. 
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To be useful for thermodynamic measurements, the charge carrier 

must not be ambiguous but rather a single species. In order to 

ride the electrolytes of Zr02 and Th02 0f the objection of a narrow P
02 

range and to minimize the ambiguity of the current carrier, CaO and Y203 
are used to dope the electrolytes. The effect is to replace the 

tetravalent Zr and Th with the divalent Ca and trivalent Y. The effect 

is to create oxygen sublattice vacancies. By so doing, the Po range 
2 

is broadened since the concentration of the oxygen vacancies is not 

dependent on the Po over this range. Furthermore, the concentration 
2 . 

of the one defect is increased greatly over that of the other of the 

defect pair~ so that this defect when charged becomes the dominant 

defect for ionic conduction purposes . 

. O. fo Range ofCSZ and YOT 
·2· 

A number of investigations have been conducted on earlier stabilized 

zirconia and yttria -'doped thoria to this date concerning the optimal 
.' .. . d . P 21-25 Th . f f h composltlons an accompanYlng 0 range.. e maln eature 0 tese 

2 
studies is the fact that the conductivity of the electrolyte increases 

as the doping oxide content is increased until the doping content 

reaches about 15 cation percent,at which point the conductivity asa function 

of doping oxide begins to decline. This behavior is expected since 

the doping initially increases the anion vacancies available for ionization 

and conduction and at some point further doping destroys the. crystallinity 

of the tetravalent oxide lattice leading to a decline in the conductivity. 

Of itself,maximum conductivity is highly desirable in a solid 

electrolyte. However, increasing the doping oxide concentration has the 

added benefit of extending the useful Po range of the electrolyte, 
2 



SUbject to the same upper dopant concentration. limit. Thus 

ZrO.85CaO.1501.85 (CSZ) and ThO.85YO.1501.925 (YDT) have been the most 

studied compositions and are the electrolytes used here. 

Figure 1 shows the conservative and liberal lower oxygen partial 

pressurelirilits to the electrolytic domain of CSZ as derived from the 
2622 24 data of Schmalzreid and Patterson et al. by Patterson. This 

figure shows that the Po in equilibrium with Ga in the temperature 
. . 2 

range of interest (T<lOOO°C) does not lie within the electrolytic domain 

of CSZ as defined by the conservative lower limit. This limit is derived 

from the earlier work of Schmalzreid.
26 

The later work of Patterson, 

Bogren and Rapp,22 Patterson~4 and Tretyakov25 define domain boundaries 

which place that part of the Ga203 - Ga - 02 equilibrium of interest 

in the electrolytic domain of CSZ. Included in Fig. 1 is the lower 

Po electrolytic domain boundary of YDT as derived from the data of 
2 28 29 . . 30 

Tretyakov and Muan, Hardaway et al., and LaVlne and Kolodney 

by Patterson. 24 

Plotted also in Fig. 1 are the standard Gibbs energies of formation as 

a function of temperature of the various oxides of the species of interest 

based on a single mole of 02' The Gibbs energy of formation of the oxide 

of gallium and the oxide of indium are obtained from the data of 

Klinedinst and Stevenson. 2,3 The data for gaseous suboxide of gallium, 

Ga20(g), is derived by Seybolt. 15 The data for the solid suboxide of 

gallium, Ga20{s), and the most stable oxide of antimony are derived from 

Coughlin. 31 From this graph it is obvious that for the temperature 

of interest (600°C<T<1000°C), the sequioxide of gallium, Ga203 is by 

far the most stable. This implies that the formation of the other oxides 

.. 
/ 
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is so heavily disfavored that Ga203 is the only solid to exist in the 

presence of the Ga and Ga-alloy melts studied here. 
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Fig. 1. Gibbs energies of formation on a molar 02 basis are compared to 
the lower 02 partial pressure 1 imits for ionic conductivity of oxide 
electrolytes. 
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III. EXPERIMENTAL APPARATUS AND PROCEDURES· 

A. Introduction 

In order to study the activity of Ga in high temperature melts 

using a solid oxide electrolyte technique it is necessary to exclude 

other sources of oxygen by making measurements either in a vacuum or 

in a high purity inert gas atmosphere. Since oxygen is the important 

component in electrochemical cells using the above technique; a very 

low oxygen partial pressure is necessary over the molten electrodes. 

Because of the simpl iclty of building and maintaining a gas tight system 

and purifying argon to the requisite purity as compared to an equivalent 

vacuum system, measurement under an inert atmosphere was chosen. 

Complicating factors are the need to introduce electrical leads 

into the molten el ectrodes arid the necessity to separate the atmospheres 

of the two molten electrodes. l 

B. Ga- In Cell 

1. Apparatus 

An unscaled schematic of the cell is shown in Fig. 1. The main cell 

body was an 18in. long tube of high purity recrystallized alumina 

1 1/2 in. 00,1 1/4 in~ 10, closed at one end. The open end was sealed 

to a water-cooled stainless steel head with a buna rubber O-ring. Three 

ceramic tubes were passed through the lead at the vertices of an 

equilateral triangle inscribed in a 3/8 in. radius circle centered on 

the head. These ceramic tubes were sealed to the head with viton O-ring. 

* Morganite refractories~ 
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The inner ceramic tube, which served as the reference electrode 

compartment, was a slip cast high purity calcia stabilized zirconia, 

ZrO.85CaO.1501.85' (CSZ) tube.* Centered in this tube was a 1/8 in. 00 

high purity alumina thermocouple insulator through which the high 

purity argon was introduced at a point near the closed'bottom 

of the CSZ tube,as shown in Fig. 1. A tungsten electrode lead 

was also run through this insulator to the bottom of the CSZ tube. The 

open top of this CSZ tube was sealed to a 1/4 in. stainless steel 

Swagelok tee with a teflon front ferrule backed with ,a nylon back 

ferrule. The 1/8 in. tube was run through the tee and sealed also with 

teflon and nylon ferrules to a 1/8 in. Swagelok reducer swaged to the tee 

(see Fig. 1). The side port from the straight run of the tee was the 

gas outlet for the CSZ tube venting the gas to a mercury vapor trap. 

The 1/8 in. tube was sealed to a second 1/8 in. reducer swaged to a 

second 1/4 in. Swagelok stainless steel tee, then the 1/8 in. tube was 

run through the straight run of the tee. The second run of the straight 

run was sealed to a short length of pyrex tubing. The 1/8 in. pyrex 

tube was ended within the pyrex tube with the tungsten wire extending 

completely through the pyrex tube. The open end of the pyrex tube was 

then sealed with black sealing thus forming a seal through which the 

tungsten lead was extended but which did not seal the 1/8 in. tube. 

The inlet gas was introduced through the side port of the second tee, 

routed by the tee configuration to the pyrex tube and into the 1/8 in. 

alumina tube. This configuration allowed a positive gas circulation 

* Zircoa Corporation. 
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in the csz tube electrode leads which were isolated from the stainless 

steel swage10k parts, and seals which were vacuum tight. 

The second ceramic tube was made of high purity a1umina.* This 

tube had both ends open and serves to transport the high purity argon 

blanket gas to a point near the bottom of the main cell body. In 

addition, the second electrode lead was threaded through this tube. The 

top end of this tube was sealed to one arm of the straight run of a 

1/4 in. stainless steel swagelok tee. The other arm was sealed to a 

short piece of pyrex through which the tungsten lead was threaded. This 

pyrex tube was sealed as in the assembly of the CSZ electrode. The 

electrical lead for the sample electrode was warpped around the tip of 

the CSZ tube to insure good electrical contact with the sample liquid 

alloy. The side arm of the tee was the inlet for introducing the high 

purity argon to the tube. 

The third ceramic tube was similar to the second tube except that 

the bottom end was closed. This tube served as the thermocouple well. 

The gas outlet for the main cell compartment was a 1/8 in. tube 

welded to the center of the lead. This also led to a mercury vapor 

trap. 

As the bottom of the main cell body was hemispherical, a flat 

platform. made of alumina was placed at the bottom. On this platform 
. ** 

was placed a crucible made of high purity crystallized alumina, 26 mm 

in height and 18 mm in diameter, containing the alloy electrode. 

* McDanel Refractory Porcelain. 
** Morganite Refractories. 
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The furnace was wound with Kanthal A-l wire and powered bya proportional 

controller utilizing a triac gate, which controlled the temperature of 

the region of the sample to 0.5°C. The cell was maneuvered in a position 

such that with shunts across the appropriate section of the furnace 

windings, the region of the crucible had a vertical temperature 

variation of ±0.5°C in the sample region. In later runs to alleviate 

the laterial temperature variation which must exist in a cell of this 

geometry due.to natural convection of the gas, two baffles were used. 

These created a small compartment for the crucible, a second small 

compartment above that compartment, and finally, a compartment which 

was the remainder of the main compartment. Also, initial runs indicated 

the necessity of a ground shield which was installed to alleviate 

pick-up of noise from the furnace windings. 

The temperature was measured with a chromel-alumel thermocouple 

referenced to the melting point of ice. The thermocouple and cell 

emfs were read with a Leeds and Northrup K-3 potentiometer. Figures 2 

and 3 show the temperature control and gas manifold systems. 

The high purity argon gas was provided by purifying argon with a 

Centorr gettering furnace. This furnace purified argon at rates of 

20 standard cubic feet per minute to less than 0.001 ppm by gettering 

the argon over titanium at 800°C. The total flow of argon through 

the gettering furnace for this experiment was less than 1 standard cubic 

feet per minute. Since the equilibrium partial pressure of O2 over 

titanium at 800°C is 10-39 atmospheres, and the equilibrium partial. 

pressures of other impurities are equally low, the argon purity 

is considerably lower than 0.001 ppm due to the increased residence time 

in the gettering furnace. 
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The distribution system for the argon was made of 1/4 in. stainless 

steel tubing using stainless steel Swagelok fittings where necessary. 

The gas flows were metered to the two electrode compartments. 

The gas flow-rates were 0.12 and 6.0 cc/min in the reference and sample 

compartments respectively, values selected to provide one compartment 

volume at 23°C per hour. The compartments were isolated from the gas 

source by Nupro bellows shut off valves. The final connections, from 

the shut-off valve to the compartment gas inlets, were made with corrogated, 

flexible stainless steel tubing with 1/2 in. nominal 0.0. 

2. Procedures 

The reference el ectrode was formed by dropp.i ngfi rs t Ga203 powder of 

4-9 1 s purity* and second molten Ga of 6-9 1s purity** into the bottom of 

the CSZ tube .. The reference electrode was placed in position in the 

head,and the gas delivery and lead feed-through assembly was sealed 

tri the top of the tube . 

. The other two tubes were positioned similarly,with the sample 

electrode lead fed through the appropriate tube. The end of the sample 

electrode lead was wrapped around the tip of the CSZtube. The tip of 

the CSZ tube was placed in the crucible containing carefully measured 
** amounts of Ga203 and In of 5'"-9 I S purity. To secure the pos iti oni ng 

of the crucible, the crucible was wired to the thermocouple tube with a 

short piece of tungsten wire. This assembly was then placed in 

position in the main cell body and sealed to the main cell body by the 

O-ring seal. 

* Ventron Corporation. 
** Cominco American. 
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The assembled cell was positioned in the furnace, and the gas 

connections were made using teflon and nylon ferrules to alleviate the 

need for large torques on the ceramic tube. The cell compartments were 

then purged for 2 hr with the purified argon at rates of at least 

50 compartment volumes per hour. Since argon is slightly denser than 

the major components of air, Ar was delivered to a point near the bottom 

of the respective compartments. Since the gas outlet was at the top 

of the compartments, the gas atmosphere at the end of the purge period 

had the purity of Ar delivered by the gettering furnace. 

At this point the gas flows were reduced to values corresponding 

to a single compartment volume per hour and shut off. The cell 

temperature at this point was raised to the cell operating values. 

Initially, the cell temperatures were raised and lowered rapidly, 

but problems due to the low value of thermal shock resistance of CSZ 

necessitated much lower temperature elevation rates. 

No set procedure for making measurements was established since for 

this system there did not appear to be any dependence on the thermal 

state of the previous measurement. However, in order to faci 1 itate 

comparison with the data of Klinedinst, cell emfs were measured at 

temperatures of 800°, 850°, 900°, and 950°. One difference was that 

in this study no gas flow was used except when initially purging the 

cell and when the cell temperature was being lowered. Thus, in general, 

all data points represented a condition of no gas flow in the system. 

,. 
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C. Ga-Sb, Ga-In-Sb Cells 

1. Apparatus 

The cells containing Ga-Sb and Ga-In-Sb differed from those for 

Ga-In alloy studies in several important details. The major problem, 

reported by Chatterji and Smith, was antimony reacting slowly with 

tungsten electrode contacts. That difficulty is minimized by allowing 

the tungsten to contact the alloy melt only when a measurement was being 

made.. To accompl ish this the pyrex and black wax feed-thrOugh of the alloy· 

e1ectr.ode lead feed-through assembly of the Ga-In cell was replaced 

with a sliding lead feed-through assembly. This assembly consisted 

of a 1/8 in. pyrex and black wax feed~through placed within a Swage10k 

union bored through to slightly over 1/8 in. This union was sealed to 

a length of 1/8 in. stainless steel tubing with the back ferrule 

inverted and the front ferrule replaced with an O-.ring with a approximately 

1/8 in.x1/12 in. wall, greased with vacuum grease. This formed the 

sliding seal for moving the tungsten lead in and out of the stainless 

tubing. In order to prevent grounding of the tungsten lead, the 

1/8 in. tubing was connected to a 1/4 in. pyrex tube with a 1/4 in.· 

to 1/8 in. bored-through union. This 1/4 in. pyrex tube was then sealed 

to the port previously occupied by the pyrex and black wax feed-through 

(Fig. 4). The seal was tested with a He leak detector and was found 

not to leak within the detector range. 

The tungsten 1 ead was threaded thro~gh the a 11 oy c.ompartment gas 

inlet tube, now shortened to a point close to the cell head. The 

lead was then threaded through a 1/8 in. alumina insulator wired 
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to the electrolyte tubes. Thisl/8 in. alumina tube was positioned 

just above the crucible so that wheh the sliding seal was push~d 

down the lead would move down through the tubes and into the alloy 

melt. When the seal was pushed up the tungsten lead was withdrawn 

from the melt. 

Because it was generally desirable to minimize electrode lead 

and melt interactions; the sliding seal was also used on the reference 

electrode lead. Since the electrode lead path was straight in this case, 

no special changes were made in this electrode to insure that the lead 

contacted the melt. 

A second ch~nge in the cell involved the change in solid oxide 

electrolyte material. Since the lower Po limit of CSZ is not sufficiently 
2 

lower than the Ga203-Ga-02 equilibrium, a YOT tube* 18 in. long and 

1/4 in. in diameter was used as a solid oxide electrolyte. 

Another difficulty encountered in the Ga-Sb cells was the high 

internal cell resistances. The internal resistances were measured to 

be as large as 104 ohms. For source impedances of this magnitude with 

potentiometers, small cell currents can flow. In order to minimize 

cell currents during measurements a Keithley electrometer with 1012 ohms 

input impedance was used in place of a potentiometer to determine the 

approximate cell emf as shown in Figs. 5 and 6a. Accurate measurements 

. of the cell emf were made by using the potentiometer in series with 

the electrometer (Fig. 6b). This arrangement used the potentiometer 

as a source of bucking voltage to the cell and the electrometer as a null 

meter. The circuit impedance was essentially that of the electrometer. 

* Zirconia Corporation 
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The final modifications on the system were in the gas delivery 

system (Fig. 7). Because of the shortening of the main compartment 

gas inlet tube and the greater reliability of vacuum evacuation,a 

mechanical vacuum pump was added to the system to purify the cell 

atmosphere. Additional bellows shutoff val ves were added to i sol ate 

the two cell compartments, the argon source, the vacuum pump, and 

mercury gas traps from each other. The very fine metering valves were 

relocated in order that atmospheric gases might not be pulled into the 

system through packed seals. The last modification to the gas handling 

system was cold trapping the gas outlet lines in trichloroethylene 

and dry ice prior to the mercury vapor traps in order to minimize 

any possibility of back diffusion of mercury to the cell compartments. 

2. Procedure 

The reference and alloy electrode preparation was the same as in 

the Ga-In cells. The antimony used was 5-9 1 s purity.* 

The compartment atmospheres were purified by evacuation to 200 microns 

and back filling with purified argon five times. 

After purifying the cell atmospheres, the temperature of the cell 

was slowly raised to BOOoe at the rate of 70 0 e per hour. This rate was 

convenient since a rate of 150°F per hour was reconmended by Zircoa 

to avoid thermal stress cracking and recrystallization'problems common 

in YOT. 

* Cominco American. 
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Liquid alloys of Ga and Sb, and of Ga,!n and Sb were found to 

equilibrate very slowly. Thus, once the cells reached 800°C it was 

necessary ~to monitor periodically the cell emf until a constant value 

was obtained. This typically required 2 to 3 days, though 5 days was 

necessary in some cases in order to obtain values constant to within 

0.01 millivolt. This was in great contrast with the Ga-In alloys which 

equi1 ibrated very quick1y--in less than a day. After the cell emfs had 

stabilized in this fashion, the alloy melts were assumed to have' become 

completely mixed,and data were then taken at various temperatures. Even 

the measurements at various temperatures required a great deal of time. 

the time required being a strong function of temperature, so that it w~s 

necessary to moni tor periodically the emfs at each temperature until 

they stabilized in order to obtain the equilibrium values of the emfs. 

Again,the emfs at the various temperatures were independent of how 

the temperatures were reached. 
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IV. The Ga-In System 

A. Resul ts 

The emf measured as a function of temperature in the Ga-In system 

is plotted in Fig. 1 for the compositions investigated, along with the 

comparable measurements of the study by Kl inedinst etal ~ These results 

demonstrate the reproducibility of the emf emthod. 

A number of sources of instabilities in cell emf were encountered. 

The main instability was characterized by a rapid drop-off in the cell 

emf with time. In runs showing this effect, measurements of the internal 

cell resistance before emf drop-off gave resistances of the order 

of 10,000 ohms and after emf drop-off resistances of the order of 10 ohms. 

This change suggests e1 ectro1yte fail ure. Thus, improvements in equi pment 

and operating procedure were implemented to minimize this problem. 

Further improvements were implemented prior to the initiation of 

measurements on the Ga-Sb system based on experiences gained in the 

Ga-In system. These improvements have been outlined in the Equipment 

and Procedures Section III-C. 

The emf data are reduced to aGalns, defined by 

This parameter can be expected to have the form6-9 

(1 ) 

Utilizing a least square fit on the data obtained from the emf 

measurements gives: 
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aGaIn = 0.2862 + 0.0352xGa + 398.3/T + 220.0xGa/T. (2) 

The rms deviation of data from this equation is ±0.016 for the range 

0.05<xGa<0.40 (see Fig. 2). The activities of Ga at l223°K are 

presented graphically in Fig. 3 along with the activities predicted by 

Eq. (2) and compared to the data of Klinedinst, et al. 4 Using the 

Gibbs-Duhem equation and assuming Eq. (2) for the whole composition 

range, the activities of In were calculated for the experimental 

compositions and are presented in Table 1. 

By using Eq. (2) and fundamental thermodynamic identities, the 
- -xs· .. 

following equations for ~HGa and ~SGa at 8000 e to 950 0 e are derlved from 

the data of this work: 

~HGa = (791.4 + 437.lxGa )(1 - xGa)2 cal/g-atom (3a) 

~~~: = -(0.5687 + 0.0699xGa )(1 - xGa)2 cal/g~atom (3b) 

By extrapolating Eqs. (3) over the whole composition range the following 

equations are derived, again using the Gibbs-Duhem equation. 

M 
~H = (791.4 + 2l8.6xGa ) xGa(l - xGa ) . (4a) 

~Sxs = -(0.5687 + 0.0350xGa ) xGa(l - xGa ) (4b) 

Equation (4a) shows that the integral heat of mixing has a maximum at 
. - M 

xGa = 0.53 with a value of 226 cal/g-atom. ~HGa and ~H are plotted in 

Fig. 4. 
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Table 1. Experimental emf measurements. 

X(GA) T(K) EMF(MV) A(GA) A(IN) . 

0.0499 1073.8 }3.816 0.0913 0.9514 

112J.2 77.322 0.0910 0.9514 

1174.8 81.532 0.0893 0.9513 

1224.5 85.880 0.0870 0.9513 

0.1003 1073.4 53.898 0.1741 0.9048 

1124.4 56.537 0.1737 0.9047 

·1174.0 59.495 0.1713 0.9046 

1223.9 62.335 0.1698 0.9045 

0.2009 1073.7 35.941 0.3118 0.8182 

1124.2 38.129 0.3070 0.8177 

1174.5 40.316 0.3027 0.8173 

1224.0 42.325 0.3000 0.8169 

0.4089 1073.9 19.357 0.5339 0.6573 

1124.2 20.509 0.5299 0.6556 

1174.3 21.629 .0.5266 0.6540 

1224.4 22.729 0.5240 0.6526 
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B. Discussion 

The Ga-In system has been investigated by Macur, Edwards,and 

Wahl beck using Knudsen effusion, l by Bros2a and Bros, Castanet, and 

Laffitte using microca1orimetry at 150°C~b by Predel and Stein using 

microca1orimetry at 350°C,3 and by Klinedinst, Rao and Stevenson u~ing 

solid electrolyte techniques from 800°C to 950°C. 4 From their data, 

Bros et a1., conclude that the heats of mixing are symmetrical about 

xGa = 0.5. The data of Predel and. Stein are not inapparent agreement 

concerning the symmetry of the results of Bros et a1., though the data 

of Predel and Stein are not as comprehensive as those of Bros et ale 

The heat of mixing data derived from Gibbs energy measurements 

by Klinedinst et al., are also not in agreement with the conclusion 

of Bros et a1. However, the scatter in the Gibbs energy data of 

Klinedinst et al., is such as to render questionable the derived heats 

of mixing. 

The dat~ of K1 inedinstwere fitted to Eq. (1) giving 

aGaIn = 0.1700 - 0.9184xGa + 470.5/T + l186.1xG/T '. (5) 

The rms deviation is ±0.044 for the range 0.05<xGa<0.80. From this 

equation ~HM is derived: 

The conclusions reached from the data of Bros et al., Predel and 

Stein, and Klinedinst et al., contradict those reached from the data 

ofMacuret al., that the heat of mixing at xGa = 0.5 is 2200 ca1/mo1e. 

The heats for xGa = 0.5 are found by Bros et al., and Predel and Stein 

... 
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to be 265 ca1/mo1e and 288 ca1/in01e respectively. The heats calculated 

from an equation, of the form of Eq. (l) with d set equal to 0, 

fitted to the data of Klinedinst et a1. These values are symmetrical about 

xGa = 0.5 with a maximum heat of 472 ca1/mo1e. Relaxing the symmetry 

requirement gives Eq. (5) which has a maximum of 395 ca1/mo1e at 

xGa = 0.59 and which has the value 381 ca1/mo1e at xGa = 0.5. 

A comparison of heat of mixing data is shown in Fig. 4. Thus, the 

heats derived from high temperature emf measurements bracket the heats 

measured at lower temperatures by microca1orimetry. The values at 

x= 0.5 are all in fair agreement except those obtained by Macur et a1., 

2200 ca1/mole, obtained by Knudsen effusion .. In addition, the high tempera­

ture emf data and the data of Predel and Stein suggest that the maximum 

heat of mixing is shifted towards the Ga rich side rather than at 

xGa = 0.5 as suggested by Bros and by Bros et a1. 

C. Conc1 usion 

The use of solid oxide electrolytes is quite reproducible. However, 

derived data are extremely sensitive to the absolute errors in measure­

ment. Nevertheless, the enthalpy of mixing derived from the data of 

this work is consistent with the data of earlier works. Though, along 

with the data of two of those works, the data of this work contradicts 

the conclusion of Bros and Bros eta1., 'that the enthalpy of mixing 

is sytmletric about the composition xGa = 0.5. 
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V.THE Ga,.SbSYSTEM 

A. Introduction 

The study of the Ga-Sb system was motivated by the dearth of 

thermochemical information on this III-V system. Closer examination of 

the existing data revealed indirect contradictions in conclusions and 

derived data. It has been pointed out by Sirota4 that the liquid metals in 

close proximity to the liquidus in compound semiconductor systems 

exhibit short range order. This observation is contradicted by the 

low values of heats of mixing selected by Hultgren lO for the Ga-Sb 

system, which are more consistent with a more randomly mixed liquid. The 

derived results of this study show large negative heats of mixing, which 

are more consistent with liquids with short range order. 

The activities in the Ga-Sb system have been previously studied , 

by use of a chloride electrolyte." This technique, as pointed out by 

Chatterji and Smith~ has the disadvantage of being ambiguous with 

regard to the charge of the ionic carrier in the electrolyte. For the 

cells o~ Danilin and Yatsenk03 the ionic carrier can be Ga+l or Ga+3. 

Thus, the value of "n" in the Nernst equation (RTln a = nFE) can not 

be definitely stated. Nevertheless, Danilin and Yatsenko have used n = 3, 

i.e., assumed Ga+3 is the ionic carrier, to arrive at the conclusions 

that the Ga-Sb liquid alloy system has very strong negative deviations 

from the ideal. This led them to suggest that these deviations can be 

accounted for by complexes resembling molecules. This conclusion is 

in contrast to the conclusion of Schottky and BeverS that the sy~tem is 

close to ideal. Schottky and Bever pointed out that the liquidus 

measured by Koster and Thoma2 is very nearly that predicted byan.ideal 

mixing model. 
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B •. Results 

The emfs measured as a function of temperature in the Ga-Sb system 

are given in Table 1 and plotted in Fig. 1 for the compositions investi­

gated. Table 1 also contains the activities and activity coefficients 

of Ga. Since the emf data were reproducible to 0.5 mV, the error in 

the activities and activity coefficients are ±2%. The activity coefficients 

are shown in Fig. 2 as a function of composition. 

In making these measurements care was taken to remain in the single­

phase liquid region. For this reason measurements at the lower tempera­

tures were not made for those compositions near xGa = 0.5. Furthermore, 

measurements were not made at temperatures higher than 800°C as Sb has 

a significant partial pressure for those temperatures. 

It is important to note that equilibrium was assumed to have been 

reached when the emf values remained constant over a period of several 

hours. The time for initially homogenizing the components of the melt 

varied from 2 to 5 days. The time constant for equili bration after a . 

temperature change was 1.4 hrs at 997°K and 14 hrs at 922°K. Because 

of the long equilibration times, at least one data point was repeated 

for each composition. 

It should be pointed out that the depolarization rate is rapid. 

By passing current through the cell momentarily and watching the emf 

return to the initial value, it was found that the largest time 

constant measured was less than 10 min. 
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Table 1.- Experimental data. 

xGa T emf aGa YGa (OC) (mV) 
0.2000 797.9 75.0 0.0873 0.4368 

772.6 77.7 0.0753 0.3767 

747.8 80.0 0.0654 0.3269 
723.1 83.8 0.0534 0.2672 
699.6 88.9 0.0416 0.2078 
676.8 96.2 0.0294 0.1472 

0.4000 803.1 40.7 0.2682 0.6706 
775.1 41.5 0.2526 0.6315 
749.7 43.3 0.2292 0.5730 
721.9 47.5 0.1901 0.4751 

0.5998 797.0 20.7 0.5101 0.8503 
771.8 21.4 0.4905 0.8178 
749.5 22.5 0.4657 0.7763 

0.7998 800.5 8.6 0.7577 0.9474 
775.8 9.3 0.7340 0.9177 
749.7 10.9 0.6905 0.8634 
725.3 12.9 0.6380 0.7677 
700.3 15.8 0.5688 0.7112 
672.8 19.0 0.4967 0.6211 
648.9 23.6 0.4108 0.5136 

0.8998 752.8 4.6 0.8555 0.9507 
724.2 4.8 0.8449 0.9390 
699.3 5.5 0.8212 0.9126 
670.5 6.7 0.7816 0.8687 
649.7 8.2 0.7339 0.8156 . 
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c. Discussion 

The data of this work supports the conclusion that the system 

is highly nonideal, deviating negatively. However, the agreement with 

the data of Danilin and Vatsenko is poor. The differences can be 

attributed to the ambiguity of the ionic carrier in the chloride 

electrolyte since postulating the Ga+l ion to be the current carrier would 

result in emf values three times the value that were measured in this 

work. Thus, the larger emf values of Danilin and Vtsenko can be 

explained by mixed conduction in the electrolyte by both Ga +,. and 

G +3 a . 

As suggested by Danilin and Vatsenko, the data of this work can 

be explained by postulating molecular complexes. In this case a minimum 

of three complexes are required. First, let us examine the elements 

themselves. Gallium are a group III metal with two cOnlnon valences, +1 

and +3. Antimony isa group V metal having three common valencies, 

-3, +3, and +5. The electron affinities of Ga and Sb are calculated 

from the electronegativities of Pauling,7 which are proportional to 

the sum of the electron affinity and ionization potential. 6 These are 

shown in Table 2. Thus, postulating a valence of -1 is not unreasonable 

for either Ga or Sb. 

Postulating valences of -1 for either Ga or Sb suggests the complexes 

GaSb3 and Ga 5Sb in addition to GaSb which follows from the examination of . 

the commonly known valences. Using these species in the chemical theory 

of Dolezalek requires that the equilibrium constants K13 , Kll,and K51 

be defined by 
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Table 2. Electron affinity calculations. 

Element Electronegativity Ionization Potential 

H 2.1 13.598 eV 
Ga 1.81 5.999 eV 
Sb .. 1.9 8.641 eV 

* 7 From Pauling. 

Electron 
Affinity 

o eV 
5.7 eV 
3.7 eV 
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-1 -1 
= aGalSb3 aGa aSb 

-5 -1 
KSl = aGasSblaGa aSb 

In the chemical theory the chemical species exhibit ideal behavior, and the 

deviations from ideality are due to the differences between the "true" 

and lIapparent" mole fractions. Thus, the species activity coefficients 

are assumed equal to unity, and the lIapparent" mole fractions "X" are 

related to the true mole fractions "Z" in the following manner: 

ZGa + ZGaSb
3 

+ zGaSb + SZGasSb 
= ~~~--~~--~~~--~~-

1 +3ZGaSb3 + zGaSb + SZGasSb 

= zSb + 3ZGaSb3 + zGaSb + zGaSSb 

1 + 3ZGaSb3 + zGaSb + SZGasSb 

Using trial and error to fit the data of this work, the equilibrium 

constants were determined as a function of temperature and interpreted 

as Gibbs energy of formation. When these Gibbs energies are assumed 

to vary linearly with temperature, the enthalpies and entropies of 

reaction shown in Table 3 result. Using these values,the xGa were 

calculated as a function of zGa and temperature. The activity coefficients 

YGa = zGa/xGa were calculated for temperatures of 923°K and l023°K and 

plotted in Fig. 3. 

Notice that the entropies of formation necessary for this model are 

extremely large. This may be due to the narrow range of temperature 

measurement. 
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Table 3. Entholpy and entropy of formation 
of melt species necessary to model the 
data of this work. 

Reaction ilHf(kcal/g-atom) ilSf(eu) 

Ga~ + 3 Sb i ~ GaSb3 0 2.1 

Ga~ + Sb~ ~ GaSb~ -25.3 -22.5 

5Ga~ + Sb~ ~ Ga5Sb~ -77 .6 -72.3 

Table 4. Comparison of entha1pies of mixing. 

x ilH ca1/g-atom 10 ilH cal/g-atom Ga According to Hultgren. of this Work 

0.1 -79 -1554 
0.2 -150 -2959 
0.3 -206 -4623 
0.4 . -241 -6024 
0.5 -255 -6874 
0.6 -244 -7382 
0.7 -209 -7712 
0.8 -153 -7606 
0.9 -81 -5499 
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The chemical theory assumes that there are no physical interactions 

between the molecular species, only chemical interactions. Thus, the 

. enthalpy of mixing will be due entirely to the enthalpies of formation. 

Accordingly, the enthalpies of mixing are calculated for a temperature 

of 997°K and listed in Table 4 and compared to the enthalpies of mixing 

of Yazawa et al.,9 measured by reaction calorimetry at 1003°K, as revised 

by Hultgren et a1. 10 The more recent work of Predel and Steinll indicates 

that ilH = -258 cal/g-atom at xGa = 0.5. 

There are three main explanations for the great discrepancies: The 

first is that the chemical theory is at best just a conceptual formalism 

to account for deviations from ideality, that quantities other than 

activities cannot be calculated from the equations developed from that 

formalism. The second explanation is that due to the very slow 

equilibration of these melts--2 to 5 days at 1073°K for full homogenization 

of the melt as measured by waiting for the cell emfs to reach steady 

state values--reaction calorimetry would be very difficult to perform 

accurately. The third explanation is that a systematic error was 

introduced by some undetermined cause in the experimental method. 

The process of forming the three Ga-Sb complexes would explain the 

slow equilibration times exhibited by these cells. Since the complexes 

are larger molecules, the diffusion times necessary for homogenization 

and equilibration are increased. Another possibility is that the rate 

of complexing is low so that the rate of equilibration would be slow. 
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D. Conclusion 

The Ga-Sb liquid alloy system shows large negative deviations from 

the ideal. This can be modeled by postulating complexes of GaSb3, 

GaSb, and Ga 5Sb. In addition, these complexes can explain the short 

range order of the III-V liquids near the 1 iquidus reported by other 

observers. However, derived enthalpy of mixing data are much different 
~ 

from those reported earlier and, when coupled with the extremely large 

hypothesized entropies of fonnation, casts some doubt as to the validity 

of the experimental data obtained in this investigation. 
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The predicted gall ium activity coefficients of various Ga-Sb 
alloy compositlons contrasted with the measured data. 
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VI. , THE Ga-In-Sb SYSTEM 

A. Results 

The activity of gall ium in a Ga-In-Sb 1 iquid alloy with composition 

xGa = 0.708, xln = 0.102, and xSb = 0.190 was found to be strongly 

depressed below that of an ideal liquid alloy, as expected from the 

results of Ga-Sb alloy melt activity studies. In this preliminary and 

cursory study of As Ga-In-Sb system, the melt equilibration times were 

found to be extremely long,as in the Ga-Sb studies. Table 1 gives the 

measured emfs and calculated activities and activity coefficients of 

Ga for this cell. 

The time constant for the melt to reach full homogenization and 

equilibration at 800°C was measured to be 3 days. 

B .. Conclusion 

The experimental result is a strongly negative deviati6n'of gallium 

activity from ideality,which becomes more negative with decreasing 

temperature. 
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Table 1. Ga activity data for a Ga-In-Sb alloy. 

T(OC) EMF(V) aGa <XGa 

797 11 .7 0.681 0.962 

772 1.6A 0.575 0.813 

747 24.8 0.426 0.601 
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VII. THE QUASI-CHEMICAL MODEL REVISITED 

A. Introduction 

In the system Ga-Sb, the melts are highly non-ideal at temperatures 

below 750°C.· In order to take into account the non-ideality, the quasi­

chemical model was examined. Though this model and its extensions are 

not applicable to the Ga-Sb system, it is useful in the In-Sb system. 

The quasi-chemical model was applied to the In-Sb system by Strif)gfellow 
. 1·. 2 

and Greene and the data of Hoshi no et a 1 . 

In this study, the quasi-chemical model and its extensions are 

compared to the a-parameter model which Guggenheim3 refers to as the 

zeroth order approximation and the quasi-chemical model. The a.-parameter 

model is used by Hoshino et al., to correlate their data for the In-Sb 

system. The data expressedasai = RT ln y;l(l - xi )2 shQw a fairly 1 inear 

dependence of a on composition from x = 1 to x = 0.5 but become highly 

nonlinear for x = 0.5 to x = O. This kind of behavior is expected 

because the entropy of mixing is ignored in the a-parameter model~ The 

quasi-chemical model takes the entropy of mixing into account so that the 

dependence of the quasi-chemical parameter w on x, applied to the In-Sb 

system, should be less non-linear. As derived by Guggemheim both a and 

w represent the same quantity, the atomic interaction energy; this is the 

energy change which occurs when an atom or molecule A is replaced by an 

atom or molecule B. 

Since the data for the Ga-Sb system werefound to be highly non-ideal, 

this non-ideality was assumed to be due to an interaction of Gaand Sb 

much in the same manner as in the In-Sb system. At the lower temperatures 
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the activities of Ga are so depressed, however, that the first order quasi­

chemical model cannot be utilized to explain them. Closer examination 

of the quasi-chemical treatment showed, however, that the extension of 

the treatment beyond the first order quasi-chemical model might depress 

the theoretical activities of the quasi-chemical model further. 

Guggenheim's extended treatment considers the interaction between next-

nearest-neighbors only. For liquid InSb the number of nearest-neighbors 

derived from X-ray data is 5.6~ implying that the simple cubic lattice 

is the simplest lattice approximation for that liquid. Thus,the 

simplest ~onfiguration to be considered which would take next-nearest­

neighbors into consideration would be the square configuration. 

The extended quas i chemi ca 1 treatment of Guggenheim contains a ' 

contradiction, which is freely admitted in the presentation. This 

contradiction leads to the ignoring of 3/4 of the interactions of 

next-nearest-neighbors. The treatment presented here for the square 

configurations take into account all of the nearest- and next-nearest­

neighbors. This is compared to the treatment and derivation of Guggenheim. 

Comparison with the Ga-Sb data, however, indicates that theoretical 

activities are still not sufficiently depressed. 

A further extension of the model is to consider third-nearest-

neighbor interactions. This corresponds to using a cube.configuration 

for a cubic lattice as the basic unit. This treatment does permit the 

depression of the activities beyond that experimentally found for Ga in 

the Ga-Sb system, though the model gives a poor fit to the experimental 

data. 
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The effect of such a progression to more complex models is that of 

approaching more closely the simple a-parameter model, so that for the 

representation of activity data for small values of the interaction 

parameter the a-parameter model suffices. However, in order to extract 

excess Gibbs energy of mixing, or enthalpy of mixing and excess entropy 

of mixing, using a single parameter model, the more complex quasi­

chemical models are suggested. 

B. Requirements of Extended Quasi-Chemical Models 

The interaction parameter "W" used by Guggenheim is the same 

quantity as IIn" used by Stringfellow and Greene in their recent correlations 

of thermochemical data on metallic melts using the quasi-chemical model 

and the same as"a" of the a-parameter correlations in popular use. 

These parameters are theoretically related to the energy change 

associated with the substitution of one atom or molecule of species A in a 

lattice of A with one of species B. Thus, w/NAv (NAv = Avogadro's number) 

would be the change in internal energy for the A lattice system with a 

single B. It is important to note here that these models assume that 

the sizes of the species considered are not significantly different in 

order that volume changes due to mixing and variations in the number of 

nearest neighbors are not significant. 

The a-parameter defined by 

is a measure of excess quantities which vary slowly with composition, 

where YA and xA are the activity coefficient and mole fraction of species A. 

As pointed out by Guggenheim,when alRT is less than 1/4, the error incurred 
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in the excess Gibbs energy by assuming a constant a over the whole 

composition range is less than 1%. This holds for mixtures for which 

the species preferentially seek to surround thenselves with their own 

species. The same is true of associating species for which a/RT > - 0.25. 

Thus, for va 1 ues of a/RT between -114 and 1/4, the excess Gibbs energies 

are accurate to within 1%, because the energies for interaction are not 

sufficiently large to cause large deviations in the entropy from the 

ideal values for entropy. 

For values of the interaction energies such that lal(RT)·1 > 1/4, 

the excess entropi~s of mixing become important. For large negative 

values of a such as occur in III-V melts, the association of the two 

species is as to appear to give two distinct regions: (i) xA > 0.5 dominated 

by A and associated A-B, and (ii) xA < 0.5 dominated by B and associated 
5 

A-B. Thus, as. suggested by Darken and Gurry, binaries would have to 

be represented by different linear functions of xA depending on the 

range of xA. Furthennore, once a is made dependent on xA,one must 

differentiate. between 

and 

These als are related through ~he Gibbs-Duhem equation. 

The first order quasi-chemical treatment assumes 

-2 ( -)( -) -2w/RT x = N - x N - x e A . B 
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in contrast with the ideal case, where the total number of nearest 

dissimilar neighbor pairs, X, is given by x2 = (NA - X)(NS - x) .. (x is 

the number of pairs composed of dissimilar membets. NA and NS are the 

numbers of A and S, respectively in the total solution.) Such a treatment 

includes an excess entropy of mixing by taking only nearest neighbors 

into account. The first order quasi-chemical model cannot be used to 

model systems with highly depressed activities. Thi.s can be explained 

by examining the premise that only nearest neighbors are important. For 

systems where the nearest neighbor interaction is relatively weak it 

suffices to ignore the energies of interaction of more distant neighbors. 

Furthermore, the contribution to the excess entropy by secondary ordering 

is miniscule. (Secondary ordering is defined as ordering of next-nearest 

neighbors by the influence of nearest neighbors.) As nearest neighbor 

interactions become more important, however, so must next-nearest 

neighbor interactions. Thus, such a treatment need not be dependent 

on the composition. 

Guggenheiml s treatment takes into account the effect of next-nearest 

neighbors. Hil1 6 pointed out a contradiction in Guggenheim1s treatment 

which states that the number of pairs of next-nearest neighbors is 1/4 NZl ' 

whereas the actual number is 1/2 NZ2. (N, Zl' and Z2 are the number of 

atoms or molecules in the solution, the number of nearest neighbors for 

each atom, and the number of next-nearest neighbors, respectively, 

(N = NA + NS)·} As the systems of interest here are expected to have 

Zl = 6, a cubic lattice will be examined in detail though the treatment 

could be applied to other lattices as well. Since in the cubic system a 

set of sites translates into a square with the next-nearest neighbor 
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interactions corresponding to the square diagonals,-a simpler analog would 

be a two dimensional square lattice. This lattice is also treated below. 

1. Square Interaction Model 

The treatment by Guggenheim counts the number of pairs of nearest 

neighbors in the solution, 1/2 NZ1, and the number of nearest neighbor 

pairs associated with a square, 4. The ratio of the two gives the number 

of squares in the solution, 1/8 NZ1. Since each square has two diagonals, 

the number of next-nearest neighbor pairs must be 1/4 NZ1. The two 

dimensional analog of this is shown in Fig. lao 

In the two dimensional analog Zl = 4 and Z2 = 4, giving 2N nearest 

neighbor pairs, 1/2 N squares, and N next-nearest neighbor pairs. It 

is obvious that this counting system for the two dimensional case skips 

half of the squares and half of the next-nearest neighbor pairs. 

This counting problem can be alleviated by noting that each 

nearest-neighbor pair is shared by two squares. Thus, the average 

number of nearest-neighbor pairs associated with a square is 2 implying 

that (1/2 NZ1)/2 = N squares are a~sociated with the lattice. This 

leads to 2N next-nearest neighbor pairs being associated with the lattice 

which is equal to 1/2 NZ2, the correct value. This sharing of pairs 

also extends to the sharing of the energy of interactions. Thus, in 

the two dimensional case,a nearest-neighbor pair contributes 1/2 its 

interaction energy to each of the two squares of which it is a part. 

The energy used in the Boltzmann factor in the partition functions are 

these shared energies and not the whole energy of interaction. It is 

to be noted tha~ since the next-nearest neighbors are not shared,their 

energies are likewise not shared,and the whole energy of interaction is 

used in the Boltzmann factor. 
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In the three dimensional case of a cubic 1attice,each nearest­

neighbor pair is shared by four squares leading to an average of one 

nearest neighbor pair associated with each square and giving a total 

of 3N squares associated with the lattice. Since the square diagonals 

are not shared between squares and there are two diagonals to a square, 

there must be 6N next-nearest neighbor pairs. Since in a cubic lattice, 

Zl = 6 and Z2 = 12,the above values are the correct ones. 

The equivalent quantities according to Guggenheim's treatment are 

3/4 Nand 3/2 N for the number of squares and next-nearest neighbor pairs. 

As in the treatment used by Guggenheim let: 

and 

where w1/Z1NAv and w2/Z2NAv are the interaction energies of nearest 

and next-nearest neighbor pairs of dissimilar atoms. Then the Boltzmann 

factors associated with single pai.rs of dissimilar atoms in the 
-1 -1 Guggenheim treatment are nand <p and in this treatment are n- l / 4 and 

-1 
<p • The difference in nearest neighbor Boltzmann factors result because 

only one quarter of the energy of a nearest neighbor pair of dissimilar 

atoms is associated with anyone square. 

An immediately obvious point to note is that the excess entropies 

wi 11 be smaller for thi s treatment than for Guggenheim's treatment 

because of the larger number of squares being considered, i.e., the 

randomness will be increased. 
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Complete derivations of both treatments are found in the 

Appendixes. In general, the principles set forth by Guggenheim 

for these derivations are used in the treatment advanced here. 

In Table l'the differences of the bases for the derivations of 

the two treatments are shown. The number of squares in a particular 

configuration is broken down into three parts; the total number of squares, 

the number of orientations of that configuration, and the variable 

representing the fraction of squares in that particular orientation 

and configuration. 

In order to simplify the expressions that occur in the partition 

function, Van der Waal's law, E = Eo/r6, is assumed ,for the interaction 

energy between dissimilar atoms as a function of distance. Since the 
I 

separation of next-nearest neighbor pairs is 12 times that of nearest 

neighbor pairs, the associated energies are related by: 

This gives the relation 

Furthermore, the energy change of placing a B atom inan A lattice becomes 

W = wl + w2 = 1.25 wl for a cubic lattice. 

These two treatments give different distributions of the configurations. 

In addition the activity coefficients have different forms. The 

Guggenheim treatment gives: 

y , = ('~)3/4 
B x4 

B 

,~ 



Table 1. Configurational degeneracy and Boltzmann factors for square interactions .. 

Guggenheim's Treatment This Treatment 

Number in this Boltzmann's Factor in Number in this Boltzmann's Factor in 
Configuration Configuration Parti 4ion Function Configuration Partition Function 

A A 

LX] (3/4}NCl 1 3N Cl 1 

A A I 
0'1 
""'-I 

A~A 
I 

(3/4)N4z: -2 -1 3N4l; n - 2/ 4cp 1 n cp 

A B 

A A 

l6J (3/4)N4v -2 -2 n cp 3N4V -2/4 -2 n cp 

B B 

A B 

.~ 
B A 

(3/4)N2v' n -4 3N2 Vi n -4/4 



Table 1. Continued. 

Guggenheim's Treatment 

Number in this 
Configuration Configuration 

B~ 
B . A 

(3/4)N4~ 

B~r 
B B 

(3/4)NS 

Boltzmann's Factor in 
Partition Function 

n- 2cp-l 

1 

This Treatment 

Number in this Boltzmann's Factor in 
Configuration Par~ition Function 

3N4~ 

3NS 

-2/4 -1 n cp 

1 

I 
0'1 
(X) 
I 
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and the present model gives 

where 8 is the fraction of square confi~urations with all sites occupied 

by B. Because the SiS have different values between the two treatments, 

the differences between the two predicted activity coefficients are not 

very large for w less the 1/4. 

Other thermodynamic quantities can easily be derived for each 

model, such as ~Gm and ~H. For example, the Gibbs energy of mixing 
m· 

is given by 

. The enthalpy of mi xi ngi s determi ned by summing the energies of 

configurations in the sol ution .. 

2. Cube Iriteraction Model 

The cou~ting of the next-nearest neighbor interactions can be 

extended to include third nearest neighbors;n a cubic lattice. The 

third nearest neighbor pairs span the body diagonals of the cubes. 

A cube has 12 edges which represent nearest neighbor pairs. Each 

edge is shared by4 cubes so that the average number of nearest 

neighbor pairs associated with a cube in a lattice is 3. Since the 

cubic lattice has 3N nearest neighbor pairs there must be N cubes. Each 

cube has 12 face diagonals representing second nearest neighbor. Each 

face diagonal is shared by 2 cubes implying the total number of second 

nearest neighbors as 6N. Body diagonals, representing third nearest 

neighbor pairs, are not shared. There are four to a cube giving a total 

of 4N third nearest neighbor pairs. Since in a cubic lattice Z, = 6, 
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Z2= 12, and Z3 = 8 (numbers of nearest, next-nearest, and third nearest 

neighbor~ respectively), the values derived are correct. 

As before, 1 et 

n = e 
0)1/ (Zl RT) 

and 

where w3/(Z3NAv) is the interaction energy of a dissimilar third nearest 

neighbor pair. Now since nearest neighbor pairs are shared by 4 cubes 

and next-nearest neighbor pairs by 2 cubes, the energies contributed to 

a cube are wl / (4Z1NA) and w/(2Z2NAv) by nearest and next-nearest neighbor 

dissimilar pairs respectively. Consequently the Boltzmann factors 

associated with these pairs in a cube are n- l / 4 and ~-1/2. Since the 

third nearest neighbor pairs are not shared among cubes, the interaction 

energies of such pairs of dissimilar species are contributed wholly to 

the associated cubic configuration; the Boltzmann factor for such 

are \jJ -1 . 

The simplification using Van der Waal's model gives 

since the separation of third nearest neighbor pairs is /3 times 

that of nearest neighbor pairs. Therefore, the functions \jJ and n are 

related by \jJ = nl/27. The total energy of interaction,w,for placing 

a B atom in an A lattice is then 
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w = w + w + w - w.. (1 + 12 + 8 ) 1 2 3- I 6f8T 6(27) . 

The derivation of the thermodynamic quantities based on this model 

depends on the solution for values of 23 configurational variables just 

as the values of 6 configurational variables must be determined in the 

case of the square configurations. The problem is reduced to one of 

solving for a value K which is of 4th order in an equation in the square 

cases and 8th order in the cubic case. Once determined, K is used to 

calculate the values of the configurational variables. The details of 

this derivation are in the Appendix. 

The activity coefficient as derived from this model is given by 

where B represents the fraction of cubic configurations with all of the 

sites occupied by B. 

c. Evaluation of the Models 

To evaluate the usefulness of these models in systems with highly 

depressed activities, the limiting values of the activity coefficients 

are plotted in Fig. 2. The limiting values were attained by allowing 

w to approach _00. Granted,for values of w very large and negative, 

the assumption that the only significant interactions are. those of 

nearest enighbors is false. The assumptions that only next and third 

nearest neighbors in the square and cube models need be considered· 

are also false for large negative values of w. Yet such an examination 

can provide insight into the properties of a model compared to other models. 
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Note that the a-parameter model predicts y = 0 for all x as 

w{or a) + _00. The progression from 1st order to square and cube quasi­

chemical models suggests that as one considers interactions of ever more 

distantly separated pairs the more closely the predictions for the 

activities will approach those predictions of the a-paramet~r model. 

&lggenheim has shown that the 1st order model reduces to the 

a-parameter model when the number of nearest. neighbors Zl approaches 

infinity. In the situation encounted here as w + _00 the dependence 

of the interaction energy on distance effectively disappears. Thus, 

by increasing the complexity of the approximation .by including the 

interaction with more distant atoms, the effect of w approaching _00 is 

to increas~ the effective number of nearest neighbors. 

This trend is reflected by the activity coefficients of the 

different models for finite values of w. Figures 3 and 4 

demonstrate this by comparing the activities computed from the 1st 

order and the square models to those computed from the a~parameter model " 

for ~T= -3.0." A plot of the activity coefficients computed from the 

cube model would be indistinguishable from the plot of the square model. 

This indicates that though the more complex models tend to approach 

the predictions of the a-parameter model, they do not become' identical 

with it for the case of infinite complexity and finite values of w. 

Further, since the energy of interaction is assumed to drop off as 

r-6, the energies of interaction become small compared to thermal energies 

and do not make significant contributions to the energy of mixing or to 

the ordering of the species. Since, this is to be applied to liquids, 

thermal motion would certainly randomize the pairs interacting over 
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large distances, obliterating any order due to interaction over large 

distances. Thus, to consider more complex systems than second order 

would be of little value. The complexity of the computations do not 

justify the small grain in accuracy. 

Though the activity coefficients do not differ greatly between 

the 1st order and the square models, the difference between the 

entha1pies of mixing is considerable. Again, the effect of the 

difference is a tendency to approach the values predicted by the 

a - pa rameter model. Th is can be seen by compari ng Fi gs. 6 and 7. As 

before, the plot of the enthalpy of mixing calculated from the cube 

model is indistinguishable from that derived from the square. 

Thi s difference in the enthalpy can be seen to a much smaller 

extent in the entropies. The 1st order model considers the interaction 

energies of nearest neighbors and the ordering of nearest neighbors. It 

does not take into account the secondary ordering of next nearest 

neighbors by the nearest neighbors preferentially pairing with its 

other nearest neighbors. 

In order to explore the implications of secondary ordering, consider 

a system consisting of A and B and assume that only nearest neighbor 

interactions exist and that the interaction parameter is positive so 

that at temperature Tc (consulate temperature) the solution separate 

into two 

given w, 

predicts 

Phases below T and remains a single solution above T. Now c . c 

the a-parameter model predicts Tc = ~R,and the 1st order model 
w Tc = 2.453R for Zl = 6. Suppose that the ordering of next-

nearest neighbors in a 1st order liquid solution is allowed to take 
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place due to the nearest neighbors, A2 and Al , of Al . Then the next 

nearest neighbor of Al preferentially will be Al and not Bl , since B1 

will be repelled away by A2 and A1. What this will do is make A 

associate more preferentially with A and likewise B with B despite 

thermal action to randomize the solution. Therefore, the consolate 

temperature must be greater than Tc = 2.4~3R for Zl > 6. In general, 

then, Tc should be greater than that predicted by the 1st order quasi­

chemical model. Inclusion of energies of interaction for next and 

third nearest neighbors was considered. These energies can only make 

more probable that B will not be a neighbor to A. Thus, the thermal 

action to randomize the solution is again thwarted, making the predicted 

consolute temperature higher. The effect of these considerations is 

less because of the complex routine for influencing that neighbor. 

Relations between Tc and w given by the different models are summarized 

in Table 2. 

In Figs. 9 and lO,actiVity coefficient data for the In-Sb system 

at 900 0 K as taken by Terpilowski 7 and Hoshino et al.,2 are plotted. 

Plotted on the same graphs' are the activity coefficient curves as 

predicted by the 1st order and square models and fitted to minimize 

the error. The Terpilowski data fit well with both the 1 st order 

model and the square model, though the square model may have a slightly 

better fit to the data. The data of Hoshino et a1., do not fit well with 

either model at low In mole fractions. However, the square model does 

obviously fit better than the 1st order quasi-chemical model. 
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Table 2. The ratio of the interaction energy 
wand the consolute temperature as 
predicted by the various revised 
quasi-chemical models. 

Model 

1st order quasi-chemical 

Square model 
Nearest neighbor interactions 

only 
Include next nearest neighbor 

interactions 

Cube model 
Nearest neighbor-interactions 

only 
Include next nearest neighbor 

interactions 
Include third nearest neighbor 

interact ions 

a.-Parameter model 

2.433 

2.088 

2.065 

2.089 

2.062 

2.058 

2.000 
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D. Conclusions 

Guggenheim's derivation for the second order quasi-chemical 

models is found to be neglecting three quarters of the second order 

interactions. A method has been proposed to correct this for the specific 

case of cubic lattices. 

In addition, the higher order quasi-chemical models are found to 

give a better fit to the available data on the In-Sb alloy melt system 

than the first order quasi-chemical model. These higher order models 

give calculated activities quite similar to those predicted by the 

a-parameter model. Due to the complexity of those higher order models 

the a-parameter model is preferred for the calculation of activities. 

Enthalpies and entropies of mixing, however, should be calculated by the 

higher order quasi-chemical models. 
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(a) This is the two dimensional analog of Guggenheim's 

. quasi-chemical treatment for counting second nearest 
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of the counting treatment advanced here. 
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Fig. 3. The activity coefficient predictions of the a. parameter and the 
quasi-chemical (first order) models are compared for w/RT = -3.0. 
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. Fig. 5. The activity coefficient predictions of the a parameter and the 
quasi-chemical (second order, Guggenheim's derivation) models 
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Fig. 6. The enthalpy of mixing predictions of the a parameter and the 

quasi-chemical (first order) models are compared for w/RT =-3.0. 
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Fig. 7. The enthalpy of mixing predictions of the a parameter and 
the quasi-chemical (second order, this derivation) models are 
compared for w/RT = -3.0. 
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Fig. 8. The enthalpy of mixing predictions of the a. parameter and the 
quasi-chemical (second order, Guggenheim's derivation) models 
are compared for w/RT = -3.0. 
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Fig. 9. The activity coefficient data of Terpilowsky for In-Sb alloy melts 
at 900 0 K compared with the first order quasi-chemical predictions 
for w/RT = -2.8 and compared with the second order (this derivation) 
quasi-chemical predictions for w/RT = -3.0. 
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Fig. 10. The activity coefficient data of Hoshinoet al., for In-Sb alloy 
melts at 900 0 K compared with the first order quasi-chemical 
predictions for w/RT = -2.2 and compared with the second order 
(this derivation) quasi-chemical predictions for w/RT = =2.3. 
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V Ill. GENERAL CONCLUS IONS 

The use of oxide electrolytes, calcia stabilized zirconia and yttria 

doped thoria in particular, is shown to be viable for the measurement 

of Ga activities in Ga-In-Sb liquid alloys by solid state electro­

chemistry. The activities of Ga in Ga-In alloy melts were measured and 

used to calculate heats of mixing which correlate quite well with the 

heats of mixing of Ga-In alloy melts measured by different techniques. 

The Ga activity measurements were extended into the Ga-Sb system. 

The activities of Ga were found to be highly depressed and correlating 

very well wi th a model postul ating GaSSb, GaSb, and GaSb3 comp1 exes. The 

activity coefficients of Ga show a very marked drop at xGa = 0.8, the 

reason for postulating Ga5Sb, and show quite low values at xGa = 0.2, 

necessitating the postulation of GaSb3. In order to shift the inflection 

points of the model, the existence in the melt of GaSb was necessary. 

These complexes together form a system which explains the large 

negative deviation from Raoult'sLaw, iong equilibration tirries, and 

earlier observations by other investigators showing short range order. 

The ramifications of the model are large negative heats of mixing 

with a minimum of -7.8 kcal/gram-atomat 997°K forxGa = 0.7. 

Activities of Ga in the ternary alloy Ga-In-Sb melt were then 

measured for one composition, xGa = 0.7,x1n =0.1, xSb = 0.2. The 

measurements show a depressed Ga activity .which decreases rapidly with 

decreasing temperature. 

The higher order extensions of the quasi-chemical model were then 

examined in relation to the In-Sb alloy melt system. The derivation of 

Guggenheim for the second order model was modified for a cubic lattice 
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to account for the second nearest neighbor interactions, which are 

ignored in that derivation. That derivation ignored 3/4 of those 

interactions. The modified second order and the derived third order 

models are found to follow very closely the activity coefficient pre­

dictions of the ex parameter model, though not exactly. These higher 

order quasi-chemical models and, thus, the ex parameter model, are found 

to give a closer fit to the measured In activity data for the In-Sb 

alloy melts than the first order quasi-chemical model. 
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APPENDIX: QUASI~CHEMICAL MODELS 

A cubic lattice is the simplest structure for which the number of 

nearest neighbors equals six. Therefore, assume a cubic lattice. 

Further, especially for the liquid state, assume Van der Waals forces 

between atom pairs, i.e., interaction energies proportional to r-6 * 

In a cubic lattice, the ratio of next nearest neighbor separation 

r2 to nearest neighbor separation rl is r2/rl = /2, and the ratio of 

third-nearest neighbor separation r3 to nearest neighbor separation is 

r3/rl = 11. Therefore, the ratio of next-nearest neighbor interaction 

energy I~ and nearest neighbor interaction energy I~ is I~/I~ = 1/(/2)6 = 1/8. 

Also, the ratio of the third-nearest neighbor interaction energy 13 

to the nearest neighbor interaction energy is I~/I~ = 1/(11)6 = 1/27. 

This leads to the following relationships among. the Boltzmann factor 
1 -1 for nearest neighbors n- , next nearest neighbors ~ ,and third-

-1 nearest neighbors VJ : 

The interaction energies above refer to interactions for pairs of atoms of 

differing species. 

Assume now that the atomic radii of the two species are equal so 

that coordination numbers do not change with composition. Further 

assume that there is no change in volume with mixing. Then 

·~U .. = ~H .. . mlxlng mlxlng 

* It has been suggested that the Leonard-Jones potential would be more 
appropriate. I agree, but at the time of my original work, I did not 
think of it; 
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Now imagine the enthalpy of mixing involved in replacing an atom 

of species A in a lattice of species A with an atom of species B. 

Considering only nearest, next-nearest, and next-next-nearest neighbors: 

L\Hmixing = Zl I~ + Z2I~ + Z2I~, where Zl' Z2 and Z3 are the numbers 

of nearest, next-nearest, and third-nearest neighbors. respectively. 

Call this enthalpy of mixing n, i.e., n = ZlI~ + Z2I~ + Z3I~. Thus, 

a measurement of n immediately yields I~, I~ and· Ij, provided Zl' Z2' 
o 0 0 z3 and the relationships between 11, 12 and 13 are known . For the case of 

a cubic lat~ice Zl = 6~ Z2 = 12, Z3 = 8, I~/I~ = 1/8, and I~/I~ = 1/27, 

implying I~= n/{6 + 12/8 + 8/27). Therefore, 

n = e+n/{6+12/8+8/27) RT 

when one considers the three near~st levels of neighbors in a cubic 

lattice. 

Now let us consider a cubic lattice as a case of interest since 

the coordination number of the III-V melt of In-Sb has been measured 

to be 5.7 or approximately 6, the coordination number of a cubic lattice. 

The cubic lattice has a unit cell consisting of 8 atoms (in the case of 

a metallic melt) arranged at the vertices at a cube. Each atom also 

is at the vertex of 8 cubes or unit cells and, therefore, is shared by 

8 unit cells, making the effective number of atoms associated with 

each unit cell equal to 1. Therefore, for N atoms there are Ncubes 

or unit cells. 

Let us now consider the energy contributions of the various 

interactions to the enthalpy of a cubic cell. Suppose a pair of 

nearest neighbors consist of atoms of differing species. Then the 

energy of interaction is 11. Now the line connecting the two atoms 
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is an edge of the cube and is shared with three other cubes. Thus, 

the energy of interaction of that pair is shared by four unit cells, 

and the contribution to the unit cell of interest is 11/4, implying 

that the associated Boltzmann factor is n- l / 4. Similarly, the interaction 

energy for next nearest neighbors is shared by two unit cells, and the con-

tribution of this interaction to the enthalpy of the unit cell is 12/2; 

implying that the corresponding Boltzmann factor is ~-1/2. The 

interaction energy for third-nearest non-identical neighbors is not 
. . 

shared but belongs wholly to the unit cell within which the interaction 

resides; implying that ~-l is the associated Boltzmann factor. 

Tabl e 1 contains all the di fferent possible configurations for atoms 

of two species arranged at the vertices of a cube. The second column 

is a term representing the total number of cubes corresponding to the 

configuration in the first column. This term is composed of a term 

N which is the total number of cubes in a cubic matrix. the second 

term is a variable multiplied by an integer. The variable repesents 

the fraction of cubes in one orientation of the configuration in the 

first column. The integer is the number of possible orientations of 

that particular configuration. The third column lists the Boltzmann 

factor associated with the particular configurations. 

The above basis is used to evaluate the thermodynamic properties 

of a system having a cubic lattice. Several degrees of complexity are 

used to develop models for which a partition function may be derived. 

In order that the partition function be determined, it is necessary 

to solve for the variables listed in the preceding table using the 

constraints of the system. One of these constraints is the conservation 

of species. Let us count the number of B atoms associated with each 
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Table 1. Boltzmann factors and configurational degeneracies 
for cubic groups in a binary system. 

Configuration Number in this Configuration 

@ Na 

@ NBc 

M.'. 
.~ 

N12?;1 

N24vl 

Boltzmann Factor 

1 

-3/4 -3/2 -1 
n <I> lP 

-4/4 -6/2 -2 . n . <I> 1jJ 

-6/4 -4/2 -2 n <l>1jJ 

-6/4 -6/2 n <I> 

-5/4 -7/2 -3 n <I> 1jJ 

-7/4 -7/2-1 
n <I> 1jJ 
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Table 1. Continued. 

Configuration Number in this Configuration Boltzmann Factor 

@ N8v2 
-9/4 -3/2 -3 n ¢ 1jJ 

@ N6~o 
-4/4 -8/2 -4 n ¢ 1jJ. 

@ N24~1 
-8/4 -6/2 .;.2 n ¢. 1jJ 

@ N12~2 
-6/4 -8/2 ~2 n ¢ 1jJ 

@ N12~3 
-6/4 -8/2 -2 n ¢ 1jJ 

@ N8~4 
-6/4 -6/2 -4 

n ¢ 1jJ 

@ N6~5 
. -8/4 -8/2 n ¢ 
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Table 1. Continued. 

Configuration Number in this Configuration Boltzmann Factor 

-5/4 -7/2 -3 n cp .1jJ 

-7/4 -7/2 -1 n cP 1jJ 

-9/4 -3/2 -3 n· cP 1jJ 

@ N1200 n-4/ 4cp-6/21jJ-2 

@ N1201 
n-6/ 4cp-4/21jJ..,2 

@ , . 

-6/4 -6/2 N402 n cp . 

@ N8T j -3/4 -3/2 -1 n cp 1jJ 

@ NB 
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of the configurations; the total must be NB. In the accounting we 

note that the average number of atoms associated with a unit cell is one; 

therefore, the fraction of B atoms associated with a configuration is 

equivalent to the average number at B atoms associated with one unit cell 

of that particular configuration, as shown in Table 2. Thus, we have that: 

or 

NB = N~ +3N~0 + 3Nsl + NS2 + 9NvO + 9Nvl + 3Nv2 + 3N~0 + l2N~1 

+ 6N~2 + 6N~3 + 4N~4 + 3N~5 + N~6 + l5NPO +15NPl + 5NP2 

+ 9NoO + 9Nol + 3N02 + 7NT + NS 

xB = s + 3s0 + 3sl + s2 + 9vO + 9vl + 3v2 + 3~0 + l2~1 + 6~2 (1) 

+ 6~3+ 4~4 + 3~5 + ~6 + 15PO + 15Pl + 5P2 + 900 + 9°1 

+ 302 + 7T + S 

Similarly for A: 

xA = a + 78 + 9s0 + 9s1 + 3s2 + 15vO + l5vl + 5v2 + 3~0 + 12~1 (2) 

+ 6~2 + 6~3 + 4~4 + 3~5 + ~6 + 9PO + 9Pl + JP2 + 3°0 

+ 301 + ·02 + T 

Now following the procedure outlined by Guggenheim in Mixtures, we 

write the approximate partition function and maximize to determine the 

values of the variables. The partition function is nO: 
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Table 2. Fraction of B component in binary 
configurations of a cubic lattice. 

Table Number in Number B in Total B in 
Configuration Confi guration Configuration 

Na 0 0 

N81;; 1/8 NI;; 

N181;;O 1/4 N31;;O 
N121;;1 1/4 N31;;1 
N41;;2 1/4 NI;; 

N24vO 3/8 N9vO 
N24vl 3/8 N9vO 
N8v2 3/8 N3v2 
N6~O 1/2 N3~O 

N24~1 1/2 N12~1 

N12~2 1/2 N6~2 

N12~3 1/2 N6~3 

N8~4 1/2 N4~4 

N6~5 1/2 N3~5 

N2~6 1/2 N~ 6 
N24pO 5/8 N15PO 
N24Pl 5/8 N15Pl 

. N8p 
2 5/8 N5P2 

N12aO 3/4 N9aO 
N12al 3/4 N9al 

.. 
N4a2 3/4 N3a2 
N8T 7/8 N7T 
Np 1 NS 
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(Na. *)! [(NO*)!)8 [(N<)! )12 [(NS~)! )12 [(NS;) !J4 

(Na.)! [(No)!)8 [(NS
O

)!)12 [NS
1

)!)12 [(NS
2
)!)4 

(3) 

[(NV *)! )24 
x o· 

[(NV)!)24 
o 

[ (N~*) ! )6 
o .. 

[(N~ )!l6 
o 

[(N~;)!)24 

[(N~I)!] 24 

[(N~;) ! ] 12 

[(N~2)! )12 

[(N~;)! )12 [(N~)!) 8 [(N~;)!)6 TN~:)!)2 [(NP:)! )24 [(NP~)!) 24 
x . --~.----~------~------~--~------~------~ 

. [(N~3)!)12 [(N~4)!)8 [(N~5)!)6 [(N~6)!)2 {NP
o

)!)24 [(NP
1

)!)24 

x n. 

x cp 

In the partition, function the term in front of the Boltzmann factors 

represents the number of orientations for a given set of values of the 

configurational variables. The starred configurational variables are 

the values of these variables in a completely random solution and have 
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the following values: 

* 8 8 ex = x = (l - x) (4) A 
* 7 1 7 

0 = xAxB = x(l - x) 

* * * xgx~ = x2(1 x)6 
/;;0 = /;;1 = /;;2 = 

* * * 5 3 x3(1 x)5 Vo = v = v = xAxB = 1 2 
* * * * * * * 444 4 

~ = ~ = ~ = ~ ::: ~ = ~ = ~ = xftxB = x (1 - x) o 1 234 5 . 6 M 

* * * 355 3 
p = p = p = x x = x (1 - x) o 1 2 A B 

* * * 266 2 a = a = a = x x = x (1 - x) o 1 2 A B 

* 1 7 7 
L = xAxB = x (1 - x) 

* 8 8 S ::: X = X B 

Note now that there are 23 configurational variables. Equations (1) 

and (2) are two constraints so that there are now 21 independent 

variables (provided zl'. z2' z3' n, cpand 1J! are known). To specify com­

pletely the state of equilibrium we must minimize the Gibbs energy with 

respect to the 21 independent variables, the configurational variables 

excluding ex and S. An equivalent operation is the minization of the. total 

Gibbs energy of mixing or RT 1n no. Therefore, it suffices to minimize 

ln no with respect to the independent variables. Utilizing the Stirling 

approximation we obtain: 
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a 1 n Q o 
-~-I- = 0 

7 a zl z2 z 
a BIt = n ~ ~ 3 

9 312 2z1 3z2 3z3 
a S Ito = n ~ ~ 

9
0
3

/
. 12 _ 3z, 2z2 3z3 

a ~ t1 - n ~ ~ 

3 4 zl z 
a S/t2 = n ~ 2 

15 9 24. 5z, 7z2 9z3 
a B Ivo = n ~ ~ 

15
0
.9

1 
24 _ 7z1 7z2 3z3 

a ~ v, - n ~ ~ 

5 3 a 3z1 z2 3z 
a S IV2 = n ~ ~ 1 

3 3 6 z 2z 3z 
a S 1;1 0 = n ' ~ 2~· 3 

a12S12/~24 _ aZ1 6z2 6z3 
'""1 - n ~ ~ 

a6B611;~2 = n3z1~4Z2~3Z3 

6
S
6
1 

12 3z, 4z2 3z3 
a 1;3 n ~ ~ 

404/~a _ 2z, 2z2 .4i3 
a p '""4 - n ~ ~ 

3 3 6 2z1 2z2 
a B 11;5 = n ~ 

2 zl z 
aS/1; =n ~ 3 
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9 15 24 5?1 7z2 gZ3 
Po a B / Po = n cP 1Jl 

7z1 7z2,3z3 9 B 15/ 24 
P1 a . P1 = n cP 1Jl 

P2 
3 5 B 3z1 z2 3z3 

a B /P2 = n cP 1Jl 

0
0 

3 9 12 2z1 3z2 3z3 
a B /0

0 
= n cP 1Jl 

z z 
O2 

aB3/0~ = n 1cp 2 

01 
3 9 12 3z1 2z2 3z3 

a B /01 = nCP 1Jl 

z z Z 
T aB7/TB = n 1cp 21Jl 3 

With appropriate algebraic manipulations and the substitution p/'Vo = K2, 

the following relationships can be derived. 

a = K-4~ ncp21Jl4 
0 

~3 = ~on-1/21Jl2 (5) 

o = K-3~ n1/ 4cp5/21Jl3 
0 

~4 = ~on-1/2cp 

~ = K-2~ cp1Jl2 -1 4 
~5 = ~on 1Jl o 0 

= K-2~ -1/2cp21Jl2 
~1 on 

'-2 4 
~6 = ~on cP 

~2 = K-2~on-1/2cp11Jl4 P =K~ n- 1/ 4cp1/21jJ 
o 0 

= K-1~ -1/4cp1/21Jl 'Vo on P1 = K~on-3/4cp1/21Jl3 

'V = . 1 K-1~on-3/4cp1/21Jl3 = K~ -5/4cp5/2 
P2 on , 

'V = 2 ' 
K- 1 ~on -5/4cp5/21Jl cr = K2~ cp1Jl2 

o 0 

"" 

w' 
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1;1 =1;0 n cf>ljJ 

1;2 = i;on-1/2¢01jJ2 
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°
1 

= K21;
o

n-1/ 2¢21jJ2 . 

°
2 

= K21;6 n- l / 2¢1jJ4 

T = K31;onl/4¢S/21jJ3 

S = K41; n¢41jJ4 
o 

Let us now digress to Eqs. (l) and (2). In order to simplify the 

mathematics, let Ii represent the ith configurational variable of the 

23. Let ail and a i2 represent the corresponding constants of Eqs. (1) 

and (2), respecti ve1y. Thus: 

23 
xB· = L a· 1 I. 1 1 1 

23 
xA = L a· 2I. 1 1 1 

To further simplify, let a i3 , a i4 , aiS and a i6 be the exponents of K, n, 

¢,and 1jJ in Eqs. (S) for the respective variables. Substituting into 

Eqs. (1) and (2). 

23 a· 3 a· 4 a· S a. 6· ~ K 1 ~on 1 ",. 1 ,I, 1 
XB = LJ ail <" 'I' 'I' (1 a) 

1 
_ 23.. a1• 3 a· 4 a· S a· 6 x

A 
- L a

i2
K i;on 1 ¢ 1 1jJ 1 

1 
(2a) 

Factoring out and isolating i; , we can equate the two equations to obtain o . 
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or 

or with x = xB' 

With n, ¢, ~,and x given, it is then possible to solve for K, and then 

possible to calculate the values of the configurational variables. 

Further, simplification can be attained by assuming Van der Waals behavior 

in which case,as pointed out earlier: 

Digressing again, let the exponents of the Boltzmann factors in 

Table' be designated by ei " ei2 , ei3 for n, ¢,and ~respectively 

for the ith configuration. Let 

EL. ~ e.,· + e· 2/8 +e. 3/27 
1 1 1 1 

(6) 

Noticing that the number of orientations for each configuration is equal 

to ail + ai2 , we may then write for the molar enthalpy of mixing 

(7) 
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The molar Gibbs energy of mixing may also be calculated and is 

given by 

l'IG = NRT 1 n Q 
moO 

where N is the number of moles used in calculating Q as contrasted 
.0 0 

with N, the number of atoms used in calculating Qo. The partial molar 

Gibbs energy of B is then 

llG = B 

aN llG o 
a ln Qo = RT aN 

. B 

Now ~ll of the configurational variables starred or unstarred are functions 

of x or NB, therefore, 

[23 (' * ln Qo dI. a ln Q 
dJ. ) llGB = RT· ~ 1 0 . 1 

* ~+ aI. dNB aI. B 1 
1 

a ln Qo .dN + ~n Qol + aN dNB aNB J . 

* Now assigning values to Ii appropriate for a completely random arrangement 

(regular solation) is equivalent to maximizing Q. Therefore, for the starred 

* * configurational variables excluding a and B , we find 

a ln Q 
_---:;:*,.,-o.=. = 0 

aI. . 
. 1 

Similarly, in determining the equilibrium values of the unstarred 

configurational variables, it was necessary to minimize ln Q with respect 

to these variables excluding a and B, implying 



a ln n o _ 
aI. - 0 

1 
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* Using Eq. (2) we find that Na and Na are functions of NA and the 

variables already discussed and, thus, contribute to making those 

differentials equal ~o O. Thus, the only terms not irrelevant are 

* N, NB, 8 ,and 8. Performing the indicated operations, we get: 

~GB = RT(ln x + ln !*) 
Simil arly for ~GA 

IlGA ' RT[ln(l - x) + 1n :*] 
Thus, a simpler expression for ~Gm is 

* * Substituting for a and 8 from Eq. (4) we also obtain 

~Gm = RT [x 1 n 87 + (1 - x) 1 n a 7 J 
x (1 x) 

Furthermore, the activities and activity coefficients are 

a = _...:;;a_= 
A (l - x/ 

y = ~ 
B 8 x 

a = ~ 
B / 

(8a) 

(8b) 

(9a) 

(l 0) 
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This particular model maybe used to evaluate the effect of 

allowing for third-nearest neighbors. Those terms taking that 

interaction may be eliminated from this model by just ignoring the 

interaction energy and its Boltzmann factor for third-nearest 

neighbors. Then to evaluate the effect of allowing for next-nearest 

neighbors, their associated interaction energy and Boltzmann factor 

is just ignored in this model. 

Discussion 

In princip1e,in a case of one to one correspondence i~ it is possible 

to calculate some quantity given some initial information, then it must 

be possible to derive the initial information if the desired quantity is 

known. That is the case here. The activities have already been calculated 

for a gi ven Q.. Thus, if the ac t i vi ties a re known, Q may be deduced. 

The Initial Model 

The method requires that the number of nearest neighbors be established 

first. If Zl is independently determined to be 6, then the equations 

developed here may be used: one can assume a cubic lattice and a 

Van der Waals relationship for interaction energy as a function of distance. 

Suppose that the activity of B for a given mole fraction of B is 

known. Then from Eq. (15), S may be calculated, 

S = /a B 

But from Eq. (10) we have 

S = K4~ n<l>41/i4 
o 
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or 

. (lOa) 

If we substitute this ~o into Eq, (la), we obtain 

4 4 4 23 a'3 a'4 a,S a'6 
xK n<P 1JJ /S = :E a, K 1 n 1 <p 1 1JJ 1 

1 11 

or 

22 a1'3 a1'4",a 1'S",a1'6 + ( ) 4 4 4 ~ ailK n ~ 0/ 1 - F K n<P 1JJ = 0 

or 

Thus, Eqs, (lOb), and (6) are two equations in two 

unknowns., K + n, These two equations can be solved simultaneously 

by numerical techniques to obtain n, since n = (6 + 12/8 + 8/27) RT ln n, 
'-

Square Interation Model 

A second model is simpler and allows for the nearest and next-nearest 

neighbors only, Thus, in this model I~ = n/(6 + 12/8) as is true in all 

models presented here for the cubi'c lattice which take only these two 

interactions into account. This model considers only those atoms at 

the corners of a square. The number of such squares may be determined 

by considering the unit cell, a cube. A cube has six square faces; but 

in a unit cell each face is shared with another unit cell, implying that 

each unit cell may be associated with three faces. Now in a cubic lattice, 

one atom may be associated with each unit cell, implying that for N 

atoms there are 3N squares. 



'-
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To determine the Boltzmann factors for each configuration, let us 

consider the relationship of the squares to each other.· The edges of 

the squares represent the nearest neighbor interactions. Each edge is 

shared by four squares so that the interaction energy of dissimilar atoms 

is shared by the four squares. Thus, each dissimilar atom1s nearest-

neighbor interaction contributes 1/4 of the interaction energy of the pair 

to each of the squares. Thus, the Boltzmann factor for a dissimilar 

edge pair will be 11-
1/ 4. The diagonals of a square are not shared so 

that dissimilar diagonal pairs (next nearest neighbors) will contribute 

the whole of the interaction energy to the associated square. This 

implies that the associated Boltzmann fa~tor will be .-1. 
Table 3 contains all the different possible configurations 

for the square model. The second column contains terms representing 

the total number of each configuration. These tenns are composed of the 

total number of squares, 3N, the number of orientations of the con­

figuration, multiplicative constant, and the variable representing the 

fraction of squares in one orientation of the corresponding configuration. 

The third column lists the Boltzmann factors of the configurations. 

Thus, we have a total of six configurational variables. It is 

necessary to develop the relationships between these variables in order 

to derive meaningful thermodynamic data from this model. The simplest 

relationships are those of the conservation of the species involved. 

Together all of the equations of species conservation state implicitly 

the conservation of mass equation, so that this equation would be 

dependent on the species conservation equations and, thus, unnecessary. 

The species conservation equations are 
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Table 3. Boltzmann factors and configurational 
Degeneracies for square-grouss in a binary system. 

Configuration .Number in this Configuration Boltzmann 
~~ 

lj 3Na nOcpo 

tl 3N4Z;; -2/ 4 -1 n cp 

t! 3N4v -2/4 -2 n cp 

tl 3N2v I 
n -4/4cpo 

D 3N4~ 
-2/4 -1 n cp 

tl 3N13 nOcpo 
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N= NO'. +3Nz.; + 2Nv + Nv l + N~ A 

NB = Nz.; + 2Nv + Nv l + 3N~ + N8 

XA = 0'. + 3z.;+ 2v + v l + ~ 

XB = z.; + 2v + Vi + 3~ + 8 

(11 a) 

.( 11 b) 

(12a) 

(12b) 

In order to cutdown on the writing,let I. represent the ithconfigur-
.. 1 

ational variable and ail and bi2 represent the corresponding constants 

of Eqs. (12a) and (12b), respectively, giving: 

6 
xA = L a.1I. 

1 1 1 

6 
xB = L a.

2
I. 

1 1 1 

Inspection of Eqs. (lla) and (llb) reveals that two of the six configurations 

are now no longer independent. For convenience let 0'. and 6 be the too 

variables dependent on the other four. 

Equations (lla) and (llb) are derived by determining the total 

effective number of atoms of the respective species in eqch of the con­

figurations and summing and equating to the total number of each specie. 

For example, consider species B. Each atom is shared by 12 squares in 

a cubic lattice, therefore, the faction of that atom which is associated 

with" a single square is 1/12. Therefore, the effective number of B in 

a particular configuration is the number of B at the corners multiplied 

by 1/12. Multiplying the effective number of B in a configuration by the 

total number of squares with that configuration then gives the total 

effective number of atoms of B associated with that configuration. These 

values are given in Table 4. 
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Table 4. Configuration numbers. 

Total Number Effective Number ,. 
In Configuration B in Configuration Total Effective B 

3Na 0 0 

3N4Z; 1/12 NZ; 

3N4v 2/12 2Nv 

3N2v' 2/12 Nv' 

3N4E,; 3/12 3NE,; 

3NS 4/12 NS 
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In order to derive the relationships between the four presently 

independent variables, it is necessary to determine the values of these 

variables when in the state of equalibrium. This is done by determining 

the minimum .Gibbs energy for each variable. With the six variables it 

is possible to develop an approximate partition function from which 

the Gibbs energy of mixing is easily obtainable as a continuous function 

of the four independent variables. Differentiating that function with 

respect to each of the independent configurational variables and equating. 

with zero will give the remaining relationships between all of the 

configurational variables at the state of equilibrium. 

Keeping in mind that zl = 6 and z2 = 12,we can write the partition 

function no by following the procedure outlined by Guggenheim in 

Mixtures and in Table 3, as 

* * 4 * 4 * 2 * 4 * [(3N<l )!][(3Nr;; )!l[(3~V )!] [(3Nv l ~!] [(3N~ )!] [(3NS )!J 

[(3N<l)!](3Nr;;)!]4[(3NV )!]4[(3Nv l }!] [(3N~)!]4[(3NS)!] 

-zlN(r;; +v + Vi +~) -z2N(r;; + 2v + ~) 
x n ~ 

(l3) 

In the partition function the term in front of the Boltzmann factors 

represents the number of orientations for a given set of values of the 

configurational variables. The starred variables are values of the con­

figurational values in a completely random solution and have the following 

values with x = xB' 1 - x = xA: 
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*·44 
a = xA = (1 - x) 

* 3 3 , = xAxB = x(l - x) 

* 322 2 v = Vi = xAxB =x (1 - x) 

* 1 3 3 ~ = x x = x (1 - x) A B 
* 4 4 S = x = x B 

Now the total Gibbs energy of mixing ~G is given by 
m 

Thus, minimizing this function with respect to the independent con­

figurational variables results in 

d ln Q 

I ° = 0 aI 

, a3S/,4 = n2<j>4 

v a2S2/v4 = n2<j>8 

Vi 22 as/v' ::: n 

~ aS3/~4=n2<j>4 

With the appropriate algebraic manipulations and the substitution 

~/, = K2, the following relationships can be derived. 

a = 
, = K-lvn°<j> 

v = vn°<j>° 
-1/2 2 v' = vn cP 

° ~ = Kvn <j> 

S = K2vn 1 /2cp2 

(13a) 

(14 ) 

.~ 
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Let ai3 , ai4,and aiS be the exponents of k, n, and ¢, respectively, for the 

ith component of Eq. (14) and substitute Eq. (14) into Eqs. (12a) and (12b). 

Then, 

x = A 

x = B 

6 a' 3 a· 4 a. S r a.1K 1 n 1 ¢ 1 V 
1 1 

6 a· 3 a' 4 a. S r a. K 1 n 1 ¢ 1 V 
1 12 

Factoring out and isolating v, we can equate the two equations to obtain 

6 a' 3 a' 4 a' 5 xB r a.1K 1 n 1 ¢ 1 
1 . 1 

or 

With n, ¢,and a givenJ it is then possible to solve for K, and then 

possible to calculate the values of the configurational variables. 

Further simpl ification can be attained by assuming Vari der Wa.al s 

behavior, in which case as pOinted out earlier: 

Now that the configurational variable values have been determined 

for equilibrium, the entha,lpy of mixing may be calculated by summing 

up all the energies of interaction of differing species. Desigriating 

the exponent of nand ¢ under the Boltzmann column of Table 3 

as eil and ei2 , respectively, for the ith configuration, we now 

define E. as . 1 

(15 ) 
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E. = e· l + e. 2/8 
111 

Noticing that the number of orientations for each configuration is 

equal to ail + ai2 , we may then write for the molar enthalpy of mixing, 

6 
L\HM = 3f{ail + ai2 ) li(E i) n/(6 + 12/8) 

The molar Gibbs energy of mixing may also be calculated and is 

given by 

L\G = 
M 

where No is the number of moles used in calculating no as contrasted 

with N, the number of atoms used in calculating no. The partial 

molar Gibbs energy of B is then 

L\G = B 

All of the configurational variables starred or unstarred are functions 

of x or NB 

L\G = B 
[

6. (a 1. n n. RT L O 

* 1 al. 
. 1 

* 

a ln no dN 
+ -3-- --N dNB 

Now assigning values to Ii appropriate for a completely random 

arrangement (regular solution) is equivalent to maximizing no. Therefore, 
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* * for the starred configurational variables excluding a and B which are 

dependent on the others, we find 

a ln no 
--.*--'- = 0 

ali 

Similarly, in determining the equi 1 ibrium val ues of the unstarred 

variables, it was necessary to minimize ln no with respect to these 

variables implying 

a 1n n o --=---=- = 0 
ali 

such that 1. here does not include a and S. Now by Eq. (lla) . 1· . 

* it is known that a and a are independent of NS' Therefore, 

a ln n 
__ ·~o = 0 

aa 
. and 

a 1n n 
__ ~*.=...o = 0 .. 

a" a. 

* Thus, the only relevant terms are those involving N, Ns' B ,and S. 

Performing the indicated operations we get: 

6GB = RT rn x + In(:*f] 
Similarly for~GA: 

6GA = RTfn{1 - xl + In(:*/] . 

(lSa) 

(lSb) 
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Thus, a simpler expression for ~Gm is 

(l6) 

* * Substituting for a and B from Eqs. (13a), we find 

IIG m = RT~ 1n x(n3 
+ (1 - x) 1n (1 - X)(l : X)4)3J. (16a) 

Furthermore, the activities and activity coefficients are: 

3 
aA = (1 - x) ( a 4) 

(1 - X ) 

y = (L) B4 
'x 

3 

_ (B)3 aB -. x·~ x 

These expressions are useful in describing deviations from ideality in 

liquid alloys known to exhibit square and cube clustering. 

( 17) 
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