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ABSTRACT

Relatively large values of objective-lens defocus must normally be used to
produce detectable levels of image contrast for unstained biological specvhainsare
generally weak phase objects. As a result, a subsequent restoration operatio®m must
used to correct for oscillations in the contrast transfer function (CTF) atr mggadution.
Currently used methods of CTF-correction assume the ideal case in which ratele
in the scattered wave have contributed pairs of Fourier components that ovtirlapev
another in the image plane. This “ideal” situation may be only poorly sdtisfienot
satisfied at all, as the particle size gets smaller, the defocus \@tuager, and the
resolution gets higher. We have therefore investigated whether currently ubed st
CTF correction are also effective in restoring the single-sideband im@ageation that
becomes displaced (delocalized) by half (or more) the diameter of @eaftfinite size.
Computer simulations are used to show that restoration either by “phase flippmg” or
multiplying by the CTF recovers only about half of the delocalized informatiom. T
other half of the delocalized information goes into a doubly defocused “twin” image of
the type produced during optical reconstruction of an in-line hologram. Restoration with
a Wiener filter is effective in recovering the delocalized inforaratinly when the
signal-to-noise ratio (S/N) is orders of magnitude higher than that whists e@xlow-
dose images of biological specimens, in which case the Wiener filter apmaivisen
by the CTF (i.e. the formal inverse). For realistic values of the S/N, reyywte “twin
image” problem seen with a Wiener filter is very similar to that seen wtrear phase
flipping or multiplying by the CTF are used for restoration. The results of thes

simulations suggest that CTF correction is a poor alternative to usingiaezg/pe



phase plate when imaging biological specimens, in which case the imades ca
recorded in a close-to-focus condition, and delocalization of high-resolution inf@nmat

is thus minimized.



INTRODUCTION

Unstained biological specimens are often well approximatebeasy weak phase
objects. As Zernike emphasized in his Nobel lecture, imagesasepbbjects show no
contrast in a perfectly corrected microscope [1]. In order to owegcthis problem, the
objective lens is normally defocused by an amount that is lkangeigh to produce
sufficient contrast to see the specimen. As an example, a deflcesof 1um or more
might be used in order to see particles with a molecular weight of ~1 MDa.

Although the low-resolution features of a phase object are madbleviby
introducing a substantial amount of defocus, the higher-resolution fedhae become
badly corrupted due to oscillations in the contrast transfer am¢CTF). This adverse
consequence of using high amounts of defocus can be overcome tdamtsaibdegree
by computational “image restoration”. Applying a computational Cd#fection to an
out-of-focus image is, in fact, not unlike Gabor’s original concept of optidalreg®n of
the object from an in-line hologram — which is nothing other thémnghly defocused
image [2].

It is well known that optical reconstruction of an object from rafine hologram
suffers from a substantial artifact, however, an effect thatesreef to as the “twin image
problem”. As Gabor explained in his Nobel acceptance speech [Rjalojgiconstruction
of an in-line hologram produces two images superimposed on each othef vdmeh is
in sharp focus and the second of which is defocused by twice the aofdbat in the
original hologram. The issue that is addressed here, therefotiee iextent to which

computational CTF correction also suffers from a similar “twin imageblem.



Our original purpose in simulating CTF correction was to undetdtaw effectively
it deals with the fact that a portion of the scattered wave preduteterference pattern
in the region of the image that is adjacent to, but outside the ggosteadow of a small
particle, for example a multiprotein complex. As is explainedvekhis delocalized
information is not modulated by the usual CTF. Instead, the delocatimethation can
be described as a sum of interference fringes, each witfeeedt spatial frequency, that
are shifted in phase by an amount proportional to the product of the defodube
spatial frequency.

We have investigated this question by applying three commonly estoration
techniques to the Fourier transforms of various simulated imagesesuks show that
“phase flipping” and multiplying by the CTF both restore only about diathe original
signal, the second half going into a doubly-defocused twin image (laridr
Although the results obtained by these two methods are similage pinaping results in
a slightly better restoration of signal than does multipljagghe CTF. In light of these
first results, it is not surprising that we also found thatabiity of a Wiener filter to
restore the object depends upon the value of the parameter tis@digo estimate the
signal-to-noise ratio (SNR). When the SNR is high, using a Wildtex approaches the
operation of dividing by the CTF, which is algebraically guaranteegroduce perfect
restoration (but only in the absence of noise-amplification atdfes of the CTF). When
the SNR is low, however, as it is in low-dose cryo-EM images, of a Wiener filter
approaches the operation of multiplying by the CTF.

One of the advantages of recording images of weak phase obj#tta whase-

contrast aperture [4-8] is that defocus is no longer required in twrgeoduce adequate



contrast, and thus no information-delocalization occurs. On the other hand, this aglvantag
would not be as important as it first sounds, if it were also ttnae no information-
delocalization remained after the appropriate CTF corredtamh been applied. Since
both numerical simulations and analytical theory show that @rfecion can be only
partially effective in restoring the initially delocalized informatibowever, we conclude

that CTF correction is a poor alternative to the use of in-focus phase-cantgstg.

SIMULATION METHODS

Image simulations were carried out using scripts written in Digiaidgraph (Gatan,
Inc., Pleasanton, CA). For calculation of single-sideband imagesritheal image was
defined as a complex array so that the full Fourier transfooaid be computed and one
half could then be set to zero. Fourier transforms of the images modified either by
multiplying by an appropriately defined function or by sepagathe modulus and phase
components and modifying these as appropriate.

A modified spoke pattern was generated using the function “sin(meta)t in
DigitalMicrograph that makes a full-circle pattern with pokes. The full-circle pattern
was then masked to produce a narrow wedge, after which theatéstn was low-pass
filtered to smooth the edges of the pattern.

A two-dimensional, sinusoidal cross-grating pattern was definedbit?a512 pixel
array as the product of one-dimensional sine functions that aléeptarahe x-axis and
the y-axis, respectively. The strongest Fourier components inestigattern therefore
run diagonally with respect to the x and y axes. This full pattexs masked with a

square box whose edge-length was equal to 6.5 cycles of the sine functions.



An image of the 50S (large) subunit of tRecoli ribosome was calculated using
atomic coordinates given in the PDB file 1VOR [9]. A moleculaxdel was generated
using the “copy from pdb” command in SPIDER [10] to calculatelx @&ensity at a
resolution of 0.1 nm/pixel. Functions in Bsoft [11] were then useddegrthe density
and output a file in TIFF format as a 512x512 array.

Noise was not included in the simulations shown here. We assunié)ttia¢ signal
and the electron shot-noise that are present in experimentg imansities are additive,
and (2) these two terms remain additive during the CTF-careoperations that are
applied during data analysis. It is true that CTF-correctiorusif fhe intensity pattern
corresponding to the electron shot-noise itself will result inxtute whose amplitude
spectrum is no longer “white” but whose phases are still randosn Eo, this texture
will be uniformly the same within the envelope of a particle anthé area outside the
particle. Since an appropriate level (and texture) of “Cdfected” noise can be added
to the results shown here, there is no loss of generality in cargpartd displaying only
the effects that delocalization and subsequent restoration have sigrthke The purpose
of NOT including noise in the simulations is to avoid confusion betweereffects that
are due to delocalization of the signal and those that arel dgdeoise. In practice, the
delocalized signal is largely masked by the noise, but becdube additivity of the
signal and the noise, both the delocalization of signal and its pasi@ration will be

well-described by our noise-free simulations.

BACKGROUND AND THEORY



The contrast transfer function (CTF) that is used for imaggenaion in cryo-EM is

given, in the simplest case, by

CTF(s) =siny(s),

C5413 S4 _ESZ]’ Equation 1

y(8) = 27]

where
s = the spatial frequency (resolution),
AS) = the wave aberration associated with spherical aberration and defocus,
C; = the coefficient of spherical aberration,
A = the electron wavelength, and
Az = the defocus of the objective lens.
We have ignored the wave aberration due to spherical aberratios pafier, in order to
emphasize solely the effect of defocus. For typical electracrostopes, the wave
aberration due to spherical aberration makes a significant coraribiatidelocalization
for only the highest-resolution features, for example Fourier conmp®neith a
wavelength shorter than ~0.5 nm. The addition of a spherical-abartaim in the
simulations shown here would have had no visible effect, and in @eyitcvould not
contribute new principles to what is learned from the simulations presented here.

If the specimen is a weak phase object, then the Fourier transfah@ experimental

image intensity,f (s ) is related to the Fourier transform of the shielded Coulomb

exp

potential of the objectl-(s), by



(s)=0(s)—2F(s) CTF(s) Equation 2

I exp

The derivation of equation 2 assumes that the Fourier transform objbet satisfies
Friedel's law and that the sinusoidal Fourier components of the ohjecspatially
unbounded, as they are for a two-dimensional crystal [12]. Under tbeddi@ns pairs
of sinusoidal “fringes” in the image that are produced by intenfee of one diffracted
beam with the unscattered beam and by the interference ofiedeFmate with the
unscattered beam are shifted in opposite direction. The amount ofethgéctive phase
shifts corresponds to the magnitude of the resolution-dependent phtsgodisy(s).
Depending upon the amount of defocus, these individual pairs of fringesahusom
being in phase with one another to being completely out of phase witmotiner and
then back to being in phase but with the reversed contrast. When weeseatdnsity
fringes are added, the net result is that the phase origin oégbking sum isot shifted
but its amplitude is modulated by an amount that varies betweend 11anf what it
should be, i.e. by the value of the CTF that is given in equation 1.

CTF correction is normally thought of as an operation that, ateheleast, reverses
the sign of those Fourier components that have been transferrechevitirang sign.
Since a change in sign is equivalent to a 180 degree phase shisigthchange is often
referred to as “phase flipping”. Depending upon what version of CTeatan is used,
the operation may also adjust the magnitude as well as theosigiee amplitude.
Multiplication by the CTF, for example, not only corrects the sifjthe amplitude but
down-weights the contributions of frequencies where the SNR isiapepoor (for

example, close to the zeros in the CTF).



An even better restoration is provided by the Wiener fjlt8}, expressed in the form
that is appropriate for deconvolution of the effects caused by @d

(http://en.wikipedia.org/wiki/Wiener_deconvolution):

WS - CTF(9)

= > Equation 3
[CTF(9)]° +1/ SNR(S)

where

w(s) = the weighting function that is applied as a filter during image restoyaiioin
NR(s) = the “signal-to-noise ratio” at a given spatial frequerscyote that SNR is
defined here as the mean power spectral density of the igmat siivided by the mean
power spectral density of the noise.

Although the Wiener filter provides a restored image that hasntialest possible
mean square error relative to the true structure, it is oftensect in practice because no
method has been established for determining the experimentalgicealue foISNR(S).
Even when an estimate of the Wiener filter is used, one often assilmatINR(s) is
constant, in effect assuming that the power spectral densthe afiput signal is constant.
This is an approximation that is never satisfied for imagdsabbgical macromolecules,
however.

When the Fourier components of an object are confined to a smallas they are
for small crystalline patches and for single particlegivan set of fringes is shifted as a
small, defined patch. The size and shape of the patch corresponds trktfieldlamage
that would be formed by the diffracted beam if the unscattered xeaenblocked by the

objective aperture [14]. The center of the patch is displaced from the centepaftibke

10



by an amount equal to the value of (gradient/® divided by 2r) at the spatial
frequency of the fringes,”

As theory [14] requires, sinusoidal fringes — which should lie atpthstions of
crystalline lattice planes, for example — are therebyezhifieyond the edge of a particle.
The amount of displacement that can occur before the fringesoatenger visible
outside the particle is determined by the spatial coherence ofdident electron beam.
Similarly, depending upon the amount by which the patches atedskife., depending
upon the amount of defocus), the area within which the fringes overlapmathnother
is only a fraction of the patch size. In particular, the afeaverlap falls to zero when the
amount of shift is one half of the particle size. In the regibany) where the patches
still overlap with one another, the contrast transfer is stitdeed by the usual CTF that
is written in equation 1. Outside the region of overlap, howeveriritihges behave as
“single sideband images” [12]. In this case the amplitude offrthges is no longer
modulated byin(y); instead, their phases are shifted/{s).

The EM community is generally aware that one must apply CTieéaan to an area
surrounding a patrticle and not just the patrticle itself (i.e. oné¢ naismask the particle
too tightly). It is also clear that dividing the Fourier tramsf of a defocused image by
the CTF is the mathematical inverse of the multiplicationigy@TF that is shown in
equation 2. Although dividing by the CTF thus restores the object terfec noise-
free images, the images obtained in cryo-EM are so noisylitiding by the CTF is not
a viable operation. What has not been discussed in the EM liesrétonvever, is the

extent to which alternative methods of CTF correction are suatessrestoring the
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portion of the delocalized signal that is transferred as simggdand fringes (rather than

as CTF-modulated fringes).

RESULTS

The signal-delocalization effect is first illustrated twithe help of two relatively
simple test-objects, a spoke-type resolution-test pattern, asquare cross-grating
pattern. A simulated image of the large ribosomal subunit is thed tos show the
relevance of delocalization in the context of cryo-EM imagesmaicromolecular
complexes.

The spoke pattern shown in Figure 1A is informative because it nerdaiamp of
spatial frequencies that are separated in space alongntité lef the pattern. This test
pattern thus makes it possible to easily visualize the frequdapgndence of the
delocalization effect. Figure 1B shows the image that would benelteor this test
“object” with a defocus of Zm, if we assume that the width of the entire panel is 30 nm.
Note that the zeros of the CTF cause zones of little or no sbutraifferent horizontal
positions in the image of this test pattern, while the sigarsais of the CTF cause zones
of inverted contrast. Both of these effects are confined to thic@lgr defined) middle
portion of the defocused image, however. The top and bottom portions of the spoke
pattern retain full contrast even where the CTF is zero bethadenges from a given
Fourier component no longer overlap with those from its Friedel atatiee edge of a

“particle”, due to delocalization. In addition, delocalization causes theaeppe that the

12



spokes curve away from the edge of the original test patgetheaspatial frequency
increases (i.e. as one moves to the right along the test pattern).

Due to the linearity of image formation for weakly scatteraigects, the image in
Figure 1B can be described mathematically as the sum okthgingle-sideband images
that are shown in Figures 1C and 1D. The contrast in single-sidebaggsns not
modulated by zeros in the CTF, and this fact is reflected inethes respective
simulations. The phases of Fourier components of the object are, mpalafted by the
wave aberration in single-sideband images [12], as we haveybaal above. This shift
in phase accounts for the bending (vertical shifting) of the esaj the spokes, which
only becomes conspicuous in the far-right portion of the testrpatfhe “beating” or
interference of shifted fringes that occurs when the imagdsgures 1C and 1D are
superimposed is what accounts for the zones of no contrast and theozomesrted
contrast that are shown in Figure 1B. Constructive and destructaréerence between
the two single-sideband images can occur only over the verticdlopesswhere the
shifted Fourier components overlap with one another, of course. Asilg tbe usually
invoked effects of the CTF (contrast modulation and phase flipping) ajoplg
progressively smaller fraction of the signal as the resoluticneases, and they no longer
apply at all when the amount of delocalization is greater than half the skze asject.

The cross-grating test-pattern shown in Figure 2A illustideslelocalization effect
in a complimentary way. For the sake of argument, this objegitrhe considered to be
a square particle that is 8.5 nm on edge. The structure withifiptniscle” consists of

the product of two Fourier components that run perpendicular to one another, in
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directions that are parallel to the edges of the square. Inxtmspde, the two sinusoidal
components both have a period of 1.3 nm.

Figure 2B shows a simulation of the image that this test bhjeald produce at a
defocus of um. This value of defocus was chosen in order to shift the patetcbf set
of fringes by half the edge-length.

Figures 2C and 2D show the results produced when two commonly usieadsef
CTF correction are applied to the defocused image in figure 2isel results
demonstrate that the original object is recovered remarkablyow€TF correction. The
contrast restoration is, in fact, somewhat more complete whé&ncGifection is done by
phase flipping rather than by multiplying by the CTF. A qualiNgatomparison between
the contrast in the original object and that obtained after CTifeamn demonstrates
that 50 % of the delocalized signal is restored by multiplapdhe CTF. and 65 % of
the delocalized signal is restored by phase flipping. The simugaalso show that the
remainder of the signal is delocalized once again as a resudtiofof these procedures.
In other words, the twin-image problem observed for optical rewartgin of an in-line
hologram also occurs when either phase flipping or multiplyindi@yOTF is used as the
restoration filter

In order to continue this investigation with a test object thaim#las to an actual
cryo-EM image, we next calculated a noise-free, highly de&mtumage of the large
subunit from thee. coli ribosome. Figure 3A shows the image obtained for a defocus of 2
um and an accelerating voltage of 300 kV. The ribosomal test objditte the simpler
test objects used in Figures 1 and 2, now consists of a continuaisispef spatially

superimposed Fourier components. The delocalized information theosfosests of a
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continuum of overlapping patches, each displaced by an amount te&tnsithed by the
gradient ofy(s) at that particular spatial frequency.

Figure 3B shows the nearly perfect restoration that is achmitbda Wiener filter
when the value of the SNR is assumed to be 900. The simulationsetes are noise-
free in all cases, as we have stated previously. The stipulaitiangiven value of the
SNR is used only to see what the effect would be on the signgdecmnt of an image,
due to a given value of SNR that is used in the Wiener filtee. rEstoration produced
with SNR = 900 is shown because the Wiener filter in thie c@slmost equivalent to
dividing by the CTF, which in turn is guaranteed to give pereobvery of the original
object from a noise-free image. Nevertheless, even for détaansNR as high as 900,
low-frequency artifacts still remain in the Wiener-filtdrgestoration, due to the
weakness of the filtered amplitudes at low frequencies.

A more realistic simulation of the recovery of delocalized mfaiion that can be
expected is provided by setting the SNR equal to 0.09 (Figurel3@)is case the CTF
correction lies somewhere between that provided by phase flippthigyamultiplying by
the CTF, as we show in connection with Figure 4, below. Not at atipeictedly, based
on the simulations shown with the simpler example in Figure 2wtimeimhage is once
again present when this more realistic Wiener filter is usedTF correction. In fact,
the twin-image artifact persists even when the SNR paranmetbe Wiener filter is set
to the unrealistically optimistic value of 9 (Figure 3D).

Additional understanding of how various CTF corrections compare t@amotber is
provided by the curves shown in Figure 4, which shows the CTF dtselfell as three

examples of the product of the CTF and different versions of tie@éWfilter. The black
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curve is the CTF itself (calculated for a defocus @in2 and an electron energy of 300
keV), which contains sign reversals between successive zerosveipleting of CTF-
corrected amplitudes (i.e. the resultant “transfer functiontdstoration) that is obtained
by phase flipping can be envisioned by converting the negative lolles GTF curve to
identical, positive lobes. Similarly, the weighting of amplitudeat is obtained by
multiplying by the CTF can be pictured as a version of the phigped CTF in which
the “bell-shaped peaks” are simply more narrow. The blue dgari#gure 4 shows the
weighting of amplitudes that would be obtained with a Wiener fitierwhich SNR =
0.09. Such a Wiener filter is similar to multiplying by the C&B5,we stated previously.
The green curve shows the weighting obtained with a Wiener filenwhe SNR is set
to be 9, as it was for figure 3D. Finally, the red curve shows taepefect restoration
of amplitudes (except at low frequencies and very close toeitos in the CTF) that is

achieved with a Wiener filter for which SNR = 900.

DISCUSSION

Highly defocused images of a weak phase object can be desdrdadthree
different, but ultimately equivalent perspectives. From one point of view, one cdrasay t
the wave function producing such images is a Fresnel diffragtitiern that is produced
by propagation of the exit wave (i.e. the wave function transchitirough the object).
The intensity distribution of such a Fresnel diffraction pattermigurn (for a weakly
scattering object), an in-line hologram of exactly the typ Gabor hoped to use to
overcome the limitation associated with the spherical aberratitre objective lens [2].

From another point of view, one can describe these images by themagics of linear
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systems [15], in which case the image wave function is obtainedrboluting the exit
wave with the coherent point-spread function of the optical syskeom a third
perspective, the images can be represented as a sum (integathefcontributed by
each diffracted beams, i.e. by each Fourier component of thevaxé [14]. This latter
perspective, although mathematically cumbersome and requineguse of a local
Taylor-series approximation to provide physical insight, explainy wearly why
information at different levels of resolution is delocalized (shifted) dgrdift amounts.

The mathematical description of image formation that is basedneardsystems
theory provides the simplest explanation for why the delocalizednmaition is perfectly
restored when the Fourier transform of an image of a weaktiesog object is divided
by the contrast transfer function (CTF) [15]. In practice, howelreision by the CTF is
not possible at the zeros of the CTF. For noisy images of thehgpean be recorded by
cryo-EM of radiation-sensitive specimens, division by the CTy mven cause severe
noise-amplification at most spatial frequencies, i.e. not jusetblose to the zeros of the
CTF.

Data restoration that is achieved by multiplying by the CTFeven by the simpler
operation of phase flipping, gives a result that does not differ greatly from ai¥Viener
filter when the SNR is low. In fact, phase flipping and CTF rlitation produce a
remarkable recovery of the delocalized information, as card® most easily with the
simplified test object used in Figure 2. Although phase flippintpres a slightly higher
fraction of the delocalized signal, multiplication by the CTkoi®e recommended as an

easy way to give reduced weight to Fourier components with a poor BiRuse of a
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Wiener filter for CTF correction, on the other hand, represéet®ptimal approach for
data recovery at any level of noise.

The simulations presented here demonstrate that full recovergeloicalized
information is generally not possible when CTF correction is appbea defocused
image. Instead, approximately half of the signal, which isrreél to as the “twin image”
in holography, is superimposed on the restored image, effectively deflocused by
twice the original amount. This added background is generally cogmezable as being
structurally related to the object (i.e. to the restored imagd)tree twin image thus acts
effectively as unwanted noise in the reconstruction.

Yonekura and Toyoshima have investigated the effect that applyvmensdlattening
after CTF correction, followed by merging of data from insagecorded at different
defocus values, has on mitigating the “twin-image” noise thaides into the area of a
given particle from closely adjacent, foreign particles in specimen. These foreign
particles were modeled as rectangles of different width amghtheand they were
regarded as a form of noise [16]. While solvent flattening lglesr effective in
smoothing the background, and averaging is effective in “cagfethe intrusion of
twin-image noise that has entered into the volume of a particgtegnerocedure is able
to capture and return the half of the signal, derived from the lgaitgelf, that is doubly
delocalized outside the envelope of the particle during CTF correction.

The simulations presented here show that partial restoration of atiedoc
information occurs to a similar extent when CTF correctiogasied out (1) with a
Wiener filter (assuming a realistic value of the signatdgse ratio), (2) by multiplying

with the CTF, or (3) by phase flipping. This empirical resulbhas intuitively obvious,
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and in fact it is not immediately obvious why phase flipping or ipiylng by the CTF
should restorany of the delocalized information. That these operations nevertheless do
shift some of the delocalized information back to the area of #mgcle can be
understood in terms of the mathematical approximation used by Budamgl Glaeser

[14] to explain, on the basis of Fourier optics, why individual Fowaanponents of an
object are shifted out of the area of a particle to begin with.

Briefly, the Fourier transform of a small object that containsiregle, bounded
Fourier component is the convolution of a Dirac delta function — atpiieakfrequency
of that Fourier component — and the Fourier transform of a functiordésatibes the
boundary and the position of the particle. According to the Fourier gfefirem,
application of a linear phase ramp to such a Fourier transform causes thedbiéouder
component to shift away from the original position of the partl@kfocusing an image
involves application of a quadratic phase shift to the Fourier trans§bthe object, but
locally (e.g. at the position of the Dirac delta function) thisvev aberration can be
expanded in a Taylor series, the second term of which is a phese ramp. This linear
term thus explains the shift (delocalization) of the Fourier compowiie higher-order
terms produce additional distortions of the image. By extensiomgraésh (shifting
back) of some of the delocalized Fourier component must also inva\wapplication of
a linear phase ramp, this time to the Fourier transform of the defocused inesgeynt

Although it may seem contrived to say so, phase flipping can, i) fa
approximated by a linear phase ramp plus higher-order terms. Onallyotihinks of
phase flipping as a function that alternates betweand O for successive intervals of the

spatial frequency. Formally, however, the mathematical consequehepplying such a
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function are indistinguishable from applying a staircase functianiticreases in steps of
n. This staircase can, in turn, be represented as a linear @mpeplus higher-order
deviations above and below the ramp. Since the slope of the ramp cémeb@esitive
or negative, it is not surprising to find that phase flipping siamaélously relocalizes
about half of the delocalized information and further delocalizes the other half.
Multiplying by the CTF is to some extent similar to phaggpfhg, of course. As with
phase flipping, the operation can again be described in terms ofrepplyinear phase
ramp, but in this case accounting for the bell-shaped amplitudgehanaddition to the
steps in phase. Finally, even application of the Wiener filterbeathought of as being
similar to phase flipping, since it again reverses the-gigmge that occurs in successive

zones of the CTF.

CONCLUSIONS

The fact that CTF correction of defocused images suffers foftwin image”
problem similar to that which occurs in optical reconstruction eingm holograms
suggests that an approximate doubling of high-resolution signal shesuit from the
use of in-focus phase contrast images rather than defocused;o@€Eted images for
single-particle cryo-EM. The ability to record in-focus phasstrast images would also
overcome other limitations of defocus-based phase contrast tlteahbabeen discussed
here. One of these limitations is the reduction of structute+faamplitudes at high-
resolution that occurs in highly defocused images due to the envalogeh for spatial
coherence. A second limitation is caused by the increased noise thatdedwalhen it is

necessary to process data (during CTF correction) that cameain area that is much
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larger than the size of the particle itself. It thus is apparent that the defofised phase

contrast is a poor alternative to recording images with in-focus phase contrast.
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FIGURE LEGENDS

Figure 1. The wedge-shaped pattern of radial spokes shoerptmrides an object in
which each spatial frequency is localized at one particulatigosilong the horizontal
axis. The height of the panel represents 30 nm in these simulat{@ysThe original
pattern. (B) The pattern when imaged with a defocus wh2and an electron energy of
300 keV. There are clearly resolved zeros and contrast revensakertain zones of
spatial frequency, while at the higher spatial frequencias geen that the Fourier
components are shifted so much that two sets of spokes separatatiomther. (C, D)
single sideband images of (A) computed with the same effedtifaeus as in (B). Here
the effects of the wave aberration can be seen as producinglivehiits of the Fourier
components by amounts that are proportional to the frequency of thpboent. The

image in (B) is the sum of those shown in (C) and (D).

Figure 2. Comparison of the restoration of delocalized informaktiahis achieved by
phase flipping and by multiplication by the CTF. (A) A spatiddbunded cross-grating
pattern is formed as the product of two perpendicular sine wavds. thWisize-scale set
to 0.1 nm per pixel, the period is 1.3 nm. (B) The image of the obje@)ithat is

computed with an effective defocus of 2 um. (C) Restoration oblfBjined by “phase
flipping” — i.e. inverting the sign of the Fourier transform of {Bylternate zones of the
CTF. (D) Restoration of (B) computed by multiplying the Foutransform by the

original CTF. Insets show a section of the Fourier transfemth, the origin near the

lower left corner.
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Figure 3. Simulation of the delocalization effect in an imagehef large ribosomal
subunit, and examples of the restoration achieved with a Wiererffitt different levels
of the SNR. Images are not shown on the same relative scalenthst, since the
contrast after Wiener filtration depends upon the value of SNRighaed. (A) The
initial image that is obtained when phase contrast is produced oy asiefocus of 2
um. (B) Restoration of the original object from the image iniGAdlmost perfect when
the Wiener filter assumes th&\R(s) = 900. Low-frequencies are still not well-
represented in the restoration, however, since the CTF asympyjotjoal to zero at low
resolution. (C) Simulation of image restoration when the Wientr fassumes that
NR(s) = 0.09, a value that is more realistic for cryo-EM image¥ Restoration already
fails to recover all of the delocalized information when the ndfifilter assumes that

NR(s) = 9, a value that is still unrealistically high for cryo-EM images.

Figure 4. The phase-contrast CTF for a defocusoh2and electron energy of 300 keV,
and the weighting (resultant “transfer function”) that is provideérwa Weiner filter is
used for image restoration. The CTF is shown by the black cwhits the product of
the CTF and the Wiener filter is shown as differently coloredgesufor which the value

of the SNR is identified in the insert. See the text for further explanation.
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Figure 2
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Figure 3
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