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How do you know that Socrates is mortal?  More generally, 
how do you know what properties to attribute to an object?  
How is the relevant knowledge acquired? How is the 
knowledge organized in the brain, and how is it affected by 
brain damage?  My colleagues and I have been seeking to 
answer such questions by developing computational models 
of semantic cognition and its development. 

Parallel-Distributed Processing 
Our overall framework relies on an approach to semantic 
cognition first suggested by Hinton (1981).   Hinton’s 
proposal was that our knowledge of the properties of objects 
as expressed in propositions about them, such as ‘A canary 
can fly’, is not stored directly in propositional form but in 
the strengths of connections between simple processing 
units that allow propositions to be formed mentally by 
pattern completion – e.g. filling in a pattern of activation 
representing ‘fly’ when probed with patterns representing 
‘canary’ and ‘can’.  After the introduction of the back-
propagation algorithm, Hinton (1989) and Rumelhart (1990; 
Rumelhart and Todd, 1993) showed how this learning 
algorithm could discover useful internal representations that 
would support generalization.  In work building on their 
efforts, my colleagues and I have proposed an overall 
architecture for the representation, learning, and processing 
of semantic information.  This architecture provides the 
context in which we have gone on to address questions like 
those enumerated above. 

Complementary Learning Systems 
A key element of the approach is that semantic cognition 
takes place within a distributed network of contributing 
brain areas that work together to allow us to learn, represent, 
and process semantic and other types of information 
(McClelland, McNaughton, and O’Reilly, 1995).   One part 
of this network, the neocortical learning system, allows for 
the developmental elaboration of organized semantic 
representations through a gradual learning process.   The 
other, located in the medial temporal lobes, provides a 
mechanism for learning new information rapidly, while 
avoiding catastrophic interference that would otherwise 
occur if the new information were quickly incorporated into 
the neocortical learning system. For present purposes I 
focus here on recent work (Rogers & McClelland, 2004) 
addressing processes we think of as taking place primarily 
within the neocortex. 

Differentiation and Disintegration of 
Conceptual Knowledge 

In our approach, cognition begins not so much with 
booming buzzing confusion but with a bland conceptual 
uniformity. At first, all things are represented with highly 
similar, undifferentiated patterns of activation. As the 
network experiences the various properties different things 
manifest in different contexts, it gradually comes to 
differentiate them.  This differentiation process is sensitive 
to patterns of coherent co-variation of properties of objects.  
That is, it picks up on the fact that there are many objects in 
the world that have wings and feathers and can fly and many 
others that have four legs, a tail, a wet nose, and can bark.   
First general and subsequently more specific differentiations 
occur. The representations of objects reflect their underlying 
conceptual similarity even as they become more and more 
differentiated. After learning, progressive damage to the 
network results in gradual disintegration of the conceptual 
knowledge, largely reversing the patterns seen in 
development.  These differentiation and disintegration 
processes closely follow patterns seen in children’s 
cognitive development and in the progressive loss of 
conceptual knowledge in patients with semantic dementia 
(Rogers et al, 2005).  These effects coexist, in both the 
model and in human performance, with early emergence of 
the ‘basic level’, and with frequency, typicality, and 
expertise effects. 

Capturing Phenomena Others have Attributed to 
Innately Constrained Naïve Domain Theories 
Beyond capturing developmental and neuropsychological 
progressions, the model can address several findings others 
have attributed to naïve domain theories constrained by 
innate knowledge.   These include: 
 

1. Early signs of sensitivity to domain- and property-
specific patterns of generalization of attributions 
from one object to another (Macario, 1991; 
Gelman and Markman, 1986) 

2. Illusory attribution of properties to objects, e.g. 
attributing legs to animals that do not have them 
(Williams and Gelman, 1998). 

3. Conceptual reorganization and coalescence of 
categories with the accumulation of experience 
across varied contexts (Carey, 1985). 

 
The model exhibits these phenomena as a result of gradual 
learning sensitive to the structure present in its inputs, 
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unaided by innate domain-specific constraints.  Thus the 
model reopens the question of whether we need to invoke 
such constraints. It also raises questions about how useful it 
is to characterize conceptual knowledge as theory-like. 

Architectural Constraints on the Neocortical 
Learning System 
The successes of the model are heavily dependent on 
properties of its architecture: crucially, its reliance on 
distributed representations constrained to reflect all aspects 
of the properties that objects exhibit across different 
contexts.  These observations provide the basis for a new 
way of construing the functions of the anterior temporal 
neocortex, the region implicated most strongly in the 
disintegration of conceptual knowledge in semantic 
dementia.  Similarly to Antonio Damasio (1989), we see 
this region as a ‘convergence zone’ where from different 
modalities and different contexts is brought together about 
the same object (McClelland and Rogers, 2003).  For us it is 
brought together not only to bind the different elements of 
the conceptual representation, but also to allow the learning 
process to shape these convergent representations in a way 
that captures coherent co-variation of properties objects may 
have across modalities and contexts. 

Using and Inferring Causal Properties 
Gopnik et al (2004) review an interesting series of 
experiments on children’s ability to attribute causal powers 
to objects. These authors argue that their findings implicate 
an innately pre-specified causal inference mechanism that 
enables children to make such attributions. However, we 
have implemented a model within our approach that uses 
the same mechanisms that address the phenomena above to 
address the bulk of the Gopnik et al. findings.  The results 
suggest that within the domain of causal inference, as well 
as in other aspects of semantic and conceptual cognition, 
domain-general mechanisms based on the principles of 
parallel distributed processing may be sufficient.  Surely 
there are innate biases that guide our semantic cognition, but 
we suggest that they are domain general principles 
embodied in PDP networks organized to promote cross-
domain convergence of constraints on conceptual 
representations. 
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