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ABSTRACT OF THE DISSERTATION

Janus and RG-flow interfaces in gauged supergravity

by

Charlie Hultgreen-Mena

Doctor of Philosophy in Physics

University of California, Los Angeles, 2025

Professor Michael Gutperle, Chair

In this dissertation, we construct Janus-type solutions of three-dimensional gauged super-

gravity. We find solutions that correspond to RG-flow interfaces between CFTs with different

central charges by solving the BPS flow equations or the equations of motion. Quantities

such as transmission coefficients and holographic quantities such as the entanglement entropy

are calculated, as well as plots of the RG-flows to determine whether some supersymmetry

is preserved.

In chapter 1, we review the AdS/CFT correspondence, supergravity and an introduction

to transmission in conformal interfaces. In chapter 2, we construct Janus-type solutions of

three-dimensional gauged supergravity with sixteen supersymmetries, as well as the RG-flow

interfaces. In chapter 3, we generalize the previous work with a general α for the embedding

tensor of the gauged supergravity. In chapter 4, we discuss the Janus and RG-flow solutions

of N = 2, d = 3 gauged supergravity.
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Gracias por haber estudiado conmigo, por tratar de inculcarme amor por el conocimiento y

por siempre intentar lo que cree que es mejor para mı́. Las personas suelen ser más tercas

y cerradas al cambio mientras envejecen, y curiosamente, usted no ha sido aśı. No creo que
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CHAPTER 1

Introduction

The construction of a quantum theory of gravity and descriptions of strongly-coupled gauge

theories have been among the greatest challenges of modern theoretical physics. Treating

gravity as a classical field theory and directly quantizing gives a non-renormalizable theory.

The development of string theory as a framework and the discovery of the dualities might be

the path to success through gravity/gauge holographic duality. In one of the earliest examples

of weakly coupled string theory/gauge field theory, ’t Hooft studied [4] the case of large N

limit gauge theories where the gauge theory simplifies and matches the perturbation theory

of the Feynman diagrams, which are organized in graphs in terms of a genus expansion, with

the perturbation theory of a weakly coupled string theory hinting at a gauge/gravity duality.

Treating black holes as quantum systems revealed a proportionality between the entropy

and the area of the horizon [5] contrasting the typical relation where for local quantum field

theories the entropy is an extensive variable scaling with the volume. The implications of

this discovery led to the holographic principle according to which the states of any quan-

tum gravity theory are contained in a theory without gravity defined at the boundary of

the space [6–8]. An independent result by Brown and Henneaux studying the asymptotic

symmetry group of 3D Anti-de Sitter space (AdS) leading to a 2D Virasoro algebra which

is the symmetry group of 2-dimensional Conformal Field Theory (CFT), [9] suggested that

theories of gravity with AdS asymptotic are connected with lower dimensional conformal

field theories.

The discovery of D-branes [10–12] in string theory and the study of open strings on them
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raised the possibility that lower-dimensional gauge theories living in the near-horizon limit

could be the holographic dual of the gravity theory. In 1997, Maldacena’s conjecture [13]

shows an equivalence between certain theories of closed strings in AdS spaces and conformally

invariant gauge theories in fewer dimensions. These gauge theories were proved to live at

the AdS boundary allowing us to compute string theory observables in the bulk from the

boundary theory [14,15].

In this dissertation, chapter 1 reviews the necessary background material of the AdS/CFT

correspondence and supergravity and the basics of interface conformal field theories (ICFTs),

as well as some examples and applications of these theories. Chapter 2 is based on [1], where

we construct Janus-type solutions of three-dimensional gauged supergravity with sixteen

supersymmetries, as well as the RG-flow interfaces between CFTs with different numbers

of supersymmetries and central charges. Chapter 3 is based on [2], where we continue the

work with general α for the embedding tensor of the gauged supergravity, as well as the

computation of holographic quantities such as the masses for the fluctuations of the scalar

fields around different vacua of the theory, as well as the entanglement entropy around the

defect for both sides of the interface. Chapter 4 is based on [3], where we find solutions of

minimal d = 3, N = 2 gauged supergravity corresponding to Janus and RG-flow interfaces

and use holography to calculate symmetric and interface entanglement entropy as well as

reflection coefficients and bounds between these quantities.

1.1 AdS/CFT Correspondence

The AdS/CFT correspondence states duality between certain theories including gravity in

(d+1)-dimensional asymptotically anti-de Sitter spaces and, conformal field theories (CFT)

that live on their d-dimensional boundaries. In almost all cases, the two sides of the cor-

respondence are related by a strong/weak coupling duality making the comparison on both

sides difficult. Still, there are a few cases where the comparison can be performed like BPS

2



states, which are protected from quantum corrections by supersymmetry, and can therefore

be continued from strong to weak coupling. For a selection of reviews and lecture notes on

the AdS/CFT correspondence, see [16–19].

1.1.1 Conformal Field Theory

In a quantum theory, conformal invariance is broken by introducing a renormalization scale

from the regularization of ultraviolet divergences (UV) due to loops in perturbation theory.

The conserved current from scale transformations relates the trace of the stress-energy tensor

to the beta functions of the theory. Therefore, scale-invariant quantum field theories must

have vanishing beta functions and they are important as possible fixed points of renormal-

ization group flows. New quantum field theories can be obtained from relevant deformations

along the RG flows from the UV to the Infrared (IR) of these CFTs. An introduction to

CFT is given by [20].

The conformal group is the group of transformations that preserve the form of the metric

up to an arbitrary scale factor, gµν(x) → Ω2(x)gµν(x) under coordinate transformation. It

includes the Poincaré group as well as dilation transformation x → ax and inversion trans-

formation xµ → xµ/x2.

In Minkowski space, an infinitesimal coordinate transformation (xµ → xµ + εµ) to the

metric conformal transformation gives us the conformal killing equation ∂µεν + ∂νεµ = 2
d
∂ ·

εηµν . For d > 2, the most general solution is

xµ → xµ + aµ + ωµνxν + λxµ + x2bµ − 2(x · b)xµ, (1.1)

Using the infinitesimal conformal transformations and the well-known structure of the

Poincare group on the spacetime coordinates, one can derive the conformal algebra of the

3



group

[Mµν ,Mρσ] = i (ηνρMµσ − ηµρMνσ + ηµσMνρ − ηνσMµρ) ,

[Mµν , Pρ] = i (ηνρPµ − ηµρPν) ,

[Mµν , Kρ] = i (ηνρKµ − ηµρKν) ,

[Kµ, Pν ] = 2i (ηµνD −Mµν) ,

[D,Pµ] = iPµ, [D,Kµ] = −iKµ,

(1.2)

where D denotes the generator for dilations, Pµ for translations, Mµν for Lorentz trans-

formations, and Kµ for special conformal transformations. This algebra is isomorphic to the

algebra of SO(d, 2) in the η = (−,+,+, ...,+,−) signature under transformations.

Jµν =Mµν ; Jµd =
1

2
(Kµ − Pµ) ; Jµ(d+1) =

1

2
(Kµ + Pµ) ; J(d+1)d = D (1.3)

For the Poincare group in quantum field theory, we classify the representations of the group

via the little group SO(d)×SO(2) where SO(d) gives the typical spin of the field. The SO(2)

charge is the scaling dimension of the field that transforms as ϕ(x) → ϕ′(x) = λ∆ϕ(λx). The

algebra of the group imply that the operator Pµ raises the dimension of the field, while the

operator Kµ lowers it. Unitarity of the theory gives a lower bound on the dimension of fields

(for scalar fields it is ∆ ≥ (d − 2)/2 [21]). Therefore each representation of the conformal

group must have some operator of lowest conformal dimension, which must then be annihi-

lated by Kµ at the origin. Such operators are called primary operators. Then all the local

operators can be found via Pµ acting on the primaries.

The conformal symmetry group strongly constraints the n-point functions of local op-

erators [22]. Via conformal transformations any three points can be mapped to any other,

fixing the form of 2 and 3-point functions up to constant factors. Via scaling and Poincare

invariance, the 2,3 and 4-point functions of primary scalar fields can be written
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⟨O∆1 (x1)O∆2 (x2)⟩ = δ1,2

2∏
i<j

|xij|−∆ ,

⟨O∆1 (x1)O∆2 (x2)O∆3 (x3)⟩ = c123

3∏
i<j

|xij|∆−2∆i−2∆j ,

⟨O∆1 (x1)O∆2 (x2)O∆3 (x3)O∆4 (x4)⟩ = c1234(u, v)
4∏

i<j

|xij|
∆
3
−∆i−∆j .

(1.4)

Where xij ≡ xi−xj and ∆ ≡
∑

i∆i and the functions x1234(u, v) is a function of the two

conformally invariant cross-ratios

u ≡ |x12| |x34|
|x13| |x24|

, v ≡ |x14| |x23|
|x13| |x24|

. (1.5)

The state-operator correspondence in a CFT follows from the scale invariance. States are

defined in different time slices (represented by spheres centered at the origin). As one scales

down the sphere to the origin, the effect of the state is equivalent to a local operator centered

at the origin. This correspondence implies that the product of any two conformal primaries

can be rewritten as a linear combination of conformal operators inserted at a nearby point

(no other insertions in between the two primaries). This property of CFTs is called Operator

Product Expansion (OPE), and for two scalar operators it can be written as

O∆i
(x)O∆j

(0) =
∑
k

cijk|x|−∆i−∆j+∆k (O∆k
(0) + descendants ) (1.6)

where the coefficients of each dependant are determined by conformal invariance. Any

n-point function can be reduced to an infinite sum of (n-1)-point functions. Thus, the CFT

is complete once the conformal dimension, the irreducible representation and the cijk of the

3-point function for each primary are determined. These coefficients are not random, since

the 4-point function can be expressed in different channels leading to algebraic equations

that constrain their possible values. Using this infinite set of crossing equations to identify

possible conformal field theories is the basis of the conformal bootstrap program [23,24].
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1.1.2 Anti-de Sitter space

Anti-de Sitter spacetime [25, 26] is a solution to Einstein’s field equations with negative

cosmological constant that exhibits maximal isometries. It appears in string theory and in

supergravity theories as vacua of gauged supergravity theories and Kaluza Klein reductions

(KK reductions) of gravity theories [27].

AdSd+1 may be embedded into a d-dimensional hyperboloid hypersurface with spacetime(
X0, X1, . . . , Xd, Xd+1

)
∈ Rd,2, and metric η̄ = diag(−,+,+, . . . ,+,−),

η̄MNX
MXN = −

(
X0
)2

+
d∑

i=1

(
X i
)2 − (Xd+1

)2
= −L2 (1.7)

inside Rd,2. L is the radius of curvature of the Anti-de Sitter space and the hypersurface

is invariant under SO(d, 2) transformations acting on Rd,2. SO(d, 2) has (d + 1)(d + 2)/2

generators, the same number of Killing generators in (d + 1) Minkowski spacetime. There-

fore, as mentioned AdS space is also maximally symmetric.

There are different useful representations of the induced metric. Using the parametriza-

tion of the hypersurface

X0 = L cosh ρ cos τ

Xd+1 = L cosh ρ sin τ

X i = LΩi sinh ρ, for i = 1, . . . , d

(1.8)

The induced metric for the line element is

ds2 = L2
(
− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2

d−2

)
(1.9)

where Ωi parametrize a sphere Sd−1. The remaining coordinates take the ranges ρ ∈ R+and

τ ∈ [0, 2π [ . These coordinates are global coordinates of AdSd+1 since all points of the
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hypersurface are covered exactly once. τ being a periodic value brings closed time-like

curves for fixed Ωi and ρ. Unwrapping the time circle in which −∞ < τ < +∞ fixes those

issues. The conformal boundary of these coordinates occurs as ρ → ∞ where the induced

metric is a cylinder R× Sd−1.

Another useful set of coordinates describing AdSd+1 is the Poincaré patch defined by

X0 =
L

z
x0, Xj =

L

z
xj

Xd =
z

2

(
L2 − x2

z2
− 1

)
, Xd+1 =

z

2

(
L2 + x2

z2
+ 1

)
,

(1.10)

where x2 = − (x0)
2
+
∑d−1

j=1 (x
j)

2
and the coordinate range of z is restricted to 0 < z <∞.

The corresponding metric is conformal to half of flat Minkowski spacetime and takes the form

ds2 =
L2

z2

[
dz2 −

(
dx0
)2

+
(
dx1
)2

+ . . .
(
dxd−1

)2]
(1.11)

making the d-dimensional Poincaré symmetry of the coordinates manifest. The metric

furthermore makes the scaling symmetry z → λz, x0 → λx0, xj → λxj explicit.

Due to the state-operator correspondence and the invariance of the vacuum, the CFT

vacuum corresponds to pure AdS. In order to get a correspondence with other CFT states,

spacetimes whose metrics approach that of AdS near their boundaries must be analyzed.

Solutions like black holes and p-branes can present an AdS asymptotical behavior. An

example is Reissner–Nordström black hole in 4D

ds2 = −F (r)dt2 + 1

F (r)
dr2 + r2 dΩ2

2 (1.12)

F (r) = 1− 2MG

r
+
q2G

4πr2
. (1.13)

For the extremal case q2 = 4πM2G, the boundary is located at r = MG. Introducing the

change of coordinates v = r −MG and taking the limit v → ∞, we get the metric
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ds2 ≈ − v2

(MG)2
dt2 + (MG)2

dv2

v2
+ (MG)2 dΩ2

2. (1.14)

which has the AdS form in global coordinates where both the AdS scale and the radius

of the sphere are equal to MG.

1.1.3 Holography

The AdS/CFT correspondence arises from matching the global symmetries on both sides.

The AdS/CFT correspondence provides a mapping between fields in the bulk near the bound-

ary and operators in the dual CFT. To illustrate this, consider a free massive scalar in AdSd+1

in Poincare patch coordinates (ds2 = 1
z2
(dz2 + dx21 + · · ·+ dx2d))

Sbulk [ϕ] =

∫
dd+1x

√
g

(
1

2
gµν∂

µϕ∂νϕ+
1

2
m2ϕ2

)
, (1.15)

Ignoring the backreaction and solving the KG equation, we find two linearly independent

solutions. The boundary of AdS is at z → 0. Thus at leading order in z

ϕ(z, x) ∼ ϕ(0)(x)z
∆− + ϕ(+)(x)z

∆+ + · · · , (1.16)

where ∆± are the roots of m2L2 = ∆(∆− d) given by

∆± =
d

2
±
√
d2

4
+m2L2. (1.17)

For solutions to be real, the mass is bounded bym2 ≥ −d2/4, which agrees with the unitarity

bound [28, 29]. We can evaluate the on-shell action and realize that the source term (ϕ0) is

a non-normalizable term. We identify ∆+ as the scaling dimension of the dual operator and

notice that the term
∫
ddxϕ0(x)O∆(x) is scale invariant.

The boundary values of the fields are identified with sources that couple to the dual

operator, and the on-shell bulk partition function with the generating functional of QFT

correlation functions [14, 15]
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ZSUGRA

[
ϕ(0)

]
=

∫
Φ∼ϕ(0)

DΦexp(−S[Φ]) =
〈
exp

(
−
∫
∂AAdS

ϕ(0)O

)〉
QFT

(1.18)

where ϕ(0) is the boundary value of the field in the AdS side and a source to the field operator

O. Correlation functions of the operator are now computed by functional differentiation with

respect to the source

⟨O (x1) · · ·O (xn)⟩ = (−1)n+1 δnSonshell

δϕ(0) (x1) · · · δϕ(0) (xn)

∣∣∣∣
ϕ(0)=0

(1.19)

In general, the on-shell supergravity action diverges due to integration over an infinite AdS

space (IR divergence). The long-distance (IR) is the same as near the boundary, and a good

coordinate system to work with is the Fefferman-Graham coordinates (FG) with a cutoff at

z = ε. In the field theory side, we have UV divergences from the FG cutoff. A tool to control

the divergences on the gravity side is holographic renormalization [30,31]. The solutions will

be valid near the boundary. Expanding around it

ds2 =
1

z2
(
dz2 + gij(x, z)dx

i dxj
)
,

gij(x, z) = g(0)ij(x) + zg(1)ij(x) + · · ·+ zdg(d)ij(x) + zd log zg̃(d)ij(x) + · · ·

F(x, z) = z∆−
(
f(0)(x) + zf(1)(x) + · · ·+ z∆+−∆−f∆+(x) + z∆+−∆− log zf̃∆+(x) + · · ·

)
,

(1.20)

Using Einstein equations and the field equations, we can group terms order by order in z,

solve iteratively and all terms except g(d)ij and f∆+ can be expressed as local functions of

the leading terms g(0)ij and f(0). This is expected as the equation of motion for the scalar

field requires two linearly independent solutions. These values will be associated with the

expectation value of the corresponding CFT operator (stress tensor and scalar operator) in

the presence of the sources.
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To regularize the on-shell action, we restrict the range of the z integration z ≥ ε for some

small constant ε > 0. Since the equation of motion is satisfied, the bulk contribution to

the action vanishes and only the boundary terms at z = ε survive. This gives a regularized

action with a finite number of divergences of the form

Sreg

[
g(0), f(0), ε

]
=

∫
ddx

√
g(0)

[
a0ε

−ν + a2ε
(−ν+1) + . . .+ aν ln ε+O

(
ε0
)]

(1.21)

All coefficients aν are local functions of the sources g(0)ij and f(0). The divergences can be

canceled out by adding local counterterms to the action. These are expressed in terms of

the fields living on the regulating hypersurface for the subtraction to be covariant. Then, we

have to invert the asymptotic expansion of the fields to find f(0) = f(0)(F(x, ε), gij(x, ε), ε)

and g(0) = g(0)(F(x, ε), gij(x, ε), ε). The counterterm action is then defined as

Sct[F(x, ε), gij(x, ε); ε] = − divergent terms of Sreg

[
f(0), g(0); ε

]
(1.22)

We then define the normalized action as

Sren

[
g(0), ϕ(0)

]
= lim

ε→0
(Son-shell + Sct) . (1.23)

which is finite and can be used to compute the correlation functions. For the one-point

function

⟨Tij(x)⟩s ≡
2

√
g0

δSren

δgij(j)(x)
∼ g(d)ij(x) + Cij

(
g(0), f(0)

)
,

⟨O∆(x)⟩s ≡
1

√
g0

δSren

δϕ(0)(x)
∼ f∆+(x) + C

(
g(0), f(0)

)
.

(1.24)

where the C’s are local functions of the sources. Thus, an n-point function information is

encoded in f∆+ and g(d)ij, which can be found from the bulk equation.

10



1.1.4 Maldacena limit

In type IIB string theory, the open string and closed string perspective applied to a stack

of N D3-branes in flat spacetime in the low energy limit implies a correspondence between

N = 4 super-Yang-Mills theory [32] in 4-dimensions and supergravity solutions on AdS5×S5.

For the open string perspective in a background of (9+1)D Minkowski and a stack of N

coincident D3-branes, open strings are not stretched and can have arbitrary short lengths.

Thus, in the low energy limit, the strings are massless. The massless effective action contains

the closed string modes, open string modes and the interactions between them. The action

of the last two can be expressed from the Dirac–Born–Infeld action and the Wess–Zumino

term. Expanding around the metric fluctuations and to first order in α′, we find

Sclosed =
1

2κ2

∫
d10x

√
−ge−2ϕ

(
R + 4∂Mϕ∂

Mϕ
)
+ · · ·

∼ −1

2

∫
d10x∂Mh∂

Mh+O(κ),

Sopen = − 1

2πgs

∫
d4x

(
1

4
FµνF

µν +
1

2
ηµν∂µϕ

i∂νϕ
i +O (α′)

)
Sint = − 1

8πgs

∫
d4xκϕFµνF

µν + · · ·

(1.25)

where h is the metric fluctuation g = η + κh, gs is the string coupling, 2κ2 = (2π)7α′4g2s

and (2πα′)−1 is the string tension.

In the Maldacena limit (α′ → 0 while keeping N and gs fixed), the interaction term can

be neglected and the open and closed strings decouple. In this limit, Sopen is the bosonic

part of N = 4 Super Yang-Mills theory with the identification 2πgs = g2YM, while Sclosed is

approximated by Type IIB supergravity.

In the closed string perspective, we have the supergravity solution of the metric of N

coincident D3 branes to be
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ds2 =

(
1 +

L4

r4

)− 1
2

ηijdx
idxj +

(
1 +

L4

r4

) 1
2 (
dr2 + r2dΩ2

5

)
(1.26)

where L is found by calculating the charge via integration of the R-R flux of the D3-brane.

Setting the charge to N, L4 = 4πgsNα
′2 is found. For large L, the metric reduces to 10D

supergravity in flat space. In the near horizon limit (r ≪ L) and using the coordinate

u ≡ L2/r, the metric becomes

ds2 = L2

[
1

u2
ηijdx

idxj +
du2

u2
+ dΩ2

5

]
(1.27)

which has the AdS5×S5 form. E∞ =
√
−g00Er = H(r)−1/4Er implies that string excitations

coming from the near horizon decouple from the flat supergravity for an observer at infinity.

Both perspectives should be physically equivalent, suggesting that four-dimensional N =

4 super Yang-Mills theory is equivalent to type IIB string theory on AdS5×S5. Furthermore,

the global symmetries of both theories match. N = 4 SYM has a vanishing beta function and

is hence conformal. The supergroup is PSU(2, 2 | 4) where the bosonic subgroup is given

by SU(2, 2) ∼ SO(4, 2) (which is the symmetry group of AdS5) and the SU(4) ∼= SO(6)

R-symmetry of N = 4 SYM (symmetry group of S5). This matches the isometries of

AdS5 × S5. The field-operator map between the theories can be found via KK reduction on

the supergravity side and matching the representations on both sides [33, 34].

Classic supergravity appears as the limit of string theory when the string length is much

smaller than the curvature radius of AdS L. L4 = 4πgsNα
′2, which means gsN is large.

Since gsN ∼ g2YMN , this limit corresponds to large ’t Hooft coupling in the field, and we

obtain a strong/weak duality theory which allows us to study strong coupling dynamics of

one theory from the weak coupling perturbative behaviour of the other.
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1.2 Supergravity

If the symmetry algebra of a theory allows fermionic generators with anti-commutation

relations, the Poincare symmetry extends to the supersymmetry algebra [35], where the new

fermionic generators QI obey{
QI , Q̄J

}
∼ γMPMδ

IJ ,
{
QI , QJ

}
∼ ZIJ ,[

LMN , Q
I
]
∼ ΣMNQ

I ,
[
PM , Q

I
]
= 0, I, J = 1, 2...,N

(1.28)

where the generators ZIJ are central charges which are antisymmetric and commute with

all the other generators of the algebra, and γM and ΣMN are the Dirac matrices and the

generator of the spinor representation in SO(1, D − 1) obeying the algebra

{
γM , γN

}
= 2ηMN , M,N = 0, . . . , D − 1.

ΣMN :=
1

4

[
γM , γN

] (1.29)

To get the representation of the algebra, we make a Lorentz boost to make the little group

SO(D − 1)/SO(D − 2) for the massless/massive case explicit. Writing the algebra, the

generators QI can be separated into Q+ and Q− that obey the algebra of creation and an-

nihilation operators for the massless case, and a BPS-bound algebra for the massive case.

This implies that a supersymmetric multiplet can be constructed starting from a vacuum

state annihilated by the Q− and the multiplet is generated by the action of the supercharges

Q+ acting on the vacuum.

Supergravity is a supersymmetric model which is covariant under general coordinate trans-

formations. This is equivalent to having local supersymmetry transformations. For gravity,

the fundamental particle is the massless spin-2 graviton. Thus, to obtain local SUSY we

need a massless spin-3/2 superpartner called the gravitino, which is the gauge field of the

theory.

For D > 4 interacting massless fields of S > 2 have a trivial S-matrix [36]. Thus, for

a physical interacting theory, we can only have 8 raising operators. The number of raising
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operators of a theory is determined by the number of supercharges and the dimension of the

spinor representation. This gives us an upper bound for the amount of supercharges (32 max-

imum) and the dimension (D ≤ 11) in which supergravity is possible [37]. Thus, we have pure

supergravity where only the graviton and its superpartners are present, and matter-coupling

supergravities that contain additional supermultiplets (chiral, vector, graviton, hyper and

tensor multiples). For a detailed review of the topic, see for example [18,38,39]

1.2.1 Global Supersymmetry

Once a representation is obtained from the supersymmetry algebra, constructing a La-

grangian invariant under supersymmetry transformations is the next step, leading to the

superfield formalism [40]. As an example for N = 1, the idea is to enlarge Minkowski

space to a superspace
(
xµ, θα, θ̄α̇

)
where θα, θ̄α̇ are Grassman coordinates associated with the

supersymmetry generators Qα, Q̄α̇. The most general superfield can be written as

S
(
xµ, θα, θ̄α̇

)
=φ(x) + θψ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄N(x) +

(
θσµθ̄

)
Vµ(x)

+ (θθ)θ̄λ̄(x) + (θ̄θ̄)θρ(x) + (θθ)(θ̄θ̄)D(x)
(1.30)

Analogous to the transformation of a field under translations in Minkowski space, supersym-

metry transformations of the superfield are realized linearly via the Qs operators.

δεS = (εQ+ ε̄Q̄)S (1.31)

where ε is a constant spinor and the differential operator Q can be written as

Qα =
∂

∂θα
− iσµ

αα̇θ̄
α̇∂µ Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµ

αα̇∂µ (1.32)

The transformation of each field from the superfield is obtained via differentiation. It

also follows that the integral

14



∫
d4xd2θd2θ̄S(x, θ, θ̄) (1.33)

is invariant under supersymmetric transformations if S is a superfield. Linear combinations

of superfields are superfields, as well as ∂µS and DαS where Dα is the covariant derivative

Dα := ∂α + i (σµ)αβ̇ θ̄
β̇∂µ. To ensure supersymmetry, the Lagrangian must be a scalar under

supersymmetry transformations. The common terms for the possible superfield are: the

kinetic term Lkin = S†S, interacting terms from the superpotential Lint = W (S)+W † (S†),
and gauge terms for vector superfields Lgauge = 1

4g2

∫
d2θWαWα+ h.c. These last two terms

are only integrated over half the superspace. Thus, we can write general Lagrangians through

integration

S =

∫
d4xd2θd2θ̄A(x; θ, θ̄) =

∫
d4xL (ϕ(x), ψ(x), Aµ(x), Fµν . . .) (1.34)

where A is a combination of the kinetic term (integration over the full superspace) and

the interaction terms and gauge terms (integrated over half the superspace). A general S is

not in an irreducible representation, but imposing supersymmetric invariant constraints on

S, a reducible representation can be found, and the explicit supersymmetric Lagrangian can

be derived.

1.2.2 D = 4, N = 1 pure supergravity

For supergravity to arise, supersymmetry has to be local. The study and cataloguing of

lower dimension supergravities have been widely studied [41, 42]. In pure supergravity, we

only have the massless graviton eaµ and its superpartner, a Majorana spinor gravitino ψµ.

The eaµ is related to the metric via

gµν(x) = emµ (x)ηmne
n
ν (x) (1.35)

where ηmn is the Minkwoski metric. The Greek letters denote spacetime indices, while
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the latin ones denote flat space indices and couple to fermionic fields and the Dirac matrices.

A supersymmetric infinitesimal transformation is linear on the fields, and from the super-

space formalism, the transformation changes bosonic into fermionic particles and vice versa.

Thus, the general transformation of these fields

δB(x) = ε̄(x)f1(B(x))F (x) +O
(
F 3
)
, δF (x) = f2(B(x))ε(x) +O

(
F 2
)

(1.36)

where the functions f1 and f2 include dirac matrices and covariant derivatives. For a classical

solution, where the fermions vanish, the bosonic variation is trivially satisfied, and the spinor

solutions of the fermionic transformations determine the amount of unbroken supersymmetry,

giving us shorter multiplets of the theory (BPS multiplets).

The action should contain the free action for both the graviton(the Einstein-Hilbert action

), the gravitino (Rarita-Schwinger action) and an interacting term to ensure supersymmetry

in the theory. The action [43] is given by

S =
1

2κ2

∫
d4x

√
−g
(
R− ψ̄µγ

µνρDνψρ + L[e, ψ]) (1.37)

where Dµψν = ∂µψν + 1
4
ωab
µ γabψν and ωab

µ is the torsion-free spin connection defined by

dea + ωa
b ∧ eb = 0. The supersymmetry transformations are

δeaµ =
1

2
ε̄γaψµ

δψµ = Dµε(x) ≡ ∂µε+
1

4
ωµabγ

abε
(1.38)

The first equation follows from the bosonic transformation only involving fermionic fields.

The second follows from the gravitino being the gauge field of the theory. To find the

interacting term, we treat the spin connection as an independent variable, the equation of

motion for the spin connection can be solved to obtain a connection with torsion. This result

can then be substituted in the action to obtain the theory with torsion-free connection and

explicit four-fermion interacting terms. This procedure gives
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dea + ωa
b ∧ eb = 0 = − i

2
ψ̄µγ

aψν (1.39)

with solution

ωµab = ωµab(e) +Kµab,

Kµνρ = −1

4

(
ψ̄µγρψv − ψ̄νγµψρ + ψ̄ργνψµ

) (1.40)

The supergravity action invariant under the supersymmetry transformations then is given

by

S =
1

2κ2

∫
d4x

√
−g
(
R− ψ̄µγ

µνρDνψρ −
1

16

(
ψ̄ργµψν

) (
ψ̄ργµψν + 2ψ̄ργνψµ

)
+
1

4

(
ψ̄µγνψ

ν
) (
ψ̄µγρψ

ρ
)) (1.41)

which is invariant under the supersymmetry transformations

δeaµ =
1

2
ε̄γaψµ

δψµ = ∂µε+
1

4

(
ωab
µ +Kab

µ

)
γabε

(1.42)

1.2.3 Supergravity in higher dimensions

The importance of supergravity in D > 4 derives from supergravity being the low-energy

effective action for fundamental theories such as string theories, which is the case for D = 11

supergravity and M-theory, as well as D = 10 and type IIA and IIB string theory. Besides,

dimensional reduction of supergravity in higher dimensions can be used to construct extended

supergravity in lower dimensions.

Kaluza-Klein reduction procedure can lower the dimension of supergravity in R(1,D−1)

to R(1,D−1−d) that includes a d-dimensional compact manifold (R(1,D−1−d) ×Xd), where any

isometry of the manifold becomes a gauge symmetry in R(1,D−1−d) [44]. An example is a

massless vector field AM

(
xM
)
where M = 0, 1, ..., D − 1 compactified in R1,D−2 × S1 where

17



the circle has radius R. The vector field becomes a scalar and a vector field in the Lorentz

group SO(1, D − 2)

Aµ =
∞∑

n=−∞

An
µ exp

(
iny

R

)
, ρ =

∞∑
n=−∞

ρn exp

(
iny

R

)
(1.43)

If we write the field equation with a transverse gauge, we get a massless Klein-Gordon

equation for each component indicating an infinite KK tower with masses m2
n = n2/R2. As

R → 0 all the modes, except for n = 0 become infinitely heavy and decouple. The action

would get reduced into a massless gauge field and a massless scalar field

SD =

∫
dD−1xdy

1

g2D
FMNF

MN =

∫
dD−1x

(
2πR

g2D
F µν
(0)F(0)µν +

2πR

g2D
∂µρ0∂

µρ0

)
= SD−1

(1.44)

D = 11 is the highest dimension allowed for a supergravity theory. The massless multiple

(little group SO(9)) contains the metric(traceless symmetric with 44 d.o.f), and the vector-

spinor gravitino (with 128 d.of). To match the fermionic and bosonic d.o.f, the theory needs

an object with 84 d.o.f, which is the number of independent components of 3-form in 11D.

Thus, 11D supergravity [45] in a circle is reduced to

gMN → gµν , gµ10 ∼ Aµ, g10,10 ∼ ϕ

AMNP → Aµνρ, Aµν10 ∼ Bµν

ΨM → (Ψµ,α,Ψµα̇) , (Ψ10α ∼ λα,Ψ10α̇ ∼ λα̇)

(1.45)

The local Lorentz invariance breaks from SO(1,10) to SO(1,9)x SO(1), allowing the triangular

parametrization of the vielben

êα̂µ̂ =

 eδϕeαµ 0

eϕAµ eϕ

 µ̂, α̂ = 0, . . . , 10 µ, α = 0, . . . , 9 (1.46)

With a similar procedure to the previous example, we can write the bosonic part of the

action of the reduced supergravity to be [46]
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SIIA =
1

2

∫
d10x

√
−g
(
e−ϕ

(
R + 4∂µϕ∂

µϕ− 1

2
|H3|2

)
− 1

4

(
|F2|2 +

∣∣∣F̂4

∣∣∣2))
− 1

4

∫
d10xB2 ∧ F4 ∧ F4 + (fermionic interactions) ,

(1.47)

where F2 = dA1.H3 = dB2, F4 = dA3 and F̂4 = F4 − A1 ∧H3. Constructing consistent KK

reductions can provide methods to construct explicit solutions in lower dimensions, which

can be uplifted to the higher dimensional theory. Truncations and consistency of the KK

towers have been studied in [47–49].

1.2.4 Ungauged and gauged supergravity

The KK procedure on R(1,D−1)×Xd induces gauge symmetries on the vector fields originated

from the metric dimensional reduction [50,51]. This gauge is induced by the isometries ofXd.

Starting from D=11 supergravity, maximal supergravities in lower dimensions are obtained

by toroidal compactification, which preserves all the supersymmetries of the the parent

theory. For toroidal KK reductions, the new matter fields are not charged under the abelian

gauge group, and the matter fields of the KK tower are massless, obtaining an ungauged

massless theory. More complex compactifications typically come with non-abelian gauge

symmetries under which the matter fields are charged, and come with a scalar potential and

masses for the matter fields.

Gauging an ungauged theory is possible via deformation, which consists of promoting

a subgroup G0 of the global symmetry group G of the ungauged theory, to a local gauge

symmetry of the vector fields [52]. This procedure introduces mass deformations, scalar

potential, and charged matter fields to maintain supersymmetry in the theory.

The bosonic field of supergravity is fixed by gauge covariance and diffeomorphism. Under

the global symmetry, the scalar field and the gauge fields transform in non-linear and linear

representations of G respectively. The scalar fields are parametrized by a coset G/K, where

K is the maximal compact subgroup of G. A gauge fixing describing the scalar fields is given
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by the scalar matrix

V = exp {ϕaYa} (1.48)

where the generators Ya span the lie algebra of the coset space. In this gauge, the global

invariance of the scalar Lagrangian is manifest. We can write the Lagrangian sector via the

current

Jµ = V−1∂µV = Qµ + Pµ (1.49)

where Qµ is part of the Lie Algebra of K and behaves as a gauge field under it, taking the role

of a composite connection for the fermion fields. Pµ is part of the orthogonal complement of

the Lie Algebra of K, and can be used to build an invariant kinetic term under K

Lscalar = −1

2
eTr (PµP

µ) (1.50)

Gauging of the theory can be done via the embedding tensor formalism. Choosing a subgroup

G0 of G by selecting a subset of the generators of G. This subgroup gets promoted to local

symmetry by the standard covariant derivative definition. Labeling the generators of the

subgroup by XM , we can introduce the embedding tensor [53,54]

XM ≡ ΘM
αtα (1.51)

where tα are the generators of the global symmetry G. Once a particular choice for ΘM
α

is made, the gauge group G0 is fixed [55]. The generators XM must close under into a sub-lie

algebra of G, which sets linear (from supersymmetry) and quadratic (ΘM
α invariant under

G0) constraints on the form of the embedding tensor [53, 56].

These constraints are not enough to make the standard non-abelian field strength co-

variant. A new term proportional to the coupling constant needs to be added to the field

strength. Once the free Lagrangian for both the scalar field and the new gauge field is found,

it has to be invariant under supersymmetry. The invariance requires an extra term involving
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fermionic mass terms and linear in the coupling constant. The supersymmetry transforma-

tions of the fermion fields add terms of order g2, which can be canceled by a scalar potential.

Examples of the deformations and Lagrangians can be found in [57,58].

1.2.5 Domain walls

A CFT can be deformed by introducing relevant operators, which induce an RG flow connect-

ing it to other CFTs. This introduces an energy scale, that breaks the conformal symmetry

into Poincare symmetry. On the supergravity side, we can identify this energy scale with

a radial direction that separates the regions, and gives different values to the matter fields

on each region. A domain wall [59–61] is a supergravity solution separating two regions in

space, which approach an AdS space. In these regions, we have two critical points of the

potential, and the solutions of the EoM are two different AdS vacua which are dual to a

CFT. The effective Lagrangian for a scalar on the boundary becomes

LQFT = LCFT + ϕ(0)O∆ (1.52)

where ϕ(0) is the source for the dual operator. Relevant deformations of the CFT give

rise to RG-flows that connect the two AdS vacua regions. The mapping between SUGRA

and the CFT corresponds to: the critical point of SUGRA potential dual to fixed point in

the beta function, warp-factor of the domain wall dual to energy scale, and the scalars dual

to the coupling constant.

For a scalar-gravity toy model obeying Poincare symmetry, the most general ansatz for

a domain-wall solution and the EoM are

ds2 = e2A(r)δij dx
i dxj + dr2, ϕ = ϕ(r)

A′2 =
1

d(d− 1)

[
ϕ′2 − 2V (ϕ)

]
, ϕ′′ + dA′ϕ′ =

dV (ϕ)

dϕ

. (1.53)

From this ansatz, the critical points of the potential are solutions of the EoM for constant
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scalar ϕi and a warp factor of A(r) = ± (r + r0) /Li which matches the metric of an AdS

space with boundary region at r → +∞ and deep interior at r → −∞. To get domain

solutions that interpolate between the two critical points and are dual to the RG-flow, we

work to the lowest order around the critical point where ϕ(r) = ϕi+h(r), A
′(r) = 1/Li+a

′(r)

and V (ϕ) ≈ V (ϕi) +
1
2

m2
i

L2
i
h2. Using EoM, a′(r) is of order h2 and can be neglected. The

scalar equation and its solutions are

h′′ +
d

Li

h′ −m2
ih = 0

h(r) = Be(∆i−d)r/Li + Ce−∆iτ/L with ∆i =
1

2

(
d+

√
d2 + 4m2

iL
2
i

)
. (1.54)

The fluctuation h has to vanish at the critical points. For r → ∞, we need d/2 < ∆1 < d,

which implies negative mass and a local maximum in the scalar potential, consistent with a

relevant deformation of an ultraviolet CFT. For the second critical point r → −∞, the scale

dimension obeys ∆2 > d consistent with an infrared CFT, which approaches the UV critical

point as Be(∆1−d)r/L1 .

An equivalent solution for the domain wall ansatz is via an auxiliary quantity, the super-

potential [62,63] defined as

1

2

(
dW

dϕ

)2

− d

2(d− 1)
W 2 = V (ϕ) (1.55)

The energy of the toy model is minimized when

ϕ′(r) =
dW

dϕ
, A′(r) = − 1

d− 1
W (ϕ) (1.56)

are obeyed. The solutions of these first-order equations are also solutions of the EoM.

These emerge as BPS conditions for supersymmetric domain walls in supergravity theories.

The superpotential can be extracted from the fermionic variation of the supergravity theory.
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1.2.6 Janus ansatz

Non-supersymmetric backgrounds in string theory present challenges to computing well-

behaved quantities in AdS/CFT. The Janus solution [64] provides an example where super-

symmetry is broken. Even then, the theory is stable [65,66] and the scalar curvature and the

string coupling can be kept small everywhere in spacetime. An explicit example is a dilaton

deformation in Type IIB background AdS5 × S5 that breaks the isometry SO(4, 2) of AdS5

to SO(3, 2). In the dual gauge theory side, the Janus corresponds to having a different SYM

coupling in each half-space. The Janus solution joins the two boundaries at a conformal

invariant interface under SO(3, 2).

The Janus solution is based on a deformation of the AdSd+1 being sliced using AdSd

spaces. Starting from a Poincare patch metric ds2 = 1
z2

(
dz2 + dx2⊥ − dt2 +

∑d−1
i=2 dx

2
i

)
.

Using the mapping

x⊥ = y sinµ, z = y cosµ, (1.57)

gives the sliced metric

ds2 =
1

cos2 µ

(
dµ2 +

dy2 − dt2 +
∑d−1

i=2 dx
2
i

y2

)
= f(µ)

(
dµ2 + ds2AdSd

)
(1.58)

where the two boundaries are located at µ = π/2 and µ = −π/2 and y = 0 corresponding

to a (d− 1)-dimensional interface where the two half-spaces are glued together.

The ansatz for a Janus solution of a dilatonic deformation of AdS5×S5 in type IIB string

theory is

ds2 = f(µ)
(
dµ2 + ds2AdS4

)
+ ds2S5 ,

ϕ = ϕ(µ),

F5 = 2f(µ)
5
2dµ ∧ ωAdS4 + 2ωS5 ,

(1.59)
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and the EoM are

Rαβ −
1

2
∂αϕ∂βϕ− 1

4
F 2
αβ = 0

∂α
(√

ggαβ∂βϕ
)
= 0

∗ F5 = F5

(1.60)

The ansatz respects the SO(2, 3)× SO(6) isometry. The solution for a constant dilaton

is the AdS sliced metric, which implies a variation of the dilaton implies a deformation of

the AdS space. Solving the scalar equation and the Einstein equations, we get

ϕ′(µ) =
c0

f
3
2 (µ)

.

f ′f ′ = 4f 3 − 4f 2 +
c20
6

1

f
,

(1.61)

where the Einstein equation is equivalent to the motion of a particle with zero energy with a

potential of minus the right-hand side. As f → ∞, the dilaton is constant, and we recover the

AdS sliced solution, which allows us to choose the branch of the potential that is physically

relevant. These values are approached at the maximum of µ (the potential being monotonous

in the branch). From the integration of both equations, we can get the jump on the dilaton

between both boundaries to be

2∆ϕ0 = ϕ (µ0)− ϕ (−µ0) = 2

∫ ∞

fmin

c0df

2f 3/2

√
f 3 − f 2 +

c20
24f

> 0 (1.62)

where µ0 is the maximum value which grows with the constant c0 until the solution becomes

singular for c0 > 9/4
√
2 (the potential becomes negative for any f). Since the value of the

dilaton differs on both boundaries, the dual gauge coupling constant also jumps between

boundaries, hence the dual gauge theory is considered an interface CFT.

Different deformations on the gauge theory side of the correspondence being dual to

deformations on the string theory side have been studied [67,68], as well as the Janus solutions
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in different dimensions [69,70]. Supersymmetric Janus solutions that realize superconformal

interface theories can be found via the addition of interface operators whose support is

confined to the interface [71–74].

1.3 Conformal interfaces

Conformal interfaces, a situation in which two non-trivial CFTs are glued together along a

common interface, are pervasive both in condensed matter systems [75, 76] and in studies

of holographic duality [77, 78]. The interface can be permeable, and the AdS/CFT corre-

spondence provides an approach to calculate energy transmission through a large class of

interfaces with holographic duals. The interface can be described as a boundary state in the

tensor product theory using the folding trick along the interface so that both CFTs live on

the same side. For detailed derivations and review of the topic, see [79, 80].

Here we review general properties of 2D ICFTs for a free boson. The gluing conditions

for the free boson would be:

(
∂xϕ

∂tϕ

)
x=−0

=M

(
∂xϕ

∂tϕ

)
x=+0

(1.63)

where the interface is located at x = 0 and M a constant matrix 2×2. Energy conservation

requires

Txt = T++ − T−− = ∂xϕ∂tϕ

to be continuous throughout the interface and we used light-cone coordinates x± = t ± x.

This continuity implies that M is an element of O(1, 1), which has the components

M = ±

 tan θ 0

0 cot θ

 or M ′ = ±

 0 cot θ

tan θ 0

 (1.64)

with θ ∈ [−π/2, π/2], being the singular cases perfectly reflecting interfaces, while θ =
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±π/4 perfectly transmitting cases. Another useful object is the scattering matrix S from

which the reflection and transmission coefficients can be obtained.

Using the notation ϕ1 for the field to the left of the interface and ϕ2 for the field to the

right, we can write the gluing conditions in terms of incoming (∂−ϕ
1 and ∂+ϕ

2) and outgoing

(∂+ϕ
1 and ∂−ϕ

2) waves:

(
∂−ϕ

1

∂+ϕ2

)
= S

(
∂+ϕ

1

∂−ϕ2

)
(1.65)

Comparing both the M and S matrices and matching the gluing conditions, one obtains

S =

 − cos 2ϑ sin 2ϑ

sin 2ϑ cos 2ϑ

 and S ′ =

 cos 2ϑ − sin 2ϑ

sin 2ϑ cos 2ϑ

 (1.66)

To describe the interface as a D-brane, we can use the folding trick [80] where we define

a ‘conjugate’ field in the left-half plane by mirror reflecting the field on the right (ϕ2)

ϕ̂2(x, t) ≡ ϕ2(−x, t) for x ≤ 0. (1.67)

With this identification x = 0 becomes the boundary for CFT1 × CFT2, and S maps

operators from the right-plane to a conjugate one on the left (ain → Sij ā
j
−n). The gluing

conditions for the M matrix are

ϕ̂2(x, t) ≡ ϕ2(−x, t) for x ≤ 0. (1.68)

which are the boundary conditions for a D1-brane [81] in the
(
ϕ1, ϕ̂2

)
plane along θ. The

conformal boundary state for a D1-brane

|b⟩ = N
∞∏
n=1

exp

(
1

n
ai−nā

j
−nSij

)
|0⟩ (1.69)
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where a1,2n are the left-moving modes for ϕ1 and ϕ̂2 such that [am, an] = mδm+n,0. This

state is annihilated by

(
aim − Sij ā

j
−m

)
|b⟩ = 0, (1.70)

A natural generalization for a general CFT is to use the Virasoro algebra instead of the

normal modes of the free boson. A possible guess would be
(
Li
m − SijL̄

j
−m

)
|b⟩ = 0, but

this is only consistent for total transmission or total reflection at the interface. In [79], they

found that the matrix

Rij =
⟨0|Li

2L̄
j
2|b⟩

⟨0 | b⟩
(1.71)

describes the reflection and transmission coefficients for ICFTs

R =
2

c1 + c2
(R11 +R22)

T =
2

c1 + c2
(R12 +R21)

(1.72)

Expanding the boundary state of the free boson

|b⟩ = N
∞∏
n=1

exp

(
1

n
ai−nā

j
−nSij

)
|0⟩

= N
(
1 + ai−1ā

j
−1Sij +

1

2

(
ai−1ā

j
−1Sij

)2
+ ai−2ā

j
−2Sij + . . .

)
|0⟩

(1.73)

Using Li
−2|0⟩ = 1

2
ai−1a

i
−1|0⟩ and the commutator of the normal modes, one notices that

only the third term of the boundary state expansion survives. One obtains

Rij⟨0 | b⟩ = ⟨0|Li
2L̄

j
2|b⟩ =

N
2
(Sij)

2 (1.74)

which gives us

R = cos2(2θ), T = sin2(2θ). (1.75)
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.

We can also compute the transmission coefficient for two AdS3 slices separated by a string

of tension σ. The calculation [82] is done by scattering surface-gravity waves in a semiclassical

geometry dual to the ground state of the ICFT and gluing the matching conditions

γL,αβ = γR,αβ

[Kαβ]− [trK]γαβ = 8πGσγαβ

(1.76)

where γL,R and KL,R are the induced metric and extrinsic curvature of the metric ds2L =

ℓ2L
y2L

[dy2L + du2L − dt2L] for uL ≤ yL tan θL, and analogous for the right side. These equations

give

ℓW =
ℓL

cos θL
=

ℓR
cos θR

=
tan θL + tan θR

8πGσ
(1.77)

which gives a relation for the string tension of the interface in terms of the AdS3 slices

geometric properties and the metric. Matching these gluing conditions to the incoming

scattering surface-gravity waves and using the no outgoing wave condition [83], one obtains

TL =
2 cos θR

cos θR (1 + sin θL) + cos θL (1 + sin θR)
. (1.78)

combining it with (1.77), we get

TL,R =
2

ℓL,R

[
1

ℓL
+

1

ℓR
+ 8πGσ

]−1

(1.79)

We can also compute transmission coefficients for general 2D ICFTs that admit a smooth

holographic dual of 3D gravity coupled to any matter. Instead of one thin brane, we can

model it as a discrete set of thin branes, using the argument that transmission past a pair of

thin branes interfaces with tensions σ1, σ2 is the same as for a single thin brane with tension

σ1 + σ2 [84]. In this case (1.79) is still valid with the replacement
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σ →
∫ ∞

−∞

dσ

dy
dy and

 ℓL → 1/
√

−Λ(−∞)

ℓR → 1/
√
−Λ(∞)

(1.80)

In [85], the authors derive a relation between the string tension and a scalar field in AdSn

with a thin-brane array separating left and right, by replacing the array with a ”pizza” of

AdSn slices separated by thin tensile branes obtaining

dσ = (ϕ′)
2
dy (1.81)

where y is the radial coordinate of AdS.
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CHAPTER 2

Janus and RG-flow interfaces in three-dimensional

gauged supergravity

Janus solutions provide holographic constructions of interface conformal field theories (CFTs).

In many known examples, the solutions are constructed by considering an AdSd slicing of

a (d + 1)-dimensional space where the scalar fields depend non-trivially on the slicing co-

ordinate. One of the most well-known examples is the Janus solution of [64], which is a

deformation of the AdS5 × S5 vacuum of type IIB and is given by an AdS4 slicing where

the dilation depends non-trivially on the slicing coordinate. The solution is dual to an in-

terface of N = 4 super Yang-Mills (SYM) theory where the coupling gYM jumps across a

co-dimension one interface [86]. This solution breaks all the supersymmetries, but a general

solution given by an AdS4 ×S2 ×S2 space warped over a Riemann surface can preserve half

the supersymmetries of the AdS5 × S5 vacuum [87] and is dual to supersymmetric inter-

face theories in N = 4 SYM [88–90]. For other examples of Janus solutions in type II and

M-theory, see e.g. [69, 71,91].

Instead of constructing solutions in ten or eleven dimensions, it is often useful to use

lower-dimensional gauged supergravities since the ansatz and resulting equations are simpler.

Often the resulting solutions can be uplifted to higher dimensions, but even if the uplift is

not known the gauged supergravity solutions are useful for studying universal and qualitative

features of interface solutions. For an incomplete list of such solutions in various dimensions,

see e.g. [70,72,92–97].

A related construction is given by holographic RG-flows, which consider a Poincaré slicing
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instead of an AdS slicing. If the solutions asymptotically approach two AdS vacua with

different cosmological constants, we can interpret this solution as an RG-flow from a CFT

in the UV to a CFT in the IR which is triggered by turning on a relevant deformation

in the UV [61, 98, 99]. On the other hand, for most examples of AdS-sliced holographic

interface solutions the CFTs on both sides of the interface are the same and differ only by a

marginal deformation (such as different values of gYM in the example discussed above) or a

position-dependent profile of the expectation value of a relevant operator [69].

In [100], Gaiotto proposed the idea of a RG-interface in two-dimensional CFTs, where

the two sides of the interface are CFTs related by a RG-flow. The goal of the current paper

is to construct holographic solutions which realize this idea.1 We consider three-dimensional

N = 8 gauged supergravity with n = 4 vector multiplets, first discussed in [104]. This theory

has an AdS3 vacuum with maximalN = (4, 4) supersymmetry as well as two families of AdS3

vacua withN = (1, 1) supersymmetry [105]. The theory gauges a SO(4)×SO(4) symmetry of

the SO(8, 4)/ SO(8)×SO(4) coset. The gauging depends on a continuous parameter α where

the superconformal algebra of the N = (4, 4) vacuum is given by the “large” superconformal

algebra D1(2, 1;α)×D1(2, 1;α), and the three-dimensional supergravity is believed to be a

truncation of M-theory on AdS3 ×S3 ×S3 ×S1 [106–109]. In this paper, we primarily focus

on the case α = 1 for which the expressions for the flow equations are the simplest.

In [105], the Poincaré-sliced holographic RG-flow solutions were constructed for the N =

8 gauged supergravity, which interpolate between the N = (4, 4) and N = (1, 1) vacua. The

goal of the present paper is to construct Janus solutions which realize the interface between

the same CFT at different points in the moduli space as well as RG-flow interfaces between

CFTs preserving different numbers of supersymmetries.

The structure of this paper is as follows. In section 2.1, we review the N = 8 gauged

supergravity theory we will be using in the paper and discuss the different supersymmetric

1See [101–103] for earlier attempts in this direction.
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AdS3 vacua. In section 2.2, we derive the BPS equations for a Janus ansatz following

from the vanishing of the gravitino and spin-1
2
supersymmetry variations. In section 2.3,

we solve the BPS equations for various truncations which make the analysis of the flow

equations manageable. For a Janus interface between the N = (4, 4) vacuum we find an

analytic solution, whereas for the RG-flow interfaces the flow equations can only be solved

numerically. We present the solutions and provide evidence for our interpretation of these

solutions as RG-flow interfaces. In section 2.4, we close with a discussion and open questions.

2.1 Three-dimensional N = 8 gauged supergravity

In this section, we review the N = 8 gauged supergravity first constructed in [104]. The

theory is characterized by the number n of vector multiplets. The bosonic field content

consists of a graviton gµν , Chern-Simons gauge fields BM
µ , and scalars fields living in a

G/H = SO(8, n)/ SO(8)×SO(n) coset, which has 8n degrees of freedom before gauging. The

scalar fields can be parametrized by a G-valued matrix L(x) in the vector representation,

which transforms under H and the gauge group G0 ⊆ G by

L(x) → g0(x)L(x)h
−1(x) (2.1)

for g0 ∈ G0 and h ∈ H. The Lagrangian is invariant under such transformations.

For future reference, we use the following index conventions:

• I, J, . . . = 1, 2, . . . , 8 for SO(8).

• r, s, . . . = 9, 10, . . . , n+ 8 for SO(n).

• Ī , J̄ , . . . = 1, 2, . . . , n+ 8 for SO(8, n).

• M,N , . . . for generators of SO(8, n).

Let the generators of G be {tM} = {tĪJ̄} = {XIJ , Xrs, Y Ir}, where Y Ir are the noncompact
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generators. Explicitly, the generators of the vector representation are given by

(tĪJ̄)K̄L̄ = ηĪK̄δJ̄L̄ − ηJ̄K̄δĪL̄ (2.2)

where ηĪJ̄ = diag(++++++++− · · · ) is the SO(8, n)-invariant tensor. These generators

satisfy the typical SO(8, n) commutation relations,

[tĪJ̄ , tK̄L̄] = 2
(
ηĪ[K̄tL̄]J̄ − ηJ̄ [K̄tL̄]Ī

)
(2.3)

The gauging of the supergravity is characterized by an embedding tensor ΘMN (which has

to satisfy various identities [110]) that determines which isometries are gauged, the coupling

to the Chern-Simons fields, and additional terms in the supersymmetry transformations and

action depending on the gauge coupling g. We will look at the particular case in [105] where

n ≥ 4 and the gauged subgroup is the G0 = SO(4)× SO(4) subset of the SO(8) ⊂ SO(8, n).

The embedding tensor has the entries,2

ΘĪJ̄ ,K̄L̄ =


αεĪJ̄K̄L̄ if Ī , J̄ , K̄, L̄ ∈ {1, 2, 3, 4}

εĪJ̄K̄L̄ if Ī , J̄ , K̄, L̄ ∈ {5, 6, 7, 8}

0 otherwise

(2.4)

Note that the gauging depends on a real parameter α. As discussed in [105], the maximally

supersymmetric AdS3 vacuum has an isometry group,

D1(2, 1;α)×D1(2, 1;α) (2.5)

which corresponds to the family of “large” superconformal algebras of the dual SCFT. In

the following, we will consider the special case α = 1 for which D1(2, 1; 1) = OSp(4|2) and

the form of many quantities defined below are most compact. We expect that for generic

values of α the qualitative behavior of the solutions will be similar.

2We use the conventions ε1234 = ε5678 = 1.
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From the embedding tensor, the G0-covariant currents can be obtained,

L−1(∂µ + gΘMNB
M
µ tN )L =

1

2
QIJ

µ X
IJ +

1

2
Qrs

µ X
rs + PIr

µ Y
Ir (2.6)

It is convenient to define the VM
A tensors,

L−1tML = VM
A t

A =
1

2
VM

IJX
IJ +

1

2
VM

rsX
rs + VM

IrY
Ir (2.7)

and the T -tensor,

TA|B = ΘMNVM
AVN

B (2.8)

The T -tensor is used to construct the tensors A1,2,3 which will appear in the scalar potential

and the supersymmetry transformations,

AAB
1 = − 1

48
ΓIJKL
AB TIJ |KL

AAȦr
2 = − 1

12
ΓIJK
AȦ

TIJ |Kr

AȦrḂs
3 =

1

48
δrsΓIJKL

ȦḂ
TIJ |KL +

1

2
ΓIJ
ȦḂ
TIJ |rs (2.9)

where A,B and Ȧ, Ḃ are SO(8)-spinor indices. Our conventions for the SO(8) Gamma

matrices are presented in the appendix.

We take the spacetime signature ηab = diag(+−−) to be mostly negative. The bosonic

Lagrangian and scalar potential are

e−1Lbos = −1

4
R +

1

4
PIr

µ PIr µ +W − 1

4
e−1εµνρgΘMNB

M
µ

(
∂νB

N
ρ +

1

3
gΘKLf

NK
PB

L
ν B

P
ρ

)
W =

1

4
g2
(
AAB

1 AAB
1 − 1

2
AAȦr

2 AAȦr
2

)
(2.10)

The supersymmetry variations are

δχȦr =
1

2
iΓI

AȦ
γµεAPIr

µ + gAAȦr
2 εA

δψA
µ =

(
∂µε

A +
1

4
ωab
µ γabε

A +
1

4
QIJ

µ ΓIJ
ABε

B

)
+ igAAB

1 γµε
B (2.11)
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The Einstein equation of motion is

Rµν − PIr
µ PIr

ν − 4Wgµν = 0 (2.12)

and the gauge field equation of motion is

ePIr λΘQMVM
Ir = ελµν

(
ΘQM∂µB

M
ν +

1

6
gBM

µ BK
ν

(
ΘMNΘKLf

NL
Q + 2ΘMNf

LN
KΘLQ

))
(2.13)

2.1.1 The n = 4 case

Let us focus on the case of four vector multiplets, i.e. n = 4. The symmetries consist of a

local G0 = SO(4)× SO(4) and a global SO(n = 4). Thus, the scalar potential only depends

on 8 · 4 − 3 · 6 = 14 parameters out of the original 32. Moreover, we will only consider

a further consistent truncation outlined in [105] where the coset representative depends on

eight of the fourteen scalars.

L =


cosA sinA coshB sinA sinhB

− sinA cosA coshB cosA sinhB

0 sinhB coshB


A = diag(p1, p2, p3, p4) , B = diag(q1, q2, q3, q4) (2.14)

With this truncation, the scalar potential is3

g−2W = 1 +
4∏

i=1

cosh qi +
1

4

4∑
i=1

sinh2 qi −
1

4

∑
i<j<k

(x2ix
2
jx

2
k + y2i y

2
j y

2
k)−

1

2

(
4∏

i=1

xi +
4∏

i=1

yi

)2

xi = cos pi sinh qi , yi = sin pi sinh qi (2.15)

3We correct a small typo in the potential given in [105].
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The Qµ and Pµ currents, excluding the gΘMNB
M
µ VN

A term, are

QIJ
µ =


0 0 0 0 cosh q1∂µp1 0 0 0
0 0 0 0 0 cosh q2∂µp2 0 0
0 0 0 0 0 0 cosh q3∂µp3 0
0 0 0 0 0 0 0 cosh q4∂µp4

− cosh q1∂µp1 0 0 0 0 0 0 0
0 − cosh q2∂µp2 0 0 0 0 0 0
0 0 − cosh q3∂µp3 0 0 0 0 0
0 0 0 − cosh q4∂µp4 0 0 0 0


IJ

Qrs
µ = 0

PIr
µ =


sinh q1∂µp1 0 0 0

0 sinh q2∂µp2 0 0
0 0 sinh q3∂µp3 0
0 0 0 sinh q4∂µp4

∂µq1 0 0 0
0 ∂µq2 0 0
0 0 ∂µq3 0
0 0 0 ∂µq4


Ir

(2.16)

Using these matrices, we can check that the combination PIr
µ VJK

Ir vanishes whenever the

indices J,K ∈ {1, 2, 3, 4} or J,K ∈ {5, 6, 7, 8}. This implies that there is no source for BM
µ

in the gauge field equation of motion (2.13), so it is consistent to set BM
µ = 0. We will make

this choice from now on.

2.1.2 Truncations and supersymmetric AdS3 vacua

In order to make our analysis more tractable, we make further truncations to reduce the

number of independent scalar fields. Below we consider three truncations, which together

explore the AdS3 vacua with N = (4, 4) and N = (1, 1) supersymmetry.

2.1.2.1 Truncation 1

The first truncation is given by calling q1 = q, p1 = p and setting all remaining qi = pi = 0

for i = 2, 3, 4. The scalar potential is

W =
g2

2
cosh2 q

2
(3 + cosh q) (2.17)

The N = (4, 4) vacuum is given by setting q = 0 and the vacuum potential is W0 = 2g2.
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2.1.2.2 Truncation 2

The second truncation is given by setting all the qs and ps equal, i.e. qi = q, pi = p for

i = 1, 2, 3, 4. The scalar potential is

W =
g2

8192

(
8103 + 6856 cosh 2q + 1452 cosh 4q − 8 cosh 6q − 19 cosh 8q

− 768(3 + cosh 2q) cos 4p sinh6 q − 128 cos 8p sinh8 q
)

(2.18)

The N = (4, 4) vacuum is given by q = 0 as before, and N = (1, 1) vacua are given by

q = ± sinh−1
√
2 and p = π(Z/2 + 1/4) which have a vacuum potential of W0 = 8g2.

2.1.2.3 Truncation 3

The third truncation is given by setting the first three qs and ps equal, i.e. qi = q, pi = p for

i = 1, 2, 3, and setting the remaining q4 = p4 = 0. The scalar potential is

W =
g2

1024

(
690 + 768 cosh q + 309 cosh 2q + 256 cosh 3q

+ 30 cosh 4q − 5 cosh 6q − 96 cos 4p sinh6 q
)

(2.19)

The N = (4, 4) vacuum is given by q = 0 as before, and N = (1, 1) vacua are given by

q = ± sinh−1
√

2 + 2
√
2 and p = π(Z/2 + 1/4) which have a vacuum potential of W0 =

2(1 +
√
2)2g2.

2.2 Janus flow equations

In this section, we present the equations of motion and supersymmetry variations for a Janus

ansatz where the three-dimensional metric is written as an AdS2 slicing and the scalar fields

only depend on the slicing coordinate. We will also set the Chern-Simons gauge BM
µ fields
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to zero, which is consistent as argued in section 2.2.1. Hence, the Janus ansatz is given by

ds2 = e2B(u)

(
dt2 − dz2

z2

)
− du2 , BM

µ = 0

qi = qi(u) , pi = pi(u) (2.20)

The Ricci tensor has the non-zero components,

Rtt = −Rzz = z−2
(
1 + e2B(2B′2 +B′′)

)
Ruu = −2(B′2 +B′′) (2.21)

The prime ′ denotes a derivative with respect to the slicing coordinate u. The gravitino

supersymmetry variation δψA
µ = 0 is

0 = ∂tε+
1

2z
γ0
(
γ1 −B′eBγ2 + 2igeBA1

)
ε

0 = ∂zε+
1

2z
γ1
(
−B′eBγ2 + 2igeBA1

)
ε

0 = ∂uε+
1

4
QIJ

u ΓIJε+ igγ2A1ε (2.22)

where we have suppressed the SO(8)-spinor indices of εA and AAB
1 . There are two integrabil-

ity conditions which can be derived from the gravitino variations (2.22) in the t, z and z, u

directions respectively

0 =
(
1− (2geBA1)

2 + (B′eB)2
)
ε

0 = 2igeB
(
A′

1 −
1

4
[A1,QIJ

u ΓIJ ]

)
ε+

(
− d

du

(
B′eB

)
+ (2geBA1)

2e−B

)
γ2ε (2.23)

We can use the first integrability condition to express the second one as

2ig

(
A′

1 −
1

4
[A1,QIJ

u ΓIJ ]

)
ε+

(
−B′′ + e−2B

)
γ2ε = 0 (2.24)

The spin-1
2
variation δχȦ = 0 is(

− i

2
ΓIPIr

u γ2 + gAr
2

)
AȦ

εA = 0 , r = 9, 10, . . . , 8 + n (2.25)
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2.2.1 Eigenvectors of A1

It follows from (2.9) that A1 is a 8× 8 matrix which has eigenvectors

AAB
1 n

(i)B
± = ±win

(i)A
± , i = 1, 2, 3, 4 (2.26)

The eigenvalues wi determine whether a supersymmetric AdS3 vacuum can exist. In the

following we denote the positive supersymmetric eigenvalue w(u), which can be determined as

follows: for the AdS2-sliced metric given in (2.20), the AdS3 vacuum solution with potential

W0 is given by

Bvac(u) = ln
cosh

(√
2W0u

)
√
2W0

(2.27)

which satisfies

B′2
vac + e−2Bvac − 2W0 = 0 (2.28)

When we expand the spinors εA in terms of the eigenvectors of A1, the first equation in

(2.23) implies for the spinor component associated with the eigenvalue w that

B′2 + e−2B − 4g2w2 = 0 (2.29)

For the AdS3 vacuum solution (2.27), this condition relates the eigenvalue evaluated at the

vacuum wvac to the potential W0 via

w2
vac =

W0

2g2
(2.30)

As discussed in section 2.3 for truncation 1, A1 has eight eigenvectors n
(i)
± for i = 1, 2, 3, 4

all with the same with eigenvalue ±w that satisfy the supersymmetry condition (2.30) for

the AdS3 vacuum with q = 0. Hence, this vacuum preserves N = (4, 4) supersymmetry.

On the other hand for truncations 2 and 3, there are only two eigenvectors n± with an

eigenvalue ±w that satisfy (2.30) for the AdS3 vacua with non-trivial values for the scalars.

Consequently, these vacua only preserve N = (1, 1) supersymmetry.
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For the RG-flow solutions which interpolate between the different vacua, we expand the

spinors in the basis of the eigenspinors that correspond to the supersymmetric vacuum when

the scalars take their vacuum values. This implies that (2.29) can be solved for B′,

B′ = ±
√
4g2w2 − e−2B

= ±2gwγ (2.31)

where we defined the convenient combinations,

γ(u) =

√
1− e−2B

4g2w2
,

√
1− γ2(u) =

e−B

2gw
(2.32)

which will be useful later on. The two signs in (2.31) are two branches of solutions which

for Janus solutions will be patched together—the numerical evolution usually breaks down

at B′ = 0 and this is the location where the two branches will be glued together.

2.2.2 AdS2 Killing spinors

The Killing spinors for a unit radius AdS2 with metric,

ds2AdS2
=

dt2 − dz2

z2
(2.33)

satisfy the following equation,

Dµζη = i
η

2
γµζη , µ = t, z (2.34)

with η = ±1. The covariant derivatives on AdS2 take the form,

Dt = ∂tε+
1

2z
γ0γ1 , Dz = ∂z (2.35)

Since the general spinor in AdS2 is a two-component spinor, the ζ± form a basis of two-

component spinors. Since spinors in three dimensions are also two-component spinors, the

ζ± are also a basis of the spinors in three dimensions. Note that γ2 = iγ# where γ2# = 1 and

iγ2ζη = ζ−η , η = ±1 (2.36)
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The general ansatz for εA is given by

εA =
∑
i

(
f
(i)
+ n

(i)A
+ + f

(i)
− n

(i)A
−
)
ζ+ +

(
g
(i)
+ n

(i)A
+ + g

(i)
− n

(i)A
−
)
ζ− (2.37)

For truncation 1 we have i = 1, 2, 3, 4, which label four eigenvectors of A1, whereas in

truncations 2 and 3 the index i is dropped.

2.2.3 First projector

With this ansatz for the spinors εA, the first two components of the gravitino variation,

0 = ∂tε+
1

2z
γ0
(
γ1 −B′eBγ2 + 2igeBA1

)
ε

0 = ∂zε+
1

2z
γ1
(
−B′eBγ2 + 2igeBA1

)
ε (2.38)

can be expressed as follows by using the properties of the AdS2 Killing spinors,

0 = i
{(
f
(i)
+ n

(i)A
+ + f

(i)
− n

(i)A
−
)
ζ+ −

(
g
(i)
+ n

(i)A
+ + g

(i)
− n

(i)A
−
)
ζ−

}
(2.39)

+ iB′e−Biγ2

{(
f
(i)
+ n

(i)A
+ + f

(i)
− n

(i)A
−
)
ζ+ +

(
g
(i)
+ n

(i)A
+ + g

(i)
− n

(i)A
−
)
ζ−

}
+ 2igweB

{(
f
(i)
+ n

(i)A
+ − f

(i)
− n

(i)A
−
)
ζ+ +

(
g
(i)
+ n

(i)A
+ − g

(i)
− n

(i)A
−
)
ζ−

}
(2.40)

Using iγ2ζη = ζ−η and the linear independence of the n
(i)
± and ζ±, one obtains a set of

equations,

f+ +B′eBg+ + 2gweBf+ = 0

−g+ +B′eBf+ + 2gweBg+ = 0

f− +B′eBg− − 2gweBf− = 0

−g− +B′eBf− − 2gweBg− = 0 (2.41)

which are consistent if the integrability condition (2.29) holds. In terms of the γ(u) defined

in (2.32) we have

f+ =

√
1− γ2 − 1

γ
g+ , f− =

√
1− γ2 + 1

γ
g− (2.42)
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2.2.4 Second projector

The spin-1
2
variation (2.25) can be rewritten in the following form[

− 1

2g

(
(Ar

2)
T
)−1(

ΓIPIr
u

)T
iγ2 + 1

]AB

εB = 0 , r = 9, 10, 11, 12 (2.43)

Since PIr
u contains the first derivatives of the scalar fields, the flow equations for the scalars

can be derived from the condition of vanishing of this supersymmetry variation. The pro-

jectors for r = 9, 10, 11, 12 take the form(
MABiγ2 + δAB

)
εB = 0 (2.44)

For consistency, the matrix must satisify MABMBC = δAC . Plugging in the ansatz (2.37)

for the spinors εA, we get

0 =
(
f
(i)
+ n

(i)A
+ + f

(i)
− n

(i)A
−
)
ζ+ +

(
g
(i)
+ n

(i)A
+ + g

(i)
− n

(i)A
−
)
ζ−

+MABiγ2

{(
f
(i)
+ n

(i)B
+ + f

(i)
− n

(i)B
−
)
ζ+ +

(
g
(i)
+ n

(i)B
+ + g

(i)
− n

(i)B
−
)
ζ−

}
(2.45)

Using the fact that the eigenvectors can be orthonormalized,

n
(i)A
+ n

(j)A
+ = δij , n

(i)A
− n

(j)A
− = δij , n

(i)A
+ n

(j)A
− = 0 (2.46)

and projecting onto n
(i)
± gives

f+ +M++g+ +M+−g− = 0

g+ +M++f+ +M+−f− = 0

f− +M+−g+ +M−−g− = 0

g+ +M+−f+ +M−−f− = 0 (2.47)

where we define

M++ = nA
+M

ABnB
+ , M−− = nA

−M
ABnB

− , M+− =M−+ = nA
+M

ABnB
− (2.48)
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If there is more than one n± (as in truncation 1) the M±±,M±∓ have to take the same form

for all n
(i)
± , which is a consistency condition. Using (3.41) it can be shown that equations

(2.47) can only4 be satisfied if we have

M++ = γ , M−− = −γ , M+− =M−+ =
√
1− γ2 (2.49)

The relations (2.49) for the matrix MAB given in (2.43) provide first-order flow equations

for the scalar fields. Note that the second integrability condition for the gravitino variation

in (2.23) is also the form of (2.44). For all the solutions which we find, this condition is

automatically satisfied and does not constrain the flow further.

2.3 Janus and RG-flow solutions

In this section we obtain the flow equations and solve them. Only for truncation 1 are we

able to solve the system analytically. For truncations 2 and 3 we solve the resulting flow

equations numerically.

2.3.1 Truncation 1

For the truncation to a single scalar described in section 2.1.2.1, the matrix A1 takes the

form,

A1 =



0 0 0 cos p cosh2 q
2

0 0 sin p cosh2 q
2

0

0 0 − cos p cosh2 q
2

0 0 0 0 sin p cosh2 q
2

0 − cos p cosh2 q
2

0 0 − sin p cosh2 q
2

0 0 0

cos p cosh2 q
2

0 0 0 0 − sin p cosh2 q
2

0 0

0 0 − sin p cosh2 q
2

0 0 0 0 − cos p cosh2 q
2

0 0 0 − sin p cosh2 q
2

0 0 cos p cosh2 q
2

0

sin p cosh2 q
2

0 0 0 0 cos p cosh2 q
2

0 0

0 sin p cosh2 q
2

0 0 − cos p cosh2 q
2

0 0 0


(2.50)

4We can also haveM+− = M−+ = −
√
1− γ2, which gives a similar solution. For example, in section 2.3.1

for truncation 1, this sends p(u) → p(−u). This resolves an ambiguity in the definition of our eigenvectors,
as we can freely send n+ → −n+ or n− → −n−.
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We have four pairs of eigenvectors n
(i)
± for i = 1, 2, 3, 4 with the same eigenvalues ±w, where

w = cosh2 q

2
(2.51)

so the supersymmetry condition (2.30) is satisfied for the vacuum where q = 0. The pairs of

eigenvectors are

n
(1)
+ =

{
1√
2
, 0, 0, cos p√

2
, 0, 0, sin p√

2
, 0
}
, n

(1)
− =

{
0, 0, 0,− sin p√

2
, 0,− 1√

2
, cos p√

2
, 0
}

n
(2)
+ =

{
0, 1√

2
,− cos p√

2
, 0, 0, 0, 0, sin p√

2

}
, n

(2)
− =

{
0, 0, sin p√

2
, 0, 1√

2
, 0, 0, cos p√

2

}
n
(3)
+ =

{
0, 0,− sin p√

2
, 0, 1√

2
, 0, 0,− cos p√

2

}
, n

(3)
− =

{
0,− 1√

2
,− cos p√

2
, 0, 0, 0, 0, sin p√

2

}
n
(4)
+ =

{
0, 0, 0,− sin p√

2
, 0, 1√

2
, cos p√

2
, 0
}
, n

(4)
− =

{
1√
2
, 0, 0,− cos p√

2
, 0, 0,− sin p√

2
, 0
}

(2.52)

Given the eigenvectors, we can compute the M++ and M+− matrix elements for the matrix

in (2.43) for any pair of n
(i)
± . Note that for this truncation, only the flow equation for index

r = 9 is nontrivial while the others are identically vanishing. Then (2.49) gives us flow

equations for the scalars q and p. The remaining flow equation for the metric factor B comes

from (2.31). The flow equations are

q′ = −gγ sinh q , p′ = g
√

1− γ2 , B′ = ±2gγ cosh2 q

2
(2.53)

which solve the equations of motion. We can solve for a flow where p(0) = p0, q(0) = q0

are arbitrary and B′(0) = 0, which is equivalent to γ(0) = 0. This first-order system can be

rewritten using the function γ in lieu of B, in which case the third equation above is replaced

with

γ′ = 2g(1− γ2) (2.54)

The solution is

γ(u) = tanh(2gu)

tanh
q(u)

2
=
√

sech(2gu) tanh
q0
2

tan[p(u)− p0] = tanh(gu) (2.55)
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which gives the metric factor

eB(u) =
cosh(2gu)

2g
sech2 q(u)

2
(2.56)

This is a Janus solution which approaches the N = (4, 4) vacuum at the two endpoints

u → ±∞. We note that the flow equation is the same for each pair of eigenvectors n
(i)
±

and hence the solution preserves eight of the sixteen supersymmetries of the N = (4, 4)

vacuum. We present plots for three choices of the parameters q0 = 0.5, 1.0, 1.5 in figure 2.1

and set p0 = 0 for all three. The qualitative behavior is very similar for all three choices

and corresponds to a Janus interface which interpolates between different values of p(u) as

u→ ±∞.

Figure 2.1: (a) pq parametric plot, (b) plot of q , (c) plot of p, (d) plot of the metric function

B as functions of the AdS2 slicing coordinate u for truncation 1. The colors denote three

different values for q0. p0 = 0 for all three plots. The behavior of p is the same for all three

examples.
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2.3.2 Truncation 2

Recall that the truncation presented in section 2.1.2.2 sets all the qi equal and pi equal. The

matrix A1 takes the form,

A1 =



0 0 0 a1 + a3 0 0 0 0

0 −2a3 −a1 + a3 0 a2 0 0 a2

0 −a1 + a3 −2a3 0 −a2 0 0 −a2

a1 + a3 0 0 0 0 0 0 0

0 a2 −a2 0 2a3 0 0 −a1 + a3

0 0 0 0 0 0 a1 + a3 0

0 0 0 0 0 a1 + a3 0 0

0 a2 −a2 0 −a1 + a3 0 0 2a3

 (2.57)

where we define, for this truncation,

a1 =
1

8
(3 + cos 4p)(1 + cosh4 q)

a2 =
1

8
(3 + cosh 2q) cosh q sin 4p

a3 = 2 cos2 p sin2 p cosh2 q (2.58)

The eigenvectors and eigenvalues can be obtained by considering the matrix (A1)
2 first. There

are two eigenvalues, the first is (a1+a3)
2 which is six-fold degenerate but does not satisfy the

condition (2.30) for the N = (1, 1) vacuum. The second eigenvalue is 4a22+(a1−3a3)
2 which

is two-fold degenerate and does satisfy (2.30) for the N = (1, 1) vacua. The corresponding

eigenvectors of (A1)
2 take the form

v1 =
{
0, 1√

2
,− 1√

2
, 0, 0, 0, 0, 0

}
, v2 =

{
0, 0, 0, 0, 1√

2
, 0, 0, 1√

2

}
(2.59)

Let

w =
√

4a22 + (a1 − 3a3)2 (2.60)

be the positive eigenvalue of A1. One can reduce the A1 matrix on the subspace spanned by

v1, v2 and find that the (not yet normalized) eigenvectors v± of A1 with eigenvalue ±w are

given by

v± = 2a2v1 + (−a1 + 3a3 ± w)v2 (2.61)
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The flow equations take the form of a first-order system of ordinary differential equations

for the functions p(u), q(u), and B(u). These equations do not take a simple form and

are too unwieldy to be presented here. Using Mathemtica, we have checked that the flow

equations imply that the equations of motion are satisfied as well as the second integrability

condition of the gravitino variation (2.24).

The flow equations can be numerically integrated.5 In figure 2.2 we present some examples

for the numerical solutions of the flow equations. By fine-tuning initial conditions we can

produce flows that (i) look like the Janus solutions in truncation 1 plotted, in red in figure

2.2, (ii) connect N = (4, 4) and N = (1, 1) vacua, plotted in blue in figure 2.2, and (iii)

connect two N = (1, 1) vacua which are related by flipping signs of p, plotted in orange in

figure 2.2. In the pq parametric plot in figure 2.2(a), the locations of the N = (1, 1) vacua

p = ±π
4
, q = sinh−1

√
2 are denoted by black dots.

In the numerical integration, the N = (1, 1) points are repulsive and require fine-tuning

in order to obtain flows that approach these points. This can be explained as follows. The

choice g = 1/2 sets the N = (4, 4) vacuum potential to W0 = 1/2 and the AdS3 length scale

to unity. For the N = (1, 1) point, the vacuum potential becomes W0 = 2 and the AdS3

length scale is L = 1/2. Taking the linear expansion around the N = (1, 1) point,

p(u) =
π

4
+ δp(u) +O

(
δp2
)

q(u) = sinh−1
√
2 + δq(u) +O

(
δq2
)

(2.62)

the mass-squares for the δp and δq fluctuations are

m2
pL

2 =
5

4
, m2

qL
2 =

21

4
(2.63)

Using ∆(∆− 2) = m2L2, the scaling dimensions of the corresponding dual operators are

∆p =
5

2
, ∆q =

7

2
(2.64)

5We use the method described in [94]: we choose the location p(0), q(0) of a turning point where B′ = 0
and use the flow equations to determine p′(0), q′(0). These values provide the initial conditions for the second
order equations of motion to give p(u), q(u) and B(u).
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Figure 2.2: (a) pq parametric plot, (b) plot of q , (c) plot of p, (d) plot of the metric function

B as functions of the AdS2 slicing coordinate u.

In our AdS-sliced coordinates, the boundary is given by the two AdS2 components at u =

±∞, which are joined together at the z = 0 interface. The coordinates (z, u) can be mapped

to Fefferman-Graham coordinates (ρ, x) where the boundary is located at ρ = 0.6 Let us

consider the boundary at u → +∞. In the (ρ, x) coordinates, the metric factor B has the

expansion eB = ρ−1 + O(ρ0) near the boundary. But in the (z, u) coordinates, from (2.27)

the expansion near the boundary is B = u/L + · · · . Therefore, the asymptotic form of the

6Recall that the AdS3 metric in Poincaré coordinates,

ds2 =
−dρ2 + dt2 − dx2

ρ2

is related to an AdS2-sliced metric by the coordinate change,

z =
√

x2 + ρ2 sinhu = x/ρ
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coordinate change (ρ, x) 7→ (z, u) takes the form,

eu = ρ−L + · · · (2.65)

The linearized flow equations around the N = (1, 1) point are

δp′ = −5δp+ · · ·

δq′ = 3δq + · · · (2.66)

which are solved by δp ∼ Cpe
−5u and δq ∼ Cqe

3u, or in terms of ρ,

δp ∼ Cpρ
5/2 δq ∼ Cqρ

−3/2 (2.67)

These asymptotic forms are consistent with the scaling dimensions in (2.64), as we either

have solutions that scale as ρ∆ or ρ2−∆. We see that the q scalar diverges as we approach the

N = (1, 1) point as ρ → 0 unless we fine-tune the coefficient Cq to zero. This is identified

with turning off the source for an operator with scaling dimension larger than 2 on the

boundary CFT.

A similar counting as before shows that the flow preserves two of the four supersymmetries

of theN = (1, 1) vacuum. Therefore, we have RG-flow interfaces between a CFT with central

charge c(4,4) and a CFT with central charge c(1,1), where [9, 111]

c(1,1)

c(4,4)
=

√√√√W
(4,4)
0

W
(1,1)
0

=
1

2
(2.68)

2.3.3 Truncation 3

The analysis of the flow equations and their solutions for truncation 3 proceeds very similarly

to the one for truncation 2, presented in the previous section. The matrix A1 takes the form,

A1 =


0 0 0 (a1 − a2 + b2) cos p 0 (−a1 + a2 + b1) sin p 0 0

0 −2a1 cos p (a1 + a2 − b2) cos p 0 (a1 + a2 − b1) sin p 0 0 2a2 sin p

0 (a1 + a2 − b2) cos p −2a1 cos p 0 −2a2 sin p 0 0 (−a1 − a2 + b1) sin p

(a1 − a2 + b2) cos p 0 0 0 0 0 (a1 − a2 − b1) sin p 0

0 (a1 + a2 − b1) sin p −2a2 sin p 0 2a1 cos p 0 0 (a1 + a2 − b2) cos p

(−a1 + a2 + b1) sin p 0 0 0 0 0 (a1 − a2 + b2) cos p 0

0 0 0 (a1− a2− b1) sin p 0 (a1 − a2 + b2) cos p 0 0

0 2a2 sin p (−a1 − a2 + b1) sin p 0 (a1 + a2 − b2) cos p 0 0 2a1 cos p

 (2.69)
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where we define, for this truncation,

a1 =
1

2
(1 + cosh q) cosh q sin2 p , a2 =

1

2
(1 + cosh q) cosh q cos2 p

b1 =
1

2
(1 + cosh q)(1 + cosh2 q) sin2 p , b2 =

1

2
(1 + cosh q)(1 + cosh2 q) cos2 p (2.70)

As with trunctation 2, there are two eigenvalues of (A1)
2: one with six-fold degeneracy that

does not satisfy (3.34), and one with two-fold degeneracy that does. This eigenvalue is

w2 =
1

64
cosh4 q

2

(
175− 224 cosh q + 140 cosh 2q − 32 cosh 3q + 5 cosh 4q + 24 cos 4p sinh4 q

)
(2.71)

The corresponding eigenvectors of A1 with eigenvalue ±w are

v± =
(
−(3a1 + a2 − b2) cos p± w

)
v1 + (a1 + 3a2 − b1) sin p v2 (2.72)

where v1, v2 are defined as before in (2.59). The flow equations once again do not take a

simple form and must be solved numerically. In figure 2.3 we present some examples for the

numerical solutions of the flow equations for truncation 3, which exhibit very similar features

to the solutions of the flow equations for truncation 2. By fine-tuning initial conditions we

can produce flows that (i) look like the Janus solutions in truncation 1, plotted in red in

figure 2.3, (ii) connect N = (4, 4) and N = (1, 1) vacua, plotted in blue in figure 2.3, and

(iii) connect two N = (1, 1) vacua which are related by flipping signs of p, plotted in orange

in figure 2.3. In the pq parametric plot given in figure 2.3(a), the location of the N = (1, 1)

vacua p = ±π
4
, q = sinh−1

√
2 + 2

√
2 are denoted by black dots.

The N = (1, 1) points are again repulsive. With g = 1/2, the N = (1, 1) vacuum

potential is W0 = (1 +
√
2)2/2 and the AdS3 length scale is L =

√
2 − 1. The linear

expansion around the vacuum yields the following mass-squares for δp and δq fluctuations,

m2
pL

2 = 1 , m2
qL

2 = 2 + 2
√
2 (2.73)

which correspond to the scaling dimensions,

∆p = 1 +
√
2 , ∆q = 2 +

√
2 (2.74)
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Figure 2.3: (a) pq parametric plot, (b) plot of q, (c) plot of p, (d) plot of the metric function

B as functions of the AdS2 slicing coordinate u for truncation 3.

The linearized flow equations around the N = (1, 1) point are

δp′ = −(3 + 2
√
2)δp+ · · ·

δq′ = (2 +
√
2)δq + · · · (2.75)

which are solved by δp ∼ Cpe
−(3+2

√
2)u and δq ∼ Cqe

(2+
√
2)u, or in terms of ρ by substituting

eu ∼ ρ−L,

δp ∼ Cpρ
1+

√
2 δq ∼ Cqρ

−
√
2 (2.76)

These asymptotic forms are consistent with the scaling dimensions in (2.74). Again, we see

that the q scalar diverges as ρ→ 0 unless we fine-tune the coefficient Cq to zero, which turns

off the source for an operator with scaling dimension larger than 2 on the boundary CFT.

A similar counting as before shows that the flow preserves two of the four supersymmetries

of theN = (1, 1) vacuum. Therefore, we have RG-flow interfaces between a CFT with central
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charge c(4,4) and a CFT with central charge c(1,1), where

c(1,1)

c(4,4)
=

√√√√W
(4,4)
0

W
(1,1)
0

=
√
2− 1 (2.77)

2.4 Discussion

In the paper, we constructed new solutions of three-dimensional gauged supergravity. The

solutions produced describe interface CFTs holographically. We considered three different

truncations of the scalar fields which are associated with three different supersymmetric AdS3

vacua with N = (4, 4) and N = (1, 1) supersymmetry. The solution in the first truncation is

a Janus solution that is very similar to the one found in [112] for a simpler three-dimensional

gauged supergravity. The CFTs on both sides of the interface are deformations of the

N = (4, 4) vacuum with a source for a marginal operator turned on as well as a position-

dependent expectation value for a relevant operator. The interface preserves half of the

sixteen supersymmetries of the N = (4, 4) vacuum.

The solutions for the other two truncations represent RG-flow interfaces in the sense that

the solutions we find have different CFTs on each side of the interface. For example, we find

solutions where the interface connects the N = (4, 4) CFT (with a marginal operator and

relevant expectation value) and the N = (1, 1) CFT (with an irrelevant source). Note that

there is no clear distinction between the UV and the IR in the RG-flow Janus solutions, since

both sides put together form the boundary of the asymptotically AdS space. This is to be

contrasted with a Poincaré-sliced RG-flow solution, where the AdS boundary with the larger

curvature radius (or central charge) is viewed as describing the UV CFT. A irrelevant source

is turned on near the N = (1, 1) asymptotic AdS, which means that, from the perspective

of the flow, this constitutes a repulsive direction. To find a flow that comes very close to

the N = (1, 1) vacuum, we have to fine-tune our initial conditions, which corresponds to

fine-tuning the source of the irrelevant operator.
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We have worked in truncations where the dynamics of the eight scalar fields qi, pi for

i = 1, 2, 3, 4 are reduced to the dynamics of two scalars q, p, where in all three cases q = 0

corresponds to theN = (4, 4) vacuum. Hence, we could find interface CFTs of theN = (4, 4)

CFT with one of the N = (1, 1) CFTs. In this truncation, we cannot find an interface

solution connecting the two distinct N = (1, 1) vacua. For such a solution, we would have

to consider the flow equations with at least four independent scalars. The fine-tuning of the

initial conditions to produce the interface solution would also be more challenging.

The SO(4) × SO(4) gauging depends on a real parameter α and in this paper we have

only considered the case α = 1 which simplifies the expression of the Ai matrices and the

scalar potential. We expect that the solutions for other choices of α behave qualitatively the

same, since the supersymmetric vacua exist for other values of α. It would also be interesting

to consider holographic observables such as the entanglement entropy around the interface

or correlation functions.
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CHAPTER 3

Janus and RG interfaces in three-dimensional gauged

supergravity II: General α

Janus solutions provide a holographic description of interface conformal field theories. Gen-

erally, the solutions are constructed by considering an AdSd slicing of a higher dimensional

space where the other fields depend non-trivially on the slicing coordinate(s). For example

the original Janus solution [64], deforms the AdS5 × S5 vacuum of type IIB and is given by

an AdS4 slicing where the dilation depends non-trivially on a single the slicing coordinate

and approaches two different values on the two boundary components. The solution is dual

to an interface of N = 4 super Yang-Mills theory where the coupling gYM jumps across a co-

dimension one interface [86]. More general Janus solutions preserving supersymmetry were

constructed as AdS4×S2×S2 space warped over a Riemann surface [87]. These solutions are

dual to supersymmetric interface theories in N = 4 SYM [88–90]. For other Janus solutions

in ten and eleven dimensions, see e.g. [69,71,91,113]. In general, constructing such solutions

is quite difficult due to the fact that the supersymmetry variations, as well the equations

of motion, depend on more than one warping coordinate and the resulting equations are

nonlinear partial differential equations. A useful approach is to construct Janus solutions

in lower dimensional gauged supergravities (see for example [70, 72, 92–97, 114–116]). Such

solutions are often easier to obtain, can be uplifted to ten or eleven dimensions or can be

used to explore qualitative features of Janus solution in a bottom-up approach.

In lower dimensional gauged supergravities it is often the case that in addition to a

maximally supersymmetric AdS vacuum there are extrema with a reduced amount of super-
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symmetry. One of the aims of the present paper is to construct holographic Janus solutions

which correspond to RG interfaces [100], between different AdS vacua1. This paper is a

continuation of the work presented [1], which considered three-dimensional N = 8 gauged

supergravity with n = 4 vector multiplets, first discussed in [104]. This theory has an AdS3

vacuum with maximal N = (4, 4) supersymmetry as well as two families of AdS3 vacua with

N = (1, 1) supersymmetry [105]. The gauged supergravity has a parameter α on which the

embedding tensor for the gauged supergravity depends. For this theory the dual supercon-

formal algebra of the N = (4, 4) vacuum is given by the “large” superconformal algebra

D1(2, 1;α)×D1(2, 1;α), and the three-dimensional supergravity is believed to be a trunca-

tion of M-theory on AdS3 × S3 × S3 × S1 [106–109]. In the previous paper we considered

the special case of α = 1 for which the explicit expressions become simpler. Here we will

analyze the case for general α, using both analytical and numerical methods.

The structure of this paper is as follows: In section 4.1 we review the three dimensional

gauged supergravity with n = 4 vector multiplets used in the paper. We consider three

truncations where the gauge fields as well as some scalars can consistently be set to zero and

fix the N = (1, 1) vacua for general α. In section 4.2 we derive the BPS flow equations for an

AdS2 sliced Janus ansatz, this generalizes and streamlines the discussion of [1]. In section 4.3

we derive the flow equations and integrate them numerically for the three truncations. For the

second and third truncations where N = (1, 1) AdS vacua exists we present examples of RG-

flow interfaces. In section 4.4 we use the solutions to calculate some holographic observables.

In particular we determine the masses of the fluctuating scalars around the N = (1, 1) vacua,

the mass squared is positive and quite large, which means that the scalar fluctuations around

fixed point are repulsive in the UV. This implies that the initial conditions have to be fine

tuned in order to reach the fixed point. We discuss our results and possible directions for

future research in section 4.5.

1See [101–103] for other examples of holographic RG-flow interfaces.
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3.1 Three-dimensional N = 8 gauged supergravity

In this section, we review the N = 8 gauged supergravity first constructed in [104] mainly

following the conventions of [1]. The bosonic field content consists of a graviton gµν , Chern-

Simons gauge fields BM
µ , and scalars fields living in a G/H = SO(8, n)/ SO(8)×SO(n) coset,

which has 8n degrees of freedom before gauging. The scalar fields are parametrized by a

G-valued matrix L(x) in the vector representation, which transforms under H and the gauge

group G0 ⊆ G by right and left multiplication of group elements respectively.

L(x) → g0(x)L(x)h
−1(x) (3.1)

for g0 ∈ G0 and h ∈ H. The Lagrangian is invariant under such transformations. In this

paper we use the following index conventions:

• I, J, . . . = 1, 2, . . . , 8 for SO(8).

• r, s, . . . = 9, 10, . . . , n+ 8 for SO(n).

• Ī , J̄ , . . . = 1, 2, . . . , n+ 8 for SO(8, n).

• M,N , . . . for generators of SO(8, n).

Let the generators of G be {tM} = {tĪJ̄} = {XIJ , Xrs, Y Ir}, where Y Ir are the noncompact

generators. Explicitly, the generators of the vector representation are given by

(tĪJ̄)K̄L̄ = ηĪK̄δJ̄L̄ − ηJ̄K̄δĪL̄ (3.2)

where ηĪJ̄ = diag(++++++++− · · · ) is an SO(8, n)-invariant tensor. These generators

satisfy the typical SO(8, n) commutation relations,

[tĪJ̄ , tK̄L̄] = 2
(
ηĪ[K̄tL̄]J̄ − ηJ̄ [K̄tL̄]Ī

)
(3.3)

The gauging of the supergravity is characterized by an embedding tensor ΘMN (which

has to satisfy various identities [110] in order to define a consistent theory) that determines
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which isometries are gauged, the coupling to the Chern-Simons fields, and additional terms

in the supersymmetry transformations and action depending on the gauge coupling g. We

will look at the particular case in [105] where n ≥ 4 and the gauged subgroup is the G0 =

SO(4)×SO(4) subset of the SO(8) ⊂ SO(8, n). The embedding tensor has the non vanishing

entries,2

ΘĪJ̄ ,K̄L̄ =


αεĪJ̄K̄L̄ if Ī , J̄ , K̄, L̄ ∈ {1, 2, 3, 4}

εĪJ̄K̄L̄ if Ī , J̄ , K̄, L̄ ∈ {5, 6, 7, 8}

0 otherwise

(3.4)

Note that the gauging depends on a real parameter α. As discussed in [105], the maximally

supersymmetric AdS3 vacuum is obtained where the potential has a local maximum at

L(x) = I8n, and it has an isometry group,

D1(2, 1;α)×D1(2, 1;α) (3.5)

which corresponds to the family of “large” superconformal algebras of the dual SCFT. The

bosonic subalgebra of D1(2, 1, α) is SL(2, R)× SU(2)× SU(2). Representations are labeled

by the SU(2) quantum numbers l±and the conformal weight h (which can be obtained from

∆ = h+h̄ and the relation between ∆ andm2L2
0), and can be denoted by (l+, l−, h). Unitarity

implies the bound h ≥ γl− + (1− γ)l+. In this paper we generalize the analysis of [1] where

the case α = 1 was considered to the case of general α. Note that in the spacial case α = 1

the super algebra becomes more familiar D1(2, 1; 1) = OSp(4|2).

From the embedding tensor, the G0-covariant currents can be obtained,

L−1(∂µ + gΘMNB
M
µ tN )L =

1

2
QIJ

µ X
IJ +

1

2
Qrs

µ X
rs + PIr

µ Y
Ir (3.6)

It is convenient to define the VM
A tensors,

L−1tML = VM
A t

A =
1

2
VM

IJX
IJ +

1

2
VM

rsX
rs + VM

IrY
Ir (3.7)

2We use the conventions ε1234 = ε5678 = 1.
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and the T -tensor,

TA|B = ΘMNVM
AVN

B (3.8)

The T -tensor is used to construct the tensors A1,2,3 which will appear in the scalar potential

and the supersymmetry transformations,

AAB
1 = − 1

48
ΓIJKL
AB TIJ |KL

AAȦr
2 = − 1

12
ΓIJK
AȦ

TIJ |Kr

AȦrḂs
3 =

1

48
δrsΓIJKL

ȦḂ
TIJ |KL +

1

2
ΓIJ
ȦḂ
TIJ |rs (3.9)

where A,B and Ȧ, Ḃ are SO(8)-spinor indices. Our conventions for the SO(8) Gamma

matrices are presented in the appendix.

Here we choose the spacetime signature ηab = diag(+ − −) as mostly negative. The

bosonic Lagrangian and scalar potential are given by

e−1Lbos = −1

4
R +

1

4
PIr

µ PIr µ + V − 1

4
e−1εµνρgΘMNB

M
µ

(
∂νB

N
ρ +

1

3
gΘKLf

NK
PB

L
ν B

P
ρ

)
V =

1

4
g2
(
AAB

1 AAB
1 − 1

2
AAȦr

2 AAȦr
2

)
(3.10)

The supersymmetry variations take the following form

δχȦr =
1

2
iΓI

AȦ
γµεAPIr

µ + gAAȦr
2 εA

δψA
µ =

(
∂µε

A +
1

4
ωab
µ γabε

A +
1

4
QIJ

µ ΓIJ
ABε

B

)
+ igAAB

1 γµε
B (3.11)

The Einstein equations of motion are

Rµν − PIr
µ PIr

ν − 4V gµν = 0 (3.12)

and the gauge field equations of motion are

ePIr λΘQMVM
Ir = ελµν

(
ΘQM∂µB

M
ν +

1

6
gBM

µ BK
ν

(
ΘMNΘKLf

NL
Q + 2ΘMNf

LN
KΘLQ

))
(3.13)

58



3.1.1 The n = 4 case

The smallest number of matter multiplets where multiple supersymmetric vacua exist is

n = 4. The symmetries of the theory are a local G0 = SO(4) × SO(4) and a global SO(n)

with n = 4. Consequently, the scalar potential only depends on 8 · 4 − 3 · 6 = 14 fields out

of the original 32. Moreover, a further consistent truncation outlined in [105] is performed

where the coset representative depends only on eight of the fourteen scalars.

L =


cosA sinA coshB sinA sinhB

− sinA cosA coshB cosA sinhB

0 sinhB coshB


A = diag(p1, p2, p3, p4) , B = diag(q1, q2, q3, q4) (3.14)

We will not display the general form of the tensors A1 and A2 defined in (3.9) here. The

scalar potential has terms up to order α2.

g−2V =
1

2
+

1

4

∑
i

x2i −
1

4

∑
i<j<k

x2ix
2
jx

2
k −

1

2

∏
i

x2i + α

(
−
∏
i

xiyi +
∏
i

√
1 + x2i + y2i

)

+ α2

(
1

2
+

1

4

∑
i

y2i −
1

4

∑
i<j<k

y2i y
2
j y

2
k −

1

2

∏
i

y2i

)
(3.15)

where all indices run form 1 to 4 unless otherwise indicated and we used the following defined

scalar fields

xi = cos pi sinh qi , yi = sin pi sinh qi (3.16)
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The Qµ and Pµ currents do not depend on α, excluding the gΘMNB
M
µ VN

A term, they are

given by

QIJ
µ =


0 0 0 0 cosh q1∂µp1 0 0 0
0 0 0 0 0 cosh q2∂µp2 0 0
0 0 0 0 0 0 cosh q3∂µp3 0
0 0 0 0 0 0 0 cosh q4∂µp4

− cosh q1∂µp1 0 0 0 0 0 0 0
0 − cosh q2∂µp2 0 0 0 0 0 0
0 0 − cosh q3∂µp3 0 0 0 0 0
0 0 0 − cosh q4∂µp4 0 0 0 0


IJ

Qrs
µ = 0

PIr
µ =


sinh q1∂µp1 0 0 0

0 sinh q2∂µp2 0 0
0 0 sinh q3∂µp3 0
0 0 0 sinh q4∂µp4

∂µq1 0 0 0
0 ∂µq2 0 0
0 0 ∂µq3 0
0 0 0 ∂µq4


Ir

(3.17)

Using these matrices, we can check that the combination PIr
µ VJK

Ir vanishes whenever the

indices J,K ∈ {1, 2, 3, 4} or J,K ∈ {5, 6, 7, 8}. This implies that there is no source for BM
µ

in the gauge field equation of motion (3.13), so it is consistent to set BM
µ = 0. We will make

this choice from now on.

The kinetic term for the scalars in the action (3.10) can be expressed in terms of the xi

and yi using the relations (3.16) and take the form

1

4
PIr

µ PIr µ = −1

4

4∑
i=1

1

1 + x2i + y2i

(
(1 + y2i )(∂µ∂

µxi − 2xiyi∂µxi∂
µy′i + (1 + x2i )∂yi∂

µyi

)
(3.18)

This expression will be needed for determining masses of the fluctuations of the scalar fields

around the supersymmetric vacua.

3.1.2 Truncations and supersymmetric AdS3 vacua

In order to make our analysis more tractable, we make further truncations to reduce the

number of independent scalar fields. Below we consider three consistent truncations, which

together explore the AdS3 vacua with N = (4, 4) and N = (1, 1) supersymmetry. All of the

results are generalizations of the α = 1 case discussed in [1].
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3.1.2.1 Truncation 1

The first truncation is given by denoting q1 = q, p1 = p and setting all remaining qi = pi = 0

for i = 2, 3, 4. The scalar potential is

V =
g2

4

(
2(1 + α2) + 4α cosh q + (cos2 p+ α2 sin2 p) sinh2 q

)
(3.19)

TheN = (4, 4) vacuum is given by setting q = 0 and the vacuum potential is V0 =
1
2
g2(1+α)2.

In the x, y coordinates the N = (4, 4) vacuum is given by xi = yi = 0. This is the only

supersymmetric vacuum for this truncation. We note that for the choice α = 1 the potential

is independent of the scalar field p. We note we will chose g = 1/(1 + α) in order to set the

potential at the N = (4, 4) vacuum to be V0 =
1
2
, which corresponds to a unit radius AdS3.

3.1.2.2 Truncation 2

The second truncation is given by setting all the q and p equal respectively, i.e. qi = q, pi = p

for i = 1, 2, 3, 4. The scalar potential becomes

V =
g2

2

{
(1− cos2 p sinh2 q)(1 + cos2 p sinh2 q)3 + α2(1− sin2 p sinh2 q)(1 + sin2 p sinh2 q)3

+ α(2 + 4 sinh2 q + 2 sinh4 q − 2 sin4 p cos4 p sinh8 q)
}

(3.20)

or in terms of the x, y fields, the potential will take the following form

V =
g2

2

{
(x2 − 1)(x2 + 1)3 + α2(y2 − 1)(y2 + 1)3 + 2α

(
2x2(1 + y2) + (1 + y2)2 − x4(y4 − 1)

)}
(3.21)

As before the N = (4, 4) vacuum is given by q = 0 or x = y = 0. There are N = (1, 1) vacua

which are located at

x = ± 1

6
√
3α

(
−12α2 − 2

2
3Y

1
3 (Y + 2α2(−3 + 8α))

(3 + 2α)
− 2

1
3y

2
3 (Y + 2α(−18 + α(−15 + 8α)))

(3 + 2α)2

) 1
2

y = ±1

3

(
− 1 +

2
2
3Y

1
3

α
+

4 2
1
3 (3 + 2α)

Y
1
3

) 1
2

(3.22)
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Figure 3.1: Ration of central charges for the N = (1, 1) and N = (4, 4) vacua.

where Y is given by

Y = 3iα
3
2

√
96 + 3α(61 + 32α)− α2(9 + 16α) (3.23)

The central charge of the dual CFT is related to the AdS radius and the value of the potential

V0 at its minimum

c =
RAdS

4GN

=
1√
2V0

1

4GN

(3.24)

Choosing g = 1/(1 + α) sets the AdS radius of the N = (4, 4) vacuum to one and the ratio

of the central charge of the N = (4, 4) to the N = (1, 1) vacuum as a function of α becomes

cN=(1,1)

cN=(4,4)

=
1√

2V
N=(1,1)
0 (α)

(3.25)

The expressions derived (3.22) are not very illuminating and we present a plot of the ratio

of the central charges for the two vacua in the figure 3.1. It is interesting to note that the

ratio of central charges is minimized for the special value α = 1.
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3.1.2.3 Truncation 3

The third truncation is given by setting the first three q and p equal, i.e. qi = q, pi = p for

i = 1, 2, 3, and setting the remaining q4 = p4 = 0. The scalar potential is

V =
g2

4

(
2 + 3 cos2 p sinh2 q − cos6 p sinh6 q + 4α cosh3 q + α2(2 + 3 sin2 p sinh2 q − sin6 p sinh6 q)

)
(3.26)

or in the x, y variables

V =
g2

4

(
(2 + 3x2 − x6) + 4α(1 + x2 + y2)

3
2 + α2(2 + 3y2 − y6)

)
(3.27)

The N = (4, 4) vacuum is given by q = 0 or x = y = 0 as before, and N = (1, 1) vacua can

be determined by finding the extrema for the potential (3.27) away from the origin.

y = ±
√

1

2

1 + (α)

√
1− 4

X
1
3

+
2X

1
3

3α2
+

√√√√√2 +
4

X
1
3

− 2X
1
3

3α2
+

2(α2 − 4)

α2

√
1− 4

X
1
3
+ 2X

1
3

3α2


1
2

x = ±
(
α2

4
(y4 − 1)4 − 1− y2

) 1
2

(3.28)

where we used the abriviation

X = 3α2
(
9− 9α2 +

√
81− 138α2 + 81α4

)
(3.29)

The ε(α) is a sign which selects a branch of the solutions which gives real x, y depending on

α and we have ε(α) = +1 for α < 2 and ε(α) = −1 for α > 2. We can plot the ratio of the

central charges which is given by (3.25), determined from the potential (3.27). We note that

the qualitative behavior of the ratio for truncation 2 and 3 is very similar, in particular the

central charge for the N = (1, 1) vacuum is minimized at α = 1.
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Figure 3.2: Ration of central charges for the N = (1, 1) and N = (4, 4) vacua.

3.2 Janus flow equations

In this section we will derive the BPS flow equations, expanding on the construction in our

previous paper [1]. The Janus ansatz for the bosonic fields is give by

ds2 = e2B(u)

(
dt2 − dz2

z2

)
− du2 , qi = qi(u) , pi = pi(u) (3.30)

The Chern-Simons gauge fields is set to zero BM
µ = 0.We will check that the source term

on the right hand side of the gauge field equation of motion (3.13) is zero for the solutions

considered in this paper.

The gravitino supersymmetry variation δψA
µ = 0 is

0 = ∂tε+
1

2z
γ0
(
γ1 −B′eBγ2 + 2igeBA1

)
ε

0 = ∂zε+
1

2z
γ1
(
−B′eBγ2 + 2igeBA1

)
ε

0 = ∂uε+
1

4
QIJ

u ΓIJε+ igγ2A1ε (3.31)

where we have suppressed the SO(8)-spinor indices of εA and AAB
1 . The spin-1

2
variation

δχȦr = 0 is (
− i

2
ΓIPIr

u γ2 + gAr
2

)
AȦ

εA = 0 , r = 9, 10, . . . , 8 + n (3.32)
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The matrix A1 defined in (3.9) has eigenvectors

AAB
1 n

(i)B
± = ±win

(i)A
± , i = 1, 2, 3, 4 (3.33)

For a supersymmetric AdS3 vacuum the eigenvalue wi is related to the value of the potential

evaluated at the vacuum via

w2
vac =

Vvac
2g2

(3.34)

and the associated eigenvectors n
(i)
± determine the supersymmetries of the vacuum. For the

N = (4, 4) vacuum the wi, i = 1, · · · 4 all satisfy (3.34) and hence the vacuum preserves eight

supersymmetries. For the N = (1, 1) vacuum only one of the for n
(i)
± and wi satisfies (3.34).

In the following we drop the index (i) to denote the supersymmetric eigenvalue w and the

eigenvector nA
±.

The general ansatz for unbroken supersymmetry εA for the Janus solution is given by

εA =
(
f+n+ + f−n

A
−
)
ζ+ +

(
g+n

A
+ + g−n

A
−
)
ζ− (3.35)

where ζ± are Killing spinors for a unit radius AdS2

Dµζη = i
η

2
γµζη , µ = t, z, η = ±1 (3.36)

3.2.1 Gravitino variation

The t, z components of the gravitino variation can be expressed as follows by using the

properties of the AdS2 Killing spinors,

0 = i
{(
f+n

A
+ + f−n

A
−
)
ζ+ −

(
g+n

A
+ + g−n

A
−
)
ζ−
}

(3.37)

+ iB′eBiγ2

{(
f+n

A
+ + f−n

A
−
)
ζ+ +

(
g+n

A
+ + g−n

A
−
)
ζ−

}
+ 2igweB

{(
f+n

A
+ − f−n

A
−
)
ζ+ +

(
g+n

A
+ − g−n

A
−
)
ζ−

}
(3.38)
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Using iγ2ζη = ζ−η and the linear independence of the n± and ζ±, one obtains a set of

equations,

f+ +B′eBg+ + 2gweBf+ = 0

−g+ +B′eBf+ + 2gweBg+ = 0

f− +B′eBg− − 2gweBf− = 0

−g− +B′eBf− − 2gweBg− = 0 (3.39)

It is convenient to define the following expressions

γ(u) =

√
1− e−2B

4g2w2
,

√
1− γ2(u) =

e−B

2gw
(3.40)

The equations (3.39) can then be solved by

f+ =

√
1− γ2 − 1

γ
g+ , f− =

√
1− γ2 + 1

γ
g− (3.41)

if the integrability condition

B′ = ±
√

4g2w2 − e−2B

= ±2gwγ (3.42)

is satisfied. This equations provides us with a differential equation for the metric factor B.

3.2.2 Spin 1
2
variation

The spin-1
2
variation (3.32) takes the following of a projector(

MABiγ2 + δAB
)
εB = 0 (3.43)

where

M
(r)
AB = − 1

2g

(
ΓIPIr

u (Ar
2)

−1
)T
AB

(3.44)
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Note that there is a projector for each r, which all have to be satisfied and the resulting

flow equations are mutually consistent for a supersymmetric Janus solution to exist. This

analysis will be performed for the particular truncations presented in section 3.1.2.

Inserting εA is given by (3.35) and into the spin 1
2
projector gives

0 =
(
f+n

A
+ + f−n

A
−
)
ζ+ +

(
g+n

A
+ + g−n

A
−
)
ζ−

+MABiγ2

{(
f+n

B
+ + f−n

B
−
)
ζ+ +

(
g+n

B
+ + g−n

B
−
)
ζ−

}
(3.45)

We have dropped the index r for notational convenience. Using the fact that the two dimen-

sional Killing spinors are orthogonal we can project (3.45) onto the n± and ζ± components

. This produces four equations

f+n
2
+ +M++g+ +M+−g− = 0

g+n
2
+ +M++f+ +M+−f− = 0

f−n
2
− +M+−g+ +M−−g− = 0

g+n
2
− +M+−f+ +M−−f− = 0 (3.46)

where we denoted n2
± = nA

±n
A
± and we define

M++ = nA
+M

ABnB
+ , M−− = nA

−M
ABnB

− , M+− =M−+ = nA
+M

ABnB
− (3.47)

If there is more than one n± (as in truncation 1) one has to choose linear combinations for

which M±±,M±∓ take the same form for all n
(i)
± , which is a consistency condition. Using

(3.41) it can be shown that equations (3.46) can only be satisfied if we have

M++ = γn2
+ , M−− = −γn2

− , M+− =M−+ =
√
1− γ2

√
n2
+n

2
− (3.48)

In all cases we consider, the M−− equation is automatically satisfied if the M++ is satisfied.

Hence (3.48) provides two independent equations. It follows from (3.44) that these equations

are linear in the first derivatives of the scalar fields and provide the BPS flow equations for

the scalars. The complete set of flow equations is given by these equations and the flow

equation for the metric factor (3.42), coming from the gravitino variation.
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3.3 Janus and RG-flow solutions

In this section we obtain the flow equations and solve them numerically for the three trun-

cations considered in this paper. Since the first truncation does not have N = (1, 1) vacua

the BPS flows will correspond to Janus solutions interpolating between N = (4, 4) vacua.

For the two other truncations we find Janus as well as RG-flow interface solutions.

3.3.1 Truncation 1

The matrix A1 for this truncation is given by

A1 =



0 0 0 a 0 0 b 0

0 0 −a 0 0 0 0 b

0 −a 0 0 −b 0 0 0

a 0 0 0 0 −b 0 0

0 0 −b 0 0 0 0 −a

0 0 0 −b 0 0 a 0

b 0 0 0 0 a 0 0

0 b 0 0 −a 0 0 0



(3.49)

where

a =
1

2
cos p(α + cosh q), b =

1

2
sin p(1 + α cosh q) (3.50)

The eigenvalue of A1 are ±w0 which is given by

w0 =
√
a2 + b2 =

1

2

√
cos2 p(α + cosh q)2 + sin2 p(1 + α cosh q)2 (3.51)
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The eigenvectors are given by

n
(1)
± =



0

a±w0

b

−a∓w0

b

0

1

0

0

1



, n
(2)
± =



0

−a±w0

b

−a±w0

b

0

−1

0

0

1



, n
(3)
± =



−a±w0

b

0

0

a∓w0

b

0

1

1

0



, , n
(4)
± =



a±w0

b

0

0

a±w0

b

0

−1

1

0



,

(3.52)

The matrix MAB defined in (3.44) takes the following form for the truncation 1

M =



0 0 0 m1 0 0 −m2 0

0 0 −m1 0 0 0 0 −m2

0 −m1 0 0 m2 0 0 0

m1 0 0 0 0 0 m2 0

0 0 m2 0 0 0 0 −m1

0 0 0 m2 0 0 m1 0

−m2 0 0 0 0 m1 0 0

0 −m2 0 0 −m1 0 0 0



(3.53)

with

m1 =
α sin p p′ + cos p csch q q′

g(cos2 p+ α2 sin2 p)
, m2 =

cos p p′ − α sin p csch q q′

g(cos2 p+ α2 sin2 p)
, (3.54)

Using the definitions (3.50) and (3.51) the flow equations (3.48) for the scalars p, q and
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Figure 3.3: (a)-(c) plots of p, q, B respectively, (d) parametric plot of the Janus flow in the

x, y variables. The initial conditions are q(0) = 1.0 and p(0) = 1.5 and α = 2.3.

the metric function B (3.42) can be written relatively compactly

p′ =
g

w0

(
α(aγ − b

√
1− γ2) sin p− (bγ + a

√
1− γ2) cos p

)
q′ =

g sinh q

w0

(
α(bγ + a

√
1− γ2) sin p+ (aγ − b

√
1− γ2) cos p

)
B′ = ±

√
4g2w2

0 − e−2B (3.55)

This system of ordinary differential equations can only be integrated numerically. We will

choose the coordinate u such that the turning point of the metric function where B′(u) = 0

is located at u = 0. We then use the BPS equations (3.55) to determine p′(0), q′(0) and

B(0) for a given q(0) and p(0). We then integrate the equations of motion following from the

variation of the Lagrangian (3.10). This means that all our solutions depend on two initial

conditions q(0) and p(0). We have given an illustrative example of the flows we can obtain

in figure 3.3.
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3.3.2 Truncation 2

The matrix A1 for this truncation is given by

A1 =



0 0 0 a+c
4

0 0 0 0

0 − c
2

−a+c
4

0 b 0 0 b

0 −a+c
4

− c
2

0 −b 0 0 −b
a+c
4

0 0 0 0 0 0 0

0 b −b 0 c
2

0 0 −a+c
4

0 0 0 0 0 0 a+c
4

0

0 0 0 0 0 a+c
4

0 0

0 b −b 0 −a+c
4

0 0 c
2



(3.56)

where

a = 2 cos4 p(α cosh4 q) + 2 sin4 p(1 + α cosh4 q)

b = sin p cos p cosh q
(
cos2 p(α + cosh2 q)− sin2 p(1 + α cosh2 q)

)
c = (1 + α) cosh2 q sin2 2p (3.57)

The eigenvectors n
(1)
± of A1 with eigenvalues ±w0 corresponding to the unbroken N = (1, 1)

supersymmetries are given by

n
(1)
± =



0

a−3c±4w0

8b

−a−3c±4w0

8b

0

1

0

0

1



, w0 =
1

4

√
64b2 + (3c− a)2 (3.58)
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We have checked that the extremum (3.22) does satisfy the supersymmetry condition

(3.34) for the w0 defined above and hence corresponds to an AdS vacuum with N = (1, 1)

supersymmetry. The rest of the eigenvectors of A1 do not have eigenvalues which satisfy the

supersymmetry condition (3.34) for the N = (1, 1) vacuum. We chose the initial conditions

the same way as in section 3.3.1.

In figure 3.4 we display examples of solutions to the flow equations representing Janus

flows between N = (4, 4) vacua, N = (1, 1) vacua and RG-flow Janus solutions between

N = (4, 4) and N = (1, 1) vacua. We note that the flows involving the N = (1, 1) vacua are

a new feature of the truncation. As discussed in section 3.4.1 the N = (1, 1) is a repulsive

fixed point of the flow and to obtain the numerical solutions one has to fine-tune the initial

conditions at the turning point to approach the N = (1, 1) vacuum. This implies that

choosing an initial p(0) the initial q(0) for which an RG-flow solution exists is fixed (if such

a numerical solution exists). A third kind of low solution corresponds to a Janus solution

interpolating between N = (1, 1) vacua, since both vacua are repulsive such solutions only

exist for a discrete set of initial conditions.

3.3.3 Truncation 3

The matrix A1 for this truncation is given by

A1 =



0 0 0 b+c
2

0 a+d
2

0 0

0 −c −b+c
2

0 −a+d
2

0 0 d

0 −b+c
4

−c 0 −d 0 0 a−d
2

b+c
2

0 0 0 0 0 −a−d
2

0

0 −a+d
2

−d 0 c 0 0 −b+c
2

a+d
2

0 0 0 0 0 b+c
2

0

0 0 0 −a−d
2

0 b+c
2

0 0

0 d a−d
2

0 −b+c
2

0 0 c



(3.59)
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Figure 3.4: Truncation 2: (a)-(c) plots of p, q, B respectively, (d) parametric plot of the

Janus flow in the x, y variables, the N = (4, 4) vacuum is at the origin and the dots denote

the locations of the N = (1, 1) vacua. Blue: Janus between N = (4, 4) vacua, red: Janus

between N = (1, 1) vacua, green: RG-Janus between N = (4, 4) and N = (1, 1). We have

set α = 1.2 for these examples.
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Figure 3.5: Truncation 3: (a)-(c) plots of p, q, B respectively, (d) parametric plot of the

Janus flow in the x, y variables, the N = (4, 4) vacuum is at the origin and the dots denote

the locations of the N = (1, 1) vacua. Blue: Janus between N = (4, 4) vacua, red: Janus

between N = (1, 1) vacua, green: RG-Janus between N = (4, 4) and N = (1, 1). We have

set α = 1.2 for these examples.

where

a = sin3 p(1 + α cosh3 q)

b = cos3 p(α + cosh3 q)

c = sin2 p cos p cosh q(1 + α cosh q)

d = cos2 p sin p cosh q(α + cosh q) (3.60)

The eigenvectors n
(1)
± of A1 with eigenvalues ±w0 corresponding to the unbroken N =
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(1, 1) supersymmetries are given by

n
(1)
± =



0

− b−3c±2w0

a−3d

b−3c±2w0

a−3d

0

1

0

0

1



, w0 =
1

2

√
(a− 3d)2 + (b− 3c)2 (3.61)

The rest of the eigenvectors of A1 do not have eigenvalues which satisfy the supersymmetry

condition (3.34) for the N = (1, 1) vacuum. Note that all of them reduce to the ones of

truncation 1 for the N = (4, 4) vacuum.

In figure 3.5 we display a sample of solutions to the flow equations representing Janus

flows between N = (4, 4) vacua, N = (1, 1) vacua and RG-flow Janus solutions between an

N = (4, 4) and N = (1, 1) vacuum. We note that the solutions behave qualitatively similar

to the ones displayed for truncation 2.

3.4 Holographic calculations

In this section we will perform some holographic calculations for the solutions obtained in the

section 4.3. In particular we will calculate the masses for the fluctuations of the scalar fields

around the N = (4, 4) and N = (1, 1) vacua. This will allow us to identify the dimensions of

the dual operators which are turned on in the flows. One of the results is that for truncation

2 and 3 the mass squared of the fluctuations are positive, corresponding to operators with

scaling dimensions ∆ > 2. Since the behavior near the AdS vacuum is given by

lim
ε→0

ϕ ∼ ϕ̄+ c1ε
∆ + c2ε

2−∆ + · · · (3.62)
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where ε → 0 corresponds to approaching the AdS boundary, the initial conditions have to

be fine tuned in order to make the repulsive term c2ε
2−∆ very small. In addition we consider

the entanglement entropy of a symmetric region around the defect [78, 117–120] and give a

prescription to obtain the defect entropy (or g-factor) [121].

3.4.1 Operator spectrum

The N = (4, 4) vacuum has qi = 0, i = 1, 2, 3, 4. Since the kinetic terms for pi are vanishing

the xi, yi defined in (3.16) are better suited to analyze the fluctuations. Expanding around

the xi = yi = 0 vacuum one finds for the quadratic term of the fluctuations.

1

e
L(2) =

1

4

∑
i

(
∂µδxi∂

µδxi + ∂µδyi∂
µδyi

)
+
g2c
4

∑
i

(
(1 + 2α)δx2i + α(α + 2)δy2i

)
(3.63)

From which we can read off the masses of the scalar fluctuations. The masses the determine

the conformal scaling dimensions

∆± = 1±
√
1 +m2R2 (3.64)

where R is the AdS radius of the vacuum. Setting gc = 1/(1+α) to obtain a unit radius AdS3

for the N = (4, 4) vacuum and the standard AdS/CFT relation the conformal dimensions of

the dual operators are displayed in table 3.1. Note that ∆+ gives the scaling dimension of

N = (4, 4) m2 ∆+ ∆−

δxi − 1+2α
(1+α)2

1+2α
1+α

1
1+α

δyi −α(2+α)
(1+α)2

2+α
1+α

α
1+α

Table 3.1: Mass and conformal dimensions of scalar fluctuations for the N = (4, 4) vacuum

the dual operator in the standard quantization which takes values between 1 < ∆+ < 2 for

α > 0, whereas ∆− corresponds to the alternative quantization and 0 < ∆− < 1 for α > 0.

Supersymmetric flows are related to the standard quantization which we will adapt in the
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Figure 3.6: (a) Conformal dimension of operator dual to scalar fluctuations around the

N = (1, 1) vacuum for truncation 2, (b) same for truncation 3.

following [99]. We note that the N = (4, 4) vacuum is attractive since both x and y are dual

to operators with ∆ < 2 and the initial conditions do not have to be fine tuned for (3.62) to

approach the vacuum value.

For truncations 2 and 3 we can determine the scaling dimensions of the operators at the

N = (1, 1) vacuum by expanding the scalar action around the vacuum to second order and

diagonalizing the resulting scalar Lagrangian. The resulting expressions are quite unwieldy

and we present the plots of the scaling dimensions of the two modes as a function of α in

figure 3.6. We note that the scaling dimensions are larger than 2 and hence the N = (1, 1)

corresponds to a repulsive fixed point and the initial conditions have to be fine-tuned.

3.4.2 Holographic entanglement entropy

The Ruy-Takayanagi prescription [122] relates holographic entanglement entropy to the area

of a minimal surface in the bulk which when approaching the AdS boundary ends at the

border of the entangling surface. For a three dimensional static bulk spacetime this corre-

sponds to a geodesic in the bulk which terminates at the ends of the entangling interval on

the boundary. For the AdS2 sliced metric (3.30) and an entangling surface which is sym-

metric about the defect and of length 2L, such a geodesic is simply parameterized by u and
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constant z = L. The entanglement entropy is then given by

SEE(L) =
1

4GN

∫ u+∞

u−∞

du =
1

4GN

(
u−∞ − u+∞

)
(3.65)

Where u±∞ will be related to an UV Fefferman-Graham cutoff in the following, we will

generalize the derivation of [117, 118] to the case of an RG-flow interface where the AdS

radius and hence the central charge take different values on both sides of the interface. The

asymptotic behavior of the metric is determined by the metric function B(u) as u→ ±∞

lim
u→±∞

B(u) = ± u

R±
+ lnλ± − ln 2 + o(

1

u
) (3.66)

In the two asymptotic regions we can define a Fefferman-Graham coordinate system by

defining a new coordinates û±

u→ ±∞ : u = R±û± ∓R± lnλ± + o(
1

u
) (3.67)

and then the coordinates ζ±, η

u→ +∞ : e−2û+ =
1

4

ζ2+
η2

+ o(ζ4+), z = η
(
1 +

1

2

ζ2+
η2

)
+ o(ζ4+)

u→ −∞ : e2û− =
1

4

ζ2−
η2

+ o(ζ4−), z = −η
(
1 +

1

2

ζ2−
η2

)
+ o(ζ4−)

(3.68)

This expansion is valid for η >> ζ±, i.e. if we consider an entanglement interval which is far

away from the interface. In this limit the metric becomes

ζ± → 0 ds2 = R2
±

(−dζ2± − dη2 + dt2

ζ2±

)
+ o(1) (3.69)

It follows that R± defined in (3.66), corresponds to the asymptotic AdS radius and the left

and right side of the interface respectively and a Fefferman-Graham cutoff is given by setting

ζ± = ε. For the entanglement region located at z = L in follows from (3.69) that the FG

cutoff is related to the u± cutoff as follows

u± = ∓R±∞ ln

(
1

2

ε

L

)
∓R± lnλ± (3.70)
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Figure 3.7: (a) Plot of boundary entropy for RG-flow interface for truncation 2, as a function

of initial condition p0 at the turning point for α = 1.4. (b) Illustration of RG-flows for some

initial values of p0.

Plugging this into (3.65) gives the entanglement entropy

SEE =
1

4GN

(
(R+ +R−) ln

L

2ε
−R+ lnλ+ −R− lnλ−

)
=
c+ + c−

6
ln
L

2ε
− c+

6
lnλ+ − c−

6
lnλ− + o(ε) (3.71)

the constant term gives the boundary entropy

g = −c+
6

lnλ+ − c−
6

lnλ− (3.72)

Where c± is the central charge for the two CFTs on either side of the RG interface. The

g-factor is given by the second and third term in (3.71). For a Janus interface we have

c+ = c− = c, whereas the central charges differ on both sides of the interface for a RG-flow

interface. It is straightforward to determine the R± and lnλ± by numerically fitting the

metric functions (see plot (c) in figures 3.4 and 3.5) to determine the slope and the intercept

(3.66) in the limit of large |u|. We will give an example of numerical results by presenting the

g-factors as for the RG-interface between the N = (4, 4) vacuum and a N = (1, 1) vacuum

in truncation 2. As discussed in section 3.3.2 there exists a unique RG-flow interface for a

choice on initial condition p0. In figure 3.7 we present the g-factor as a function of the initial

condition for a particular value of α = 1.4.
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3.5 Discussion

In this paper we found holographic interface solution in three dimensional gauged super-

gravity theories. An important feature of these theories is that they have AdS vacua which

preserve N = (1, 1) supersymmetry in addition to the N = (4, 4) AdS vacuum. This feature

allows us to find solutions which correspond to interfaces between two N = (4, 4) vacua on

both side, N = (1, 1) on both sides, as well as RG-flow interfaces which have a N = (4, 4)

on one side and N = (1, 1) vacuum on the other. We derived BPS flow equations which are

three first order nonlinear differential equations for the two scalars p, q which are non zero

in the truncations as well as the warp factor B of the AdS2 slicing. By using the freedom

to shift the warping coordinate u by a constant we can choose the initial conditions for the

flow as the value of p and q at the turning point of the warp factor, where B′ = 0. In fact

we use the BPS equations to determine the initial conditions for the second order equation

motion following from the variation of the action. The numerical accuracy of the solution is

tested by checking the BPS equations away from the point where the initial conditions were

fixed.

The N = (1, 1) extrema are repulsive fixed points of the flow and hence the initial

condition have to be fine tuned using a shooting method. This is possible by fixing one scalar

initial condition and varying the other in order to come closer and closer to the N = (1, 1)

vacuum in the flow. Our results indicate that the qualitative behavior of the solutions for

general α is quite similar to the behavior of the α = 1 solutions obtained in [1]. In addition

we have considered entanglement entropy for the Janus and RG-flow solutions. Since for the

RG-flow solutions the central charges and hence AdS radii are different on both sides of the

interface and one has to carefully consider the UV cut-off. It is possible to determine the

g-function or interface entropy from the numerical solution by a linear fit of the warp factor

B.

We have considered truncations of the scalars to two nonzero scalars q and p (or x and
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y), it would be interesting to generalize this since it would then be possible to consider

more complicated flows between different N = (1, 1) vacua. It would also be interesting to

investigate the solutions we have found can be lifted and tell and have a representation in

AdS3×S3×S3×S1 holography. It would also be interesting to see whether the prescription

for the interface entropy can be applied to other examples of RG-flow interfaces.
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CHAPTER 4

Janus and RG-interfaces in minimal 3d gauged

supergravity

Janus solutions are solutions of supergravity theories which describe interface CFTs in the

AdS/CFT correspondence. The first such solution [64] was constructed in type IIB super-

gravity describing N = 4 Super Yang-Mills theory with the gauge coupling jumping across

a planar interface. There are two different approaches to constructing such solutions, one is

the top-down approach where ten or eleven dimensional solutions type II or M-theory are

constructed as products involving AdS and spherical factors warped over a Riemann surface

with boundary (see e.g. [69, 73, 87, 88, 91]). A guiding principle is to look for solutions pre-

serving half the number of supersymmetries of the AdS vacua which allows to construct the

explicit solutions from harmonic functions on the Riemann surface with certain boundary

conditions.

A second approach is to construct supersymmetric Janus solutions in lower dimensional

gauged supergravities (see e.g. [70, 72, 74, 92–94, 96, 116, 123–127]). Such solutions are often

easier to obtain since all fields only depend on a single AdS-slicing coordinate and the Killing

spinor equations are simpler. In many cases, the gauged supergravity theories are consistent

truncations of ten and eleven dimensional supergravities and lower dimensional solutions

can be uplifted. In addition, the simpler form of the solution allows to calculate holographic

observables and handle holographic renormalization more easily.

Another reason to consider lower dimensional gauged supergravity is that these theories

often have more than one AdS vacuum, coming from multiple extrema of the scalar potential.
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Apart from the maximally supersymmetric vacuum, the other vacua can have a lower number

or no supersymmetry and in general will correspond to an AdS space with different values of

the cosmological constant, which translates into CFTs with a different central charge. For an

ansatz with a Poincare sliced metric, it is possible to construct solutions which correspond to

holographic RG-flows relating the two CFTs (see e.g. [61, 128–130]). Using the Janus AdS-

slicing it is possible to construct RG-flow interfaces which describe an interface between two

different CFTs which are related by an RG-flow. On the field theory side RG-flow interfaces

were discussed in [100, 131–135] and examples of holographic RG-flow interface solutions

are [1, 2, 101, 102]. The goal of this paper is to find Janus and RG-flow solutions in one

of the minimal theories in three dimensions, namely N = 2, d = 3 gauged supergravity, in

order to have a set of simple (numerical) solutions for which holographic observables can

be calculated. The ones we focus on in this paper are the interface entropy ln(gA) for an

entangling surface which is symmetric about the interface, the effective central charge ceff

associated with the entanglement entropy where the entangling surface ends at the interface

and the reflection coefficient cLR for the scattering of stress tensor modes off the interface. We

use the solutions to test bounds and relations between the latter two quantities which have

been investigated recently [136–138]. The structure of this note is as follows: In section 4.1

we review the N = 2, d = 3 gauged supergravity for which we will construct Janus and RG-

flow solutions. In section 4.2, we set up the equations of motion for an AdS2 slicing ansatz

and generate families of numerical solutions both for Janus solutions which have the same

CFT on both sides of the interface and RG-flow interfaces between two different CFTs. In

section 4.3 we briefly review the holographic observables we calculate and plot the results for

some example solutions. While the results for the minimal N = 2, d = 3 gauged supergravity

are numerical, there exists a solution of N = 8, d = 3 gauged supergravity found previously

by one of the authors in [112] which is exact and preserves half the supersymmetries. In

section 4.4 we calculate the holographic observables and observe that the relation between

ceff and cLR, which was pointed out to hold for the ten dimensional supersymmetric Janus
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solutions in [138] also hold for the solutions constructed in this paper. We close the note

with a discussion of the results and some future research directions in section 4.5.

4.1 N = 2, d = 3 gauged supergravity

In this note we will use a minimal form of N = 2, d = 3 gauged supergravity where the

bosonic sector is given by three dimensional gravity, a complex scalar and a Chern-Simons

U(1) gauge field. We will set the fermionic degrees of freedom to vanish and use the fermionic

supersymmetry variations to test whether supersymmetries are preserved by the solutions.

The action was constructed in [139] and we will follow the conventions of [140, 141]. The

Lagrangian is given by

S =
1

4

∫
d3x

√
g
(
R− 4|DµΦ|2

a2(1− |Φ|2)2
− V (Φ)

)
+

1

4ma4

∫
A ∧ dA (4.1)

The covariant derivative coupling the complex scalar and the U(1) gauge field is given by

DµΦ = ∂µΦ + iAµΦ (4.2)

The scalar potential can be most conveniently expressed using the following parameterization

C =
1 + |Φ|2

1− |Φ|2
, S =

2Φ

1− |Φ|2
(4.3)

and is given by

V = 8m2C2(2a2|S|2 − C2) (4.4)

The Chern-Simons gauge field couples to the phase of the complex scalar field Φ

Φ = |Φ|eiθ (4.5)

It is convenient to introduce one more change of variable for the absolute value of the scalar

field

|Φ| = tanh

(
aϕ

2
√
2

)
(4.6)
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which implies

C = cosh

(
aϕ√
2

)
, |S| = sinh

(
aϕ√
2

)
(4.7)

The action can then be written in terms of the fields ϕ, θ

S =
1

4

∫
d3x

√
g
(
R− 1

2
∂µϕ∂

µϕ− V (ϕ)
)

+
1

4

∫
d3x

√
g
(
− sinh2 ϕ

a2
(∂µθ + Aµ)(∂

µθ + Aµ) +
1

4ma4

∫
A ∧ dA (4.8)

In order to construct Janus and RG-flow interface solutions it is possible to set Aµ = θ = 0

consistently. The action is then given by the first line in (4.8), i.e. three dimensional gravity

minimally coupled to a real scalar field ϕ with a potential V

V (ϕ) = −8m2 cosh2

(
aϕ√
2

)[
cosh2

(
aϕ√
2

)
− 2a2 sinh2

(
aϕ√
2

)]
(4.9)

The d = 3, N = 2 supersymmetry transformation of the gravitino and dilatino for the

truncated Lagrangian takes the following form

δψµ = (∂µ +
1

4
ωab
µ γab)ε+

1

2
Wγµε

δλ =
1

2
(−γµ∂µϕ− 2

a

∂W

∂ϕ
)ε (4.10)

where the superpotential is given by

W = 2m cosh2

(
aϕ√
2

)
(4.11)

and the potential is related to the superpotential by the following relation

V = 2

(
∂W

∂ϕ

)2

− 2W 2 (4.12)

Note that m only appears as an overall multiplicative factor in the potential, we will set

m = 1
2
which leads to a unit radius AdS3 vacuum for ϕ = 0. The shape of the potential and

the number and nature of extrema depend on the parameter a, representative plots for the

three different cases are shown in figure 4.1.
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(a) V (ϕ) for a = 0.4
(b) V (ϕ) for a = 0.75 (c) V (ϕ) for a = 1.3

Figure 4.1: Example of potential V (ϕ) for three cases (a) a < 1√
2
, (b) 1√

2
< a < 1, (c) a > 1

For any value of a there is an extremum at ϕ = ϕ(1) = 0. Expanding around it allows to

read off the mass of the small fluctuation around ϕ = δϕ

V ∼ −2− 2a2(1− a2)δϕ2 + o(δϕ4) (4.13)

As mentioned before we have l
(1)
AdS = 1 Using the standard relation of the mass and conformal

dimension of the dual operator one obtains

∆
(1)
± = 1± |1− 2a2| (4.14)

which is valid for all a ∈ R. This implies that the dual operator is relevant for 0 < a < 1

and irrelevant for a > 1. For 1√
2
< a < 1, there are two additional extrema of the potential

located at

ϕ(2),(3) = ± 1√
2a

ln

(
1 + 2a

√
1− a2

2a2 − 1

)
(4.15)

Expanding ϕ = ϕ(2,3) + δϕ, gives

V = − 2a4

2a2 − 1
− 4a4(a2 − 1)

2a2 − 1
δϕ2 + o(δϕ3) (4.16)

The AdS3 vacuum has a curvature radius

l
(2,3)
AdS =

√
2a2 − 1

a2
(4.17)
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and from (4.16) we can read off the mass and determine the conformal dimension of the

operator dual to the scalar fluctuation around the extremum.

∆
(2,3)
+ = 1 +

√
1 + 8(1− a2) (4.18)

Consequently, the dual operator will always be irrelevant for the values of a where the

additional extrema and AdS vacua exist (see figure 4.2).

(a) ∆
(1)
± for a < 1 (b) ∆

(2,3)
+ for 1√

2
< a < 1

Figure 4.2: Conformal dimension of operator dual to fluctuation around extrema.

The simplicity of the minimal gauged supergravity makes the construction of analytic,

as well as numerical solutions, relatively easy. For example, Poincare sliced domain wall

solution representing RG-flows have been constructed in [140–143] and string and vortex

solutions have been constructed in [139, 144–147]. In this note, we utilize an AdS2 slicing

ansatz to find Janus and RG-flow interface solutions in this theory.

4.2 Janus and RG-interfaces

The equations of motion following from the θ = Aµ = 0 truncation of the action (4.8) are

Rµν −
1

2
gµνR =

1

2

(
∂µϕ∂νϕ− 1

2
gµν∂σϕ∂

σϕ

)
− 1

2
gµνV (ϕ)

0 =
1√
−g

∂µ
(√

−ggµν∂νϕ
)
− V ′(ϕ) (4.19)
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The ansatz for Janus and RG-flow interfaces is given by taking an AdS2 slicing of the

three dimensional metric and demanding that the scalar field ϕ only depends on the slicing

coordinate u.

ds2 = du2 + e2B(u)dx
2 − dt2

x2
, ϕ = ϕ(u) (4.20)

The equations of motion (4.19) then become a system of second order ordinary differential

equations, for B and ϕ

B′′ + 2(B′)2 + V + e−2B = 0 (4.21)

ϕ′′ + 2B′ϕ′ − ∂V

∂ϕ
= 0 (4.22)

Subject to a constraint

(B′)2 − 1

4
(ϕ′)2 + e−2B +

1

2
V = 0 (4.23)

In order to determine whether Janus or RG-flow interface solutions exist which preserve

some supersymmetry, it is sufficient to, first, consider the vanishing of gravitino variation in

the AdS2 direction

δψt = ∂tε+
1

2z
γ0

(
− γ1 +B′eBγ2 + eBW

)
ε = 0

δψz = ∂zε+
1

2z
γ1

(
B′eBγ2 + eBW

)
ε = 0 (4.24)

where the integrability (∂t∂z − ∂z∂t)ε = 0 condition produces the following equation

1− e2BW 2 + e2B(B′)2 = 0 (4.25)

Secondly, the dilatino variation

δλ = −1

2

(
γ2ϕ

′ +
2

a

∂W

∂ϕ

)
ε (4.26)
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corresponds to a projector on the susy parameter ε if

(ϕ′)2 =
4

a2

(
∂W

∂ϕ

)2

(4.27)

It is straightforward to verify that the conditions (4.25) and (4.27) are inconsistent with the

equations of motion (4.22) unless ϕ = ϕ(1) = 0 which is the supersymmetric AdS3 vacuum.

Consequently, the additional AdS3 ϕ = ϕ(2,3) which exist for 1√
2
< a < 1 as well as any AdS2

sliced flow solution for which ϕ′ is not vanishing, will break all the supersymmetries.

It is possible to rewrite the equations of motion (4.21)- (4.22) as a system of first order

equations, however as pointed out already in [98] this is not very useful in obtaining closed

form or even numerical solutions. Here we will employ the following strategy to obtain

numerical solutions of the equations of motion: The uu component of Einstein equations

(4.22) is a constraint for reparametrizations of the coordinate u. If it is imposed at a fixed u

it will be satisfied for all u for solutions of the second order equations of motion. In addition,

we look for Janus or RG-interface solutions. These all have the feature that the warping

factor e2B has a minimum. Other solutions are possible but they will generally develop a

naked singularity or become non-physical (for example B will diverge or the signature of the

metric changes).

Consequently, we impose the initial conditions at the turning point where B′ = 0 which

we set by a translation of the coordinate u to be localized at u = 0. The constraint (4.23)

then becomes

(ϕ′)2 − 2V − 4e−2B
∣∣
u=0

= 0 (4.28)

and one can determine B(0) from specifying the initial conditions ϕ′(0) and ϕ(0). The

numerical solutions can then be obtained by integrating the second order equations (4.21)

and (4.22) using a shooting method in Mathematica.

We will illustrate this for the example a = 3
4
for which the potential has three extrema.

There are three types of interface solutions as illustrated for some representative initial

conditions in figure 4.3.
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(a) Janus interface with

ϕ(1) vacuum on both

sides

(b) RG-flow interface interpo-

lating between ϕ(1) and ϕ(2)

vacua

(c) RG-flow interface interpo-

lating between ϕ(3) and ϕ(2)

vacua

Figure 4.3: Examples of interface solutions for representative initial conditions

The plot (a) depicts a Janus interface between the supersymmetric vacuum ϕ(1) as u →

±∞. To obtain such a solution the initial conditions do not have to be fine-tuned, in

figure 4.4 the initial conditions leading to Janus solutions are in the yellow area. The plot

(b) depicts an RG-flow interface interpolating between the supersymmetric vacuum ϕ(1) as

u → −∞ and the vacuum ϕ(2) as u → ∞. The initial conditions have to be fine-tuned in

figure 4.4 where they correspond to the blue line. The red line in figure 4.4 corresponds to

initial conditions which lead to RG-flow interface interpolating between the supersymmetric

vacuum ϕ(3) as u → −∞ and the vacuum ϕ(1) as u → ∞. The plot (c) corresponds to

a solution that interpolates between the vacuum ϕ(3) as u → −∞ and the vacuum ϕ(2) as

u → ∞. Here both initial conditions have to be fine-tuned and in figure 4.4 this solution

corresponds to the green dot. Initial conditions outside the colored region lead to solutions

which develop a naked singularity at a finite value of u.

For values of a < 1√
2
only the supersymmetric vacuum ϕ(1) exists and the solutions are

all Janus solutions which look qualitatively similar to (a) in figure 4.3. For value a > 1 all

interface solutions develop naked singularities.
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Figure 4.4: Phase diagram for interface solutions for the a = 0.75. The diagram is extended

to the other quadrants using ϕ(0) → −ϕ(0) and ϕ′(0) → −ϕ′(0) maps.

4.3 Holographic observables

The numerical solutions obtained in the previous sections can be used to calculate holo-

graphic observables. Here we focus on a few, namely the entanglement entropy of an interval

both symmetrically about the interface [117,118] and at the interface [78,148], as well as the

transmission coefficient [82, 85,138,149].

(a) Entangling surface A symmetric about

interface I (b) Entangling surface A at interface I

Figure 4.5

Correlations functions in the background of Janus solutions have been discussed in [66,

150–152]. However these correlators are more difficult to obtain if the RG-flow solutions of

the background are known only numerically. There are other holographic observables such
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as the on-shell action and volume measures of complexity (see e.g. [153–155]) which will not

be discussed in this note.

4.3.1 Symmetric entanglement entropy

The Ryu-Takayanagi prescription [122, 156] allows to calculate the entanglement entropy

holographically, for an interval A the entanglement entropy is given by

SEE(A) =
Length[ΓA]

4GN

(4.29)

where ΓA is the geodesic in the bulk of spacetime which ends at the interval A on the

boundary. For AdS2 sliced solution describing an interface, there are two simple geometries

one can consider. Firstly, we can choose the interval to be symmetric about the interface

[117,118,148,157] and the entanglement entropy takes the following form

SA =
cL + cR

6
ln
l

ε
+ ln gA (4.30)

Here cL/R are the central charges of the CFTs on either side of the interface. For a Janus in-

terface they are equal, whereas for an RG-flow interface, they will be different. Furthermore,

2l is the length of the interval A, which is symmetric about the interface and ε is a UV cutoff

and ln(gA) is the g-factor (or interface entropy) which is a physical quantity associated with

the number of degrees of freedom localized on the interface.

To apply the Ryu-Takayanagi formula (4.29) for the AdS2 sliced metric (4.20), it was

shown in [118] that the geodesic is parameterized by choosing a fixed z = l and u ∈ [−∞,∞].

This geodesic corresponds to an entanglement interval symmetric about the interface at the

origin, i.e. A = [−l, l]. In the following, we apply the holographic calculation [118,148,157],

where details can be found. The length of the geodesic is divergent

Length[ΓA] =

∫ u∞

u−∞

du = u∞ − u−∞ (4.31)

and must be regulated by mapping the AdS2 sliced metric (4.20) in the asymptotic regions

u → ±∞ to a Fefferman-Graham coordinate and then introducing a uniform UV cutoff ε.
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For the RG-flow and Janus interface solutions obtained in section 4.2 the warp factor takes

the following form for large |u|

lim
u→+∞

B(u) =
u

LR

+ ln γR + o(
1

u
), lim

u→−∞
B(u) = − u

LL

− ln γL + o(
1

u
) (4.32)

For large u → ±∞ the AdS2 sliced metric can be mapped asymptotically to a Poincare

sliced AdS3 with radius LR/L respectively by the following coordinate change

u→ +∞ : u = LR

(
ln
x

z
− ln γR + lnLR

)
+ o(z),

u→ −∞ : u = −LL

(
ln
x

z
− ln γL + lnLL

)
+ o(z) (4.33)

Here z is the radial coordinate in the asymptotically AdS3 in Poincare coordinates and the

Fefferman-Graham UV-cutoff is z = ε. The boundary of the entangling surface is located at

x = l. Using The Brown-Henneaux formula for the central charge on the left and right sides

of the interface

cL/R
6

=
LL/R

4GN

(4.34)

it follows that the holographic entanglement entropy (4.29) takes the form (4.30) with the

g-factor given by

ln gA = −1

6

(
cR ln

γR
LR

+ cL ln
γL
LL

)
(4.35)

For the numerical Janus or RG-flow interfaces obtained in section 4.2 this can be calculated

by fitting B(u) for large |u| to (4.33) to obtain LL/R and ln
(
γL/R

)
. We illustrate this here

by presenting a plot of ln gA for the RG-flow interfaces interpolating between two distinct

vacua for initial conditions given by the red and blue curves in figure 4.4.

4.3.2 Entanglement entropy at the interface

Secondly, one can consider an entanglement interval A which ends on the defect. For simple

CFTs the entanglement entropy can be calculated using the replica trick [158, 159] and it
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Figure 4.6: Interface entropy ln(gA) for the RG-flow interfaces depending on the initial

condition ϕ(0).

takes the following form

SA =
ceff
6

ln
l

ε
(4.36)

Where ceff is an effective central charge, which depends on the details of the interface and

measures the amount of entanglement across the interface.

The entanglement entropy at the interface has been calculated holographically in [78]

where it has been shown for the AdS sliced metric (4.20) that the Ryu-Takanayagi geodesic

is along the z coordinate and u is fixed at the minimum of B(u), which was chosen to be at

u = 0 for the numerical solutions constructed in section 4.2. One obtains for the numerical

solutions of section 4.2

SA =
l

4GN

eB(0)

∫
dz

z
=

1

4GN

eB(0) log
l

ε
(4.37)

Here ε is a UV cutoff and l is the length of the interval which we take to to be very large in

order to eliminate the contribution from the other end of the interval. Hence the effective

central charge (4.36) is given by

ceff =
3

2GN

eB(0) (4.38)
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The effective central charge ceff has interesting properties such as a universal bound [137]

and a relation to the transmission coefficient discussed below for certain supersymmetric

Janus solutions [138].

4.3.3 Transmission and reflection coefficients

Another quantity is the energy reflection and transmission amplitude which describe the

flow though and reflection of energy from the CFT interface. In the CFT the transmission

amplitude can be expressed as a normalized two-point function of the stress tensors T1,2 of

the CFTs on the two sides of the interface [79, 80,160]

T =
cLR

cL + cR
=

⟨T1T2 + T̄1T̄2⟩
⟨(T1 + T̄1)(T2 + T̄2)⟩

(4.39)

where cL and cR are the central charges of the two CFTs on either side of the interface. The

reflection amplitude R is determined by unitarity R+ T = 1. A holographic expression for

cLR has been obtained in [85], by taking a continuum limit for the reflection and transmission

of energy in an array of probe branes.

cLR =
3

GN

(
1

lR
+

1

lL
+ 8πGNσ

)−1

(4.40)

Where lL,R are the AdS radius of the asymptotic AdS3 half-regions close to the boundary

on either side of the interface. The quantity σ depends on the scalar field kinetic energy, for

the action (4.8) is given by

σ =

∫ ∞

−∞
(ϕ′)2du (4.41)

and can be calculated using the numerical solution obtained in the previous section, for

both the Janus solution as well as the RG-flow interface solution.

In [137] a set of inequalities relating cLR (and hence the transmission coefficient T ) to

ceff and the central charges on either side of the interface was proposed

0 ≤ cLR ≤ ceff ≤ min(cL, cR) (4.42)
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Figure 4.7: Plot of cLR and ceff for a = 3
4
of a function of initial conditions ϕ(0), ϕ′(0).

In [137] some holographic and CFT examples were checked and it was argued that the

inequality between cLR and ceff is only becoming an equality for a completely reflective or

transmissive interface. We can use the numerical solutions in our simple supergravity model

to check and we found that the strict inequality holds for all Janus and RG-flow solutions.

We can illustrate the validity of this inequality with the plot in figure 4.7 of cLR and ceff for

a = 3
4
. Note that the point in the plot where cLR = ceff corresponds to ϕ(0) = ϕ′(0) which is

the supersymmetric AdS3 vacuum and hence corresponds to a trivial topological interface,

i.e. no interface at all.

4.4 Transmission coefficient for N = 8, d = 3 gauged supergravity

In the previous section entanglement entropy and reflection coefficients were calculated for

the non-supersymmetric Janus and RG-flow interfaces in minimal N = 2 gauged supergrav-

ity. Recently, it has been observed [138] that there is a relation of the transmission coefficient

and the entanglement entropy at the interface for a class of supersymmetric Janus solutions

constructed as AdS2 × S2 × T4 × Σ2 solutions of type IIB supergravity in [138]. In this

section we use supersymmetric Janus solutions of d = 3, N = 8 gauged supergravity which

were obtained some time ago [112] to show that the relation of these two quantities holds
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for these solutions as well.

In the following, we will follow the construction [104]. The scalar fields of d = 3, N = 8

gauged supergravity take values in a G/H = SO(8, n)/
(
SO(8) × SO(n)) coset. There are

8n independent scalar degrees of freedom. The three dimensional theory can be constructed

as a truncation of six-dimensional N = (2, 0) supergravity on AdS3 × S3 coupled to nT ≥ 1

tensor multiplets, where the number of tensor multiplets is fixed by nT = n− 3. The special

cases nT = 5 and 21 are related to compactifications of ten-dimensional type IIB on T 3 and

K3, respectively and hence are related to low energy limits of consistent string theories.

Smaller values of n can be obtained by consistent truncations, see [161] for a discussion of

consistent truncations of six-dimensional N = (1, 1) and N = (2, 0) using exceptional field

theory. The action, gauging and supersymmerty transformations were constructed in [104]

using the embedding tensor formalism. The details of the action and the construction of the

half-BPS Janus solution can be found in [112]

The Janus solution considers the simplest case with n = 1 for which there are eight coset

scalars ϕi, i = 1, 2, · · · 8. It was shown in [112] that one can further consistently truncate the

theory where only two denoted as ϕ4, ϕ5 have a nontrivial profile and all others are set to

zero. The truncated bosonic action takes the following form

S =
1

2

∫
d3x

√
−g
{
R− P I

µP
µ I − V

}
(4.43)

Where the notation Φ =
√
ϕ2
4 + ϕ2

5 is used for compactness. The kinetic energy term and

the potential for non-vanishing scalars are given by

P I
µP

µ I =
ϕ2
4 + (sinh2Φ + ϕ2

4)ϕ
2
5

Φ4
∂µϕ4∂

µϕ4 −
ϕ4
5 + (sinh2Φ + ϕ2

5)ϕ
2
4

Φ4
∂µϕ5∂

µϕ5

− 2(Φ2 − sinh2Φ)ϕ4ϕ5

Φ4
∂µϕ4∂

µϕ5

V = −
(sinh2(Φ)ϕ2

4

Φ2
+ 2
)

(4.44)

It was shown in [112] that a solution of the equations of motion which preserves half the

supersymmetries of the N = 8 gauged supergravity is given by the scalar profiles ϕ4(u), ϕ5(u)
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which are implicitly defined and depend on two real parameters p, q

|ϕ4| sinhΦ
Φ

= | sinh q| sechu

ϕ5 sinhΦ

Φ
= sinh p cosh q + cosh p sinh q tanhu (4.45)

The AdS2 sliced metric is given by

ds2 = du2 + sech2q cosh2 u
dξ2 − dt2

ξ2
(4.46)

(a) Scalar profile for ϕ4, ϕ5 for q = 3
2 , q = 1

5 (b) Warp factor B for q = 3
2 , q = 1

5

Figure 4.8: Scalar Profiles and warp factors for the half-BPS solution.

A plot of the scalars and warp factor as a function of the slicing coordinate u is presented

in figure 4.8. Note that the solution with q = 0 corresponds to the unit radius AdS3 vacuum

where the massless scalar is constant and given by ϕ5 = sinh p. The g factor for a symmetric

entanglement entropy for this solution was calculated in [112] and can easily be reproduced

using the expression given in section 4.3.1 and one obtains

ln(gA) =
c

3
ln(cosh q) (4.47)

For the entanglement interval at the interface, we can use (4.37) and the metric (4.46) to

obtain the holographic result for the effective central charge

ceff
c

= eB(0) =
1

cosh q
(4.48)
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For the transmission coefficient, the relevant quantity is the integral of dσ which for the

action (4.43) is given by (choosing units such that 8πGN = 1).

σ =

∫ ∞

−∞
du P I

uP
I
u = 2 sinh2 q (4.49)

Plugging this result in the expression (4.40) and noting that lR = lL = 1 one obtains

cLR = 2c
1

2(1 + sinh2 q)
=

c

cosh2 q
(4.50)

Hence we observe that the transmission coefficient and the effective central charge obey the

following relation

cLR
c

=
(ceff

c

)2
(4.51)

The same relation was found in [138] for the ten dimensional half BPS Janus Janus solution

of [114,118]. Note that the exact relation has a different form than the inequalities discussed

at the end of section 4.3.3, it is however easy to verify that the supersymmetric solutions

also satisfy these inequalities.

4.5 Discussion

In this paper, we used minimal d = 3, N = 2 gauge supergravity with a single scalar field

to construct solutions that represent Janus and RG-flow interface solutions. The model de-

pends on a single parameter a, for a < 1√
2
there is a single supersymmetric AdS3 vacuum and

AdS2 sliced solution are Janus interface solution. For 1√
2
< a < 1 there are two additional

non-supersymmetric vacua and depending on initial conditions there are Janus solutions as

well as fine-tuned RG-flow interface solutions that interpolate between the different vacua.

We showed that the single scalar model does not allow for interface solutions that preserve

any supersymmetry and solutions are obtained by numerical integration. We calculated holo-

graphic observables such as symmetric and interface entanglement entropy and transmission

coefficients using the numerical solutions and confirmed that the inequalities involving cLR
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and ceff proposed in [137] are satisfied for the solutions obtained in this paper. The simplicity

of the model and solutions makes it a good model to calculate other holographic observables

such as correlation functions, complexity measures or other entanglement entropy and check

whether other inequalities involving these quantities can be discovered.

For supersymmetric Janus solutions previously obtained in [112] we showed that an exact

relation between the entanglement entropy and the reflection coefficient first obtained in [138]

is satisfied. It would be interesting to find a proof of this relation for all supersymmetric

AdS3 Janus solutions, but we have not been able to find one so far.
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