UC San Diego Oceanography Program Publications

Title

Tsunami excitation of the Ross Ice Shelf, Antarctica

Permalink

https://escholarship.org/uc/item/60d9n2xq

Journal

The Journal of the Acoustical Society of America, 141(5)

ISSN 0001-4966

Authors

Gerstoft, Peter Bromirski, Peter Chen, Zhao <u>et al.</u>

Publication Date

2017-05-01

DOI

10.1121/1.4987434

Data Availability

The data associated with this publication are available upon request.

Peer reviewed

Tsunami excitation of the Ross Ice Shelf, Antarctica

The Journal of the Acoustical Society of America 141, 3526 (2017)

https://doi.org/10.1121/1.4987434

Peter Gerstoft, Peter Bromirski, Zhao Chen, Ralph A. Stephen, Doug A. Wiens, and A. Nyblade

Topics

- Flexural waves
- Seismology
- Gravity wave
- Oceanography
- Cryosphere
- Earthquakes
- Geophysical techniques

Abstract

The responses of the Ross Ice Shelf (RIS) to the September 16, 2015 8.3 Mw Chilean earthquake tsunami (>75 s period) and infragravity (IG) waves (50-300 s period) were recorded by a 34 element broadband seismic array deployed on the RIS for one year from November 2014. Tsunami and IG-generated signals travel from the RIS front as water-ice coupled flexural waves at gravity wave speeds (~70 m/s). Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of RIS, and water and ice shelf thickness/properties. Horizontal displacements are about 5 times larger than vertical, producing extensional motions that may facilitate expansion of existing fractures. Excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter (>20 cm). Because flexural waves provide year-round excitation of the RIS that likely promotes iceberg calving and thus ice shelf evolution. Understanding the ocean-ice shelf mechanical interactions is important to reduce the uncertainty in the global sea level rise.