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ABSTRACT OF THE DISSERTATION

Exponential Time Integration for Transient Analysis of Large-Scale Circuits

by

Hao Zhuang

Doctor of Philosophy in Computer Science

University of California, San Diego, 2016

Professor Chung-Kuan Cheng, Chair

Transient analysis of large-scale circuits relies on efficient numerical time inte-

gration algorithms. In this thesis, we focus on the high-order exponential integration

and the explicit formulation for solving large-scale dynamical systems of VLSI designs.

First, we demonstrate the advantages of exponential integration for the application to

linear systems. To accelerate the computation of matrix exponential and vector product,

Krylov subspace method and Arnoldi algorithm with different preconditioned matrices

are explored. Second, we integrate the exponential integration based algorithms into

a simulator for power network analysis, which is a challenging task for modern VLSI

signoff. We verify the capability of adaptive stepping with high accuracy and the model
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of distributed computation. Comparing with the traditional approach, we observe the

speedups up to 14X and 98X without the loss of accuracy by single-core and distributed

computation models, respectively. Third, we devise a novel integration framework with

the explicit formulation for nonlinear dynamical systems. This framework reduces the

number of computationally expensive matrix factorizations required by traditional in-

tegration approaches. Furthermore, we demonstrate that the Krylov subspace methods

can reduce the complexity of strongly coupled dynamical problems such as post layout

analysis.
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Chapter 1

Introduction and Research Motivation

1.1 Circuit Simulation

Circuit simulation is the standard step to verify the design of integrated circuits.

The performance of a circuit design should be verified via circuit simulation before the

fabrication processes. SPICE was the first general-purpose circuit simulator developed

by L. W. Nagel at University of California, Berkeley in the early 1970s. Since then,

SPICE-like simulation tools have become indispensable during the cycle of VLSI design.

Many Electronic Design Automation (EDA) tools rely on the circuit-level simulators,

such as logic synthesis, power and timing analysis, placement and routing. Some

semiconductor companies run SPICE-like simulation over 1 million times per week [3].

As the technology scaling down, multi-core and many-core microprocessors put billions

of transistors into a single chip. The complicated interaction among interconnects and

nano-scale transistors requires the help from circuit simulation to analyze and verify the

unpredictable electronic behavior, such as signal noise, power noise, and post-layout

effect. Therefore, the performance and effectiveness become extremely critical in the

cycle of IC design. What makes the research field of circuit simulation unique is its

1



2

multi-disciplinary nature. It is a set of concepts adopted from numerical mathematics,

circuit theory, graph theory, device modeling, and software development.

1.2 SPICE-like Simulation and Numerical Time Integra-

tion

The flow of SPICE can be described in Fig. 1.1. The input is a circuit netlist.

The device evaluation is through device models, e.g., BSIM3 [4]. After the evaluation,

the matrix is stamped with corresponding linearized resistance, capacitance, inductance,

voltage, and current sources, etc., and form the linearized system. DC analysis is applied

to obtain the initial solution for the circuit, which may contain Newton-Raphson iterations

if the system contains nonlinear devices.

Transient analysis starts with the DC solution. During the process, numerical

integration schemes are used to solve differential equations step by step until the end

of the time span specified by the netlist. In each step, the device evaluation is required

to form the corresponding linearized dynamical system. When the system is nonlinear,

Newton-Raphson iteration is usually performed for the implicit numerical integration

approach in order to get a converged solution. Besides, the convergence and error check

are used to check whether the solution is accurate enough. The step control is used to

decide the step sizes according to the numerical integration errors, e.g., local truncation

error (LTE).

Transient simulation is the key component in SPICE [3, 5–8]. As we can see in

Fig 1.1, device evaluation and numerical integration are the major components in the flow.

Device evaluation is easy to be accelerated by parallel processing, etc. However, it is

hard for the acceleration of numerical integration part. Therefore, numerical integration

algorithms usually decide the efficiency and accuracy of the simulation tool, especially
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when the circuits are large and the portion of runtime dominates the overall performance.

There has been a large amount of research to improve integration algorithms [9–14].

1
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Figure 1.1: SPICE-like time-domain simulation flow.

In circuit simulation society, researchers and engineers often resort to implicit

linear multi-step methods, such as Backward Euler, Trapezoidal, and Gear’s schemes [3].

Implicit methods have much better stability over their explicit counterparts. However,

the size of a circuit could be up to billions that makes solving a linearized matrix system

extremely challenging. For linear multi-step methods, four points are quite important to

keep in mind:

(1) Linear multi-step is formulated according to the model of Taylor expansion of
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differential equation systems.

(2) For the implicit linear multi-step method, the time step length h is restricted by

accuracy requirements. The local truncation error is in proportion to the time step

hp (p≥ 2), where p is the order of the error term [3, 5, 7, 8]. Therefore, the longer

the time step takes, the larger the error.

(3) Implicit formulation contains a linear system, of which the matrix includes the

conductance/resistance matrix G and the capacitance/inductance matrix C with

time step h. The combination is fixed for each matrix factorization during the

process of solving the linear system. For the case where C and G are not sparse,

the linear combination of C and G in implicit methods are even more complicated.

(4) Linear multi-step method is bounded by the Dahlquist barrier, i.e., the most accurate

A-stable approach cannot exceed an order of 2. Therefore, the linear multi-step

integration method is called the low order approach in this paper.

Summing up, those characteristics from traditional time integration kernels pose

limitation with the problem scaling up.

1.3 Scope of the Thesis

In this paper, we focus on the exponential time integration, which is a high-

order integration method and jumps beyond the conventional low-order linear multi-step

approaches. The exponential time integration approach offers a variety of convergence

integration formations that break the limitations of the Dahlquist stability barrier [7].

In 1978, Moler and Van Loan [15] classified the matrix exponential solvers into 19

approaches and claimed that the problem remains open. To best of our knowledge, Saad

was the first to provide theoretical foundation to solve the matrix exponential with the
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Krylov subspace approach [16], which was later termed the 20-th way in contrast to

previous 19 dubious ways by Moler and Van Loan [15]. Since then, many related works

have been published in this field of applied mathematics [17–19]. In this study, we want

to investigate the related techniques in circuit simulation. The scope of this thesis is

summarized in the following items:

• Analyzing the advantages of exponential time integration over traditional numerical

integration approaches, such as Forward Euler, Backward Euler, and Trapezoidal

method.

• Developing Krylov subspace methods for matrix exponential and vector computa-

tion for large-scale and stiff circuits.

• Presenting formulation of solving differential equations from circuit systems via

exponential integration. Investigating the performance of different integration

formulations.

• Integrating proposed exponential integrators into the linear circuit simulation

framework and applying the approaches for large-scale VLSI power network

analysis.

• Proposing an explicit integration framework for transient analysis of nonlinear

dynamical systems. Carrying out performance test for proposed exponential time

integration algorithm in large-scale nonlinear circuits.

1.4 Thesis Organization

We start in Chapter 2 by introducing the dynamical systems from circuits and

the traditional numerical integration methods for solving the corresponding differential

equation systems.
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Chapter 3 presents the exponential time integration formulation and demonstrates

its advantages over traditional low-order integration approaches through linear systems.

In order to accelerate the matrix exponential computation, Krylov subspace methods with

different preconditioned Arnoldi algorithms are exploited and compared.

In Chapter 4 we design algorithms with exponential time integration and Krylov

subspace methods for simulating of linear circuits. Besides, we apply the techniques to the

analysis of VLSI power network, which is a demanding task during modern VLSI signoff.

In this chapter, we also leverage the adaptive time control and distributed computation

framework to further accelerate the runtime of whole power network simulation process.

At the end of chapter, we verify our results via IBM power grid benchmarks and achieve

substantial speedups.

In Chapter 5, we focus on nonlinear dynamical systems. We devise a novel

framework with the explicit integration scheme for general nonlinear dynamical systems.

Thanks to the explicit formulation, we replace the traditional Newton-Raphson method

with our proposed residue checking and compensation iteration process, where we follow

Kirchoff’s Current Law (KCL) and Voltage Law (KVL) to achieve converged solutions.

Therefore, this framework reduces the number of computationally expensive matrix

factorizations required by traditional integration approaches.

Finally, in Chapter 6, we summarize our contributions and list some possible

directions for future work.



Chapter 2

Mathematical Background

This chapter briefly introduces the problem formulation and numerical integration

algorithms used in the transient analysis of circuit simulation.

2.1 Differential Equations and Linear Multi-Step Nu-

merical Integration

In order to transfer a circuit to a simulation program (SPICE), one must specify the

circuit topology and the element constitutive equations. The circuit topology represents

how the circuit elements are connected. The element constitutive equations defines the

relations among node voltages and branch currents. Circuit differential equations are

enforced by conservation laws, which are usually referred to as the Kirchhoff’s current

law (KCL) and voltage law (KVL). The circuit components, such as linear resistors,

capacitors and inductors, as well as nonlinear devices (MOSFETs), are modeled and

stamped into a matrix system via modified nodal analysis (MNA) [20]. The fundamental

circuit simulation theory starts from differential equations as follows.

7
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Given a differential equation system

dx
dt

= f (x, t),

we want to compute the approximate solution x(t) on an internal a≤ t ≤ b by numerical

integration method, i.e., linear multi-step method.

Linear multi-step (k-step) method: the integration has the form [3],

k

∑
j=0

α jx(ti+ j) = h
k

∑
j=0

β j f (ti+ j,x(ti+ j)), αk = 1, i≥ 0,

where time t j = a+ jh, 0≤ j ≤ b−a
h . The method is explicit when βk = 0, otherwise it is

implicit. When k = 1, the integration is also called a linear one-step method.

2.2 Dynamical System in Circuit Simulation

The general formulation of circuit simulation is described as follows,

dq(x(t))
dt

+ f (x(t)) = Bu(t), (2.1)

where vector x(t) ∈ Rn×1 denotes nodal voltages and branch currents and n is the length

of vector. Vector q ∈ Rn×1 and function f ∈ Rn×1 represent the charge/flux and cur-

rent/voltage terms, respectively. The derivate dq
dt represents the energy storage elements,

such as capacitors or inductors, which have time-dependent effects. Vector u(t) represents

all the external excitations at time t; Matrix B is an incident matrix that inserts those

signals to the system. If the element constitutive equations are linearized, Eq. (2.1) can
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be reduced in matrix form as

C
dx
dt

+Gx = Bu(t)+F(x), (2.2)

where F(x) is the nonlinear dynamics evaluated by device model, which puts into

the right hand side; C ∈ Rn×n results from capacitive and inductive elements (capaci-

tance/inductance matrix). Matrix G ∈ Rn×n is the conductance/resistance matrix. The

entries are given by

Ci, j =
∂qi

∂x j
,

and

Gi, j =
∂ fi

∂x j
,

where qi and fi represents i-th equation in the system of q and f ;

C =

Q 0

0 H

 , G =

 M E

−ET R

 , x =

xv

xi

 , u =

ui

uv

 ,
where Q,M ∈ Rc×c represent capacitance and conductance, respectively. Matrix E is the

incident matrix. Vector xv is the node voltage vector; xi represents the branch current; ui is

the current input; uv is the voltage input. Scalar c is the number of nodes. Therefore, the

first c equations represent the connections of nodes and are enforced by KCL. Matrices

H,R ∈ Rl×l represent inductance and resistance, respectively. Vector xi is the current

vector. Scalar l is the number of branches. The next l equations are governed by KVL.

The whole system dimension is n = c+ l.
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2.3 Conventional Numerical Integration Approaches

Starting from a linear differential system Eq. (2.3) as

C
dx
dt

=−Gx+Bu(t), (2.3)

and the initial vector x(t) at time t, we compute the solution x(t +h) with time step h.

2.3.1 Forward Euler Time Integration (FE)

Forward Euler time integration scheme starts with the approximation

x(t +h) = x(t)+h
dx
dt

∣∣∣
x=x(t)

,

which leads to

C
h

x(t +h) =
(

C
h
−G

)
x(t)+Bu(t) (2.4)

in the circuit simulation formulation.

2.3.2 Backward Euler Time Integration (BE)

Backward Euler time integration scheme starts with

x(t +h) = x(t)+h
dx
dt

∣∣∣
x=x(t+h)

.

Then,

(
C
h
+G

)
x(t +h) =

C
h

x(t)+Bu(t +h). (2.5)
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2.3.3 Trapezoidal Time Integration (TR)

Trapezoidal time integration scheme starts with

x(t +h) = x(t)+
h
2

(
dx
dt

∣∣∣
x=x(t)

+
dx
dt

∣∣∣
x=x(t+h)

)
.

We have

(
C
h
+

G
2

)
x(t +h) =

(
C
h
− G

2

)
x(t)+B

u(t)+u(t +h)
2

. (2.6)

Methods FE, BE, and TR all belong to linear multi-step method, also known as

the linear one-step method. A-stable linear multi-step methods are favored in circuit

simulation to solve time integration problems, since the numerical error is only caused

by local truncation error and would not be amplified by the instability of numerical

integration itself.

Definition 2.3.1 (A-stability). A linear multi-step method is said to be A-stable if its

region of absolute stability includes the whole left half-plane1.

The stability regions of FE, BE and TR are shown in Fig. 2.1. Method FE

has a very limited stability region, while BE covers the largest region in the complex

plane. Time step h in FE is constrained by min(|λi|−1) (λi: an eigenvalue of matrix A).

Electronic circuits have eigenvalue magnitudes spanning at least several decades, which

leads to impractically tiny time step h for simulation using FE. Circuit systems with a

wide range of eigenvalues are said to be stiff [21]. BE and TR are all A-stable and served

as baseline methods in this paper. We keep the other linear multi-step schemes out of this

1Another equivalent way to interpretation of A-stable: The numerical integration method is A-stable.
For the linear system dx/dt = Ax with time step h, the solution x(t + h) obtained by the numerical
integration approaches 0, or x(t + h)→ 0 when h→ ∞ and the real parts of all eigenvalues of A are
negative.
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Figure 2.1: Stability regions (shaded) of (a) Forward Euler (FE), (b) Backward Euler
(BE), and (c) Trapezoidal methods in the complex plane.

paper, since the numerical integration in SPICE-like tools usually use linear multi-step

methods so that they cannot exceed the second Dahlquist barrier.

Theorem 2.3.1 (the second Dahlquist barrier). There are no explicit A-stable and linear

multi-step methods. The implicit ones have order of convergence at most 2. The trape-

zoidal rule has the smallest error constant amongst the A-stable linear multistep methods

of order 2 [7][22].

Interested readers can refer to [3, 7, 8] for more details of numerical stability in

circuit simulation.

2.4 Nonlinear Dynamical Systems and Newton-Raphson

Method

For example, BE is used to approximate the system first,

q(x)−q(x(t))
h

+ f (x) = Bu(t +h). (2.7)
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For the nonlinear system, q(x) and f (x) are nonlinear functions of vector x. Newton-

Raphson method (NR) is often used to obtain a converged solution x of

F(x) =
q(x)−q(x(t))

h
+ f (x)−Bu(t +h) = 0. (2.8)

NR method can be derived by examining the first terms in a Taylor series expansion

around a guess solution x

0 = F(x∗)≈ F(x)+ J(x)(x∗− xi), (2.9)

where x∗ is the exact solution to Eq. (2.8). Matrix J(x) is the n× n Jacobian matrix

whose elements are given by

Ji, j(x) =
∂Fi(x)

∂x j
, (2.10)

where Fi represents the i-th equation in the system of F .

Given x(i) the i-th iteration process to refine the solution. Each NR iteration,

direct solver (e.g., LU decomposition) is applied to solve Eq. (2.11) until the series of

{x,x(1), · · · ,x(i),x(i+1)} are converged, which means the difference of the solution from

i-th iteration x(i) and x(i+1) is “small enough”.

J(x(i))(x(i+1)− x(i)) =−F(x(i)) (2.11)

where x(i+1) is the “improved” estimation of x∗. If F(x) and J(x) are “well-behaved”

matrices, NR will converge quadratically given a good initial guess solution. The errors
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generated by NR satisfy the condition

‖x(∗)− x(i+1)‖ ≤ κ‖x(∗)− x(i)‖2,

where κ is proportional to bounds on ‖J(x(i))−1‖ and the ratio of ‖F(x)−F(z)‖/‖x− z‖

[23]. The above process is called BENR in this thesis, which is used in Chapter 5 as the

baseline for SPICE-like nonlinear circuit simulation.

In practical circuit simulation, two challenges are likely to encounter. First, matrix

solving processes are required because of implicit scheme, time step h is embedded in

J(x) of Eq. (2.10). For example,

J(x) =
∂F(x)

∂x
=

C(x)
h

+G(x).

If the estimated local truncation error (LTE) [3] violates numerical error budget, h should

be reduced. Then new NR iterations for x∗ are re-launched with the updated h.

Second, matrix system is hard to solve. A post-layout extraction can expand a

netlist 5-10 times larger. Huge volume of non-zeros of C are introduced to describe the

parasitic effects after extraction [2, 24–26], resulting in huge computational challenges

for the capability of numerical integration algorithms [9] and model order reductions [27].

In addition, the off-diagonal terms in C and G are usually mutually exclusive in VLSI

circuits, which might bring the huge number of non-zero fill-ins after matrix factorization

[28].
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2.5 Direct Method (LU Decomposition)

In circuit simulation, solving a linear system

Ax = b

is a key component. LU decomposition method is a stable approach and widely adopted.

It is used in the Newton-Raphson iterations, and Arnoldi algorithms for Krylov subspace

in Chapters 3, 4, and 5. First, matrix A is factorized to a lower triangular matrix L and an

upper triangular matrix U , which is

A = LU.

Then, the system can be solved by forward and backward substitutions, which is expressed

as2

x =U\(L\b)

The complexity is O(n3) for dense matrix and O(n1.5) for sparse matrix. In order

to reduce the number of non-zero fill-ins generated by factorization, matrices are usually

to be reordered based on the structure [29]. However, it is still a hard problem, and

excites many researchers [28, 30–33]. In this study, we use LU decomposition as the

direct matrix solver to solve linear system.

2Follow MATLAB’s syntax.
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2.6 Summary of Conventional Approaches

• The methods listed in this section are all low order approximation of the exact

solution of differential equation system. Local truncation error also limits the time

step size in widely used implicit methods.

• Implicit method is preferred in the circuit simulation for its stability property. We

need to solve linear systems as Eq. (2.5) and Eq. (2.6).

• Due to the implicit integration scheme, Eq. (2.10) need to embed time step h in

T and the Jacobian matrix J. If SPICE-like local truncation estimation [3, 34]

violates numerical error budget, h will be reduced. Then new NR iterations for

finding x(t +h) will be re-launched with the updated h. When matrix J is large and

complicated, the matrix solver will cost huge runtime.

• Direct matrix solver is more widely used over iterative solver because of its

robustness. Therefore, matrix factorization (LU decomposition) is required when

the linear system changes.

• Due to the large amount and complicated distributions of non-zeros in C, the post-

layout or strong coupled system sometimes adds huge computational complexity,

which may extend beyond existing hardware and software capacity. This rational

is also applied to other low order linear approximation integration kernels, such as

TR, Gear’s methods.



Chapter 3

Exponential Integration, Matrix

Exponentials, and Krylov Subspace

Methods for Computing the Product of

Matrix Exponential and Vector

In this chapter, we briefly introduce the formulation of exponential integration in

the circuit simulation. We also discuss matrix exponentials and Krylov subspace methods

in order to compute the matrix exponential and vector product (MEVP). In addition, we

state the connections between exponential integrators and conventional approaches in

Chapter 2. We illustrate the accuracy advantage of exponential integrators using simple

RC and RLC circuits.

17
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3.1 Circuit Simulation via Exponential Integration

We follow the analytical solution with matrix exponentials for circuit simulation

by Chua and Lin [7]. We apply the chain rule to Eq. (2.1),

dq(x(t))
dx

· dx(t)
dt

= Bu(t)− f (x(t)). (3.1)

Assume C(x(t)) is invertible1.

dx(t)
dt

= g(x(t),u, t) =C−1(x(t))(Bu(t)− f (x(t)))

= Ax(t)+C−1(x(t))(N(x(t))+Bu(t)) , (3.2)

where

f (x(t)) = G(x(t))x(t)−N(x(t))

and N(x(t)) is a nonlinear function of x(t). Matrix A denotes the Jacobian matrix of

g(x(t),u, t) at x(t) [17, 19, 35],

A =−C−1G,

where matrices G and C are short for matrices G(x(t)) and C(x(t)), which are evaluated

at x(t).

We use Exponential Rosenbrock-Euler method [17] to compute x(t +h) with step

size h as follows,

x(t +h) = x(t)+
ehA− I

A
·g(x(t),u, t)+ ehA−hA− I

A2 · ∂g(x(t),u, t)
∂t

, (3.3)

If we only consider linear system with piecewise-linear input u(t) from [t, t +h]

1The assumption is to simplify the explanation in this section. After Sec. 3.2.2, we use invert and
rational Krylov subspace methods to compute the solution of DAE without inversion of C. Therefore, the
methods are suitable for general DAE system, i.e., Eq. (4.1) without the assumption here.
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[36–38]. We have

g(x(t),u, t) = Ax(t)+C−1Bu(t), (3.4)

and

∂g(x(t),u, t)
∂t

=C−1B
u(t +h)−u(t)

h
. (3.5)

Then, the formulation in Eq. (3.3) is simplified to Eq. (4.6).

x(t +h) =−
(

A−1b(t +h)+A−2 b(t +h)−b(t)
h

)
+

ehA
(

x(t)+A−1b(t)+A−2 b(t +h)−b(t)
h

)
, (3.6)

where b(t) =C−1Bu(t). Note that Eq. (4.6) is the exact solution of the linear dynamical

system under our given constraints.

To best of our knowledge, all of the numerical integration methods in SPICE-like

simulators are from linear multi-step scheme, which try to approximate this solution

via matrix exponential operators [7] in a low order way. To discuss the approximation

schemes in last section, we treat u(t) = 0 for simplicity, and show the source of accuracy

loss. We have the simplified homogeneous system of Eq. (4.6),

dx
dt

= Ax. (3.7)
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The solution is

x(t +h) = ehAx(t) (3.8)

=
∞

∑
k=0

hkAk

k!
x(t)

= x(t)+hAx(t)+
h2A2

2
x(t)+

h3A3

3!
x(t)+ · · ·+ hkAk

k!
x(t)+ · · · .

Method FE formulation

x(t +h) =
(

C
h

)−1(C
h
−G

)
x(t) = (I +hA)x(t) (3.9)

fits the first two terms of Eq. (3.8). Therefore, the accuracy order of FE is O(h).

Method BE formulation

x(t +h) =
(

C
h
+G

)−1 C
h

x(t) = (I−hA)−1x(t) (3.10)

also matches the first two terms by

(I−hA)−1 =
∞

∑
k=0

hkAk. (3.11)

The accuracy order of BE is also O(h).

Method TR formulation

x(t +h) =

(
C
h
+

G
2

)−1(C
h
− G

2

)
x(t)

=

(
I− hA

2

)−1(
I +

hA
2

)
x(t) (3.12)
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fits the first three terms.

(
I− hA

2

)−1(
I +

hA
2

)
=

(
I +hA+

h2A2

2
+

h3A3

4
+ · · ·

)
. (3.13)

The accuracy order of TR is O(h2).

Note that series of Eq. (3.11) and Eq. (3.13) only converge for hA of BE and

hA
2 of TR with spectral radius less than one. Besides, the mismatch terms of Eq. (3.9),

Eq. (3.10), and Eq. (3.12) against Eq. (3.8) introduce the local truncation error (LTE) to

FE, BE, and TR, respectively, which constrain the time step with respect to the region of

Taylor expansion.

Fig. 3.1 shows a test equation

dx
dt

=−x(t)

solved by method exponential integration EXPM

x(h) = e−hx(0),

analytically, as well as FE, BE, and TR with different time step h. The figure illustrates

that mismatched results of FE, BE, and TR compared to EXPM with different time step

h.

In other words, if ehA is used to compute the solution of differential equation

system directly, there is no local truncation error constraint for the time step choice.

However, the question is how matrix exponential and vector product (MEVP) can be

computed in an efficient way, since the size of A in ehAx(t) is usually above million,

making the direct computation unfeasible. In addition, Fig. 3.2 describes a “hump” effect
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Figure 3.1: A test equation dx
dt = −x(t), where x(0) = 1.5, h ∈ [0,10]. Analytical

solution is computed by EXPM x(h) = e−hx(0).

during the computation of eA [1]. Term Ak/k! of series

eA =
∞

∑
k=0

Ak

k!

may increase before the value can drop after k > max|λ(A)|. Therefore, we need high

order k to converge the series, which makes MEVP computation even more challenging.

3.2 MEVP and Krylov Subspace Methods

One efficient way among different approaches is to compute MEVP through

Krylov subspace method [1, 16]. The complexity of eAv can be reduced using Krylov
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Figure 3.2: The “hump” effect mentioned in [1].

subspace method and still maintained in a high order polynomial approximation [16]. In

this section, we first introduce the background of Krylov subspace for MEVP. Then, we

discuss so-called standard (Std) [14], invert (Inv) [39] and rational (Rat) Krylov subspace

methods [37, 38], which highly improve the runtime performance for MEVP in circuit

simulation.

Definition 3.2.1 (Krylov Subspace). Given a matrix A and a vector v, the Krylov subspace

of order m, denoted by Km(A,v), is defined as the subspace spanned by the vectors

v,Av, · · · , .Am−1v, or

Km(A,v) := span{v,Av, · · · ,Am−1v}. (3.14)

It is convenient to work with an orthonormal basis for Km := Km(A,v). Let

{vi}m−1
i=0 be an orthonormal basis for Km. Let Vm be the n×m matrix with {vi}m−1

i=0 as
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its columns. VmV>m is the projection onto Km. Let Hm be the m×m Hessenberg matrix

expressing A as an operator restricted to Km in the basis {vi}m−1
i=0 , i.e.,

Hm =V>m AVm.

We have v, Av ∈ Km, then

Av = (VmV>m )A(VmV>m )v

= Vm(V>m AVm)V>m v

= VmHmV T
m v. (3.15)

Similarly, for all i≤ m−1,

Aiv =VmH i
mV>m v,

we have p(A)v =Vm p(Hm)V T
m v, for any polynomial p of degree at most m−1 [16].

Lemma 3.2.1 (Exact Computation with Polynomials. See e.g., [16, 40]). Let Vm and Hm

be as defined above. For any polynomial p of degree at most m−1,

p(A)v =Vm p(Hm)V T
m v. (3.16)

Thus, Hm can be used to compute matrix function and vector product p(A)v for

any degree m−1 polynomial p. This lemma suggests that a candidate for computing

f (A)v approximately is via Vm f (Hm)V>m v. The metric to evaluate the result is the norm

of error, such as ‖ f (A)v−Vm f (Hm)V>m v‖ [40]. Define rm−1(x) = f (x)− pm−1(x), where
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pm−1 is any degree m−1 approximation to f (x), and using Lemma 3.2.1. Then

f (A)v−Vm f (Hm)V>m = rm−1(A)v−Vmrm−1(Hm)V>m v.

Therefore, the norm of the error vector is at most (‖rm−1(A)‖−‖rm−1(Hm)‖)‖v‖,

which is bounded by the value of rm−1 on the eigenvalues of A and Hm [40].

Lemma 3.2.2 (Approximation by Best Polynomial. See e.g., [16, 40]). Let Vm and Hm

be as defined above. Let f : R→ R be any function such that f (A) and f (Hm) are

well-defined. Then,

‖ f (A)v−Vm f (Hm)V>m v‖ (3.17)

≤ min
pm−1∈Σm−1

( max
λ∈Λ(A)

| f (λ)− pm−1(λ)|

+ max
λ∈Λ(Hm)

| f (λ)− pm−1(λ)|).

Hence, Vm f (Hm)V>m v approximates f (A)v as well as the best degree m−1 poly-

nomial that uniformly approximates f . The question that remains is how to compute Hm

and Vm for f (A)v.

3.2.1 MEVP via Standard Krylov Subspace Method (Std)

Arnoldi algorithm (Algorithm 1) is used to construct standard Krylov subspace

Eq. (3.14) [14, 16]. The steps from line 4 to 7 of Algorithm 1 form a modified Gram-

Schmidt process. The process above produces an orthonormal basis {vi}m
i=1 of the Krylov

subspace Km. If we denote the m×m upper Hessenberg matrix Hm consisting of the hi. j
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Algorithm 1: Arnoldi Algorithm
1 v1 = v/‖v‖;
2 for j = 1 : m do
3 w = Av j;
4 for i = 1 : j do
5 hi, j = w>vi;
6 w = w−hi, jvi;
7 end
8 h j+1, j = ‖w‖;
9 v j+1 =

w
h j+1, j

;

10 end

from the algorithm, we have the equation.

AVm =VmHm +hm+1,mvm+1e>m, (3.18)

where Vm is a n×m matrix, and em is the m-th unit vector with dimension m×1. Then,

MEVP f (A)v = eAv is computed via

eAv≈ βVmeHme1. (3.19)

Besides, since V>m (hA)Vm = hHm and Krylov subspaces associated with A and hA are

identical, we have

ehAv≈ βVmehHme1. (3.20)

Note that Eq. (3.20) distinguishes approximation method from linear multi-step methods,

which uses non-linear coefficients generated by eHm . Therefore, the matrix exponential

methods break away from linear multi-step methods and thus are not limited by the

Dahlquist barrier.
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The posterior residue-based error term is

‖βhm+1,mvm+1e>mehHme1‖, (3.21)

where β = ‖v‖ [41] . However, in circuit theory, we actually need to only consider the

residual between C dx
dt and −Gx, which is

C
dx
dt

+Gx,

instead of dx
dt −Ax. This leads to the residual (error) approximation

r(m,h) = ‖βhm+1,mCvm+1e>mehHme1‖ (3.22)

for our circuit simulation problem.

For the accuracy of approximation of eAv, large dimension of Krylov subspace ba-

sis is required, which not only increases the computational complexity but also consumes

huge amount of memory. The reason is that the Hessenberg matrix Hm and subspace of

standard Krylov subspace method tend to approximate the large magnitude eigenvalues

and corresponding eigenvectors of A [42]. Due to the exponential decay of higher order

terms in Taylor expansion, such components are not the crux of circuit system’s behavior

[41, 42]. Dealing with stiff circuits, therefore, needs to gather more vectors into subspace

basis and increases the size of Hm to fetch more useful components, which results in

both memory overhead and computational complexity into Krylov subspace generations

during time stepping.

To improve the efficiency, we adopt the idea from spectral transformation [41,42]

to effectively capture small magnitude eigenvalues and corresponding eigenvectors in A,

leading to a fast yet accurate MEVP computation.
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3.2.2 MEVP via Invert Krylov Subspace Method (Inv)

Instead of A, we use A−1 as our target matrix to form

Km(A−1,v) := span{v,A−1v, · · · ,A−(m−1)v}. (3.23)

Intuitively, by inverting A, the small magnitude eigenvalues become the large ones of

A−1. The resulting Hm is likely to capture these eigenvalues first. Based on Arnoldi

algorithm, the invert Krylov subspace has the relation of matrices

A−1Vm =VmHm +hm+1,mvm+1eTm. (3.24)

The matrix exponential eAv is calculated as

eAv≈ βVmehH−1
m e1. (3.25)

The residual (error) approximation [37] is

r(m,h) = ‖βhm+1,mGvm+1e>mH−1
m ehH−1

m e1‖. (3.26)

3.2.3 MEVP via Rational Krylov Subspace Method (Rat)

The shift-and-invert Krylov subspace basis [42] is designed to confine the spec-

trum of A. Then, we generate Krylov subspace via

Km((I− γA)−1,v) := span{v,(I− γA)−1v, · · · ,(I− γA)−(m−1)v}, (3.27)

where γ is a predefined parameter. With this shift, all the eigenvalues’ magnitudes are

larger than one. Then the invert limits the magnitudes smaller than one. According to
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[41, 42], the shift-and-invert basis for matrix exponential based transient simulation is

not very sensitive to γ, once it is set to around the order near time steps used in transient

simulation. The similar idea has been applied to simple power grid simulation with matrix

exponential method [36–38]. Arnoldi process constructs Vm, Hm with the relationship

(I− γA)−1Vm =VmHm +hm+1,mvm+1e>m. (3.28)

We can project the eA onto the rational Krylov subspace as follows.

eAhv≈ βVmeh I−H−1
m

γ e1. (3.29)

The residual (error) approximation is derived as

r(m,h) = ‖βhm+1,m
C+ γG

γ
vm+1e>mH−1

m eh I−H−1
m

γ e1‖. (3.30)

3.2.4 Algorithm for the Approximation of ehAv

Algorithm 2 is listed with ε being the error budget constraint. First, we explain

the inputs for different Krylov subspace basis choices,

• Std basis: X1 =C, X2 =−G, H = Hm.

• Inv basis: X1 = G, X2 =−C, H = H−1
m .

• Rat basis: X1 =C+ γG, X2 =C, H =
I−H−1

m
γ

.

Direct matrix solver (LU_Decompose) is applied before starting Algorithm 2.

[L, U ] = LU_Decompose(X1). (3.31)
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Algorithm 2: Algorithm for ehAv.
Input: v,L,U,X2,h, t,ε, where LU = X1
Output: u

1 v1 = v/‖v‖;
2 for j = 1 : m do
3 w =U\(L\(X2v j));
4 for i = 1 : j do
5 hi, j = wT vi;
6 w = w−hi, jvi;
7 end
8 h j+1, j = ‖w‖;
9 v j+1 = w/h j+1, j;

10 if r( j,h)< ε then
11 m = j;
12 break;
13 end
14 end
15 u = ‖v‖VmehHe1 ;

When dealing with singular C, Std needs the regularization process [43] to remove

the singularity of DAE. The reason is that Std needs to factorize C in Algorithm 1. This

brings extra computational overhead. Actually, it is not necessary if we can obtain

the generalized eigenvalues and corresponding eigenvectors for matrix pencil (−G,C).

Based on [44], we derive Lemma 3.2.3,

Lemma 3.2.3. Considering a homogeneous system

C
dx
dt

=−Gx

u and λ are the eigenvector and eigenvalue of matrix pencil (−G,C), then

x = etλu

is a solution of the system.
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Proof. (See e.g. [44])2 If λ and u are an eigenvalue and eigenvector of a generalized

eigenvalue problem

−Gu = λCu.

Then, x = etλu is the solution of C dx
dt =−Gx.

The process of Inv and Rat are regularization-free, because of no computation

and factorization of C−1. Instead, we factorize G for Inv, and (C+ γG) for Rat. Besides,

the invertible Hessenberg matrices contain corresponding important generalized eigenval-

ues/eigenvectors from matrix pencil (−G,C), and define the behavior of linear dynamic

system of interest.

3.3 Comparisons of Numerical Integration Approaches

In this section, we test numerical integration methods in order to illustrate the

salient features of matrix exponential based approaches.

3.3.1 Overview of the RC and RLC Mesh Circuit Benchmarks

We create an RC mesh circuit with 1600 nodes (40× 40). The entries of G

are in the interval [0.01,100]. The diagonal entries of C are set in the interval [8.5×

10−18,9.9×10−16]. The resultant matrix A=−C−1G contains eigenvalues in the interval

[−3.98×1017,−8.49×1010], which is plotted in Fig. 3.4 (a).

For RLC system, we use the RC mesh circuit in Section 3.3.2 and append a

grounded inductor L = 2 f H to 160 nodes in the mesh. The spectrum of the circuit is

plotted in Fig. 3.4 (b). We observe the conjugate pairs of complex eigenvalues due to the

unsymmetrical matrix A with inductance.
2We repeat the proof from [44] with some modifications based on our formulation
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In Section 3.3.2, we investigate the error distributions with a single time step

using numerical integration methods Std, Inv, Rat, FE, BE, and TR. We set the initial

vector x(0) with a random vector with element in the interval (0,1), whose L2-norm is

23.3 and L∞-norm is 0.999.

For Section 3.3.3, we investigate the error distributions during the whole time

span of transient simulation using numerical integration methods Std, Inv, Rat, FE, BE,

and TR. We use the RC circuit and inject an input PWL (0 0mA, 100ps 0mA, 110ps

10mA, 300ps 10mA, 310ps, 0mA)3 at an ungrounded node (3rd row and 5th column). A

fixed time step size h = 1ps is used for all the numerical integration methods.

3.3.2 Error Distributions of the Numerical Integration Approaches

with a Single Time Step

Simulation of RC Interconnect System

Fig. 3.5 shows the error vs. step h in log scale for the methods of FE, BE, TR

and MEVP via (a) rational (Rat), (b) standard (Std) and invert (Inv) Krylov subspace

methods. For Rat, we set γ = h/2 in Eq. (3.27). The metric is formulated as

||x(h)− ehAx(0)||∞,

where we use ehAx(0) the exact analytical solution as reference, and x(h) is the solution

computed by numerical integration methods that starts from x(0) the initial vector.

In Fig. 3.5(a), for the case h≤ min(|λi|−1), Taylor expansion is valid for BE and

TR. Thus, the method BE has the error slope follow the 2nd order term, TR the 3rd order

term, while Rat has the error slope increase with Krylov subspace dimension m. For the

case h≥ max(|λi|−1), the solution attenuates globally. Thus, Rat error curves drop, but

3PWL input is written in the SPICE syntax
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Figure 3.3: The spectrum of −C−1G of the RC sample case in Section 3.3.2.

BE and TR error curves remain flat. For the case that h is between the two bounds, most

curves are flat. However, Rat improves as the dimension m increases. When m = 2,4 Rat

uses the same subspace as TR but achieves better accuracy. In other words, it is better off

to replace TR with Rat for this circuit5. Note that we cannot further improve FE, BE and

TR since their theoretical numerical orders have been already fixed. In Fig. 3.5(a), there

are some abnormal curves in the small time step region is due to the numerical issues,

when h is too small, and the matrix A disappear since (I− h
2A)−1→ I. Fig. 3.6 plots the

normal curves for Rat when γ = 10−8.

Fig. 3.5(b) illustrates the error trends of Std, Inv with BE and TR. As the

dimension m increases, Std error curves shift to the right and converge at the end on the

right side; and Inv has its curves shift to the left and converge at the left side. For this

circuit, we are interested in the behavior in the nano-second scale. At this time scale, Inv

converges faster than Std as dimension m increases. This summary of error trend is listed

4The number m is referred to the line 2 of Algorithm 2
5In order to achieve m = 2, we need two times of matrix solving in Algorithm 2
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Figure 3.4: The spectrum of −C−1G of the RLC sample case in Section 3.3.2.

in Table 3.1.

Simulation of RLC Interconnect System

We investigate the numerical errors of Std, Inv, Rat, FE, BE, and TR using our

RLC mesh. Fig. 3.7 shows the errors in the similar way as observed in Section 3.3.2.

However, in the flat region (min(|λi|−1)< h < max(|λi|−1)) the curves drop down slower

as the dimension m increases, comparing with the curves in Fig. 3.5.

3.3.3 Error Distribution of Different Numerical Integration Approaches

along the Simulation Time Span

Fig. 3.8 shows the simulation results of all the nodes. Fig. 3.10 (a) plots the

distribution of global errors [7] of (a) Std, (b) Inv and (c) Rat vs. FE, BE and TR. The

error of FE is extremely large due to the instability and jumps out of this figure after

several steps. In Fig. 3.10(a), for Std, we need to increase dimension m to reduce the
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Table 3.1: Matrix Exponential Based High Order Integrators using Std, Inv, and Rat.
vs. Low Order Integrators FE, BE and TR.

Method h≤min(|λi|−1) min(|λi|−1)< h < max(|λi|−1) h≥max(|λi|−1)

FE 2nd order Diverge Diverge
BE 2nd order Flat Flat
TR 3rd order Flat (worse than BE) Flat

Std (m = 2) 2nd order Flat Drop
Inv (m = 2) 1st order Flat Drop
Rat (m = 2) 1st order Flat Drop
Std (m > 2) >2nd order Curves shift to the right Drop
Inv (m > 2) 1st order Curves shift to the left Drop
Rat (m > 2) * * Drop

*: The curve of Rat depends on γ. For large γ, the curve is similar to Inv. For small γ, the curve is similar
to Std. Otherwise, the shape of curve falls between Std and Inv. Moreover, for m = 2, the curve dips at
h = 2γ. As dimension m increases, the dip point shifts to the right.

error even when the solution saturates toward steady state.

Fig. 3.10(b)(c) plot the global errors of Inv and Rat, respectively. As m increases,

Inv and Rat improve the accuracy in faster pace than Std shown in Fig. 3.10(a). Fig. 3.9,

we zoom into the time around 0.1ns of Fig. 3.10(b), where input changes from 0mA to

10mA. Inv has smaller error than BE when m≥ 2. (The error reduction of BE and TR in

the time interval [0.11ns,0.3ns] is due to the solutions decay to the steady state, when

the input becomes constant after 0.11ns.)

In Fig. 3.11, we plot the distribution of local errors [7] of (a) Std, (b) Inv, and (c)

Rat vs. FE, BE, and TR, which has the same trend with slightly smaller value than the

global error in Fig. 3.10. The possible reason that Inv and Rat with m = 31 and m = 78

have reverse trend in Fig. 3.10 and Fig. 3.11 is due to the numerical precision.
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Figure 3.6: RC circuit’s error distribution of the simulation results via different linear
integrators with the same initial vector x(0) and different time step h. Exponential
integrators use the Krylov subspace basis dimension (m = 2, 4, 6, 8, and 10) with
γ = 10−8 in Rat.

3.3.4 Comparisons among Different Krylov Subspace Algorithms

for MEVP Computation and Convergence

In order to observe the error distribution versus dimensions of standard, invert,

and rational Krylov subspace methods for MEVP, we reuse the RC circuit in this chapter,

which has stiffness
Re(λmin)

Re(λmax)
= 4.7×106,

where λmax =−8.49×1010 and λmin =−3.98×1017 are the maximum and minimum

eigenvalues of A = −C−1G. Fig. 3.12 shows the relative error reductions along the

increasing Krylov subspace dimension. The error reduction rate of rational Krylov

subspace is the best, while the one of standard Krylov subspace requires huge dimension
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Figure 3.7: RLC circuit’s error distribution of the simulation results via different linear
integrators with the same initial vector x(0) and different time step h. Exponential
integrators use the Krylov subspace basis dimension (m = 2, 4, 6, 8, 10) with γ = 10−8

in Rat.

to capture the same level of error. For example, it costs almost 10× of the size to achieve

around relative error 1% compared to invert and rational Krylov subspace methods. The

relative error is
||ehAv−βVmehHme1||

||ehAv||
,

where h = 0.4ps and γ = 10−13. The matrix A is a relatively small matrix and computed

by MATLAB expm function. The result of ehAv serves as the baseline for accuracy. The

relative error is the real relative difference compared to the analytical solution ehAv of the

ODE
dx
dt

= Ax

with an initial vector v, which is generated by MATLAB rand function.

The error reduction rate of standard Krylov subspace is the worst, while the
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Figure 3.12: The relative error vs. dimensional m of different Krylov subspace methods.

rational Krylov subspace is the best. It is the reason that we prefer rational Krylov

subspace. The relative errors of BE, TR and FE are 0.0594, 0.4628, and 2.0701×104,

respectively. The large error of FE is due to the instability issue of its low order explicit

time integration scheme. In Fig. 3.12, when m = 3, standard, invert and rational Krylov

subspace methods have 0.8465, 0.0175, and 0.0065, respectively. It illustrates the power

of matrix exponential method. Our proposed methods are all stable and can achieve

improved error numbers when m increases.

In order to observe the different stiffness effects on Krylov subspace methods,

we change the entries in C and G to make the different stiffness value 4.7×1010. Fig.

3.13 illustrates the stable reduction rate of rational method. The stiffness degrades the

performance of standard Krylov subspace method. Both invert and rational Krylov

subspace methods are good candidates for stiff circuit system.
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Figure 3.13: The relative error vs. dimension m of different Krylov subspace methods
with two stiffness numbers.

Regarding the relative error distributions vs. time step h and dimension m, Fig.

3.14, Fig. 3.15, and Fig. 3.16 are computed by standard, invert, and rational Krylov

subspaces (γ = 5× 10−13), respectively. Fig. 3.14 shows that the errors generated by

standard Krylov subspace method has flat region with high error values in time-step range

of interests. The very small time step range has small error values. Compared to Fig.

3.14, invert (Fig. 3.15) and rational (Fig. 3.16) Krylov subspace methods reduce errors

quickly for large h. The explanation is that a relatively small portion of the eigenvalues

and corresponding invariant subspaces determines the final result (vector) when time step

h is larger [42], which are efficiently captured by invert and rational Krylov subspace

methods.

The error of rational Krylov subspace is relatively insensitive to γ when it is

selected between the time-step range of interests (Fig. 3.17). Above all, rational Krylov



44

0

m
50

100
10

-10
10

-15

h

10
-20

10
-5

10
-20

10
-15

10
-10

10
0

R
e

la
ti
v
e

 E
rr

o
r

Figure 3.14: The error of MEVP via standard Krylov Subspace: ||e
hAv−βVmehHm ||
||ehAv|| vs. h

and the dimension of subspace (m). This method approximates the solution well in
extremely small h, since it captures the important eigenvalues and eigenvectors of A at
that region.

and invert Krylov subspace methods have much better performance than standard version.

When we deal with stiff cases, standard Krylov subspace is not a feasible choice due to

the large dimension m of Krylov subspace, which causes huge memory consumption and

poor runtime performance.

3.4 Summary

In this section, we demonstrate the numerical performance of the matrix expo-

nential based integrators. Krylov methods for MEVP can alter their orders to improve

accuracy, which is not possible for traditional linear multi-step methods. In general, in
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Figure 3.15: The error of MEVP via invert Krylov Subspace: ||e
hAv−βVmehH−1

m ||
||ehAv|| vs. time

step h and dimension of invert Krylov subspace basis (m).

a stiff system, simulation can have time step h much larger than the feasible range of

Taylor expansion. Traditional linear multi-step approach relies on the marching in time

to drive the errors down, while matrix exponential approach can pull down the error by

increasing the dimension of the Krylov subspace. For transient analysis, the eigenvalues

of small real magnitude are wanted to describe the dynamic behavior. Therefore, for the

Krylov variants, invert (Inv) and rational (Rat) Krylov methods are good choices.

More importantly, exponential based integration schemes with Krylov subspaces

have three distinguished features:

(1) For invert and rational Krylov subspace methods, the larger is time step, the smaller

errors we will have. This phenomenon is consistent with the result of van den

Eshof and Hochbruck in [42].
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Figure 3.16: The error of MEVP via rational Krylov subspace: ||e
hAv−βVmeh I−H−1

m
γ e1||

||ehAv|| ,

where γ = 5×10−13, vs. time step h and dimension of subspace (m).

(2) Invert Krylov subspace method can avoid the factorization of matrix C, so that it

can solve the post-layout simulation when the capacitance/inductance matrix C is

complicated (relatively denser than pre-layout, or strong coupled systems), while

the complexities by standard methods may increase dramatically.

(3) The explicit formulation is stable by matrix exponential operators and Krylov

subspace methods. Thus, for nonlinear system, we can skip the procedures needed

in implicit method such as NR iteration.

Chapter 3, in part, is a reprint of the material as it appears in “From Circuit

Theory, Simulation to SPICEDiego: A Matrix Exponential Approach for Time Domain

Analysis of Large Scale Circuits” by Hao Zhuang, Xinyuan Wang, Quan Chen, Pengwen

Chen, and Chung-Kuan Cheng in IEEE Circuits and Systems Magazine. The chapter
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Figure 3.17: The error of MEVP via rational Krylov Subspace ||e
hAv−βVmeh I−H−1
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where h = 4ps.

also contains the content from ‘Simulation Algorithms with Exponential Integration

for Time-Domain Analysis of Large-Scale Power Delivery Networks” by Hao Zhuang,

Wenjian Yu, Shih-Hung Weng, Ilgweon Kang, Jeng-Hau Lin, Xiang Zhang, Ryan Coutts,

and Chung-Kuan Cheng in IEEE Transactions on Computer-Aided Design of Integrated

Circuit and Systems. The thesis author was the primary investigator and author of the

papers.



Chapter 4

Exponential Integration for Linear

Dynamical Systems

In this chapter, we apply the proposed exponential integration into a linear circuit

simulation framework for large-scale power network simulation, which is a very practical

but challenging task during VLSI signoff. First, we summarize the motivation of this

application, the problem formulation, and the conventional approaches in this area.

Second, we propose the simulation framework with exponential integration and different

Krylov subspace approaches. Third, a distributed computation model is also demonstrated

in this chapter. In numerical results, IBM power grid benchmarks are used to test the

performance of our approaches.

4.1 Motivation

The linear circuit simulation plays an important role in transient analysis of

large scale circuits. A typical example is the power network simulation. VLSI design

verification relies heavily on the analysis of power delivery network (PDN) to estimate

48
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power supply noises [45–52]. The performance of power delivery network highly impacts

on the quality of global, detailed and mixed-size placement [53–55], clock tree synthesis

[56], global and detailed routing [57], as well as timing [58] and power optimization.

Lowering supply voltages, increasing current densities as well as tight design margins

demand more accurate large-scale PDN simulation. Advanced technologies [59, 60],

three dimensional (3D) IC structures [61, 62], and increasing complexities of system

designs all make VLSI PDNs extremely huge and the simulation tasks time-consuming

and computationally challenging. Due to the enormous size of modern designs and

long simulation runtime of many cycles, instead of general nonlinear circuit simulation

[39, 63], PDN is often modeled as a large-scale linear circuit with voltage supplies and

time-varying current sources [64, 65]. Those linear matrices are obtained by parasitic

extraction process [2, 24, 25, 48, 66]. After those processes, we need time-domain large-

scale linear circuit simulation to obtain the transient behavior of PDN with above inputs.

Traditional methods in linear circuit simulation solve differential algebra equa-

tions (DAE) numerically in explicit ways, e.g., forward Euler (FE), or implicit ways,

e.g., backward Euler (BE) and trapezoidal (TR), which are all based on low order poly-

nomial approximations for DAEs [7]. Due to the stiffness of systems, which comes

from a wide range of time constants of a circuit, the explicit methods require extremely

small time step sizes to ensure the stability. In contrast, implicit methods can handle

this problem with relatively large time steps because of their larger stability regions.

However, at each time step, these methods have to solve a linear system, which is sparse

and often ill-conditioned. Due to the requirement of a robust solution, compared to

iterative methods [67], direct methods [28] are often favored for VLSI circuit simulation,

and thus adopted by state-of-the-art power grid (PG) solvers in TAU PG simulation

contest [68–70]. Those solvers only require one matrix factorization (LU or Cholesky

factorization) at the beginning of the transient simulation. Then, at each fixed time
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step, the following transient computation requires only pairs of forward and backward

substitutions, which achieves better efficiency over adaptive stepping methods by reusing

the factorization matrix [65, 68, 70] in their implicit numerical integration framework.

However, the maximum of step size choice is limited by the smallest distance hupper

among the breakpoints [34]. Some engineering efforts are spent to break this limitation

by sacrificing the accuracy. In this study, we constraint our scope and always obey the

upper limit hupper of time step to maintain the fidelity of model, which means the fixed

time step h cannot go beyond hupper in case of missing breakpoints.

4.2 Problem Formulation of Transient Analysis of Lin-

ear Power Delivery Networks

Transient simulation of linear circuit is the foundation of modern PDN simulation.

It is formulated as DAEs via modified nodal analysis (MNA),

C
dx
dt

=−Gx+Bu(t), (4.1)

where C is the matrix for capacitive and inductive elements. G is the matrix for conduc-

tance and resistance, and B is the input selector matrix. x(t) is the vector of time-varying

node voltages and branch currents. u(t) is the vector of supply voltage and current sources.

In PDN, such current sources are often characterized as pulse or piecewise-linear inputs

[64, 65] to represent the activities under the networks. To solve Eq. (4.1) numerically,

the system is discretized with time step h and transformed to a linear algebraic system.

Given an initial condition x(0) from DC analysis or previous time step x(t) and a time

step h, x(t +h) can be obtained by traditional low order approximation methods [7].
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4.2.1 Traditional Low Order Time Integration Schemes with Fixed

Time Step

Methods BE and TR with fixed time step (FTS) h are regarded as efficient

approaches in large-scale PDN simulation, which were adopted by the top PG solvers in

2012 TAU PG simulation contest [65, 68–71].

BE-FTS

Backward Euler based time integration scheme with a fixed h Eq.(4.2) is a robust

implicit first-order method in the transient analysis of PDN.

(
C
h
+G

)
x(t +h) =

C
h

x(t)+Bu(t +h). (4.2)

TR-FTS

Trapezoidal based time integration scheme with a fixed h Eq.(4.3) is a popular

implicit second-order method in the transient analysis of PDN.

(
C
h
+

G
2

)
x(t +h) =

(
C
h
− G

2

)
x(t)+B

u(t)+u(t +h)
2

.

Take TR-FTS for example,

LUx(t +h) = (
C
h
− G

2
)x(t)+B

u(t +h)+u(t)
2

, (4.3)

where

LU =
C
h
+

G
2
.

This formulation reuses LU matrix factorization, which is the most expensive step in

the whole simulation. However, if only one h is used along the whole simulation, the
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choice is bounded by the minimum distance between breakpoints [34] among all the

input sources. In Fig. 4.1 (a), the alignment of the two inputs makes 10ps as the upper

limit for time step h. When the alignments of inputs shift by 5ps as shown in Fig. 4.1 (b),

the resulting upper limit for h is 5ps for those fixed step size based approaches. If h is

larger than the limit, it is impossible to guarantee the accuracy since we may skip pivot

points of the inputs.

10ps 

(a) 

Input 1 

Input 2 
10ps 10ps 

5ps 5ps 

(b) 

Input 1 

Input 2 

10ps 10ps 

10ps 10ps 10ps 10ps 

5ps 

Figure 4.1: Example: interleaves two input sources to create smaller transition time.
(a) Before interleaving, the input sources have smallest transition time hupper = 10ps;
(b) After interleaving, the input sources have the smallest transition time hupper = 5ps.

In summary, there are major issues in the conventional PDN solver: (1) Step size

is fixed to avoid multiple matrix factorizations, which constraints the time step choice.
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(2) The relatively small time step is used in the low order numerical integration scheme,

due to the requirement of accuracy. (3) In recent development [72], a set of step sizes

is used to adjust according to LTE prediction. The approach accelerates runtime at the

expense of pre-computed matrix factorizations for the set of h.

4.2.2 Exponential Time Integration Scheme

The solution of Eq. (4.1) can be obtained analytically [7]. For a simple illustration,

we convert Eq. (4.1) into

dx
dt

= Ax+b(t), (4.4)

when C is not singular1,

A =−C−1G , and b(t) =C−1Bu(t).

Given a solution at time t and a time step h, the solution at t +h is

x(t +h) = ehAx(t)+
∫ h

0
e(h−τ)Ab(t + τ)dτ. (4.5)

Assuming that the input u(t) is a piecewise linear (PWL) function of t, we

can integrate the last term of Eq. (4.5) analytically, turning the solution with matrix

1The assumption is to simplify the explanation in this section. After Sec. 3.2.2, we use I-MATEX,
R-MATEX and DR-MATEX to compute the solution of DAE without inversion of C. Therefore, the
methods are suitable for general DAE system, i.e., Eq. (4.1) without the assumption here.
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exponential operator:

x(t +h) = −
(

A−1b(t +h)+A−2 b(t +h)−b(t)
h

)
+

+ ehA
(

x(t)+A−1b(t)+A−2 b(t +h)−b(t)
h

)
= ehA(x(t)+F(t,h))−P(t,h), (4.6)

where

F(t,h) = A−1b(t)+A−2 b(t +h)−b(t)
h

(4.7)

and

P(t,h) = A−1b(t +h)+A−2 b(t +h)−b(t)
h

. (4.8)

For the time step choice, breakpoints (also known as input transition spots (TS) [37])

are the time points where slopes of input vector change. Therefore, for Eq. (4.6), the

maximum time step starting from t is (ts− t), where ts is the smallest one in T S larger

than t. In matrix exponential based framework, the limitation of time step size is not the

local truncation error (LTE), but the activities among all input sources.

4.2.3 Matrix Exponential Based PDN Solver with Rational Krylov

Subspace Basis

Rational Krylov subspace method can use larger time step and still achieve smaller

error (Lemma 3.1 in [42]). This property leads us to utilize large stepping and parallel

computation for PDN simulation without accuracy compromise [37, 38].

Lemma 4.2.1. (Lemma 3.1 in [42]) Let µ be such that A− µI is positive semidefinite.
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Then

‖Vm f (Hm)e1− e−hAv‖ ≤ 2e−hµEm−1
m−1 (̃γ)

with γ̃ = γ

h(1+γµ) . The term Em−1
m−1 (̃γ) is defined in [42].

Lemma 4.2.1 informs a trend that the error bound reduces due to the term e−hµ,

when time step h becomes large enough after a certain scale (e.g., max(|λi|−1) in Fig.

3.6). Therefore, we can use a large step size and obtain accurate enough solution. With

the capability of large time stepping, we can choose any time point t +h ∈ [t, ts] (ts is

the next input break point) when the matrices and vectors of system stay constant and

share the same Krylov subspace at time point t. Based on Eq. (3.29), there is no matrix

factorization when h ≤ ts. Since the model of PDN is a linear dynamic system, we

can reuse Krylov subspace as long as there are no input breakpoints encountered. The

computation formulation based on Eq. (4.6) and Krylov subspace is

x(t +h) = ‖v‖VmehHme1−P(t,h). (4.9)

Furthermore, if we fix the value of γ, we can reuse the matrices by one factorization

process as TR-FTS for the whole transient simulation, and also utilize adaptive stepping

via rational Krylov subspace. We sketch the process in Algorithm 4.

4.3 MATEX: A Exponential Integration Based Frame-

work for Power Network Analysis

4.3.1 MATEX Circuit Solver

We incorporate matrix exponential based integration scheme with Krylov sub-

space method into our MATEX framework, which is summarized in Algorithm 4. We set
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X1 and X2 in Line 1 based on the choice of Krylov subspace method as follows,

• I-MATEX: X1 =−G, X2 =C

• R-MATEX: X1 =C+ γG, X2 =C

For linear system of PDN, the matrix factorization in line 4 is only performed

once, and the matrices L and U are reused in the while loop from line 5 to line 10. Line 8

uses Arnoldi process with corresponding inputs to construct Krylov subspace as shown

in Algorithm 3.

Algorithm 3: MATEX_Arnoldi
Input: L,U,X2,h, t,x(t),ε,P(t,h),F(t,h)
Output: x(t +h),Vm,H,v

1 v = x(t)+F(t,h);
2 v1 =

v
‖v‖ ;

3 for j = 1 : m do
4 w =U\(L\(X2v j)) ; /* a pair of forward and backward

substitutions. */
5 for i = 1 : j do
6 hi, j = wT vi;
7 w = w−hi, jvi;
8 end
9 h j+1, j = ‖w‖;

10 v j+1 =
w

h j+1, j
;

11 if r( j,h)< ε then
12 m = j;
13 break;
14 end
15 end
16 x(t +h) = ‖v‖VmehHe1−P(t,h);
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Algorithm 4: MATEX Circuit Solver
Input: C,G,B,u,ε, and time span T .
Output: The set of x from [0,T ].

1 Set X1,X2;
2 t = 0;
3 x(t) =DC_analysis;
4 [L,U ] = LU_Decompose(X1);
5 while t < T do
6 Compute maximum allowed step size h;
7 Update P(t,h),F(t,h);
8 Obtain x(t +h) by Algorithm 3 with inputs

[L,U,X2,h, t,x(t),ε,P(t,h),F(t,h)];
9 t = t +h;

10 end

4.4 DR-MATEX: A Distributed Framework of MATEX

4.4.1 Motivation

There are usually many input sources in PDNs as well as their transition activities,

which might narrow the regions for the stepping of matrix exponential based method due

to the unaligned breakpoints. In other words, the region before the next transition ts may

be shortened when there are a lot of activities from the input sources. It leads to more

chances of generating new Krylov subspace bases. We want to reduce the number of

subspace generations and improve the runtime performance.2

4.4.2 Treatment and Methodology

In matrix exponential based integration framework, we can choose any time spot

t +h ∈ [t, ts] with computed Krylov subspace basis. The solution of x(t +h) is computed

2The breakpoints also put the same constraint on TR-FTS and BE-FTS. However, their time steps are
fixed already, which refrains them from reaching this problem in the first place.
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by scaling the existing Hessenberg matrix H with the time step h as below

x(t +h) = ‖v‖VmehHe1−P(t,h). (4.10)

This is an important feature for computing the solutions at intermediate time points

without generating the Krylov subspace basis, when there is no current transition. Besides,

since the PDN is linear dynamical system, we can utilize the well-known superposition

property of linear system and distributed computing model to tackle this challenge.

To illustrate our distributed version of MATEX framework, we first define three

terms to categorize the breakpoints of input sources:

• Local Transition Spot (LT S): the set of T S at an input source to the PDN.

• Global Transition Spot (GT S): the union of LT S among all the input sources to

the PDN.

• Snapshot: a set GT S\LT S at one input source.

If we simulate the PDN with respect to all the input sources, the points in the

set of GT S are the places where generations of Krylov subspace cannot be avoided. For

example, there are three input sources in a PDN (Fig. 4.2). The input waveforms are

shown in Fig. 4.3. The first line is GT S, which is contributed by the union of LT S in input

sources #1, #2 and #3. However, we can partition the task into subtasks by simulating

each input source individually. Then, each subtask generates Krylov subspaces based

on its own LT S and keeps track of Snapshot for the later usage of summation via linear

superposition. Between two LTS points t and t +h, the Snapshot points

t +h1 < t +h2 < · · ·< t +hl ∈ (t, t +h]
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Figure 4.2: Part of a PDN model with input sources from Fig. 4.3.

can reuse the Krylov subspace generated at t. For each node, the chances of generation

of Krylov subspaces are reduced. The time periods of reusing latest Krylov subspaces

are enlarged locally and bring the runtime improvement. Besides, when subtasks are

assigned, there is no communication among the computing nodes, which leads to so-

called Embarrassingly Parallel computation model.

4.4.3 More Aggressive Tasks Decomposition

We divide the simulation task based on the alignments of input sources. More

aggressively, we can decompose the task according to the “bump” shapes of the input

sources.3 We group the input sources, which have the same

(tdelay, trise, t f all, twidth)

3IBM power grid benchmarks provide the pulse input model in SPICE format.
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Global Transition Spots (GTS)

 Local Transition Spots 

(LTS) at #1 

  Local Transition Spots 

(LTS) at #2

  Local Transition Spots 

(LTS) at  #3 

Input Source #1 

Input Source #2

Input Source #3

0
part of snapshots at LTS #1

part of snapshots at LTS #3

Figure 4.3: Illustration of input transitions. GT S: Global Transition Spots; LT S: Local
Transition Spots; Snapshots: the crossing positions by dash lines and LTS #k without
solid points.

into one set. For example, the input source #1 of Fig. 4.3 is divided to #1.1 and #1.2 in

Fig. 4.4. The input source #2 in Fig. 4.3 is divided to #2.1 and #2.2 in Fig. 4.4. Therefore,

there are four groups in Fig. 4.4, Group 1 contains LT S#1.1. Group 2 contains LT S#2.1.

Group 3 contains LT S#2.2. Group 4 contains LT S#1.2 and #3. Our proposed framework

MATEX is shown in Fig. 4.5. After pre-computing GT S and decomposing LT S based

on “bump” shape (Fig. 4.4), we group them and form LT S #1∼ #K.4

4.4.4 MATEX Scheduler in DR-MATEX

In DR-MATEX, the role of MATEX scheduler is just to send out GT S and LT S

to different MATEX slave nodes and collect final results after all the subtasks of transient

simulation are finished. The node number is based on the total number of subtasks, which
4There are alternative decomposition strategies. It is also easy to extend the work to deal with different

input waveforms. We try to keep this part as simple as possible to emphasize our framework.
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Global Transition Spots (GTS)

 Local Transition Spots 

(LTS) at #1.1 in Group 1

  Local Transition Spots 
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 Local Transition Spots 

(LTS) at #1.2 in Group 4

 Local Transition Spots 
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Figure 4.4: Grouping of “Bump” shape transitions for sub-task simulation. Proposed
exponential based method can utilize adaptive stepping in each LT S and reuse subspace
generated at the latest point in LT S.

is the group number after PDN source decomposition. Then the simulation computations

are performed in parallel. Each node has its own inputs. For example, Node#k has GT S,

LT S#k, Pk and Fk, which contain the corresponding b for node k. Scheduler does not

need to do anything during the transient simulation, since there are no communications

among nodes before the stage of “write back” (in Fig. 4.5), by when all nodes complete

their transient simulations.

Within each slave node, the circuit solver (Algorithm 5) computes transient

response with varied time steps. Solutions are obtained without re-factorizing matrix

during the computation of transient simulation. The computing nodes write back the

results and inform the MATEX scheduler after finishing their own transient simulation.
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Algorithm 5: DR-MATEX: The distributed MATEX framework using R-
MATEX at Node#k.

Input: LT S#k, GT S, Pk, Fk, error tolerance Etol , and simulation time span T .
Output: Local solution x along GT S in node k ∈ [1, · · · ,S], where S is the

number of nodes
1 t = 0, X1 =C+ γG, and X2 =C;
2 x(t) = Local_Initial_Solution;
3 [L,U ] = LU_Decompose(X1);
4 while t < T do
5 Compute maximum allowed step size h based on GT S;
6 if t ∈ LTS#k then

/* Generate Krylov subspace for the point at LT S#k and

compute x(t +h) */

7 [x(t +h),Vm,Hm,v] = MATEX_Arnoldi(L,U,X2,
h, t,x(t),ε,Pk(t,h),Fk(t,h));

8 alts = t;
9 end

10 else
/* Obtain x(t +h) at Snapshot with computed Krylov subspace

*/

11 ha = t +h−alts;
12 x(t +h) = ‖v‖VmehaHme1−Pk(t,h);
13 end
14 t = t +h;
15 end
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Figure 4.5: DR-MATEX: The distributed MATEX framework using R-MATEX circuit
solver.

4.4.5 Runtime Analysis of MATEX PDN Solver

Suppose we have the dimension of Krylov subspace basis m on average for each

time step and one pair of forward and backward substitutions consumes runtime Tbs. The

total time of serial parts is Tserial , which includes matrix factorizations, result collection,

etc. For x(t + h), the evaluation of matrix exponential with ehHm is TH , which is in

proportion to the time complexity O(m3). Besides, we need extra Te to form x(t + h),

which is proportional to O(nm2) by βVmehHme1.

Given K points of GT S, without decomposition of input sources, the runtime is

KmTbs +K(TH +Te)+Tserial. (4.11)
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After dividing the input transitions and sending to enough computing nodes, we have k

points of LT S for each node based on feature extraction and grouping (e.g., k = 4 for one

“bump” shape feature). The total computation runtime is

kmTbs +K(TH +Te)+Tserial, (4.12)

where K(TH +Te) contains the portion of computing Snapshot in DR-MATEX mode.

The speedup of DR-MATEX over single MATEX is

Speedup =
KmTbs +K(TH +Te)+Tserial

kmTbs +K(TH +Te)+Tserial
. (4.13)

For R-MATEX, we have small m. Besides, Tbs is relatively larger than (TH +Te)

in our targeted problem. Therefore, the most dominating part is the KmTbs in Eq. (4.11).

We can always decompose input source transitions, and make k smaller than K.

In contrast, suppose the traditional method with fixed step size has N steps for

the entire simulation, the runtime is

NTbs +Tserial.

Then, the speedup of distributed DR-MATEX over the traditional method is

Speedup′ =
NTbs +Tserial

kmTbs +K(TH +Te)+Tserial
. (4.14)

Note that, when the minimum distance among input source breakpoints decreases,

large time span or many cycles is required to simulate PDNs, the schemes with such

uniform step size would degrade runtime performance furthermore due to the increase of

N. In contrast, in MATEX PDN solver, K is not so sensitive to such constraints. Besides,
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k can be maintained in a small number based on the decomposition strategy. Therefore,

the speedups of our proposed methods tend to be larger when the simulation requirements

become harsher.

4.5 Numerical Results

We implement all the algorithms in MATLAB R2014b and use UMFPACK

package for LU factorization. First, we compare I-MATEX, R-MATEX and TR in order

to show our runtime improvements in single machine framework in Table 4.2. Second, we

show our distributed framework DR-MATEX achieves large speedups in Table 4.3. The

experiments are conducted on the server with Intel(R) Xeon (R) E5-2640 v3 2.60GHz

processor and 125GB memory.

4.5.1 Performance of I-MATEX and R-MATEX in Sec. 4.3.1

We compare our proposed I-MATEX and R-MATEX against the popular TR-FTS

on the IBM power grid benchmarks [64]. Among the current sources, the smallest

interval between two breakpoints is hupper = 10ps, which puts the upper limit of the

TR’s step size. All of these cases have very large numbers of input current sources.

Table 4.1 shows the details of each benchmark circuit of which size ranges from 54K up

to 3.2M. The simulation time is 10ns. From ibmpg1t to ibmpg6t, TR uses fixed step size

in 10ps. We also change the IBM power grid benchmark to make the smallest distance

among breakpoints 1ps by interleaving input sources’ breakpoints (similar as Fig. 4.1).

Therefore, the fixed step size method can only use at most 1ps. The names of those

benchmarks are ibmpg1t_new, ibmpg2t_new, ibmpg3t_new, ibmpg4t_new, ibmpg5t_new

and ibmpg6t_new.

After DC analysis in TR-FTS, we LU factorize matrix once for the later transient
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Table 4.1: Specifications of IBM power grid benchmarks.

Design #R #C #L #I #V #Nodes
ibmpg1t 41K 11K 277 11K 14K 54K
ibmpg2t 245K 37K 330 37K 330 165K
ibmpg3t 1.6M 201K 955 201K 955 1.0M
ibmpg4t 1.8M 266K 962 266K 962 1.2M
ibmpg5t 1.6M 473K 277 473K 539K 2.1M
ibmpg6t 2.4M 761K 381 761K 836K 3.2M

simulation, which only contains time stepping. Actually, multiple factorized matrices can

be deployed [10,72]. We can choose one of them during the stepping. The problem is the

memory and runtime overhead for the multiple matrix factorizations. Another point is if

large time step h′ is chosen, the standard low order scheme cannot maintain the accuracy.

Experiment is conducted on a single computing node. In Table 4.2, we record

the total simulation runtime Total(s), which includes the processes of DC and transient

simulation, but excludes the non-numerical computation before DC, e.g., netlist parsing

and matrix stamping. We also record the part of transient simulation Tran(s), excluding

DC analysis and LU decompositions. The speedup of I-MATEX is not as large as

R-MATEX, because I-MATEX with a large spectrum of A generates large dimension

m of Krylov subspace. Meanwhile, the step size is not large enough to let it fully

harvest the gain from time marching with stepping. In contrast, R-MATEX needs small

dimension numbers m of rational Krylov subspace, which ranges from 2 to 8 in those

cases. Therefore, they can benefit from large time stepping, shown as SPDPr
tr. For

ibmpg4t, R-MATEX achieves maximum speedup resulted from the relatively small

number of breakpoints in that benchmark, which is around 44 points, while the majority

of others have over 140 points.

In Table 4.2, our single mode R-MATEX achieves the average speedup 5× over

TR-FTS. Note the average speedup number of single mode R-MATEX over TR-FTS for

the original IBM benchmark (ibmpg1t∼ibmpg6t) is less than the speedup of the new test
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cases (ibmpg1t_new∼ibmpg6t_new). As we mentioned before, ibmpg1t_new∼ibmpg6t_new

have harsher input constraints, making the available step size only 1ps. Therefore,

the adaptive stepping by R-MATEX is more beneficial to the runtime performance in

ibmpg1t_new∼ibmpg6t_new than ibmpg1t∼ibmpg6t.

4.5.2 Performance of DR-MATEX in Sec. 4.4

We test our distributed DR-MATEX in the following experiments with the same

IBM power grid benchmarks. These cases have many input transitions (GT S) that limit

step sizes of R-MATEX. We divide the region before the computation of simulation. We

decompose the input sources by the approach discussed in Sec. 4.4.3 and obtain much

fewer transitions of LT S for computing nodes. The original input source numbers are

over ten thousand in the benchmarks. However, based on “bump” feature (as shown in

Fig. 4.4), we obtain a fairly small numbers for each computing node, which is shown

as Group # in Table 4.3. (Now, the fact that hundred machines to process in parallel is

quite normal [73, 74] in the industry.) We pre-compute GT S and LT S groups and assign

sub-tasks to corresponding nodes5. MATEX scheduler is only responsible for simple

superposition calculation at the end of simulation. Since the slave nodes are in charge

of all the computing procedures (Fig. 4.5) for the computation of their own transient

simulation tasks, and have no communications with others, our framework falls into the

category of Embarrassingly Parallelism model. We can easily emulate the multiple-node

environment. We simulate each group using the command “matlab -singleCompThread”

in our server. We record the runtime numbers for each process (slave nodes) and report

the maximum runtime as the total runtime “Total(s)” of DR-MATEX in Table 4.3. We

also record “pure transient simulation” as “Tran(s)”, which is the maximum runtime of

5Based on the feature of input sources available, the preprocessing is very efficient, which takes linear
time complexity to obtain GTS, LTS and separates the sources into different groups.
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the counterparts among all computing nodes.

For TR-FTS, we use h = 10ps, so there are 1,000 pairs of forward and backward

substitutions during the process of pure transient simulation for ibmpg1t∼ibmpg6t;

We use h = 1ps for ibmpg1t_new∼ibmpg6t_new. Therefore, we have 10,000 pairs of

forward and backward substitutions for stepping. In DR-MATEX, the circuit solver

uses R-MATEX with γ = 10−10, which is set to sit among the order of varied time steps

during the simulation (since Sec. 3.3.4 discusses the insensitivity of γ around the step

size of interests). TR-FTS is not distributed because it has no gain by dividing the current

source as we do for the DR-MATEX. TR-FTS cannot avoid the repeated pairs of forward

and backward substitutions. Besides, adaptive stepping for TR-FTS only degrades the

performance, since the process requires extra matrix factorizations.

In Table 4.3, our distributed mode gains up to 98× for the pure transient com-

puting. The average peak dimension m of rational Krylov subspace is 7. The memory

overhead ratio for each node (around 1.6× over TR-FTS on average) is slightly larger,

which is worthwhile with respect to the large runtime improvement. With the huge

reduction of runtime for Krylov subspace generations, the serial parts, including LU and

DC, play more dominant roles in DR-MATEX, which can be further improved using

advance matrix solvers, such as [30].

4.6 Summary

In this chapter, we propose an efficient framework MATEX for accurate PDN

time-domain simulation based on the exponential integration scheme. For the PDN

simulation, our time integration scheme can perform adaptive time stepping without

repeating matrix factorizations, which cannot be achieved by traditional methods using

implicit numerical integration with fixed time-step scheme. Compared to the commonly
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adopted framework TR with fixed time step (TR-FTS), our single mode framework

(R-MATEX) gains runtime speedup up to around 15×. We also show that the distributed

MATEX framework (DR-MATEX) leverages the superposition property of linear system

and decomposes the task based on the feature of input sources, so that we reduce chances

of Krylov subspace generations for each node. We achieve runtime improvement up to

98× speedup.

Chapter 4, in part, is a reprint of the material as it appears in “Simulation Algo-

rithms with Exponential Integration for Time-Domain Analysis of Large-Scale Power

Delivery Networks” by Hao Zhuang, Wenjian Yu, Shih-Hung Weng, Ilgweon Kang,

Jeng-Hau Lin, Xiang Zhang, Ryan Coutts, and Chung-Kuan Cheng in IEEE Transac-

tions on Computer-Aided Design of Integrated Circuit and Systems. The chapter also

contains the content from “Power Grid Simulation using Matrix Exponential Method

with Rational Krylov Subspaces” by Hao Zhuang, Shih-Hung Weng, and Chung-Kuan

Cheng in Proceedings of IEEE International Conference on ASIC 2013, and “MATEX:

A Distributed Framework for Transient Simulation of Power Distribution Networks” by

Hao Zhuang, Shih-Hung Weng, Jeng-Hau Lin, and Chung-Kuan Cheng in Proceedings

of IEEE/ACM Design Automation Conference 2014. The thesis author was the primary

investigator and author of the papers.
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Chapter 5

Exponential Integration for Nonlinear

Dynamical Systems

5.1 Motivation

Large-scale circuits with nonlinear transistors form nonlinear dynamical systems.

In the conventional implicit numerical integration for solving such systems, Newton-

Raphson (NR) iteration is applied to obtain the converged solution of the nonlinear

function at each time step (Section 2.4). The circuit simulator needs to linearize and

solve the system for each NR iteration, where direct solvers [28, 30] are usually applied

because of their robustness and ease of use. However, it is known that direct solvers, e.g.,

LU decomposition, have super-linear computational complexities and very expensive

to simulate large-scale and strongly coupled circuit systems. For instance, the cost can

approach the worst case O(n3) [75,76]. In other words, the implicit integration algorithms

are more computationally expensive per step than the explicit integration approach due

to the requirement of solving linear matrix system. The widely application of implicit

integration is because that the low order explicit scheme is numerically unstable, which

72
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uses extremely small time step size when the dynamical system is stiff [3,7]. However, the

computation from implicit formulation itself does not actually improve the accuracy of

solution, but ensure the stability [77] for the process of numerical integration. Therefore,

leveraging the explicit formulation and retaining accuracy is still a direction of the circuit

simulation research. Researchers still devise efficient algorithms that can reduce or

remove expensive LU operations or NR iterations [12, 39, 77–79] in order to scale up the

capability of circuit simulators.

In this study, we devise the framework EI to utilize explicit exponential integration

to simulate nonlinear systems. The stability is ensured by the exponential integrators.

The features of proposed method in chapter are listed as follows:

• EI removes Newton-Raphson iteration because of its explicit formulation. EI

takes only one LU decomposition per time step, while conventional methods, e.g.,

BE with NR (BENR), require at least two times of LU to verify the convergence.

Note that the reason EI contains no Newton-Raphson iteration is that it treats

dynamical system in a fully explicit way, which was also stated by Luan and

Ostermann in the work [80]. The stability of the explicit formulation is preserved by

the high-order approximation of exponential operator [16,19,35]. The convergence

of the solution is checked and refined by the compensation iteration with system

residue and the KCL/KVL condition, which is proposed in this chapter.

• EI adopts invert Krylov subspace method as the computation building block

for matrix function computation. Invert Krylov subspace improves the con-

vergence rate for matrix exponential and vector product compared to previous

nonlinear circuit simulation via matrix exponentials and standard Krylov subspace

[14]. Besides, this approach also removes the regularization process for possibly

singular matrix C [43], which is impractical for large designs. Therefore, this

building block enables the application of exponential integration for large-scale
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nonlinear circuits.

• EI has better properties in flexible time stepping and higher order accuracy.

EI does not need to repeat LU when it adjusts the length of time steps for step

and error controls. It is because the explicit formulation and (time-step) scaling-

invariant property of Krylov subspace [14, 16]. On the contrary, the low order

approximation schemes force time step embedded in the linear matrix and con-

duct matrix factorization. Once the time step is adjusted, LU decomposition is

unavoidable in order to solve the new linearized system.

• EI is suited to handle strongly coupled post-layout circuits. Invert Krylov sub-

space strategy removes capacitance/inductance matrix C from matrix factorization

processes. Building the subspace only needs to factorize G, which is much sparser

and simpler than C in the strongly coupled post-layout circuits. In contrast, con-

ventional implicit methods always require LU decomposition of the combinations

of G and C.

5.2 Exponential Integration for Nonlinear Dynamical Sys-

tems

For a generalized nonlinear differential equation system

dx
dt

= N(x, t) (5.1)

Explicit exponential integration method is applied to solve the system, which has been

investigated in [17, 39, 80]. The idea is that the vector field N(x, t) is linearized along the



75

numerical solution xk of Eq. (5.1), which leads to a semilinear problem,

dx
dt

= Jkx+u(x, t), (5.2)

where the Jacobian matrix

Jk = J(xk) =
∂N
∂x

∣∣∣
x=xk

and

u(x, t) = N(x, t)− Jkx.

Jacobian matrix Jk of u(xk, t) diminishes at the state xk.

The solution xk+1 at time tk+1 = tk +h via exponential integration is cast into

xk+1 = φ0(hJk)xk +hφ1(hJk)u(xk, tk)+h2
φ2(hJk)

∂N
∂t

∣∣∣
x=xk,t=tk

+O(h3)

= xk +hφ1(hJk)N(xk, tk)+h2
φ2(hJk)

∂N
∂t

∣∣∣
x=xk,t=tk

+O(h3) (5.3)

When s > 0, matrix function φs(hJ) follows

hJφs(hJ) = φs−1(hJ)− 1
(s−1)!

I. (5.4)

When s = 0, we have

φ0(hJ) = ehJ, (5.5)

And it is called matrix exponential function.

To transfer the above equations into the dynamical circuit system, we start from
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the following equation,

C(xk)
dx
dt

+G(xk)x = Bu(tk+1)+F(xk)− ε(xk,xk+1), (5.6)

where

ε(xk,xk+1) = (C(xk+1)−C(xk))
dx
dt

+ (G(xk+1)−G(xk))x− (F(xk+1)−F(xk)) (5.7)

is the nonlinear function , which serves as a compensation component. A corresponding

approximation theory will be discussed in Section 5.2.1.

Based on Eq. (5.3), the explicit formulation to compute xk+1 is written as

xk+1 = xk +hφ1(hJk)gk +h2
φ2(hJk)bk (5.8)

for the formulation of circuit simulation, where

Jk = J(xk) =−C(xk)
−1G(xk),

gk = g(xk,u, tk) = Jkxk +C−1(xk)(F(xk)+Bu(tk)) ,

and

bk = b(xk,u, tk) =
∂

∂t
g(xk,u, tk) =C−1(xk)B

u(tk+1)−u(tk)
h

,

where u or u(t) is a piecewise-linear input vector from the external input sources. Further-

more, the fidelity of this numerical solution needs to be checked due to the nonlinearity



77

of dynamical system.

5.2.1 Residue Checking for Nonlinear Dynamical Systems

The residue vector r(x, t) is defined as follows to check the convergence by the

KCL/KVL condition,

r(x, t) =C(x)
dx
dt

+G(x)x−F(x)−Bu(t). (5.9)

Therefore, for the numerical solution xk+1, the residue rk+1 = r(xk+1, tk+1) is

used to check the solution at time tk+1 = tk +h,

rk+1 =C(xk+1)
dx
dt

∣∣∣
x=xk+1

+G(xk+1)xk+1−F(xk+1)−Bu(tk+1), (5.10)

This residue vector rk+1 should be small enough (e.g., smaller than a threshold Err) in

order to meet KCL/KVL approximately.1

Since EI uses explicit formulation, in order to avoid the undershoot or overshoot

from the Jacobian matrix evaluated at state xk, the compensation vector εk+1 = ε(xk,xk+1)

is approximated by the following series

εk+1 :=
k

∑
i=0

ε
(i)
k+1, (5.11)

which is used to “correct” the mismatch from the direction projected by the system

G(xk),C(xk) at state xk and time tk. The system equation from Eq. (5.6) is approximated

1In this chapter, we use L∞ as the error metric, |rk+1|∞ < Err, where Err is a pre-defined threshold.
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to Eq. (5.6) by

C(xk)
dx
dt

+G(xk)x = Bu(tk+1)+F(xk)− εk+1 (5.12)

= Bu(tk+1)+F(xk)−
k

∑
i=0

ε
(i)
k+1,

The assumption of above approximation theory is that the nonlinearity u(x, t) of

Eq. (5.2) can be approximated well by the Taylor expansion series

u(x, t) = u1 + tu2 + · · ·+
t p−1

(p−1)!
up, (5.13)

where ui is i-th expansion vector for the nonlinear function u(x, t) [81]. The differential

equation system Eq. (5.1) becomes

dx
dt

= Jx+u(x, t)

= Jx+u1 + tu2 + · · ·+
t p−1

(p−1)!
up

= Jx+u1 + tu2 +O(t2) (5.14)

The solution of Eq. (5.14) is

xk+1 = φ0(tJ)xk + tφ1(tJ)u1 + t2
φ2(tJ)u2 + · · ·+ t p

φp(tJ)up

= φ0(tJ)xk + tφ1(tJ)u1 + t2
φ2(hJ)u2 +O(t3) (5.15)

The derivative is

dx
dt

∣∣∣
x=xk+1

= Jφ0(tJ)xk +φ0(tJ)u1 + tφ1(tJ)u2 + · · ·+ t p−1
φp−1(tJ)up

= Jφ0(tJ)xk +φ0(tJ)u1 + tφ1(tJ)u2 +O(t2) (5.16)
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by applying Eq. (5.4) and

d
dt
(ts+1

φs+1(tJ)) = ts
φs(tJ). (5.17)

recursively.

We use induction to prove Eq. (5.17),

Proof.

When s = 0,

d
dt
(tφ1(tJ)) =

d
dt
(t

etJ− I
tJ

) =
d
dt
(
etJ− I

J
) = etJ = φ0(tJ). (5.18)

When s > 1 ,

d
dt
(ts

φs(tJ)) = ts−1
φs−1(tJ). (5.19)

We have

d
dt
(ts+1

φs+1(tJ)) =
d
dt
(ts(tφs+1(tJ)) =

d
dt
(ts(

φs(tJ)− 1
s!

J
))

=
d
dt

tsφs(tJ)− ts 1
s!

J

=
ts−1φs−1(tJ)− ts−1 1

(s−1)!

J

= ts
φs−1(tJ)− 1

(s−1)!

tJ
= ts

φs(tJ).

Solution Eq. (5.15) and derivative Eq. (5.16) fit

dx
dt

= Jx+u(x, t).
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Proof.

Jx+u(x, t) = J(φ0(tJ)x+ tφ1(tJ)u1 + t2
φ2(tJ)u2 + · · ·+ t p

φp(tJ)up)

+ (u1 + tu2 + · · ·+
t p−1

(p−1)!
up)

= Jφ0(tJ)x+(tJφ1(tJ)+ I)u1

+ t(tJφ2(tJ)+ I)u2 + t2(tJφ3(tJ)+
I
2
)u3

+ · · ·+ t p−1(tJφp(tJ)+
I

(p−1)!
)up

= Jφ0(tJ)x+φ0(tJ)u1 + tφ1(tJ)u2 + · · ·+ t p−1
φp−1(tJ)up

=
dx
dt

From above, we can have a nice property that when we have a solution component

tsφs(tJ)us, its derivative can be computed easily via

d
dt
(ts

φs(tJ)us) = ts−1
φs−1(tJ)us.

For the compensation iteration, it is started when rk+1 in Eq. (5.10) is larger than

the error threshold Err. In this study, only the second term of Eq. (5.14) is used to model

the missing dynamics and correct the solution xk+1.2

The approximation formula is

u(x, t) = u1 +hu2 +O(h2)≈ u1 +hu2. (5.20)

2The higher order terms are with higher order φi, the efficient computation of those high order function
φi is non-trivial [82].
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where we approximate u2 in the setting of our circuit simulation formulation by

u2 =
∂

∂t

k

∑
i=0

C−1(xk)r
(i)
k+1,

Therefore, we have

ε
(i)
k+1 ≈ h2

φ2(hJk)
∂

∂t
C−1(xk)r

(i)
k+1.

where the superscript i represents i-th iteration during compensation iteration. The

solution is

xk+1 = xk +hφ1(hJk)gk +h2
φ2(hJk)bk−h2

φ2(hJk)
∂

∂t

k

∑
i=0

C−1(xk)r
(i)
k+1 (5.21)

= xk +hφ1(hJk)gk +h2
φ2(hJk)bk−

k

∑
i=0

h2
φ2(hJk)

C−1r(i)k+1

h
,

= xk +(φ0(hJk)− I)g̃k +h(φ1(hJk)− I)b̃k−h
k

∑
i=0

(φ1(hJk)− I)r̃(i)k+1,

where

g̃k = J−1
k (xk)gk

= −G−1(xk)C(xk)(Jkxk +C−1(xk)(F(xk)+Bu(tk)))

= xk−G−1(xk)(F(xk)+Bu(tk)), (5.22)

b̃k = J−1
k (xk)bk

= −G−1(xk)C(xk)C−1(xk)B
u(tk +h)−u(tk)

h

= −G−1(xk)B
u(tk +h)−u(tk)

h
, (5.23)
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and

r̃(i)k+1 = J−1
k C−1(xk)

r(i)k+1

h

= −G−1(xk)C(xk)C−1(xk)
r(i)k+1

h

= −G−1(xk)
r(i)k+1

h
. (5.24)

The above three terms are derived to avoid the inversion or factorization of the possibly

singular capacitance/inductance matrix C.

The derivative at xk+1 is computed by

dx
dt

∣∣∣
x=xk+1

= hJkφ0(hJk)g̃k +φ0(hJk)b̃k−
k

∑
i=0

φ0(hJk)r̃
(i)
k+1. (5.25)

5.2.2 Compensation Iteration for KCL/KVL

At the initial stage during the computation flow, we have

x(0)k+1 = xk +(φ0(hJk)− I)g̃k +h(φ1(hJk)− I)b̃k, (5.26)

where the superscript 0 is the solution before the compensation iterations. Since how

much offset projected by C(xk) and G(xk) is unavailable at this moment, the system

residue rk+1 = 0. After obtaining x(0)k+1, residue r(0)k+1 is available by Eq. (5.10).

If r(0)k+1 < Err, the solution is accurate enough. Otherwise, we need the compen-

sation iteration. The solution of the dynamical system can be refined through

x(i+1)
k+1 = x(i)k+1−h(φ1(hJk)− I)r̃(i)k+1 (5.27)
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And the resulting residue/compensation vector for x(i+1)
k+1 is

r(i+1)
k+1 =C(x(i+1)

k+1 )
dx
dt

∣∣∣
x=x(i+1)

k+1

+G(x(i+1)
k+1 )x(i+1)

k+1 −F(x(i+1)
k+1 )−Bu(tk+1) (5.28)

The process is repeated until r(i+1)
k+1 is small enough. However, when the iteration

number exceeds a pre-defined threshold Iter, we shrink the time step h, The reason is

that the term O(h2) in our nonlinearity approximation Eq. (5.20) actually cannot be

ignored. Intuitively, the step size reduction is one straightforward way to contain the

nonlinearities.

5.3 Invert Krylov Subspace for φ-Function

Algorithm 6 InvKrylovMatEx summarizes the way to compute the product of

matrix function φs and vector via invert Krylov subspace basis. In Line 3 of Algorithm

6, we reuse factorized matrices from LU decomposition of G to solve the linear system

−Gx = b, where b = Cv j is formed in j-th iteration. Algorithm 7 ResidueCheck is

applied in Line 10 and serves as accuracy monitor, which checks the estimated error of

the φi function and vector product by computed matrices subspace. If the condition in

Line 2 of Algorithm 7 fails, it means the residue is too large. We need to increase the

dimension of subspace in Algorithm 6 to reduce the error. Note that the implementation

of φs computation can utilize the approach designed by Al-Mohy and Higham [83].

Using invert Krylov subspace, the solution Eq (5.26) is

x(0)k+1 = xk + ||g̃k||Vm0(φ0(hH−1
m0

)− Im0)e1m0
+h||b̃k||Vm1(φ1(hH−1

m1
)− Im1)e1m1

, (5.29)

where Vmi and Hmi are generated from Algorithm 6; m0 and m1 represent different

dimensions for invert Krylov subspaces for g̃k and b̃k, respectively; Im is an m×m
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Algorithm 6: InvKrylovMatEx for φs(hJ)v function
Input: C,G,v,h,s
Output: Hm,Vm

1 v1 =
v
‖v‖ ;

2 for j = 1 : m do
3 Solve −Gw =Cv j and obtain w;
4 for i = 1 : j do
5 hi, j = w>vi;
6 w = w−hi, jvi;
7 end
8 h j+1, j = ‖w‖;
9 v j+1 =

w
h j+1, j

;

10 if Algorithm 7 ResidueCheck(v, V , H, j, G, h, s) then
11 m = j;
12 break;
13 end
14 end

Algorithm 7: ResidueCheck
Input: v, V , H, m, G, h, s
Output: True or False

1 rs = ||v|||hsGvm+1hm+1,me>mH−1
m φs(hH−1

m )e1|∞;
2 if rs > Err then
3 Return False;
4 end
5 Return True;

identity matrix.

The corresponding derivative is

dx
dt

∣∣∣
x=x(0)k+1

= h||g̃k||Vm0H−1
φ0(hH−1

m0
)e1m0

+ ||b̃k||Vm1H−1
m1

φ0(hH−1
m1

)e1m1
(5.30)

For the compensation process, we also need to build Krylov subspace for φ-

function and residue vectors. For example, from i-th to (i+1)-th iteration, the compensa-
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tion computation is

x(i+1)
k+1 = x(i)k+1−h||r̃(i)k+1||Vm(i)(φ1(hH−1

m(i))− Im(i))e1
m(i) (5.31)

where x(i)k+1 is from the solution at the last iteration. The corresponding derivative is

dx
dt

∣∣∣
x=x(i+1)

k+1

=
dx
dt

∣∣∣
x=x(i)k+1

−||r̃(i)k+1||Vm(i)(hφ0(hH−1
m(i)))e1

m(i) (5.32)

where dx
dt

∣∣∣
x=x(i)k+1

is from the last iteration.

5.4 Overall Framework

The overall framework of EI is summarized in Algorithm 8. Line 5 is the only

place we factorize Gk at each time step, where k represents the k-th step during the

simulation, so a matrix G with superscript k means the matrix at tk. The lines between

Line 12 and Line 18 are the iteration for correction process. Err is the error budget.

During the compensation iteration, the residue r(i)k+1 is computed based on the KCL/KVL

from the whole systems, which means it checks the branch current and node voltage in

order to preserve the fidelity of solution. When the residue r(i)k+1 is larger than Err but i

is smaller than Iters, we use compensation iteration to refine the solution; When r(i)k+1

is larger than Err and i is larger than Iters, we think that the nonlinearity is too strong

to converge under the constraint of KVL/KCL, so we need to shrink the time step in

order to get a more closed linearized model. The algorithm shrinks the time step by µ in

Line 19. When the iteration is small to converge, we can enlarge the time step h by α

correspondingly.3

3The parameters in this paragraph, Iters = 10, Iterssmall = 4, µ = 0.5, α = 1.2. The parameters in this
paper are chosen empirically after several trial run. The parameter tunning is beyond the scope of this
paper.
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Algorithm 8: EI: Explicit Circuit Simulation with Exponential Integration
Kernel

Input: Circuit netlist;
Output: Voltage/current solution vectors xk at k = 0, · · · ,Step for time period [0,T ]

1 Initialization phase: (a) Load the netlist; (b) Build linear matrices Cl , Gl , B; Set t = 0;k = 0;
2 x(0) = xk = DC_solution;
3 while t ≤ T do
4 Set i = 0; Derive nonlinear matrices and vectors C(xk),G(xk),F(xk), g̃k, b̃k from device

models at the state xk with linear matrices Cl and Gl ;
5 Perform LU_decompose(G(xk)) for all the following Algorithm 6 ;
6 Use Algorithm 6 InvKrylovMatEx to compute (Hm0 ,Vm0) for the component with φ0

and g̃k in Eq. (5.26);
7 Use Algorithm 6 InvKrylovMatEx to compute (Hm1 ,Vm1) for the component with φ1

and b̃k in Eq. (5.26);
8 while True do
9 Compute solution x(i)k+1 as Eq. (5.29);

10 Compute derivative dx
dt

∣∣∣
x=x(i)k+1

as Eq. (5.30);

11 Compute r(i)k+1 as Eq. (5.28);

12 while |r(i)k+1|∞ ≥ Err and i≤ Iters do
13 Use Algorithm 6 InvKrylovMatEx to compute (Hm(i) ,Vm(i)) for φ1 with

residue vector r̃(i)k+1;

14 Compute the solution x(i+1)
k+1 as Eq. (5.31);

15 Update the derivative dx
dt

∣∣∣
x=x(i+1)

k+1

as Eq. (5.32);

16 Compute the residue vector r(i+1)
k+1 as Eq. (5.28);

17 Increase the iteration number i = i+1;
18 end
19 if |r(i)k+1|∞ ≥ Err then
20 i = 0; h = µh;
21 end
22 else
23 x(t +h) = x(i)k+1; t = t +h; k = k+1;
24 if i≤ Iterssmall then
25 h = min(αh,hmax);

/* i is small, h is increased by α > 1 to accelerate the
process. hmax is set for the maximum time step in
order to maintain the waveform resolution. */

26 end
27 break; // Break the while loop.
28 end
29 end
30 end
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Note that in terms of Krylov subspace generation, invert Krylov subspace method

is suitable for the post-layout simulation with strong coupled C, because its matrix

factorization target is only matrix G. Simulation of circuits with post-layout extraction or

strong parasitics is very critical. The parasitic effects are sometimes ignored in fast circuit

analysis. The semiconductor device modeling, even in the most advanced models, a lot

of simplifications and approximations are utilized. Such approximation might lead to

discrepancy between the actual and simulated results. Post-layout analysis with detailed

capacitance extraction [2, 24, 26] is usually important to make sure the functionality of

circuits after VLSI Place-and-Route.

We use a design FreeCPU [2] as an example to show post-extraction matrices4

(Fig. 5.1). The sizes of all matrices are 11417×11417. The number nnz represents the

total number of non-zeros in the matrix. Fig. 5.1 (a) shows non-zero entries distribute

widely in the matrix extracted capacitance matrix C, which has the number nnz = 62,815.

Fig. 5.1 (b) illustrates the extracted conductance matrix G. The number nnz of non-zero

terms is 34,388. We use LU to factorize5 C, and obtain Fig. 5.1 (c), which is the

lower triangular matrix LC and (d) the upper triangular matrix UC. The number nnz are

281,233 and 281,171, respectively. Fig. 5.1 (e) shows the matrix LG and (f) the matrix

UG of LU_decompose(G). The number nnz are 23,049 and 20,711, respectively. Fig.

5.1 (g) plots the matrix LC/h+G and (h) matrix UC/h+G of LU_decompose(C/h+G).

The number nnz are 521,380 and 521,379, respectively. For those extracted matrices,

we observe that the conductance/resistance G contains less number of nnz than the

capacitance/inductance matrix C.

Another important point is the distribution of non-zeros. We notice the bandwidth

of G is much smaller than that of C based on the plot of the two matrices in Fig. 5.1 (a)

and (b). The number of nnz and distribution pattern all play important roles in matrix

4Parasitics are extracted by industrial tool Synopsys Star-RCXT.
5MATLAB2013a UMFPACK
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factorization algorithms [28]. For the factorized matrices from Fig. 5.1 (c) to 5.1 (h), we

can observe the effects of distribution and number of nnz in matrices of Fig. 5.1 (a) and

(b). Factorized LG and UG from the matrix G contains less than 10% nnz of LC/h+G, LC

and UC/h+G, UC. The larger number of nnz will increase the runtime of matrix solving via

direct solver [28] within BENR, under the same given software packages and hardware

resources.

5.5 Numerical Results

In this section, we present the numerical results to compare our proposed circuit

simulation framework EI (Exponential Integration Kernel) and conventional SPICE

integration method BENR (Backward Euler Time Integration with Newton-Raphson).

The numerical algorithms are implemented in MATLAB. Device evaluation and matrix

stamping are done in C/C++ with BSIM3 model for MOSFET. The interactions between

C/C++ and MATLAB2014a are through MATLAB Executable (MEX) external interface

with GCC 4.4.7. We perform our experiments on a Linux server with Intel(R) Xeon(R)

CPU E5-2640 v3 2.60GHz and 125 GB memory (except the cases labeled with *).

The test case specification is listed in Table. 5.1, which includes industrial cases.

All of algorithms and procedures are tested in the single thread and no JVM mode via

launching MATLAB in command line matlab − singleCompT hread −no jvm. We use

external Python script to frequently access the memory information of the corresponding

MATLAB instance and report the peak value during the time domain simulation in Table

5.2.

The results among BENR with EI should maintain the closed accuracy. In Chapter

3 we demonstrate that, in the linear system, the error is already significant by BE. In

order to make the performance more comparable and eliminate the degree of freedom
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Table 5.1: Test Case Specification

#N: the number of unknowns/the dimension of circuit matrices; #Dev.: the number
of nonlinear devices. nnzCl and nnzGl: the number of non-zero elements in linear
capacitance/inductance matrix C and conductance/resistance matrix G.

ID #N #Dev. nnzCl nnzGl

1 52 98 50 3
2 259 260 302 264
3 2826 253 8700 6286
4 8K 19K 4K 12K
5 11K 24 63K 34K
6 63K 12K 0.32M 0.18M
7 0.12M 0.12M 0.32M 0.18M
8 0.23M 0.24M 0.64M 0.36M
9 1.17M 1.2M 3.19M 1.82M

10 11.54M 0.24M 62.83M 34.40M

from degradation of numerical accuracy, we restrict the SPICE-like option constraints for

BENR, such as maximum time step in BENR for the strong dynamics region. To provide

more comprehensive information as reference, we generate the simulation results from

BENR with three sets of constraints, which under (1) the loose constraint set lcs, (2) the

medium constraint set mcs, and (3) the strict constraint set scs.

The constraint sets lead to different total step numbers during the transient sim-

ulation processes, roughly Stepmcs/ Steplcs ≈ 10 and Stepscs/Stepmcs ≈ 10. We observe

that when we use constraint set scs, the time step size is smaller (total time step number

is larger), the waveforms converge to the results obtained by EI, which is with relatively

larger time step.

In Table 5.2, we record statistics from the medium constraint mcs, i.e., #Step,

average Newton-Raphson (NR). To compare the solution differences among all test cases,

we use the peak error metric

D f p =
1

Vnom
maxt=0,··· ,K |x(t, :)− xb(t, :)|∞, (5.33)
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Figure 5.2: Accuracy reference between EI and HSPICE by industrial SRAM design
(Case ID 4).

where x is the observed nodes computed by proposed method, xb is the observed nodes

computed by corresponding BENR method; K is number of time step; x(t = 0) is the DC

solution, and Vnom is a scaling factor, which is the nominal voltage from each test case.

The purpose of this normalization is for comparisons among all the test cases.

Furthermore, to get more sense of the whole transient simulation results, we

define a statistical metric via root-mean-square error (RMSE),

D f a =
1

Vnom

√
∑t=0,··· ,K |(x(t, :)− xb(t, :)|2∞

K +1
. (5.34)

For proposed EI, we also use ma and mp to record the average and peak dimension of

Krylov subspace basis generated for one time step, which is from Line 6 to Line 29.

Regarding the runtime performance in Table 5.2, proposed EI achieves over one
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Figure 5.3: Zoom-in figure of Fig. 5.2 for the accuracy comparison between EI and
HSPICE by industrial SRAM design (Case ID 4).

hundred speedup with closed accuracy compared to BENR method with constraint scs. If

we chose lcs constraint, we observe smaller number of time step, smaller runtime number,

but worse accuracy metrics D f p and D f a. The industrial SRAM design (Case ID 4) is

used in our test cases, which has 19K MOSFETs. The extracted parasitics contribute to

4K nnz in Cl and 12K nnz in Gl of the matrices. Fig. 5.2 shows the accuracy comparison

between EI and the industrial tool HSPICE. Fig. 5.3 is the zoom-in figure of Fig. 5.2.

In terms of memory, EI has lower consumption than BENR, especially for the

cases with complicated C. For example, Case 8 has large amount nnz in matrix Cl , which

is 62.83M and larger than 32.40M nnz in Gl . The dominate memory consumption is still

from LUDecompose. Therefore, we have memory performance gain for those test cases.
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5.6 Limitations and Possible Solutions

Note that the test cases in this section have dominate eigenvalues of G−1C

closed to the input transitions. EI performs well since invert Krylov subspace is able

to capture the response of interest in efficient manner. However, when the range of

dominate eigenvalues is far away from the response time of interest, the performance of

EI degrades. It is because that the large dimension of Krylov subspace is required for

capturing the eigenvalues for the region of interest. One possible solution is to replace

the invert Krylov basis with rational Krylov basis and set the γ to the time step of interest.

5.7 Summary

In this chapter, we propose an efficient algorithmic framework (EI) for time

domain large-scale nonlinear circuit simulation using exponential integration. The

product of matrix function and vector is computed by efficient invert Krylov subspace.

The numerically error from nonlinearity is controlled by measuring the system residue

against KCL/KVL. We also devise a residue based compensation iteration to maintain

the accuracy through the refinement.

Compared to conventional methods, our new framework has several distinguished

features. By virtue of the stable explicit nature of our formulation, we remove Newton-

Raphson iterations and reduce the number of LU decomposition operations. In addition,

this approach can keep capacitance/inductance matrix C from matrix factorization. More-

over, within one time step integration, EI does not need to repeat LU decompositions

when the length of time step is adjusted for error constraint. The proposed EI method

can handle the test cases with the matrices C, which contain many parasitics. We test

the proposed EI against BENR (standard Backward Euler method with Newton-Raphson

iterations) and achieve runtime improvement.
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Chapter 5, in part, is currently being prepared for submission for publication

of the material by Hao Zhuang, Wenjian Yu, Deokseong Kim, Xinyuan Wang, and

Chung-Kuan Cheng. The thesis author was the primary investigator and author of this

material. This chapter also contains the content from “Dynamic Analysis of Power

Delivery Network with Nonlinear Components Using Matrix Exponential Method” by

Hao Zhuang, Xinan Wang, Ilgweon Kang, Jeng-Hau Lin, and Chung-Kuan Cheng in

Proceedings of IEEE International Symposium on Electromagnetic Compatibility 2015,

and “An Algorithmic Framework of Large-Scale Circuit Simulation Using Exponential

Integrators” by Hao Zhuang, Wenjian Yu, Ilgweon Kang, Xinan Wang, and Chung-Kuan

Cheng in Proceedings of IEEE/ACM Design Automation Conference 2015. The thesis

author was the primary investigator and author of the papers.



Chapter 6

Conclusions

6.1 Summary of Contributions

In this thesis, we study the exponential time integration for transient analysis of

large-scale circuits. The contributions of this study are listed as follows.

Chapter 3 presents the formulation of exponential integration. We also illustrate

the error distribution via exponential integration based approaches with standard, invert,

and rational Krylov subspace methods, and compare with traditional integration methods,

such as Forward Euler, Backward Euler, and Trapezoidal methods. The different trends

show the scope of application among those approaches.

Chapter 4 investigates the exponential based integration formulation for transient

analysis of linear circuits. We target the challenging large-scale VLSI power network

simulation problem. In numerical results, rational Krylov subspace method for the

computation of matrix and vector product can achieve 14.4X speedups over conventional

approach via trapezoidal integration with fixed time step on our benchmarks. Furthermore,

we leverage the distributed computation framework and accelerate the simulation up to

98.0X with high level of accuracy.

96
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Chapter 5 presents an explicit integration framework for nonlinear dynamical

systems. Since the nonlinear system is treated in explicit format, we remove Newton-

Raphson iteration during the whole transient analysis and greatly reduce the times of

matrix factorization. In order to control the error, we use residue checking to maintain

KCL/KVL laws numerically and control the time step when strong nonlinearity is

encountered. In our numerical results, when invert Krylov subspace can capture the

dynamics in the time step of interest, we can achieve over hundred speedup on the

test cases with strong capacitive couplings compared to BENR with closed accuracy

level. The efficiency of proposed EI on different types of circuits is worthwhile further

investigating, especially for the test case with the response time of interest far away from

dominate eigenvalues of G−1C.

6.2 Future Work and Possible Directions

Since the application of exponential integration and matrix exponentials in circuit

simulation society is still quite new, there are many aspects to be explored in the future.

• The nature of explicit formulation exposes more parallel processing opportunity

than traditional implicit based circuit simulation algorithms. Sparse matrix and

vector multiplication (SpMV) plays an important role in this framework, so that

parallel processing SpMV using advanced multi-core and many-core architectures

could be beneficial to enhance the runtime performance.

• To extend Chapter 4, we can use more advanced schedule technique and parallel

computational power to trade the runtime performance.

• For the model of power network analysis in Chapter 4, we can add the current

models with voltage-dependent sources in order to get solutions more accurate to
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actual results than the modeling part of current academic benchmarks. Based on the

new formulation, it is very interesting to see the performance gain by exponential

time integration based approaches.

• For simulation of nonlinear systems, smarter error and step size controlling schemes

are also important to further accelerate the whole simulation process.

• The high order φi computation is favored to be further investigated in order to

extend the approximation theory in Eq. (5.13). The research on high order effects

and the nonlinearity is also interesting, which might provide deeper insight for the

error and step size control in our explicit formulation.

• In Arnoldi algorithm that generates Krylov subspace, the iterative linear matrix

solver [40, 67] could be one possible solution for extremely larger dynamical

systems.

• Gather more test cases and test the application scope of the framework EI, such as

analog circuits and RF circuits. Besides, we can replace the Krylov subspace basis

of EI with rational, or standard version for more thorough comparisons.
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