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ABSTRACT OF THE DISSERTATION

Perceptual Video Quality Preservation and Enhancement

by

Qing Song

Doctor of Philosophy in Electrical Engineering
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University of California, San Diego, 2017

Professor Pamela C. Cosman, Chair
Professor Laurence B. Milstein, Co-Chair

The perceptual quality of videos has attracted much attention, because it is

hard to estimate by objective metrics, and because it is affected by many conditions.

Compression, transmission and viewing conditions all impact the perceptual quality. In

this dissertation, we aim to preserve and enhance the perceptual quality in different cases.

The impact of ambient illumination on the perceptual quality of traditional 8-

bit 2D video is first studied. Some details, especially those in dark areas of videos,

are invisible in bright ambient light, because of the reflection of ambient light and the

xvi



reduction of the sensitivity of human eyes. We analyze the display characteristics and

human visual sensitivity, and propose methods to enhance the contrast and details without

increasing the peak brightness of the display.

Another viewing condition, viewing distance, is also investigated in this disserta-

tion. A display device held farther away may have fewer details visible compared to a

device held closer. The unnoticeable details can be filtered before compression, which

can reduce the bit-rate of the video. A subjective test was conducted to demonstrate the

bit-rate saving without degrading the perceptual quality.

Besides the traditional 8-bit videos, a new form of video, high dynamic range

(HDR) videos, is studied in Chapter 4 of this dissertation. There can be banding artifacts

in the inverse tone mapped HDR videos which degrade the perceptual quality, though the

impact on the objective quality is subtle. An enhancement filter is proposed to remove

the banding artifacts and reduce compression artifacts, and at the same time, preserve

true edges and details. The parameters of the filter are determined by minimizing the

proposed perceptual distortion metric.

The perceptual quality of 3D video is explored in Chapter 5. In particular,

the stereoscopic 3D video of the 2D+depth format is studied. Transmission of such

videos through networks can be affected by packet losses. The importance of packets is

investigated by a human observer experiment. A prediction model of the importance is

developed using features such as the video type, frame type, and spatial location of the

packets.

xvii



Chapter 1

Introduction

1.1 Perceptual Quality of Video

The perceptual quality of video is affected in multiple ways as the video is

delivered to a viewer. Fig. 1.1 shows the pipeline of delivery. After the video is captured

and produced, it is compressed by a video encoder. The output bitstream is distributed by

either hard disks or networks to the viewer. The received video is displayed on the viewer

selected device under the selected viewing conditions, after the bitstream is decompressed

by a decoder. The decoder can be built in the selected device. In the following, we will

discuss how the perceptual quality of video is affected in each step, and the possible ways

to preserve and enhance the perceptual quality.

First, videos are usually compressed before distribution because of the limitation

of storage and distribution. The size of one frame of a raw 8-bit video with resolution

1920×1080 and chroma subsampling 4:2:0 (i.e., the two chroma channels are downsam-

pled by 2 in the horizontal and vertical directions) is 1920× 1080× 1.5 = 3,110,400

bytes. Therefore, the size of a 2-hour raw video of 24 frames per second is about 500

Gigabytes. After compression, the size of the video bitstream can be reduced to just

1
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Figure 1.1: Video deliver pipeline.

several Gigabytes. Compression is usually lossy to achieve low bit-rate of the output

bitstream. Lossy compression degrades the perceptual quality. A video encoder with

higher compression efficiency can provide higher quality for a given bit rate. For example,

the latest video compression standard HEVC [1] is more efficient than its predecessor

H.264 / AVC [2]. Improving the compression efficiency has been intensively investigated

for several decades.

If a video is distributed through networks, additional distortion can be caused by

corruption of video packets due to bit errors, congestion, etc. To improve the quality,

video packets can be protected by forward error correction. The impact of the video

packets on the perceptual quality of the video can be different. For example, packets

which include more motion information are usually more important, because they are

more difficult to conceal when they are lost. Packets at the center of the screen can

be more important, since they typically include more motion, and draw the viewer’s

attention. Moreover, in the recent generations of video compression standards, videos
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are compressed in I, P, and B-frames. I-frames do not use any information from other

frames. P-frames use previous I or P-frames as a reference. B-frames use both previous

and also future I, P, or B-frames as references. Errors in different types of frames have

different lengths of propagation, which affects the importance of packets. We want to

protect important packets with strong protection. How to estimate the importance of

video packets has been studied in many works, such as [3, 4, 5].

When the video is displayed after it is received by the viewer, the viewing

conditions also play a role in the perceptual quality. Videos can be displayed on various

devices under various viewing conditions: they can be watched in a dark cinema; they

can be displayed on a 55” television in a living room; they can be shown on a 10” tablet

outdoors. The perceptual quality of video is affected by display size and viewing distance,

display brightness and ambient illumination, user movement, etc.

Among the viewing conditions, ambient illumination can greatly degrade the

quality of experience. The contrast of the display is reduced by bright ambient light, and

the viewer’s eyes are less sensitive under bright ambient light. As a result, the video looks

washed out, and many details are invisible. Often, we cannot change the ambient light.

However, we can enhance the contrast and luminance of the video so that more details

can be perceived. In Chapter 2, we propose two enhancement methods that improve

the luminance and the visibility of details. One is content independent and thus can be

applied to any video for the given device and the given ambient illumination. The other

method uses simple statistics of the video content. Both methods work efficiently.

In some circumstances, some details in the videos are unnoticeable due to the

behaviors of the viewer. For example, fewer details can be noticed if the viewer is in a

moving car or working out on a running machine, compared to when the viewer is sitting

still. The movement of the viewer greatly reduces the sensitivity of his/her eyes. For

another instance, fewer details can be perceived with the increase of the viewing distance
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when a video is shown on a given device, also due to the decrease of the sensitivity of

eyes. In these cases, transmission of those invisible details would waste bits. In [6], a

perceptual pre-filter is proposed to remove the spatial oscillations in a video that are

invisible under the given viewing distance, resulting in lower complexity images which

can be compressed at a lower bit-rate without loss of perceptual quality. In Chapter 3, we

demonstrate the performance of the pre-filter by subjective tests. We study three viewing

distances, corresponding to holding a tablet in the hand, on the lap, or on a stand. The

visual quality of the compressed videos with and without the pre-filtering is compared,

and we found that substantial bit-rate can be saved without degradation of perceptual

quality.

1.2 New Formats of Video

The discussion above is mostly about traditional 8-bit 2D videos. There are

new forms of videos attracting great interest in recent years, such as 3D and high

dynamic range (HDR) videos. In addition to the aforementioned factors that affect the

perceptual quality, perceptual quality of 3D and HDR videos is influenced by their own

characteristics.

1.2.1 HDR Videos

HDR videos are represented in 12+ bit depth, i.e., 12 or more bits per color

component [7]. They provide a wider range of brightness and a larger color gamut than

the traditional 8-bit low dynamic range (LDR) videos. The pictures have higher contrast,

show more details, and look truer to life than LDR videos. However, today there is

limited content in HDR, because HDR displays are not widely spread yet, and the major

distribution of videos is mostly at 8-bit depth. If one wants to present LDR content on a
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HDR display, one has to convert the LDR content to HDR. The process is called inverse

tone mapping [8].

HDR video generated by inverse tone mapping sometimes suffers from banding

artifacts. The artifacts usually occur at smooth regions. They look annoying on a HDR

display, and degrade the perceptual quality. In Chapter 4, we design an edge-aware

selective sparse filter to generate more codewords to alleviate the banding artifacts

while preserving true edges and details. Compression artifacts, such as blocky artifacts,

can also be reduced by this filter. The filter works more efficiently than dense filters.

Some parameters of the filter are content dependent. We propose a parameter selection

mechanism which considers the smoothness and fidelity of the filtering output.

1.2.2 3D Videos

3D imagery has long been studied in the past two centuries, but 3D videos were

not widely spread until the recent decade, also due to the limitation of displays and

distribution.

3D videos are represented by two or more views. For the most widely used

stereoscopic 3D, only two views are provided to the viewer, one for each eye. The two

views are vertically aligned and horizontally slightly offset. Closer objects in the images

exhibit a relatively larger offset between the two stereo images. The offsets form the

disparity cue which gives the depth perception in the brain. Other 3D formats, such as

free viewpoint television and multiview 3D television, provide more than two views, so

that a larger scene range is presented.

From the viewpoint of compression, there is great redundancy among views.

In 2009, the first stereoscopic video compression standard, multiview video coding

(MVC), was released, which allows for efficient compression of 3D videos. One view is

encoded as an independent 2D video which is named as anchor. The other view(s) is(are)
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compressed using the anchor as a reference picture. Another 3D compression format

is 2D+depth: the anchor is the same as that in MVC, and a depth map is compressed

instead of compressing the other view(s). The depth map gives the distance between the

object and the camera. The other view(s) is(are) synthesized from the anchor and the

depth map at the decoder. This format saves more bit-rate than MVC.

If the 3D video is delivered by a network, video packet losses can degrade the

perceptual quality. In Chapter 5, we study the importance of packets of 3D videos

compressed in 2D+depth. The 2D color video is generally more important than the

depth video, since the 2D video affects both views, while the depth video only affects

the synthesized view. However, the importance of packets also depends on the frame

type, the covered area, etc. We build a prediction model of the importance with features

extracted from the video.

1.3 Subjective tests

The perceptual quality of video is difficult to estimate. Simple objective metrics,

such as peak signal to noise ratio (PSNR) and the structural similarity (SSIM) index [9],

do not represent the perceptual quality well. To evaluate the performance of our proposed

methods, we conducted subjective tests with human observers. The human observers

watched the test images / videos, and rated the quality.

There are many methods for subjective assessment, such as absolute category

rating, degradation category rating, pair comparison, etc [10, 11]. Each has pros and

cons. For example, pair comparison means the human observers compare images / videos

in pairs, and select the preferred images / videos. It is the most direct and accurate

way to compare the performances of two algorithms, but the experiment would take a

long time if more than two algorithms are compared. Absolute category rating means
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the test images / videos are rated independently on a category scale (e.g., 5-level scale:

“excellent”, “good”, “fair”, “poor”, “bad”). It requires less time than pair comparison, but

the assessment can be less accurate. In each chapter, we select the assessment method

according to the purposes.

In each experiment, a description of the procedure and the opinion scale was

given in written form. A training session was given to the human observers, which

showed the range and type of stimuli. Each experiment took no more than 1 hour. The

responses of the human observers were analyzed after the experiments.



Chapter 2

Luminance and Detail Enhancement of

Videos Adapted to Ambient

Illumination

In this chapter, we discuss the enhancement of video perceptual quality under

bright ambient light. Among the viewing conditions discussed in Chapter 1, ambient

illumination varies greatly. A typical living room is 50 lx; a bright office can be 500 lx;

outdoor under shade can be 5000 lx; an overcast day can be 10,000 lx; and under direct

sunlight, it can be 100,000 lx. In a room with windows, the ambient illumination can

vary from 0 to 1000 lx at different times of day.

When our eyes are adapted to bright ambient light, the amount of light that enters

our eyes is affected, and thus the visual sensitivity is affected [12, 13]. In addition,

the reflection of ambient light reduces the contrast of a display (contrast is defined in

Sec. 2.1). Therefore, fewer details can be perceived in bright surroundings than in dark.

Moreover, the detail loss is more severe in dark areas in the video. Fig. 2.1 shows an

image displayed in dark and in bright ambient. When displayed in the dark, the image

8
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(a) in the dark (b) in bright ambient

Figure 2.1: An image displayed in different ambient illuminations

looks bright, and shows good details. When displayed in bright ambient light, it loses

details and contrast, and appears dull and washed out. Though increasing the display

brightness can compensate for some of the detail loss, it will drain the battery of the

device. Note that the maximum brightness of most mobile devices today is about 400 -

600 cd/m2 [14]. In very bright ambient light (e.g., 10,000 lx), the quality of experience

of viewing the display at even the maximum brightness is still not comparable to viewing

in the dark.

Some works have studied video enhancement to compensate for the effects of

ambient light. Mantiuk et al. [15] constructed a tone mapping operator so that the

human visual response of the enhanced image under bright ambient illumination can

be as close to the maximum response as possible. The algorithm involves Laplacian

decomposition and quadratic programming, and is complicated. In [16], images are

enhanced by adjusting the backlight (screen brightness) to achieve the same visual

response as in low ambient light. This method results in increasing the screen luminance

for white. If the screen brightness for white is fixed, the method will result in clipping the

bright areas of images. In [17], the tone mapping curve is constructed by establishing a

linear relation between the display luminance and visual response. Kim [18] modeled an
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ambient-affected contrast sensitivity function, and designed an adaptive weighting filter

in the spatial frequency domain. In [19], images are enhanced by boosting the gradients

and improving the brightness by linear mapping. However, contents in bright areas are

clipped, and the reflection of ambient light is not considered. Su et al. [20] proposed to

enhance luminance using an exponential function and to increase the gradients of the

image, by taking into account both the reflection and visual sensitivity.

In this chapter, we propose two tone mapping operators to enhance the detail

visibility of videos. One is content independent; the other uses some video statistics.

Both need very light computation. They are built under the condition that the relationship

between the amplitude level (codeword, or pixel value) and the display luminance is

fixed, and the screen brightness for white is not allowed to increase. The device can

detect the ambient illumination using its built-in ambient light sensor. If the computing

resource of the device is very limited, the content independent tone mapping can be

constructed for the given ambient illumination, and can be applied to any video. If a

bit more computing resource is available, the content dependent tone mapping can be

derived for each frame or group of frames, depending on how content statistics are used.

No other image processing (e.g., gradient enhancement) is used.

The rest of the chapter is organized as follows: In Sec. 2.1, the display and

contrast models are explained, and the proposed tone mapping operators are described in

Sec. 2.2. Sec. 2.3 shows the performance of the tone mapping and the comparisons with

other tone mapping methods. Sec. 2.4 summarizes the chapter.
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2.1 Display and Contrast Models

2.1.1 Display Luminance

According to [21], the electro-optical transfer function (EOTF) of a given 8-bit

display is:

Ld(Y,LW ) = a(LW )
(

max[
Y

255
+b(LW ),0]

)γ ,

where a(LW ) = (L
1
γ

W −LB(LW )
1
γ )γ ,

b(LW ) =
LB(LW )

1
γ

L
1
γ

W −LB(LW )
1
γ

,

(2.1)

where Ld is the display luminance in cd/m2, Y is the luma value (0-255) of a pixel, γ is a

display gamma, LW is the selected screen brightness for white in cd/m2, and LB(LW ) is

the screen brightness for black which is determined by LW for a given device. LW and LB

are non-negative, so (2.1) can be reduced to Ld(Y,LW ) = a(LW )
( Y

255 +b(LW )
)γ.

According to [15], the reflected light of the ambient illumination can be modeled

as:

Lre f l(Eamb) =
k
π

Eamb , (2.2)

where k is the reflectivity of the display, and Eamb is the ambient illumination in lx. The

total luminance from a display is:

Ltotal(Y,LW ,Eamb) = Ld(Y,LW )+Lre f l(Eamb)

= a(LW )
( Y

255
+b(LW )

)γ
+

k
π

Eamb .
(2.3)

The contrast between each two consecutive codewords (namely, codeword contrast) is
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calculated as:

Cd(Y,LW ,Eamb) = 2
Ltotal(Y +1,LW ,Eamb)−Ltotal(Y,LW ,Eamb)

Ltotal(Y +1,LW ,Eamb)+Ltotal(Y,LW ,Eamb)
, (2.4)

for Y = 0,1, · · · ,254. Fig. 2.3a shows the 8-bit display codeword contrast (dash red curve)

when there is no reflected light from ambient illumination (Lre f l = 0). The maximum

screen (LW ) is set to 100 cd/m2. The display gamma is 2.23, and the reflectivity is 6.5%,

which are the values for an iPad Air from the Display Mate website [14].

2.1.2 Minimum Detectable Contrast

The luminance-dependent minimum detectable contrast is proposed in [22]. It

is derived from Barten’s contrast sensitivity function (CSF) [23]. Contrast sensitivity is

defined as the inverse of the modulation threshold of a sinusoidal luminance pattern. The

CSF at luminance L and frequency u is modeled in [23] as:

S(L,u) =
e−2π2σ2u2

/κ√
2
T (

1
X2

o
+ 1

X2
max

+ u2

N2
max

)( 1
ηpE + Φ0

1−e−(u/u0)
2 )

, (2.5)

where σ =
√

σ2
0 +(Cab d)2 arc min,

d = 5−3tanh
(
0.4log(LX2

0 /402)
)

mm,

E =
πd2

4
L
(
1− (d/9.7)2 +(d/12.4)4) Td,

and where κ = 3, σ0 = 0.5 arc min, u0 = 7 cycles/deg, Cab = 0.08 arc min/mm, Xmax =

12◦, T = 0.1 sec, Nmax = 15 cycles, η = 0.03, Φ0 = 3× 10−8 sec deg2, p = 1.2×

106 photons · sec−1 ·deg−2 ·Td−1. Xo is usually set to 40◦.

To find the minimum detectable contrast at luminance L, the highest sensitivity is
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Figure 2.2: Tracking the peaks of contrast sensitivity [7]

found over frequency [7]:

Smax(L) = max
u

S(L,u) . (2.6)

Fig. 2.2 shows the tracking of peaks of contrast sensitivity when adjusting luminance

levels [7]. The minimum detectable contrast Ct(L) for every luminance level is calculated

in [7] as:

Ct(L) =
1

Smax(L)
× 2

1.27
, (2.7)

where the factor 2 is used for the conversion from modulation to contrast, and the factor

1/1.27 is used for the conversion from sinusoidal to rectangular waves [22]. Fig. 2.3a

shows Ct(L) (solid blue curve) which is called the “Barten ramp” in [22, 7]. Note that the

CSF in (2.5) is for the scenario where human eyes are fully adapted to the luminance L.
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2.1.3 Ambient-Affected Perceptual and Display Contrast

When the eyes are adapted to some other luminance Ls, the CSF model is modified

in [23] as:

S̃(L,u,Ls) = S(L,u) · e−
ln2

(
Ls
L (1+ 144

X2o
)0.25

)
−ln2

(
(1+ 144

X2o
)0.25

)

2ln2(32) . (2.8)

Following the procedure of constructing the minimum detectable contrast for full adapta-

tion, we construct the minimum detectable contrast when the eyes are adapted to Ls. The

peaks of contrast sensitivity are found using:

S̃max(L,Ls) = max
u

S̃(L,u,Ls) . (2.9)

The adapted minimum detectable contrast C̃t(L,Ls) is computed as:

C̃t(L,Ls) =
1

S̃max(L,Ls)
× 2

1.27
. (2.10)

Fig. 2.3b - 2.3d show the adapted minimum detectable contrast when human eyes are

adapted to the ambient illumination 500 lx (bright office), 5000 lx (outdoor in shade) and

10,000 lx (overcast day) where Ls =
Eamb

π
. The codeword contrast of 8-bit displays under

the ambient illumination is also plotted using (2.4). As the ambient illumination gets

brighter, the adapted minimum detectable contrast increases, and the codeword contrast

decreases, thus the codeword contrast gradually drops below the adapted minimum

detectable contrast. Note that the codeword contrast in Fig. 2.3 is plotted over the range

of the total luminance, [LB(LW )+ k
π

Eamb,LW + k
π

Eamb]. Under 5000 lx and 10,000 lx, all

the codeword contrasts are below the adapted minimum detectable contrast. A codeword

contrast lower than the adapted minimum detectable contrast indicates the difference

between a codeword and the next codeword cannot be perceived by human eyes. That
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results in the reduction or loss of perception of details in bright ambient light. The

contrast of dark codewords drops more significantly, yielding more perception loss.
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Figure 2.3: Display codeword contrast and minimum detectable contrast of the ideal
situation (no reflected light, full adaptation to each luminance) and adaptive minimum
detectable contrast under ambient illumination 500 lx, 5000 lx and 10,000 lx for
LW = 100 cd/m2.

2.2 Proposed Luminance Enhancement

We want to enhance videos under bright ambient light so that more details become

visible. The EOTF of the display is fixed, and the screen luminance for white (LW ) is

pre-determined. Our goal is to find a tone mapping function to improve the contrast.

From the last section, it is known that the contrast of codewords decreases,
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especially for the dark codewords, when the ambient light gets brighter. Note that the

contrast ratio of a display is Ltotal(255,LW ,Eamb)
Ltotal(0,LW ,Eamb)

, which is determined by LW and Eamb. For a

given LW under a given Eamb, it is not possible to enhance the contrast of every codeword.

The contrast of dark codewords is reduced more than bright codewords under bright

ambient illumination, so we will enhance the contrast of dark codewords. That means

the contrast of some other codewords will be sacrificed.

The tone mapping function will be built so that the tone mapped codewords would

have similar contrast distribution to that under the reference viewing condition. The

following is defined as the reference viewing condition: the screen brightness for white

(Lre f
W ) is 100 cd/m2 which is typical for 8-bit displays; the ambient is dark; and eyes are

adapted to Lre f
s = (Lre f

W +LB(L
re f
W ))/2 = (100+LB(100))/2.

Using these settings, we compute the adapted minimum detectable contrast using

(2.10) and the codeword contrast using (2.4), and plot them in Fig. 2.4a. We define

relative codeword contrast as the codeword contrast in the unit of the adapted minimum

detectable contrast, which represents the number of just-noticeable-differences (JNDs)

that the difference between each two consecutive codewords spans. We define the

reference relative codeword contrast for each codeword as the relative codeword contrast

under the reference viewing condition:

nre f (Y,Lre f
W ) =

Cd(Y,L
re f
W ,0)

C̃t
(
Ltotal(Y,L

re f
W ,0),Lre f

s
) , (2.11)

where Y = 0,1, · · · ,254. The relative codeword contrast represents the number of just-

noticeable-differences (JNDs) that the difference between each two consecutive code-

words spans. The reference relative codeword contrast is plotted in Fig. 2.4b.
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Figure 2.4: Reference contrast and reference relative codeword contrast

2.2.1 Content Independent Luminance Enhancement

A content independent tone mapping operator is proposed in this section. It does

not use any video-related data, but only uses display characteristics (e.g., luminance for

white LW , gamma γ and reflectivity k) and the ambient illumination Eamb. For a given

display and a given ambient illumination, this tone mapping operator can be globally

applied to any video or image. Very light computation is needed.

Using the reference relative codeword contrast nre f under the reference condition,

we propose to allocate codewords so that the relative contrast at each codeword would be

equal to αnre f , where α is positive. That is, the relative codeword contrast should satisfy:

Cd(T G(Y ),LW ,Eamb)

C̃t

(
Ltotal

(
T G(Y ),LW ,Eamb

)
, Eamb

π

) = αnre f (Y,Lre f
W ) , (2.12)

where T G(Y ) is the output of tone mapping, i.e., T G(·) is the (global) content independent

tone mapping operator. Combining (2.4) and (2.12), we obtain:

2
Ltotal

(
T G(Y+1),LW ,Eamb

)
−Ltotal

(
T G(Y ),LW ,Eamb)

Ltotal(T G(Y+1),LW ,Eamb

)
+Ltotal

(
T G(Y ),LW ,Eamb

)

C̃t

(
Ltotal

(
T G(Y ),LW ,Eamb

)
, Eamb

π

) = αnre f (Y,Lre f
W ) , (2.13)
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The total luminance of T G(Y + 1) is obtained as a function of the total luminance of

T G(Y ):

Ltotal(T G(Y +1),LW ,Eamb) = Ltotal
(
T G(Y ),LW ,Eamb

)2+P(Y,LW ,Eamb,α)

2−P(Y,LW ,Eamb,α)
,

where P(Y,LW ,Eamb,α) = αnre f (Y,Lre f
W )C̃t

(
Ltotal

(
T G(Y ),LW ,Eamb

)
,
Eamb

π

)
.

(2.14)

Therefore, the total luminance of each codeword can be derived recursively from that of

the previous codeword. The inverse of the display luminance model (2.3) is then applied

to compute the tone mapping operator:

T G(Y ) =
((Ltotal(T G(Y ),LW ,Eamb)− k

π
Eamb

a(LW )

) 1
γ −b(LW )

)
·255. (2.15)

In most videos, a large portion of pixels are in the mid-tone. Therefore, very dark and very

bright codewords can be clipped to further improve the contrast of mid-tones. That is,

we set the total luminance of the codewords below z (0≤ z < 255) to the total luminance

of black (Ltotal(0,LW ,Eamb)). The total luminance of codewords in [z,255− z] is derived

recursively from the previous codeword. The total luminance of the codewords above

255− z is set to Ltotal(T G(255− z),LW ,Eamb). In other words, a number of z codewords

at both ends are clipped. In summary, the total luminance of codewords are computed as:

Ltotal(T G(Y ),LW ,Eamb)

=





Ltotal(0,LW ,Eamb) if Y < z

Ltotal
(
T G(Y −1),LW ,Eamb

)2+P(Y−1,LW ,Eamb,α)
2−P(Y−1,LW ,Eamb,α)

else if z≤ Y ≤ 255− z

Ltotal(T G(255− z),LW ,Eamb) otherwise

,

(2.16)
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Now the problem is to find α. We want to enhance the relative codeword contrast

as much as possible, i.e., we want α to be as large as possible. Note that if Ltotal(T G(255−

z),LW ,Eamb) exceeds the selected luminance for white (LW ), more codewords would be

clipped. In order to avoid that, we formulate the problem as:

max α

s.t. Ltotal(T G(255− z),LW ,Eamb)≤ LW

(2.17)

The problem can be solved easily by bisection search. If the contrast ratio of the actual

viewing condition is lower than the contrast ratio of the reference condition, i.e.,

Ltotal(255,LW ,Eamb)

Ltotal(0,LW ,Eamb)
<

Ltotal(255,100,0)
Ltotal(0,100,0)

, (2.18)

then the optimum α would be less than 1. Fig. 2.5 shows the tone mapping curves for

LW = 200 and Eamb = 500, 5000 and 10,000, when z is 0 and 20. T G(Y ) = Y (linear

mapping) is also plotted as a reference. Compared to the codeword contrast before tone

mapping, the contrast of dark codewords after tone mapping is enhanced, whereas the

contrast of bright codewords is suppressed. In other words, the contrasts of codewords

are re-allocated by the tone mapping. The contrast of dark codewords is more enhanced

when the ambient illumination is higher.

Bright ambient light reduces the saturation of the video as well as the luminance

contrast. We enhance the chrominance of the video by applying the simple method from

[15]:

R(V ) =
(V

Y

)s
T G(Y ) , (2.19)

where V is the chroma value, R(V ) is the enhanced chroma value, and s is a constant.

Fig. 2.6 shows one frame before and after tone mapping using the curve in

Fig. 2.5b and (2.19) where s = 0.8. The enhanced images look “brighter” and more
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Figure 2.5: Tone mapping curves of proposed content independent luminance enhance-
ment method for LW = 200: T G(Y ) vs. Y

saturated than the original image under the given ambient illumination, and more details

in dark areas are revealed.

2.2.2 Content Dependent Luminance Enhancement

In this section, we describe a content dependent tone mapping operator. In

addition to the display characteristics and the ambient illumination, some statistics of

the video are collected to construct the tone mapping operator, so that the video can be

enhanced better. Unlike the method of Mantiuk et al. [15] where the Laplacian pyramid

is employed and the contrast probabilities are computed for every luminance range and

every frequency, we simply collect the histograms of codewords of the video.

For a frame, the histograms of codewords are collected as:

h f ,m = |Φ f ,m| ,

where Φ f ,m = { j | 256m
M
≤ I f , j <

256(m+1)
M

} ,
(2.20)

and where I f , j is the j-th pixel in frame f , and m = 0,1, · · · ,M−1. We set M to 32, i.e.,

there are 32 bins in the histograms.
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(a) Original (b) Enhanced: Eamb = 500

(c) Enhanced: Eamb = 5000 (d) Enhanced: Eamb = 10,000

Figure 2.6: Images before and after the proposed tone mapping for LW = 200. Note
that these are inputs to the device, which do not show the look under the given ambient
illumination.

We average the histograms of frames from fx to fy, and compute the weighting

factor for codeword Y as:

w(Y ) =
(

1
fy− fx +1

fy

∑
i= fx

( hi,b

∑
M−1
m=0 hi,m

))β

,

where b =
⌊ Y

256
M
⌋

,

(2.21)

where β is a constant (0 < β ≤ 1), so w(Y ) is in [0,1]. The frames from fx to fy can

correspond to a scene or a sliding window which includes the frame f . For example, fx

can be f −9 and fy can be f , and thus the histograms of 10 frames are averaged to give

the weighting factors.

The tone mapping operator is constructed using the weighted reference relative



22

codeword contrast:

Cd(T D(Y ),LW ,Eamb)

C̃t

(
Ltotal

(
T D(Y ),LW ,Eamb

)
, Eamb

π

) = αw(Y ) ·nre f (Y,Lre f
W ) , (2.22)

where T D(·) is the tone mapping operator. Compared to (2.12), the codewords are

allocated so that the relative codeword contrast satisfies αw(Y ) · nre f (Y,Lre f
W ) instead

of αnre f (Y,Lre f
W ). The contrast of the codewords corresponding to higher histogram

counts is enhanced more, because these codewords take up larger areas in the video. For

example, say the codewords under 50 take up 80% of a video. They are likely to be more

perceptually important than the other codewords. The contrast of the codewords under

50 are more enhanced by multiplying the reference relative codeword contrast by larger

weighting factors.

Combining (2.4) and (2.22), the contrast between two consecutive codewords

after tone mapping is hence constructed as:

2
Ltotal

(
T D(Y +1),LW ,Eamb

)
−Ltotal

(
T D(Y ),LW ,Eamb

)

Ltotal
(
T D(Y +1),LW ,Eamb

)
+Ltotal

(
T D(Y ),LW ,Eamb

)

= αw(Y ) ·nre f (Y,Lre f
W ) ·C̃t

(
Ltotal

(
T D(Y ),LW ,Eamb

)
,
Eamb

π

)
,

(2.23)

We obtain the total luminance of T D(Y +1) as:

Ltotal(T D(Y +1),LW ,Eamb) = Ltotal
(
T D(Y ),LW ,Eamb

)2+Q(Y,LW ,Eamb,α)

2−Q(Y,LW ,Eamb,α)
,

where Q(Y,LW ,Eamb,α) = αw(Y )nre f (Y,Lre f
W )C̃t

(
Ltotal

(
T D(Y ),LW ,Eamb

)
,
Eamb

π

)
.

(2.24)

T (0) is set to 0, i.e., the total luminance of the first codeword, Ltotal(T D(0),LW ,Eamb),



23

is set to Ltotal(0,LW ,Eamb) = LB(LW )+ k
π

Eamb. The total luminance of other codewords

is derived recursively from that of the previous codeword. The problem is formulated

similarly to (2.17):

max α

s.t. Ltotal(T D(255),LW ,Eamb)≤ LW

(2.25)

The tone mapping operator, T D(Y ), is then obtained by applying (2.15) where T G(Y )

is replaced by T D(Y ). The chrominance of the video is enhanced similarly to (2.19):

R(V ) =
(

V
Y

)s
T D(Y ).

Fig. 2.7 shows the weighting factors and the tone mapping curves for Fig. 2.6a

when β = 0.4 and β = 1. LW is 200 cd/m2. Figs. 2.7e and 2.7f show the corresponding

enhanced images when Eamb = 5000. The tone mapping curve of β = 1 is almost flat

for the codewords above 150, thus yielding detail loss in bright areas in Fig. 2.7f (the

texture on the ground is removed). The reason is that the weighting factors of those

bright codewords are much smaller than the weighting factors of dark codewords, and

thus the contrast of the bright codewords is ignored in the optimization. When β is 0.4,

the variance of the weighting factors is reduced, and thus the bright codewords have

more impact on the tone mapping curve. As a result, the details in the bright regions

are preserved better. Note that the codewords which correspond to short bins in the

histograms should not be ignored completely, because they can be the foreground in the

picture thus drawing the viewer’s attention. Compared to the result of content independent

luminance enhancement (Fig. 2.6c), Fig. 2.7e looks brighter, though it requires a bit

higher computation to collect the histograms. Unlike the proposed content independent

method, here codewords at both ends are clipped according to the histograms rather than

selected heuristically.
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(e) Enhanced image: β = 0.4 (f) Enhanced image: β = 1

Figure 2.7: Weighting factors, tone mapping curves, and enhanced images for Eamb =
5000 when β is 0.4 and 1

2.3 Performance Evaluation

We evaluate the performance of the tone mapping operators by a subjective test.

Six video clips [24, 25] are enhanced using our proposed methods, the tone mapping

method of Mantiuk et al. [15], and the adaptive luminance enhancement method of Su et
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Crowd Run: Eamb = 500 Park Scene: Eamb = 5000 Kimono: Eamb = 10,000

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 2.8: Images before and after tone mapping using different algorithms for LW =
200. (a) - (c): original; (d) - (f): Mantiuk et al. [15]; (g) - (i): Su et al. [20]; (j) - (l):
proposed content independent enhancement; (m) - (o): proposed content dependent
enhancement. Note that these are the inputs to the device, which do not show the look
under the given ambient illumination.
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al. [20]. Each video has only one scene, and the content does not change dramatically.

Our proposed method in Sec. 2.2.1 and the method of Su et al. are content independent,

i.e., the tone mapping is global for all videos, so they do not have any temporal issue. The

method of Mantiuk et al. is a frame-wise solution, which may cause temporal flickering

due to differences in tone mapping of frames. The weighting factors of the proposed

content dependent method in Sec. 2.2.2 are computed using the average histograms of all

the frames of the video, and one tone mapping operator is built for the video, so the tone

mapping does not cause any temporal issue. If the sliding window in (2.21) is too small

(e.g., only one frame), there can be temporal flickering. The temporal flickering is not

the interest of this work. In order to reduce the length of experiments and tiredness of

subjects, we had subjects watch images extracted from videos, instead of watching the

whole videos. One image is extracted from each video.

The main focus of this work is on luminance enhancement, not on chrominance

adjustment. To rule out the effects of different chrominance adjustment methods, chroma

is enhanced using the same method in (2.19) for all the tone mapping methods, where

T G(Y ) is replaced by each tone mapping operator. Some enhanced images are shown in

Fig. 2.8.

Pair comparison [11, 10] is used to evaluate the performance of methods. Subjects

compared images in pairs: one image processed by one of our proposed methods, and

the other by one of the baseline schemes which include the method of Mantiuk et al., the

method of Su et al., and no processing (the original image). The two proposed methods

are also compared with each other. The images were labeled A and B randomly. Subjects

were given 5 options: “A is much better than B”, “A is slightly better than B”, “A is the

same as B”, “A is slightly worse than B”, and “A is much worse than B”. Subjects were

also asked to select the reasons why they prefer one to the other one. The possible reasons

were: being brighter, being darker, more details, higher contrast, or lower contrast.
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The images were shown on an iPad Air. The reflectivity is 6.5%, the display

gamma is 2.23, and the screen brightness for white is adjustable from 6 to 449 cd/m2

[14]. The whole experiment took about 30 minutes, which included four sessions of

viewing conditions:

1) LW is 200 cd/m2 and Eamb is 500 lx,

2) LW is 200 cd/m2 and Eamb is 5000 lx,

3) LW is 200 cd/m2 and Eamb is 10,000 lx,

4) LW is 449 cd/m2 and Eamb is 10,000 lx.

2.3.1 Results of Content Independent Enhancement

Nine subjects conducted the comparisons between the proposed content indepen-

dent method and the baseline schemes. When our proposed method was rated much better

(or worse) than the other scheme, the opinion score is +2 (or -2); when our proposed

method was rated slightly better (or worse) than the other scheme, the opinion score is

+1 (or -1); when no difference was found, the opinion score is 0. The difference mean

opinion score (DMOS) is computed between the proposed method and the other schemes.

Positive (or negative) numbers mean the proposed luminance enhancement works better

(or worse) than the other scheme. We plot the DMOS and the 95% confidence intervals

(CIs) in Fig. 2.9, where the first row is the DMOS against no processing, the second

is against the method of Mantiuk et al., and the third is against the method of Su et al.

Each column corresponds to one tested viewing condition. The average DMOS of all

the images and CIs are plotted in Fig. 2.10, where “original” means no processing. CIs

including zero indicate that we cannot reject the null hypothesis that the two schemes

perform the same, or at least there is no consensus of preference.
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Figure 2.9: 95% confidence intervals of DMOS of proposed content independent
luminance enhancement method vs. other schemes. (a) - (d): against no processing
(original), (e) - (h): against the method of Mantiuk et al., (i) - (l): against the method of
Su et al. Images 1 - 6 are Crowd Run, Into Tree, Kimono, Old Town Cross, Park Scene
and Rush Hour.

When LW is 200 cd/m2, the enhanced images of the proposed content independent

method have higher gain over the original images as the ambient light gets brighter. Under

500 lx (Fig. 2.9a), the CIs of 3 out of 6 images are above zero; while under 5000 lx

and 10,000 lx (Figs. 2.9b and 2.9c), the CIs of all the 6 images are above zero. The

average DMOS over images are 0.81, 1.54 and 1.67 for 500 lx, 5000 lx and 10,000 lx,

respectively. Even when LW is set to the maximum screen brightness 449 cd/m2, the

proposed scheme outperforms no processing by an average DMOS of 1.41, under 10,000

lx. The original images look dark and dull with low contrast under bright ambient light,
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Figure 2.10: 95% confidence intervals of average DMOS of proposed content indepen-
dent luminance enhancement method vs. other schemes for all images.

and details are invisible. The proposed method improves the visibility, and enhances the

brightness of images.

The method of Mantiuk et al. generally boosts the contrast higher than our pro-

posed method, which yields brighter images and sharper edges, but sometimes removes

details in bright areas of images. For example, the clouds in Fig. 2.8d, the details of the

ground in Fig. 2.8e, and the clothing shades in Fig. 2.8f are removed. More details are

lost when the ambient light is brighter. Our proposed method (Figs. 2.8j - 2.8l) preserves

those details very well.

The preference between the method of Mantiuk et al. and our proposed content
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independent method is controversial under 500 lx. The CIs are wide and include zero for

5 out of 6 images in Fig. 2.9e. Subjects have various preferences in contrast and details.

The proposed method shows clear advantage for image Crowd Run, as most subjects

valued the details preserved by the proposed method.

The proposed method is favored over the method of Mantiuk et al. for most

images under 5000 lx, due to more details and lower contrast. The advantage drops

when the ambient increases to 10,000 lx with LW kept to 200 cd/m2, because the favor

of subjects shifts toward high contrast under such bright ambient where details in most

images are hardly detectable. However, when LW is turned up to 449 cd/m2, our method

which has higher visibility of details wins the comparison. When we pool the DMOS of

all the test images (Fig. 2.10), the proposed method outperforms the method of Mantiuk

et al. in all the viewing conditions, among which the DMOS of 5000 lx is the highest.

The results of the method of Su et al. are generally darker than the proposed

content independent method, and show lower contrast. Under 500 lx and 5000 lx where

the eyes of subjects are relatively sensitive, the proposed method outperforms the method

of Su et al. for half of the images. For example, the texture of the trees in Fig. 2.8g is

undetectable and looks flat, whereas the result of our proposed method (Fig. 2.8j) shows

the texture clearly. As a result, the DMOS between our proposed method and the method

of Su et al. for this image is 0.99 under 500 lx, and the CI is well above zero (Fig. 2.9i).

For another instance, Fig. 2.8h looks washed out under 5000 lx. Details in dark areas are

still invisible in the bright surrounding as in the original image Fig. 2.8b.

Under 10,000 lx, the two methods perform similarly for 4 out of 6 images when

LW is 200 cd/m2, but the proposed method shows clear advantage when LW is 449 cd/m2.

When we pool all images in Fig. 2.10, the CIs of the average DMOS of all the viewing

conditions are above zero, indicating the superiority of our method.
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Figure 2.11: 95% confidence intervals of DMOS of proposed content dependent lu-
minance enhancement method vs. other schemes. (a) - (d): against no processing
(original), (e) - (h): against the method of Mantiuk et al., (i) - (l): against the method of
Su et al., (m) - (p): against the proposed content independent method. Images 1 - 6 are
Crowd Run, Into Tree, Kimono, Old Town Cross, Park Scene and Rush Hour.

2.3.2 Results of Content Dependent Enhancement

The proposed content dependent method and the other schemes were evaluated

by another nine subjects. The DMOS and CIs of each image are plotted in Fig. 2.11.
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Figure 2.12: 95% confidence intervals of average DMOS of proposed content dependent
luminance enhancement method vs. other schemes for all test images. “Proposed global”
means the proposed content independent method.

Each row corresponds to the DMOS against no processing, the method of Mantiuk et

al., the method of Su et al., and the proposed content independent method. The images

enhanced by the proposed content dependent method generally looks brighter and shows

higher contrast than those enhanced by the proposed content independent method. That

is because the content dependent method puts more emphasis on the codewords which

take up larger areas of the picture. The contrasts of those codewords are enhanced more

than the other codewords. The difference in the image Kimono (Figs.2.8l and 2.8o) is the

most obvious, and thus the DMOS of that image is the highest among all the test images

under all the viewing conditions. The CIs of the average DMOS for all the images against
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the proposed content independent scheme are all above zero (Fig. 2.12 where “Proposed

global” means the proposed content independent method).

Like the proposed content independent method, the content dependent method

greatly outperforms no processing, and the advantage grows with the increase of the

ambient illumination. Under 500 lx, the proposed content dependent method is preferred

for half of the test images; under 5000 lx, it is favored for 5 out of 6 images; and under

10,000 lx, it beats no processing for all the images.

Under 500 lx, the proposed content dependent method performs similarly to the

method of Mantiuk et al. The proposed method wins when the ambient light is brighter,

because it shows a better trade-off between detail preservation and contrast enhancement.

The CIs of 5 out of 6 images are above zero when the ambient illumination is 5000 lx

and 10,000 lx.

The subjects preferred the proposed content dependent method to the method of

Su et al. for most of the test images. The superiority is quite clear. The average DMOS

of the four viewing conditions are 1.03, 1.0, 0.92 and 0.90.

In summary, both of the proposed methods outperform the baseline schemes.

They keep details of images better than the method of Mantiuk et al., and they improve

the contrast and brightness more than the method of Su et al. Therefore, they win the

comparisons when the ambient light is very bright. The advantages of both proposed

methods over no processing are quite large, as the proposed methods enhance the bright-

ness and contrast. The proposed content dependent method is slightly better than the

content independent method, because the contrast of codewords with higher histogram

counts is boosted higher.

Note that both of our proposed methods, content independent and dependent

enhancement, are computationally much simpler than the method of Mantiuk et al.

which is a content dependent approach. As stated in [15], half of the processing time
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of the method of Mantiuk et al. is spent on computing the contrast probabilities of each

luminance range of each frequency of the Laplacian pyramid. The other half is spent

on solving their optimization problem iteratively. Our content dependent method only

collects histograms of codewords and does not do any frequency decomposition. The

optimization time is also much shorter than the method of Mantiuk et al. The proposed

content independent method is computationally even more efficient, as no video-related

data is needed.

2.4 Summary

In this chapter, we propose two tone mapping operators to improve the perceptual

quality of videos shown in bright ambient light. The main contributions include:

1. We analyze the effects of ambient light reflection and the reduction of human

visual sensitivity on the perceptual quality of videos displayed in bright ambient

illumination.

2. A content independent tone mapping operator is constructed by considering re-

flection and human visual sensitivity. For a given device under a given ambient

illumination, the tone mapping operator can be applied to any videos. The compu-

tation is very light.

3. A content dependent tone mapping operator is built by using simple statistics of a

video in addition to the display characteristics and visual sensitivity. It requires a

bit more computation than the content independent method, and outperforms the

latter slightly.

4. We conducted subjective tests and compared our proposed methods with the

method of Mantiuk et al. [15] and the method of Su et al. [20]. The results show
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our methods are preferred, as the details in dark areas of videos are boosted, and

details in bright areas are well preserved.
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Chapter 3

Subjective Quality of Video Bit Rate

Reduction by Distance Adaptation

In the previous chapter, we construct tone mapping operators to enhance the

perceptual quality of videos displayed under bright ambient light at the decoder (receiver).

In addition to ambient illumination, viewing distance also affects the amount of detail

that can be perceived. Increasing the detail visibility can be easily achieved by reducing

the viewing distance. But for the viewing distance selected by the viewer, transmission of

the unnoticeable details is wasteful. In this chapter, we demonstrate the performance of a

distance adaptive delivery system by subjective tests. The viewing distance is detected at

the receiver and transmitted back to the server. The server hence selects the corresponding

video bitstream adapted to the viewing distance and transmits it to the viewer. We show

that adapting to conditions of an individual viewer provides a promising area to reduce

bit-rate without sacrificing video quality.

36
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Figure 3.1: Architecture of user-adaptive video delivery system

3.1 Motivation

The same video content may be viewed on any of a variety of devices under

dynamically varying viewing conditions. The work of [26] examined typical usage of

tablet devices and determined common usage clustered into modes such as On-Lap and

On-Stand. These modes correspond to different viewing distances. A user may hold a

tablet near while watching a short video clip but discomfort will prevent the user from

holding a tablet at a close distance for the duration of long format content.

Compressed bit-rate and video quality are inversely related with the relation

depending upon content and viewing conditions. We are interested in exploiting the

variation in viewing distance to achieve rate reduction without sacrificing perceived video

quality. Xue et al. [27] proposed a strategy to select quantization parameters based on

an environment-aware quality assessment model which uses viewing distance, display

size, ambient luminance and body movement. Another perceptually motivated technique

is to filter the video prior to encoding based on the anticipated viewing conditions. A

perceptual pre-filter in [6] removes the spatial oscillations in a video that are invisible

under given viewing conditions, resulting in lower complexity images which can be

compressed at a lower bit-rate without loss of subjective quality. Bit-rate savings can

be easily documented but potential impact on subjective video quality requires visual
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testing. That is the goal of this chapter. To evaluate the perceptual quality performance

of the pre-filter and the whole user-adaptive video delivery system, we conducted a

subjective test based on the pair comparison (stimulus-comparison) method [10, 11].

Observers compared the quality of compressed videos shown on a tablet with and without

pre-filtering, and graded each pair’s difference. We examined three common viewing

distances corresponding to using a tablet on a stand, on the lap, and in the hand.

In Section 3.2 we review the design of a viewing condition adaptive system. In

Section 3.3 we describe the subjective testing. Results are in Section 3.4, and Section 3.5

summarizes the chapter.

3.2 Viewer Adaptive System

In conventional video coding and delivery systems, viewing condition parameters

are not known and are assumed to be within typical ranges (e.g., viewing distance equal

to 3 to 4 times screen height). However, as exemplified in Fig. 3.1, one can design an

adaptive system that classifies user state and viewing conditions and then uses them to

select one of the available encoded versions of the content (representations) on the HTTP

server. The representations may include versions with different pre-filtering applied prior

to encoding, as well as traditional encodings performed using different target bit-rates.

A special manifest file is also placed on the HTTP server to describe properties of all

available representations. In performing stream selection, the client software (media

player) may find the best matching encoded video representation given a combination

of current viewing conditions and network bandwidth limits. The design of such a

user-adaptive video delivery system was first proposed in [28]. The implementation of

user-adaptive streaming utilizing an MPEG-DASH streaming standard was described in

[29].
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As mentioned above, the representations of content may differ in the pre-filtering

applied in addition to traditional factors. Given viewing distance, the pre-filter may be

used to remove details from the content which would be invisible but still require bits

to transmit to the device. The perceptual pre-filter described in [6] exploits three basic

phenomena of human vision: (1) Contrast sensitivity function: relationship between

frequency and contrast sensitivity thresholds of human vision, (2) Eccentricity: rapid

decay of contrast sensitivity as angular distance from gaze point increases, and (3)

Oblique effect: lower visual sensitivity to diagonally oriented spatial oscillations as

opposed to horizontal and vertical ones.

Fig. 3.2 shows examples of encodings produced with and without perceptual

filtering. The encodings in sub-figures (c) and (d) use the same rate, however, the filtered

version looks softer with fewer coding artifacts. When viewed from a certain distance,

the softness introduced by the pre-filter becomes invisible, but bit-rate savings remain.

3.3 Subjective test

We conducted a subjective test of the performance of the pre-filter using the

pair comparison method [10, 11]. HD video source sequences were obtained from [25].

Video clips compressed with and without the pre-filtering are shown sequentially in

some randomized order to the subjects who provide a comparative preference score. The

videos were displayed on a tablet (Nexus 7). To begin, we defined three viewing modes:

In-Hand, On-Lap, and On-Stand. The three viewing modes correspond to three viewing

distances, i.e., three sets of filter parameters. For “In-Hand” mode, the device is held in

both hands. Subjects sat in an armless chair, so their hands were not steadied against

anything. For “On-Lap” mode, the device rests on the lap. Subjects could tilt the device

to make a good viewing angle but the device remains on the lap. For “On-Stand” mode,
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Figure 3.2: Examples of different encodings (1st frame from Old town sequence): (a)
Original uncompressed frame, (b) Compressed at High rate, (c) Compressed at Low
rate, (d) Filtered and Compressed at “On Stand” rate.

the device is on a stand on a table, and the subject does not touch it after the initial

comfortable positioning. We assume the viewing distances of In-Hand, On-Lap and

On-Stand modes are 12”, 20” and 24” respectively [26].

3.3.1 Video Versions

For each viewing mode, we apply the pre-filter to the original uncompressed

video. Longer viewing distance results in stronger filtering so that more details are

removed. Then the filtered videos are compressed by the x264 encoder [30], configured

to produce High-Profile H.264/AVC-compliant bitstreams. We denote the compressed

filtered videos as user adaptive videos (UAV).

For comparison, we also compress the original video by the same encoder without

pre-filtering. The video is compressed at two bit-rates: one bit-rate (called High) is higher
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than the highest UAV bit-rate, and the other (called Low) is approximately equal to the

lowest UAV bit-rate. High and Low versions serve as negative and positive controls. The

goal is that UAV should have quality equivalent to High, given the corresponding viewing

conditions. However, if only UAV and High are compared and no difference is found,

it is possible that this outcome arose because the observers are sleepy, distracted, or in

some way unreliable, or because both data rates are so low (or so absurdly high) that

no difference between them can be discerned. So we also compare Low with UAV, to

be able to exclude these possibilities. If the pre-filter works for all modes, the outcome

would support that all UAV versions have quality equal to that of the unfiltered version

High, and the UAV versions have better quality than the unfiltered version Low.

The filtering parameters are based on the viewing modes. The three viewing

modes (In-Hand, On-Lap and On-Stand) result in three filtered versions, which are

compressed at different bit-rates. Together with the High and Low bit-rates, each video

sequence is compressed at five bit-rates using the following steps:

1. Compress the unfiltered sequence with a high bit-rate such that there is no visual

artifact. The full encoding capability of H.264 high profile and 1-pass rate control are

used to encode the sequence. The output bitstream is the High version.

2. For each viewing mode, compress the filtered sequence with multiple bit-rates. The

one that has the lowest bit-rate and is visually very close to High under the given viewing

conditions is selected. The output bitstreams are the UAV: In-Hand, On-Lap, and On-

Stand versions.

3. Encode the original unfiltered sequence at a bit-rate which is close to but slightly

higher than the rate of On-Stand. It gives the bitstream Low version. The encoder settings

except for the bit-rate are the same as the settings in step 1 for all versions.

The five bit-rates are selected manually for each sequence by experts. The

relationship of the bit-rates of the five test versions are High > Hand > Lap > Stand ≈
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Table 3.1: Bit-rate of each test sequence. All sequences are at 25fps with the exception
of Kimono which is at 24fps. The bit-rate of High is in kb/s, while others are represented
as the percentage compared to High.

Sequence
Bit-rate

High
UAV

Low
Hand Lap Stand

Basketball 4008 98.7% 76.6% 65.5% 66.2%
Into trees 8414 99.0% 72.8% 62.4% 62.5%
Old town 3420 97.1% 67.7% 54.8% 60.1%
Sunflower 2290 88.0% 66.0% 45.1% 45.8%
Pedestrian 13058 99.7% 80.0% 56.5% 58.1%

Station 3494 99.0% 76.2% 64.1% 66.6%
Tractor 6512 97.8% 67.3% 54.7% 55.9%

Rush hour 6689 97.9% 66.3% 52.2% 55.6%
Kimono 4980 99.2% 63.2% 61.9% 65.7%
Average - 97.4% 70.7% 57.5% 59.6%

Low. The rates of each version of each test sequence are in Table 3.1.

3.3.2 Comparison Method

We used the pair comparison (stimulus-comparison) method [10, 11] to compare

video quality. The subject was presented with a series of sequence pairs, each from the

same source, but the rate and/or the compression (with or without filtering) are different.

Videos were presented sequentially on the same device. The subject provides a score of

the second sequence (test) relative to the first one (reference) of −1 = worse, 0 = same, 1

= better. We did not follow the 7-point grading in [10] as the differences were very subtle.

For each mode, the three versions (UAV, High, Low) were shown as reference/test in

pseudo-random fashion. The comparisons of each viewing mode included, in randomized

order, UAV vs. High, UAV vs. Low, High vs. Low, and High vs. High. The first two

comparisons are the main purpose of our test. High vs. Low provides a sanity check

of the results. High vs. High is a null test to check for subject accuracy. Note that the

subjective tests in Chapter 2 and 4 do not include such null tests, because relatively larger
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differences are compared in those experiments so the responses of subjects are more

stable.

We used the pair comparison method because our experiment deals with very

small differences in quality. The pair comparison method is more sensitive than the

double stimulus continuous quality scale (DSCQS) method used in [31]. DSCQS requires

subjects to mark both videos, then DMOS is calculated to do the comparison. Pair

comparison, however, asks subjects to mark the difference between two videos directly.

It is known to work better for very subtle differences. Since the rating includes the option

of “the same,” it requires fewer subjects than forced choice when the purpose is to show

that two videos are subjectively the same. The rating scale does not bias subjects as does

degradation category rating [11], which assumes that the test video has lower quality

than the reference.

In our experiment, each video clip was 10 seconds long. Long sequences can

produce a “forgiveness” effect, in which users forget and forgive quality lapses which

occurred early on. One second of gray screen was shown between the videos in each

paired comparison. Our videos all have spatial resolution of 1920× 1080. The video

clips used had a range of content: high motion and low motion, as well as content which

is spatially simple and spatially complex.

3.3.3 Subjective Test

The test was held in a room with typical office lighting conditions. We included

10 test sequences. There are 3 viewing modes and 3 pairs to be compared in each mode.

Therefore, we had 90 pairs to be shown in total, excluding null tests. Each pair was

compared by 15 observers. Thirty subjects (20 male, 10 female, average age 25.2 years)

participated in the test. Each subject compared 45 pairs of test videos and 6 null tests.

After the experiment, a playback problem was found with one sequence (the playback of
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the High version was jerky, leading it to be liked less than Low) so this sequence (not

included in Table 3.1) was excluded from our data analysis. An experimental session

was divided into six parts, where the modes were In-Hand, On-Lap, On-Stand, In-Hand,

On-Lap and On-Stand. In each of the first 3 parts, subjects compared 8 pairs, and in the

last 3 parts, they compared 9 pairs. There was one null test randomly placed in each part.

After the 2nd and 4th parts, subjects were asked to take a break.

Written user instructions were provided at the beginning to each subject. The

instructions described the three viewing modes, the experiment procedure, the grading

scale and the interface. The three viewing modes were demonstrated by the experimenter.

The subject then did a practice run (using unrelated sequences) to become familiar with

the experiment procedure. The whole experiment took about 40 minutes.

3.4 Results and Discussion

From the scores provided by the subjects, we use a one-sided test because in each

case if the difference is not zero, there is a clear direction in which we would expect

the difference to lie. The null hypothesis is that the mean score µ is equal to 0, i.e., the

compared pair has the same subjective quality. For different comparisons, our alternative

hypotheses are selected as: (1) UAV-High: µ < 0, (2) UAV-Low: µ > 0, (3) High-Low:

µ > 0.

The ideal result for this experiment would be that: for UAV-High, we cannot reject

the null hypothesis that the tested pair has the same subjective quality; and for UAV-Low

and High-Low, we can reject the null hypothesis. We use a one-sided test because it

would be significant for us if UAV has lower quality than High, and if Low has lower

quality than UAV and High.

The results of t-tests for each comparison in each viewing mode are in Table 3.2.



45

Table 3.2: Results of t-test for data from all the subjects

Mode UAV-High UAV-Low High-Low
Hand fail to reject reject reject
Lap p = 0.06 fail to reject reject

Stand reject fail to reject fail to reject

The table has “fail to reject” when p > 0.1 and “reject” when p < 0.01. We give the

p-value in Table 3.2 if 0.01 < p < 0.1. We also plot the means and 95% confidence

intervals (CIs) in Fig. 3.3.

Table 3.2 shows that all comparisons of UAV, High, Low in In-Hand mode corre-

spond to the ideal result. The null hypothesis of (UAV-High) cannot be rejected, and the

null hypothesis of (UAV-Low) and (High-Low) can be rejected.

On-Lap mode: Table 3.2 shows that the null hypothesis of both (UAV-High) and

(UAV-Low) cannot be rejected (though the p-value of UAV-High is marginal), which may

indicate that no difference was observed among the three. However, when High was

compared with Low, subjects seemed to notice the difference between them as the null

hypothesis is rejected. So there is an inconsistency here.

On-Stand mode: the null hypothesis of (UAV-High) can be rejected, whereas the

null hypothesis of (UAV-Low) and (High-Low) cannot. Again there is an inconsistency.

When we check the CIs of the null tests, we find that the CI of the null test

in In-Hand mode unexpectedly does not include 0. There are relatively fewer of the

null tests than there are of the other comparisons. Some subjects reported anecdotally

after the experiment that a large number of sequences were very similar, and that it was

hard to find differences. This difficulty is to be expected, since the test was designed

to see whether video versions which were designed to be visually equivalent were in

fact visually equivalent. It may be that the paucity of clear differences led viewers to

sometimes find differences when there were none.

Given these observations, we examine subject reliability in more detail.
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Figure 3.3: Mean scores and CIs from all the subjects

3.4.1 Analysis of Null Tests

The histogram of the number of subjects who reported a difference when none

existed is shown in Fig. 3.4. It shows, for example, that only six subjects out of 30 did not

report any difference on any of their null tests. Ten out of 30 subjects reported differences

on two or more null tests, and six out of 30 subjects reported differences on three or more

null tests. Their data may be less reliable.

To check for fatigue, we looked at whether subjects are more likely to report

difference in the null tests as they watch more videos. Table 3.3 shows the fraction of

subjects who reported no difference in the jth null test. As mentioned before, the first

and fourth parts are In-Hand, the second and fifth parts are On-Lap, and the third and

sixth are On-Stand. After the second and fourth parts, the subjects were notified to take a

break. Table 3.3 shows that the subjects are slightly more likely to give accurate scores at

the beginning of the experiment and after breaks. For example, 77.3% of the subjects

reported no difference in the first null test, while only 51.9% reported no difference in the

fourth null test (the second In-Hand part). In the On-Lap parts, more subjects reported

no difference in the fifth part which followed a break, than in the second part. On-Stand

is similar, with slightly higher correctness in the third part than in the sixth part.
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Figure 3.4: Histogram of numbers of subjects who reported difference on null tests

Table 3.3: Fraction of subjects who did not report difference in each null test.

Mode
First Null Test Second Null Test

Part No. Correct% Part No. Correct%
Hand 1 77.3% 4 51.9%
Lap 2 62.1% 5 65.5%

Stand 3 58.6% 6 50.0%

3.4.2 Results from Reliable Subjects and Reliable Parts

As the null tests show that some subjects are more reliable than others, and some

parts may have more of a fatigue effect, we re-analyze the data from reliable subjects

(reported difference in at most two null tests) and from the more reliable parts of the

experiment (first part of the experiment for In-Hand mode, fifth part for On-Lap, third

part for On-Stand). The fraction of subjects who reported no difference in null tests in

those 3 parts is 95%, 90% and 75%.

Table 3.4 shows the results of t-test of the reliable data. We plot the means and

95% CIs in Fig. 3.5. The results change slightly from the previous results which used all

data.

In-Hand mode: as before, the null hypothesis of (UAV-High) cannot be rejected,

and the null hypothesis of (UAV-Low) and (High-Low) can be rejected with strong

evidence, corresponding to the ideal result.
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Table 3.4: p-values of t-test for data from reliable parts and subjects

Mode UAV-High UAV-Low High-Low
Hand fail to reject reject reject
Lap fail to reject fail to reject reject

Stand p = 0.03 fail to reject fail to reject

Figure 3.5: Mean scores and CIs from reliable parts and subjects

On-Lap mode: the data shows that we cannot reject the null hypothesis of both

(UAV-High) and (UAV-Low), but we can reject the null hypothesis of (High-Low). The

p-value of UAV-High is no longer marginal. So there is more of an inconsistency than

before.

On-Stand mode: the null hypothesis of (UAV-Low) and (High-Low) cannot be

rejected, while the null hypothesis of (UAV-High) is on the margin. If we take 0.01 as

the significance level, the null hypotheses of the three comparisons cannot be rejected,

which means we cannot exclude that the three versions have the same subjective quality.

If we take 0.05 as the significance level, the result shows inconsistency.

3.4.3 Discussion

The subjective visual quality of a high rate encoding of original content was

compared with an encoding at a lower rate and with encoding content pre-filtered for the
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anticipated viewing conditions.

For In-Hand mode corresponding to the shortest viewing distance (most demand-

ing viewing conditions), the visual quality of the Low version was worse than both the

High version and the UAV version. For this mode, the 3% bit-rate savings of UAV did not

degrade perceptual quality, but the attempt to realize 40% rate savings with Low results

in visibly reduced quality.

For the intermediate case of On-Lap, the results are inconclusive but suggest

that the pre-filter may be able to save on average 29% of the bit rate without degrading

perceptual quality. The Low version is also not equivalent to the High version for this

mode.

At the longest viewing distance (least demanding viewing conditions) of On-

Stand, the results are inconsistent when using all data. When using the data from reliable

subjects and parts, the data suggest that all three versions (High, Low, and UAV) may be

perceptually equivalent. It would be important to ascertain whether the distance people

use for the On-Stand mode is actually the distance for which the filtering was intended.

The videos in the experiment had subtle differences. Some subjects reported that

the test was frustrating because so many videos looked equal. Many subjects could not

reliably identify identical videos as being identical (nonzero scores in the null tests). We

suspect that this fact and the previous one are related, in that some subjects did poorly in

the null tests because the experiment overall aimed at barely visible differences, and so

the subjects were scrutinizing for any possible difference.

3.5 Summary

We present a subjective test that demonstrates the bit-rate reduction by adapting

to viewing distance without degrading the perceptual quality. We tested three viewing
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modes which correspond to three viewing distances. Average rate savings of 3% in

critical In-Hand viewing and 30% approximately in an intermediate On-Lap usage modes

without impacting the subjective quality were supported. Specifically, for the In-Hand

and On-Lap versions, the video with pre-filtering is statistically equivalent to the video

without pre-filtering High, but the pre-filtered video has lower bit-rate. Since the bit-rates

were selected manually, it is possible that the actual bit-rate savings could be larger than

what we tested. The particular tests used H.264 as the video encoder but this method of

reducing video bit-rate based on adapting to viewing conditions is independent of the

codec technology. The benefits of adapting to the viewing conditions are expected to be

enjoyed by a range of video encoding technologies.
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Chapter 4

Efficient Perceptual Enhancement

Filtering for Inverse Tone Mapped

High Dynamic Range Videos

The videos discussed in Chapter 2 and 3 are traditional 8-bit low dynamic range

(LDR) videos. The displays are also LDR whose screen brightness for white is only

several hundred nits (cd/m2). In this chapter, we discuss a new video format, high

dynamic range (HDR) videos, which has attracted considerable attention recently. We

design a perceptual enhancement filter for inverse tone mapped HDR videos. Banding

artifacts and blocky artifacts in the inverse tone mapped HDR videos can be greatly

reduced by this efficient filter. We ran subjective tests to demonstrate the performance of

the proposed filter.

51
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4.1 Motivation

As mentioned in Chapter 1, HDR videos are represented with 12+ bit depth. The

range of brightness and the color gamut are larger than the 8-bit LDR videos. The screen

brightness for white of HDR displays can be over 1,000 nits. HDR displays can show

darker blacks and brighter whites, leading to more details in the displayed images.

Despite the interest in HDR videos, the current distribution of videos is mostly at

8-bit depth. Although many cameras nowadays can capture 12-bit, or even 16-bit videos,

videos are quantized to 8 bits for compression and distribution. Videos are also tuned

for LDR displays which, for example, use gamma encoding [21] and Rec.709 [32] color

space. To watch the videos on a 1,000+ nits HDR display, one needs to apply some

inverse tone mapping operator (iTMO)[33, 8] to the LDR videos. This mapping is called

inverse tone mapping because usually the mapping from HDR content to LDR content is

called tone mapping [8]. The iTMO may not be linear. For example, highlights and light

sources in an image may be expanded more than other pixels. The iTMO can also include

an electro-optical transfer function (EOTF) [7] conversion and color space conversion, if

the HDR display uses different EOTF (e.g., Perceptual Quantizer [7]) and color space

(e.g., DCI-P3 [34]). Some iTMOs have been investigated in [35, 36, 37, 38]. Because it

can be content dependent, many distributors send iTMO as metadata to help the 1,000+

nits HDR displays convert the LDR content to HDR content.

HDR video generated by iTMO sometimes suffers from false contours, also

referred to as banding artifacts or ringing artifacts. The artifacts are due to the Mach

band effect [39, 40], in which the human visual system enhances step boundaries by

undershooting or overshooting at each step boundary. The artifacts occur especially

when iTMO is a one-to-one mapping function, because 8-bit LDR video has at most 256

codewords (there are only 220 codewords in Rec. 601 [41] and Rec. 709 [32]), and after
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Figure 4.1: Banding example

mapping, the HDR video also has 256 codewords. According to [7], 12-bit data, i.e.,

4096 codewords, are necessary to show a banding-free image on a 1,000+ nits display.

Lack of codewords in the inverse tone mapped HDR results in the visually annoying

banding artifacts.

Fig. 4.1 shows an inverse tone mapped HDR image with banding artifacts around

the sun in the sky. The banding is much more visible if the image is shown on a HDR

display. We plot the pixel values of a column in the banding region in Fig. 4.2a. The pixel

values look like staircases, and the stair height is over 10 amplitude levels (codewords)

of 12-bit depth in this figure. These large steps appear as false contours.

To remove the banding artifacts, i.e., debanding or de-contouring, dithering has

been used [42, 43], but the output is often not visually pleasant either (e.g, noisy in

smooth regions). For stronger banding, the dithering strength has to increase, yielding

noisier output. Those works aim to produce the output at the same bit depth as the input

image. In our case, however, only a few codewords have been used in the HDR image
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(b) reference 12-bit HDR

Figure 4.2: Pixel values of column 1700 of Fig.4.1.

generated by iTMO, so there is room to generate new codewords to smooth the banding

artifacts. In [44], this is achieved by linear interpolation in the banding area after the

banding width is identified by median filtering. The banding area can be detected by

the algorithm in [45]. Some works apply lowpass filters to increase codewords. Daly

and Feng [46] proposed to predict and extract false contours by lowpass filtering and

quantization. The predicted false contours are subtracted from the image. This method

can introduce new false ringing if the predicted false contours are inaccurate, which

happens when the banding steps are non-uniform. In [47], false contours are reduced by

1D directional smoothing filters whose directions are orthogonal to the false contours.

This method requires high computational complexity to detect false contours. To avoid

blurring true edges, the filter size should be variable, which is hardware unfriendly. In

[48], the banding region is first detected by analyzing the neighborhood at multiple scales.

New codewords are generated by the expected mean value of the local neighborhood. The

performance is good, but the computation is quite intense. Huang et al. [49] detect false

contours by checking the eight neighbors. Several conditions are applied to exclude very

smooth regions, texture and sharp edges. The contours are then removed by probabilistic

dithering followed by lowpass filtering. The method was designed for removing banding
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in LDR images. The conditions used in the banding detection will have to be modified

for detecting banding in HDR images, and the conditions may depend on the iTMO. In

[50], the bit depth is increased by taking a weighted sum of the pixels in a window, where

the weights are adaptive to the content. The window size has to be large enough if this

approach is applied for banding removal.

In this chapter, we propose a selective sparse filter which combines smooth region

detection and banding reduction. It removes the banding artifacts, and reduces some

coding artifacts, such as blocky artifacts. The properties of the inverse tone mapped

HDR are exploited in the filter design. We aim at implementing the filter in hardware, so

computational complexity and memory cost are carefully considered.

The overview of the system is shown in Fig. 4.3. Content tuned for LDR displays

is called LDR video (i.e., the EOTF and color space of LDR displays are used to grade

the content), and content tuned for HDR displays is called HDR video. The camera

outputs 12-bit LDR video, which is quantized to 8 bits for compression and distribution.

A legacy encoder, e.g., AVC [2] or HEVC [1], is used to encode the 8-bit LDR video.

We generate the iTMO, which can be content dependent, at the encoder, and send the

corresponding iTMO parameters as metadata. How to generate the iTMO is not in the

scope of this work. At the decoder, the LDR bitstream is decoded and can be displayed

directly on a LDR display. For HDR displays, the iTMO from metadata is applied to the

reconstructed 8-bit LDR video to generate the HDR video. Although this inverse tone

mapped HDR video is in 12-bit representation, it uses only 256 codewords, because the

iTMO is a one-to-one mapping.

To remove banding artifacts, our proposed debanding filter is applied to the

inverse tone mapped HDR video at the decoder. There are some parameters in the filter

which are content dependent. The parameters are solved at the encoder side, where we

have access to the 12-bit LDR video and have more computing resources. At the encoder,
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a reference 12-bit HDR video is generated by applying the iTMO(12) to the 12-bit LDR

video. The iTMO(12) is the higher precision version of the iTMO applied to the 8-bit

LDR. The superscript (12) indicates the input bit depth is 12. This reference 12-bit

HDR video is free of banding because it is represented using the full 4096 codewords.

Fig. 4.2b shows the pixel values of the corresponding reference 12-bit HDR of Fig. 4.2a.

The reconstructed 8-bit LDR video is also available at the encoder. To obtain the same

output as the decoder side, we apply iTMO to the reconstructed 8-bit LDR video. Both

the reference HDR video and the inverse tone mapped HDR video are used to select the

parameters of our proposed debanding filter. The parameters are sent as metadata along

with the iTMO parameters.

The rest of the chapter is organized as follows: In Sec. 4.2 we explain our

proposed debanding filter, and discuss the parameter selection in Sec. 4.3. Performance

evaluation and comparisons of our filter with other debanding algorithms are in Sec. 4.4,

and Sec. 4.5 summarizes the chapter.

12-bit
LDR video Quantization 8-bit

LDR video Encoder 8-bit LDR
bitstream

metadata

Decoder Reconstructed
8-bit LDR video

iTMO
generation iTMO

Inverse tone mapped
12-bit HDR video
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Enhanced 12-bit
HDR video

Reconstructed
8-bit LDR

iTMO

Inverse tone mapped
12-bit HDR video

Debanding
parameter
selection

iTMO(12)

Reference
12-bit HDR video

Encoder side Decoder side

Figure 4.3: Overview of system
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4.2 Proposed Edge-Aware Sparse Filter

Banding artifacts usually occur in regions of small gradient, and the artifacts

appear as steps. We define a banding step as a group of consecutive pixels which have the

same codeword, and the pixel on the left (top) and the pixel on the right (bottom) of this

group have different codewords from the group. To remove the artifacts, one can smooth

the area by adding more codewords between each banding step. One simple method

is to apply a lowpass filter. A traditional dense 2D FIR filter can be represented as:

y[m,n] = ∑
u
i=−u ∑

v
j=−v wi, j · x[m+ i,n+ j], where x[m,n] is the input signal at row m and

column n, y[m,n] is the corresponding output signal, and wi, j is the filter coefficient. An

unweighted lowpass filter has equal coefficients: wi, j =
1

(2u+1)(2v+1) . This filter averages

a total of (2u+1)(2v+1) input pixels centered at x[m,n]. The 2D filtering is separable:

it is equivalent to sequentially applying a 1D (2v+1)-tap horizontal averaging filter and

a 1D (2u+1)-tap vertical averaging filter, which is much more efficient.

To remove banding, we have to apply a filter whose span is wide enough. Fig. 4.4a

shows a 1D signal with non-uniform steps. The pixel values are normalized to [0,1].

Fig. 4.4b-4.4d show the outputs of the dense filter with different numbers of taps. The

9-tap filter is not able to remove the false contours; there are many wide steps left. The

29-tap filter works better. The banding is almost gone when the number of taps increases

to 49.

The dense filter can smooth banding only when pixels on more than one step are

involved in the averaging, even if we allow dynamic filter coefficients. When the span of

the filter is not wide enough, many consecutive pixels of the output will have the same

codeword, because the pixels taken for averaging are from the same banding step. If the

banding step size is uniform, the false contours can be completely smoothed out when

the span of the filter is 2W −1, where W is the width of each banding step. That means,
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when the step is wide, we would have to increase the span of the filter, i.e., increase the

number of taps of the filter. To implement the filtering in hardware, we need to put each

row of pixels into one line buffer for vertical filtering. The cost of the dense filter would

be high because the filtering module would need one line buffer for each tap of the filter.
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(d) 49-tap dense filter

Figure 4.4: Performance of dense filter

4.2.1 Sparse Filter

From the observations above, we learn that to remove banding, the key is to get

samples from different steps. A sparse filter does that efficiently. A 1D horizontal sparse
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FIR filter [51, 52] is defined as:

z[m,n] =
v

∑
j=−v

ŵ jx[m,n+ s j], (4.1)

where s j is the distance from the original pixel to the sampled input signal, and ŵ j is

the coefficient of the j-th tap. The number of taps is 2v+ 1. Fig. 4.5b shows a 5-tap

horizontal sparse filter with the same span as the 13-tap dense filter in Fig. 4.5a. The

origin is marked by dark gray. The distances between each two neighboring samples are

the same. Figs. 4.5c - 4.5f show the 5-tap horizontal sparse filtering outputs of Fig. 4.4a

with different spans. The filter coefficients are fixed and equal: ŵ j =
1

2v+1 for all j. The

outputs in Figs. 4.5d and 4.5e look relatively smooth. Figs. 4.5g and 4.5h show the

outputs of 3-tap and 9-tap sparse filters with span 41, respectively. The 3-tap sparse

filter creates fewer codewords than the 5-tap filter, so the output looks more jagged than

Fig. 4.5e. The output of the 9-tap sparse filter is smoother than the output of the 5-tap

filter, and looks similar to Fig. 4.4d. The computation is much lighter than the dense

filter.

Note that we use a 1D signal as an example here. The 2D sparse filtering can be

obtained by applying this filter horizontally and then vertically. The final output is:

y[m,n] =
u

∑
i=−u

w̃iz[m+ ti,n] =
u

∑
i=−u

v

∑
j=−v

w̄i, jx[m+ ti,n+ s j], (4.2)

where w̄i, j = w̃i · ŵ j.

The sparse filter needs fewer taps than the dense filter. A (2u+ 1)-tap vertical

sparse filter with any span requires only 2u+1 line buffers. The required memory size

of the sparse filter is much smaller than the dense filter, though the sparse filter increases

memory traffic. We need fewer adders and multipliers for the sparse filtering.
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(a) 13-tap dense filter (b) 5-tap sparse filter
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(c) 5-tap, span = 21
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(d) 5-tap, span = 37
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(e) 5-tap, span = 41
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(f) 5-tap, span = 57
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(h) 9-tap, span = 41

Figure 4.5: Performance of 5-tap sparse filter.

4.2.2 Edge-Aware Selective Filter

It is clear that sparse FIR filters can help remove false contours, but they can

also blur true edges and remove details. To address this issue, we propose to apply the
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sparse filter selectively, to smooth areas only. Banding is only observed in smooth areas.

Also, smoothing a smooth area would not cause much loss of detail even if there were no

banding in the area.

The proposed filter includes a horizontal filter and a vertical filter. The two filters

will be applied sequentially. The horizontal filter has 2v+ 1 taps. For simplicity, the

corresponding vertical filter has the same structure as the horizontal filter, with the same

number of taps and the same sample locations.

Fig. 4.6 shows the flowchart of our proposed horizontal filter with 7 taps as an

example (v = 3). The input image is the inverse tone mapped HDR image. For each pixel

x[m,n] in the input image, we sample itself and v pixels on the left and right sides of it.

The positions of the sampled pixels are denoted n+s j where j ∈ {−v, · · · ,−1,0,1, · · · ,v}

and s0 = 0. We compute the difference between the central pixel x[m,n] and each of the

sampled pixels x[m,n+ s j] where j 6= 0. If the absolute value of the difference is below

a threshold ∆, we determine that the sampled pixel has a similar value to the central

pixel. If the central pixel and all the sampled pixels have similar values, we consider

the area to be smooth, and replace the central pixel value with the average of the inputs.

The averaging takes only 2v−1 inputs: x[m,n+s−v+1], · · · ,x[m,n+s−1],x[m,n],x[m,n+

s1], · · · ,x[m,n+ sv−1]. If the difference between the central pixel and any of the sampled

pixels is greater than the threshold, there may be edges or texture in the area. Then the

averaging is not applied, and the input pixel value remains unchanged: z[m,n] = x[m,n].

For vertical filtering, v pixels on the top and bottom of the central pixel z[m,n]

are sampled from the horizontal filtering output. As before, the averaging is applied only

when the differences between the central pixel and all the sampled pixels are within the

threshold. Only 2v−1 inputs are used for averaging. The output of the vertical filtering

is denoted y[m,n], which is the enhanced HDR in Fig. 4.3.

This selective filter combines non-smooth area detection and sparse filtering. The
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n

(n+s0 )n+s-3 n+s-2 n+s-1 n+s1 n+s2 n+s3

|x[m,n]− x[m,n + sj ]| < ∆

for −3 ≤ j ≤ 3 ?

z[m,n] = 1
5

2∑
j=−2

x[m,n + sj ] z[m,n] = x[m,n]

yes no

Figure 4.6: Flowchart of proposed edge-aware sparse filter

decoder will be able to make the decision whether to apply averaging to each pixel, thus

no filtering map needs to be sent from the encoder. The filter only requires one line buffer

for the horizontal filtering and 2v+1 line buffers for the vertical filtering. The selection

of the threshold ∆ for the selective sparse filter is critical to the debanding performance.

Note that the filtering process only takes 2v−1 pixels, and the extra two pixels are for

non-smooth area detection, as will be discussed below. Because banding artifacts appear

in smooth regions, and would not occur near object boundaries, we do not want to involve

pixels near boundaries. In the following, we first describe how to select the threshold,

then explain why the extra two pixels are necessary in the decision process.

Adaptive threshold

The threshold ∆ indicates how much difference we will tolerate in the decision

process. If ∆ is too small, we will only average pixels with small differences, correspond-

ing typically to small areas, so banding artifacts might not be removed. If ∆ is too large,



63

the filter could be applied to areas with sharp edges and details, leading to blurred edges

and loss of detail.

One important observation of the banding areas is that the codewords of the

corresponding pixels in the 8-bit LDR image are very similar to each other. The difference

of the 8-bit LDR codewords between neighboring pixels is 1 or 2 most of the time. After

inverse tone mapping, the difference between these neighboring pixels shown on a HDR

display becomes larger, and that results in the banding artifacts. Since the input of our

proposed filter is the inverse tone mapped HDR, ∆ can be related to the mapping function.

Assume that the codeword of a pixel in the 8-bit LDR is b where 0 ≤ b ≤ 255.

The corresponding inverse tone mapped HDR codeword is T (b). The difference between

two neighboring HDR codewords is denoted dT (b) = |T (b+1)−T (b)|. In the inverse

tone mapped HDR image, if an area is relatively smooth, we expect the values of nearby

pixels to be around T (b). If a pixel is in a textured area, the differences among nearby

pixels could be much larger than that. Therefore, we set the threshold ∆ to a small number

times dT (b).

We discuss two commonly used iTMO functions as examples. First, the iTMO is

a simple linear mapping: T (b) = ρ ·b+ c, where ρ is positive and constant for the entire

image, and c is a constant offset. For example, ρ can be 212

28 = 16 for simple bit depth

up-conversion. We set the threshold for the entire image to

∆ = α ·dT (b) = α · (ρ · (b+1)+ c−ρ ·b− c) = α ·ρ, (4.3)

where α is positive.

Another popular iTMO is the piecewise polynomial [38]. Sometimes the iTMO

is non-linear, and is represented by a piecewise polynomial. With K̂ segments in total

in the iTMO curve, the differential function dT (b) is partitioned into K̂ segments. The
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segment boundary points are denoted pk, where 1≤ k ≤ K̂ +1. The segment slopes can

be very different, so different thresholds are needed. When the codeword of the central

pixel of the filter inputs (x[m,n]) is T (b), the threshold is set to

∆ = f (b) = α · max
pk≤b<pk+1

{dT (b)}, (4.4)

where α is positive. The threshold is set to the maximum differential of the segment

multiplied by a factor α. In our tests, for both the linear mapping and the piecewise

polynomial, α = 2 or 3 usually works well.

This method can be extended to other iTMO algorithms. The differential function

dT (·) of any one-to-one mapping can be built. The point is that we only allow averaging

a few codewords in the filtering process. So the threshold can be set to α ·dT (b) when

x[m,n] = T (b). Another possible setting for the threshold is α times the maximum

codeword differential of the entire image: α ·max0≤b<255{dT (b)}.

Extra samples for non-smooth area detection

We include 2v+ 1 pixels for decision but only take 2v− 1 pixels for filtering.

This prevents introducing new false ringing to the output image. We use the patch in

Fig. 4.7a to illustrate; it has an edge between the dark and bright regions, and banding

artifacts in the bright region. We plot the intensities of a row of pixels in Fig.4.7b. Our

goal is to preserve the dark region and the edge, and smooth the banding in the bright

part. Using a 7-tap (v = 3) filter as an example, we set the filter parameters s1 =−s−1 =

7,s2 =−s−2 = 14,s3 =−s−3 = 17, and set ∆ = 2H where H is the maximum difference

between adjacent banding steps. Figs. 4.8a and 4.8b show the mid region of Fig. 4.7b.

We want to determine whether to apply the sparse filter to the pixels marked by blue

circles. The range of [x[m,n]−∆,x[m,n]+∆] is marked by dashed lines.



65

(a)

0 50 100 150 200
0.3

0.4

0.5

0.6

0.7

0.8

column number

in
te

ns
ity

(b)

Figure 4.7: Example of banding artifacts

We apply the filter only when all the six samples have values similar to the central

pixel. For the pixel marked by the blue circle in Fig. 4.8a, the difference between it and

the leftmost sample exceeds the threshold, so the filtering is not applied. For the pixel

marked by a blue circle in Fig. 4.8b, all the samples marked by green crosses and red

triangles are within the threshold. We apply the sparse filtering by averaging only the five

central pixels, not all seven pixels. So we exclude the leftmost sample which is an outlier

from the averaging. The filtering result is shown in Fig. 4.8c. The banding artifacts are

smoothed, and the edge is well preserved.

If we do not get the two samples marked by red triangles, and determine to apply

the filtering as long as the four green cross samples have similar values to the central pixel,

a false ringing can be introduced. For the pixel marked by the blue circle in Fig. 4.8a,

the filtering condition would be satisfied. However, the leftmost green cross sample is

actually at a transition area. That sample is an outlier, whose value is slightly different

from the others though the difference is still within the threshold. The average of the

five pixels would be slightly lower than the original value which brings an undershoot

(marked by the solid red circle in Fig. 4.8d). Similarly, an overshoot is introduced on the

other side of the true edge (marked by the dashed green circle in Fig. 4.8d). In the image,

the overshoot and undershoot appear as faint false ringing.
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Therefore, with the extra two samples to probe if there is an edge nearby, we

prevent introducing new artifacts into the output image. Also, more details can be

preserved with the extra two samples strengthening the condition to apply filtering.
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Figure 4.8: Comparison between 5-sample and 7-sample non-smooth area detection

Metadata

This selective sparse filter is to be applied at the decoder side and implemented in

hardware. The number of line buffers used for filtering needs to be fixed, so the number

of taps of the filter has to be fixed. We found that 7 taps in total (i.e., 5 taps for averaging)

are usually enough for the sparse filter to remove the banding artifacts. If the banding

steps are uniform, a 5-tap 1D sparse filter (no decision process) can create at most 4 new



67

codewords at each banding step (see Appendix). If the banding steps are in 2D and are

uniform, we can create at most 16 codewords after applying the sparse filter in both the

horizontal and vertical directions. That means the bit depth is increased by 4 (from 8 to

12). If the banding steps are non-uniform, it is possible to create more codewords.

There are several parameters to be determined according to frame content: 1)

α in the threshold, and 2) the positions of samples in the sparse filter. In our tests, we

found that equidistant samples for averaging works well, i.e., we set s j = −s− j = jD

for 1≤ j ≤ v−1. For the extra two samples for non-smooth area detection (sv and s−v),

empirically we set sv = s−v = b2v−1
2 s1c= b2v−1

2 Dc, i.e., the distance between x[m,n+sv]

and x[m,n+ sv−1] is half of the distance between x[m,n] and x[m,n+ s1]. The span of

the filter in the averaging process is 2(v−1)D+1, and the entire span of the filter in the

decision process is 2(v−1)D+1+2bD
2 c.

In summary, the filter parameters to be determined are

• the threshold factor: α,

• the distance between each two neighboring samples for averaging: D.

The metadata is simple. There is no need to store or transmit a filtering map. A

set of parameters is to be determined to smooth all the banding in the image. As can be

seen from Fig. 4.5, the span of the sparse filter is critical. Increasing the span may not

always make the signal smoother. In the next section, we will describe how to select

the parameters using the reference 12-bit HDR video and the inverse tone mapped HDR

video.

4.3 Parameter Selection

At the encoder, we have more computational resources, and access to the reference

12-bit HDR video. So we can filter with different spans and thresholds, compare with
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the reference, and select the parameters that yield the best output. One may think that

the output which has the minimum distortion from the reference 12-bit HDR video is

the best. However, simple metrics, such as mean squared error (MSE) and SSIM [9], are

usually not consistent with the visual quality. Therefore, we propose a new metric to

measure the perceptual quality of the filtered image. We then formulate the problem to

optimize the parameters.

4.3.1 Perceptual Distortion

Generally, we consider two aspects when measuring the quality: (a) how well the

banding is smoothed, and (b) how well the true edges and details are preserved.

Smoothness after Filtering

The pixel value at row m and column n in the inverse tone mapped HDR is

denoted x[m,n]. We can find banding steps in the inverse tone mapped HDR image in the

horizontal and vertical directions individually by two raster scans. We denote a horizontal

banding step in row m0 from column n1 to n2 as Ωi = {m0,n1,n2}, where x[m0,n] is the

same for n1 ≤ n≤ n2, and x[m0,n1−1] 6= x[m0,n1], x[m0,n2 +1] 6= x[m0,n2]. The width

of Ωi is denoted LH
i , where LH

i = n2−n1 +1. Similarly, we denote a vertical banding

step in column n0 from row m1 to m2 as Φ j = {n0,m1,m2}, where x[m,n0] is the same

for m1 ≤ m≤ m2, and x[m1−1,n0] 6= x[m1,n0], x[m2 +1,n0] 6= x[m2,n0]. The width of

Φ j is denoted LV
j , where LV

j = m2−m1 +1.

In the averaging process, our proposed debanding filter is a (2v−1)-tap sparse

filter with fixed equal filter coefficients. The banding steps will be broken into many

mini-steps after sparse filtering. We observe that the widest mini-step width after filtering

shows how much banding remains. The filtering output is denoted as yD,α [m,n] when D

and α are used. The widest width of output mini-steps of Ωi is denoted lH
i (D,α), and
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that of Φ j is denoted lVj (D,α).

We define a residual banding ratio of horizontal banding as rH
i (D,α) =

lH
i (D,α)

LH
i

.

Similarly, a residual banding ratio of vertical banding is defined as rV
j (D,α) =

lVj (D,α)

LV
j

.

We pool the residual banding ratio of all the banding steps in the image, and compute the

residual banding level of the whole image as

ResB(D,α) =
∑i rH

i (D,α) ·LH
i +∑ j rV

j (D,α) ·LV
j

∑i LH
i +∑ j LV

j
. (4.5)

We weight the residual banding ratio of each banding step with the width of the banding

because wide banding is usually more visible than narrow banding. The pooling is

normalized by the sum of weights: ∑i LH
i +∑ j LV

j . After simplification, we obtain:

ResB(D,α) =
∑i lH

i (D,α)+∑ j lVj (D,α)

∑i LH
i +∑ j LV

j
. (4.6)

Note that 0 < ResB(D,α)≤ 1. Smaller ResB(D,α) means the output is more smoothed.

In the implementation, we exclude banding steps:

• where the 12-bit reference HDR is also flat (pixels in the region have the same

codeword);

• the first and the last step of consecutive banding steps. If there are only two

consecutive steps in the group, then remove the longer step;

• which are shorter than B pixels. For image resolution 1920×1080, we set B to 7,

and for resolution 3840×2160, we set B to 14.

The remaining steps are called major banding steps. If there are no major banding

steps, i.e., ∑i LH
i +∑ j LV

j = 0, we set ResB(D,α) to 0.

To show the relationship between ResB and the smoothness of the filtered output,

we first consider 1D synthesized data with steps of uniform width and uniform codeword
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Figure 4.9: Uniform steps and filtering outputs with different D

difference between adjacent steps. Fig. 4.9a shows uniform steps with width W = 50. We

plot the sparse filtering outputs using different filter spans in Fig. 4.9b-4.9f. The number

of taps for averaging is 5 (i.e., the total number of taps is 7 with the two extra samples

for decision). Each banding step in the input data is divided into at most 5 mini-steps.

The relationship between D and the widths of mini-steps is in Appendix A.

In Fig. 4.9, the smoothest output is from D = 10 and D = 20, where the output

mini-step width is uniform. When D = 5 (Fig. 4.9b), the widest mini-step after filtering is

30, and the banding is not smoothed well. When D = 15, the widest mini-step width after

filtering is 15, which is larger than the widest mini-step width when D = 10 (Fig. 4.9c),

and we can observe from Fig. 4.9d that D = 15 yields more jagged output. When D

increases to 25, the widest mini-step width after filtering is 25, and the output (Fig. 4.9f)

is coarser than the other outputs. We plot the residual banding level created by different D

in Fig. 4.10a. The residual banding level is consistent with the jaggedness of the filtering

output.
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Figure 4.10: Residual banding level of filtering outputs of uniform banding steps in
Fig. 4.9a and non-uniform banding steps in Fig. 4.4a

If the boundaries are ignored, the minima of the residual banding level are

obtained when D = K′W
5 +KW , where K′ is a positive integer and is not a multiple of 5,

and K is a positive integer (see Appendix A). Averaging different combinations of input

codewords may result in the same output, so there are more than one minima of ResB.

This provides the possibility to achieve the minimum residual banding level for multiple

groups of banding steps in an image where the widths of each group are different.

For the example of non-uniform banding steps in Fig. 4.4a, we plot the residual

banding level of the filtering output in Fig. 4.10b. The minima are at D = 9 and D = 10,

which correspond to span 37 and 41 in Fig. 4.5. We can see that Figs. 4.5d and 4.5e

indeed look much better than Fig. 4.5c, and slightly better than Fig. 4.5f. We assume ∆ is

big enough so that all the pixels are filtered.

For real data, the banding steps are usually non-uniform. To preserve the decoder

hardware efficiency and limit the metadata bit overhead, we do not allow changing the

sparse filter span within one image.
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Fidelity to the Reference HDR

Measuring the smoothness after filtering may not be sufficient to represent the

overall quality. Detail preservation should be considered. We measure the distortion

between the filtering output and the reference 12-bit HDR over the whole image, including

both banding and non-banding regions. MSE is used to measure the distortion for

simplicity. We denote the reference 12-bit HDR image as x̂[m,n]. The distortion is

computed as

MSE(D,α) =
1

MN

M

∑
m=1

N

∑
n=1

(yD,α[m,n]− x̂[m,n])2, (4.7)

where M and N are the image height and width, respectively. Smaller MSE means higher

fidelity to the reference HDR.

4.3.2 Problem Formulation

We want to reduce both the residual banding level and the MSE. We define the

perceptual distortion J(D,α) = MSE(D,α)+ λ ·ResB(D,α), where λ is a weighting

factor that controls the trade-off between smoothness and fidelity. We select the filter

parameters by

{D∗,α∗}= argmin
{D,α}∈D×A∪{0,0}

MSE(D,α)+λ ·ResB(D,α), (4.8)

where D and A are pre-defined sets of available candidates of D and α. {D,α} =

{0,0} means the filter is not applied. MSE is computed between the reference 12-bit

HDR (x̂[m,n]) and the inverse tone mapped HDR (x[m,n]). The residual banding level,

ResB(0,0), is 1 if ∑i LH
i +∑ j LV

j > 0; otherwise, ResB(0,0) = 0.

We find the filter span and the threshold factor by minimizing the weighted sum of

the two terms. This formulation is commonly used in denoising and image enhancement
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algorithms [53, 54, 55, 56, 57]. This optimization is applied to each frame individually.

We found that determining an optimal set of parameters for each scene does not smooth

out all the banding, because the banding width can be changing over a scene, especially

in fade-in / fade-out scenes.

4.3.3 Computational Complexity

At the decoder, our proposed filter needs 6 comparisons in the decision process,

and one multiplication and 4 additions in the averaging process, for each pixel. A

comparison needs two additions. In total, our proposed filter demands one multiplication

and 16 additions for each pixel.

At the encoder, each pixel has to be compared with its top and left neighbors to

determine the vertical and horizontal banding steps, respectively. For each D ∈D and

each α ∈ A , the proposed filter is applied once. To compute the residual banding level,

each pixel is compared with its top neighbor at most once and with its left neighbor at

most once. Computing MSE costs one multiplication and two additions for each pixel.

For {D,α}= {0,0}, only MSE is computed. In total, the parameter selection requires

(2|D||A |+1) multiplications and (22|D||A |+6) additions for each pixel.

4.4 Performance Evaluation

We verified our proposed filter using 4 video sequences and 8 images extracted

from 5 video clips. All the 8-bit LDR videos are compressed using HEVC at 5.2 Mb/s.

The resolution is 1920× 1080. The number of filter taps is set to 7, and λ = 10−5 in

(4.8) for all the sequences and images. We provide the encoder with 2 options of α and

8 options of D. We apply the filter in the YCbCr color space. The EOTF of the inverse

tone mapped HDR is Perceptual Quantization (PQ) [7]. Only the luma channel is filtered.
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Figure 4.11: Filtered (enhanced) 12-bit HDR.

Note that this filter can be applied to a single color component (e.g., luma), or more

components (e.g., chroma). It can be also applied to any inverse tone mapping with any

EOTF.

The filtering output of Fig. 4.1 is shown in Fig. 4.11. We crop a patch around the

sun where the banding is severe, and show it in Fig. 4.12. The banding is smoothed out,

and the edges and details are well preserved. We plot the pixel values of column 1700 of

the filtered HDR in Fig. 4.13; the signal is much smoother than Fig. 4.2a.

If there are coding artifacts (such as blocky artifacts) in the video, our algorithm

can remove or at least reduce them. Pixels in regions with blocky artifacts usually have

similar values, and our filter smoothes them out. Note that pixels in those regions can

have different gradient directions, so the algorithms using directional features to detect

and reduce artifacts may not work well. Our algorithm does not depend on the direction

or gradient, so it is effective for blocky artifacts.

We compared our proposed filter against three debanding or dithering algorithms:
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(a) inverse tone mapped HDR (b) filtered HDR

Figure 4.12: Results. Note that banding artifacts in (a) are more noticeable on a screen
than on paper.
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Figure 4.13: Pixel values of column 1700 of the filtered HDR where the input signal is
Fig. 4.2a.

a) The method of Bhagavathy et al. [48]: banding is detected at each pixel by looking for

pixels with value b±1 in a neighborhood, where x[m,n] = b (un-normalized value), and

x[m,n] is the central pixel of the neighborhood. Six neighborhoods ranging from 10×10

to 110×110 are tested. If at least one neighborhood satisfies the given criteria, the central

pixel value is replaced by a weighted sum: ỹ[m,n] = g−1 · (b−1)+g0 ·b+g1 · (b+1),

where the weights, g−1, g0 and g1, depend on the ratio of pixels with values b− 1, b,

and b+1. This method works for 8-bit LDR images, but not for inverse tone mapped

HDR images. The difference between two neighboring codewords in the inverse tone
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mapped HDR is probably greater than 1, and depends on the iTMO. Therefore, we

modified the method in [48] by applying the banding detection and computation of

weights (Eqs. 1 and 2 in [48]) using the reconstructed 8-bit LDR image. Then we

apply the weights to the inverse tone mapped HDR image (Eq. 7 in [48]): y[m,n] =

g−1 ·T (b−1)+g0 ·T (b)+g1 ·T (b+1), where T (·) is the inverse tone mapping function.

Multi-scale neighborhoods have to be tested in order to obtain the best output. For

each pixel, 3× 110× 110 comparisons are conducted to check the number of pixels

with values b, b+ 1 and b− 1 in the neighborhood. For each size of neighborhood,

three multiplications are used to compute the ratio of pixels with b, b+ 1 and b− 1;

three multiplications, two additions and one comparison are needed to compute the

confidence score (Eq. 1 in [48]); and three comparisons are needed to check if the

neighborhood satisfies the criteria (Eq. 2 in [48]). At most 5 comparisons are used to

find the neighborhood with the highest confidence score. The weighted sum (Eqs. 5

and 7 in [48]) costs 4 multiplications and 2 additions. In total, this method requires

40 multiplications and 72672 additions for each pixel at the decoder. The computation

is considerably more complex than our filter. If we want to move the computation of

weights to the encoder, we must transmit the three weights of each pixel to the decoder,

equivalent to sending three more images. The overhead would be very high.

b) Bilateral filter [58]: the filtering output is

y[m,n] =
1

Wp[m,n]

u

∑
i=−u

v

∑
j=−v

x[m+ i,n+ j]wp[m,n, i, j], (4.9)
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where

wd[i, j] = e
− i2+ j2

2σ2
d ,

wr[m,n, i, j] = e
− (x[m,n]−x[m+i,n+ j])2

2σ2r ,

wp[m,n, i, j] = wd[i, j] ·wr[m,n, i, j] ,

Wp[m,n] =
u

∑
i=−u

v

∑
j=−v

wp[m,n, i, j].

(4.10)

x[m,n] is the inverse tone mapped HDR, and the output y[m,n] is the filtered HDR. The

weights depend on the distance and the difference to the central pixel, and are based on a

Gaussian distribution. There are four parameters: the vertical span 2u+1, the horizontal

span 2v+ 1, the spatial kernel sigma σd and the range kernel sigma σr. We set u = v,

reducing the number of parameters to 3. We manually select the span and the two sigma

values for each test image, ensuring that banding is removed from the image with the

most details preserved by visual inspection. We set v to 14 for 5 out of the 8 test images,

and set v to 24 for the other 3 test images. The bilateral filter is a dense filter. One may

determine the parameters at the encoder by solving some optimization problem, but the

decoder has to compute the weights. For a given set of parameters, look-up tables can be

pre-built for each possible wd and wr. For each pixel, (2v+1)2 additions are required to

compute x[m,n]− x[m+ i,n− j], (2v+1)2 multiplications for computing wp[m,n, i, j],

(2v+1)2 multiplications for computing x[m+ i,n+ j]wp[m,n, i, j], (2v+1)2 additions

for computing Wp[m,n], (2v+1)2 additions for computing the weighted sum, and one

multiplication for dividing the weighted sum by Wp[m,n]. In total, the bilateral filter

demands 2(2v+ 1)2 + 1 multiplications and 3(2v+ 1)2 additions for each pixel. For

v = 14, it costs 1683 multiplications and 2523 additions at the decoder. The computation

complexity is much higher than our proposed filter. If we compute the weights at the

encoder and send the weights of each pixel to the decoder, the overhead would be
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(2v+1)2 images, which is infeasible.

c) Gaussian noise injection: we add zero-mean Gaussian noise to the reconstructed HDR.

This is a simple method to cover banding and blocky artifacts in images. We select the

standard deviation manually for each image so that banding becomes unnoticeable by

visual inspection. Note that sometimes it is impossible to cover the banding even with

extremely strong noise. The computation is lighter than our method. It costs only one

addition for each pixel.

Besides the three filtering / dithering methods, we also compare the inverse tone

mapped HDR without debanding.

4.4.1 Objective Comparisons

We compute the PSNR gains of the four debanding / dithering schemes over no

debanding. The PSNR is measured in the banding regions which are the locations of the

banding steps. The PSNR gains of the 8 inverse tone mapped HDR images are shown in

Table 4.1. The average gains of our proposed filter, the method of Bhagavathy et al. and

bilateral filter are almost the same. Note that the method of Bhagavathy et al. and the

bilateral filter are dense filters, and are computational demanding. The Gaussian noise

injection has significant PSNR loss in the banding regions.

The PSNR gains of the 4 video clips in the banding regions are shown in Table 4.2.

Each test sequence is 10 - 15 sec at 24 fps. We do not include bilateral filtering because

its computation is too intense, and we have to adjust the 3 parameters for each frame

manually. The proposed method and the method of Bhagavathy et al. achieve almost the

same gain. The noise injection has PSNR loss.
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Table 4.1: PSNR gain (dB) over no debanding in the banding regions of test images

Image Proposed Bhagavathy et al. Bilateral Noise injection
1 3.76 5.06 3.16 -23.56
2 2.06 1.70 2.14 -13.68
3 0.62 0.54 0.44 -12.96
4 3.84 3.87 4.03 -19.46
5 1.99 1.95 1.95 -17.32
6 2.45 2.50 2.40 -20.86
7 2.38 2.62 2.52 -20.65
8 3.35 3.84 4.01 -18.49

Average 2.56 2.76 2.58 -18.37

Table 4.2: PSNR gain (dB) over no debanding in banding regions of test sequences

Sequence Proposed Bhagavathy et al. Noise injection
1 3.09 3.13 -19.96
2 1.20 1.17 -17.26
3 0.31 0.98 -23.84
4 0.53 0.41 -9.95

Average 1.29 1.42 -17.75

4.4.2 Subjective Test

We also evaluate the performance of our debanding filter by a subjective test with

11 observers. The subjective test included two sessions. In the first session, subjects

compared images in pairs: one image processed using our proposed debanding filter,

and the other is from the method of Bhagavathy et al., the bilateral filter, Gaussian noise

injection, or no debanding. The randomized images were labeled A and B. Subjects were

given 5 options: “A is much better than B”, “A is slightly better than B”, “A is the same

as B”, “A is slightly worse than B”, and “A is much worse than B”. Subjects were also

asked to select the reasons why they prefer one to the other one. The possible reasons

were: less banding, more details, less noise or other artifacts.

The second session involved video quality evaluation. Subjects rated the quality

of each video sequence individually on a 5-point scale: “5 - excellent”, “4 - good”, “3 -
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fair”, “2 - poor”, and “1 - bad”. Four schemes were included: no debanding, our proposed

method, the method of Bhagavathy et al., and Gaussian noise injection. We again asked

subjects to select reasons for their ratings if they rated the quality below good. The

possible reasons were: banding, loss of details, too noisy or other spatial artifacts, and

temporal flickering.

Before the formal test, we ran a training session to ensure the subjects were

familiar with the procedure and the rating system. The whole experiment took about one

hour with several breaks. The visual testing was conducted on a Dolby Pulsar 4,000 nits

HDR monitor.

Image comparison

The difference mean opinion score (DMOS) is computed between our proposed

filter and the other schemes. Positive (negative) numbers mean our proposed debanding

filter works better (worse) than the other scheme. We plot the DMOS and the 95%

confidence intervals (CIs) in Fig. 4.14. The CIs for the comparison against no debanding

are above zero for 7 out of 8 images, which shows our proposed filter improves the

quality effectively.

For the comparison against the method of Bhagavathy et al., our proposed method

shows advantage for two images. For image 2, eight subjects prefer our proposed filter to

the method of Bhagavathy et al. because the output of our filter has less banding. Two

subjects favor the method of Bhagavathy et al. due to detail preservation. One subject

thinks there is no difference. For image 3, ten out of eleven subjects prefer ours due to

less banding. The other one prefers the method of Bhagavathy et al. slightly because

it shows more details. We plot the pixel intensities of one row of image 3 in Fig. 4.16.

The output of our filter is smoother than the output of the method of Bhagavathy et al.

Some pixels in the output of Bhagavathy et al. (Fig. 4.16b) are not smoothed, because
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the reconstructed 8-bit LDR pixel values in the neighborhood are two codewords from

the value of the central pixel. Therefore, no neighborhood satisfies the given criteria in

[48]. In order to make the method of Bhagavathy et al. work for this case, one has to

modify the criteria in [48]. The weighting would become more complicated. For the

other six images, we cannot reject the null hypothesis that the two methods achieve the

same performance.

Our proposed filter is slightly better than the bilateral filter for two images. The

reason is that our proposed filter preserves more details. That is because the range kernel

sigma of the bilateral filter, σr, is the same for all pixels, regardless of the iTMO. The

range kernel sigma has to be large enough to smooth out banding over the entire image,

whereas some areas which need smaller σr are blurred. Making σr a function of the

iTMO is a possible way to improve the bilateral filter, but it requires further study and

is not in this work’s scope. The bilateral filter achieves the same performance as our

proposed filter for the other 6 images.

Our proposed filter outperforms Gaussian noise injection for 7 out of 8 images.

Most subjects think the latter is too noisy. For the other image, subjects have different

preferences, so we cannot reject the possibility that the two schemes achieve the same

debanding effect. According to the averaged DMOS, the advantage of our filter over

Gaussian noise injection is even larger than the advantage over no debanding.

When we pool the DMOS of all the test images, our proposed filter outperforms all

the other schemes. In Fig. 4.15, CIs are computed using the scores of all the images. The

CIs are all above zero. Our proposed filter has significant advantage over no debanding

and Gaussian noise injection, where the average DMOS is 1.34 and 1.61. Our proposed

filter also shows a slight advantage over the method of Bhagavathy et al. and bilateral

filtering by 0.22 and 0.18.
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(c) output of proposed filter

Figure 4.16: Pixel values of row 435 of image 3

Video quality evaluation

We compute the mean opinion score (MOS) of each video sequence (Table 4.3).

Our proposed filter and the method of Bhagavathy et al. yield good quality on the average.

No debanding and Gaussian noise injection are poor in quality.

We compute the DMOS of our proposed filter versus other schemes and plot

the 95% CIs in Fig. 4.17. It is clear that our proposed filter performs much better

than no debanding and Gaussian noise injection for all the test sequences. We cannot

reject the null hypothesis that our proposed method performs the same as the method of

Bhagavathy et al. for 3 out of 4 sequences. For Sequence 2, our proposed method has a

small advantage over the method of Bhagavathy et al.
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Table 4.3: MOS of video sequences

Sequence No deband Proposed Bhagavathy Noise injection
1 2.91 4.09 3.91 2.18
2 2.36 4.36 3.82 1.55
3 2 4.27 4 1.82
4 1.91 4.18 3.73 1.82

Average 2.30 4.23 3.86 1.84

Table 4.4: Percentage of time when artifacts are reported

Schemes No deband Proposed Bhagavathy Noise injection
Banding 95% 18% 43% 75%

Detail loss 2% 7% 9% 0
Noise 0 0 0 95%

Flickering 5% 5% 9% 14%

When we pool the DMOS of all the test sequences, our proposed filter wins

over all the other schemes. All the CIs of Fig. 4.17d are above zero. We even have an

advantage over the method of Bhagavathy et al.

During the rating of no debanding, banding artifacts were reported 95% of the

time (Table 4.4). This is reduced to 18% when our proposed filter is rated, while banding

is reported in the output of Bhagavathy et al. 43% of the time. That means our proposed

filter is more effective at removing banding. The detail preservation of the two methods

is almost the same.

When rating Gaussian noise injection, subjects disliked the noise, and reported

banding 75% of the time. In the image comparison between our proposed filter and

Gaussian noise injection, banding is reported in the noise injection scheme only 14% of

the time. This is because banding is not masked well in moving pictures, especially when

banding is moving. The high frequency noise does not make banding in low temporal

frequency invisible.
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Figure 4.17: 95% confidence intervals of video DMOS of proposed scheme vs. other
schemes

4.5 Summary

In this chapter, we propose an edge-aware selective sparse filter to remove banding

artifacts and reduce coding artifacts in inverse tone mapped HDR videos. The main

contributions are summarized as follows:

1. The filter combines non-smooth area detection and filtering. No banding map or

filtering map is required to store at, or transmit to, the decoder. The filter can be

implemented and executed in hardware efficiently at the decoder.

2. The inverse tone mapping function is considered when performing the non-smooth

area detection, which helps detail preservation in the entire image.
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3. The filter uses 7 taps to detect non-smooth areas and only 5 taps to do the filtering.

It prevents introducing more ringing artifacts, and further helps to preserve edges

and details.

4. The parameters of the filter, the span and the threshold factor α in the decision

process, are selected by minimizing a perceptual distortion metric at the encoder.

The parameters can be sent to the decoder as metadata.

5. Significant PSNR gain at the regions of artifacts is obtained after filtering. Sub-

jective tests show our proposed filter has significant advantage over Gaussian

noise injection and no debanding. It performs at least as well as the method of

Bhagavathy et al. and bilateral filtering, but requires much lighter computation.

The proposed filter outperforms the method of Bhagavathy et al. and bilateral filter

for some contents.
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Chapter 5

Packet Loss Visibility of 2D+Depth

Compressed Stereo 3D Video

In the previous chapters, we discuss the perceptual quality enhancement and

preservation of 2D videos. In this chapter, we investigate 2D+depth stereoscopic 3D

LDR videos. We conduct a subjective test on the visibility of fixed-sized packet losses in

3D videos. We construct a model to predict the loss visibility (i.e., the importance) of

packets using features extracted from the video. The model can be used for unequal error

protection during transmission. Strong protection can be applied to packets with high

visibility by allocating more forward error correction to them.

In the following, we introduce the 2D+depth format of 3D video compression

in Sec. 5.1. The subjective test is described in Sec. 5.2, and the prediction model is

explained in Sec. 5.3. Sec. 5.4 summarizes the chapter.
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Figure 5.1: A left color view and its depth map

5.1 2D+Depth Coding Format

For stereoscopic 3D video, the 2D+depth format consists of the left color view

and its depth map. The depth map is a 2D representation of the 3D surface. It includes

the distance of objects in the scene from the camera but no information of texture. The

depth map is a grayscale image, thus can be compressed in YUV 4:0:0 format (Fig. 5.1).

It can be generated from the original left and right color view. In recent years, depth

estimation has been extensively explored, and many of the algorithms are evaluated by

the Middlebury Stereo Benchmark [59]. In our observer experiment, we employ the

widely used Min-Cut algorithm [60] which is also used in MPEG Depth Estimation

Reference Software [61]. The left color view and the depth map can be separately or

jointly encoded.

At the decoder, the right view is synthesized from the decompressed left color

view and depth map. If the two views are well rectified and parallel, the right view can

be synthesized efficiently without a z-buffer [62]. The columns of the left image are

warped from left to right image borders based on the 3D structure built from the depth

information. The major problem is disocclusion. Some areas occluded in the left view

can be visible in the right view. This results in holes in the synthesized right view. One

solution is to fill the holes by spatial interpolation using neighboring pixels. Another one

is preprocessing the depth map with a Gaussian filter so that much smaller disocclusion
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Figure 5.2: 2D+depth block diagram

areas would appear in the right view [63]. Based on [64], the Gaussian filtering method

yields the best visual quality. It only incurs a small geometric distortion but no visible

flickers along the object edges. Therefore, in our observer experiment we also apply a

27×27 Gaussian filter with σ = 9 to preprocess the depth map before 3D warping. If

disocclusion still remains after the filtering, the holes would be diminished to a very

small area, and then we use the spatial interpolation method proposed in [65], which has

similar performance to inpainting [66] but works more efficiently.

5.2 Human Observer Experiment

5.2.1 Motivation

As stated in Chapter 1, video packets can be corrupted during transmission, and

packet losses can have different visual impacts. Hewage et al. found that the overall

video quality is affected by both color view and depth packet losses, but prioritizing

color 2D video packets can vastly improve the overall video quality [67][68]. Pinto et

al. mentioned that losses in videos with low disparity is less annoying than in ones with

high disparity [69]. However, they only evaluate the overall image quality and depth
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perception of the entire video sequence via PSNR or MOS (Mean Opinion Score). It

remains unclear if an arbitrary color view packet has greater impact than any depth packet.

For example, whether a P frame in the color view video is more important than an I

frame in the depth map video was not addressed. It is also unclear if a packet located in a

low disparity region always causes less damage than a packet in a high disparity region.

One may ask if other factors, such as the spatial location of the packet, can also affect

the perceived quality. Simple objective metrics may not be satisfying to represent the

complex 3D attributes. Therefore, we conduct a human observer experiment to measure

the human perception of different types of packet loss. The video is encoded in 2D+depth

format and packetized into fixed-sized packets.

5.2.2 Setup of the Experiment

We conducted a human observer experiment in which the viewers were shown 3D

videos with impairments caused by packet losses. The viewers were asked to press the

space bar once they saw a glitch. To allow the viewers to have enough responding time,

we insert at most one loss in every 4 seconds. The loss occurred in the first 3.2 seconds

in each 4-sec interval, and the last 0.8 seconds would allow any error propagation to stop.

The viewer was considered as having seen the loss if he/she responded within 1 second

after the loss.

We encoded the left color view (denoted as color or color video below) and the

depth map (denoted as depth or depth video below) separately, as we want to compare

the impacts of losses in color and in depth. The encoder is H.264 JM 18.1 [70]. The

color video is in YUV 4:2:0 format and the depth video is in 4:0:0 format. Quantization

Parameter (QP) values of 26, 31, 36 and 41 for both color and depth are suggested in

[71]. It was found that increasing the bit-rate of depth can improve the quality of the

synthesized right color view significantly [62]. Thus, we fix QP to 26 for both color and
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Figure 5.3: Hierarchical GOP structure

depth video. The test video is 21’20” long. The color video is HD (1920×1080), and

has 30 frames per second. The depth video is downsampled by 2 in the horizontal and

vertical direction, so the size of each depth frame is a quarter of a color frame, which

is also suggested in [71]. The deblocking was turned off when depth was encoded. We

use the hierarchical GOP structure and insert intra frames every 24 frames (0.8 sec per I

frame, Fig. 5.3). There are 6 types of frames in the GOP: one type of I frame, two types

of P frames and 3 types of B frames, classified by their time duration. The time duration,

or the maximal length of error propagation, is defined as the maximal number of frames

affected by the error in one frame. For example, any loss in a P1 frame would affect

itself, the next P2 frame and 21 B frames. The time duration of each type of frame is

given in Table 5.1. The video bitstream is divided into fixed-sized packets of 1316 bytes

(equal to seven MPEG packets of 188 bytes in length), as recommended in [72]. Each

packet includes at most one frame and would not include any information of the next

frame. A packet would not split a macroblock either. So some packets could be less than

1316 bytes.

The decoder is JM 16.2. To conceal losses in color and depth I frames, we use

spatial interpolation by taking the sum of weighted neighboring available pixels. To

conceal losses in color P or B frames, we use motion-compensated error concealment
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Table 5.1: Maximal Number of Frames Affected

Frame Type Time Duration
I 31

P1 23
P2 15
B1 7
B2 3
b 1

(MCEC). The motion vectors of neighboring available (correctly decoded or concealed)

macroblocks are extracted. The motion vector that minimizes the boundary matching

error [73] is taken to conceal the corrupted macroblock. If the neighboring macroblock

is sub-partitioned, only the motion vectors of the blocks adjacent to the macroblock

to-be-concealed are considered as candidates. For example, corrupted macroblocks are

shown in dark gray in Fig. 5.4. To conceal MB #1, motion vectors of the blocks in light

gray above and below MB #1 are considered as candidates when those macroblocks

are sub-partitioned. Only the motion vectors of correctly decoded macroblocks are

considered if they are available. The motion vectors of concealed macroblocks are

considered only when none of the neighboring macroblocks is correctly decoded (the

macroblock to be concealed is surrounded by other corrupted macroblocks). In Fig. 5.4,

only the motion vectors of the blocks below MB #2 are candidates for MCEC. Though

the macroblocks above MB #2 are concealed first, their motion vectors are considered

unreliable so we do not use them. If all the neighboring macroblocks are intra-coded

or the whole frame is lost, then no motion vector is available. In that case, we set the

motion vector to zero, i.e., copying the co-located macroblock from the reference frame.

For losses in depth P or B frames, we conceal each macroblock by setting its

motion vector as half of the average of the motion vectors extracted from the co-located

macroblocks in the corresponding color frame, due to the high correlation between color
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Figure 5.4: Error concealment for color frame.

(a) Color frame (b) Depth frame

Figure 5.5: Error concealment for depth frame.

and depth video. In our experiment, the co-located macroblocks in the color frame

are always available (though their motion vectors may not exist), because there is at

most one packet loss in every 4-sec interval, so if the loss is in a depth frame, then the

corresponding color frame is intact. Since the depth maps are downsampled by 2 in each

direction, the motion in the color frame can be twice the motion in the depth, and one

macroblock in a depth frame corresponds to 4 macroblocks in the color frame. In Fig.

5.5, macroblocks in light gray shade in the color frame are extracted to conceal MB #3 in

the depth frame. The efficiency of this method is shown in [74]. If all of the co-located

color macroblocks are intra-coded, we simply set the motion vector of the corrupted

depth macroblock to zero.
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We generated 5 versions of the lossy video. Each version includes 300 packet

losses. These losses are divided equally and randomly among each type (color and depth,

each has 6 types). Each version of the lossy video was evaluated by 12 viewers. All

of the viewers have normal or corrected-to-normal vision, and have good stereo vision

(tested by the stereo fly test). Before the experiment, a 3-min pilot training video was

shown so that the viewers could get a sense of the artifacts they were going to see. The

lossy videos also include some intervals without any loss so that we can measure the

false positive rate caused by factors other than the packet losses, such as view synthesis

artifacts.

5.2.3 Experimental Results

We define the visibility score of each packet as the number of viewers who saw its

loss divided by the total number of viewers who assessed that version of lossy video. Fig.

5.6 shows the mean visibility score of each type of loss. The visibility of losses in color

frames is generally higher than losses in depth. One reason is that a color packet loss

would affect the left color view itself and the right color view rendered from it. However,

if a depth packet is lost, only the right color view would be affected. Another reason is

that color packet losses usually cause blocky artifacts, which are probably more likely to

be seen than the geometric distortion caused by depth losses.

Among the color packet losses, losses in P frames are the most visible. One might

have expected that losses in I frames should be the most damaging since they have the

longest error propagation, and this in fact has been true in the case where packets hold a

fixed number of macroblocks. However, as we fix the size in bytes of each packet, the

spatial area affected by a packet loss in an I frame is usually less than the area affected in

a P frame which is less than the area affected in a B frame. Table 5.2 shows the average

number of packets included in each type of frame. One packet in a color I frame covers
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Table 5.2: Average number of packets included in a frame

Video I frame P frame B frame
Color 50.8 39.3 20.4
Depth 2.3 2.0 1.5

on average 1.97% of the spatial area of a frame, while a packet in a color P frame covers

2.55% area. So under the interaction of time duration and spatial area affected, losses in

P frames have the highest visibility score. This is consistent with the previous work [3].

For the depth packet losses, it turns out that losses in I frames are the most

prominent. While a depth I frame packet does cover slightly less spatial area than a depth

P frame packet, the visibility scores for depth packets do not follow the same trend as

color packets because the error concealment for depth is quite different. Losses in depth

P and B frames can be concealed better than losses in I frames. Motion in the color frame

and the depth frame is highly correlated. Besides, depth frames include very little texture,

so the residual energy after motion compensation is usually small. Therefore, copying the

motion vectors of the corresponding color frames is very helpful to recover the corrupted

macroblocks. There are no motion vectors in I frames, and the spatial interpolation often

yields an unsatisfying result when the corrupted area is large.

In the experiment, there are twenty 4-sec intervals without any loss in each

version of the video. We collected the viewers’ responses in those intervals to measure

the false positive rate. False positive responses may be due to compression artifacts, view

synthesis artifacts, or just inattention. The false positive rate is 4.17%, which is well

below the mean visibility score of losses in all the color frame types and in depth I and

P frames. However, the mean visibility scores of packet losses in depth B1, B2 and b

frames are 0.0560, 0.0787 and 0.0333 respectively, which are close to the false positive

rate. This suggests that some or most of the responses counted for these losses may not

actually be due to the losses. It would be wrong to conclude however that all depth B
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Figure 5.6: Mean visibility score of each type of loss. The dash line shows the false
positive rate, which is 0.0417.

frame losses can be assumed to be unimportant visually, because different packets of the

same type sometimes have very different visibility scores. For example, some losses in

depth b frames have visibility score as high as 0.75, though most losses in that frame

type were not perceived by any viewers. The mean visibility score of losses in color P1

frames is 0.6787 and 30.4% of that type of losses were seen by all the viewers, but some

other packets of that type have zero visibility score. So the mean value may not well

represent the visibility score of each loss. Therefore, we aim to investigate the features

of each packet and use them to predict the visibility score.

5.3 Visibility Model

Since the main use of the predictions of the visibility score would be for unequal

error protection, we want to make the prediction at the encoder side. That means we have

access to the original video, the compressed bitstream and the reconstructed video at the

encoder. To predict the visibility score, we extract features from the videos and bitstream,

and then utilize those features to build a visibility model. We first describe the features in
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Table 5.3: Content Independent Features

Feature Abbreviation Description
IsColor IsColor Packet is in color frame

Time Duration TMDR Maximal number of frames affected

Deviation from Border DevFromBorder
floor(N/2)−|Height-floor(N/2)|, N is

number of rows of macroblocks

Frame Type

IsCIframe Packet is in color I frame
IsCPframe Packet is in color P frame
IsCBframe Packet is in color B frame
IsDIframe Packet is in depth I frame
IsDPframe Packet is in depth P frame
IsDBframe Packet is in depth B frame

this section, then explain the modeling approach and the results.

5.3.1 Feature Extraction

The extracted features are grouped into two categories: content independent

features and content dependent features. The feature abbreviations and brief descriptions

are given in Table 5.3 and 5.4.

Content independent features, such as the frame type determined by the GOP

structure and the spatial location of the packet, do not depend on the content of the video.

The following features are considered:

1. IsColor: a boolean factor which is set to 1 if the packet is in a color frame, and is set

to 0 if it is in a depth frame.

2. Time Duration (TMDR): the maximal number of frames affected by the loss, which is

completely determined by the type of frame that includes the packet. (Table 5.1)

3. Deviation from Border (DevFromBorder) = floor(N/2)−|Height-floor(N/2)|, where

Height is the vertical location of the packet center, N is the number of rows of macroblocks

in one frame. N = 68 in this experiment since we use HD video.
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4. IsCIframe, IsCPframe, IsCBframe, IsDIframe, IsDPframe and IsDBframe are boolean

factors denoting the frame type. IsCPframe means the packet is in a color P frame. We do

not specify P1 and P2 so that the prediction model can be used for other GOP structures

and I frame periods.

Table 5.4: Content Dependent Features

Feature Abbreviation Description

Number of

MBs
NumMB

Number of macroblocks (MBs) in packet if

IsColor = 1, 4 times number of MBs in packet

if IsColor = 0

Packet Size PktSize Number of bytes in packet

Number of

MBs Coded

in a Certain

Mode

CNumIntra
Number of color MBs in affected area which

are intra coded

CNumInter As above, inter coded

CNum(Skip/Direct) As above, skip or direct coded

DNumIntra
Number of depth MBs in affected area which

are intra coded

DNumInter As above, inter coded

DNum(Skip/Direct) As above, skip or direct coded

Ratio of

MBs Coded

in a Certain

Mode

CIntraRatio CNumIntra / NumMB

CInterRatio CNumInter / NumMB

C(Skip/Direct)Ratio CNum(Skip/Direct) / NumMB

DIntraRatio DNumIntra / (NumMB / 4)

DInterRatio DNumInter / (NumMB / 4)

D(Skip/Direct)Ratio DNum(Skip/Direct) / (NumMB / 4)
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Table 5.4: Content Dependent Features, Continued

Feature Abbreviation Description

Max Sub-

partitions

CMaxInterparts Maximal sub-partitions in affected color MBs

DMaxInterparts Maximal sub-partitions in affected depth MBs

Motion

Vector

CMaxMotX,

CMeanMotX,

CVarMotX

Maximum of absolute value, mean and

variance of horizontal motion vectors(MVs)

of affected color MBs

CMaxMotY,

CMeanMotY,

CVarMotY

Maximum of absolute value, mean and

variance of vertical MVs of affected color

MBs

CMaxMotM,

CMeanMotM,

CVarMotM

Maximum, mean and variance of MV

magnitude of affected color MBs

CMaxMotA,

CMeanMotA,

CVarMotA

Maximum of absolute value, mean and

variance of motion direction of affected color

MBs

DMaxMotX,

DMeanMotX,

DVarMotX

Maximum of absolute value, mean and

variance of horizontal MVs of affected depth

MBs

DMaxMotY,

DMeanMotY,

DVarMotY

Maximum of absolute value, mean and

variance of vertical MVs of affected depth

MBs

DMaxMotM,

DMeanMotM,

DVarMotM

Maximum, mean and variance of MV

magnitude of affected depth MBs
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Table 5.4: Content Dependent Features, Continued

Feature Abbreviation Description

DMaxMotA,

DMeanMotA,

DVarMotA

Maximum of absolute value, mean and

variance of motion direction of affected depth

MBs

Residual

Energy

CMaxRSENGY
Maximum of residual energy of affected color

MBs after motion compensation

DVarRSENGY
Variance of residual energy of affected depth

MBs after motion compensation

MSE

MaxMSE,

MeanMSE,

VarMSE

Maximum, mean and variance of MSE per

MB

SSIM

MinSSIM,

MeanSSIM,

VarSSIM

Minimum, mean and variance of SSIM per

MB

Foreground

MBs

FGNum Number of foreground MBs in packet

FGRatio FGNum / NumMB

Content dependent features are those related to the content of the video, such as

motion complexity. We extract some of them from both color and depth videos. If the

lost packet is in a color frame, the features of the macroblocks contained in the packet

and features of the co-located depth macroblocks are extracted. Likewise for a loss in a

depth frame, we extract information from itself and the co-located color macroblocks.

1. Number of macroblocks affected by the packet loss (NumMB). It denotes the area

in the frame affected by the loss. For packets in color frames, NumMB is the number

of macroblocks in the packet. For packets in depth, NumMB equals 4 times the number
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of macroblocks in the lost packet, since one macroblock in the depth map corresponds

to 4 macroblocks in the right color view synthesized from it. This feature relates to the

frame type, the spatial correlation and the motion complexity. For example, in a P or

B frame, if the motion is complicated, the residual energy after motion compensation

would be high, then more bits would be allocated to code the macroblocks and a packet

would include fewer macroblocks than would one which contains macroblocks from a

low motion frame.

2. Packet Size (PktSize). Since each packet contains at most one frame, some packets

could be less than 1316 bytes. Most of the values of PktSize are around 1316 as we fix

the length of the packet. In the following two scenarios, the packet can be much less than

1316 bytes: (1) the whole frame is included in one packet and (2) the packet is the last

one in that frame. So this feature may relate to spatial location and motion complexity. In

the videos we use in this experiment, only a small number of color B frames, and some

depth P and depth B frames are packetized into one packet, as the videos are HDTV.

3. Number of macroblocks coded in intra, inter and skip/direct mode (CNumIntra,

CNumInter, CNum(Skip/Direct), DNumIntra, DNumInter and DNum(Skip/Direct)).

Once we get the location of a lost color packet, we extract the mode of macroblocks

in the lost color packet and the mode of co-located macroblocks in the depth frame.

Similarly, for a depth packet loss, we extract the mode of macroblocks in the packet

and the mode of the co-located color macroblocks. CNumIntra denotes the number of

macroblocks located in the affected area in the color frame which are coded in intra

mode; and DNum(Skip/Direct) denotes the number of macroblocks in the affected area

in the depth frame which are coded in skip or direct mode.

4. Ratio of macroblocks coded in intra, inter and skip/direct mode (CIntraRatio, CInter-

Ratio, C(Skip/Direct)Ratio, DIntraRatio, DInterRatio and D(Skip/Direct)Ratio) is the



102

number of macroblocks coded in that mode divided by the number of macroblocks in the

affected area. These features relate to the motion of the affected area. For example, if the

packet is in a P frame and the IntraRatio is very high, that probably means the motion is

complicated and the error could be hard to conceal.

5. CMaxInterparts and DMaxInterparts are the maximal number of sub-partitions in the

color and depth macroblocks lying in the affected area, respectively. If the MaxInterparts

is large, it probably also implies complicated motion.

6. MotX and MotY are the motion vector components in the horizontal and vertical

directions. MotM is the magnitude of the motion vector (MotM =
√

MotX2 +MotY 2).

MotA is the direction of the motion (MotA = arctan(MotY/MotX)). We compute the

maximum of the absolute value, mean, and variance of MotX, MotY, MotM and MotA of

both color and depth macroblocks in the affected area. If all the macroblocks in the area

are coded in intra mode, then all those values are set to 0. We use DMeanMotM to denote

the mean value of the motion vector magnitude of the affected depth macroblocks.

7. RSENGY is the residual energy per pixel after motion compensation of the mac-

roblock. We compute the maximum of the residual energy of color macroblocks

(CMaxRSENGY) and the variance of the residual energy of depth macroblocks (DVarRSE

NGY) in the affected area. The residual energy of depth macroblocks is usually small

as they include little texture. But it can have a large value when the object is moving in

the z direction. Its variance over the affected macroblocks can also relate to the motion

complexity.

8. For each packet loss, MSE and SSIM (Structural Similarity Index) [9] per macroblock

are computed between the compressed (error-free) video and the decompressed video

with that one packet loss. We do not compute those values between the original raw

video and the decompressed video with the packet loss because we are only interested



103

in the quality degradation caused by the packet loss, not by compression artifacts. We

compute only the initial error caused by the packet loss within the frame where the loss

occurs, instead of computing cumulative error over all the frames affected. This helps

to reduce computational complexity. We then take the maximum, mean and variance of

MSE per MB (MaxMSE, MeanMSE, VarMSE), and minimum, mean and variance of

SSIM per MB (MinSSIM, MeanSSIM, VarSSIM). A large value of MSE and a small

value of SSIM indicate large degradation in quality.

9. Viewers are usually attracted by foreground objects which may have different motion

from the background. The cameras may also focus on those objects so the background

may be blurry. So errors in the background can usually be concealed better than errors

in the foreground. If most of the affected area is background, it may be less likely for

the viewers to notice the packet loss. With depth maps, it is easy to extract foreground

pixels from the frame. Pixels with depth deeper than some threshold are considered as

background. To find a good threshold, we first plot the histogram of the depth values in

that frame. Then we pick the minimum between the two non-neighboring highest bins as

the threshold. In each macroblock, if over half of the pixels are foreground, we consider

it as a foreground macroblock. FGNum is the number of foreground macroblocks in the

packet. FGRatio is the portion of foreground macroblocks in the affected area, which is

equal to FGNum divided by the total number of macroblocks in the packet.

5.3.2 Modeling Approach

We employ the generalized linear model (GLM) with logit as the link function

for binomial distribution to build the prediction model. The inputs of the model are the

features of a packet, and the output is the prediction of the packet’s visibility score. The
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model is

log(
p

1− p
) = γ+

K

∑
j=1

x jβ j

where p is the visibility score, x j is a feature, β j is its coefficient, and γ is a constant term.

The whole dataset includes 1500 samples. We use 5-fold cross validation to select

the most important features and prevent overfitting. The whole data is divided into 5

partitions, 4 of which are used to train the model and the one left out is used to test the

performance. The procedure is repeated 5 times. Different partitions are used as test data

each time. The optimal feature is selected in each step to minimize the mean squared

error (MSE) between the predicted visibility score and the ground truth. A fixed set of

features is used to train only one model.

5.3.3 Performance

We use mean squared error (MSE) and correlation coefficient to measure the

performance of the model. We compute the two metrics between the prediction and

the ground truth via 5-fold cross validation. Fig. 5.7 shows the performance vs. the

number of features added into the model. The correlation coefficient reaches 0.75 when

30 features are added into the model, 0.72 with 20 features, 0.70 with 10 features and

0.67 with only 5 features.

Table 5.5 shows the ten most important features in the prediction model, where

× means multiplication of the two single features. IsColor plays a key role since color

packet losses are generally more visible than depth packet losses. Three out of the top

ten features relate to IsColor, and their coefficients all have positive signs. The most

important one is IsColor × CIntraRatio. It indicates that if the packet is in a color frame,

and more macroblocks are coded in intra mode, the packet is more likely to be seen. That

is because those corrupted macroblocks are not likely to be concealed well.
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Figure 5.7: Performance of the prediction model

The spatial location of the packet is also critical to the visibility. Viewers are

usually attracted by the objects at the center of the screen, both because the camera

location is often chosen to place interesting objects at the center, and also because the

large screen sizes of HDTV mean the viewer is often less aware of the periphery. A large

value of IsColor × DevFromBorder means the loss affects both views and appears near

the center.

The objective quality metrics are also helpful. TMDR ×MaxMSE is the second

most important feature. It implies that a big distortion which lasts for a long time is very
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Table 5.5: The Ten Most Important Features of the Prediction Model

Feature # Feature Coefficient
γ 1 -3.2515
1 IsColor × CIntraRatio 0.0328
2 TMDR ×MaxMSE 2.3362e-6
3 IsColor × DevFromBorder 0.0634
4 IsCBframe × CMaxMotA -0.5752
5 IsColor × CMaxMotM 0.0047
6 IsCPframe × CNumIntra 0.0031
7 D(Skip/Direct)Ratio ×MinSSIM -1.7107
8 PktSize 0.0012
9 DInterRatio × DVarMotA -7.1154

10 IsDBframe × DMaxMotX -0.0113

likely to be seen. The feature with MinSSIM carries a negative coefficient, as smaller

value of SSIM indicates worse quality.

The frame type is another important factor in the model. The features related to

IsCBframe and IsDBframe have negative coefficients as would be expected, since losses

in B frames are less visible than average losses. IsCPframe × CNumIntra has a positive

impact on the visibility. A large value of intra-coded macroblocks implies the motion is

complicated or there is a scene cut. Then zero motion copy would probably not yield a

good result.

The single term PktSize carries a positive sign. Most of the values of PktSize

are around 1316. The packet size can be well below 1316 bytes if the whole frame is

included in the packet or if the packet is the last one in that frame. In the first scenario, it

may imply the residual energy is small and motion is not very complicated. In the second

scenario, it means the loss is far away from the center, thus less visible.
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5.4 Summary

We present a human observer experiment on fixed-sized packet loss visibility

of 2D+depth compressed 3D video. We found that losses in color frames are generally

more likely to be seen than losses in depth frames, probably due to the different types

of artifacts they cause and the number of views affected by the loss. Losses in color P

frames are the most damaging, even worse than losses in color I frames. Among losses in

depth frames, I frames are the most difficult to conceal thus are the most visible. We build

an encoder-based model to predict the visibility of packet losses with features related to

frame type, spatial location of the loss and motion complexity. The model shows good

performance in terms of MSE and correlation coefficient.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we studied the enhancement and preservation of perceptual

quality of 2D LDR videos adapted to viewing conditions, HDR videos generated by

inverse tone mapping, and 2D+depth stereoscopic 3D videos affected by packet losses.

In Chapter 2, we proposed two tone mapping operators to enhance the luminance

and details of videos shown in bright ambient illumination. The tone mapping considers

display characteristics and human visual sensitivity. The contrast loss in dark areas of

videos due to reflected light and reduced sensitivity of eyes is mitigated. The content

independent tone mapping operator is constructed only once for the given viewing

condition and can be applied to any video. The content dependent method uses simple

statistics of a video, and slightly outperforms the content independent method. Our

proposed methods boost the visibility of details in dark areas and preserve details well in

bright areas.

In Chapter 3, we presented a subjective test which confirms the ability to reduce

encoded bit-rate without impacting the perceptual quality by adapting the representation

108
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and encoded bit-rate to the variable viewing conditions. A substantial bit rate savings

can be realized if the tablet device can determine the viewing distance and the content

delivered to the device is adapted to the distance.

In Chapter 4, we proposed a debanding filter to enhance the perceptual quality of

inverse tone mapped HDR videos. Banding artifacts resulting from inverse tone mapping

and blocky artifacts resulting from compression are removed, or at least greatly reduced.

The filter combines non-smooth area detection and filtering, and is able to preserve edges

and details. The parameters of the filter are selected by finding a trade-off between

banding removal and detail preservation. The filter works much more efficiently than

the debanding algorithms and edge-preserving filters in the literature. Subjective tests

demonstrate the performance of our proposed filter.

In Chapter 5, we presented a human observer experiment on fixed-sized packet

loss visibility of 2D+depth compressed 3D video. We found that color frames are

generally more important than depth frames, because color frames affect both views,

while depth frames only affect one view. The importance of packets also depends on

the frame type, spatial location of the packet and motion complexity, etc. A prediction

model of the packet importance (loss visibility) is built using features extracted from

the video. The model can be used for unequal error protection in the tranmission of

2D+depth stereoscopic 3D video.

6.2 Future Work

In Chapter 2, the contrast of the codewords with higher histogram counts is

enhanced more by the proposed content dependent enhancement method, since these

codewords take larger areas in the video. In addition to this “spatial weighting”, a

“temporal weighting” can be incorporated by considering the motion of objects, as
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moving objects are more likely to draw the viewer’s attention. Motion can be estimated

by the motion vectors collected in the video decoding process. Temporal weighting

factors can be computed as a function of the average motion vector of each codeword.

Note that the enhancement methods in Chapter 2 assume that the device has the

ability to generate and apply the tone mapping operators. In the situation where the

device does not have such ability and it can only show the received videos, many details

can be invisible. In [27, 75, 76, 77], bit-rate saving by ambient light adaptation was

investigated. However, none of these works studied the greater effects of ambient light

on the dark areas of videos than on the bright areas. In future work, bit-rate saving by

considering the more severe degradation on the dark areas can be explored. It can be

achieved by filtering before compression, or allocating fewer bits to dark areas of videos

during compression.

Moreover, a scalable coding structure by ambient light adaptation can be built.

Each layer provides a video version corresponding to an ambient illumination. Say there

are four layers for 10,000 lx, 5000 lx, 500 lx and 0 lx. The base layer is the video version

corresponding to 10,000 lx. It includes very coarse details, but has the same perceptual

quality under 10,000 lx as the original video displayed in the dark. The enhancement

layer 1 includes the difference of the video version of 5000 lx from the base layer, and

the enhancement layer 2 includes the difference of the video version of 500 lx from the

video reconstructed from the enhancement layer 1, etc. Hence, only the base layer and

the necessary enhancement layers need to be transmitted to the viewer, according to the

ambient light level.

HDR videos are expected to maintain or increase in popularity for several years.

The first HDR cinema was open in 2015. Consumer HDR televisions have emerged re-

cently. Mobile devices would support HDR videos in the near future. Viewing conditions

also play a role in the perceptual quality of HDR. Since HDR displays have darker blacks
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than LDR displays, the ambient illumination can have greater impact on HDR videos.

The methods proposed in Chapter 2 can be extended to HDR.

Another popular topic is virtual reality (VR), which gives a 360-degree 3D

environment. The viewing range is much wider than that of stereoscopic 3D. Depth maps

are likely to be used in the compression of VR to achieve low bit-rate. The importance

of depth maps on VR can be higher than that on stereoscopic 3D videos, as the depth

perception is emphasized in VR. In other words, packet losses in depth maps can have

higher impact on the perceptual quality. This would be interesting to explore in the

future.



Appendix A

Proof of Relationship between Span

and Output of Sparse Filter

For uniform banding steps, a 5-tap unweighted sparse filter (no decision process)

with equidistant samples can create at most four new codewords at each banding step in

one direction. The proof is as follows.

The input uniform banding signal is represented as:

x[m,n] = p+ bn−n0

W
c ·H, (A.1)

where W ≥ 2 is the width of each banding step, and H > 0 is the difference of codewords

n0

p
H

W
x[m,n]

Figure A.1: Input uniform signal.
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between adjacent steps (Fig. A.1). Now we derive the output of horizontal filtering at

n0 ≤ n≤ n0+W −1 where n0 ≥ 2. The four samples entering the filter in addition to the

sample at x[m,n] are: x[m,n−2D] = p−aH, x[m,n−D] = p−bH, x[m,n+D] = p+cH,

and x[m,n+ 2D] = p+ dH, where a,b,c,d ∈ N0. We will prove two properties: 1)

a−1≤ d ≤ a+1, and 2) ba
2c ≤ b≤ da

2e.

1) a−1≤ d ≤ a+1: from (A.1), we obtain:

x[m,n−2D] = p+ bn−2D−n0

W
c ·H. (A.2)

Since x[m,n−2D] = p−aH, we obtain:

p−aH = p+ bn−2D−n0

W
c ·H, (A.3)

⇒−aW ≤ n−2D−n0 ≤−aW +W −1, (A.4)

⇒n−n0 +aW −W +1≤ 2D≤ n−n0 +aW . (A.5)

Add n to the inequality (A.5):

2n−n0 +(a−1)W +1≤ n+2D≤ 2n−n0 +aW . (A.6)

Since n is in the range: n0 ≤ n≤ n0 +W −1, we obtain:





n+2D≥ 2n−n0 +(a−1)W +1≥ n0 +(a−1)W +1

n+2D≤ 2n−n0 +aW ≤ n0 +2W −2+aW
(A.7)

Combining both these inequalities with (A.1) and the fact that x[m,n] is non-decreasing,
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we obtain:

p+ ba−1+
1

W
c ·H ≤ x[m,n+2D]≤ p+ b2− 2

W
+ac ·H. (A.8)

Since x[m,n+2D] = p+dH,

p+ ba−1+
1

W
c ·H ≤ p+dH ≤ p+ b2− 2

W
+ac ·H. (A.9)

As W ≥ 2, we obtain

a−1≤ d ≤ a+1. (A.10)

2) ba
2c ≤ b≤ da

2e: from (A.5), we obtain:

−n+n0−aW
2

≤−D≤ −n+n0−aW +W −1
2

. (A.11)

Add n to the inequality (A.11):

n+n0−aW
2

≤ n−D≤ n+n0−aW +W −1
2

. (A.12)

Since n0 ≤ n≤ n0 +W −1:

n0−
aW
2
≤ n−D≤ n0−

aW
2

+W −1. (A.13)

Combining (A.13) with (A.1) and the fact that x[m,n] is non-decreasing, we obtain:

p+ b−a
2
c ·H ≤ x[m,n−D]≤ p+ b−a

2
+1− 1

W
c ·H. (A.14)
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Table A.1: All the possible combinations of b, c and d when a = 2K+1 where K ∈N0.

b c d Output Conditions of D
K K 2K p− 1

5H 0 < D−KW < W
3

K +1 K 2K p− 2
5H 0 < D−KW < W

2
K K 2K +1 p W

4 < D−KW < W
2

K K +1 2K +1 p+ 1
5H W

3 < D−KW < 2W
3

K +1 K 2K +1 p− 1
5H W

3 < D−−KW < 2W
3

K +1 K +1 2K +1 p W
2 < D−KW < 3W

4
K K +1 2K +2 p+ 2

5H W
2 < D−KW <W

K +1 K +1 2K +2 p+ 1
5H 2W

3 < D−KW <W

Since x[m,n−D] = p−bH,

p+ b−a
2
c ·H ≤ p−bH ≤ p+ b−a

2
+1− 1

W
c ·H

⇒−b−a
2
+1− 1

W
c ≤ b≤−b−a

2
c.

(A.15)

Since W ≥ 2, we obtain:

ba
2
c ≤ b≤ da

2
e. (A.16)

Similarly, we can prove that

bd
2
c ≤ c≤ dd

2
e. (A.17)

When a is odd, there are 8 possible combinations of b, c and d that satisfy (A.10), (A.16)

and (A.17). The combinations are shown in Table A.1 where a is represented as 2K +1

with K ∈ N0. When a is even, there are only 5 possible combinations of b, c and d

that satisfy the properties. The combinations are shown in Table A.2 where a = 2K for

K ∈N0. “Output” in the tables means the filtering output, 1
5 ∑

2
−2 x[m,n+ jD]. The output

has 5 possible values: p, p− 2
5H, p− 1

5H, p+ 1
5H and p+ 2

5H. Therefore, a 5-tap sparse

filter with fixed equidistant sample spacing can generate at most four new codewords

when used on equi-width banding steps.

The range of D has to satisfy the conditions listed in Tables A.1 and A.2 so that
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Table A.2: All the possible combinations of b, c and d when a = 2K where K ∈ N0.

b c d Output Conditions of D
K K−1 2K−1 p− 2

5H −W
2 < D−KW < 0 (K > 0)

K K 2K−1 p− 1
5H −W

3 < D−KW < 0 (K > 0)
K K 2K p −W

4 < D−KW < W
4

K K 2K +1 p+ 1
5H 0 < D−KW < W

3
K K +1 2K +1 p+ 2

5H 0 < D−KW < W
2

there are n ∈ [n0,n0 +W −1] that can achieve the combination. The ranges of D overlap,

so some values of D can generate as many as four new codewords. Table A.3 shows the

output codewords and the corresponding widths of the mini-steps for different ranges

of D. For simplicity, D′ is used to represent D−KW . The widths of mini-steps are

computed by determining the range of n for each combination of the input codewords.

Zero width means the codeword cannot be generated by this range of D. In most of the

circumstances, four new codewords can be generated by the filter. Fewer than 4 new

codewords will be created only when D = KW + K′
q W where q = 4 or 3 and K′ ∈Z. Note

that D is an integer, so these values of D can be achieved only when W or K′ is a multiple

of q. The table indicates that D and D+KW yield exactly the same filtering output. It

also indicates that the width of the output mini-steps is greater than or equal to W
5 , where

the minima occur at D = K′W
5 +KW , where K′ ∈ Z and K′ is not a multiple of 5.
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Table A.3: Widths of output mini-steps after filtering for different ranges of D′ =
D−KW where K ∈ N0.

Range of D′
Widths of mini-steps at each codeword

p− 2
5H p− 1

5H p p+ 1
5H p+ 2

5H
0 < D′ < W

4 D′ D′ W −4D′ D′ D′

D′ = W
4 D′ D′ 0 D′ D′

W
4 < D′ < W

3 D′ W −3D′ 4D′−W W −3D′ D′

D′ = W
3 D′ 0 4D′−W 0 D′

W
3 < D′ < W

2 W −2D′ 3D′−W W −2D′ 3D′−W W −2D′

D′ = W
2 0 3D′−W 0 3D′−W 0

W
2 < D′ < 2W

3 2D′−W 2W −3D′ 2D′−W 2W −3D′ 2D′−W
D′ = 2W

3 2D′−W 0 2D′−W 0 2D′−W
2W
3 < D′ < 3W

4 W −D′ 3D′−2W 3W −4D′ 3D′−2W W −D′

D′ = 3W
4 W −D′ 3D′−2W 0 3D′−2W W −D′

3W
4 < D′ <W W −D′ W −D′ 4D′−3W W −D′ W −D′

D′ =W 0 0 W 0 0
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