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Please make the following corrections on subject report. 

11: 

13: 

21: 
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24: 

36: 

Two lines above Eq. (8), read: "Sec. IV.A. (b)." 

Eq. ( 13): close parenthesis after a
21

d
1 

in upper right element. 

Line 3: delete comma after Eq. ( 15). 
Two lines after Eq. (23), read: "Eq. (22) equal to zero." 

Second line of paragraph (b), read: "of" before RP 
2

, not "or!' 

Second line of second paragraph: delete comma after FL. 

Sixth line from the bottom: replace sentence following "!m2! = 10." 
by: It should be noted that T( lm2!) behaves differently wheh the 
numerical values are such that the image of the slit in RP2 is still 
smaller than the aperture in RP4 when the image of the aperture 
in RP1 fits the aperture in RP3. 

Page 41: Introduce minus sign in front of right side of Eq. (42a). 

Page 43: Remove all subscripts n in Fig. 1. 
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Fig. 22. Li~ht transmission, T, as a function 
of lm2 J for a spectrometer setup. 



.... 

\ 

UNIVERSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 
Berkeley, California 

Contract No. W -7405-eng-48 

MATRIX REPRESENTATION OF GAUSSIAN OPTICS 

Klaus Halbach 

May 24, 1963 

UCRL-1,0709 



... 

· . .,. 

! .... 

-iii-

MATRIX REPRESENT AT ION OF GAUSSIAN OPTICS 
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Lawrence Radiation Laboratory 
University of California 
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May 24, 1963 

ABSTRACT 

UCRL-10709 

The ray tracing method is used to discuss Gaussian optics. Mter 

proving that Gaussian optics can be described by matrices, some often-used 

general formulae for telescopic and focusing systems are derived. This 

formalism is then used to solve several problems. They are selected to 

make the reader familiar with the application of the matrix representation 

of Gaussian optics and to acquaint him with some optical systems that are 

veryuseiulbU:t not well known among physicists who use optical methods only 

occasionally. 
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I, INTRODUCTION 
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Although matrices are often used to describe electron-optical sys-

1 
tems, and although there exists an excellent modern book on geometrical 

(light) optics 
2 

which uses matrices, the matrix technique of dealing with 

optical problems is by no means common knowledge among physicists, One 

probable reason is that, to the knowledge of this author, there is no paper 

or book that addresses itself not to the professional optical systems designer, 

but to the physicist who uses optical methods only occasionally in the labora= 

tory. This article attempts to fill that gap. 

Since the laboratory physicist usually has to as semble his optical sys-

tem with stock items, his possibilities for correcting any but chromatic aber-

rations are limited. We therefore deal primarily with first order (Gaussian) 

optics and mention aberrations only to see what the limitations of Gaussian 

optics are and what has to be avoided in the design of an optical system ... We 

try to demonstrate· that the description of Gaussian optics with matrices 

makes both the analysis and synthesis of optical systems so simple that they 

can be done in a systematic way even by a person inexperienced in this field, 

We intentionally limit ourselves to light optics, since the application 

of this formalism to electron- and ion-optical problems is trivial to the 

physicists concerned. The only concession we make is that in our general 

formulae we do not assume the object and image space to have the same 

index of refraction, thus making these expressions directly applicable to 

electron-optical problems. 
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II. RAY TRACING FORMULAE AND INTRODUCTION OF MATRICES 

To derive the ray tracing formulae, we require, at least at first, that 

the optical system consist of lenses with rotational symmetry with all axes 

coinciding, thus forming the common optical axis. Therefore, we momen­

tarily exclude cylinder lenses. We furthermore restrict the discussion in 

the beginning to meridional rays, i.e. , to rays that lie in a common plane 

with the optical axis of the system. 

To describe a ray at a reference plane (RP), which is always perpen­

dicular to the optical axis, we introduce the two quantities r and r 1 (Fig .. 1 ). 

The distance between the optical axis and. the intersection between the ray and 

the RP is given by r, whereas r 1 is an abbreviation for dr /du, describing 

the resulting change dr of r when the RP is displaced by du. The object 

of tracing a ray is to establish the relation between r, r 1 of some initial RP 

and r, r 1 of any other . RP of interest. In deriving these relations, we. as­

sume both r and r 1 to be small enough so that only the lowest significant 

powers of r and r 1 have to be taken into account. This leads to equations 

that are linear in r and r', giving first order (Gaussian) optics. Since we 

almost always use this approximation, for simplicity we usually refer to r 1 

as the angle between the ray and the optical axis (although r 1 is, as introduced 

above, really the tangent of that angle). 

Since a ray goes either through a homogeneous medium or is refract­

ed at the interface between two media with different indices of refraction, we 

have to derive, at least in principle, only the two basic relations that we dis­

cuss in Sees. II.A and II. B. 

' 
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A. Transit Through a Homogeneous Medium 

In Fig. 2,. and .all other figures of this paper, the location of the RP 1 s 

are marked by numbered points on the optical axis. If RP1 and RP2 are sep­

arated by the distance n 12 , we directly obtain from Fig. 2 

(la) 

and 
r ' = r ' 2 1 . 

B. Refraction at Interface Between Different Media 

In our approximation we can represent all interfaces by spherical 

surfaces. In accordance with Fig. 3, weobtainforr
1

1 <<1, r 2
1 <<1, 

r
1 

< <R from Snell's Law, 

n 1 · (r 1
1 + r 1/R) =n2(r 2

1 + r 1/R). 

After rearrangement, and with 1/R = K, we obtain for the relations between 

r 
1 

, r 
1 

1 and r 2 , r 2 ' : 

nl 
rl + --· rl' . 

n2 

(2a) 

Since we carry only first-order terms, we can assume that the refraction 

takes place at the plane that is tangential to the interface at the intersection 

between the axis and the interface (vertex); thus establishing the same set of 

RP 1 s for all diffracted rays; this does not change Eq. (2a). 

c. Consequences and_ Aaplications of 
Equations (la) an (2a) 

In our approximation, the relations between r 
1

, r 
1

1 and r 2 , r 2
1 are 

linear for both the transit through a homogeneous medium and for refraction 

at any interface. Since tracing through a whole optical system consists of a 

sequence of these steps, the relation between the r, r 1 of any two RPB s must 

be a linear one too. It is therefore appropriate and practical to describe 



-4-

these relations by matrices. If we introduce the·abbreviation 

and 

' ~ =CJ 
column vector ( ~ ~ , we can rewrite Eqs. ( la) and (2a) as 

~z o c D:z)~~ 

(3) 

for the 

(homogeneous medium) (lb) 

0 

.::2 = ( 1 (refraction) . (2b) 

nl-n2 
K· 

n2 ;. 

We notice that the determinant of the matrix in Eq. (2b) (which describes 

the transition from a medium with a refractive index n 
1 

to a medium with 

refractive index n 2 ) is n
1
/n2 , whereas the determinant of the matrix in 

Eq. (1 b) (no change of n) is one. Although we use a considerably simpler 

method later, the matrix that describes the relation between any two RP 1 s 

can be obtained by multiplication of matrices of the type appearing in Eqs. 

(1 b) and (2b), as we see in the following example .. Since the determinant of 

the product of matrices equals the product of the determinants of the matrices, 

the determinant of the matrix describing the relations of the ;: in the two 

RP 1 s must be equal to the ratio of the indices of refraction surrounding these 

RP 1 s. We therefore have the general result for any two RP' s 

II All (4) 

To demonstrate how A could be obtained in principle, we calculate 

the matrix connecting the two vertex planes of a thick biconvex lens .. Accord-

ing to Fig. 4 we have 



Al Z.:.1 =· !:z 
Az 3!:2 = !.3 ; 

A34!:3 = !.4 . 
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(5a) 

Here, A
23 

is equal to the matrix in Eq. (lb), with _D
12 

being replaced by d; 

the matrices A
12 

and A
34 

are equal to the matrix in Eq. (2b) with, respec­

tively, K being replaced by K
1 

= l/R
1 

for A 12 , and K, n
1

, and n 2 being 

replaced by -K2 = - l/R2 , n 2 and n 3 for A34 ~ (For A 34, K has to be re­

placed by -K2 beca\lse of opposite curvature.) Using Eqs. (5a), (lb), and 

(2b), we obtain 

and 

1 

= 

(nl -nz) (n3 -nz) 

n2n3 

0 

·• Although Eq. (5b) contains all the necessary information for ray tracing pur-

poses, the individual matrix elements do not yet give us direct information 

about the focal length, position of the focal points, etc. , of the thick lens. 



-6- UCRL-10709 

Before we discuss this subject in a general way (Sec. IV), we make some 

generalizations in the next section. With the exception of the discussion of 

skew rays, Sec. III can be omitted at the first reading without impairing 

one 1 s understanding of the rest of this paper. 

III. GENERALIZATIONS 

A. Skew Rays 

To discuss skew rays (i.e. , rays that are not in a plane with the 

optical axis), we use Cartesian coordinates x-y in all RP 1 s, with all the X 

axes parallel to each other (and therefore the y axes are similarly parallel). 

If we generalize the column vector r introduced in Eq. (3) to have the com-

ponents x, x 1 , y, andy' in this order, we want again to establish the relation 

between the r 1 s in different RP' s. As in Sec. II, by dropping all terms of 

higher than first order, which particularly excludes products between any of 

the quantities x, x 1 , y, andy', the rel~tion between the ;:_ 1 s in different 

RP 1 s can again be represented by a matrix, which is this time a 4X4 rna-

trix. By representing this 4X4 matrix with the help of four 2X2 subma-

trices b in the following way, 
VfJ. 

(6) 

it is easy to see that b 12 = b
21 

= 0. Since a ray starting in a meridional 

plane always remains in that same meridional plane, the special meridional 

ray defined by x and x' f 0 andy= y' = 0 in one RP must also satisfy 

y = y 1 = 0 in any other RP. This is evidently only possible if b 21 = 0; by 

analogy one obtains b 12= 0. Because of the rotational symmetry around the 

optical axis, the matrices describing meridional rays must be identical for 
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all meridionc:U plane$,which necessitates b
11 

= b 22 . This means that the 

2X2 matrices introduced in Sec. II are sufficient to describe skew rays too. 

Therefore, the r, r 1 introduced in.Sec. II can be interpreted as the values 

descrlbing the projection of a skew ray onto any meridional plane of interest, 

and a change in the notation introduced in Sec. II is not necessary. 

B. Cylinder Lenses 

If an optical system contains cylinder lenses also, we redefine the 

optical axis as the axis that perpendicularly intersects all interfaces between 

different media, and we require that such an optical axis exists. Using the 

same notationas in Sec. III.A, and arguing the same way, one again arrives 

at the conclusion that the relation between the r in different RP 1 s can. be 

expressed by a 4 X4 matrix,, which we split up into four 2 X 2 matrices as in 

Sec. III, A. To find out under what circumstances h 12 .:.: b 21 = 0 l see Eq. (6)J, 

let us imagine that we calculate the matrix describing the refraction at the 

interface between two different media. It can be shown that for any second 

order interface (which are the only ones of interest in our approximation}, 

there exists one Cartesian coordinate system x, y such that if y = y 1 = 0 be-

. fore refraction, y = y 1 = 0 holds also after refraction, and the same is true 

for x and x 1 • By using these coordinates, the refraction at the interface is 

described by a 4X4 matrix with b 12 = b
21 

= 0 and, since we are dealing with 

cylinder lenses, b
11 

f. b 22. Furthermore, since the transition through a 

homogeneous medium is described by a matrix with b
12 

= b
21 

= 0 and 

b 11 ~ bz{(~ ~) , b 12 and b 21 vanish for a system containing cylinder 

lenses when all the coordinate systems mentioned above have the same 

orientation. Consequently, in this case it is possible to describe the rela-

tion between x,x 1 at two different RP 1 s by a 2X2 matrix {b
11

), and to in­

dependently describe the relation of the y, y 1 1 s by another diff~rent 2 X 2 
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matrix (b 22). This means that the methods outlined in this paper can be di­

rectly applied to systems containing cylinder lenses, provided their principal 

axes are aligned as specified above. If this is not the case, b 12 and b 21 in 

general do not vanish and one has to use 4X4 matrices. Because of its rela-

tive unimportance, we will not discuss this case further. 

C. Limitations of Gaussian Optics* 

The obvious procedure for treating aberrations (i.e. , deviations from 

Gaussian optics) is to carry not only first order terms but also higher powers 

of r and r 1 in the calculation of the relation between r, r 1 in different 

RP' s. Since a reversal of the signs of r, r' in one RP must necessarily lead 

to a reversal of the signs of r, r 1 in all other RP' s, the expressions describ-

ing the relation between two RP' s can depend only on odd powers of r, r 1 • 

Dropping higher than third-order terms, r in some RP would then depend 

on r l'r 
1

• . .in some other RP in the following way 

(7) 

and the expression for r' would have the same structure. The expression 

describing the transition through a homogeneous medium [ Eq. (la)] would 

remain unchanged and corrective terms would appear only in the formulae 

describing the refraction at interfaces. 

If Eq. (7) describes such a refraction, a 13 , for example, has to be 

proportional to the inverse second power of the radius of curvature R of that 

interface, since a
13

r 
1

3 
has to have the dimension of a length and R is the 

I 

* For simplicity,, we talk here only about meridional rays; all the argu-

ments hold equally for skew rays,. where we would use the four variables 

x,x', y, andy'. 
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only length besides r 
1 

entering that problem. Requiring that the third order 

terms be negligible compared to the first order terms. one has therefore to 

fulfill, at least order of magnitude-wise, the conditions 

d I 2 1 an r
1 

< < . 

We see that these conditions are weaker than the ones originally set forth in 

Sec. II. B. Because we find later that for thin lenses.l/f = (n-l){l/R1 +1/R2}, 

2 2 
we can replace (r

1
/R) < < 1 by {r

1
/f) < < 1 for a thin lens, again describing 

this condition only to an order of magnitude. Simply stated, this means that 

since the laboratory physicist usually does not have the means to obtain lens 

systems that are corrected for his particular application, he should try to use 

his lenses so that r 1 
2 < < 1 and (r 

1
/f) 

2 < < 1, the latter condition requiring 

that the square of the effective f number of each lens be large compared to 

one. 

The correct use of a given lens can help to minimize aberrations: 

If a given plano-convex lens has to be used to form an image of an object that 

is far away (Fig. 5), the use of the lens as shown in Fig. 5b will lead to· 

smaller aberrations than if used as in Fig. 5a. Although in Fig. 5b the ray 

is refracted twice, the aberrations will be smaller than in Fig. 5a, since at 

each interface in Fig. 5b the aberrations are of the order of I/ 4 of the aber-

ration introduced at the second refracting interface in Fig. 5a due to the 

smaller change of r 1 at each refracting interface. 

Because chromatic aberrations are caused by the wavelength dependence 

of the refractive index of materials, their effects cannot always be minimized 

by reducing the effective aperture of lenses, and do not belongin the category 

of limitations of Gaussian optics. With the exception of one application (Sec. 

V. H), we do not discuss chromatic aberrations because a great variety of 

achromats are available at reasonable prices. 
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IV. DISCUSSION OF EQUATION (4) 

A. Significance of the Disappearance of Matrix Elements 

Referring to Eq. (4),. we notice first that because of II All.= n 1/n2 >0, 

at most only two of the matrix elements of A can be zero. If two elements 

actually are zero, they must be either the diagonal elements or the off-dia­

gonal elements. To get a better understanding of the meaning the different 

matrix elements can have (besides ~heir obvious role for ray tracing), we 

let the matrix elements of A individually vanish: 

(a) Weset a 12 =0. Theequationfor r 2 thenreads r 2 =a
11

·r
1

. 

This means that the two RP 1 s have an object-image relation, with the lateral 

magnification m = r 2/r 1 
= a

11
. 

(b) We set a 21 = 0. The equation for r 2 • then reads r 2
1 = a 22 · r

1
•. 

This means that a parallel beam of light entering the optical system also 

leaves the system as a parallel beam. Since this is the description of a.tele­

scope focused at infinity, we call systems with a 21 = 0 telescopic systems 

and. introduce the angular magnification or power of the telescope, 

p = r 2 ' /r 1 ' = a 22 . A further discussion of telescopic systems follows in 

Sec. IV.B. In Sec. IV. C the definition of focusing systems is given. 

(c) We set a
11 

= 0. This means that for r
1

• = 0, then r 2 = 0 in­

dependently of the value of r 
1

; i.e. , a beam of light parallel to the axis 

focuses in the second RP to r 2 = 0. Since this is the definition of a focal 

point, a 11 = 0 indicates that the second RP is a focal plane (FP). 

(d) We set a 22 = 0. A consideration equivalent to the one above leads 

to the conclusion that for. a 22 = 0, the first RP is a FP. A further dis-

cus sian of focusing systems follows in Sec. IV. C. 
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B. Telescopic Systems 

As an introductory remark to the discussion of telescopic systems it 

might be worthwhile to mention that we discuss them not only because of the 

importance of the telescope as an instrument for observational purposes, 

such as in astronomy, but particularly because they can be used advantage-

ously to set up optical systems in the laboratory,. as we will see in Sec. v_.c. 
\ 

If we limit ourselves to telescopic systems with n
1 

= n 2 , which is fulfilled 

for an air-air system, and if we introduce the power p of the telescope as in 

Sec. IV. A. 2, the matrix describing the relation of the r in the two RP 1 s 

becomes 

(8) 

Where the value of the upper left element results from the condition 

To find out whether there are pairs of RP 1 s that have an object-

* image relation, we introduce RP 
0 

at the distance D 
1 

to the left of RP 
1

, 

and RP3 at the distance n
2 

to the right of RP2 (Fig. 6). Analogously to the 

derivation of Eq. (5b), by connecting !.o to .::_3 through ,::3 = A 03;:_
0 

we obtain 

with Eqs. (lb) and (8) for the matrix A 03 : 

* In general, it is of course impossible to distinguish between real and 

virtual objects and images, the difference being only their physical accessi= 

bility. In the design of specific systems, the distance between physical bar-

riers (lens surfaces} and RP' s are known and have to be taken into account 

if accessibility is of importance. 
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and therefore 

A03 
=( 10/p (9) 

The position of the RP 1 s that have an object-image relation is obtained by 

setting the upper right element of this matrix equal to zero, giving 

and (10) 

From Eqs. (9) and (10) we draw the following important conclusions: 

(a) The lateral magnification m, introduced before, is the same for 

all pairs of. RP 1 s that have an object-image relation, and is the reciprocal 

of the power of the telescopic system 

m = 1/p ( = const) . (11) 

(b) If the object is moved by the distance AD
1

, the image moves the 

distance AD 1/p
2 

in the same direction. This is equivalent to a constant axial 

magnification m ax 

I 
2 2 

m = 1 p = m ( = const). ax (12) 

Equation (11) allows a very simple and well-known determination of the power 

of a telescope: The ratio of the sizes of the objective aperture (entrance 

pupil) and its image (exit pupil) gives directly the power of a telescope. In 

Sec. V. C,. we show that Eq. (12) is very important for the design of optical 

systems that use both telescopic and focusing systems. 
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C. Focusing Systems 

Referring to Eq. (4), we define systems with a 21 f. 0 as focusing sys­

>:C 
tems because, as we show now, they have one FP (real or virtual) on either 

side of the optical system. To show this, we introduce,. as in the previous 

section, two new RP' s (Fig. 6) and find the FP' s by setting the diagonal 

elements of A
03 

equal to zero; we have 

After the multiplications are carried out, we have 

Setting the diagonal elements of this matrix equal to zero, we find that there 

is one and only one FP associated with each side of the optical system. 

To relate the matrix elements of Eqs. (4) or (13) to the focal lengths (FL's) 

of the optical system, we have to generalize the customary definition of the 

FL for a thin lens, which is usually defined as the distance between the lens 

and the FP (Fig. 7). If one imagines that the lens is made inaccessible by 

placing the lens between two very thin glass plates, as indicated by the dashed 

lines in Fig. 7, one is led to the following generalized definition of the FL: 

Referring to the ray originating from focal point l in Fig. 7 or 8,. we 

have 

fl = r z/r 11 • (14a) 

Referring to the ray going through focal point 2 in Fig. 8 and taking 

into account that for a positive FL r
1 

and r 2 • have opposite signs, we ob-

tain 

* See the footnote to Sec. IV, B. 
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(l4b) 

We introduce two different FL' s since we do not know yet under what cir-

cumstances they are equal. 

With Eq. (14) we can now easily construct the ma,trix connecting the 

two FP 1 s of an optical system: 

For a ray originating from focal point one (r
1 

= 0), we get in FP2 

r =f·r 1 
2 1 1 and r2 1 = 0. Using the notation of Eq. (4) we get a 12 = £1 and 

a 22 = 0. A ray parallel to the optical axis (r 
1

• = 0), intersecting FP 1 at r 1, 

gives in FP2 r 2 = 0 ·and r 2 • =- r
1
jf2 ,resultingina11 = 0 and a 21 =- l/f2. 

The 

The matrix· establishing the connection between RP 
1

, located at the distance 

z' 1 totheleftof FP
1

, and RP2,.locatedatthedistance z 2 totherightof 

FP2 , is obtained by multiplying the matrix A from the left by 
FP

1
-FP2 

~ :}nd from the right by(~ :) (Fig, 9). Since we have made these 

multiplications already, we obtain the result from Eq. (13) by setting 

·iz c zlzZ-~1£2 

A12 = 
zl ( 15) 

and 

IIA1211 
f1 n1 

= r= 
2 n2 

,., 

\., 

~ 
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From Eq. (15) we learn that, for any air-air system, f
1 

= f 2 . Setting the 

upper right element of A 12 in Eqs. (15) equal to zero, we get for the positions 

of planes that have object-image relation 

zlz2 = flf2 · 0 6 ) 

If Eq. (16) is fulfilled, for the lateral magnification m = r 2/r 
1 

we obtain 

from Eqs. 15 and 16 

( 1 7) 

Contrary to the magnification of a telescopic system l Eq. (11)] , the magnifi-

cation obtained with a focusing system .depends on the position of the object on 

the optical axis. A simple application of Eq, (17) is discussed in Sec. V, A. 

It is evident from Eq. (16) that the axial magnification of a focusing 

system depends also on the position of the object. It is therefore only pos-

sible to define an infinitesimal axial magnification, i. e. , an axial magnifi-

cation that is constant only over an infinitesimal region along the axis. From 

Eq. (16) we obtain 

m = ax - dz 
1 

- (18) 

Equation (18) indicates that the image always moves in the same direction as 

the object, except when the object goes through the FP;. in that case, the 

image moves from + <C to -«~> or vice versa, depending in what direction the 

object moves, 

To get more familiar with the very important and often used Eq. (15), 

we apply Eq. (15) to Eq. (5b), the latter describing the relation between the 

vertex planes of a thick lens. If we simplify Eq. (5b) by assuming n 3 == n
1 

(as it is in any air-air lens), we know from Eq. {15) that f2 = f
1

, thus making" 

the indices 1 and 2 unnecessary. If we use Eq, (15) to describe the relation 

between the vertex planes of a thick lens, Eqs. (5b) and (15) must be equivalent 
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since both equations describe the same sys~em. The difference between 
I 

Eqs. (5b) and (15) is based only on the choice of quantities used to express 

the matrix elements (i.e., the radii of curvatures, distances and indices of 

refraction, vs FL and position of the vertex planes with respect to the 

FP 1 s). We can therefore directly compare the matrix elements. From th.e 

lower .left elements we get for the FL 

}= [:~ - ~ [K1 + K2 - dKh ~ - :0]. (19) 

To obtain the position of the right FP, we compare the upper left elements of 

Eqs. (5b) and (15); this yields 

z z = - f [ 1 • d K 1 ( 1 - : ~)] • (20) 

It should be emphasized that this z 2 describes the position of the right ver­

tex plane of the thick lens (RP 4 in Fig. 4) with respect to the right FP of 

the thick lens. According to our convention regarding the sign of z 2 (Fig. 9), 

RP 4 in Fig. 4 would lie to the left of the right-sided FP if z 2 in Eq. (20) 

were negative, as it would be for a positive, not-too-thick lens 

An equivalent comparison of the lower right matrix elements of 

Eqs. (5b) and (15) gives the position of the other FP. 

If we disregard the effect of apertures for the moment, the FL' s and 

the position of the two FP 1 s relative to an optical system describe that sys-

tern completely. Despite this fact, it is customary and very practical to in-

t:r;oduce two new concepts, namely the principal planes (PP) and nodal points 

(NP). 

The PP 1 s are defined as the pair of planes that have an object-image 

relation with a magnifica~ion m = 1. After satisfying the requirements of 

J 
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Eq. (16) and setting m = 1 in Eq. (17), we obtain for the position of the PP' s 

with respect to the corresponding FP 1 s l see (Fig. 10)] ,:, 

z 2 = - f 2 and z 1 = - f 
1 

. (21) 

We can therefore redefine the FL' s as the distance between the FP' s and 

their corresponding ppv s, a definition which is often used instead of the one 

that we used originally. We can also use the distances a and b of two 

RP' s from their respective PP' s, instead of z
1 

and z 2 , to describe the 

positions of two RP' s that have an object-image relation. By introducing 

z
1 

=a- f and z 2 = b- f into Eq. (16), we get, for a system with f
1

=f2=f, 

the often-used relation 1/a + 1/b = 1/f. 

The two NP' s are located on the optical axis and their position on 

the optical axis is such that a ray going through NP 
1 

with r 
1 

1 , goes through 

NP2 with r 2
1 = r

1
•. Since the two NP's have an object-image relation, 

Eq. (16) has to be satisfied. Using this and setting r
1 

= 0 in Eq. (15), for 

r v 
2 = r

1
• we obtain z

1 
= - f 2 and z 2 = - f

1 
(see Fig. 10). This, together 

with. Eq. (21), shows that the NP' s are in the PP' s for systems with 

f 1/f2 = n
1
/n2 = l, i.e., for all air-air systems. Besides depicting the rela­

tive positions of the FP' s, PP' s and NP 1 s for a system with positive FL' s, 

Fig. 10 also shows the self-explanatory geometrical construction of the image 

of r 
1

, using the properties of the FP' s, PP' s and NP' s. This construction 

again allows us to directly prove the two equations contained in Eq. (17), thus 

giving Eq. (16) again. 

In some cases, the concept of NP' s leads to a simple determination 

of PP' s. The ray drawn in Fig. lla is obviously refracted twice as if it 

* It should be noted that a set of RP 1 s for which m = - l is obtained from 

Eqs. (21) by changing the sign of the right sides of Eqs. (21). 
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were going through a plane parallel plate, thus giving the position of the 

NP 1 s and therefore the PP 1 s, Figure 11 b shows the position of the NP 1 s 

and PP 1 s for a 'typical ''makeshift" cylinder lens, namely a polished lucite 

rod. Obviously, the ray drawn in Fig. llb is not refracted, showing that the 

two NP 1 s are at the center of the lens, thus giving the two coinciding PP 1 s 

as indic;:ated, 

D, · Use of Mirrors and Significance of the Sign of FL 1 s 

When a mirror is used to connect two optical systems, this should 

be done in such a way that the optical axes of the two systems are reflected 

into each other, as shown in Fig. 12. Although, the optical axis physically is 

then no longer a straight line, all the symmetry properties required above 

are still fulfilled optically. We therefore still draw the optical axis as a 

straight line in the drawings of optical systems, even though plane mirrors 

might act1,1ally be used, and it seems that no modifications of the whole analysis 

above are necessary. This is true with one exception: 

In our definition of the FL 1 s l Eq. (14)], we used the signs of r and 

r 1 , belonging to different sides of the optical system, Essentially the same 

is true if the FL' s are defined as the distance between PP 1 s and FP 1 s, 

since the definition of the PP 1 s requires the comparison of two r 1 s located 

on different sides of the optical system, While these signs are well defined 

when no mirrors are used, they can become ambiguous when plane mirrors 

are part of the optical system. I£. for example, one mirror is used, the 

image of a right=handeq coordinate system is a left-handed coordinate system; 

and with the use of several mirrors it is possible that the image of an object 

in any RP will be turned by an arbitrary angle with :t;espect to the object, 

a~though the object and image RP 1 s might still be paralle~. This makes it 

apparent thG1-t the sign$ of the r and r 1 on one side of such an optical system 

.... 

f 
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with respect to the signs of r a11.d r 1 on. the other side can become a matter 

of convention or definition. As a consequence, the sign of the FL 1 s then be­

comes a matter of definition as well. This might come as a surprise to any= 

one who deals mostly with single, thin, positive and negative lenses, therefore 

associating a positive FL with. a focusing system and a negative FL with. a 

defocusing system. If one wants to differentiate between focusing and de-· 

focusing systems, a much better criterion seems to be whether or not the 

focal point of interest is real or virtual, i.e., accessible or inaccessible, 

. and we will see in the discussion of the doublet (with no mirrors and therefore 

no sign difficulties) that it is quite simple to build a system with a negative 

FL but real. FP' s. 

For completeness we add a diagram representing a concave mirror 

(Fig. 13). Because of the mirror action, the optical axis is reflected back 

into itself, having opposite direction after reflection .. We represent this 

part of the optical axis as an extension of the first part of the optical axis. 

It is easy to show that the vertex plane of the concave mirror can be chosen 

. as the location for the two PP' s and that the FL is f = R/2, leading to the 

position of the FP' s as indicated in Fig. 13. With the same choice for the 

position of the PP' s the FL of a convex mirror becomes f = - R/2. 

V. APPLICATIONS 

In the following applications we use positive lenses exclusively be­

cause the number of applications requiring negative lenses is very limited 

and, as a result, negative lenses are available only in a very limited number 

of FL' s and diameters. The figures shoula be interpreted as schematic 

representations because no attempt has been made to draw them properly to 

scale. Individual lenses are always drawn as biconvex lenses, although one 

would often actually use different types, such as plano-convex lenses or, most 
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of the time, achromats, We discuss exclusively air-air systems (n
1 

:= n 2), 

so that the two . FL' s of our systems become equal. 

Mter briefly mentioning a simple method for the determination o£ the 

FL and the position of the FP' s of an optical system, we discuss three 

optical systems that can be used advantageously to assemble optical systems 

in the laboratory. We then analyze some typical problems that the experimen-

tal physicist may have to solve in his work. 

A. Measurement of the FL and Position 
of the FP' s of an Optical System 

Equation (17) allows us to perform these measurements in a simple 

way: Using a real or virtual object in such a position that the magnification 

of the image with respect to the object can be measured, the magnification 

for this first measurement is given by Eq. (17) as 

Changing the object-system distance, the distance between the system and 

the image has to be changed by a measurable length d and one obtains for 

this second measured magnification 

The difference of these two equations gives for the FL 

With this now known value for f, the equation for m
1 

or m 2 then gives the 

position of the FP on the image side, and z
1 

= £
2jz 2 gives the FP on the 

object side of the system. An often used special case of this met}J.od consists 

of leaving the distance between object and image fixed and locating tl1,e-system 

in those two positions where one obtains an image. 

B. The Doublet 

This system is of great importance since such instruments as tele-

scopes and microscopes are basically doublets; the doublet is' furthermore, 
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very useful in the laboratory since it makes it possible to obtain. a system 

with.a specified FL when only lenses with a limited variety of FL 1 s are 

available. According to Fig. 14, and by using Eq. (15), for matrix A 13 , 

which relates RP
1 

to RP3 , we obtain 

and therefore 

A - 1 
13 - flf2 

1 
;:;: 

fl£2 

f 2 ) - 2 

0 1 

Comparing the lower left matrix elements of Eqs. (22) and (15), we obtain 

for the FL of the doublet 

(22) 

(23) 

indicating that f can be varied continuously by changing d. 

Setting the upper left element of Eq. (22) to zero, we obtain for the 

position of the FP on the right side of the system 

2 
Dz = fz/d = - ££2/fl • 

leading to a real FP for a negative FL as mentioned in Sec. IY.D. Be= 

cause of symmetry, the same holds for the other FP. 

For d ;:;: 0, Eq. (22) describes a telescopic system with the power 

* p == - f
1
/f

2
. Focusing a telescope to a finite distance requires us to change 

d in such a way that the image, as seen from RP3' appears to be at infinity. 

Since this is equivalent to the statement that the left- sided FP of the system 

has to coincide with the object plane, we obtain d by setting the lower right 

* In telescopes for terrestrial use~ p is usually made positive with the help 

of prisms that act as mirrors. 
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element of the matrix in Eq. (22) to zero, with n
1 

describing the position 

of the object, and we have 

2 
d = f 1 /D 1 . (24) 

Although the ''telescope 11 is then a focusing and not a telescopic system, the 

FL of the system is not a very useful concept in this case and it is customary 

to still call the system a telescope. Using .the distance d given by Eq. (24), 

one gets from Eq. (22) 

r ' 2 

This means that the angle under which an object at a finite distance is seen 

through a telescope focused on that object is p times the angle under which 

the object is seen from the left-sided focal point of the objective of the tele-

scope. 

Equation (23) indicates that it is possible to realize very small FL' s 

by using lenses with small FL' s f
1

, f
2 

spaced by a large distance so that d 

becomes large compared to these FL' s. This, of course, is the description 

of the construction of a microscope, although in reality both lenses are multi-

plets themselves in order to minimize aberrations. 

C. Combination of a Focusing with a Telescopic System 

In Sec. V. B we dealt with the problem of designing an optical system 

with an adjustable FL. It is often equally important to .be able to change the 

distance between the FP' s of an optical system without changing the FL. 

This can be done conveniently by combining a telescopic system with a focus-

ing system. If in Fig. 15 RP 
1 

and RP 
2 

are the two RP' s that go through 

the entrance and exit pupil of the telescope, or any other pair of RP' s that 
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have an object-image relation, the matrix connecting r to r is given by 
-1 -3 

' 2 2 
-- ,.'i+{' ::..f p 

Comparison of Eq. (25) with Eq. (15) yields the following results: 

{a) The FL of the combined system is given by f b = p~ f, and 
com 

is therefore independent of the distance between the telescopic and focusing 

system. This result can also be easily obtained without the use of matrices; 

we simply inspect a ray that is parallel to the axis before it enters the tele-

scopic system, making .use of the properties of a telescopic system and using 

Eq. (14b) for the definition of the FL, we again get f b = pd. com 

(b) If the left-sided FP of the focusing system lies at a distance D 

to the right (left) or RP2 , . the left-sided FP. of the combined system lies 

2 
at the distance D· p to the right (left) of RP

1
. This is of course a direct 

consequence of Eq. (10). It is obvious that the right-sided FP of the com-

bined system coincides with the right-sided FP .of the focusing system. 

These properties of this system can be used very advantageously when 

two rather immovable objects, such as a spectrometer and a .heavy apparatus, 

have to be connected optically by a system with exactly specified FL and 

position of the FP' s. One would first build a focusing system, usually a 

doublet, that together with the telescope has .the _desired FL. The required 

distance.between the FP' s of the system can then be obtained without any 

change of the combined FL by properly adjusting the distance between the 

focusing system and the telescopic system. 
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· D. Design of a Simple "Zoom"Lens 

For some applications it is desirable to have an optical syste.m whose 
I 

FL can be varied without changing the distance between its FP' s. Although 

this can be achieved with the system discussed in Sec. V. C, we demonstrate 

that it is possible. to design a system that is much simpler in every respect. 

By using:Eq. (22) it can easily. be shown. that a doublet cannot have.the desired 

properties .. We therefore discuss a triplet, since it has one more distance 

that can be changed (Fig. 16). 

To obtain ,a very simple system, we impose in addition the condition 

that we shall move only one of the three lenses in order to change .the FL, 

without changing the distance between the FP's of the system. Since moving 

lens 1 (or lens 3) alone is equivalent to a variation ofthe distance between 

the two components of a doublet, we therefore want to move lens 2 al()ne, 

thus keeping the distance between lenses 1 and 3 constant, implying 

a 1 + a 2 =a= const. From Fig. 16, we obtain for the matrix A
14

, which 

. describes the relation .between ;:
1 

and ;:4 , 

Using Eq .. (15) to express the three matrices on.the right side of this equation 

in terms of the FL' s and a
1 

and a 2 , we g,et for A
14

, after the multipli-

cations are carried out, 

(26) 

For the .FL of the system, comparison of Eq. (26) withEq. (15) gives 
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Since we impose the condition a
1 

+ a 2 = a ~ canst, the distance between 

RP
1 

and .RP
4 

is independent of a
1

. Therefore, by again consulting Eq. (15). 

we find as the condition for a constant distance between the FP 1 s of the sys-

tern that the sum of the diagonal elements of Eq. (26), divide.d by the lower 

left element, must be .independent of the position of lens 2. By using 

a 2 = a - a
1

, this quantity becomes 

2 2 
alf3 +(a- al)fl 

f2 - al (a-al) 

Since the denominator is of second order in a
1 

and the numerator only of 

first order in a
1

, this expression can be independent of a 1 only if the 

numerator vanishes for all a
1

. This gives us the conditions a = a
1 

+ a 2 = 0 

2 2 
and f

3 
= f

1 
. Since we usually work ·with positive lense.s only, the second 

condition is equivalent to £3 = f
1

. 

FL of the system is given by 

When these conditions are fulfilled, the 

and the distance between the FP' s of the system is independent of a
1 

and 

therefore of £. 

E. Treatment of Apertures 

Up to this point we have paid no attention to the effects of apertures 

in an optical system. Apertures are, of course, unavoidable, since every 

'lens mount represents an aperture. As we will see in Sec. V. F and V. G, 

apertures can be very important or even be the main concern in the design 

of an optical system. It is, or course, practically impossible to develop a 

general theory that describes the effects of all apertures in an optical system, 

since the detailed effects of the apertures depend too much on the problem to 

be solved with the optical system. We can, however, give a method that 
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usually makes a discussion of the effects of the ape:rtures fairly simple: 

Instead of dealing with the apertures themselves we project all of them into 

the space to th.e left or the right of the optical system, and we will see that 

this can be .done with very little additional computational effort. That this 

procedure achieves exactly the intended purpose can easily be seen from 

Fig. 17: If a light ray, originating from P, intersects the image A' of the 

aperture A, it must also intersect A and is .therefore not transmitted through 

the whole optical system. The same is obviously also true if A" were to be 

the image of A and if the backward extension of the ray were to intersect A" 

as indicated in Fig. 17. 

For the cases wher.e the location and size of the projection of the 

apertures are not trivial, we use the example of the triplet, Fig. 16, to 

demonstrate how the images of all apertures can be obtained with very little 

more work than is already necessary to obtain the matrix describing a sys­

tem. If we. want to project all apertures into the space to the left of tl?-e opti­

cal system,. we should calculate the matrix A
14 

in the following way: We 

first write down. A 12 , then multiply this matrixfrom the left by A 23 to ob­

tain A
13

, then multiply this matrix from the left by A 34 to obtain A 14, and 

so on , if there are more lenses. For example, if we want to find the image 

of an. aperture that lies between lens 2 and 3 (this could, of course, be a lens 

mount of lens 2 or 3!), we use.the matrix A
13 

and insert for a 2 such a value 

that,. for the purpose of this calculation, RP3 coincides with the plane of the 

aperture. By using the intermediate results of the calculation of the matrix 

A
14 

in this way, we obtain without any additional computations the matrices 

connecting all aperture planes with RP
1

. If we want to project all apertures 

into the space to the right of the optical system, we calculate analogously 

A 3 , 4 , A 2 , 4 , A
14

, in that order (see Fig. 16 ). 
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To actually O>btain the image of an aperture from the matrix that con-

nects the aperture plane with a RP outside o£ the optical system, we use 

the notation of Eq. (4) with RP
1 

and RP2 ,representing these RP' s. Re­

ferring to Fig, 6 ·as well as to Eq. (13) and its derivation (with D
1 

and D 2 

replaced by d
1 

and d 2), we find the location of the image of RP 2 by setting 

the upper right element of the matrix in Eq. (13) equal to zero for d 2 = 0, 

obtaining 

(27a) 

for the location. The size of the image of RP2 is given by the upper left 

element of the matrix in Eq. (13) and becomes 

r 0 = r2/all' 

Analogously we find that the image of RP
1 

is given by 

d2 = - a12/a22 ' 

a,nd 

r 3 = r ' 1 

(27b) 

(27 c) 

= r . 
. 1 a22 

(27d) 

These results are schematically represented for the usual case n
1
/n2 = 1 

in Fig. 18, which also shows the angles extended by the images of r
1

(r 2 ) as 

seen from the intersection between the axis and RP2 (RP
1 

). 

F. Parallax- Free Photography 

When we take a photograph with a came:r;a consisting of a lens system 

and a film (which we assume to be perpendicular to the axis o£ the lens sys-

~· tern), there is obviously only one plane in the object space that has an object-

image relation with the film plane. We call this plane the main object plane 

(MOP). Because of the finite size of the aperture of the lens, any other plane 

will also be reproduced on the film with a resolution that decreases with 
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. increasing .. distance between the plane under consideration and the MOP. 

When we photograph an object that has a considerable length in the axial di~ 

rection, we can, under some circumstances, have an additional loss of resolu-

tion because of the parallax. With this term we describe the fact that, in nor-

mal photographic techniques, the size of the reproduction of an object plane 

on the film depends on. the distance between the object plane and the camera,. 

becoming larger when that distance decreases. An example in which parallax 

can diminish or limit the resolution is a plasma column that exhibits the same 

luminosity pattern in all planes perpendicular to the axis of the column. To 

better understand both the limited resolution caused by the finite camera 

aperture and the parallax, we refer to Fig. 19, which illustrates the repro-

duction of a point source P that is not located in the MOP. The dashed lines 

* indicate the light cone that is accepted by the camera aperture, and the solid 

.line represents the center of this cone. The intersection. between the light 

cone and the MOP is a circle with its center at P 1 • If point P lies between 

the MOP and the camera, we work with the backward extension of the light 

cone and obtain an equivalent result. Since the MOP has an object-image 

relation, with the film plane, the reproduction of the point P on the film 

plane is. identical with this circle, except for the magnification with which 

the image of the MOP is formed on the .film plane. We draw from this the 

conclusion that the parallax, which in this case amounts to the distance 

pi-P", depends only on the location of the aperture; therefore, the parallax 

can be completely eliminated if it is possible to move the aperture, as seen 

* In cases where the physical camera aperture is not in front of the lens 

system, we mean by "camera aperture" the projection of the physical aperture 

into the object space, i.e. , . the aperture as it appears from object space. 
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, from the object space, to infinity. This requires that the lens mount of the 

first lens of the optical system that achieves this does not act as an aperture, 

which implies that this first lens has to be somewhat larger in the radial di-

··~ rection than the objecL Since highly corrected systems with free apertures 

of the order of 15 em are available as war surplus material, this require-

mentis not prohibitive for many experiments. 

Before we go into the discussion of a system that eliminates the par-

allax, we have to determine what should be the magnification m (= image size: 

object size) and the full opening angle a ci. the light cone of the system. If 

we.keep the exposure time constant, these .two quantities cannot be chosen in-

dependently if we want to obtain a negative of a certain density; if a circle with 

radius r
1 

in the MOP radiates with a given power density (], the energy 

accepted by the optical system during .the exposure time t is proportional to 

2 2 
at .•, r 

1 
••• a Since, with the magnification m, the image of that circle has 

the radius r 2 = mr 
1

, the energy density on the film plane becomes 

2 2 2 2 2 
atr 1 a /r 2 = aL•,a /m . Since we keep the exposure time t constant 

2 2 
a /m has to be constanL To relate n

2 
/m 

2 
to something familiar, we note that if 

a photograph is taken with a camera from a distance D that is large com-

pared to the FL f of the camera lens, which shall have the diameter d, we 

have I a I = d/D and I m I = f/D. If we introduce the f number N = f/d of 

* the lens, we obtain 

a/m = 1/N. (28) 

To determine the best choice for m, we consider the resolution that 

can be obtained if bQth the resolution of the film and the opening angle of the 

light cone are taken into accounL To calculate the resolution resulting from 

several sources, we use the square root of the sum of the squares of the 

*For simplicity we omit the absolute value signs II from here on. 
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. individual resolutions; this is usually a good approximation. If we refer all 

resolutions to the MOP, the resolution e of the film leads to 

R = e/m. 
E 

(29a) 

The resolution with which a plane at distance x from the MOP is reproduced 

because of the opening angle a. of the light cone is given by a.· x (Fig. 20). 

We assume for simplicity that the luminosity does not depend on the axial 

location of the plane (as long as the plane is within the boundaries of the ob-

ject of length 2L) and that the MOP is in the middle of the object; we then 

obtain as the resulting. resolution from all planes by square superposition 

and 

dx 
L 

R = a.L/ ...J3= mL/N ~. a. {29b) 

The combined resolution R = (R 
2 + R 

2
) 1/

2 
becomes a minimum for 

EO. . E 0. 

m = ( VTe N/L)
1

/
2

, (30a) 

and for this value we obtain 

R = (2e L/N ~3) l/2 
EO. 

.(30b) 

and 
a = m/N ;:: (E • ,y'TjNL) l/

2 
. {30c) 

In the derivation of Eqs. (30) we kept the exposure time t constant, 

which is appropriate in many cases. If, however, the object exhibits some 

motion, characterized by a velocity v, this velocity can contribute to the 

overall resolution and should be taken into account, provided t is not fixed 

for some other reason. If we get a properly exposed negative with the ex-

posure time t
0 

and with a.
0
jm

0 
= l/N

0
, the exposure time has to be 

2 2 
t = t

0
N /N0 for a./m = N, provided the reciprocity law holds. Associated 
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with t is the resolution Rv = vt :.. vt
0

N
2 
jN

0 
2

. 

l Eq. (30b)] through RE av = (Rv 
2 + REa 

2
) l/

2
, 

Combining R with R · v en 

for 

and R becomes eav 

we obtain a minimum of R 
eav 

(3la) 

l/2 R = (2.5· E L/N .y'J) . eav (31 b) 

The Eqs. (30a) and (30c) are of course still valid. 

To realize a parallax-free photogr(:iphic system, we need, as men-

tioned above, a first lens that has a somewhat larger diameter than the object. 

The simplest system is obtained by placing the camera behind this first lens 

so that the camera aperture is in the FP of the first lens. Because of its 

. location, the aperture (of diameter a) appears to be at infinity as seen from 

the object, and extends. the acceptance angle a = ajf
1

, where f
1 

is the FL 

of the first lens. Since the proposed lens system is a doublet, we can use 

Fig. 14 and Eq. (22) for its description. In Fig. 14, RP
1 

corresponds to 

the MOP, and RP
3 

corresponds to the film plane. We use for the distance 

d the value d=- f 2 because the aperture of the camera lens will, in general, 

be located .fairly close to a PP of that lens. Since the MOP and the film 

plane have an object-image relation, we obtain the distance D 2 between .the 

FP of the camera lens and the film plane by setting the upper-right matrix 

element in Eq. (22) equal to zero, yielding 

2 2 
D2 = - Dlf2 /(f2Dl + fl ) (32) 

Using this value for D 2 in the upper-left element of Eq. (22), we obtain for 

the magnification m 

m =-

f 2 
1 (33) 
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Because one usually has. only one lens big enough to be used as lens 1, f 1 is 

given. Since D
1 

will in most cases be fixed within a fairly narrow limit by 

the experimental conditions and enters in Eq. (33) only weakly,. Eqs. (33) and 

. (30a) essentially determine the FL of the camera. We conclude from Eq. (32) 

that focusing on the MOl;' will be simple for D
1 

< 0, i.e., when the MOP 

lies between the first lens and its front FP. When D
1 

> 0,. focusing can be­

come impossible with cameras that do not allow us to bring the film plane 

much closer to the lens than its back FP. Under these circumsta;nces one 

has to use an auxiliary lens between the first lens and the camera. For con­

ceptual simplicity it is advisable to place that lens in such a way that. it forms 

together with the first lens a telescope. Using the properties of the telescope 

as derived inSec. IV. B, the design of the system is straightforward and will 

be omitted here. 

G. Spectrometer Setup 

Spectroscopy is a very important tool for many scientific investiga­

tions and in many cases the design of the optical system that connects the 

spectrometer with the apparatus or specimen to be diagnosed is by no means 

trivial. Because of the tremendous variety of experimental conditions it 

seems impossible to give a general theorythat takes into account all pos­

sible circumstances of an experiment. We therefore discuss here only one 

problem, which, however, is rather typical for many experiments andre-

quires the discussion of many of the methods and techniques that would also 

be useful for the analysis of other experimental conditions. Since it will be­

come obvious that we should distinguish between several variants of this 

problem, depending upon the numerical values of apertures and distances, we 

use the values as they were encountered in an actual experiment. This makes 

the method clear enough to enable the reader to analyze the other variants 

quite easily. 
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lnthe experiment, the object to be diagnosed was a uniform plasma 

column n 2 = 250 em long, accessible through a window of diameter 

d 3 = 2.5 em (schematically represented in RP3 of Fig. 21). In order to avoid 

the measurement of light that is emitted from the walls, light should only be 

admitted to the spectrometer that originates from a cylinder of 2.5-cm dia­

meter. This can easily be accomplished by introducing an aperture in the 

optical system so that its projection is a virtual aperture of d 4 = 2. 5-cm dia­

meter at the other end of the plasma column, which lies in RP 4 of Fig. 21. 

The dimensions of the rectangular entrance slit of the spectrometer were 

h 2 = 2 em and ~ 2 = 2.5Xl0-
3
cm (schematically represented in RP2 of Fig. 21). 

The light entering the spectrometer is further restricted by a mirror that re­

flects the light onto a diffraction grating. The mirror diameter d
1 

is 5 em 

and is separated by D
1 

= 50 em from the entrance slit. The object of this 

discussion is to find the optical system that, with the given apertures, gives 

the maximal amount of light for spectroscopic diagnosis. 

For the determination of the light transmission through a set of aper-

tures, such as in this problem, it is important to realize that the amount of 

light transmitted through all apertures from an infinite uniformly illuminated 

plane is independent of the distance between that plane and the first physical 

aperture; this aperture is in our case located in. RP
3

. This independence 

can easily be seen as follows: If we select a small surface element in the first 

aperture and calculate the angular distribution of the radiation going,through 

that surface element, neglecting all the other apertures, we see that this 

radiation is independent of the distance between that aperture and the radiating 

plane. Since this holds for all surface elements, we conclude that the amount 

as well as the angular distribution of the radiation going through the whole 

first aperture is also independent of the distance between that aperture and 
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. the radiating plane; thus, it follows that the radiation going through .the whole 

set of apertures is independent of that distance too. If a whole volume is 

radiating uniformly, we therefore have.to consider only the.transmission from 

one plane or luminous slab; we can locate this plane so that the calculation 

becomes as simple as possible. If we have two apertures in RP
3 

and .RP 4 

of Fig. 21, spaced by a .distance D
2

, the obvious choice for the location of 

the radiating plane is either ·RP
3 

or · RP 
4

. If we locate the plane in. RP3 , 

and the area of the aperture opening is A
3

, only the radiation from that area 

is transmitted through the aperture in RP3 . The amount of radiation trans­

mitted through both apertures is therefore proportional to A3 and. the solid 

angle that the aperture in RP
4 

extends as seen from RP3 . If the area of 

the aperture. in RP 4 is A 4 , the light transmission.from this particular radi­

atingplane, and therefore from any other plane or the whole volume, is con-: 

sequently proportional to 

(34) 

If apertures are in more than. two- RP 1 s, the calculation of the transmission 

can become much more complicated, since the solid angle defined by two 

apertures as seen. from the third aperture will, in general, be different for 

different surface elements of the third aperture. 

In order to allow a simple determination of the amount of light that is 

transmitted through the given set of four apertures in RP 
1 

through RP 4 , we 

project the apertures in RP
1 

and RP2 into the space to the right of the 

optical system. We particularly require that the image of. RP
1 

falls on RP3 

an,d that the image of RP2 coincides with RP 
4

, since these seem to be the 

logical positions for the images of RP
1 

and. RP2 and because.this allows 

the application of the very simple Eq. {34). 
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Having the distance between the images of. RP
1 

and RP2 fixed in 

this way, we expect that this establishes some correlation between the pos-

sible magnifications m
1 

and m
2 

with which the images of RP
1 

and RP2 

are formed. To determine this correlation, we could directly apply the ex-

pressions derived in Sec. V. E. We prefer not to use these results but rather 

derive the relation between m 1 and m 2 in a straightforward way as one 

would do if the results of Sec. V. E were not available. 

Using the magnification m
1 

with which the image of RP
1 

is formed 

at the location of RP3 , the ma:trix A
13 

connecting ,:_
1 

and ,:_3 has to have 

the form 

(35) 

with a
21 

still undetermined. 

To obtain the matrix A 24 connecting ,:_2 and .::_4 , we have to multiply 

-D) (1 
1

1 
from the right and by 

0 

Dlz\ ) from the left, yielding 

. (36) 

If we introduce the magnification m
2 

with which the image of RP 
2 

is formed 

in RP 4 , m 2 has to be equal to the upper left element of A 24 , 

(37a) 

and the upper right element of A 24 has to vanish, yielding the following re­

lation between m
1

, m 2 , D
1 

and D
2

: 

(38) 
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. We now use Eqs. (38) .and (34) to .determine the magnifications m
1 

and m
2 

for optimal light transmission. We choose I mzl as an independent variable 

and see how T l Eq. (34)] depends on I m 2 1 . For I m 2 1 < d4/h2 = 1. 25,. the 

image of the slit in RP 2 is smaller than the aperture in RP 4 , giving 

A4 = e 2h 2· m 2 
2 

for the effective aperture area in RP 4 . Since the image of 

the aperture in_ .RP
1 

is larger than the aperture in RP3, the effective aper-

2 
ture .area in RP3 is A 3 = (n/4)d3 . Using Eq. (34) we see, therefore, that 

for 1 m 2 1 < 1. 2 5, T 

1.25, lmzl·h2 >d4 

is proportional to m 2 
2

. If jm2 j increases beyond 

and A4 grows only proportional to j m2 j~, whereas 

2 
A 3 is still given by (tr/4)d3 as long_as the image of the aperture in RP

1 

is larger than the aperture in .RP3. In this range of values of m 2 , T is 

therefore proportionaL to I m2l· ' If I m2l is increased beyond the point 

where the image of the aperture in. RP
1 

just fits the aperture in RP3 

,(m 1d 1 < d 3),. the effective area of the aperture in RP3 becomes 

TT 2·· 2 TT · 2 2 2 2 
A3 = 4 ml dl = 4 dl · D2 /Dl m2 · 

Since A4 is still proportional to I m21' T is from there on proportional to 

1/ I m 2 1. .From this behavior of T (I m 2 j ), which is schematically repre­

sented in Fig. 22, we see that we obtain a very sharp and sensitive maximum 

of T for that value of I m 2 j for which the image of the aperture in RP
1 

just fits the aperture in . RP3. By using the numerical values given above, 

. this is the case for I m 1 j -"" 0.5 and I m 2 j = 10. It should be noted that 

T(lmzr> behaves differently when the numerical values are such that the im­

age of th~ aperture in RP1 fits the aperture in RP3 , whereas the image of 

the slit in RP2 is still smaller than the aperture in RP 4 . For the optimum 

value of 1 m 2 1, T becomes 

Here and la~er we use the fact that e 2 is very smalLcompared to d jm
2

. 
4 
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The best value of I mzl determines a21 and therefore determines 

the FL of the optical system by means of Eq. (37a), which can be rewritten 

as 

a 21 = ~ 2 
( 1 - : ~) · (37b) 

We expressed a intentionally in this way to make the following point: 
21 

V'Jh.ile the sign of m
2

, and therefore a
21

, is arbitrary and of no practical 

significance, the sign of m
1
/m2 has to be the same as the sign of m

1
m 2 , 

which is determined by Eq. (38). Of course, D
2
jn

1 
is positive if the RP 1 s 

actually have the relative position as indicated in Fig. 21. It can, however, 

be practical to throw the image of RP
1 

on the RP farthest to the right 

(where RP 4 is in Fig. 21) and RP2 on the RP close to the optical system 

(where RP3 is in Fig. 21}. Since this represents a reversal of the positions 

of RP3 and RP 4 , it follows that, in this case, D 2 , and consequently m
1 

m 2 

and m 1/m2 , has a negative sign, leading to a slightly different value of I a
21

1. 
Withthe RP 1 s inthe positions'as in Fig. 21 we obtain from Eq. (37b), after 

introduction of the numerical values introduced above, ll/a
21

1 = 25/0.95 · 

::;; 26.3 em. 

Comparison of Eq. (35) with Eq. (15) gives, for the position of the 

rightsided FP with respect to RP
3

, 

m1 ml/m2 
a21 = D2 . m1 

1--

(39a) 

m2 

Since the sign of m
1
/m2 is always the same as the sign of D 2 , the right-

sided FP of the optical system lies always to the left of. RP3 (if l-m
1
/m2 >0). 
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Analogously, for the position of the leftsided FP of the optical system with 

.respect to RP1 we obtain 

= = D ( m /m ) l = D 1 + 1 2 . (39b) 
m

1 
1 m 1 

1-- 1---
m2 mz 

1 

With Eqs. {37b) and (39), the optical system for the attainment of maximal 

light transmission is completely specified. If RP3 and RP 4 are located 

as in"Figo 21 andif the spectrometer can.be mounted close enough to the 

apparatus, a single lens or a doublet can be sufficient to satisfy Eqs. ,(37b) 

-and (39). If either one of these conditions is not fulfilled, a system as de-

scribed in Sec. V.C is very practical, particularly if one wants_ to reverse 

the positions of- RP3 an,d -RP 
4 

. 

In this whole discussion we assumed that the images of_ RP1 and 

RP 2 coincide with RP 3 and -RP 4 . Although it would be too involved to de­

scribe the details here, it is fairly easy to show by dislocating the im?-ges of 

RP
1 

and . RP2 from RP3 and RP 
4 

that the optical system described by Eqs. 

(37b) and (39) does give a maximum for T. It can furthermore be shown that 

through the use of cylinder lenses, T cannot be improved either. 

H. Huygens 1 Eyepiece 

To demonstrate .the use of matrices for the discussion of chromatic 

aberrations,_ in this section we derive the basic design of Huygens 1 eyepiece, 

at least as far as chromatic aberrations are concernedo This eyepiece con:-

sists, for economic reasons, of two thin lenses that are made of the same 

glass; we have to choose these lenses and the distance between them so that 

chromatic aberrations are least objectionable. 

• 
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A completely chromatically corrected optical system would be de­

scribable by a matrix whose elements would be entirely independent of the 

wavelength "- of the light, Since the refractive index n of all materials 

varies with 'II., this is of course impossible. One therefore has to be satisfied 

if the first derivative of the matrix elements with respect to 'II. vanishes not 

everywhere but for at least one or preferably more wavelengths. Using Eq. 

(22) it is, however, easy to show that it is impossible to designa doublet of 

the kind described above in such a way that the first derivatives of all matrix 

elements disa_Ppear for a given wavelength. We therefore have to investigate 

which chromatic aberrations are most significant in the use of such an eye~ 

piece and then design the eyepiece accordingly. 

An eyepiece is used to visually observe an object that is projected 

into one FP of the eyepiece by means of a chromatically well corrected ob­

jective. The image of an off-axis object point can have two kinds of chromatic 

aberration: The angle a 2 between the axis and the image point, as seen with 

the eye, can depend on 'II., as well as can the distance d 2 between the image 

and the eye. If we identify the object plane and the plane that goes through the 

front NP of the eye as RP
1 

and RP2 , and if we describe the connection be­

tween ;:1 and !:.z by a matrix as in Eq. (4) (of course with n
1
/n2 = 1), from 

Fig. 18 we can directly obtain 

(40a) 

and 
(40b) 

We can draw from these relations the conclusion that, for satisfactory chro­

matic correction of an optical system used as an eyepiece, only ae 22=0 and 

a •12 ::: 0 have to be fulfilled. (The prime indicates differentiation with respect 

to 'II..) For the eyepiece discussed here, it is possible to show with the help of 
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. Eq. (22} that these two conditions cannot be satisfied simultaneously with 

a
22 

:: 0, which .also has to be .fulfilled at the. reference wavelength x.
0 

.since 

the object is located in the leftsided FP of the eyepiece. Since we can achro-

matize either d
2 

or a 2 , we obviously choose a 2 for achromatization; we 

make this choice because every off-axis object point would appear to the eye 

as a line showing all colors of the spectrum if n2_ -f 0 for all wavelengths of 

interest. From Eq. (40a}it follows that az. = 0 for a•12 = 0. Although we 

could try to satisfy a•
12 

= 0 directly,. it is more convenient to use. the fact 

that the eye is always very close to the back FP of the eyepiece, so that we 

can assume in very good approximation that not only a 22 = 0 but also 

a
11 

= 0 ·for X.= >..
0

. If we differentiate the identity a
11

a 22 - a 12a 21 = 1 with 

respect to X., we find that (a
11 

a 22)' = 0, although a 'u I 0 and a •22 I 0, and 

.we obtain the result that a 9

12 
= 0 requires also that a 1

21 
= 0. Referring to 

Fig. 14 and Eq. (22), we see that a
21 

= djf
1 

f 2. When we differentiate this 

equation, we have to realize that the distance d between the FP's of the two 

lenses depends on A.. However, since the .two lenses are assumed to be thin, 

the position_s of their PP' s are in very good approximation independent of \, 

and the distance between the PP' s of the two lenses is practically the same 

as the distance D betweenthe lenses. With d = D - f
1 

- f 2 we obtain, there-

fore, 

with .D' = 0. Moreover, because the two thin lenses are made of the same 

glass, it is evident from Eq. (Sb) that u = £2/£1 
is also inde_pendent of X.. 

Using this when we differentiate the equation 

. l ( D a21 = (D - fl - f2)/flf2 = - __;___2 -·, u f 
1 

1 + ':\ -r;-; 
. we directly obtain from a •

21 
.,. 0 that D has to be 

.. 
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(4}a) 

This equation can obviously only be fulfilled for one wavelength X.
0

, for which 

one chooses the wavelength of maximum sensitivity of the eye. With the 

spacing given by Eq. (4la), the FL of the eyepiece becomes 

(41 b) 

With Eq. (22) the following statements can easily be proven: If 

f
1 

> 0 and £2 > 0, only one of the FP 1 s of the eyepiece is real. Since the 

eye should be in or close to the back FP of the eyepiece, this is the FP 

that should be accessible, which is only and always the case when f 1 > f 2. 

Huygens 1 original design is characterized by f
1 

= 3f2 and consequently 

D ::o 2£2 and f =(3/2)f
2 

. 

When we calculate how d 2 depends on X., we should work with l/d2 

instead of d 2 directly because d 2 (A.
0

) = cc • If we expand l/d2 into a Taylor 

series and take only the first nonvanishing term, we obtain, with Eq. ( 40b), 

From Eq. (22) we see that a
22 

can be written as 

a22 = Dl a21 - fl/£2 · 

Because a 1

21 
= 0 and (f

1
/f

2
) 1 : 0, we get 

a 
1
2 2 = a 21 · D 

1
1 · (43) 

With the same consideration that led to the introduction of D earlier, we see 

that D 1

1 
= - f

1
1 • Since we are dealing with a thin lens, this can, with the use 

of Eq. (5b), be expressed as D 1

1 
= f

1
nu /(n-1). Using this and 

a
21 

(X.
0

)· a
12

(X.
0

) = - l inEq. (43) and Eq. (4Za), we obtain 

2 
(1 / d z) = a 21 f 

1 
n 1 Ll X./ (n- 1), 

>-= A.o +Ll x. 
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Without going into details here it might be worthwhile to mention that, to the 

eye, the apparent chromatic aberration resulting from the effect described by 

Eq. (42b) is proportional to the size of the exit pupil (depth of field consider-

ation), whereas the residual higher order chromatism in a. 2 is independent 

of the size of the exit pupil. 
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Fig. 2. Ray transit through a homogeneous medium. 
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Fig. 3. Refraction of a ray at an interface between different 
media. 
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Fig. 4. Thick lens. 
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Fig. 5. Image formation with plano-convex lens. 
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Fig. 6. Relative position of RP' s for the derivation of 
Eq. (9) (D

1 
and D

2 
are positive in this figure). 
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Fig. 7. Definition of the FL for a thin lens . 
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Fig. 8. Generalized definition of the FL' s. 
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Fig. 9. Definition of z
1 

and z 2 for Eq. (15) (z
1 

and 
z 2 are positive m this figure). 
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Fig. 10. Geometrical image construction and relative 
positions of FP' s, PP' s, and NP' s of an optical 
system with positive FL 1 s. 
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Fig. 11. Examples for simple determination of NP' s and 
PP's. 
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Fig. 12. Proper use of plane mirror. 
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Fig. 13. Concave mirror. 
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Fig. 14. The doublet. 
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Fig. 15. Combination of a telescope and a focusing 
system. 
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Fig. 16. Zoom-triplet (RP2 , and RP
3

, are used in 
Sec. VE). 
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Fig. 17. Effect of an aperture. 
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Fig. 18. ·Projection of RP' s (or apertures) for 
~ 1 /n 2 = 1 (d

1 
and d 2 are positive in this 

f1gure). 
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Fig. 19. Limitations of resolution because of 
parallax and the size of the camera 
aperture. 
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Fig. 20. Resolution because of the opening of the light 
cone. 
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Fig. 21. Positions of the apertures in a spectrometer 
setup. 
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li'ig. 22. Light transmission, T, as a function of 
I m 2 1 for a spectrometer setup. 
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